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Abstract. We present the first complete asynchronous MPC protocols for the YOSO (You Speak
Only Once) setting. Our protocols rely on threshold additively homomorphic Paillier encryption and
are adaptively secure. We rely on the paradigm of Blum et al. (TCC ‘20) in order to recursively refresh
the setup needed for running future steps of YOSO MPC, but replace any use of heavy primitives
such as threshold fully homomorphic encryption in their protocol with more efficient alternatives. In
order to obtain an efficient YOSO MPC protocol, we also revisit the consensus layer upon which our
protocol is built. To this end, we present a novel total-order broadcast protocol with subquadratic
communication complexity in the total number M of parties in the network and whose complexity is
optimal in the message length. This improves on recent work of Banghale et al. (ASIACRYPT ‘22) by
giving a simplified and more efficient broadcast extension protocol for the asynchronous setting that
avoids the use of cryptographic accumulators.
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1 Introduction

The YOSO (You Speak Only Once) paradigm [GHK+21] is a recent promising paradigm for
secure multiparty computation for a large set of M parties, where the work is done by a
sequence of small committees, where each committee only speaks once, and is anonymous
until it speaks to hide from an adaptive adversary. Because the committee size is much smaller
than M , one can hope to have better complexity than conventional solutions for M players.
We present several novel asynchronous protocols for the YOSO paradigm. Our protocols are
the first to give a full-stack implementation of YOSO MPC in the fully asynchronous model
that do not rely on heavy primitives such as threshold fully homomorphic encryption. The
paper has two main contributions.

1. We present protocols for asynchronous YOSO role assignment (RA) and YOSO MPC
using a recursive approach where YOSO RA is used to do YOSO MPC and YOSO
MPC is used to do YOSO RA. This is is inspired by [BKLZL20]. While [BKLZL20]
and [GHM+21] are based on non black-box use of FHE, we rely only on the security of
Damg̊ard-Jurik/Paillier encryption and so get better concrete efficiency. Our protocols
are secure against adaptive corruptions.

2. The YOSO MPC and YOSO RA need a total-order broadcast channel. We also provide a
novel YOSO asynchronous total-order broadcast protocol. The protocol can be seen as a
YOSOfication of [KN23] using techniques from [BKLZL20,BLZLN22,DXR21]. It is mes-
sage length optimal, meaning that there is no overhead associated with sending messages
on the TOB if they are sufficiently large. In addition, the protocol is subquadratic in the
total number M of parties in the network. While the latter could already be achieved
using [BLZLN22] for messages that are polynomial in λ bits, we present a concretely
efficient protocol.

Asynchronous YOSO from Paillier Encryption The YOSO MPC uses a version of CDN [CDN01]
adapted to the asynchronous model. In CDN [CDN01] there is a public Paillier modulus N
and the secret key is secret shared among a committee. As already noted in [GHK+21] this
protocol can be made YOSO by having the secret key shared among a sequence of anony-
mous committees which will each handle the decryption of a single batch of ciphertexts.
In [GHK+21] a synchronous static secure protocol using generic tools is sketched for this.
We present an asynchronous adaptive secure YOSO construction and give concrete sub-
protocols and ZK proofs. We work in the random oracle model and assume we are given
set-up data, such as the public key for the Paillier scheme. Comparing efficiency to previous
work, we note that [BKLZL20] and [GHM+21] are based on threshold FHE and need to eval-
uate the entire key set-up of the threshold FHE inside FHE. In contrast, we make extensive
use of the algebraic properties of our primitives and we do not need to convert any of them
to circuits, indeed none of our zero-knowledge proofs are based on generic techniques.

Once we have an asynchronous MPC we follow the idea of [GHM+21] of doing YOSO
RA by simulating a PIR client in MPC. As a main technical contribution we show how to
do this with concrete efficiency: we first propose a novel 2-message PIR protocol based on
Damg̊ard-Jurik/Paillier encryption. It has overhead logarithmic in the size of the database,
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and has the major advantage that its client part is very well suited for implementation in
a CDN MPC based on Paillier, since the message from the server is effectively a Paillier
encryption of the database item the client wants. With this machinery, we sample a random
party to be member of a committee by considering set of public keys gpk1, . . . , gpkM of all
parties as the database, retrieve a random one of these, randomize it inside MPC, and finally
output the randomized key. This allows to send data to an anonymous committee and is the
main part of what is known as role assignment (RA) in YOSO. We propose an El Gamal
style cryptosystem for the gpki’s that uses arithmetic modulo N , hence the randomization
also uses aritmetic modulo N and so is efficient using our MPC engine. Further, encryption
under gpki is secure, even given the factors of N which is important for our security proofs.

