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Abstract. We investigate the algorithmic problem of computing iso-
morphisms between products of supersingular elliptic curves, given their
endomorphism rings. This computational problem seems to be difficult
when the domain and codomain are fixed, whereas we provide efficient
algorithms to compute isomorphisms when part of the codomain is built
during the construction. We propose an authentication protocol whose
security relies on this asymmetry. Its most prominent feature is that the
endomorphism rings of the elliptic curves are not hidden. Furthermore, it
does not require a trusted setup.
Quickly after this preprint was published, Benjamin Wesolowski
found a way to solve efficiently Problem 5.1 that we assumed
to be hard. This kills our authentication protocol.

1 Introduction

Context and problem statement. Isogeny-based cryptography has known a recent
fast evolution with the discovery of techniques based on isogenies of abelian
varieties of dimension greater than 1. Many recent constructive [4,1,20] and
destructive [22,2,16] cryptographic developments involve products of supersingular
elliptic curves. An important feature of such abelian varieties is that they are
all isomorphic over an algebraic closure. Studying the effectiveness of this result
leads to interesting algorithmic questions.

Let Fq be a finite field of characteristic p > 0. An abelian variety defined
over Fq is superspecial if it is Fq-isomorphic to a product of supersingular elliptic
curves defined over Fq. The Deligne-Ogus-Shioda theorem [24] states that for
all g > 1, all dimension-g superspecial abelian varieties defined over Fq are
Fq-isomorphic (as unpolarized abelian varieties).

The aim of this paper is to investigate computational aspects of this theorem
in the case g = 2:

Problem 1.1 (Effective Deligne-Ogus-Shioda problem) Given supersingu-
lar elliptic curves E1, E2, E

′
1, E

′
2 defined over Fq, compute an Fq-isomorphism

E1 × E2 → E′
1 × E′

2.

This appears to be a difficult computational problem. In particular, being
able to solve this problem would provide non-trivial information about the
endomorphism rings of the curves. Indeed, from an isomorphism E1 × E2 →
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E′
1 × E′

2, we can compute four isogenies φij : Ej → E′
i, and the composition

φ̂21φ22φ̂12φ11 : E1 → E1 is in general a non-trivial endomorphism of E1.
In this paper, we study Problem 1.1 in the context where the endomorphism

rings of the elliptic curves are given. In this setting, Deuring’s correspondence
allows us to translate Problem 1.1 into a problem about quaternion algebras.

Related works. Superspecial abelian varieties are central objects in the recent
developments of isogeny-based cryptography, as they are the main characters of
the new high-dimensional techniques, see e.g. [22,3,5]. Being able to compute
isomorphisms between such objects would be a useful computational tool. In
particular, one typical setting is to consider a special curve which has the property
that its endomorphism ring contains a low-discriminant imaginary quadratic order.
For instance, when p ≡ 3 mod 4, the endomorphism ring of the elliptic curve E0

defined over Fp2 by the equation y2 = x3+x contains a subring isomorphic to Z[i].
Being able to compute an isomorphism between a superspecial abelian variety
and Eg0 would give access to these low-discriminant subrings of endomorphisms.
Another application of explicit isomorphisms is for representing polarizations
on superspecial abelian varieties. In particular, many principal polarizations on
superspecial abelian varieties arise from pullbacks of product polarizations via
such isomorphisms. The recent development of isogeny-based cryptography have
put the problem of computing endomorphism rings as one of its foundations. Up
to our knowledge, all existing isogeny-based cryptosystems would be broken if a
polynomial-time algorithm for computing endomorphism rings of elliptic curves
is found. In this paper, we propose a cryptographic construction for which all
endomorphism rings are public, and which therefore would not be broken by a
fast algorithm computing endomorphism rings. This is an attempt to propose a
new building block for isogeny-based cryptography.

Contributions. We study the problem of computing an isomorphism between two
superspecial surfaces E1 ×E2 → E′

1 ×E′
2, assuming that their endomorphisms

rings are known. Endomorphism rings are given via an efficient representation
of a Z-basis together with an explicit isomorphism with a maximal order in the
quaternion algebra Bp,∞. Our main contributions are polynomial-time algorithms
to compute isomorphisms, in two special cases:

1. when we do not require control over E′
2: the input is E1, E2, E

′
1, and the

output is E′
2 together with an isomorphism E1 × E2 → E′

1 × E′
2;

2. when we know subrings of End(E1) and End(E′
1) which are isomorphic to

low-discriminant imaginary quadratic orders.

In order to design such algorithms, we need some new computational tech-
niques. For instance, we provide a quasi-linear quaternionic method to divide an
endomorphism by an isogeny, see Proposition 3.7. Our main theoretical tool is a
necessary and sufficient criterion to decide whether a pair of separable isogenies
φ11 : E1 → E′

1, φ21 : E1 → E′
2 of coprime degrees can appear as the first column

of a matrix (φij)i,j∈{1,2} describing an isomorphism E1 × E2 → E′
1 × E′

2: this
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happens precisely when the direct sum of the kernels of φ11 and φ21 is the kernel
of an isogeny E1 → E2. This result is formalized in Theorem 4.2.

This criterion is used in our algorithms for both special cases. In the first
case, when we have only partial control over the codomain, we actually build
the kernel of φ21 in order to enforce the conditions of the criterion. In the low-
discriminant case, we use the fact that we can solve efficiently norm equations in
low-discriminant imaginary quadratic orders to find endomorphisms; this allows
to apply our criterion.

In both special cases, we use Wesolowski’s heuristic-free variant [30] of KLPT
algorithm [13] as an important subroutine. For cryptographic purposes, we will
use the randomized version [6, Algo. 5] which relies on some heuristics.

The general problem of computing isomorphisms between superspecial abelian
surfaces seems to be hard. Indeed, the techniques that we developed for the
special cases require more degrees of freedom that what is available in the general
case. Furthermore, randomly constructed isogenies for the first column of the
matrix have no chance to produce a valid input for our criterion in Theorem 4.2.
We therefore propose a cryptographic construction built on the difficulty of this
problem. The main interest of this construction is that most algebraic computa-
tions can be done in the quaternion algebra Bp,∞ since the endomorphism rings
and their embedding in Bp,∞ are public. This is a significant difference com-
pared to other isogeny-based cryptographic protocols where the knowledge of the
endomorphism ring in a quaternion algebra is usually sufficient to break the cryp-
tosystem. The security of this cryptosystem relies on heuristic assumptions which
are similar to a heuristic used for the security of SQIsign [6]. In particular, given
a product of supersingular curves E1 ×E2, we can use the algorithm with partial
control over the codomain to generate a secret isomorphism E1 ×E2 → E′

1 ×E′
2

where the pair of j-invariants (j(E′
1), j(E

′
2)) is heuristically undistinguishable

from the uniform distribution on pairs of j-invariants of supersingular elliptic
curves. Combining this with a masking technique using automorphisms provides
us with an authentication protocol.

Finally, we provide a proof-of-concept implementation in the computer algebra
software Magma, which demonstrates the algorithms presented in this paper. In
those files we only provide the quaternionic part of the isomorphisms, meaning
that we output four ideals Iij , that lead to four isogenies φIij , which form a matrix
that represents an isomorphism. This implementation is available at the follow-
ing url: https://gitlab.inria.fr/superspecial-surfaces-isomorphisms/
experiments. To recover the isogenies, one can use IdealToIsogeny algorithms,
described for example in [1,19].

Organization of the paper. Section 2 describes the background on Deuring
correspondence, superspecial abelian varieties and efficient representations of
isogenies. In Section 3, we develop theoretical and computational tools that will
be required in the main algorithms. Section 4 is devoted to the computation
of isomorphisms between superspecial abelian surfaces in some special cases,
and provided that we know their endomorphism rings. Finally, in Section 5, we

https://gitlab.inria.fr/superspecial-surfaces-isomorphisms/experiments
https://gitlab.inria.fr/superspecial-surfaces-isomorphisms/experiments
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propose a new authentication protocol whose security relies of the difficulty of
computing isomorphisms between superspecial abelian surfaces.

Acknowledgements. We thank Jean Kieffer and Damien Robert for fruitful
discussions. This work received funding from the France 2030 program managed
by the French National Research Agency under grant agreement No. ANR-22-
PETQ-0008 PQ-TLS.

2 Background

When nothing else is specified, for an elliptic curve E over a field F , we denote
by End(E) its ring of endomorphisms defined over F , the algebraic closure of F .
We will also assume, for simplicity, that the characteristic p of the fields discussed
later is strictly greater than 3.

Throughout this paper, we use the formalism of group schemes to describe
kernels of (non-necessarily separable) isogenies, so that any nonzero isogeny (even
if it is purely inseparable) has a non-trivial kernel. We refer to [29] for more
details on this formalism. In particular, for an elliptic curve E defined over Fp,
there are bijections between proper left-ideals in End(E), finite group subschemes
in E, and isogenies with domain E up to post-composition by isomorphisms.
This follows from the fact that all left-ideals in End(E) are kernel ideals, see [29,
Thm. 3.15] for the cases where End(E) has rank 1 or 4, and [10, Thm. 20.(a)]
for the CM-case. We also use the following convenient notation: given a finite
subgroup scheme K of an elliptic curve E, we let E → E/K denote the geometric
quotient of E by K, where K acts by translation. Therefore, an elliptic E′ is
isomorphic to E/K if and only if there exists an isogeny E → E′ whose kernel is
K. We call the map E → E/K the canonical isogeny with kernel K.

2.1 Deuring correspondence

We recall key concepts of the Deuring correspondence. For a more comprehensive
study of the subject, we refer to [15] and [28].

Quaternion algebras. Let p be a prime. We focus on the (unique up to
isomorphism) quaternion algebra Bp,∞ over Q which ramifies at p and ∞. The
algebra Bp,∞ is non-commutative, and it has dimension 4 over Q; a Q-basis is
1, i, j, k, where

i2 = −1, j2 = −p and k = i j = −j i.

Any element α ∈ Bp,∞ can be encoded by coordinates (α0, α1, α2, α3) ∈ Q4,
such that α = α0+α1i+α2j+α3k. The conjugate of α = α0+α1i+α2j+α3k ∈
Bp,∞ is α = α0 − α1i − α2j − α3k. Its reduced trace is Trd(α) = α + α = 2α0

and its reduced norm is Nrd(α) = α · α = α2
0 + α2

1 + p(α2
2 + α2

3) ∈ Q. Every
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nonzero α ∈ Bp,∞ is invertible, i.e. there exists a unique β ∈ Bp,∞ such that
α · β = β · α = 1.

We now focus on subrings in Bp,∞ involved in the Deuring correspondence:

Definition 2.1 (Quaternion order) An order in Bp,∞ is a subring which has
rank 4 as a Z-module. An order is maximal when it is not contained in a strictly
larger order.

