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Abstract. We present a key-recovery attack on DEFI, an efficient sig-
nature scheme proposed recently by Feussner and Semaev, and based on
isotropic quadratic forms, borrowing from both multivariate and lattice
cryptography. Our lattice-based attack is partially heuristic, but works
on all proposed parameters: experimentally, it recovers the secret key in
a few minutes, using less than ten (message,signature) pairs.
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1 Introduction

The lattice-based signature schemes Dilithium [8] and Falcon [15] have been
selected by the NIST [22] as the first standards for post-quantum cryptogra-
phy. But this post-quantum security comes at a cost: the size of both the pub-
lic key and the signature of Dilithium and Falcon are significantly bigger than
for ECDSA and RSA. It would be useful to have more efficient post-quantum
signature schemes and/or based on different assumptions: this motivated the
NIST to open a call for additional digital signature proposals [21] in 2022. In
that call, Feussner and Semaev submitted the lattice-based signature scheme
EHTv3v4 [12], which currently remains unbroken after a fix. Very recently [13],
the same authors proposed a very different and much more efficient scheme,
called DEFI, on the NIST pqc mailing list: with a 800-byte public key and a
432-byte signature, DEFI is more efficient than both Dilithium and Falcon, and
beats all additional NIST submissions except for SQISign in (public key + sig-
nature) size [23]. Even with a non-optimised implementation, DEFI’s signature
and verification times seem to compare favourably to all proposed signatures [5].
DEFI is a peculiar scheme borrowing from both multivariate cryptography and
lattice-based cryptography: its security is based on the hardness of solving sys-
tems of quadratic equations over the integers and a polynomial ring R such as
Z[X]/(X64 + 1). In its general form, this problem is known to be NP-hard, and
therefore the authors of DEFI assumed it hard in the worst case, but DEFI uses
special instances of the problem, which might be much easier to solve.

More precisely, a DEFI private key is a solution to a small system of quadratic
equations over R, determined by the DEFI public key. Because R is a polynomial



ring, this small system can be transformed into a large system of quadratic
equations over Z, which in general would be an NP-hard problem. DEFI is
a hash-and-sign probabilistic scheme: the signature of a hashed message h is
simply a randomly-generated solution to a small system of quadratic equations
over R, in such a way that the first entry of the solution vector is h, and the
other entries depend on the choice of a nonce, a one-time key required for each
signature generation. Surprisingly, DEFI does not use modular arithmetic nor
finite fields: all operations are in the polynomial ring R, and this was a security
argument in [13]. Feussner and Semaev analysed [13] several attacks on DEFI
to argue that their scheme DEFI was immune against Gröbner basis attacks
and lattice attacks. They proposed a 64-bit numerical challenge, and concrete
parameters for which they conjectured a 128-bit security level.

Our results. We show that DEFI is completely insecure: experimentally, less
than ten (message,signature) pairs are sufficient to recover the secret key in a
few minutes, for all parameters proposed in [13], including the 64-bit challenge.

Disclaimer. In reaction to the break of DEFI presented here, the authors of
the scheme proposed DEFIv2[14], a new and improved version of the signature
scheme, boasting similarly impressive performances. The present article was writ-
ten before DEFIv2 was announced and thus only focuses on the cryptanalysis
of DEFI. The attack presented here does not seem to be directly applicable to
DEFIv2.

Technical overview. The starting point of our attack is that each DEFI sig-
nature leaks information on the secret key, and we exploit that leakage: each
signature provides a linear equation over R, whose solutions are related to the
secret key. By collecting enough signatures, we obtain a linear system of equa-
tions over R: this gives rise to a lattice whose rank is independent of the number
of signatures used, but for which we know an unusually short vector related to
the private key and the secret nonces which were used to generate each signa-
ture. The more signatures we use, the more unusually short the secret vector
becomes, without affecting the rank of the lattice.

By reducing this lattice, we heuristically obtain this unusually short vector.
At this point, we cannot yet recover the secret key. However, it allows us to derive
a new linear system of equations over R: this gives rise to a second lattice,
whose rank depends on the number of signatures. We know that this lattice
contains another very short vector, which is directly related to the private and
the secret nonces which were used to generate each signature. Again, if we take
more signatures into account, then this second very short secret vector becomes
even shorter, relatively to what one would expect from a typical lattice. However,
the lattice rank increases with the number of signatures used in this second stage,
making lattice reduction increasingly expensive. We circumvent this issue by
noting the existence of and heuristically recovering an unusually dense sublattice
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of much smaller rank that contains the targeted second secret short vector. We
then reduce the recovered sublattice to obtain the second secret.

Together, the two unusually short vectors that were recovered provide a final
system of linear equations over R, whose solutions are exactly the secret key and
its rotations. If enough signatures are given, we obtain a linear system over Z for
which there are many more equations than unknowns: this recovers the secret
key in polynomial time by linear algebra, provided that the linear system is full-
rank. Alternatively, the structure of the two unusually short vectors allows us
to recover the secret key efficiently by an ad-hoc process, based on the equation
relating the public key and the secret key.

To summarise, there are three stages in the attack: the first two stages use
lattice reduction to find extremely short vectors, but the rank of the lattice used
in the first stage is independent of the number of signatures used. The final third
stage recovers the private key without lattice techniques.

Related work. The authors of DEFI [13] also considered lattice attacks, but
showed that their attacks failed. However, their attacks were different from our
attack, even though their attacks exploited the same equations that we are using.
These attacks failed because of two reasons. The first reason is that [13] used
a different lattice, whose dependence on the secret key was much less useful: in
this lattice, there was apparently no unusually short lattice vector related to the
secret key. The second reason is that [13] only considered attacks using a single
signature.

Roadmap. Section 2 introduces notations and recalls useful facts. Section 3
presents the DEFI signature scheme. We describe our attack in Section 4, give
some elements of justification in Section 5, and present our experimental results
in Section 6.