In our protocol, we need to generate many random encrypted bits. A classic trick for
doing this efficiently is from [DFK+06], but relies on computing square roots modulo a
prime. This cannot be done efficiently modulo N (unless we could factor), so we propose to
use instead the Jacobi symbol of a random number modulo N , allowing us to get a solution
with efficiency comparable to [DFK+06].

We achieve adaptive security using techniques similar to those used in [DN03] where a
synchronous, adaptive secure, but non-YOSO CDN-style protocol was presented. A chal-
lenge, however, is that the UC simulator needs to be given a trapdoor allowing it to fake
decryptions of ciphertexts that contain incorrect values, and the solution from [DN03] is
incompatible with YOSO. We suggest a new solution exploiting that we have a random
oracle.

A final contribution is that we show how to avoid that the size of the shares grow
indefinitely as we reshare the secret global key by using Linear Integer Secret Sharing [DT06].
This was a problem in all previous YOSO protocols based on the CDN paradigm.

We need to make assumptions that go somewhat beyond what is standard for the prim-
itives we use. First of all, it would be extremely inefficient to generate new key set-up for
Paillier inside MPC. So, the modulus N we are given as set-up must be used for the entire
protocol. Morerover, the YOSO framework requires players to delete their state once they
have spoken, so we need to generate new keys for parties inside MPC, which means that
the secret keys gski will be encrypted under the Paillier public key. But on the other hand,
the corresponding public keys gpki must be used for encrypting shares of the secret Paillier
key when it is reshared for future committees. This creates circularity so we need to assume
that our cryptosystems are secure despite this. We also need a selective opening type of
assumption for the El-Gamal style encryptions which is essential towards getting adaptive
security. For details, see Section 4.

Efficient Subquadratic Total Order Broadcast for the YOSO Model As part of our overall
YOSO MPC protocol, we present a highly efficient total order broadcast (TOB) protocol with
subquadratic communication complexity for adaptive corruptions in a hybrid model assuming
a perfect coin flip functionality. We use our YOSO MPC to implement the coin-flip with
subquadratic communication complexity. Our protocol relies on the [BKLZL20] paradigm of
having an initial setup that allows flipping λ coins to run a TOB, and then using the TOB
to recompute a new setup for future iterations. While [BKLZL20] is the first work to break
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the n2 communication barrier for binary byzantine agreement (BBA) in the asynchronous
setting with adaptive corruptions, it is concretely quite heavy on communication and does
not explain how to obtain an efficient TOB from BBA. We improve on the state of the art by
taking the protocol for Agreement on a Core Set from [KN23] and adapting it to the YOSO
framework. This allows us to get subquadratic communication with adaptive corruptions, by
moving to the setting with suboptimal resilience against T < (1−ϵ)M/3 corruptions studied
in [BKLZL20,BLZLN22] where we can sample a fresh committee with honest supermajority
for every round of the protocol. In this setting, we instantiate the RB protocol by [DXR21]
for committees by using Reed-Solomon codes with reconstruction thresholds linear in n
over a field of size at least M . This results in a subquadratic extension protocol to attain
RB with optimal complexity in the message length, similar to the work of Banghale et al.
[BLZLN22]. However, our protocol appears to be substantially simpler and more efficient,
as it requires neither accumulators nor any application of advanced concentration bounds
such as McDiarmid’s inequality. Finally, we add some machinery to reach agreement on how
much setup was consumed by the protocol. This allows the TOB to only consume expected
constant number of RA committees per block, as opposed to the worst case λ.

2 Preliminaries

Paillier and Damg̊ard-Jurik encryption Most of the material in this subsection is taken
from [DJN10] where more details and proofs of the facts stated here can also be found. An
exception is the El-Gamal inspired variant from a later subsection, which is a contribution
of this paper.

We use several variants of the Paillier cryptosystem. It works with an RSA modulus
N = pq where the prime factors p, q are of form p = 2p′ + 1, q = 2q′ + 1 and p′, q′ are also
primes.