Example 2.2 Assume that p ≡ 3 mod 4. A non-maximal order of Bp,∞ is
Z[i, j]. This order is contained in Z[i, 1+k2 ] [13, Lem. 2], which is maximal.

Definition 2.3 (Left/Right Order) Let I be a rank-4 Z-module in Bp,∞. The
left and right orders of I are:

OL(I) = {α ∈ Bp,∞ : αI ⊂ I}, OR(I) = {α ∈ Bp,∞ : Iα ⊂ I}.

When I ⊂ OL(I) (or equivalently I ⊂ OR(I), see [28, Lem. 16.2.8]), we say
that I is an integral ideal.

Integral ideals in maximal orders are actually locally principal [28, Cor. 17.2.3].
It implies that the completion I⊗Zℓ of an ideal I ⊂ O at a prime ℓ unramified in
Bp,∞ generates a principal ideal in O ⊗ Zℓ ∼= M2(Zℓ). We will give more details
in Section 3.5.

Remark 2.4 An integral ideal I is a left-OL(I) ideal, and a right-OR(I) ideal.
When OL(I) (equivalently, OR(I)) is maximal, then I is called a connecting
ideal for OL(I) and OR(I). If O1,O2 ⊂ Bp,∞ are two maximal orders, we let
Conn(O1,O2) denote all integral connecting ideals.

Definition 2.5 (Ideal norm) [28, Thm. 16.1.3] Let I ⊂ Bp,∞ be an ideal. The
reduced norm of I is Nrd(I) = gcd({Nrd(α) : α ∈ I}). Moreover, Nrd(I)2 =
[OL(I) : I] = [OR(I) : I].

Proposition 2.6 [28, Lem. 16.3.7] Let O1,O2,O3 ⊂ Bp,∞ be three maximal
orders. If I ∈ Conn(O1,O2) and J ∈ Conn(O2,O3), then I · J ∈ Conn(O1,O3)
and Nrd(I · J) = Nrd(I) ·Nrd(J).

The correspondence. Endomorphism rings of superspecial elliptic curves can
be regarded as maximal orders in Bp,∞. The purpose of Deuring correspondence is
to provide a set of tools for representing geometric objects related to supersingular
elliptic curves as algebraic objects in Bp,∞.

Theorem 2.7 [28, Thm. 42.1.9] Let E be a supersingular elliptic curve defined
over Fp. Then the endomorphism ring EndFp(E) is isomorphic to a maximal
order in Bp,∞.
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Let O ⊂ Bp,∞ be a maximal order isomorphic to the endomorphism ring
EndFq (E) of a supersingular elliptic curve E defined over Fq. We will implicitly
use the isomorphism EndFq (E) → O in what follows. There is an anti-equivalence
between the category of supersingular elliptic curves over Fq and the category of
invertible left O-modules. This anti-equivalence is given explicitly via the con-
travariant functor Hom(_, E), see [28, Thm. 42.3.2]. This equivalence establishes
a dictionary between the geometric world of supersingular elliptic curves and the
algebraic world of quaternion orders.

On the one hand, let J be a left EndFq (E)-ideal. It defines a subgroup scheme
E[J ] := ∩α∈J kerα in E, which is the kernel of an isogeny φJ : E → E/E[J ],
see [28, 42.2.1]. If φJ is separable, then E[J ] = {P ∈ E(Fq) | ∀α ∈ I, α(P ) = 0}.
On the other hand, let φ : E → E′ be an isogeny. Then Iφ := Hom(E′, E)φ is a left
EndFq (E)-ideal which connects the endomorphism rings of E and E′ ≃ E/ ker(φ),
regarded as maximal orders in Bp,∞ up to conjugation. Moreover, for a left-ideal
J ⊂ O and ψ : E → E′, we have that J = IφJ and ψ ∼= φIψ . In particular we have
a bijection between isomorphism classes (i.e. isogenies up to post-composition by
isomorphisms) of isogenies from E, and left-ideals I in O.

In Table 1 — which is adapted from [15, Table 2.1] — we summarize the
main dictionary in the Deuring correspondence.

Supersingular j-invariants over Fp2 Isomorphism class of maximal order in Bp,∞
j(E) up to Galois conjugacy O ∼= End(E)

Isomorphism class of φ : E → E′ Iφ integral left O-ideal
α ∈ End(E) principal ideal of O generated by the image of α

deg(φ) Nrd(Iφ)

φ̂ Iφ
Composition ψ2 ◦ ψ1 : E1 → E2 → E3 Iψ2◦ψ1 = Iψ1Iψ2

Table 1. Summary of the Deuring correspondence.

Remark 2.8 Any supersingular curve E over a field k of characteristic p > 0
is k-isomorphic to a curve defined over Fp2 , see [28, Prop. 42.1.7]. Therefore,
for computational purposes, it is convenient to consider supersingular curves
defined over Fp2 . Moreover any such curve is Fp-isomorphic to a maximal curve
E′ (see [7, Lem. 4] and [9, Prop. 5.1]), which has the convenient property that
all endomorphisms and isogenies with domain E are also defined over Fp2 , see
[9, Lem. 5.7].

2.2 Efficient representations of isogenies

Recent advances in cryptography have provided new techniques for representing
and computing with isogenies [14,21,23]. We use the notion of efficient represen-
tation of an isogeny designed in [21,23].
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A representation of an isogeny φ : E → E′ between elliptic curves defined over
Fq, is a set of data that contains the domain, the codomain, the degree deg(φ),
and an algorithm to evaluate φ on any point P ∈ E(Fq′) for any finite extension
Fq′/Fq. Notice that a bound on the degree would actually be sufficient since the
degree can then be recovered via the CRT by using the Weil pairing in small
torsion subgroups [23, Lem. 6.2]. We say that a representation is efficient if this
data enable us to compute the image of a point P ∈ E(Fq′) in time polynomial
in both log(deg(φ)) and log(q′). We say that it is compact if the space needed to
store the data is polynomial in log(deg(φ)) and log(q′).

The two representations we will use are the ideal and the HD representations,
and both are compact. The latter is always effective, while the former is effective
provided that we have an effective representation of a basis of the endomorphism
ring of E, according to [23].

Ideal representation. The core idea of the ideal representation is to represent
an isogeny φ : E → E′ by using the ideal Iφ ⊂ End(E) of all endomorphisms
whose kernel contains kerφ, seen as an ideal in a maximal order of Bp,∞ iso-
morphic to End(E). In order to use this representation, we first need to fix an
embedding End(E) ↪→ Bp,∞. Although this only encodes the isomorphism class
of φ, knowing the codomain E′ enables us to determine φ up to post-composition
by automorphisms. Note that if j(E′) ̸= 0, 1728 then the only automorphisms
of E′ are ±1 [25, Appendix A, Prop. 1.2.(c)]. Consequently, in order to have
a full representation of φ, we need a bit more data to discriminate these au-
tomorphisms. We can disregard this subtlety in the present work: the order of
Aut(E′) is at most 24, so we can use exhaustive search on the automorphism
group when needed without harming the asymptotic complexity. However, for
efficient implementation and optimization, it might be useful to add to the data
structure representing the isogenies some information to remove the ambiguity,
for instance the action of the isogenies on some small torsion subgroup.

Theorem 2.9 Given an efficient representation of a Z-basis of End(E) and its
image via an embedding End(E) ↪→ Bp,∞, then a Z-basis of the ideal Iφ provides
a compact and efficient representation of φ.

For more details, see [23, Sec. 4.2 and C.1].

HD representation. The successive attacks on SIDH have led to new construc-
tive applications. One of the most significant for us is that we can now evaluate
an isogeny using calculations performed in higher dimensions, given only the
image of certain torsion points. And to work with such points, we may need to
deal with high degree extensions of Fq. But to keep efficient computation we can
not work in too big finite fields.

Theorem 2.10 [23, Thm. 5.19] Let φ : E → E′ be an isogeny of degree n. Let
N =

∏
ℓi > n be a smooth integer coprime to n, with max(ℓi) = logO(1)N . For
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each i, let (Pi, Qi) be a Z-basis of E[ℓi], such that ⟨
⊕
i

Pi,
⊕
i

Qi⟩ = E[N ]. The

data of n,E,E′ and the interpolation data (Pi, φ(Pi), Qi, φ(Qi))i gives a compact
and efficient representation of φ, called an HD representation.

Note that this representation is universal, meaning that any efficient repre-
sentation can be efficiently converted into an HD representation. An interesting
feature for cryptographic applications is that the interpolation data does not
reveal any information about the way the isogeny was constructed.

In this paper, we will work with 2× 2 matrices whose entries are isogenies,
which can conveniently be encoded via efficient representations.

Proposition 2.11 Let E1, E2, E
′
1, E

′
2, E

′′
1 , E

′′
2 be elliptic curves defined over Fq.

Let M = (φij)i,j∈{1,2} (resp. N = (ψij)i,j∈{1,2}) be a 2× 2 matrix of isogenies,
where φij : Ej → E′

i (resp. ψij : E′
j → E′′

i ). Then M (resp. N) represents the
isogeny E1 ×E2 → E′

1 ×E′
2 (resp. E′

1 ×E′
2 → E′′

1 ×E′′
2 ) defined as ϕM (P,Q) =

(φ11(P )+φ12(Q), φ21(P )+φ22(Q)) (resp. ϕN (P,Q) = (ψ11(P )+ψ12(Q), ψ21(P )+
ψ22(Q))). Moreover, the matrix product N ·M = (

∑
k∈{1,2}Nik ◦Mkj)i,j∈{1,2}

represents an isogeny E1 × E2 → E′′
1 × E′′

2 and efficient representations of the
entries of N ·M can be computed in polynomial-time from efficient representations
of the entries of M and N .

Proof. The only thing that we need to prove is that we can compute efficient
representations of compositions and sums of isogenies encoded with efficient
representations. Algorithms for doing so are described in [23, Sec. 6.1]. ⊓⊔

Knowing the endomorphism ring of a curve. Throughout this paper, we
often say that the endomorphism ring of a supersingular elliptic curve E is “known”
or “given”. By this, we mean that efficient representations of a Z-basis b1, . . . , b4
of End(E) is given, and that we also have access to elements β1, . . . , β4 ∈ Bp,∞
such that the Z-module O generated by β1, . . . , β4 in Bp,∞ is a maximal order
and the map End(E) → O sending bi to βi is a ring isomorphism.

2.3 Superspecial Abelian varieties

The key theoretical result we rely on is the following existential statement.

Theorem 2.12 (Deligne/Ogus/Shioda theorem) [24, Thm. 3.5] Let k be an
algebraically closed field of characteristic p > 0. Let C1, . . . , Cg and C ′

1, . . . , C
′
g

be supersingular elliptic curves, where g ≥ 2. Then there exists an isomorphism:

C1 × · · · × Cg ∼= C ′
1 × · · · × C ′

g.