2 Preliminaries

General notations. Vectors are written in bold lowercase v. The Euclidean
norm of a vector v ∈ Rn is denoted ∥v∥. Throughout this paper, we use row
representation of matrices. For a set R and a positive integer n ∈ Z>0, Mn(R)
denotes the set of n×n matrices with entries in R, and diag(α1, . . . , αn) denotes
the diagonal matrix of Mn(R) with coefficients αi. We use [n] as a notation
for {1, . . . , n}. Matrices and vectors will be written in bold font. If z1 ∈ R and
z = (z2, . . . , zn) ∈ Rn−1, we will use (z1||z) to denote (z1, . . . , zn) ∈ Rn.

Coefficient embedding. Let R = Z[X]/(q) be a polynomial ring, where q is a
degree m monic irreducible polynomial. Elements of R are represented by their
coefficient embedding :

coef :

{
R → Zm

a =
∑m−1

i=0 aiX
i 7→ (a0, . . . , am−1)

.
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When speaking of the shortness of a ∈ R, we mean the shortness of the corre-
sponding vector coef(a) ∈ Zm. This allows us to naturally extend the L2 and
L∞ norms ∥ · ∥ and ∥ · ∥∞ to R. More generally, we extend both norms to direct
products of R by considering concatenations of the coefficient vectors.

Short elements in polynomial rings. There are many ways to sample short
elements in R. While some schemes might sample each coefficients independently
and with the same distribution, others like NTRU or DEFI fix a number of
non-zero coordinates λ, which they choose uniformly at random, and uniformly
sample all non-zero coordinates in a small set of values, such as {±1,±2} in
DEFI, we note Du the distribution from which u is sampled.

Lattices. A lattice L is a discrete subgroup of Rm. Alternatively, we can define
a lattice as the set L(b1, . . . ,bn) = {

∑n
i=1 xibi : xi ∈ Z} of all integer com-

binations of n linearly independent vectors b1, . . . ,bn ∈ Rm. This sequence of
vectors is known as a basis of the lattice L. All the bases of L have the same
number n of elements, called the dimension or rank of L, and the n-dimensional
volume of the parallelepiped {

∑n
i=1 aibi : ai ∈ [0, 1)} they generate. We call

this volume the covolume, or determinant, of L, and denote it by vol(L). The
lattice L is said to be full-rank if n = m. We denote by λ1(L) the first minimum
of L, defined as the norm of a shortest nonzero vector of L.

Orthogonalisation. For a basis B = (b1, . . . ,bn) of a lattice L, and an index
1 ≤ i ≤ n, we denote by πi the orthogonal projection on span(b1, . . . ,bi−1)

⊥.
The Gram-Schmidt orthogonalisation (GSO) of the basis B is defined as the
orthogonal sequence of vectors B⋆ = (b⋆

1, . . . ,b
⋆
n), where b

⋆
i := πi(bi). When we

speak of the (log) Gram-Schmidt profile, we refer to the plot of the quantities
(log ∥b⋆

1∥, . . . , log ∥b⋆
n∥). It will represent how well reduced the lattice basis is.

Random lattices and Gaussian heuristic. The space Xn = SLn(R)/SLn(Z)
of covolume 1 real lattices has a unique SLn(Z)-invariant Haar probability mea-
sure, that defines the mathematically correct way of thinking about a random
lattice. The expected value for such a random lattice’s first minimum is some-
times referred to as the Gaussian heuristic radius for lattices. For a rank n lat-
tice L, we denote GH(L) := vol(Bn)

−1/nvol(L)1/n = (1+ on(1))
√

n
2πevol(L)

1/n,
where Bn is the n-dimensional L2 ball of radius 1.

Lattice reduction. The problem of recovering a shortest vector in a lattice
is called the Shortest Vector Problem (SVP). Various algorithms exist that
solve approximated versions of SVP. To name a couple, we have the LLL al-
gorithm [18,24] that runs in polynomial time for exponentially large approxima-
tion factors, as well as the BKZ hierarchy of algorithms [25,4] that presents a
trade-off between time and approximation factor.
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3 The DEFI Signature Scheme

In [13], Feussner and Semaev propose a new digital signature scheme called
DEFI, based on solving systems of quadratic Diophantine equations over the
rational integers.

3.1 Formal Definition of the Scheme

Let q ∈ Z[X] be a monic irreducible polynomial, and R = Z[X]/(q) its associated
polynomial ring, where (q) denotes the ideal of Z[X] generated by q. Let J =
diag(1, 1,−1,−1) ∈ M4(R). For A ∈ Mn(R), we define fA by fA(x) = xTAx
for x ∈ Rn. In [13], the authors seem to consider a wider array of matrices
J = diag(±1, . . . ,±1) ∈ Mn(R), where n can vary, but the instantiation of their
scheme heavily relies on the specific choices n = 4 and J = diag(1, 1,−1,−1).
Unless design choices are made radically different for another choice of J, an
adapted version of our attack would still apply.

Private Key. The private key is a matrix B ∈ M4(R), defined blockwise as

B =

(
I1 0
B21 B22

)
,

where B21 ∈ R3 and B22 ∈ M3(R). B should be invertible and B21,B22 and
B−1

22 are taken with small norm (i.e. elements are polynomials of R with small
coefficients). Note that invertibility ofB implies it is unimodular. We refer to [13]
for the precise generation procedure for B. While the condition on the size of B
in [13] is slightly different, we will assume that ∥B21∥∞ < δB21

and ∥B22∥∞ <
δB22 , where δB21 and δB22 are all parameters chosen in Table 1. We would like to
stress that this is not an important change, as it does not make the scheme less
secure and only helps increase the readability of our analysis. We refer to Figure 1
for experimental confirmation that all the private keys that were generated from
the reference implementation [11] satisfy our bounds.

Public Key. The public key is the matrix

C = BTJB.

Again, the authors of DEFI choose to reject matrices C that have large entries,
as this allows for shorter public keys. We will not use this fact in our attack.

Signature generation. The following procedure is used to sign a message µ
from a private key B. The full pseudo-code is described in Algorithm 2.

1. A message µ is first hashed into h := H(µ) ∈ R.
2. A special trapdoor procedure constructs a z =

(
h || z′

)
such that fJ(z) = 0.

This step is described in Algorithm 1. It completes the hashed message with
a random nonce in such a way that the resulting vector is isotropic with
respect to J.

