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Abstract. This work showcases Quatorze-bis, a state-of-the-art Number Theoretic
Transform circuit for TFHE-like cryptosystems on FPGAs. It contains a novel
modular multiplication design for modular multiplication with a constant for a
constant modulus. This modular multiplication design does not require any DSP
units or any dedicated multiplier unit, nor does it require extra logic when compared to
the state-of-the-art modular multipliers. Furthermore, we present an implementation
of a constant multiplier Number Theoretic Transform design for TFHE-like schemes.
Lastly, we use this Number Theoretic Transform design to implement a FINAL
hardware accelerator for the AMD Alveo U55c which improves the Throughput
metric of TFHE-like cryptosystems on FPGAs by a factor 9.28x over Li et al.’s NFP
CHES 2024 accelerator and by 10-25% over the absolute state-of-the-art design FPT
[VDTV23] while using one third of FPTs DSPs.
Keywords: NTT · FHE · FINAL · Hardware Design · FPGA

1 Introduction
Fully Homomorphic Encryption (FHE) is an advanced type of cryptography that enables
computation on encrypted data [Gen09], thus allowing protection of data both in transit,
and during processing. Typical usages of FHE involve a client, who is the data owner, and
a server, which offers some service, such as a trained machine learning model. The client
can then encrypt the data and send it to the server, which processes the encrypted data
and sends back to the client a new ciphertext encrypting the result of the computation.

Despite its wide range of applications, FHE has encountered some barriers for its
adoption. For instance, FHE is often considered very technical [GMT24], meaning that
it is not easy to be correctly instantiated and used by non-specialists. Another barrier,
which is more critical, is the computational overhead that FHE brings to the applications.
Basically, compared to the unprotected scenario where the server runs the application in
clear, FHE can easily be 10000 times slower [LKL+22, AKT+24].

Given this limitation, a lot of effort has been put into making FHE more efficient.
And indeed FHE schemes have been steadily improving over the last decade, with many
new algorithms that reduce the asymptotic costs of FHE [LMK+23, GPV23, WWL+24].
However, despite the algorithmic improvements, the performance of existing FHE schemes
is still not satisfactory when implemented on CPUs. Thus, studying how to efficiently
implement FHE on hardware has become a growing line of research, with works spanning
from GPU-assisted implementations [WLH+23, YSD+24] to ASICs (application-specific
integrated circuit) implementing whole schemes [SFK+22, GBP+23, JLJ22a, PPC+23].

Although ASICs have the potential of making FHE practical, they are very expensive
to produce, manufacturing them can take years, and they are typically very inflexible. For
example, in [AMK+23], some ASICs for accelerating FHE have an estimated fabrication
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cost of about 25 million USD. Hence, FPGA (field-programmable gate array) is a viable
alternative trying to conciliate flexibility, production costs and speedups. Firstly, FPGA
can accommodate small changes in the schemes. For example, if a new algorithm for
one specific operation of the scheme is proposed or a new set of parameters, one can
change their FPGA implementation, while an ASIC could not be updated in such situation.
Secondly, FPGAs can still reduce the running time of systems using FHE by orders
of magnitude [VDTV23]. However, implementing certain types of FHE on FPGA is
challenging, because FHE is typically memory-bound, due to the large ciphertexts and
keys. In practice, an FPGA can end up being idle waiting for data transfers from the
computer memory to its internal memory. For instance, well-established FHE schemes,
such as BGV [BGV12] and CKKS [CKKS17], require several gigabytes just to store the
keys used for bootstrapping, which is the most important operation in FHE. Basically,
in FHE, each ciphertext has an internal noise that is small when the message has just
been encrypted, and increases with each homomorphic operation. At some point, the
noise is too large and if any additional operation is performed, it is no longer possible to
decrypt the ciphertext. Then, the bootstrapping is run, reducing the inherent noise of the
ciphertext and allowing for more computation.

Taking this into account, FHE schemes that require less memory seem better suited
for FPGA implementations. Such schemes, known as third-generation schemes, started
with FHEW [DM15] and were then improved in TFHE [CGGI16]. They have very small
ciphertexts and they require bootstrapping after every homomorphic operation. However,
their bootstrapping can be evaluated in just a few milliseconds on a CPU and using
just a few megabytes of key material, in contrast to a few minutes required to evaluate
BGV’s or CKKS’ bootstrapping and using gigabytes of memory. Hence, some works have
implemented TFHE on FPGA [VDTV23, ZCJ24, KL24]. In spite of TFHE being arguably
the most famous 3rd-generation FHE scheme, there is a newer one, called FINAL [BIP+22],
which was around 28% faster on CPU than the original TFHE and used 45% smaller keys.
Specially because of its reduced memory requirements, it seems even more suitable for
FPGA implementations.

TFHE-like schemes are generally compute-bound, as they require many external
products between ciphertexts to be completed. As ciphertexts are polynomials, these
external products consist of polynomial multiplications. To achieve the best efficiency either
the Fast Fourier Transform or the Number Theoretic Transform is utilized to complete
the polynomial multiplication in O(n logn). In other words, a single operation (in our
case, the Number Theoretic Transform) needs to be completed multiple times to finish one
bootstrap. Thus the bottleneck of the bootstrapping operation is the Number Theoretic
Transform (NTT), and any improvement in the Number Theoretic Transform translates
to a similar improvement in performance of the bootstrapping step.

Thus, in this work, we design and implement a state-of-the art FPGA hardware
accelerator for FINAL, utilizing a constant-multiplier Number Theoretic Tranform and
extremely efficient modular multiplication. The combination of these two techniques allows
us to fit an extremely large quantity of butterfly units (also known as Processing Elements)
onto the FPGA while minimizing the logic required to feed these butterfly units. This
accelerator reaches a bootstrapping throughput of 31250 Bootstraps Per Second.

Contributions
Our main contributions are as follows:

1. A novel modular reduction design for modular multiplication with a constant for
a constant modulus. This design does not require any DSP units nor does it
require extra logic when compared to state-of-the-art techniques such as K-reduction,
LUT-reduction or constant-modulus Barrett reduction. Moreover, unlike many state-
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of-the-art modular multipliers, it functions equally well regardless of the hamming
weight of the modulus. The core idea of this modular multiplier is that multiplication
and modular reduction are both linear functions, and can thus be replaced by the
sum of a lookup table, analogous to in-memory computation. This butterfly design
requires fewer than 140 LUTs per butterfly.