We use the Damg̊ard-Jurik generalization of Paillier, where the plaintext space is N s for
s ≥ 1, and the basic form of an encryption of a message m ∈ ZNs with randomness r ∈ Z∗

N

is (N + 1)mrNs mod N s+1. This encryption scheme is the well-known to be additively homo-
morphic modulo N s. Moreover, it is CPA-secure under the well-known Decisional Composite
Residuosity Assumption (DCRA). It can be shown that this assumption for s = 1 implies
the same assumption for any polynomial size s.

To simplify matters in the following, we will assume that the randomness for the encryp-
tion is always chosen to have Jacobi symbol +1. It can be shown that this variant is CPA
secure under the same assumption.

A lossy version. We will make use of a variant where the element (N + 1) is replaced by
an encryption of 1, denoted by ws, and determined as follows. We will consider values of s
up some maximum value S, then we set wS = (N + 1)uNS

S mod NS+1, for random uS, and
ws = wS mod N s+1. It is easy to see that all ws are encryptions of 1. We will consider wS as
part of the public key. Using this notation, we define

EN,ws(m; r) = wm
s r

Ns mod N s+1
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It is easy to see that EN,ws(m; r) is actually an encryption of m according to the basic scheme
above, it therefore also inherits the homomorphic property of the basic scheme. Concretely,
we have for plaintexts m1,m2, a and randomness r1, r2 that

EN,ws(m1; r1)a · EN,ws(m2; r2) mod N s+1 = EN,ws(am1 +m2 mod N s; ra
1r2 mod N)

The point of the variant using ws is that it is a possibly lossy encryption scheme. Namely, if
we replace wS by a random encryption of 0 w̄S, then an “encryption” of any m, EN,w̄s(m; r) =
w̄m

s r
Ns mod N s+1 will actually be an encryption of 0. However, given only the public key,

the two forms cannot be distinguished, as an encryption of 0 is indistinguishable from an
encryption of 1.

How to decrypt For decryption, we define a decryption exponent dS constructed by the
Chinese remainder theorem such that dS ≡ 0 mod ϕ(N) and dS ≡ 1 mod NS. We can use
dS to decrypt any EN,ws(m; r) where s ≤ S, as we have:

EN,ws(m; r)dS = (N + 1)mdS ((rus)Ns)dS mod N s+1 = (N + 1)m mod N s+1.

We can then get the message by exploiting the fact that discrete logs modulo (N + 1) are
easy to compute. Later, we will define a threshold version of the cryptosystem where dS is
shared among a set of parties, who can then collaborate to raise a ciphertext to power dS,
thus effectively decrypting it. In the following, we will sometimes suppress the randomness
from the notation for readability, and write EN,ws(m) instead of EN,ws(m; r).

“El Gamal” style encryption and signatures A final variant we will need is a scheme that
allows several parties to use the same modulus N , we will be able to do both encryption
and signatures and neither decryption nor signing will require the factorization of N . We
first fix an element g ∈ Z∗

N of order p′q′. A party Pi will have a secret key gski = (xi, x̃i),
both components chosen at random in ZN , while the public key will be gpki = (g, hi, h̃i) =
(g, gxi mod N, gx̃i mod N) 3. Here, xi will be used for decryption while x̃i will be used for
signatures.

Encryption We define Egpki
(m; r) = (gr mod N, gmhr

i mod N). Here, m must be small
enough that taking discrete log modulo g is feasible, and assuming this, decryption given xi

is straightforward. In the following, we will need to encrypt numbers m that are too large
for discrete log to be feasible. In such cases, we will split m in chuncks m1, . . . ,ma of size
γ bits, for a small enough γ: m = ∑a

j=0 2γjmj. We then encrypt each mj individually. We
will nevertheless write this as Egpki

(m; r). Looking ahead, the fact that the mi are in the
exponent and that there is a linear relationship between the mj’s and m, allows for efficient
zero-knowledge proofs for these encryptions.

A very important observation is that, using the Chinese remainder theorem, one can
easily show that if DDH is a hard problem in the group of squares modulo both p and

3 Since N is, relatively speaking, very close to ϕ(N), choosing xi as described will result in hi being statistically
close to a random element in the group generated by g.
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q, then this cryptosystem is secure, even if the factorization of N is known. Note that in
[DJN10] a different “El Gamal style” variant of Paillier was proposed. However, that variant
is insecure if the factorization of N is known.