3. The signature is y := B−1
22 (z

′ −B21h).
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Fig. 1: Proportion of coefficient embedding coefficients of B that have absolute
value less than an integer δ, out of 1000 DEFI-128 samples. We note that all
coefficients were smaller than δB22 = 18.

Algorithm 1 GenerateZ(·)
Input: z1 ∈ R.
Output: z′ ∈ R3 such that fJ(

(
z1 || z′

)
) = 0.

1: u1, v2 ← Du {u1, v2 ∈ R}
2: v ← v2(1− u2

1) {v ∈ R}
3: u2 ← 2v2 {u2 ∈ R}
4: z2 ← v + u2u

2
1 − z1u1 {z2 ∈ R}

5: z3 ← v + z1u1 {z3 ∈ R}
6: z4 ← u1u2 − z1 {z4 ∈ R}
7: z′ ←

(
z2 || z3 || z4

)
{z′ ∈ R3}

8: Return z′

Signature verification. Verification is described in Algorithm 3. It consists of
the following two steps:

1. The message µ is hashed into h := H(µ).
2. The signature is accepted if and only if fC(

(
h || y

)
) = 0, where y is the

signature and C is the public key.

3.2 Correctness of the Scheme

Let (µ,y) be a valid signature obtained using the secret key B, h = H(µ) and
C the associated public key. y = B−1

22 (z
′ − B21h) where z′ is the output of

GenerateZ(h). Let z =
(
h || z′

)
, and x =

(
h || y

)
. Then

fC(x) = xTCx = (Bx)TJ(Bx) = fJ(Bx) = fJ(z).
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Algorithm 2 DEFI signature generation

Input: A message µ and a private key B ∈M4(R).
Output: A valid signature y ∈ R3.
1: h← H(µ) {h ∈ R}
2: z′ ← GenerateZ(h) {z′ ∈ R3}
3: y← B−1

22 (z
′ −B21h) {y ∈ R3}

4: Return y

Algorithm 3 DEFI signature verification

Input: A message µ, a signature y ∈ R3 and a public key C ∈M4(R).
Output: Accept if the signature is correct, Reject otherwise.
1: if fC(

(
h || y

)
) = 0 then

2: Return Accept
3: else
4: Return Reject
5: end if

Indeed,

Bx =

(
I1 0
B21 B22

)(
h
y

)
=

(
h

B21h+B22y

)
=

(
h
z′

)
= z. (1)

In order to prove the correctness of the scheme, we need to prove that Algo-
rithm 1 produces a vector that is isotropic with respect to J once is is concate-
nated with the hash of the message. We use the notations of Algorithm 1 for the
coordinates of z′:

fJ(z) = zTJz = z21 + z22 − z23 − z24

= (z1 + z4)(z1 − z4) + (z2 + z3)(z2 − z3)

= (u1u2)(2z1 − u1u2) + (2v + u2u
2
1)(u2u

2
1 − 2z1u1)

= u1u2(2z1 − u1u2) + (u2(1− u2
1) + u2u

2
1)(u2u

2
1 − 2z1u1)

= u1u2(2z1 − u1u2 + u1u2 − 2z1) = 0.

3.3 Parameter Choice

DEFI comes in two flavours, a challenge version called DEFI-64, and a reference
version DEFI-128 that was claimed to provide 128 bits of security. The ring R
is defined according to the parameter m as Z[X]/(Xm + 1). The distribution
Du samples λu non-zero coordinates and uniformly assigns them a number from
{±1,±2}.
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m λu δB21 δB22

DEFI-64 32 15 2 15

DEFI-128 64 35 2 18

Table 1: Parameters for DEFI

4 Attacking DEFI

Lattice attacks on DEFI were already discussed in [13, Section IV.E.]. The au-
thors of the scheme observe that

z2 + z3 = u2 (2)

z1 + z4 = u1u2, (3)

where z2 = b21h + b22y2 + b23y3 + b24y4 and z3 = b31h + b32y2 + b33y3 + b34y4,
using the notation B = (bij)i,j∈[4]. To exploit Equation 2, they argue that re-
covering the desired vector b = (b21, b22, b23, b24, b31, b32, b33, b34, u2) ∈ R9 as a
SVP solution in the lattice

L = {x ∈ R9 : x1h+ x2y2 + x3y3 + x4y4 + x5h+ x6y2 + x7y3 + x8y4 − x9 = 0}

should be difficult, as the experimental norm of b is much larger than the Gaus-
sian heuristic for L, implying that if L behaves like a typical random lattice then
its shortest vector would be much shorter than b. Their analysis is not exhaustive
and overlooks a number of things. Most notably, L only exploits the information
obtained from a single signature, and focuses on recovering the coefficients of
B directly, whereas other more intermediate secrets might be easier to obtain
through lattice attacks. No further justification is given to assess that it is sound
to use the Gaussian heuristic for the length of the shortest vector here.

In our attack, we assume that the attacker has access to k signatures and use
x(i) to denote the value of the parameter x corresponding to the i-th signature.
We would like to emphasise that the attack is heuristic (as is often in the case in
lattice-based cryptanalysis). Our analysis is presented in Section 5. Experiments
are later discussed in Section 6.

4.1 First Step: Recovering u2

The first step of the attack exploits the fact that each signature contributes to
some leakage in order to recover half of the randomness used to generate the
isotropic vectors that are used in the signing process (recall that Algorithm 1
samples u1 and v1, here we recover u2 = 2v2), as well as some partial information
on coefficients of the secret matrix B. Obervation 1 below summarises exactly
what we get from this first step.

Observation 1 (Informal) If an attacker has access to a large enough number
k of signatures z(1), . . . , z(k) signed with the same private key B, then it can

recover b21 + b31, b22 + b32, b23 + b33, b24 + b34 and all u
(i)
2 in time polynomial

in m = dim(R) and the size of the entries.
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We aim to recover this secret information by using lattice reduction, to find a
short vector in a lattice. We first define our lattice L1, show how to construct
it efficiently from public information, and finally we write down a short vector
s1 ∈ L1.

Definition 1. Let k ∈ Z>0. Assuming the vectors (h(i), y
(i)
2 , y

(i)
3 , y

(i)
4 ) ∈ R4 for

i ∈ Z>0 form a sequence of signatures obtained using the same private key, we
define the following lattice

L1 =
{
(α, β, γ, δ, ε(1), . . . , ε(k)) ∈ R4+k : ∀i, ε(i) = αh(i) + βy

(i)
2 + γy

(i)
3 + δy

(i)
4

}
.