In other words, Theorem 2.12 states that there is only one superspecial abelian
variety of dimension g ≥ 2, up to isomorphisms. We emphasize that we do not
take into account the polarizations of the abelian varieties in play.
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Definition 2.13 An abelian variety A is called superspecial when it is isomor-
phic to a product of supersingular elliptic curve.

When p ≡ 3 mod 4, there is a convenient supersingular elliptic curve defined
over Fp by the equation y2 = x3 + x. We denote this special curve by E0

throughout this paper. A useful feature of this curve is that EndFp(E0) contains a
subring isomorphic to Z[i]. A direct consequence of Deligne/Ogus/Shioda theorem
is that any superspecial variety of dimension g defined over Fp is Fp-isomorphic
to Eg0 .

Remark 2.14 Theorem 2.12 is false for g = 1, since for instance the curve
defined by E : y2 = x3 + 142x + 23 is isogenous to E0 over F3072 , but not
isomorphic to E0. However, E2

0
∼= E2.

If E1, E2, E′
1, E′

2 are supersingular elliptic curves defined over Fp2 , Theo-
rem 2.12 implies that E1 × E2 and E′

1 × E′
2 are Fp-isomorphic. In fact, when

E1, E2, E
′
1, E

′
2 are maximal (resp. minimal), i.e. they have (p+1)2 (resp. (p−1)2)

Fp2-rational points, this isomorphism is defined over Fp2 , see [9, Lem. 5.2].
In this work, we explore the problem of finding explicit isomorphisms between

superspecial abelian surfaces. We specialize to the case of superspecial abelian
surfaces given as products of supersingular elliptic curves over Fp2 . The goal of
this article is thus to find an isomorphism between the products E1 × E2 and
E′

1 × E′
2.

3 Tools

In this section, we develop tools which will be useful for computing isomorphisms
in Section 4. In Section 3.1, we study algorithms for dividing endomorphisms
by isogenies. Section 3.2 proves a slight improvement of Kani’s formula for the
degree of an isogeny between products of elliptic curves; this is useful for proving
that an isogeny is an isomorphism. In Section 3.3, we show how to “transpose”
isogenies between products of elliptic curves: we provide an easy way to construct
an isogeny E′

1 × E′
2 → E1 × E2 from an isogeny E1 × E2 → E′

1 × E′
2, while

preserving the degree. In Section 3.4, we describe families of easily constructible
automorphisms of products of elliptic curves; these automorphisms are useful
for hiding secret data in cryptographic constructions, see Section 5. Finally, in
Section 3.5, we design algorithms for finding the generator of the localization of
a left-ideal in a maximal order of Bp,∞.

3.1 Division of principal ideals in quaternion orders

The first tool that we need is a method for dividing efficiently an endomorphism
by an isogeny. More precisely, given an endomorphism ϕ ∈ End(E1), which factors
by an isogeny f : E1 → E2, we wish to compute an isogeny g : E2 → E1 (which
is uniquely defined up to composition by automorphisms) such that ϕ = g ◦ f . A
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general method when isogenies are given via efficient representations is described
in [23, Cor. 6.8]. A detailed complexity analysis is provided in [17, Sec. 4] when g
is a scalar multiplication. We propose here an explicit complete algebraic solution
to the quaternionic version of the problem, i.e. when all isogenies are represented
as ideals in Bp,∞. This factorization problem is formalized in quaternion algebras
as follows:

Problem 3.1 (Principal ideal division) Let O1,O2,⊂Bp,∞ be two maximal
orders. Let µ ∈ O1, I ∈ Conn(O1,O2), and J be a left O2-ideal such that
O1µ = I · J . Given µ and Z-bases of O1,O2, I, find a Z-basis of J .

Remark 3.2 If Nrd(I) and Nrd(J) are coprime, then [1, Lem. 6] allows us to
recover I more easily. However here we need to compute J , and the assumption
that Nrd(I) and Nrd(J) are coprime is too strong for our setting: in theory (and
in experiments), this hypothesis is not always satisfied. Therefore, we design a
general algorithm which does not require any such assumption on the input.

First we remark that Problem 3.1 is unambiguous.

Lemma 3.3 The solution of Problem 3.1 is unique.

Proof. Let J1 and J2 be two solutions of Problem 3.1. Then we have I ·J1 = I ·J2.
By multiplying on the left by I, we obtain that Nrd(I) · OR(I) · J1 = Nrd(I) ·
OR(I) · J2, see [28, Sec. 16.6]. Moreover OR(I) = OL(J1) = OL(J2) = O2, and
J1, J2 are left ideals in O2. Therefore, Nrd(I) · J1 = Nrd(I) · J2, which implies
J1 = J2. ⊓⊔

For technical reasons we will first address the slightly different problem below.
We first show that we can factor (on both sides) a principal ideal generated by
an integer. In other words, we first deal with the case µ ∈ Z.

Problem 3.4 (Integer ideal division) Let O1,O2,⊂Bp,∞ be two maximal or-
ders. Let d ∈ Z, I ∈ Conn(O1,O2), and J a left O2-ideal be such that O1d = I ·J .
Given d and Z-bases of O1,O2, I, find a Z-basis of J .

Remark 3.5 The same argument as in the proof of Lemma 3.3 shows the unicity
of the solution of Problem 3.4. Moreover we can swap the roles of I and J via
conjugation since I · J = dO1 = J · I = dO1. It is easy to check that Problems 3.4
and 3.1 are equivalent: the solution J of Problem 3.1 with input O1,O2, µ, I equals
the solution of Problem 3.1 with input µ−1O1µ, O2, Nrd(µ), µI.

Now we propose an efficient method to solve Problem 3.4.

Proposition 3.6 With the same notation as in Problem 3.4, J = {s ∈ O1 ∩O2 :
Is ⊂ O1d}.

Proof. Set S := {s ∈ O1 ∩ O2 : Is ⊂ O1d}. We must show that S is a left-ideal
in O2 and that IS = O1d.
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First we show that S is a left-ideal of O2. Let s ∈ S, x ∈ O2. First, we notice
that I is a right-ideal in O2, thus Ix ⊂ I. Since s ∈ S, we get Ixs ⊂ Is ⊂ O1d,
hence xs ∈ S.

Finally, we prove that IS = O1d. Notice that IS ⊂ O1d by construction.
In order to prove the other inclusion, we notice that J is included in S; hence,
O1d = IJ ⊂ IS. ⊓⊔

Proposition 3.6 reduces Problem 3.4 to Z-linear algebra. Let (e0, . . . , e3),
(u0, . . . , u3), (v0, . . . , v3) be Z-bases of O1, I,O1 ∩ O2 respectively. We need to
solve the following system over the integers of 4 equations in 20 unknowns
{xi}0≤i≤3, {yij}0≤i,j≤3:

(Ej) : uj
∑

0≤i≤3

xivi = d
∑

0≤i≤3

yijei.

Let b(1), . . . , b(16) ∈ Z20 be a Z-basis of the solutions of this system. Then,
writing b(i) = (x

(i)
0 , . . . , x

(i)
3 , y

(i)
00 , . . . , y

(i)
33 ), we compute a basis a(1), . . . , a(3) of the

lattice generated by {(x(i)0 , . . . , x
(i)
3 )}1≤i≤16. Finally, writing a(j) = (a

(j)
0 , . . . , a

(j)
3 ),

the set {
∑

0≤i≤3 a
(j)
i vi}0≤j≤3 is a Z-basis for J .

Proposition 3.7 With the same notation as in Problem 3.4, let γ be the maxi-
mum of the numerators and denominators of the coefficients of the elements in
the bases of O1,O2, I, when written in the canonical basis 1, i, j, ij of Bp,∞. Then
a Z-basis of J (written in the basis 1, i, j, ij) can be computed in quasi-linear
complexity Õ(log γ).

Proof. A Z-basis for J is obtained via linear algebra over the integers from the
input Z-bases. It can be computed via a sequence of Hermite Normal Forms of
matrices with dimensions bounded above by a constant. Our proposition follows
from the fact that the Hermite Normal Form of a nonzero matrix (Aij) with
integer entries can be computed with complexity quasi-linear in maxij(log|Aij |),
see [26, Chap. 6]. ⊓⊔

Remark 3.8 The reduction in Remark 3.5 shows that Problem 3.1 can also be
solved in quasi-linear complexity.

3.2 An improvement of Kani’s formula for the degree of isogenies
between products of elliptic curves

The following statement is a slight improvement of Kani’s formula [11, Cor. 63] for
the degree of an isogeny between products of elliptic curves. This formula involves
absolute values, and our improvement shows that they are in fact unnecessary.
In the following statement, we use the convention that the zero morphism, that
is not an isogeny, has degree 0.
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Proposition 3.9 Let E1, E2, E
′
1, E

′
2 be elliptic curves defined over Fp. For i, j ∈

{1, 2}, let φij ∈ Hom(Ej , E
′
i) be a morphism of degree dij ∈ Z≥0. Let ϕ ∈

Hom(E1 × E2, E
′
1 × E′

2) be the morphism defined as ϕ(x1, x2) = (φ11(x1) +
φ12(x2), φ21(x1) + φ22(x2)). Then

deg(ϕ) = (d11 + d21)(d12 + d22)− deg(φ̂12φ11 + φ̂22φ21).

Proof. Set µ := φ̂12φ11 and ν := φ̂22φ21. [11, Cor. 64] states that deg(ϕ) =
|(d11 + d21)(d12 + d22)− deg(µ+ ν)|. Therefore, the only thing that we need to
prove is that deg(µ+ ν) ≤ (d11 + d21)(d12 + d22), so that the absolute value is
not required.

We start with the following computation:

0 ≤ deg(d21µ− d11ν)
= (d21µ− d11ν)(d21µ̂− d11ν̂)
= d221 deg(µ) + d211 deg(ν)− d11d21(νµ̂+ µν̂).

Next, we notice that deg(µ+ν)−deg(µ)−deg(ν) = (µ+ν)(µ̂+ ν̂)−deg(µ)−
deg(ν) = νµ̂+ µν̂. Replacing νµ̂+ µν̂ in the previous inequality, we obtain

d221 deg(µ) + d211 deg(ν) ≥ d11d21(deg(µ+ ν)− deg(µ)− deg(ν)).

Finally, we replace deg(µ) and deg(ν) by their respective values d12d11 and d22d21
to obtain

d221d12d11 + d211d22d21 ≥ d11d21(deg(µ+ ν)− d12d11 − d22d21).