2. An implementation of a constant multiplier Number Theoretic Transform design,
analogous to the FFT version presented in [GM21]. The constant multplier archi-
tecture is equivalent to performing a two-dimensional NTT, where one dimension
is time and the other space on the FPGA. Earlier designs dedicate significant logic
to preventing memory stalls of the NTT units. Our constant multiplier DSP-free
NTT design eliminates much of this logic, and exploits the unique structure of the
constant multipliers to implement the butterfly units without using DSPs and with
less LUT usage than state-of-the-art butterfly units with the same bit width.

3. An implementation of a FINAL hardware accelerator for the AMD Alveo U55c.
This state-of-the-art figure is achieved fully placing one iteration of the FINAL
blind rotation on the hardware, and matching the streaming width of the circuit
to the streaming width of the NTTs. Thanks to the small size of the butterflies, a
large streaming width S of 64 can be achieved, which in turns allows the hardware
accelerator to achieve a throughput of 31250 Bootstraps Per Second (BPS) utilizing
only 1920 DSPs.

2 Preliminaries

We denote vectors by bold lowercase letters and matrices by bold uppercase letters. For
a vector u, we denote the infinity norm by ∥u∥. We define R = Z[X]/⟨XN + 1⟩, that
is, the (cyclotomic) ring of polynomials modulo XN + 1, where N is a power of two.
For an integer q > 1, we define Rq = Zq[X]/⟨XN + 1⟩, i.e., the ring of polynomials
from R but with coefficients reduced modulo a constant q. For any c ∈ Rq and integer
B ≥ 2, the gadget decomposition of c, denoted by SignedDecompB(c), is a generalization
of the base-B integer signed decomposition for polynomials, that is, SignedDecompB(c) =
(d0, ..., dℓ−1) where ℓ = ⌊logB(q)⌋ + 1, each di ∈ R, the coefficients of each di belong to
{−B/2, ...,−1, 0, 1, ..., B/2}, and c =

∑ℓ−1
i=0 di ·Bi.

2.1 (Ring) Learning With Errors and NTRU

In the learning with errors problem (LWE) [Reg05] with parameters n, q, and σ, an
attacker has to find a secret vector s ∈ Zn given many samples of the form (ai, bi), where
ai is uniformly sampled from Zn

q and bi := ai · s + ei mod q, with ei following a discrete
Gaussian distribution with parameter σ.

In its ring version, known as RLWE [LPR10], the challenge is to find the secret
polynomial s ∈ R given samples of the form (ai, bi), where ai is uniformly sampled from
Rq and bi := ai · s+ ei mod q, for some small polynomial ei ∈ R called the noise term.

The NTRU problem with parameters N, q, and σ consists in finding the secret polyno-
mial f ∈ R given polynomials hi = gi · f−1 ∈ Rq, where the coefficients of f and gi’s are
sampled from a discrete Gaussian distribution with width σ [Dv21].

The three problems are believed to be quantum hard and all known algorithms to solve
them run in exponential time [APS15, ACD+18].
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2.2 Fully homomorphic encryption

Fully homomorphic encryption (FHE) allows computation to be performed on encrypted
data. In a typical scenario, a client generates a ciphertext c that encrypts some data m
under a public key pk. Then, a server holding c and pk, but not the corresponding secret
(decryption) key sk, can choose an arbitrary function f and generate a new ciphertext c̃
encrypting f(m). This step is called the “homomorphic computation” and one says that
“f was evaluated homomorphically”. Finally, the client can download c̃, decrypt it using sk,
and obtain f(m). Therefore, FHE allows one to outsource computation to an untrusted
party while preserving the confidentiality of both the input and output data.

Among the FHE schemes, TFHE gained a lot of attention because of its fast bootstrap-
ping. Basically, to encrypt a message m, TFHE adds it to an LWE sample, obtaining thus
a ciphertext c = (a, b) ∈ Zn+1

q , where b = a · s + e+m mod q. After one homomorphic
operation is performed on c, one has to run the bootstrapping to refresh the ciphertext
and prepare it to new operations. Hence, most of the time spent in any homomorphic
evaluation is used with the many executions of the bootstrapping.

For the bootstrapping, two new types of ciphertexts are defined, both constructed on
top of the RLWE problem. One is a called simply a RLWE ciphertext and it encrypts
a polynomal m0 ∈ R as c = (a, b) ∈ R2

q, where b = a · s + e + m0 mod q (for some
secret s ∈ R). The second one is a (ring) GSW ciphertext [DM15], which also encrypts a
polynomial m1 ∈ R, but into a matrix C ∈ R2×2ℓ

q where, basically, each row is a scalar
ciphertext and ℓ = ⌊log q⌋ + 1. The main operation used during the bootstrapping is
the external product, which decomposes c into a vector of 2ℓ small polynomials, then
multiplies it by C, generating a new RLWE ciphertext ĉ encrypting the product m0 ·m1.
That is, RLWE(m0) ⊠ GSW(m1) = RLWE(m0 ·m1). Notice that performing this operation
efficiently relies crucially in having an efficient way of multiplying polynomials, which is
achieved by using Fast Fourier Transform (FFT) or algorithms alike, such as the Number
Theoretic Transform (NTT). Moreover, the bootstrapping is essentially a sequence of n
external products, thus, the NTT is the main piece to be optimized in order to obtain
faster bootstrapping (and hence, faster homomorphic evaluation of any function, since
bootstrapping dominates the running time of any homomorphic computation).

2.3 FINAL

FINAL [BIP+22] is an FHE scheme similar to TFHE but constructed using the LWE and
NTRU problems instead of the RLWE. As TFHE, it encrypts an integer m into an LWE
sample ĉ = (a, b) ∈ Zn+1

q , where b = a ·s+e+m mod q and s ∈ Zn+1
q is the secret key. But

to bootstrap ĉ (that is, to perform the blind rotation, followed by a key switching), it relies
on the NTRU problem to define two types of ciphertexts, a scalar one, which is of the form
c = g0 ·f−1 +m0 ∈ Rq and a vector ciphertext, which is of the form c = g ·f−1 +m0 ∈ Rℓ

q,
where each g[i] · f−1 ∈ Rq is an NTRU sample. Then, its external product, c ⊠ c, is
defined as SignedDecompB(c) · c ∈ Rq, that is, we decompose c into a vector of ℓ small
polynomials and compute the dot product with c. This gadget decomposition can also be
performed approximately, in which case it is called approximate gadget decomposition.