We note that L1 can be seen interchangeably as an R-module or as a Euclidean
lattice.

Proposition 1 (Properties of L1). Let k ∈ Z>0. Then the following state-
ments are true:

– L1 has rank 4m;
– L1 has ambient dimension (k + 4)m;
– A basis of L1 can be efficiently computed from the first k signatures.

Proof. By definition, L1 is generated by the 4m following vectors(
Xj , 0, 0, 0, Xjh(1), . . . , Xjh(k)

)
;(

0, Xj , 0, 0, Xjy
(1)
2 , . . . , Xjy

(k)
2

)
;(

0, 0, Xj , 0, Xjy
(1)
3 , . . . , Xjy

(k)
3

)
;(

0, 0, 0, Xj , Xjy
(1)
4 , . . . , Xjy

(k)
4

)
,

for j ∈ [m]. This gives an efficiently computable generating set of vectors of L1

of size 4m. The first four R-coordinates are all linearly independent, therefore
L1 has rank exactly 4m. ⊓⊔

Let
s1 = (b21 + b31, b22 + b32, b23 + b33, b24 + b34, u

(1)
2 , . . . , u

(k)
2 ).

Recall that for all i ∈ [k] we have as in Equation 1,

(
b22 b23 b24
b32 b33 b34

)y
(i)
2

y
(i)
3

y
(i)
4

 =

(
z
(i)
2

z
(i)
3

)
− h(i)

(
b21
b31

)
.

Adding both equations together, and combining the result with Equation 2 and
the definition of L1 implies in turn that s1 ∈ L1. Recall that by design, DEFI
comes with very short secret key coefficients (which seems inevitable to ensure

small public keys), as well as very short coefficients for the nonce v
(i)
1 (which this

time seems inevitable to ensure small signature sizes). This qualitatively justifies
the shortness of s1. In fact, our attack recovers s1 by using a lattice reduction
algorithm with input the basis of L1 described in Proposition 1.

9



Remark 1. Until now, we have only used a single short vector s1. Recall that L1

has R-module structure, and in the case where q = Xm +1, all rotations Xi · s1
(where · acts on L1 R-coordinate by R-coordinate) for i ∈ [m] give linearly
independent vectors of L1 of equal norm. This implies two things:

– If s1 is unusually short, then so are its m − 1 other rotations and lattice
reduction might recover the wrong one.

– s1 and its rotations generate an unusually dense rank m sublattice of L1.
Instead of studying the cost of recovering s1 directly via lattice reduction,
it makes more sense to heuristically study the reduction strength needed to
recover this special dense sublattice for a given number of signatures.

The first point is in fact not really a problem, as we can simply continue the
attack simultaneously with all m rotations. This is only a linear increase in com-
plexity, so a polynomial-time attack would remain polynomial. We will explain
later in Section 4.4 how we can remove remove the need for this linear increase
in complexity. We cover the second point in Section 5.1.

4.2 Second Step: Recovering u1

The aim of this Section is to adapt our first step in a way that enables us to use

Equation 3 to recover the secret information u
(i)
1 . The u

(i)
2 are different, so as

soon as we wish to use more than one signature, an immediate lattice approach
does not work. We explain how we can artificially view our problem modulo a

large prime p, and how this enables us to view recovering the u
(i)
1 as yet another

lattice problem. Our end result for this step is described in Observation 2 below.

Observation 2 (Informal) If an attacker has access to a large enough number
k of signatures z(1), . . . , z(k) signed with the same private key B, then it can

recover b41, b42, b43, b44 and all u
(i)
1 in time polynomial in m = dim(R) and the

size of the entries.

Lemma 1. Let p ∈ Z>0 be a prime number. Let q ∈ Z[X] be a monic irreducible
polynomial, and Rp := (Z/pZ)[X]/(q). Then a polynomial r ∈ Rp is invertible
in Rp if and only if gcd(r, q) = 1.

In this section we fix a random large prime number p. See Section 5.2 for a
discussion on the size of p.

Definition 2. Let k ∈ Z>0. Assuming the vectors (h(i), y
(i)
2 , y

(i)
3 , y

(i)
4 ) ∈ R4 for

i ∈ Z>0 form a sequence of signatures obtained using the same private key, we
define the following lattice

L2 =
{
(α, β, γ, δ, ε(1), . . . , ε(k)) ∈ R4+k : ∀i, ε(i)u(i)

2 ≡p αh(i) + βy
(i)
2 + γy

(i)
3 + δy

(i)
4

}
.

Proposition 2 (Properties of L2). Let k ∈ Z>0. The following statements
hold:
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– L2 has rank (k + 4)m;
– L2 has ambient dimension (k + 4)m;
– A basis of L2 can be efficiently computed from the first k signatures;
– vol(L2) = pkm.

Proof. L2 is a q-ary lattice whose basis can be written directly in a typical
NTRU-like shape: (

0 pIkm
I4m Y

)
,

where
(
I4m || Y

)
is derived in the same way as for L1. Note that although from

a distance, L2 looks just like L1 with an extra mod p condition, there is an

additional subtlety in its definition: an extra multiplication by u
(i)
2 on the left of

the equation defining the lattice. The modulus p was incorporated to enable us

to directly write down basis vectors. Indeed by Lemma 1 all u
(i)
2 are invertible

in Rp and the following vectors for j ∈ [k] can be efficiently computed:(
Xj , 0, 0, 0, Xj(u

(1)
2 )−1h(1), . . . , Xj(u

(k)
2 )−1h(k)

)
;(

0, Xj , 0, 0, Xj(u
(1)
2 )−1y

(1)
2 , . . . , Xj(u

(k)
2 )−1y

(k)
2

)
;(

0, 0, Xj , 0, Xj(u
(1)
2 )−1y

(1)
3 , . . . , Xj(u

(k)
2 )−1y

(k)
3

)
;(

0, 0, 0, Xj , Xj(u
(1)
2 )−1y

(1)
4 , . . . , Xj(u

(k)
2 )−1y

(k)
4

)
.