Signatures. A party Pi will be able to sign messages using x̃i and the corresponding public
h̃i. For this, we will use a standard Σ-protocol for proving knowledge of x̃i, the discrete log
base g of h̃i. This protocol can then be transformed to a signature scheme in the random
oracle model following the Fiat-Shamir paradigm. We denote a signature on message m by
Siggski

(m) and the corresponding verification of signature σ on m by Vergpki
(σ,m). With a

standard type of arguments this scheme can be shown CMA-secure if the discrete log problem
is hard in Z∗

N . It can be seen as variant of the well-known Schnorr signature scheme and we
leave the details to the reader. However, we again observe that even if the factorization of
N is known, the scheme remains secure, assuming discrete log is hard in Z∗

p and Z∗
q, which

can be seen using the Chinese Remainder theorem.

Randomized Keys. In the following we will be using also randomized versions of the public
keys, of form (gs mod N, hs

i mod N, gs′ mod N, h̃s′
i mod N) for random s, s′. Note that the

owner of the original key pair also knows the discrete log base gs of hs
i , and of gs′ of h̃s′

i

namely xi, x̃i and so can identify a randomized key as coming from his key, can decrypt
messages encrypted under the randomized key, and make signatures that can be verified
under the randomized key.

Commitment Scheme We will need a commitment scheme allowing commitment to integers.
We will use the scheme suggested by Fujisaki and Okamoto [FO99], for a formal treatment,
see [DF02]. Here, we describe the properties we need informally. The scheme is based on a
modulus N ′ of the same form as our Paillier modulus, but chosen independently. The public
key for the scheme is now ck = (N,α, β) where α, β are random squares mod N ′, and we
assume ck is given as set-up. A commitment to integer x using randomness r is denoted
Comck(x; r) = αxβr mod N ′. Here, x is an integer in an interval [0..2b], and r is chosen
uniformly from an interval [0..2K ]. We return to the choice of K below. The commitment
scheme is clearly homomorphic over both inputs to the commitment function, that is, we
have

Comck(x; r) · Comck(x′; r′) = Comck(x+ x′; r + r′)
It is well known that this is statistically hiding and computationally binding.

Non-Interactive Zero-Knowledge Proofs In several cases, we will require non-interactive
zero-knowledge proofs of knowledge. They allow a prover to prove, for a predicate P and a
given (public) value x that they know a witness w such that P (x,w) = 1. We will denote
such a proof by NIZK(w : P (x,w) = 1). These proofs need to be unconditionally simulation
sound, statistical zero-knowledge and on-line extractable, i.e., there is an efficient extractor
that can extract a witness from a successful prover without rewinding. In all cases, we can
achieve this in the random oracle model: we first construct a Σ-protocol for the relation
in question using standard techniques, and then we apply the Fishlin transformation to
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get non-interactive proofs. More details can be found in Appendix G. With one exception,
all Σ-protocols introduce only a constant factor overhead in communication which means
that after the Fischlin transformation, we get an overhead factor of λ/ log λ, where λ is
the security parameter. The exception is the protocol for so-called 2-level ciphertexts from
Appendix E, which is a double discrete log type protocol that inherently seems to require
binary challenges and therefore gives us an overhead factor λ.

Protocol PIR, to be executed by a client C and a server S.
S has a database consisting of numbers in ZN , y0, . . . , yL−1, and we assume for simplicity that L is a two-
power, L = 2λ. C wants to retrieve yt for some 0 ≤ t ≤ L.

1. C writes t in binary as t0, t1, ..., tλ−1 where t0 is the most significant bit. C sends

c0 = EN,w1 (t0), . . . , cλ−1 = EN,wλ (tλ−1)

to S.
2. S sets (y0

0 , ..., y0
L1 ) = (y0, ..., yL−1), and now executes the following loop for i = 0 to λ− 1:

(a) Set c̄i = EN,wi (1) · c−1
i mod N i+1, where EN,wi (1) is an encryption of 1 with default randomness 1.

Note that c̄i is an encryption of the bit 1− ti.
(b) Define Li = L/2i. This step takes as input the list (yi

0, ..., yi
Li−1), and outputs a list (yi+1

0 , ..., yi+1
Li/2−1).

Namely, for j = 0 to Li/2− 1, set

yi+1
j = c

yi
j

i · c̄
yi

j+Li/2
i mod N i+1.

Note that yi+1
j is an encryption of ti · yi

j + (1− ti) · yi
j+L/2i , and hence the loop produces encryptions

of the first or the second half of the incoming list, depending on ti.
3. The list output by the last loop step above has lenght Lλ = L/2λ = 1. S sends the single ciphertext on

the list yλ
0 to C.