Notice that instead of having a matrix of dimension 2 × 2ℓ, as in TFHE, we now have
a vector of dimension ℓ. Hence, the external product is simplified to a dot product instead
of a matrix-vector product, which tends to reduce its costs (depending on the size of the
parameter ℓ). Moreover, for FINAL, the bootstrapping key, bsk, is composed by a list of n
vector ciphertexts, therefore, it has nℓ elements of Rq, while in TFHE, bsk is a list of n
GSW ciphertexts, which are 2 × 2ℓ′ matrices, therefore it has 4nℓ′ elements of Rq in total.
Thus, FINAL tends to have smaller keys. Finally the blind rotation is followed by a key
switching step, analogous to TFHE.
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2.4 The Number Theoretic Transform
Multiplying two polynomials with coefficients modulo some integer q can be done efficiently
using the Number Theoretic Transform (NTT). The “standard” NTT consists of the
following function, which takes an input polynomial/vector x of N elements and returns
an output vector/polynomial X of N elements where the j-entry is

X[j] =
N−1∑
i=0

x[i] × ωij

with ωN ≡ 1 mod q and ωN/2 ≡ −1 mod q.
When we wish to multiply two polynomials modulo XN +1, so that all polynomials consists
of N coefficients, we can choose between three possible methods. A naive method uses two
polynomials of ring size 2N , with the most significant half of the coefficients being zeros.
A coefficient-wise multiplication follows after the NTT, which is followed by a reduction
step of the polynomial modulo XN + 1 [POG15], followed by an INTT.
A second method, to avoid padding inputs with zeros, negative wrapped convolution
[POG15] is utilized, taking ψ so that ψ2 = ω (mod q), and precomputing:

â = (a[0], a[1]ψ, a[2]ψ2, ..., a[n− 1]ψn−1)

and
b̂ = (b[0], b[1]ψ, b[2]ψ2, ..., b[n− 1]ψn−1)

With these precomputed values, we can now perform the NTT and pointwise multiplication,
followed by an inverse NTT:

ĉ = INTT(NTT(â) ◦ NTT(b̂))

then “remove” the extra powers of ψ by computing

c = (ĉ[0], ĉ[1]ψ−1, ĉ[2]ψ−2, ..., ĉ[n− 1]ψ−(n−1))

and it turns out that c = a× b (mod XN + 1).
A third method involves integrating this multiplication with ψ or ψ−1 in the NTT

butterflies [POG15]. We have:

NTT(â) =
N−1∑
i=0

â[i] × ωij =
N−1∑
i=0

a[i] × ψi × ωij =
N−1∑
i=0

a[i] × ψ2ij+i

To ensure we perform the NTT efficiently, an algorithm similar to the Fast Fourier
Transform is employed (for the basics of the FFT, see [BM67]). The crucial difference
between the Fast Fourier Transform and the NTT lies in the arithmetic, rather than the
control flow (for software) or architecture (for hardware). The arithmetic of the NTT
differs from the Fast Fourier Transform in the sense that the NTT handles integers modulo
q. As such, rather than a complex multiplication, a modular multiplication is performed
in each butterfly unit. Beyond this change in arithmetic, the structure of the NTT is
identical to the Fast Fourier Transform, and all techniques used to optimize the latter can
be applied to the former.

The key Processing Element of the FFT/NTT architecture is the Butterfly Unit. This
Processing Element consists of an addition, a subtraction and a multiplication, connected
to each other in a way that suggests the shape of a butterfly [BNV24]. In the Number
Theoretic Transform, as we work over integer modulo q, the butterfly unit consists of a
modular addition, a modular subtraction and a modular multiplication respectively.
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Table 1: Parameters for 128-bit secure FINAL

n N q l
610 1024 786433< 220 7

Table 2: AMD Alveo U55c resources

LUTs DSPs FlipFlops BRAM+URAM memory
1.304M 9024 2.607M 43 MB

2.5 A computational cost comparison between TFHE and FINAL

The difference between TFHE and FINAL from a hardware perspective lies primarily
in the number of NTTs performed. Whereas for common parameters TFHE requires
6300 NTTs for each bootstrapping operation, FINAL requires only 4880 NTTs for similar
parameter sets. For a detailed comparison between the algorithms, and how these numbers
are derived, see Appendix A.

2.6 Parameters

The FINAL parameters used in this work are provided in Table 1. We note that indepen-
dently of the hardware optimisations made in this paper, FINALs default 20-bit modulus
already provides a nice hardware saving compared to the 32-bit moduli often favored by
software-oriented parameter sets.

2.7 FPGA preliminaries

An FPGA is a reconfigurable electronic circuit. On an FPGA, there are various “primitives”
such as LUTs, DSPs, Flipflops and BRAMs which can be connected to each other according
to the wishes of the hardware designer. LUTs or Look-Up Tables are primitives which
takes as input a number of bits and provide a programmable output for any possible
combination of these inputs. In the case of the AMD Alveo U55c, 1 output bit when
utilizing 6 bits as input, or 2 output bits for 5 input bits. In other words, any 6:1 Lookup
Table on the U55c can be seen as a memory element which stores 64 bits on 64 different
addresses, and when provided a 6 bit address (hence 64 possible addresses) will give the
data bit stored at that address. DSPs or Digital Signal Processors are elements which
primarily function as multipication units. While multipliers can be built with Look-Up
Tables only, multiplication is such a common operation that DSPs are provided to optimize
this specific operation. On the U55c, DSPs implement an 18 by 27 bit multiplier, along
with a few additions. Flipflops are synchronous one bit storage elements. This means
that they will store one bit every clock cycle, which is used to reduce the path signals
travel through between clock cycles, and thereby increase the frequency of the clock, which
in turn results in higher computation speeds. Finally BRAMs or Block Random Access
Memories and URAMs or Ultra Random Access Memories are the memories available on
the FPGA. They provide large-scale memory storage.

For the purposes of this paper, we will only consider the AMD Alveo U55c, but the
techniques are applicable to any FPGA or device with synthesizable Look-Up Tables.
Moreover, the Verilog Code implementing this design will synthesize for any 7-series or
Ultrascale+-series device. The resources available on the U55c are listed in Table 2
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3 Related Work
In this section, we discuss two state-of-the art designs for TFHE-like bootstrapping. The
approach and resulting performance is discussed. This will provide a basis on which the
optimizations of our design (Quatorze-bis) can be discussed.