As in Proposition 1, these 4m vectors are linearly independent vectors of L2.
From the previous blockwise representation one can directly read the volume
and rank, so this set of linearly independent vectors of L2 is also generating. Of

course in order to freely use the values of u
(i)
2 we assume that the first step of

the attack was already executed successfully. ⊓⊔

We now explain the design of this lattice by exhibiting some of its short vectors.
Let

s′2 = (b21 + b31, b22 + b32, b23 + b33, b24 + b34, 1, . . . , 1).

For the same reason that s1 ∈ L1, s
′
2 ∈ L2. We now claim that L2 contains

another independent short vector. Let

s2 = (b41 + 1, b42, b43, b44, u
(1)
1 , . . . , u

(k)
1 ).

For all i ∈ [k], rewriting the last row of Equation 1 we get

b42y
(i)
2 + b43y

(i)
3 + b44y

(i)
4 = z

(i)
4 − h(i)b41.

Combining this with Equation 3, for which h = z1 proves that s2 ∈ L2.
As with L1, L2 has R-module structure. Therefore, all shifts Xi ·s2 and Xj ·s′2

are also vectors of L2. This lets us define the following sublattice:

L′
2 := ⟨(Xi · s2)i, (Xj · s′2)j⟩Z ⊂ L2.
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Experimentally, when L2 is built using enough signatures and p is taken large
enough, lattice reduction applied to L2 happens to recover L′

2 in the following
way: the first 2m vectors of the reduced basis generate L′

2 exactly. Note that L′
2,

by definition is independent of the chosen value of p, as neither s2 nor s′2 depend
on p.

From there we have a basis for L′
2, a lattice of rank 2m ∈ {64, 128}, and

it is quite clear that any lattice reduction operation on L′
2 should not be too

costly. Morally, this lattice is a compositum of two lattices generated by all
cyclic shifts of their respective generators and we need to find a way to act on
each half separately. Our goal is to recover s2 to get access to all the information
described in Observation 2. Because ∥s′2∥ < ∥s2∥, solving an SVP instance on L′

2

will do nothing to help. However we notice that the first four (R)-coordinates of
s2 should be smaller than those of s′2, therefore we can choose a constant value
c(k) and use it to skew L′

2 by defining

L′′
2 :=

{
(c(k)x1, c(k)x2, c(k)x3, c(k)x4, x5, . . . , xk+4) : (xi)i∈[k+4] ∈ L′

2

}
.

For a good choice of c(k), e.g. a c(k) that skews the lattice enough that the
image of s2 in L′′

2 becomes smaller in norm than the image of s′2, the skewed
image of s2 in L′′

2 becomes its shortest vector and can be recovered by lattice
reduction in L′′

2 .

4.3 Final Step: Private Key Recovery

We now explain how to recover the full private key after the first two steps.

Observation 3 If an attacker has access to b2j + b3j and b4j for 1 ≤ j ≤ 4,
where the bij are matrix coefficients of the private key B associated to C, then
it can fully recover B in time polynomial in m = dim(R).

The public key is defined as C = BTJB, implying the following relations on the
diagonal coefficients cjj ∈ R of C, for 1 ≤ j ≤ 4:

cjj = b21j + b22j − b23j − b24j . (4)

As would be the case after Observation 2, we now have access to all b4j for
1 ≤ j ≤ 4. All cjj and b1j are known and therefore, Equation 4 allows us to
recover b22j − b23j = (b2j − b3j)(b2j + b3j). We also know all b2j + b3j for 1 ≤ j ≤ 4
(as would be the case after Observation 1). The only remaining step is to derive
b2j−b3j from b22j−b23j and b2j+b3j . R being only a ring, it is impossible to simply
invert b2j + b3j . However, if we pick a large enough prime p as in Section 4.2,
b2j + b3j can be inverted modulo p without any loss of information.

4.4 Exploiting the Ring Choice

In their concrete parameters and for efficiency purposes, DEFI is instantiated
using R = Z[X]/(Xm +1), where m is a power of two. We explain how this can
be used to simplify the attack.

12



In Remark 1, we have seen that the first step of our attack might only recover
a shift Xj · s1 instead of our targeted s1. Instead of running the second step of
our attack multiple times with each possible rotation, we notice that L2 also has

R-module structure, so its definition is independent of the shifts of u
(i)
2 that were

obtained in the first step. Therefore the second step of the attack remains valid
regardless, and it will output some Xj · s2 that is a shift of the target secret s2.
Now that we have handled the hardest part of the attack, we can use Equation 4
to guess and verify the correct shifts for s1 and s2. Indeed, when testing a specific
pair of shifts (Xi ·s1, Xj ·s2), we can use the procedure described in the proof of
Observation 3 to recover a candidate value b− for say b22−b32, using our guess b+
for b22+b32. If this value b− is such that b−+b+ has even and small coordinates,
then the fact that a large enough prime p was chosen in the inversion implies
that necessarily, the pair of shifts (i, j) has correctly been guessed. This whole
procedure of guessing shifts runs at most m2 times, which makes its runtime
negligible compared to the lattice reduction steps.

5 Some Elements to Justify the Attack

The description of the attack in Section 4 leaves a couple open questions: how
can we be sure that a fast lattice reduction algorithm is enough to really recover
s1 from our basis for L1, as well as s2 from our basis for L2? How many signatures
are required to mount each step of the attack? Although most of our justification
are experimental, we make a few remarks on the shape of the lattices considered.
To the best of our knowledge, the behaviour of lattice reduction algorithms on
lattices whose geometry resembles that of L1 or L2 is poorly documented, making
a fully rigorous analysis near-impossible.