4. Note that we have
yλ

0 = EN,wλ−1 (EN,wλ−2 (. . . EN,w1 (yt))),
so by doing λ− 1 decryption steps, C can retrieve yt, as desired.

Fig. 1. The PIR protocol.

3 A PIR protocol based on Damg̊ard-Jurik encryption

In this section, we present a PIR protocol (Fig. 1), in the standard form with a single
client and server, where we assume that the client has the secret key for an instance of the
Damg̊ard-Jurik scheme as defined above. In a later section we show how to transplant it to
a multiparty setting, where several parties play the role of both server and client and we will
see how this can be used to do role assignment.

A first important observation that will come in handy is the following: the plaintext
space of the encryption function EN,ws(·; ·) is Zs

N , but this is also the ciphertext space of
EN,ws−1(·; ·). Therefore, given ciphertexts EN,ws−1(m), EN,ws(m′) and the public key, one can
compute EN,ws(m′)EN,ws−1 (m) mod N s+1 = EN,ws(m′ · EN,ws−1(m) mod N s).
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Game SOINDCPAb
PEAS,PPBox,A

Init: Initially generate (N, sp)← Gen and give (N, sp) to A. Let j = r = 0.
IND-CPA: On (EncRole, s0, s1) from A initialise PPBox(sb).
Generate Committee: On input (NextCommittee) let j ← j + 1 and do:

1. For i = 1, . . . , n sample (gpkj
i , gskj

i )← Gen, rpkj
i ← Ran(gpkj

i ).
2. Input ((gpkj

1, rpkj
1), . . . , (gpkj

n, rpkj
n)) to A.

3. Let Lj = ∅ be the set of global secret keys leaked so far.
Leak Global Secret Key: On input (SecretKey, gpkj

i ) where Lj ∪{i} ∈ A, input the corresponding gskj
i

to A and let Lj = Lj ∪ {i}.
Run PPBox: On input (PPBox, aux, j) let r ← r + 1 and do:

1. Input aux to PPBox.
2. Sample (aux′, sh1, . . . , shn)← PPBox.
3. For i = 1, . . . , n let ci ← Encrpkj

i
(shi).

4. Input (aux, c1, . . . , cn) to A.
Guess: The adversary ends the game by outputting a guess g ∈ {0, 1}.

Fig. 2. The Selective Opening IND-CPA Game for Role Encryption.

The PIR protocol is clearly secure based on CPA security: S cannot distinguish C’s
message from a set of random encryptions, and if S is semi-honest, C will always get correct
output. The protocol requires only 2 messages which is clearly optimal.

Note that we can allow the input yi’s to be longer than the modulus, say numbers in
ZNv , we just need to define C’s message to be

c0 = EN,wv(t0), . . . , cλ−1 = EN,wv+λ
(tλ−1),

and adjust S’s part accordingly. If we denote the length of a data item by k and the length
of N by κ, one finds that the communication complexity is O(λk + λ2κ). Thus, for large k,
the overhead over just sending a data item in the clear is only a factor λ, logarithmic in the
size of the database.

4 Syntax and Security Notions for Encryption and Signature

For later use we make some syntax capturing the above Paillier-based encryption and authen-
tication system PEAS. We have a tuple of algorithms (Gen,Gen,Enc,Dec,Enc,Dec,Ran, Sig,Ver),
where (N, sp) ← Gen is base key generator generator, N the public parameter, sp = (p, q)
the secret parameters, c ← EncNs(m; r) is base encryption with ciphertext space N s, m ←
Decsp(c) is base decryption, (gpk, gsk)← Gen(N) the derived key generator for the ElGamal
variant, which given the public parameters generate the an encryption key gpk and a de-
cryption key gsk, c← Encgpk(m; r) is encryption, m← Decgsk(c) is decryption, and Ran can
be used to rerandomize an encryption key: if (gpk, gsk)← Gen(N) and rpk← Ran(gpk) then
(rpk, gsk) ∈ Gen(N). Furthermore, given gsk one can in PPT recognise rpk as a rerandomisa-
tion of gpk. One can sign a message as σ ← Siggsk(m) and it can be verified as Vergpk(m,σ)
and also as Verrpk(m,σ). We need that the signature scheme is existentially unforgeable un-
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der adaptive chosen message attack (EUF-CMA) even against an adversary being given sp.
This is a standard notion and we do not recall it here.