3.1 FPT
FPT is a streaming processor by Van Beirendocnk et al. [VDTV23] which accelerates
both the blind rotation and the key switching step. To perform the many polynomial
multiplications that make up the bulk of the bootstrapping step, it utilizes the FFT.

• As FPT has a streaming-like architecture, it’s design is pipelined and thus multiple
ciphertexts (12 ciphertexts) are handled simultaneously

• FPT utilizes multiple FFT techniques such as optimized real to complex fourier
tranforms and folded coefficients to gain a factor 4 improvement over regular FFTs

• FPT utilizes what it calls a "continuous-flow pipelined FFTs", an architecture
containing a single radix-64 (for their IFFT) or radix-128 (for their FFT) processing
element. These two huge processing elements guarantee a better throughput per area
than multiple smaller radix FFTs in parallel or a single FFT with multiple smaller
processing elements

• FPT considers the inherent noise of the FFT and the inherent noise of TFHE and
optimizes the FFTs fixed point arithmetic to prevent the calculation of data that
will be lost in TFHE’s inherent noise

Overall then, this combination of techniques results in a state of the art bootstrapping
throughput of 28400 Bootstraps per second (BPS) for 128 bit security.

3.2 NFP
Through the hardware accelerator NFP, Li et al. [LLW+24] presented a novel TFHE
algorithm, utilizing both the NTRU-based bootstrapping from FINAL and approximate
gadget decomposition. Consequently, their algorithm requires only half the amount of
Number Theoretic Tranforms utilized in FINAL.

• NFP has a CPU-like implementation, with an I(NTT) module, a multiply-accumulate
module and other modules being utilized sequentially. Thus no pipelining of cipher-
texts is done, and the throughput is inversely proportional to the latency.

• NFP places a large quantity of radix-2 butterflies rather than a single large-radix
processing element. This means that the ratio of butterflies to control and crossbar
logic is much less favorable than in FPT. NFT places only 256 butterfly units on the
FPGA, as opposed to the 8 × 128/2 + 8 × 64/2 = 768 butterfly units utilized by FPT.

• NFP utilizes Montgomery Multiplication for its modular multiplication modules.
Montgomery Multiplication can be an efficient [BAE+24] method for modular multi-
plication where the modulus changes during runtime. However, its naive implemen-
tation generally results in unnecessary area usage when used in hardware for a fixed
modulus. This in turn results in larger butterfly units, and thus less butterfly units
that can be placed on the FPGA.

The combination of a lower quantity of butterflies as well as the fact that the butterfly
units of NFP are not permanently in use means that an overall throughput of only 3448
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Figure 1: The basic layout of a normal modular multiplier

Bootstraps Per Second (BPS) [LLW+24] is reached. While the modified blind rotation
algorithm presented in NFP is thus excellent and offers a factor two improvement over
FINAL in Number Theoretic Transform calculations, the hardware design implemented is
decidedly low throughput. We note that the authors of NFP mistakenly assume that FPT
does not pipeline, and assume that since FPTs latency is 0.58ms, its throughput must
be 1724 Bootstraps Per Second (BPS) (Table 12 of [LLW+24]). In reality, FPT handles
12 ciphertexts per batch, and as such its throughput is more than 12 times higher than
the number cited by the NFP paper. In short, they fail to see the difference between
throughput and latency.

Having considered the two designs of this section, we looked towards creating a
design with both a well-optimized algorithm, such as FINAL, and a well-optimized
implementation.

4 Design
A well optimized streaming architecture-style implementation of FINAL requires three
design considerations: Firstly, efficient Processing Elements for the Number Theoretic
Transform, which is the bottleneck operation. Secondly, an efficient architecture for the
NTT that minimizes the area taken up by elements which are not Processing Elements.
Lastly, an architecture for our FINAL design Quatorze-bis that guarantees the other
elements of our design can feed sufficient data to our large NTT accelerators every cycle.

4.1 NTT butterflies
The critical part of any butterfly unit is usually its modular multiplication unit. In
this section we will first consider the methods of the designs, then describe the multiple
approaches our design takes to optimally utilize the FPGA resources.

Most NTT designs take the approach shown in Figure 1. The multiplication is usually
performed using one or more DSPs. For the modular reduction, the usual design choses
Montgomery Multiplication [MKO+20]. By using Montgomery Multiplication, most
designs for FINAL-like accelerators fail to leverage an important feature of FINAL-like
schemes: the constant modulus q. Unlike BGV or CKKS, the constant modulus used
in the blind rotation operation offers a great optimization opportunity. Firstly, even in
well-known algorithms such as Montgomery or Barrett, exploiting the constant modulus
can give significant improvement [XL21]. Secondly, there are only two requirements for
the FINAL modulus: its size must be around a certain amount of bits, and if we wish
to be efficient, it must support the Number Theoretic Transform. To support a Number
Theoretic Transform, the modulus should be a prime or product of primes of the form
1 mod 2N . This allows us to choose a modulus q as long as we satisfy both requirements
and gain a large area improvement over other designs, which in turn will lead to a speed
up by greatly increasing the number of butterflies which can be placed on the FPGA.
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As discussed in the preliminaries in table 1, for the FINAL parameters 219 < q < 220

and q ≡ 1 mod 2N ≡ 1 mod 211. Given that q is a constant which can be chosen to have a
very low hamming weight (for instance, q = 786433 = 3 × 218 + 1), all operations with q
can be implemented efficiently.

In our design we exploit q’s structure in two different modular multiplication techniques:
K-reduction, which is a technique more often seen in Post-Quantum Cryptography [BNV24]
and LUT-based modular multiplication, a new technique based on modular reduction.
K-reduction will be applied in scenarios where both operands of our multiplier change
dynamically, whereas LUT-based modular multiplication will be applied wherever only
one operand varies, as our novel LUT-based modular multiplication requires no DSPs for
either the multiplication or the reduction step.