5.1 Analysing L1

The first step of the attack relies on recovering s1 from a poor basis for L1, a
lattice which we generate using k signatures. We give will give precise experi-
mental numbers for the minimal number of signatures k that allow us to mount
this first step in Section 6. In this Section we study the shape of a reduced basis
for L1, and note that the gap between the expected norm of s1 and the expected
norm of a shortest nonzero vector in L1 is unusual, in the sense that it is larger
than what we would expect from a typical random lattice. This in itself does not
explain why polynomial-time lattice reduction algorithms seem to be enough to
successfully execute this first step. The estimates from [16] do not apply, as there
is no gap between λ1(L1) and λ2(L1). In fact, due to the presence of a sublat-
tice of unusually small covolume and of dimension a fraction of the dimension,
the situation seems to be closer to that of NTRU where it has been observed
in [17,9] that when the covolume of the lattice becomes sufficiently large, lattice
reduction starts recovering vectors from the dense sublattice earlier than the
time we would expect it to recover short vectors. To predict lattice reduction,
one might want to simulate the profile of the Gram-Schmidt norms throughout
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the reduction process. This seems particularly enticing as we would expect a
straight and horizontal line for the first quarter of vectors, followed by a sharp
increase and then a steadily decreasing line covering the last three quarters, in
the style of a Geometric Series Assumption in the presence of q-vectors. However,
given that lattice reduction is so effective on L1 (slight improvements to LLL are
essentially already enough to fully reduce the basis in the cases of both DEFI-64
and DEFI-128), it is also practically impossible to simulate the behaviour of the
Gram-Schmidt profile for L1, as the transition happens so quick. If one were to
generalise the scheme to larger rings and evaluate its practical security against
our attack, then one would need to conduct this analysis thoroughly. In our set-
ting however, the ring size is small enough that we can rely on experiments for
this part. The Gram-Schmidt lengths pictured in Figure 2 before and after re-
duction remain an interesting tool to discuss the geometry of L1. Figure 2 shows

(a) Before reduction (b) After flatter and LLL

Fig. 2: log Gram-Schmidt norms of L1 for R = Z[X]/(X32 + 1), 10 signatures.

that the reduced basis separates into four projected sublattices with increasing
covolumes. The presence of another sublattice of already short vectors on the
left of the profile before reduction can only benefit reduction, in the same way as
unusually short q-vectors in the input basis naturally aid reduction, as exploited
in [7] and asymptotic study of [1].

In what follows we bound the gap between GH(L1) and λ1(L1), and show
that for a large enough number k of signatures, we can expect s1 and its rotations
to be the shortest non-zero vectors of L1. This explains how solving an instance
of SVP in L1 allows us to recover a rotation of s1.

Lemma 2. [20, Theorem 4.1.8] If A and B are nonnegative Hermitian square
matrices in Mn(C), then

det(A+B)1/n ≥ det(A)1/n + det(A)1/n.

14



Proposition 3 (Volume of L1). Let k ∈ Z>0 be an integer divisible by 4. If
we write the computed basis for L1 blockwise as(

I4m || A1 || . . . || Ak/4

)
with square matrices Ai, then

vol(L1) ≥
(
k

4

)2m(
min

1≤i≤k
det(Ai)

)
.

If we also assume that the Ai are independent random variables that follow the
same distribution, then

E
(
vol(L1)

1
4m

)
≥

√
k

2

√
E(det(A1)

2
4m ).

Proof. We prove this identity using Lemma 2, inductively on k. Indeed,

vol(L1)
2

4m = det
((

I4m || A1 || . . . || Ak/4

)
·
(
I4m || A1 || . . . || Ak/4

)T) 1
4m

= det
(
I4m +A1A

T
1 + . . .+Ak/4A

T
k/4

) 1
4m

≥ 1 +

k/4∑
i=1

det
(
AiA

T
i

) 1
4m

≥ k

4
min

1≤i≤k
det(Ai)

2
4m ,

where we used the fact that theAiA
T
i are all nonnegative, Hermitian and square.

The second identity immediately follows from linearity of expectation. ⊓⊔

The following Proposition explains the behaviour of the gap for L1 generated
from asymptotically many signatures.

Proposition 4. Let k ∈ Z>0 be an integer divisible by 4. Using the same nota-
tions as in Proposition 3, and assuming the Ai are independent random variable
that follow the same distribution, then

GH(L1)

λ1(L1)
≥ (1 + ok,m(1))

√
m

32πeλu
min det(Ai)

1
4m ,

and

E
(
GH(L1)

∥s1∥

)
≤
√

m

4πeλu

√
E(det(A1)

2
4m ).

Proof. We now show that s1 is somewhat short. Indeed, the coefficients of the

secret key B are themselves bounded, and the u
(i)
2 are generated according to a
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distribution that has short expected norm. More precisely, u
(i)
2 consists of exactly

λu coordinates in {±2,±4}, which means that we have

∥s1∥2 ≤
4∑

j=1

∥b2j + b3j∥2 +
k∑

i=1

∥u(i)
2 ∥2

≤ 16(δB22 + λuk).

The gap between the Gaussian heuristic on L1 and the norm of the shortest
vector can therefore be bounded using Proposition 3, where the ok(·) is taken as
k → ∞:

GH(L1)

λ1(L1)
≥ GH(L1)

∥s1∥
≥ (1 + om(1))

√
4m
2πevol(L1)

1
4m√

16(δB22 + λuk)

≥ (1 + om(1))

√
4m
2πe

√
k/4min det(Ai)

1
4m√

16(δB22
+ λuk)

= (1 + ok,m(1))

√
m

32πeλu
min det(Ai)

1
4m .

Using the second item of Proposition 3, and the inequality ∥s1∥ ≥
√
2kλu we

can now bound

E
(
GH(L1)

∥s1∥

)
≤
√

4m

2πe

√
k/4√
2kλu

√
E(det(A1)

2
4m )

≤
√

m

4πeλu

√
E(det(A1)

2
4m ).

⊓⊔

Proposition 4 helps justify two things. First, it is well-known that increas-
ing the gap between a vector’s length and the Gaussian heuristic while leaving
the covolume to a fixed value equates to increasing the Hermite factor, which
heuristically leads to an easier lattice problem. Therefore, as this gap increases
with k, it makes sense that more signatures lead to an easier lattice problem.
Second, a larger gap between GH(L1) and ∥s1∥ means that it is more likely (the
probability should in fact be overwhelming as in [19, Theorem 6]) that s1 and
its rotations are the true shortest vectors in L1. The dimension of the lattice is
128 for DEFI-64 and 256 for DEFI-128, making running simple lattice reduction
algorithms feasible. Figure 3 compares the Gaussian heuristic for L1 with the
size of the shortest vector recovered by a run of flatter and LLL in the case of
DEFI-64 and DEFI-128.