Game SOANONPEAS,A

Init: Initially generate (N, sp)← Gen and give (N, sp) to A.
Generate Permuted Keys: After initialisation:

1. Let π : G→ R be a uniformly random permutation.
2. For i = 1, . . . , ℓ sample (gpk∗

i , gsk∗
i )← Gen.

3. For i = 1, . . . , ℓ sample rpk∗
i ← Ran(gpk∗

π−1(i)).
4. Let G = R = [ℓ] be the global keys resp. role keys not leaked so far.
5. Input ((gpk∗

1, rpk∗
1), . . . , (gpk∗

n, rpk∗
n)) to A.

Leak Global Secret Key: On output (SecretKey, gpk∗
i ) from A input gsk∗

i to A and let G = G∪{i} and
R = R ∪ {π(i)}.

Guess: The adversary ends the game by outputting (i, j) ∈ G × R. Let g ∈ {0, 1} be 1 iff π(i) = j. The
output of the game is the number x = g − 1/|R|.

Fig. 3. The Selective Opening Anonymity Game.

We need that Enc is IND-CPA even against an adversary being given sp. We argued this
in Section 2, but we need it to hold under a selective opening attack. We formulate it via
a secret sharing: if the adversary selectively open encryptions of shares not in the access
structure we assume the remaining encryptions are IND-CPA. We consider a generalisation
of secret sharing which we call a privacy preserving box. A PPBox PPBox takes as input a
secret s. The adversary can then repeatedly input an auxiliary input aux to PPBox making it
generate (aux′, sh1, . . . , shn), where aux′ is an auxiliary output and the shi’s are shares meant
for a set of n parties. The adversary may corrupt parties Pi. In response to this it gets all
the shares shi of Pi, future and past. We say that Q is in the privacy structure of PPBox if
seeing all shares shi for i ∈ Q gives a view statistically independent of s. We call the set of
such Q the privacy structure A. We will later use a concrete instance of PPBox to model
all the sharings and resharings of sp that happen in our protocol. We note that our notion
of is related to what is normally called weak SO, but seems even weaker because we do not
formulate the notion via message resampling. In particular the impossibility result for strong
SO in [ORV14] does not apply. It is plausible that techniques in [FHKP16] can be used to
prove SO-IND-CPA for our ElGamal-based scheme, but we leave this as future work.

Definition 1 (Selective Opening IND-CPA for Role Encryption). Let PPBox be a
PPBox with privacy structure A. We say that (PEAS,PPBox) is selective opening IND-CPA
(SO-IND-CPA) secure if for all PPT A it holds that SOINDCPA0

PEAS,Share,A ≈ SOINDCPA1
PEAS,Share,A.

We also need that it is hard to connect a role key rpk← Ran(gpk) to the global key gpk
if one does not know gsk. This holds under the DDH assumption (Section 2), but again we
need it under selective opening. We make the assumption that this is the case. The game
is in Fig. 3. The adversary can always make a random guess (i, j) ∈ G × R. In this case
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Game CSOINDCPAb
PEAS,PPBox,A

Init: Initially generate (N, sp)← Gen and give N to A. Let r = 0. Let A be the privacy structure of PPBox.
Initialize PPBox(N, sp).

Generate Committee: On input (NextCommittee) let j ← j + 1 and do:
1. For i = 1, . . . , n sample (gpkj

i , gskj
i )← Gen, rpkj

i ← Ran(gpkj
i ).

– Call the random tape used to generate all keys rj .
2. Input ((gpkj

1, rpkj
1), . . . , (gpkj

n, rpkj
n)) to A.

3. Let Lj = ∅ be the set of global secret keys leaked so far.
Leak Global Secret Key: On input (SecretKey, gpkj

i ) where Lj ∪ {i} ∈ A, input gskj
i to A and let

Lj = Lj ∪ {i}.
Run PPBox: On input (PPBox, aux, j) let r ← r + 1 and do:

1. Input aux to PPBox.
2. Sample (aux′, sh1, . . . , shn)← PPBox.
3. For i = 1, . . . , n let ci ← Encrpkj

i
(shi).

4. Input (aux, c1, . . . , cn) to A.
Base IND-CPA: On input (EncBase, f : {0, 1}∗ → Za

N ) do:
1. Compute (m1

1, . . . , m1
a) = f(N, r1, . . . , rj).