By dividing this inequality by d11d21 and by rearranging terms, we obtain the
desired inequality deg(µ+ ν) ≤ (d11 + d21)(d12 + d22). ⊓⊔

We shall use Proposition 3.9 in order to compute degrees of isogenies between
superspecial abelian surfaces. An important special case is that it can be used to
check if such an isogeny has degree 1, i.e. if it is an isomorphism. More precisely,
a 2-dimensional isogeny between products of elliptic curves can be given as a

matrix of isogenies (φij) =

(
φ11 φ12

φ21 φ22

)
. Such an isogeny is an isomorphism if and

only if
(d11 + d21)(d12 + d22)− deg(φ̂12φ11 + φ̂22φ21) = 1.

We can reformulate this statement to obtain the following necessary and
sufficient condition:

Proposition 3.10 Let E1, E2, E
′
1, E

′
2 be four elliptic curves defined over Fp,

and φij : Ej → E′
i, i, j ∈ {1, 2} be four isogenies. Set µ = φ̂12φ11, ν = φ̂22φ21,

and write dij = deg(φij). Then deg(d21µ − d11ν) = d11d21 if and only if ϕ =
(φij)i,j∈{1,2} ∈ Hom(E1 × E2, E

′
1 × E′

2) is an isomorphism.

Proof. By Proposition 3.9, we have

deg(µ+ ν) = (d11 + d21)(d12 + d22)− deg(ϕ).
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Therefore, we obtain the equality

deg(µ+ ν)− deg(µ)− deg(ν) =
d11
d21

deg(ν) +
d21
d11

deg(µ)− deg(ϕ). (3.1)

By multiplying (3.1) by d11d21, we obtain

d11d21 deg(ϕ)
= d11(d11 + d21) deg(ν) + d21(d11 + d21) deg(µ)− d11d21 deg(µ+ ν)
= d211 deg(ν) + d221 deg(µ)− d11d21 Trd(µν̂)
= deg(d21µ− d11ν).

hence deg(ϕ) = 1 if and only if deg(d21µ− d11ν) = d11d21. ⊓⊔

3.3 Transposing isogenies

In this section, we show how an isogeny ϕ : E1×E2 → E′
1×E′

2 can be transformed
into a transposed isogeny ϕ̃ : E′

1 × E′
2 → E1 × E2 of the same degree. Since we

have not fixed any polarization on the product surface, this transposed isogeny
is not a dual of ϕ in the usual sense. In particular, the composed endomorphism
ϕ̃ · ϕ need not be the multiplication by an integer. Still, the degree is preserved,
i.e. deg(ϕ) = deg(ϕ̃).

Corollary 3.11 With the same notation as in Proposition 3.9, let ϕ̃ ∈ Hom(E′
1×

E′
2, E1×E2) denote the morphism defined as ϕ̃(x′1, x′2) = (φ̂11(x

′
1)+φ̂21(x

′
2), φ̂12(x

′
1)+

φ̂22(x
′
2)), i.e. in matrix notation

ϕ̃ =

[
φ̂11 φ̂21

φ̂12 φ̂22

]
.

Then deg(ϕ) = deg(ϕ̃).

Proof. Set dij = deg(φij) and ψ := φ21φ̂11 + φ22φ̂12, then

ϕϕ̃ =

(
(d11 + d12) ψ̂

ψ (d21 + d22)

)
.

Applying Proposition 3.9 to the composed endomorphism ϕϕ̃, we get

deg(ϕ) deg(ϕ̃) = deg(ϕϕ̃) = ((d11 + d12)(d21 + d22)− deg(ψ))
2
= deg(ϕ̃)2.

Therefore, deg(ϕ) = deg(ϕ̃). ⊓⊔

3.4 Automorphisms of products E1 × E2

In this section we prove that the data of an isogeny φ : E1 → E2 between elliptic
curves allows us to compute families of non-trivial automorphisms of E1 × E2.
We shall use such automorphisms in cryptographic applications (Section 5) in
order to hide secret data.
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Proposition 3.12 Let E1, E2 be two elliptic curves defined over Fp, φ : E1 → E2

be an isogeny, and a, b, c, d ∈ Z be integers such that ad− bcdeg(φ) = ±1. Then

the endomorphism F =

(
a bφ̂
cφ d

)
∈ End(E1 × E2) is an automorphism.

Proof. By Proposition 3.9,

deg(F ) = (a2 + c2 deg(φ))(b2 deg(φ) + d2)− deg(bφa+ dcφ)
= (a2 + c2 deg(φ))(b2 deg(φ) + d2)− (ba+ dc)2 deg(φ)
= a2d2 + c2b2 deg(φ)2 − 2abcddeg(φ)
= (ad− bcdeg(φ))2

= 1.

⊓⊔

Remark 3.13 Direct computations show that the inverse of the automorphism

F =

(
a bφ̂
cφ d

)
is F−1 =

(
d −bφ̂

−cφ a

)
.

3.5 Localization

In this section, we investigate algorithmic aspects of the ring M2(Zℓ) and of its
left-ideals. This will be useful during the study of localizations of quaternion
algebras: when O is a maximal order in a quaternion algebra over Q not ramified
at ℓ, then O⊗Zℓ is isomorphic to M2(Zℓ). The first thing to notice is that M2(Zℓ)
is left-principal, and its left-ideals correspond to matrices in Hermite Normal
Form.

Proposition 3.14 [27, Chap. II, Thm. 2.3] The left-ideals in M2(Zℓ) are the
(all distinct) ideals of the form

M2(Zℓ) ·
(
ℓn r
0 ℓm

)
,

where n,m ∈ Z≥0 are positive integers, and r ∈ {0, . . . , ℓm−1}.

As M2(Zℓ) is left-principal, we can define the right-gcd of matrices A1, A2 ∈
M2(Zℓ) as the Hermite Normal Form of a generator of the ideal M2(Zℓ) · A1 +
M2(Zℓ) ·A2. We now consider the problem of computing this right-gcd, assuming
that A1 and A2 are given in Hermite Normal Form.

Proposition 3.15 Let A1, A2 ∈ M2(Zℓ) be two matrices in Hermite Normal
Form:

Ai =

(
ℓni ri
0 ℓmi

)
, i ∈ {1, 2}.

We assume without loss of generality that n2 ≥ n1. Set m = min(m1,m2, valℓ(r2−
ℓn2−n1r1)) (with the convention that valℓ(0) = ∞). Then the right-gcd of A1 and
A2 is

rgcd(A1, A2) =

(
ℓn1 (r1 mod ℓm)
0 ℓm

)
.
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Proof. We have to prove that

M2(Zℓ) ·A1 +M2(Zℓ) ·A2 = M2(Zℓ) ·
(
ℓn1 (r1 mod ℓm)
0 ℓm

)
.

We notice that the left-ideal generated by a matrix correspond to the Zℓ-module
generated by its rows.

First we prove the inclusion

M2(Zℓ) ·A1 +M2(Zℓ) ·A2 ⊃ M2(Zℓ) ·
(
ℓn1 (r1 mod ℓm)
0 ℓm

)
.

The vector (0, ℓm) clearly belongs to the Zℓ-module generated by the rows of
A1 and A2 since (0, ℓm1), (0, ℓm2) and (0, r2 − ℓn2−n1r1) belongs to it. Hence,
(ℓn1 , r1 mod ℓm) also lies in this Zℓ-module.

Let us now prove the other inclusion:

M2(Zℓ) ·A1 +M2(Zℓ) ·A2 ⊂ M2(Zℓ) ·
(
ℓn1 (r1 mod ℓm)
0 ℓm

)
.

The only non-trivial thing that we need to prove is that (ℓn2 , r2) belongs to the Zℓ-
module generated by (ℓn1 , r1) and (0, ℓm). We notice that valℓ(r2−ℓn2−n1r1) ≥ m,
hence there exists x ∈ Zℓ such that r2 − ℓn2−n1r1 = x ℓm. Therefore (ℓn2 , r2) =
ℓn2−n1 · (ℓn1 , r1) + x · (0, ℓm), which concludes the proof. ⊓⊔

The main application of Proposition 3.15 shall appear in the following setting.
Let O ⊂ Bp,∞ be a maximal order, and I ⊂ O be a left-ideal given by a Z-basis
b1, b2, b3, b4 ∈ O. Assume that we can compute an isomorphism ϕ : O ⊗ Zℓ →
M2(Zℓ). Then a generator of I ⊗Zℓ is ϕ−1(rgcd(ϕ(b1), ϕ(b2), ϕ(b3), ϕ(b4))), so we
can compute this generator by using Proposition 3.15.

4 Computing isomorphisms in special cases

In this section, which contains our main algorithms, we start by giving a crite-
rion for an isomorphism to exist, if we fix already two isogenies of its matrix
representation. This criterion can be made effective, and it will then be used to
compute (in polynomial time) isomorphisms between product of curves in two
special cases. However, this does not solve the general isomorphism question of
Problem 5.1, that we believe to be a hard problem.

4.1 Completion of matrices of isogenies

In this section, we investigate the following question: given two isogenies φ11, φ21,
can we compute isogenies φ12, φ22 such that the matrix (φij) is an isomorphism.
First, we give a necessary and sufficient criterion for the existence of such isogenies
φ12, φ22. When this criterion is satisfied, we provide an algorithm to compute
them. First we state a useful lemma.
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Lemma 4.1 Let F,E,E1, E2 be elliptic curves over Fp, ψ : F → E be a (non-
necessarily separable) isogeny, and φ1 : E → E1, φ2 : E → E2 be separable
isogenies of coprime degrees. Write K := ker(φ1)⊕ ker(φ2). Then

deg(φ2)Hom(E1, F )φ1ψ + deg(φ1)Hom(E2, F )φ2ψ = Hom(E/K,F )πKψ.

where πK : E → E/K is the canonical separable isogeny with kernel K.

Proof. Set d1 := deg(φ1), d2 := deg(φ2), I1 := d2 Hom(E1, F )φ1ψ, I2 :=
d1 Hom(E2, F )φ2ψ and IK := Hom(E/K,F )πKψ. Direct computations show
that

ker(d2φ1ψ) ∩ ker(d1φ2ψ) = ψ−1(ker(d2φ1)) ∩ ψ−1(ker(d1φ2))
= ψ−1 (ker(d2φ1) ∩ ker(d2φ1)) = ψ−1 ((kerφ1 + E[d2]) ∩ (kerφ2 + E[d1]))
= ψ−1(kerφ1 ⊕ kerφ2) = ψ−1(ker(πK))
= ker(πKψ).

Noticing that I1 + I2 = Iker(d2φ1ψ)∩ker(d1φ2ψ) and Hom(E/K,F )πKψ =
Iker(πKψ) concludes the proof. ⊓⊔

We are now ready to state the main theoretical result of the paper.