Although both curves seem to diverge fast, their main terms are both up to
a constant equivalent to

√
k, therefore their ratio converges towards a constant

value. Asymptotically, this gap is less than the gap that one would observe in
the NTRU lattice [3].
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(a) DEFI-64 (b) DEFI-128

Fig. 3: Comparing the size of s1 with the Gaussian heuristic in L1, for increasing
number of signatures k.

5.2 Analysing L2

Once the first step has successfully been executed, the second step selects a prime
modulus p, and then generates a lattice L2 with the data from k signatures.
Contrarily to what happened with L1, where the number of signatures did not
influence the dimension of the lattice, here dim(L2) = (k + 4)m, and therefore
as we are going to have to reduce L2, it is of the utmost importance to limit the
number of signatures included into L2 to the minimum possible.

We start by observing the Gram-Schmidt profiles for L2, before and after
reduction by LLL.

(a) Before reduction (b) After LLL

Fig. 4: log Gram-Schmidt norms of L2 for R = Z[X]/(X64 + 1), 4 signatures
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Figure 4 confirms the observations from Section 4.2: if the modulus p is large
enough, lattice reduction separates the vectors in L2 that live in a sublattice
independent of p. We notice a first sublattice of dimension 4m, as well as another
of dimension 2m, which in fact corresponds exactly to the lattice L′

2 defined in
Section 4.2.

To prove that LLL or a stronger form of lattice reduction recovers L′
2 would

require answering a lot of questions combining sublattice finding with lattice re-
duction theory. Although some algorithms for the densest sublattice problem [6]
have been proposed, or studied in the very particular case of NTRU [9], the
practical solution to the following question is yet not well understood: given a
rank n lattice with the promise that it has an unusually dense sublattice of rank
n′, how hard is it to recover such a sublattice? This question generalises the more
common study of lattice reduction algorithms to solve SVP in the presence of
an unusually short vector (or in other words an unusually dense rank 1 sublat-
tice). It is possible to formalise the wording unusually dense by comparing the
covolume of the sublattice with the appropriate value of the expected covolume
of a random rank n′ sublattice, as described in [27], but we consider this to be
outside of the scope of our account of the proposed attack on DEFI, and choose
parameters (number of signatures, size of p, lattice reduction algorithms) that
consistently and efficiently recover the sublattice L′

2.

5.3 Analysing the Key-Recovery Step

If the first two steps have been performed successfully, then it is possible to prove
Observation 3.

Lemma 3. Let a, b, c ∈ R be ring elements such that a = bc, gcd(b, q) = 1. Let
p be a prime number such that p ≥ 2∥c∥∞. If for x ∈ R, x̃ denotes the class of x
in Rp = (Z/pZ)[X]/(q), and Round(x̃) is the representative of x̃ in R that has
minimal ∞-norm, then

c = Round(b̃−1ã).

Proof. First, b̃ is invertible in Rp thanks to Lemma 1. Therefore, b̃−1ã = c̃ in
Rp. Now ∥Round(c̃)∥∞ ≤ p

2 and there is only one such representative of c̃. The
bound on ∥c∥∞ implies that c = Round(c̃). ⊓⊔

Proof (Of Observation 3). As mentioned above, we assume that we can apply
Observations 1 and 2 to recover the sums b2j + b3j and the b4j for 1 ≤ j ≤ 4.
Then using Lemma 3 onto Equation 4 we obtain that if p ≥ 2∥b2j − b3j∥∞ is a

prime, the smallest representative of ( ˜b2j + b3j)
−1(c̃jj−b̃21j+b̃24j) in R is b2j−b3j .

The half-sums and half-differences give us all remaining coefficients of the secret
key B. Finally, note that 2∥b2j − b3j∥∞ ≤ 4max(δB21

, δB22
), so any prime p

larger than this value will suffice. ⊓⊔

18



6 Experiments

We ran all experiments on a personal laptop with the following processor in-
formation: intel i7-1065G7 CPU@1.3GHz. Our code for the attack is available
online at

https://gitlab.inria.fr/hbambury/defi-nitely-broken.

The full secret-key recovery attack for the challenge instance DEFI-64 runs
in less than 20 seconds with 3 signatures. For reference, we give the solution
to the challenge in the appendix. We now focus only on the strongest security
parameters proposed in [13], DEFI-128.

6.1 Running the Attack

Using the code available at [11], we generated 100 DEFI-128 public keys with
corresponding signatures, and tested our attack 100 times.

First step. Using the flatter software [24] followed by fplll’s LLL implementa-
tion [26] as our main lattice reduction tools for reducing L1 in the first step, we
are able to recover the nonces u2 in less than 50 seconds on average. In all 100
instances, the first step failed with 8 signatures, but was successful with 9. If one
is willing to pay the cost of time and run stronger lattice reduction algorithms,
then it is likely than one can reduce the number of required signatures. We chose
not to explore this path.

Second step. Using flatter combined with LLL on L2 with 4 signatures and a
random 100-bit prime number for p recovered L′

2 in all 100 instances, with an
average runtime under 180 seconds. 3 signatures were not enough to separate
the 2m-dimensional sublattice from the 4m-dimensional one (see Figure 4b).
We were able to recover the nonces u1 using fplll’s implementation of BKZ with
blocksize 20 on L′′

2 in all 100 instances, with an average runtime under 30 seconds.

Key-recovery. The runtime for the last step is negligible compared to the first
two step, and this step is guaranteed to work. We conclude that our attack was
successfully able to recover the private key in all 100 of our DEFI-128 challenges
using 9 signatures, and in under 5 minutes for each.

6.2 Minor Improvements

Lattice weights. It comes as no surprise that the sizes of the coordinates of
the short vectors s1 and s2 can be roughly predicted from the parameters of
the scheme. Indeed, they are directly tied to: on one side the generation of the
private key B, and on the other the generation of the nonces u1 and u2. In
practice, we add some weights to the different columns of the lattices we reduce
to ensure that the target vector has balanced coordinates. Even if done very
roughly, this allowed us to lower the number of required signatures without the
need for stronger lattice reduction.
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On the use of flatter. The most expensive part of our attack is by far the
lattice reduction step. Lattice reduction can become costly when the lattice
dimension is large, or when the size of the input lattice vectors grows. The
vectors here are of very reasonable sizes, but the lattices grow in dimension. L1

is always 256-dimensional, and L2 with 4 signatures is 512-dimensional, which is
far too big for any näıve implementation of LLL. The algorithm of [24] enables
us to deal with such high dimensions in only a few minutes, we use it as a
pre-processing step for LLL3.