4.1.1 K-reduction

K-reduction of a number c (for FINAL parameters, a 2 × log2 q = 40-bit number) exploits
the fact that our low Hamming weight modulus q can be written as a power of two
multiplied with a small constant k plus one (in the case of q = 3 × 218 + 1, we have k = 3).
A modular reduction of numbers that are to be multiplied by k is then a low-complexity
operation because any number multiplied by k × 218 is equivalent to the negative of that
number. In other words, the upper bits, starting from position 18 (the notation for these
upper bits is written here as c[39:18]), can be subtracted from the lower bits (c[17:0]), once
the lower bits have been multiplied by k (See Algorithm 1). Thus, rather than calculating
the desired result:

c mod q

The following is calculated (which is off by a constant factor k = 3):

K-red(c) = c× k mod q

with q = 786433 = 3 × 218 + 1 = k× 2x + 1 with x = 18 and k = 3. By splitting k× c into
k × c[39:18] × 218 + k × c[7:0], and replacing the upper part k × 218 with −1, the end result
is a single subtraction −c[39:18] + k × c[17:0] to reduce the size of the product by almost 18
bits. The fact that the calculation is off by a constant factor k is rectified by multiplying
one of our inputs (either our twiddle factor or the bootstrapping key) by a constant factor
k−1 (mod q).

Algorithm 1: K-red Algorithm
Data: a and b, 20 bit inputs, q = k × 2x + 1 with x = 18 and k = 3 so that

q = 786433 and k × 218 ≡ −1 mod q
Result: r = a× b× k mod q

1 begin
2 c = a× b = c[39:18] × 218 + c[17:0];
3 r = (c[39:18] × (−1) + k × c[17:0]) mod q (= k × c mod q =

(c[39:18] × k × 218 + k × c[17:0]) mod q);
4 end

K-reduction does not fully reduce a 40-bit value to a 20-bit value since c[39:18] is a
22-bit value, but the final steps of the modular reduction can be handled by a branching
conditional statement, or more efficiently by exploiting the fact that 220 ≡ 218 − 1 mod q
to reduce the final result by the required two bits, followed by a single modular subtraction.
The exact implementation of this K-reduction algorithm can be seen in Figure 2.
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Figure 2: K-Reduction as implemented in our design

Full utilization figures will be provided in section 5 but we note that the K-reduction
design (without the multiplier) requires 89 LUTs and 105 Flipflops. The 20-bit multiplier
element can be synthesized by commercial tools as requiring either 2 DSPs or 1 DSP and
47 LUTs. We will choose the former as the next section will demonstrate a multiplier
which requires no DSPs, leaving most unused.

4.1.2 LUT-based modular multiplication

We now present a novel modular multiplication method for modular multiplication by a
constant with reduction by a constant modulus. This method is similar to in-memory
computation, but utilizes the LUT primitives available on the FPGA and takes advantage
of the inherent linearity of both the multiplication and modular reduction operation. This
method is not to be confused with LUT-based reduction [BNV24], as LUT-based reduction
only performs the reduction operation, not the multiplication operation.
Consider the following function:

f(a) = a× b mod q

where b and q are 20-bit constants.
We see that f is a linear function by looking at the evaluation of an input C0 ×a0 +C1 ×a1:

f(C0 × a0 + C1 × a1) = (a0 × C0 × b mod q + a1 × C1 × b mod q) mod q

Moreover any log2(q) = 20-bit integer a can be split up in 4 sections of 5 bits.

a = a[19:15] × 215 + a[14:10] × 210 + a[9:5] × 25 + a[4:0] × 20 (1)

Thus our modular multiplication reduces to log2(q)/5 = 4 functions with 5-bit inputs.

f(a) = (f(a[19:15] × 215) + f(a[14:10] × 210) + . . .) mod q

When we consider each term individually, we see that these functions take 5 bit inputs
and return 20 bit outputs.

f(a[19:15] × 215) = g3(a[19:15]) = a[19:15] × b× 215 mod q

f(a[14:10] × 210) = g2(a[14:10]) = a[14:10] × b× 210 mod q

f(a[9:5] × 25) = g1(a[9:5]) = a[9:5] × b× 25 mod q

f(a[4:0] × 20) = g0(a[4:0]) = a[4:0] × b× 20 mod q
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Figure 3: LUT Modular Multiplication

It is now important that the primitive logic element on most AMD FPGAs is a Look-up
table containing 5 bits of input and 2 bits of independent output. From 10 Look up Tables,
each taking 5 bit inputs and outputting 2 bits, we can create the required gi function.
From four of these functions, we can create the four terms of Equation (1).
The only step which remains is to then sum these four terms (as an extra optimization, we
used an efficient 3 to 1 adder identical to FloPoCo [dDK24]), and to reduce the resulting
22-bit sum in the same fashion as reduced the 22-bit sum in the K-reduction case. The
full process is shown in Figure 3.1 In our design, we employed lazy reduction wherever
possible to remove the 22-bit reduction step after the multiplication and the reduction
steps after addition and subtraction. This reduces the total LUT usage of our butterfly
circuit to somewhere between 100 and 140 LUTs.

There are some important advantages and disadvantages to this method. A great
advantage is that this method removes the need for DSPs or other types of multipliers
for any modulus, as long as that modulus is constant. Whereas K-reduction requires
the modulus to have the structure k × 2x + 1 and to have a low k, preferably 3, this
LUT-based modular reduction offers better performance with fewer requirements for the
modulus structure. Namely, the modulus is not required to have a low Hamming weight or
a structure of the form k× 2x + 1. The main disadvantage is that one of the multiplicands
must be a constant, which limits its application. A point-wise multiplication is generally a
part of any application where the Number Theoretic Transform is performed, and FINAL is
no exception. Since a pointwise multiplication in FINAL is done between our accumulated
ciphertext and the bootstrapping key, neither of which is a constant, this method is not
applicable for this pointwise multiplication. Moreover, the Number Theoretic Transform
architecture must be designed in such a way that the twiddle factors fed in to the butterflies
are constants.

We will see in the next section that we can design an architecture which primarily
employs constant twiddle factors, and requires only as many non-constant twiddle factor
multipliers as the number of elements that are fed into the circuit each clock cycle. We
will call this number the Streaming Width S. K-reduction will then provide S multipliers
and LUT-based reduction will provided the remaining S log2 N multiplier units for each
NTT unit handling input polynomials with ring size N .

1It might at first sight seem advantageous to employ the function g0 for all four cases, and shift
afterwards, but before addition. We note that since the function g must still take 4 different inputs, this
doesn’t improve the area delay product. Moreover, one of the terms of the addition will contain 35 bits, so
extensive reduction steps would still have to be taken to achieve a 20-bit end result.
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4.2 NTT architecture
In this section, we will consider the NTT architecture in light of the previous section, and
discuss various possibilities which satify our requirements.