Theorem 4.2 Let E1, E2, E
′
1, E

′
2 be four isogenous elliptic curves defined over

Fp, and φ11 : E1 → E′
1, φ21 : E1 → E′

2 be separable isogenies with coprime
degrees. There exist isogenies φ12 : E2 → E′

1, φ22 : E2 → E′
2 such that

ϕ = (φij)i,j∈{1,2} ∈ Hom(E1 × E2, E
′
1 × E′

2) is an isomorphism if and only
if E1/ (ker(φ11)⊕ ker(φ21)) and E2 are isomorphic.

Proof. Let ψ : E1 → E2 be an isogeny. Let K denote the subgroup ker(φ11)⊕
ker(φ21) of E1. Let πK : E1 → E1/K be the associated canonical isogeny. Set
J11 := Hom(E′

1, E2)φ11ψ̂, J21 := Hom(E′
2, E2)φ21ψ̂, and JK := Hom(E1/K,E2)πK ψ̂,

which are left-ideals in End(E2).
By Proposition 3.10, there exist isogenies φ12 : E2 → E′

1, φ22 : E2 → E′
2

such that ϕ = (φij)i,j∈{1,2} ∈ Hom(E1 × E2, E
′
1 × E′

2) is an isomorphism if
and only if there exist isogenies µ, ν : E1 → E2 which factors respectively by
φ11 and φ21 and such that deg(d21µ − d11ν) = d11d21, where d11 = deg(φ11)

and d21 = deg(φ21). Equivalently, deg((d21µ − d11ν)ψ̂) = d11d21 deg(ψ), with
µψ̂ ∈ J11, νψ̂ ∈ J21. Since Lemma 4.1 implies that JK = d21J11 + d11J21, it
is equivalent to the existence of a σ ∈ JK such that deg(σ) = d11d21 deg(ψ).
Remark that by definition, such a σ ∈ JK would factor as σ = τπK ψ̂ for some
τ ∈ Hom(E1/K,E2). Thus the equation deg(σ) = d11d21 deg(ψ) is equivalent to
deg(τ) deg(πK) deg(ψ) = d11d21 deg(ψ) by multiplicativity of the degree, which
reduces to deg(τ) = 1, since deg(πK) = d11d21.

We conclude that there exist isogenies φ12 : E2 → E′
1, φ22 : E2 → E′

2 such
that ϕ = (φij)i,j∈{1,2} ∈ Hom(E1 × E2, E

′
1 × E′

2) is an isomorphism if and only
if there exists τ ∈ Hom(E1/K,E2) with deg(τ) = 1, i.e. if and only if E1/K and
E2 are isomorphic. ⊓⊔
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Theorem 4.2 is actually effective, provided that we know the endomorphism
rings of the curves. Algorithm 1 computes such an isomorphism.

Proposition 4.3 Algorithm 1 is correct and it runs in time polynomial in log(p)
and in the size of the input.

Proof. First we prove that Algorithm 1 is correct. In fact, Algorithm 1 follows
the proof of Theorem 4.2. An isogeny associated to the ideal Iψ plays the
role of ψ in the proof of Theorem 4.2. The ideals I11, I21 correspond to the
isogenies φ11, φ21 in Theorem 4.2, and the ideals J11 and J21 play the same
role as in the proof of Theorem 4.2. We now prove that the endomorphism ξ
computed in Step 5 satisfies the requirements of σ in the proof of Theorem 4.2,
namely that Nrd(ξ) = d11d21 Nrd(Iψ). By the same argument as in the proof of
Theorem 4.2, JK is a principal left-ideal (because E1/K ≃ E2) of reduced norm
d11d21 Nrd(Iψ), so it contains an element with this reduced norm; this proves
that Nrd(ξ) = d11d21 Nrd(Iψ). Theorem 4.2 also asserts that at least one of the
matrices computed at Step 8 is an isomorphism.

Let us now prove that the complexity is polynomial with respect to the input
size. Most steps reduce to linear algebra over Z; this boils down to computing
Hermite Normal Forms, which can be done in time polynomial in the input size.
Step 5 involves computing the shortest vector in a lattice of dimension 4, with
respect to the positive definite quadratic form (x1, x2, x3, x4) 7→ x21 + x22 + p(x23 +
x24). This can be achieved in time polynomial in the input size and in log(p),
see [18, Thm. 4.2.1]. The combinatorial factor in Step 8 does not increase the
complexity since the number of possible isogenies E → E′ that are represented
by the same left-ideal in End(E) equals the order of Aut(E). For most elliptic
curves, Aut(E) = {1,−1}, and in any case |Aut(E)| ≤ 24 [25, Appendix A,
Prop. 1.2.(c)]. Converting the ideal representation to an efficient representation
can be done in polynomial-time, see e.g. [23, Appendix C]. ⊓⊔

4.2 Building isomorphisms when the codomain is not constrained

In this section, we propose a fast algorithm for the following problem: upon input
of supersingular elliptic curves E1, E2, E

′
1 and their endomorphism rings, we wish

to compute a curve E′
2 together with an isomorphism E1 × E2 → E′

1 × E′
2. We

believe that the problem of computing isomorphisms from E1 × E2 is difficult
(even when the endomorphism rings are given) when the codomain is fixed,
whereas it is computationally easy when the codomain is not constrained. This
asymmetry will be instrumental for designing an authentication procotol in
Section 5.

Theorem 4.4 Algorithm 2 is correct. It is a probabilistic Las Vegas algorithm
which computes a supersingular elliptic curve E′

2 and isogenies φ21 : E1 → E′
2,

φ12 : E2 → E′
1 and φ22 : E2 → E′

2, such that (φij) is an isomorphism. Assuming
GRH, for ℓ1, ℓ2 fixed, the expected running time of Algorithm 2 is polynomial in
log(p) and in the input size.
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Algorithm 1: IsomorphismCompletion
Input: Four supersingular curves E1, E

′
1, E2, E

′
2; Z-bases of maximal orders

O1,O2 ⊂ Bp,∞ and isomorphisms O1
∼= End(E1), O2

∼= End(E2); Z-bases
of left-ideals I11, I21 ⊂ O1 corresponding to isogenies φ11 : E1 → E′

1,
φ21 : E1 → E′

2 such that E2
∼= E1/ (ker(φ11)⊕ ker(φ21)).

Output: An efficient representation of a 2× 2 matrix of isogenies (φij)
representing an isomorphism E1 × E2 → E′

1 × E′
2 such that

Hom(E2, E1)φ11
∼= I11 and Hom(E′

2, E1)φ21
∼= I21.

1 Compute d ∈ Z such that dO1O2 ⊂ O1 ∩ O2 and set Iψ := dO1O2, which is a
connecting ideal between O1 and O2;

// see [12, Algo. 3.5]
2 Compute Z-bases of J11 := IψI11 and J21 := IψI21;
3 Set d11 := Nrd(I11) and d21 = Nrd(I21);
4 Compute a Z-basis of JK = d21J11 + d11J21;
5 Compute an element ξ in JK whose reduced norm is minimal;
// Lattice reduction in dimension 4

6 Using linear algebra over Z, compute ξ11 ∈ J11, ξ21 ∈ J21 such that
d21ξ11 − d11ξ21 = ξ;

7 Compute left-ideals I12 and I22 in the right-orders of I11 and I21 respectively,
such that IψI11I12 = O ′

2ξ11 and IψI21I22 = O ′
2ξ21;

// Prop. 3.7 and Remark 3.8
8 Compute efficient representations of all possible matrices (φij) such that

φij ∈ Hom(Ej , E
′
i) and Hom(E′

i, Ej)φij ∼= Iij as End(Ej) left-modules;
9 Using Proposition 3.9, find a matrix among them which is an isomorphism and

return it;

Algorithm 2: IsomAndCodomain
Input: Supersingular elliptic curves E1, E2, E

′
1 defined over Fp2 , maximal orders

O1,O2,O
′
1 together with isomorphisms O1

∼= End(E1), O2
∼= End(E2),

O ′
1
∼= End(E′

1), and two small distinct primes ℓ1, ℓ2 ̸= p.
Output: Returns an elliptic curve E′

2 and an efficient representation of an
isomorphism E1 × E2 → E′

1 × E′
2.

1 Compute a left O1-ideal I11 with reduced norm ℓm1
1 for a positive integer m1,

such that E1/E1[I11] ≃ E′
1;

// use KLPT [13] or [30, Algo. 5]
2 Compute a left OR(I11)-ideal J with reduced norm ℓm2

2 for a positive integer
m2, such that E′

1/E
′
1[J ] ≃ E2;

// use KLPT [13] or [30, Algo. 5]
3 Compute a Z-basis of the left O1-ideal I21 := {x ∈ O1 : ℓm1

1 x ⊂ I11J};
// This is linear algebra over Z.

4 Using the fact that Nrd(I21) = ℓm2
2 and hence I21 corresponds to a composition

of m2 isogenies of degree ℓ2, compute a curve E′
2 such that E′

2
∼= E1/E1[I21];

5 Return E′
2 and IsomorphismCompletion(E1, E2, E

′
1, E

′
2,O1,O2, I11, I21);
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Proof. Throughout this proof, for Steps 1 and 2, we use the heuristic-free algo-
rithm [30, Algo. 5], whose correctness and complexity are proved under GRH.

In order to prove the correctness, the crucial point that we need to show is
that the ideal I21 constructed at Step 3 satisfies the assumptions of Theorem 4.2,
i.e. that the direct sum of the kernels of the isogenies corresponding to I11 and
I21 is the kernel of an isogeny E1 → E2. By Lemma 4.1, this amounts to showing
that Nrd(I21) = ℓm2

2 and I11J = ℓm1
1 I21+ ℓ

m2
2 I11. Indeed, applying Lemma 4.1 to

φI21 , φI21 and ψ = IdE1
yields to the fact that Nrd(I21)I11 + ℓm1

1 I21 correspond
to Hom(E1/K,E1)πK for K = ker(φI21)⊕ ker(φI11). But if Nrd(I21) = ℓm2

2 and
I11J = ℓm1

1 I21 + ℓm2
2 I11, then Hom(E1/K,E1)πK also correspond to I11J . Thus

as left O1-ideals, I11J = IπK . Hence E1/E[I11J ] = E1/E[IπK ] and E′
1/E

′
1[J ] ≃

E1/K. Finally by assumption on J , E2 ≃ E1/K.
First we show that I11J = ℓm1

1 I21 + ℓm2
2 I11. We notice that ℓm2

2 I11 ⊂ I11J ,
which implies that ℓm1

1 I21 + ℓm2
2 I11 ⊂ I11J by definition of I21. Conversely, let

x11 ∈ I11 and xJ ∈ J , we want to show that x11xJ ∈ ℓm1
1 I21 + ℓm2

2 I11. Since
ℓ1 and ℓ2 are coprime, there exists u, v ∈ Z such that 1 = ℓm1

1 u + ℓm2
2 v. Thus

x11xJ = ℓm1
1 ux11xJ + ℓm2

2 vx11xJ . Finally we remark that vx11xJ ∈ I11 so that
ℓm2
2 vx11xJ ∈ ℓm2

2 I11, and ux11xJ ∈ I21 because ℓm1
1 ux11xJ ∈ I11J . Hence we

conclude that x11xJ ∈ ℓm1
1 I21 + ℓm2

2 I11.
Now we prove that Nrd(I21) = ℓm2

2 . First remark that ℓm2
2 ∈ I21 by defini-

tion, thus Nrd(I21) | ℓm2
2 . Conversely, let x21 ∈ I21, so that ℓm1

1 x21 ∈ I11J .
Then Nrd(I11J) = ℓm1

1 ℓm2
2 | ℓm1

1 Nrd(x21). By coprimality we deduce that
ℓm2
2 | Nrd(x21).

Finally Algorithm 2 terminates in heuristic probabilistic polynomial time in
log(p) and the size of the inputs. This follows from [30, Thm. 6.4] for the first two
steps (m1 and m2 are chosen to be sufficiently large), from Proposition 4.3 for
the last step, and from usual Z-linear algebra algorithms for the other steps. ⊓⊔