2. Let (m0
1, . . . , m0

a) = (0, . . . , 0).
3. Input (c1, . . . , ca)← (EncN(mb

1), . . . , EncN(mb
a)) to A.

Guess: The adversary A ends the game by outputting a guess g ∈ {0, 1}.

Fig. 4. The Circular Selective Opening IND-CPA Game

E[g] = 1/|R| and E[x] = 0, so E[x] is how much better than random the adversary can guess
an unrevealed role key.

Definition 2 (Selective Opening Anonymity). We say that PEAS is SO-ANON secure
if for all PPT A it holds that E[SOANONPEAS,A] = negl(λ).

We finally need that the base system of PEAS has a strong notion of circular security
under selective opening, where it is secure even if encryptions of secret sharings of the
secret parameters sp are given to the adversary under role keys and representations of the
corresponding secret keys are encrypted under N.

Definition 3 (Circular Selective Opening IND-CPA). Let PPBox be a PPBox with
privacy structure A. We say that (PEAS,PPBox) is CSO-IND-CPA secure if for all PPT A
it holds that CSOINDCPA0

PEAS,PPBox,A ≈ CSOINDCPA1
PEAS,PPBox,A.

5 UC Modelling

We use the UC framework in [CCL15] as it is asynchronous, allows to model interactive
functionality and is simple and sufficient for our study, as we work with a fixed set of parties
P = {P1, . . . , PM}. We model functionalities for total-order broadcast (FTOB) and YOSO
role assignment with MPC and coin-flip (FRA+MPC+CF). We also have a helper Fsetup for
setting up values. As the underlying model of communication we assume authenticated point-
to-point communication with atomic send, where a party can in one instruction can send
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messages to several users, and it is guaranteed that all messages be delivered even if the
party gets corrupted right after the sending. See [BKLZL20] for further discussion. For com-
pleteness an ideal functionality is given in Fig. 28. When formulating ideal functionalities
we talk about the adversary having to eventually deliver certain values to guarantee live-
ness. We discuss in Appendix H.1 how this is formalized, but the exact formulation is not
consequential for the security of our protocols.

Functionality FTOB

Init: Let L = ϵ be the empty ledger. For each party P let ℓP = 0 be the number of blocks delivered at P .
Let b = 0 be the number of blocks produced so far. Let bP be the number of blocks requested by P .

Broadcast: On input (Broadcast, mid, m) from party P (mid) add (mid, m) to Accepted and leak
(Broadcast, mid, m) to the adversary.

Set Wait Predicate: On input (wait, W ) from honest party P let bP ← bP + 1 and let W bP = W . We
require that all honest parties agree on W bP .

Next Batch: On input B = ((mid1, m1), . . . , (midℓ, mℓ)) from the adversary where W b+1 is defined and
where (midj , mj) ∈ Accepted for j = 1, . . . , ℓ and W b+1(L, B) = ⊤, update L ← L∥B and remove each
(midj , mj) from Accepted. Update b← b + 1.

Deliver: On input (Deliver, P ) from the adversary where ℓP < |L| update ℓP = ℓP + 1 and output L[ℓP ]
to P .

Eventual Liveness: If bP > b for all honest parties and W b+1(L, Accepted) = ⊤ then eventually the ad-
versary must produce block number b + 1. Furthermore, if (mid, m) ∈ Accepted and P (mid) is honest,
then eventually (mid, m) must be added to a block. Finally, if ℓP < |L| then eventually the adversary will
deliver a new message to P .

Fig. 5. Total-Order Broadcast

Total Order Broadcast Our ideal functionalities will have a notion of batches. The reason
is that our implementation of total-order broadcast will use keys for YOSO role assignment
and will also be used to produce such keys. It is therefore important that the total-order
broadcast is not wasting all its setup on sending dummy messages by the corrupted parties.
It should consume setup only when it can add messages to the ledger which will help make
progress on producing fresh RA keys. We introduce a notion of a wait predicate W which tells
the ideal functionality when it can produce the next batch. This is formulated via a notion
of blocks of messages and such a block being a valid extension of the current ledger. A block
B is a non-empty sequence of bit-strings B and a ledger L is a sequence of blocks. A wait
predicate W (L,B) ∈ {⊤,⊥} judges if B may extend L. We require that if W (L,B) = ⊤ then
W (L,B∥B′) = ⊤ for all blocks B′ and W (L, π(B)) = ⊤ for all permutations of the messages
in B. Messages are named by a message identifier mid. We assume that mid contains the
name of the party allowed to send it, and we denote this party by P (mid). We assume that
P (mid) uses mid at most once. The ideal functionality is given in Fig. 5. The formalisation
is straightforward and uses known design patterns. For completeness there is a motivation
in Appendix H.3
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Functionality FPEAS,ϵ,F,γ,1
RA+MPC+CF for role assignment, MPC. Parametrised by an exclusion factor ϵ, a class F of

feasible function and the number of coin-flips γ.