4.2.1 The impossibillity of a fully implemented NTT

The key specification to designing the NTT architectures, given our butterflies, thus
becomes ensuring that each butterfly is assigned to one twiddle factor. The aforementioned
NTT butterflies must also be fed with the input data in a way which minizes non-butterfly
logic. Interestingly, this is one of the few examples of hardware problems that become
easier as the throughput increases. Each individual input of the Number Theoretic Trans-
form circuit has fewer pieces of data that need to be fed in as the circuit size increases.
As such, the overhead of multiplexing logic decreases relative to the NTT. In the ideal
scenario, the streaming width is equal to the ring size, which would require no overhead
for feeding in data outputs. Unfortunately, such a design would exhaust the resources of
the FPGA by itself. Consider a 240 LUT butterfly unit: with a ring size of N = 1024, our
N × log(N) = 1024 × 10 = 10240 butterflies require 2457600 LUTs. Placing even a single
NTT is beyond the capabillities of a U55c FPGA, and even if it were possible to place a
single NTT and a single smaller INTT similar to FPT, balancing the NTTs and INTTs in
a manner similar to FPT is extremely difficult for the given parameter set in which l = 7
as l does not divide N = 1024 [VDTV23].

4.2.2 Our NTT-1024 architecture

As we cannot implement the full NTT, we must split our task into smaller sub-NTTs. One
way of achieving this is the multi-dimensional NTT, where our input vector is split into
two dimensions [CG19]. One of the two dimensions will be S, our streaming width. The
other dimension is N

S , with N as always our ring dimension. From a data perspective this
looks as follows:

[
x0 x1 x2 x3 x4 x5 x6 x7 . . .

]
≡

x0 x1 . . .
xS xS+1 . . .
...

... . . .


S is chosen to divide N , and must therefore also be a power of two. Our NTT-operation
then (roughly) consists of performing N

S NTTs of size S, followed by performing S NTTs
of size N

S . This is consistent with how the multidimensional NTT is performed. From a
mathematical perspective, take the definition of the NTT transformation of a vector x to
X:

X[j] =
N−1∑
i=0

x[i] × ωij

If we now set i = a×N/S + b and j = c× S + d:

X[c× S + d] =
S−1∑
a=0

N/S−1∑
b=0

x[a×N/S + b] × ω(a×N/S+b)×(c×S+d)

Before proceeding, we note that as in the preliminaries, ωN ≡ 1 mod q, thus (ωN )a×c ≡
ωa×c×N ≡ 1 mod q. Thus:

X[c× S + d] =
S−1∑
a=0

N/S−1∑
b=0

x[a×N/S + b] × ωac×N+bc×S+ad×N/S+bd
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=
S−1∑
a=0

N/S−1∑
b=0

x[a×N/S + b] × ωbc×S+ad×N/S+bd

=
N/S−1∑

b=0
ωbc×S+bd

S−1∑
a=0

x[a×N/S + b] × ωad×N/S

=
N/S−1∑

b=0
ωbc×Sωbd

S−1∑
a=0

x[a×N/S + b] × ωad×N/S (2)

We can now see the inner sum is equivalent to performing an S-sized for every possible
value of b (there being N/S possible values of b, so this will be N/S NTT of size S). There
is then a pointwise multiplication with wbd, followed by an N/S-sized NTT, which must
be done for every value of d, of which there are S different possibilities.

As we cannot implement a streaming width S of 1024, we select the highest possible
power of two streaming width S which results in a FINAL design that can be implemented
at a high frequency. For the U55c, this design has a streaming width of 64 coefficients.

4.2.3 The matrix tranpose with BRAMs

Our streaming width S is called the “streaming width” because it corresponds to the exact
number of elements which will flow through our Number Theoretic Transform at any given
moment, namely S = 64 values of log2(q) = 20 bits each. If our NTT is pipelined, it then
follows logically that every N/S = 16 cycles a new vector may be loaded in at the inputs,
and a new vector is streamed out at the output.
Our initial NTT is of the form given in Equation (2), namely

∑S−1
a=0 x[a×N/S+b]×ωad×N/S .

This means that the values fed into our NTT-64 module during the first clock cycle should
be of the form:

CLK #0: x[0], x[16], x[32], x[48], ...
However, the standard representation of data outside the NTT requires data to be of the
form:

CLK #0: x[0], x[1], x[2], x[3], ...
We represent this data as a matrix where one dimension is time (i.e. the index of the
clock cycle) and the other dimension is space (i.e. the index of the parallel track, one
of the S paths in our design). It is then clear that we must perform the equivalent of a
matrix transpose to output data to the first NTT correctly. Following the logic of Equation
(2), a backward matrix transpose must follow the pointwise multiplication, and after all
NTT-16s have been performed, a matrix transpose identical to the first must once again
be performed. The process for the matrix transpose is similar to the one described in
[RV08]2, but in this design is performed for non-square transposes.3

4.2.4 The full design

Conceptually, the design then consists of a single NTT-64 (A number Theoretic Transform
with a streaming width of 64 coefficients), followed by a multiplication with twiddle factors
(this is the pointwise multiplication with ωbd), followed by 4 parallel NTT-16’s. Before,
in-between, and after the NTT’s, a transpose must be performed to ensure coefficients are
fed in the right order. The design can be seen in Figure 4.

2Out of personal preference, we mapped addresses sequentially rather than employing xor, but the
effect is identical

3To create a rectangular transpose module in dimensions S by N/S, one can simply remap the inputs
to S

N/S
= S2

N
= 4 different instances of a N/S by N/S matrix transpose.
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Figure 4: Datapath of our NTT design

We note that the final NTT design has an additional complication: the integration of
the negacyclic convolution. Nonetheless, the multiplication with ψ can still be integrated
into the NTT, by performing the calculation above with x̂ rather than x and swapping
out multiplication with ω for multiplication with some power of ψ as required [POG15].
To maximize the number of ω0 terms (which require no multiplier), we integrated multipli-
cation with psi into the NTT-64 butterflies and the pointwise multiplication (light red
and grey boxes in Figure 4), but not in the NTT-16 elements.

4.3 FINAL and Quatorze-bis
The basic FINAL datapath is given by Figure 5, which is the hardware datapath of Algo-
rithm 3. The algorithm consists of a CMUXing step, which depends on the input vector
a, followed by the external product with the bootstrapping key. The external product
itself consists of a decomposition, followed by a polynomial multiplication. To perform
the polynomial multiplication efficiently, we perform an NTT for each decomposed value,
followed by a pointwise multiplication with the bootstrapping key, which is followed by
an INTT. A common optimisation to all TFHE-like schemes is to take advantages of the
linearity of the Inverse NTT, and to perform the INTT after all polynomial products have
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been summed together. The decomposition to a smaller base is efficiently implementable in
hardware and requires a negligible amount of logic4. The CMUX has a similarly negligible
area, but its design is less straightforward and will thus be discussed briefly.