Experiments. Now we present the first part of our experimental results. Those
are described in the file ExperimentResults_part1.mgm available at https://
gitlab.inria.fr/superspecial-surfaces-isomorphisms/experiments. For
this proof-of-concept implementation, we reduced to the special case where
E1 = E2 = E0. First we let the user choose the following parameters: a lower
bound for the prime p, a little prime ℓ and an exponent m that ℓm > 2p. Then
we build two random ideals, first I11 with norm d11 := ℓm, then J with norm
dJ coprime to d11 and such that I11J is a principal left O0-ideal. With Z-linear
algebra we are able to recover the ideal I21 as in Step 3 with a call to FindI21.mgm.
It determines (the isomorphism class of) E′

2, since O ′
2 is now the right order of

I21. We conclude as in Algorithm 2 by computing the ideals I12 and I22, with a
call to Algorithm 1, presented in IsomorphismCompletion_SpecialCase.mgm. We
can finally check that the ideals Iij represent an isomorphism.

Example 4.5 We set the seed to be 12345. If we set the lower bound lb :=
1000, then p = 1019. We denote by iq, jq, kq the usual generators of Bp,∞.
If we set ℓ := 3, m := 8, an instance of our algorithm is given by I11 =

https://gitlab.inria.fr/superspecial-surfaces-isomorphisms/experiments
https://gitlab.inria.fr/superspecial-surfaces-isomorphisms/experiments
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⟨6561, 6561 iq, 5727/2 + 5303 iq + kq/2, 5303 + 7395 iq/2 + jq/2⟩ of norm 38, and

I21 = ⟨13003094501, 13003094501 iq, 7379255027/2 + 4184616424 iq + kq/2,

4184616424 + 18626933975 iq/2 + jq/2⟩

of norm 13003094501. Then IsomorphismCompletion_SpecialCase returns

I12 = ⟨37613191543109 − 246780149714338149 kq,

− 37613191543109 iq/6561 − 95650346094126187 jq/2187

− 1400185132743770581754 kq/6561,

29921922947917 − 18751589796940 iq/6561 − 47685292856404658 jq/2187

− 1986085588098789375835 kq/6561,

35439812151471 − 35805775615792 iq/6561 − 91054087390959056 jq/2187

− 2858470143362188506697 kq/6561⟩.
I22 = ⟨189939937316853583931789/2

− 2469806954445063531845587504992289 kq/2,

− 189939937316853583931789 iq/26006189002

− 2948662288363563014156316022054933 jq/26006189002

− 556242080741630819413418076049976941712652 kq/13003094501,

81265571878544492026895 − 28046700416508535541985 iq/26006189002

− 435402101313904500613719060222547 jq/26006189002

− 13822556013256403158423231127874588218626364 kq/13003094501,

72080406466220369649903 − 82325759358956228797232 iq/13003094501

− 1278040128957694099074362135894704 jq/13003094501

− 12669573309043769608327624889550693880105456 kq/13003094501⟩.

The function RepresentIsomorphism returns True on input (I11, I12, I21, I22).

4.3 Computing isomorphisms E2
0 → E′

1 × E0

In this section, we focus on a special case of Problem 1.1: we assume that the
endomorphism rings of all curves are known, and that we also know subrings
of End(E1) and End(E′

1) which are isomorphic to a low-discriminant imaginary
quadratic order. In this case, we provide a fast algorithm to solve Problem 1.1.
In order to simplify the exposition, we assume that E1 = E2 = E′

2. In fact, this
assumption does not lose any generality, see Remark 4.15. Also, for the sake
of simplicity, we assume throughout this section that the curve for which we
know a subring of endomorphisms isomorphic to a low-discriminant imaginary
quadratic order is the curve E0 defined over Fp2 (with p ≡ 3 mod 4) by the
equation y2 = x3 + x. Its endomorphism ring contains a subring isomorphic to
Z[i]. However, all the results presented in this section can be generalized without
any major difficulty to other curves.

In summary, our objective in this section is to provide a fast algorithm for
the following problem:

Problem 4.6 (Low-discriminant Deligne-Ogus-Shioda problem) Given a
supersingular elliptic curve E′

1 defined over Fq and its endomorphism ring, com-
pute an Fq-isomorphism E0 × E0 → E′

1 × E0.



Isogeny-based cryptography using isomorphisms of superspecial surfaces 21

The following statement gives sufficient conditions to use the strategy of
Theorem 4.2.

Proposition 4.7 Let E, E′
1 be elliptic curves defined over Fp and let φ : E → E′

1

be a separable isogeny. Let α, ν ∈ End(E) be endomorphisms of coprime degrees
such that deg(α) = deg(φ) and αν ∈ Hom(E′

1, E)φ. Then ker(ν)⊕ ker(φ) is the
kernel of the endomorphism αν : E → E.

Proof. Since αν ∈ Hom(E′
1, E)φ, we have ker(φ) ⊂ ker(αν). Consequently,

ker(φ) + ker(ν) ⊂ ker(αν). The co-primality of the degrees of ν and φ implies
that the intersection of the kernels is trivial. Since α and ν are separable, so is
αν and therefore |ker(αν)| = deg(α) deg(ν) = deg(φ) deg(ν) = |ker(φ)⊕ ker(ν)|,
which shows that the inclusion is in fact an equality. ⊓⊔

Proposition 4.7 tells us that if are able to compute φ, α and ν, then Algorithm 1
can compute an isomorphism E × E → E′

1 × E. Our strategy will be to first
fix φ, then to compute the endomorphisms α and ν that satisfy the conditions
of Proposition 4.7. As explained above, we specialize to the case E = E0, and
p ≡ 3 mod 4, to perform those computations. The low-discriminant quadratic
order will help us find the endomorphism α ∈ End(E0) of prescribed degree
deg(α) = deg(φ) by solving low-discriminant norm equations with Cornacchia’s
algorithm. Algorithm 3 provides a fast method for computing such α, ν upon
input of the ideal I corresponding to the isogeny φ.

We start with a few technical lemmas which state that computing α, ν in
Proposition 4.7 is actually related to computing a generator of a localization of
the ideal I associated to φ at a prime ℓ.

Lemma 4.8 Let O ⊂ Bp,∞ be a maximal order, I ⊂ O be a left ideal, α ∈ O
such that Nrd(α) = Nrd(I), and ℓ ̸= p be a prime number. Then the following
statements are equivalent:

(a) There exists x ∈ O, such that αx ∈ I and Nrd(x) is not divisible by ℓ;
(b) There exists an invertible y ∈ O ⊗ Zℓ such that αy ∈ I ⊗ Zℓ.

Proof. First, we notice that all elements x ∈ O with reduced norm not divisible
by ℓ are invertible in O ⊗ Zℓ; Indeed, x · (x/Nrd(x)) = 1, hence the inverse of x
in O ⊗ Zℓ is x/Nrd(x). This proves the implication (a)⇒(b).

We now prove (b)⇒(a). Let y be as in (b). Let b1, . . . , b4 be generators of I
seen as a free rank-4 Z-module. Then αy = z1 ·b1+· · ·+z4 ·b4, with z1, . . . , z4 ∈ Zℓ.
Next, pick integers z′1, . . . , z′4 ∈ Z such that z′i ≡ zi mod ℓe, where e is the ℓ-
valuation of Nrd(α). Then set y′ = α−1(z′1 · b1 + · · ·+ z′4 · b4) ∈ Bp,∞. We prove
now that x := Nrd(α)y′/ℓe satisfies the desired properties. First, we show that
x = ℓ−eα(z′1 · b1 + · · · + z′4 · b4) belongs to O. Notice that x clearly belongs
to localized orders O ⊗ Zℓ′ for primes ℓ′ ̸= ℓ, so we only have to prove that
x ∈ O ⊗ Zℓ. To do so, we use the fact that zi ≡ z′i mod ℓe, hence there exists
z′′1 , . . . , z

′′
4 ∈ Zℓ such that zi = z′i + ℓez′′i , which gives

x = ℓ−eα(z1 · b1 + · · ·+ z4 · b4)− α(z′′1 · b1 + · · ·+ z′′4 · b4)
= yNrd(α)/ℓe − α(z′′1 · b1 + · · ·+ z′′4 · b4),
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which shows that x ∈ O⊗Zℓ. Then we notice that Nrd(x) = (Nrd(α)/ℓe)2 Nrd(y′)
is not divisible by ℓ since Nrd(y′) ≡ Nrd(y) ̸≡ 0 mod ℓ. Finally, since Nrd(α) =
Nrd(I) ∈ I, we notice that αx = Nrd(α)(z′1 · b1 + · · ·+ z′4 · b4) belongs to I, which
concludes the proof. ⊓⊔

Definition-Proposition 4.9 Let M ∈ M2(Zℓ) be a matrix. We say that the
ℓ-type of M is the pair of valuations (in Z2

≥0) of the invariant factors of M ,
sorted in non-decreasing order. More explicitly, using the Smith Normal Form,
this means that M has ℓ-type (d1, d2) if d1 ≤ d2 and if there exist invertible
matrices S, T ∈ GL2(Zℓ) such that

S ·M · T =

(
ℓd1 0
0 ℓd2

)
.

Since M2(Zℓ) is left-principal, we define the ℓ-type of a left-ideal I ⊂ M2(Zℓ)
as the ℓ-type of a generator.

Let I ⊂ O be a left-ideal of a maximal order in Bp,∞, and ℓ ̸= p be a prime
number. By [27, Cor. I.2.4], O ⊗ Zℓ is isomorphic to M2(Zℓ), so we define the
ℓ-type of I as the ℓ-type of I ⊗ Zℓ regarded as an ideal in M2(Zℓ); this definition
does not depend on the choice of the isomorphism O ⊗ Zℓ ∼= M2(Zℓ). If α ∈ O is
an element in a maximal order, its ℓ-type is defined as the ℓ-type of the left-ideal
Oα.