Even lattice intersection. In Section 4.1, we aim at recovering a short vector

s1 that contains the elements u
(i)
2 . Because of the trapdoor construction de-

scribed in Algorithm 1, u
(i)
2 consists of λu coefficients that are all in {±2,±4}.

Consequently,
s1 ∈ L1 ∩ Leven,

where Leven
∼= Z4m × (2Z)km is the lattice whose last km coordinates are all

even. It might seem natural that using this extra information on the shape of
the nonces should help us, especially as this lattice intersection can be efficiently
computed through duality. We do not observe any substantial experimental im-
provement when considering this intersection.

Conclusion: Discussion and Perspectives

We have presented a full key-recovery attack on all proposed parameters of [13],
a signature scheme based on an innovative problem involving isotropic vectors
of non-definite quadratic forms. Our attack is well motivated, and was shown to
work experimentally on every challenge instance we generated.

Sublattice recovery. A point that remained unclear to us in the analysis of our
attack is the analysis of the sublattice recovery problem. We show an example of a
situation where it would be interesting to understand how, why and when lattice
reduction recovers a given unusually dense sublattice. This question having ties
with the study of NTRU lattices, we believe it might be of independent interest.

Fixing DEFI? We see no obvious countermeasure to our attack, other than
increasing parameters or radically changing the procedure for generating an
isotropic vector. A direct fix by adapting parameter values would require a care-
ful study of our lattice attack and ensure that more computationally intense
lattice reduction as allowed by the desired security requirements does not lead
to any exploitable leaks, even when many signatures are available to the attacker.

3 Using both flatter and an LLL implementation might sound somewhat redundant.
Flatter is significantly faster than LLL for lattices in large dimensions, but does not
guarantee an LLL-reduced basis. We found that running LLL after flatter improved
the basis quality for a minimal overhead.
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Even if this were possible, it would most certainly increase the parameters for
the scheme, making it less competitive, and would still not consist in a sound
security proof. A true fix would require changing the procedure for generating
an isotropic vector in such a way that the output distribution would become
independent of the secret key.

An interesting new assumption. The idea behind the scheme remains new
and interesting. The claimed hard problem of recovering a unimodular matrix B
from the public keyC = BTJB certainly looks a lot like the Lattice Isomorphism
Problem [10,2], only that it is defined here with J, which is not positive definite,
making it different from the classical lattice problem. This Isotropic Quadratic
Form problem is not well studied from the cryptographic point of view and would
benefit from more constructions and direct cryptanalysis using algorithmic ideas
from the study of reduction of quadratic forms, as well as mathematical ideas
on the classification or decomposition of isotropic forms.
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Appendix A Solution to the DEFI-64 Challenge

Up to sign, writing B = (bi,j)i,j∈[4] as elements of Z[X]/(X32 + 1):

b1,1 =1

b1,2 =0

b1,3 =0

b1,4 =0

b2,1 =− 2X31 +X30 − 2X28 −X15 − 2X12 + 2X10 − 2X8 + 2X3 + 2X

b2,2 =X31 −X30 + 3X28 +X27 +X22 +X21 +X19 + 2X18 +X16 +X15

+ 3X13 +X12 −X11 +X9 +X7 −X5 + 2X4 +X3 −X2 +X

b2,3 =2X31 + 2X30 − 2X27 +X26 + 3X25 −X24 − 2X23 −X21 +X20 − 2X18 + 5X16 +X15 +X14

− 2X13 −X12 −X11 + 3X10 −X9 −X8 + 2X7 + 2X5 +X4 −X3 − 2X2 + 4X − 2

b2,4 =X28 −X27 +X26 +X22 +X21 +X20 +X19 −X18 +X17 +X16 + 2X14

+X13 + 2X12 +X11 +X10 −X9 +X6 +X5 +X − 1

b3,1 =− 2X29 − 2X26 +X24 +X18 − 2X16 − 2X14 − 2X5 −X2 −X

b3,2 =X31 − 2X30 − 2X29 + 2X28 −X26 − 3X24 −X23 + 2X22 −X20 + 2X16 −X15

−X14 + 4X13 −X11 +X10 −X9 + 3X7 +X6 −X5 +X3 + 2X + 1

b3,3 =2X30 + 3X29 +X28 − 6X27 + 2X25 + 2X24 −X23 −X22 − 5X21 +X20 +X19 − 4X18 +X16

+ 3X14 +X13 − 4X12 +X11 + 5X10 + 2X9 −X8 − 2X6 + 2X5 + 5X4 − 2X3 − 4X2 + 3X − 2

b3,4 =−X31 −X30 +X29 − 2X27 +X26 − 2X25 −X24 − 2X23 −X22 +X20 −X18

−X17 + 2X14 +X13 + 2X11 +X10 +X7 +X5 −X3 +X

b4,1 =−X30 + 2X20 + 2X11 + 2X10 − 2X7 + 2X4 − 2X3 −X2 − 1

b4,2 =3X29 +X28 −X27 +X26 −X24 +X23 − 3X21 +X18 +X15 −X14 −X13

−X12 − 2X11 −X9 −X8 −X7 − 3X6 −X5 +X4 −X2 − 1

b4,3 =X31 + 2X30 +X29 −X28 + 4X26 − 3X25 − 3X24 − 3X23 +X22 +X20 −X18 + 2X17 + 3X16

−X15 +X14 −X13 + 2X12 +X11 −X10 − 6X9 + 3X6 +X5 +X4 −X3 +X2 − 3

b4,4 =2X31 + 2X30 +X28 +X26 −X25 +X23 −X21 −X19 +X16 −X15

−X13 +X11 −X10 −X9 − 2X7 −X6 − 2X5 −X4 −X3 +X2 −X.
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