Figure 5: Datapath of Quatorze-bis, our FINAL hardware accelerator

4.3.1 CMUX

The CMUX circuit must take the inputs and provide the correct coefficient ai at any
given iteration (See Algorithm 3). This can be implemented simply by a BRAM and a
S-to-1 multiplexer. Having obtained the ai value, it must utilize this value to calculate
ACC × (Xai − 1). We wish to perform the CMUX operation in a pipelined fashion
with a streaming width of S so our CMUX circuit matches our external product circuit.
Therefore, we combine a barrel rotater with a BRAM to ensure that S coefficients indexed
at ai of ACC are matched with S coefficients from the same ACC indexed at 0 in an
adder/subtractions unit.

4.3.2 Pipelining

Our circuit is fully pipelined. As a single iteration (1 CMUX + NTT + Multiply + INTT
+ Sum) takes slightly less than 512 clock cycles, and a new ciphertext can be fed into the
circuit after N/S = 16 cycles, we logically chose for a pipeline depth of 32 ciphertexts. For
n = 610 iterations, it thus takes 512×610 ≈ 305000 clock cycles to complete bootstrapping
for 32 ciphertexts. The circuit thus has a "FINAL" latency of 1 ms when clocked at 305
Mhz, for a throughput of 32000 Bootstraps per Second.

5 Results
In this secion, we will consider the various design choices made in this design and other
state-of-the-art designs and see how each choice impacts the final performance. We begin

478 LUTs for our parameter set per decomposition element, for a total of S × 78 = 64 × 78 < 5000LUTs,
which is less than 0.5 % of the total FPGA area



16 FINAL bootstrap acceleration on FPGA using DSP-free constant-multiplier NTTs

Table 3: Our design Quatorze-bis versus state-of-the-art Hardware Accelerators

Name Platform LUTs DSPs FFs BRAMs f (MHz) Lat. (ms) TP (BPS)
FPT I FPGA 526 K 5494 916 K 17.5 Mb 200 0.66 28400
FPT II FPGA 595 K 5980 1024 K 14.5 Mb 200 0.74 25000

YKP [YKP22] FPGA 442 K 6910 342 K 409Mb 180 1.88 2700
NFP II [LLW+24] FPGA 891 K 4508 217 K 33 Mb - 0.29 3448

Quatorze-bis FPGA 850 K 1924 1.4M 160Mb 305 1.02 31250
Xiao et al.[XLK+24] GPU NVIDIA RTX4090 - 0.23 4350
MATCHA [JLJ22b] ASIC 36.96 mm2 16 nm PTM 2000 0.2 10000

FINAL [BIP+22] CPU 3.1 GHz processor 3100 48 20.8

Table 4: Utilization of various modules of Quatorze-bis

Name LUTs DSPs FFs BRAMs
Available on U55c 1.3M 9024 2.6M 41MB
Full Design 850K 1924 1.4M 20MB

FINAL Fig. 5 650K 1920 1.1M 18MB
CMUX 12K 0 15K 72KB
NTT Fig. 4 72.5K 128 82K 0
NTT-64 29K 0 21K 0
NTT-16 3.8K 0 3.6K 0

by considering a blind rotate as a number of butterfly units that must be computed, we
discuss how different schemes and FFT/NTT choices affect this number and finally we
consider how many butterfly units each state-of-the-art accelerator places on chip. This
method of analysis removes many complications introduced by the varying techniques of
different designs, and allows the impact of each technique to be considered individually.

In the subsequent sections, we will consider the reason behind each of the given factors.
As main comparison design, we will look at FPT, as it is the only design that comes
anywhere close to the throughput achieved in our design Quatorze-bis (see Table 3)

5.1 A computational comparison with FPT
One straightforward way of considering the throughput of a pipelined design is to look at
how many operations must be performed, look at how many operators are available and
divide the latter by the former and multiply by the frequency to get the throughput. In our
case, we have S/2× logN×(l+1) = 32×10×8 = 2560 butterflies (See Figure 4 and Figure
5). In total we must perform n×(l+1)×N/2× logN = 610×8×512×10 = 24985600 = 25
million butterflies. Our operating frequency is f = 305 MHz, so we are using our butterflies
305 million times per second. As our all our butterflies are used all the time, we can thus
perform 31250 Bootstraps Per Second.

As previously mentioned in Section 3, FPT [VDTV23] places 8×128/2+8×64/2 = 768
butterflies on the FPGA. They present two different TFHE parameter sets: a benchmarking
parameter set of 110-bit security common to many hardware accelerators (FPT II) and
their own optimized parameter set providing 128 bits of security (FPT I). We focus on
their optimized parameter set, as it achieves the higest performance and the highest
security. For this parameter set, their initial vector size N is equal to 512 as opposed
to the more common N utilized in this paper of 1024. They use both the negacyclic
convolution trick and a trick unique to FFTs to reduce the FFT size down to N/2 by
mapping real coefficients to complex coefficients. Moreover they have an l = 2 and have
(k + 1) × (k + 1) = 3 × 3 polynomials. This in turn means that they must perform
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6 FFTs and 3 IFFTs per iteration, for a total of 586 iterations, therefore, a total of
n × (l × (k + 1) + (k + 1)) × N/2 × logN = 586 × (6 + 3) × 128 × 8 = 5400576 = 5.4
million butterflies must be performed. At a frequency of 200 Mhz, they can perform 28441
Bootstraps Per Second.

From the above analysis, it is immediately clear that FPT needs to perform less than a
fourth of the butterflies our design must perform (namely, 5.4 M butterflies versus our
25M butterflies). It is also immediately apparent that FPT has severely fewer Butterfly
Processing Elements on the chip.

As FPTs FFT works on the complex domain, their butterflies require complex additions,
subtractions and multiplications. The additional area required is offset by the fact that
an FFT can fold real coefficients into the imaginary coefficients, and thus requires only
half the number of butterflies [VDTV23]. It is therefore reasonable to state that an FFT
butterfly is worth two NTT butterflies.