Proof. The only thing that we need to prove is that the definition of the ℓ-type
of a left ideal I ⊂ O ⊗ Zℓ ∼= M2(Zℓ) does not depend on the choice of the
isomorphism. In fact, this is a consequence of the fact that automorphisms of
M2(Zℓ) preserve the ℓ-type of matrices in M2(Zℓ), which can be seen on the Smith
Normal Form since automorphisms act as conjugations by invertible matrices. ⊓⊔

Lemma 4.10 With the same notation as in Lemma 4.8, the ℓ-types of I and
α are the same if and only if there exists an invertible y ∈ O ⊗ Zℓ such that
αy ∈ I ⊗ Zℓ.

Proof. In this proof, we fix an isomorphism O ⊗ Zℓ ∼= M2(Zℓ) and we use it
implicitly. Let β ∈ M2(Zℓ) be a generator of I ⊗ Zℓ.

To prove the “only if” part of the statement, we notice that if the matrices
α and β have the same invariant factors then there exist invertible matrices
U, V ∈ GL2(Zℓ) such that U · β = α · V . This implies that α · V belongs to the
left-ideal generated by β. Writing y ∈ (O ⊗ Zℓ)× for the element corresponding
to the matrix V ∈ GL2(Zℓ), we obtain that αy ∈ I ⊗ Zℓ.

We now prove the “if” part of the statement. Under the fixed isomorphism,
the assumption αy ∈ I ⊗ Zℓ translates to the existence of U ∈ M2(Zℓ) such
that αy = Uβ. By the multiplicativity of the determinant, we deduce that
U ∈ GL2(Zℓ). Therefore β = U−1αy and hence β and α have the same invariant
factors. ⊓⊔

Lemma 4.11 With the same notation as in Lemma 4.8, if α ∈ O has ℓ-type
(i, j), then there exists α′ ∈ O with ℓ-type (0, j − i) such that α = ℓi α′. Similarly,
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if I ⊂ O is a left-ideal which has ℓ-type (i, j), there exists a left-ideal I ′ ⊂ O with
ℓ-type (0, j − i) and I = ℓi · I ′.

Proof. Using 4.9, we just need to prove this property for matrices in M2(Zℓ). Let
M ∈ M2(Zℓ) be a matrix with ℓ-type (i, j), i.e. there exists S, T ∈ GL2(Zℓ) such
that

S ·M · T =

(
ℓi 0
0 ℓj

)
.

Then set M ′ = S−1 ·
(
1 0
0 ℓj−i

)
· T−1. By construction, M ′ has ℓ-type (0, j − i)

and M = ℓiM ′. ⊓⊔

We are now ready to prove the main algorithmic result of this section.

Algorithm 3: LocalGenerator
Input: A prime ℓ, a left ideal I ⊂ O0 not divisible by ℓ with reduced norm

Nrd(I) = ℓm ≫ 2p.
Output: Returns elements α, x ∈ O0 such that Nrd(α) = ℓm and αx generates

I ⊗ Zℓ.
1 repeat
2 Pick at random α2, α3 ∈ {−

⌊√
ℓm/(2p)

⌋
, . . . ,

⌊√
ℓm/(2p)

⌋
} not both

divisible by ℓ;
3 Set N := ℓm − p(α2

2 + α2
3);

4 until N is a prime congruent to 1 mod 4;;
5 Using Cornacchia’s algorithm, compute α0 and α1 such that N = α2

0 + α2
1;

6 Using the isomorphism ϕ : O0 ⊗ Zℓ → M2(Zℓ), compute
Mα := ϕ(α0 + α1i+ α2j + α3ij) mod Z/ℓmZ ∈ M2(Z/ℓmZ);

7 Compute a generator β ∈ O ⊗ Z/ℓmZ of I ⊗ Z/ℓmZ;
// This is done by computing the right-gcds of the four generators

of I ⊗ Z/ℓmZ ∼= M2(Z/ℓmZ), see Proposition 3.15
8 Set Mβ := ϕ(β) ∈ M2(Z/ℓmZ);
9 Using the Smith Normal Form, compute two matrices S, T ∈ GL2(Z/ℓmZ) such

that S ·Mα · T =Mβ ;
10 By lifting coordinates from Z/ℓmZ to representatives in Z, set x an element of

O such that x ≡ ϕ−1(T ) mod Z/ℓmZ;
11 Return (α, x) ∈ O2

0 ;

Theorem 4.12 Algorithm 3 is correct. Assuming that ℓm ≫ 2p, and under the
heuristic assumption that for any ℓ, m, p, the number N := ℓm − p(α2

2 + α2
3)

is prime and congruent to 1 mod 4 with probability Ω(1/(m log ℓ)) (where the
constant in the Ω() does not depend on any other variable, and (α2, α3) is
picked uniformly at random among the admissible pairs), Algorithm 3 eventually
terminates and it requires an expected number of Õ(m log(ℓ)) bit operations.
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Proof. The fact that Algorithm 3 is correct is a direct consequence of Lemma 4.11
(to prove that the ℓ-types of I and α are the same) and of the proof of Lemma 4.10
which explains how to construct the elements α and x.

The termination of Algorithm 3 is straightforward: if ℓm ≫ 2p, then there
exist α2, α3 not both divisible by ℓ in {−

⌊√
ℓm/(2p)

⌋
, . . . ,

⌊√
ℓm/(2p)

⌋
}, and

the heuristic assumption implies that there is a positive probability of being such
that ℓm − p(α2

2 + α2
3) is prime and congruent to 1 modulo 4.

Finally, the quasi-linear complexity is a consequence of the following ingredi-
ents:

– The heuristic assumption implies that the repeat-until loop is expected to be
executed O(m log(ℓ)) times;

– Cornacchia’s algorithm is quasi-linear [8, Rem. 3.4];
– Computing the Hermite Normal Forms (for computing the generator of
I⊗Z/ℓmZ) and Smith Normal Forms of matrices in M2(Z/ℓmZ) can be done
in quasi-linear complexity Õ(m log(ℓ)) [26, Chap. 8].

⊓⊔

Finally, we put all the pieces together and we give a complete algorithm
(Algorithm 4) to compute an isomorphism E2

0 → E1 × E0 upon input of E1 and
its endomorphism ring.

Algorithm 4: IsomorphismE0
Input: A supersingular elliptic curve E′

1 defined over Fp2 , a maximal order O ′
1

together with an isomorphism O ′
1
∼= End(E′

1), a prime ℓ ̸= p.
Output: Returns an efficient representation of an isomorphism E2

0 → E′
1 × E0.

1 Compute a left O0-ideal I11 with norm ℓm ≫ 2p for some m ∈ Z≥0 such that its
right-order is conjugated to O ′

1;
// use KLPT [13] or [30, Algo. 5]

2 Set α, ν1 := LocalGenerator(ℓ, I11);
3 Return IsomorphismCompletion(E0, E

′
1, E0, E0,O0,O1, I11,O0ν1);

Theorem 4.13 Algorithm 4 is correct and it requires an expected number which
is polynomial in log(p).

Proof. The correctness is a direct consequence of Theorem 4.2 and Proposi-
tion 4.7, together with the correctness of the subroutines, see Theorem 4.12
and Proposition 4.3. The complexity also follows from the complexities of the
subroutines (Theorem 4.12 and Proposition 4.3), together with the fact that the
output size of Wesolowski’s algorithm [30, Algo. 5] is polynomial in log(p). ⊓⊔

The following corollary shows that by running twice Algorithm 4, we can
compute isomorphisms E1 × E0 → E2 × E0.
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Corollary 4.14 Let E1, E2 be two supersingular elliptic curves defined over Fp2 ,
with known endomorphism rings O1

∼= End(E1) and O2
∼= End(E2). Assuming

GRH we can compute an efficient representation of an isomorphism from E1×E0

to E2×E0 with a Las Vegas probabilistic algorithm running in expected polynomial
time.

Proof. Running twice Algorithm 4 provides us with efficient representations of two
isomorphisms ξ1 : E2

0 → E1×E0 and ξ2 : E2
0 → E2×E0. By transposing ξ2 as in

Section 3.3, we get an efficient representation of an isomorphism ξ′2 : E2×E0 → E2
0 .

Finally, computing a efficient representation of ξ1 ◦ ξ′2 provides the desired
isomorphism. ⊓⊔

Remark 4.15 In fact, all results in this section generalize if we replace E0

by an elliptic curve E for which we know a subring of End(E) isomorphic to
a low-discriminant imaginary quadratic order. Corollary 4.14 can actually be
generalized as follows: given E1, E2, E

′
1, E

′
2 supersingular elliptic curves defined

over Fp2 with their endomorphism rings, and given low-discriminant orientations
of E1, E′

1, we can efficiently compute an isomorphism E1 × E2 → E′
1 × E′

2 by
computing isomorphisms E1 × E2 → E2

1 , E2
1 → E1 × E′

1, E1 × E′
1 → (E′

1)
2,

and (E′
1)

2 → E′
1 × E′

2. Each isomorphism can be computed by using the low-
discriminant technique described in this section.

Experiments. Let us describe an implementation of instances of Algorithm 4
we propose in the file ExperimentResults_part2.mgm available at https://gitlab.
inria.fr/superspecial-surfaces-isomorphisms/experiments. As in the pre-
vious experiment paragraph in Section 4.2, the user can choose the parameters
p, ℓ and m. Then we build a random ideal I11 such that Nrd(I11) = ℓm. Next we
recover α and ν1 with the function LocalGenerator, as explained above. Those
computations allow us to set I21 := O0ν1. Finally, as described in Algorithm 4,
we recover the two last ideals I12 and I22 by a call to IsomorphismComple-
tion_specialCase. The function RepresentIsomorphism ensures us that the
computed ideals represent an isomorphism.