Because the NTT butterfly requires modular multiplication, commonly implemented
with a technique such as Montgomery Multiplication, the NTT butterfly usually requires
more logic to implement than an FFT butterfly despite being half as useful. As the NTT
in our design is implemented without using DSPs and using a minimum of LUTs (an
average of about 120 LUTs), we can afford to fit almost four butterflies per FPT butterfly
(fitting 2560 butterflies versus 768 butterflies).

We now list the three factors affecting our and FPTs final throughput, and go over
how each affects performance.

1. FPT must perform 5.4M FFT-style butterflies, while our design must perform 25M
NTT-style butterflies. If we consider a theoretical FFT butterfly to be worth 2 NTT
butterflies, our design still has more than twice the computational load as FPT.

2. FPT fits only 768 butterflies, while our design fits 2560 butterflies. If we again
consider an FFT butterfly to be worth 2 NTT butterflies, our design still fits twice
the amount of butterflies as FPT, thanks to our innovative modular multiplication
design

3. Our operating frequency is 305 MHz, while FPTs operating frequency is 200 MHz.
This pushes the throughput of our design 10% above that achieved by FPT I. This
comes at the cost of latency: while FPTs design batches only 12 ciphertexts, we
batch 32 ciphertexts. As a single bootstrap consists of only a single bit operation,
throughput is the more salient question when comparing TFHE/FINAL-like designs.

The conclusion is that our design Quatorze-bis beats FPT by a factor two on hardware
design, that is, there are twice as many NTT-style Butterfly Processing Elements per given
LUT. But FPT beats our design by a factor two on algorithm design, thereby approximately
evening out the final throughput.

5.2 Calculating the Throughput Per DSP
The utilization of various elements our design is given by Table 4. As can be seen, our
design utilizes only 1920 DSPs, all of which are solely used for the pointwise multiplication
with the bootstrapping key (l × S = 7 × 64 = 448 multipliers using 2 DSPs per multiplier)
or multiplication with the twiddle factors in between the NTT blocks (see 20-bit multiplier
block in Figure 4, which is utilized (l + 1) × S = 64 × 8 = 512 times given we have l + 1
NTTs).

Our LUT utilisation consists primarily of our Number Theoretic Transform modules.
Each module implementing Figure 4 takes up ≈ 72500 LUTs (and 2 × S = 128 DSPs). Of
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these, 44000 LUTs are butterfly units, 22000 LUTs make up the matrix transposes and
6500 LUTs plus 128 DSPs the multiply accumulate units. In total, out of the 850 000
LUTs used for the design, (l + 1) × 44000 = 352000 LUTs are dedicated to butterfly units.
This number is comparable to FPT, which utilizes about the same amount of LUTs for
their FFT units.

Our throughput per DSP is then 31250/1920 = 16.28 Bootstraps Per Second per DSP.
In comparison, FPT reaches 28400/5494 = 5.16 BPS/DSP, a third of our performance.
Other designs perform much worse, with NFP reaching 3448/4508 = 0.77 BPS/DSP and a
design like YKP [YKP22] reaching only 531/6910 = 0.077 BPS/DSP. Our throughput per
DSP is thus more than 21 times better than the CHES 2024 NFP design [LLW+24].

5.3 Demo

To showcase our design and to prove its functionality, we implemented a demo which takes
the open source FINAL code from the original FINAL paper [BIP+22] and accelerates the
blind rotation step. The blind rotation is thus accelerated from around 2 seconds to 1
millisecond for each batch of 32 ciphertexts.

5.4 Conclusion

Our design Quatorze-bis has a 10% higher throughput than FPT and is multiple factors
faster than other designs (see Table 3). Our designs main contribution is its extremely
small butterfly, which allows up to 2560 butterflies to be placed on an AMD Alveo U55c,
and which, applied to FPT’s TFHE algorithm, would have given a throughput twice that
of FPT. Applied to FINAL, as it is in this design, it achieves slightly better throughput,
and a factor three higher throughput per DSP.

6 Conclusion

This paper introduces a high-throughput FPGA hardware accelerator for TFHE-like
bootstrapping. Its first contribution is a novel method for modular multiplication given
a constant modulus. This method requires no DSPs and no additional logic compared
to most state-of-the-art modular multiplication designs and requires less than 140 LUTs.
This makes it significantly smaller than the modular multiplication units of other TFHE
Hardware Accelerators, and thus makes it possible to fit many more butterfly processing
units on an FPGA.

Its second contribution is a Number Theoretic Transform which maximizes the number
of constant multiplier butterflies on the FPGA, by adapting the constant multiplier FFT
design from the Signal Processing field [GM21] for the Number Theoretic Transform. This
design considers the Number Theoretic Transform in two dimensions, with one dimension
multiplexed in time and the other multiplexed in space.

Finally we combine our Number Theoretic Transform modules to form a state-of-the-art
hardware accelerator Quatorze-bis for TFHE-like bootstrapping with a streaming width
of S = 64 and a fully pipelined circuit matched to provide a constant stream of coefficients
to all NTTs. Hereby, our design Quatorze-bis improves on the current state-of-the-art
throughput by 10-25% with 31250 Programmable Bootstraps Per Second, and improves
on the state-of-the-art throughput per DSP by a factor 3 by reaching a figure of merit of
16.28 Bootstraps Per Second Per DSP.
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A Appendix

Algorithm 2: TFHE algorithm
Data: BSK ∈ R630×2×3×2

q , ACC ∈ R2, a = {a0, a1, ..., an−1}
Result: ACC, updated with ai ∗ si for i = 0...n− 1

1 begin
2 for i = 0, 1, ...630 − 1 do
3 if ai > 0 then
4 CoefACC = 0 ;
5 for k = 0,2 − 1 do
6 CMUXACC[k] = CMUXai

(ACC[k]);
7 dcmp[k][2:0] = SignedDigitDecompose(CMUXACC[k]);
8 for l = 0, 1, ...3 − 1 do
9 evalACC[k][l] = NTT(dcmp[k][l]);

// 630*2*3=3780 NTTs
10 for m = 0,2 − 1 do
11 CoefACC[k][m]+ = evalACC[m][l] ∗ BSKi[k][l][m];

// 630*2*3*2=7560 pointwise mult.
12 end
13 end
14 for m = 0,2 − 1 do
15 ACC[k] += INTT(CoefACC[k][m]);

// 630*2*2=2520 INTTs
16 end
17 end
18 end
19 end
20 Return ACC;
21 end
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