Example 4.16 We set the seed to be 12345. If we set the lower bound lb :=
100, then p = 103. We choose a bound smaller than in Section 4.2, so that
the coefficients of the basis fit in one page. We denote by iq, jq, kq the usual
generators of Bp,∞. If we set ℓ := 3, m := 5, the ideal I11 is given by the basis:
⟨243, 243 iq, 61/2 + 4 iq + kq/2, 4 + 425 iq/2 + jq/2⟩. Further computation leads to
α = 6+ iq + jq − kq, and ν1 = 1075/2+ 1577 iq +244 jq +625 kq/2. The function

https://gitlab.inria.fr/superspecial-surfaces-isomorphisms/experiments
https://gitlab.inria.fr/superspecial-surfaces-isomorphisms/experiments
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IsomorphismCompletion_specialCase returns the ideals:

I21 =⟨2270721937/2 − 551785430691 kq/2,

− 2270721937 iq/486 − 1051344256831 jq/486 − 129953416454510 kq/243,

50499229/2 − 1/162 (298530595 iq + 138219685087 jq + 35163788972983 kq) ,

154335016 − 78843721 iq/81 − 36504642823 jq/81 − 12062230807231 kq/81⟩.
I22 =⟨5361340538374912 − 101686599824741525810944 kq,

− 2680670269187456 iq/18966637 − 55856914626107754862976 jq/18966637

− 1697341760708542745913941586944 kq/18966637,

2136763600071452 − 958438363694345 iq/18966637

− 19970904467668410778293 jq/18966637

− 1375527262982265921046673230548 kq/18966637,

2914265937452479 − 120604897180148 iq/18966637

− 2513034714755866644308 jq/18966637

− 1124722940418968006243505794441 kq/18966637⟩.

We finally check that RepresentIsomorphism returns True on those inputs.

5 An authentication protocol

We propose an authentication protocol whose security is based on the hardness
of the general Deligne-Ogus-Shioda problem with known endomorphism rings.

Problem 5.1 Given E1, E2, E
′
1, E

′
2, four supersingular elliptic curves over Fp2 ,

with their endomorphism rings, compute an isomorphism E1 × E2 → E′
1 × E′

2.

Additional heuristic assumptions will be needed, that we will make explicit
in the security analysis.

5.1 Generating and masking secret isomorphisms

We start with describing how Algorithm 2 can be turned into a method for
generating secret isomorphisms.

Heuristic claim 5.2 (Generating secret isomorphisms) Let E and F be
two supersingular elliptic curves defined over Fp2 with their endomorphism rings.
Then, we can compute in expected polynomial time two other curves E′ and F ′,
their endomorphism rings and an isomorphism from E × F to E′ × F ′ such that
the distribution of the pair (j(E′), j(F ′)) is heuristically undistinguishable from
the uniform distribution on the pairs of supersingular j-invariants in Fp2 .

Our method for generating E′ and F ′ in Heuristic 5.2 works as follows:

– We pick E′ uniformly at random, using a random path of low-degree isogenies
from E, and we compute its endomorphism ring from End(E) and the
knowledge of the isogeny path.
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– We run Algorithm 2 with input E,F,E′ (and their endomorphism rings) to
compute efficiently F ′ and an isomorphism from E × F to E′ × F ′.

– The ring End(F ′) can be computed efficiently from the isomorphism E × F
to E′ × F ′.

– In the first two steps of Algorithm 2, we can use the randomized version of
KLPT from [6, Algo. 5] at the cost of some heuristics. The curve F ′ is then
obtained from a randomized isogeny. By using heuristics similar to those in
SQIsign, we can assume F ′ is heuristically undistinguishable from uniformly
random, see [6, Pb. 2], and that the algorithm runs in heuristic probabilistic
polynomial time, see [6, Prop. 9].

Definition 5.3 (Height of an isomorphism) Let E1, E2, E
′
1, E

′
2 be four su-

persingular elliptic curves over Fp2 and let φ be an isomorphism from E1 ×E2 to
E′

1×E′
2 given by a 2× 2-matrix of isogenies (φij). Then the height of φ, denoted

by ht(φ) is the maximum degree of the defining isogenies:

ht(φ) = max
i,j∈{1,2}

deg(φij).

Lemma 5.4 Let φ and ψ be two composable isomorphisms. Then

ht(φψ) ≤ 4 ht(φ) ht(ψ).

Proof. Composing the isomorphisms amounts to computing the product of the
associated matrices. Each entry is of the form φi,1ψ1,k + φi,2ψ2,k. The degree
of the composition of two isogenies is the product of their degrees. By the
Cauchy-Schwartz inequality, the degree of the sum of two isogenies is bounded
by 4 times the sum of their degrees. Therefore, each entry has a degree at most
4 ht(φ) ht(ψ). ⊓⊔

In our protocol, we will need to transform an isomorphism of a given height
into an isomorphism of a target (approximate) height, in such a way that is
undistinguishable from a random isomorphism of this height.

Heuristic claim 5.5 (Masking with automorphisms) Let E1, E2, E
′
1, E

′
2 be

four supersingular elliptic curves over Fp2 of known endomorphism rings and let
φ be an isomorphism from E1 × E2 to E′

1 × E′
2 of height ht(φ) = Hφ, given via

an efficient representation. Let H ≫ Hφ be a target height. Then we can compute
an efficient representation of another isomorphism ψ with the same domain and
codomain, such that

– ht(ψ) ≈ H,
– ψ is undistinguishable from a uniform randomly chosen isomorphism of

approximate height H, with the same domain and codomain.

The construction supporting this claim is based on composing φ with a
random automorphism of E1 × E2 of appropriate height, namely H/4Hφ. By
Lemma 5.4, the resulting automorphism is of height bounded by H, and we
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expect it to be close to H. If not, we can try with another automorphism, possibly
slightly increasing the height.

In order to produce such automorphisms, we can use the construction of

Proposition 3.12, of the form
(
a bι̂
cι d

)
, where ι is an isogeny from E1 to E2,

and a, b, c, d are integers such that ad − bcdeg(ι) = ±1. We call them basic
automorphisms.

Since we know the ring of endomorphisms of E1 and E2, we can use [30,
Algo. 5] to compute an isogeny ι whose degree is a power of a prime ℓ, that is a
bounded by a power of pκ for some constant κ. Then, for any µ, we can freely
pick b and c in O(µ) and a and d of size in O(µdeg(ι)) such that the condition
holds. The resulting automorphism has height in O(µdeg(ι)). We suggest to take
µ polynomial in log p.

Such automorphisms are very special, since their diagonal entries are integers.
We will therefore compose a polynomial number of such automorphisms, changing
ℓ, a, b, c, d, until we reach the height H/4Hφ. We remark that when two basic
automorphisms are constructed from different ι isogenies, then their composition
no longer has integral diagonal elements.

To conclude, we see that the target height H must be large enough compared
to Hφ, so that we have room for composing φ with a polynomial number of basic
automorphisms of heights that can not be smaller than what is obtained from [30,
Algo. 5].

The isogenies forming the resulting automorphism ψ are obtained as sum of
products of other isogenies, and we expect them to be random-looking, so that ψ
is undistinguishable from random ones with the same height. In particular, we
emphasize that efficient representations only give access to interpolation data,
which do not reveal how the isogeny was constructed.

5.2 Protocol

We present an authentication protocol, where a prover can create a public key
/ secret key pair, then publish the public part, and subsequently can convince
a verifier that they know the corresponding secret part. This protocol must be
understood as a prototype, which does not really claims efficiency, except that it
runs in polynomial time. The goal is to illustrate that Problem 5.1 opens new
perspectives.

Therefore, we seek for simplicity. We follow the classical Sigma protocol
structure, that we turn into a non-interactive one using the Fiat-Shamir transform.

Key generation. The prover starts by producing two random supersingular
elliptic curves E1 and E2, together with their ring of endomorphisms. For this,
they can create isogeny paths from the canonical curve E0 to E1 (resp. E2) and
transport the knowledge of the ring of endomorphisms.

Then, the prover applies Heuristic 5.2 to compute a pair of curves (E′
1, E

′
2)

with their endomorphism rings, and an isomorphism φ from E1×E2 to E′
1×E′

2.
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Public key: The 4 curves E1, E2, E′
1, E′

2, together with their endomorphism
rings.
Secret key: The isomorphism φ : E1 × E2 → E′

1 × E′
2.

Basic interactive protocol. This is a classical Sigma protocol, with the three
phases: commit, challenge, response, that we describe in turn.
Commit phase:

The prover applies Heuristic 5.2 to produce two curves E3 and E4 with their
endomorphism rings, and an isomorphism φ0 : E1 × E2 → E3 × E4.

The prover applies again Heuristic 5.2 to produce two curves E′
3 and E′

4 with
their endomorphism rings, and an isomorphism φ1 : E′

1 × E′
2 → E′

3 × E′
4.

Finally, the prover computes the composition of the transpose of φ0, φ
and φ1, and masks it using automorphisms. This produces an isomorphism
ψ : E3 × E4 → E′

3 × E′
4.

The prover sends E3, E4, E′
3 and E′

4 with their endomorphism rings, together
with ψ, to the verifier.
Challenge phase:

The verifier picks a random bit b and sends it to the prover.
Response phase:

The prover masks φb with automorphisms and sends it to the verifier.
The verifier checks that the following holds:

– ψ is indeed an isomorphism between E3 × E4 and E′
3 × E′

4;
– φb is indeed an isomorphism between the products of curves corresponding

to the challenge bit b.

Overall protocol. The basic protocol provides only one bit of soundness. It is
then repeated λ times, where λ is a security parameter.

The overall protocol is obtained by combining these λ repetitions in a single
non-interactive protocol with the Fiat-Shamir transform: the prover produces λ
independent commits, then the challenge is computed as the result of hashing
all these commits together with the context of the proof, and then the prover
computes the corresponding responses.

5.3 Security analysis

We conclude with a brief security analysis of the presented protocol. In the first
part we show that the soundness essentially relies on the computational hardness
of Problem 5.1. Then we will describe a simulator to establish the zero-knowledge
property, under some heuristics.

Soundness. The basic protocol has the special soundness property: for a given
commit, if the prover is able to answer to the two possible challenges, then by
computing the composition of φ0, ψ, and the transpose of φ1, it can get an
isomorphism between E1 × E2 and E′

1 × E′
2.

Therefore, if Problem 5.1 is hard, then the protocol is sound.
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Zero-knowledge. Let us consider the following simulator S. It starts by picking
a bit b uniformly at random. If b = 0 (resp. b = 1), then S applies Heuristic 5.2 to
the pair (E1, E2) (resp. (E′

1, E
′
2)) to produce a new pair of curves (E3, E4) (resp.

(E′
3, E

′
4)) with their ring of endomorphisms, and an isomorphism φb. Then, it

applies again Heuristic 5.2 to (E3, E4) (resp. (E′
3, E

′
4)) to produce (E′

3, E
′
4) (resp.

(E3, E4)) with their ring of endomorphisms, and an isomorphism ψ between those
two products of curves.

If b = 1, then ψ is replaced by its transpose, so that in both cases, we have
an isomorphism from (E3, E4) to (E′

3, E
′
4).

Finally, S masks φb and ψ so that they have the expected height, and returns
the transcript corresponding to this data.

The assumptions under which this transcript is undistinguishable from one of
a real run of the protocols are the following:

– Both curves output by the algorithm from Heuristic 5.2 are undistinguishable
from uniformly random.

– The masking by automorphisms strategy indeed produces an isomorphism
that is undistinguishable from uniformly random.
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