Init: When activated the first time do the following.
1. Generate (N, sp)← PEAS.Gen and output N to all parties. Leak sp to the adversary.
2. Let b = 0 be the number of batches produced.
3. For P ∈ P let boP = 0 and bdP = 0 be the number of batches ordered by respectively delivered at P .

Order Next Batch: On input (NextBatch, f ∈ FN, W, xP ∈ ZN) from honest party P where boP = bdP

do the following:
1. Leak (NextBatch, f, W, P ) to the adversary.
2. Update boP ← boP + 1.
3. Let fboP = f , W boP = W , and xboP

P = xP . We assume that honest parties agree on fb and W b for a
given b.

4. For j = 1, . . . , γ sample uniformly random coinb
j ∈ {0, 1}λ.

Generate Batch: We call Q qualified for batch b if boP ≥ b for all honest P ∈ Q and W b(Q) = ⊤. On input
(NextBatch, Q ⊆ P, R ⊆ Q, {xb+1

P }P ∈R) from the adversary, where Q is qualified for batch b + 1 and R
is the set of corrupted parties in Q, do:
1. Update b← b + 1.
2. Let Pb = Q.
3. For all P ∈ Pb generate (gpkb

P , gskb
P )← PEAS.Gen(N).

4. Let gpkb =
{(

P, gpkb
P

)}
P ∈Pb .

5. Let π be a uniformly random permutation of Pb, and let RP = π(P ) be the role of P ∈ Pb.
6. For all P ∈ Pb generate rpkb

RP
← Ran(gpkb

P ).
7. Let rpkb be {(R, rpkb

R)}R∈Pb .
8. Sample (yb, {(P, yb

P )}P ∈Pb )← fb (
{(P, xb

P )}P ∈Pb
)
.

9. Give Y b = (gpkb, rpkb, yb) to the adversary along with
(
gskb

P , yb
π(P )

)
for all P ∈ Rb.

Deliver Batch: On input (DeliverBatch, P ) from the adversary, where bdP < b, update bdP = bdP + 1
and output Y bdP to P . If P ∈ PbdP , then output

(
gskbdP

P , ybdP
π(P )

)
to P .

Flip Coin: On input (Flip, b, j) from P where b ≤ bdP and j ∈ [γ] record (Flip, P, b, j) and output coinb
j

to the adversary.
Deliver Coin: On input (DeliverCoin, P, b, j) from the adversary, where b ≤ b and j ∈ [γ] output

(Flip, b, j, coinb
j) to P .

Eventual Liveness: If boP ≥ b for all honest P ∈ P, then the adversary must eventually input a
valid (NextBatch, ·, · · · ). If bdP < b for some honest P then the adversary must eventually input
(DeliverBatch, P ). If for some (b, j) the value (Flip, Q, b, j) is recorded for all honest Q ∈ P and P is
honest, then the adversary must eventually input (DeliverCoin, P, b, j).

Corruption: On corruption of P output
(

gskb
P , ybdP

π(P )

)
to the adversary iff b ≤ b and b > bdP .

Fig. 6. The Ideal Functionality for Role Assignment, MPC, and Coin-Flip
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Asynchronous Role Assignment The functionality for role assignment generates in each batch
a fresh set of global public keys (gpk1, . . . , gpkM) one for each of the M parties. It then
generates from each gpki a randomized rpki and outputs these in permuted order to hide
which party has which role. Still, other parties can use rpk to encrypt messages for Pi.
The party Pi will learn the secret key gski of gski and can use it to identify and decrypt
encryptions under rpki. One modification to the above discussion is that not all M parties
get new keys. We allow that the adversary can exclude a set of parties of size ϵM . We will
later implement FRA+MPC+CF with exclusion faction about 1/3. The reason is that in the
implementation we need to hear from a party before we can give it a new key. And in an
asynchronous protocol we cannot hope to hear from all parties. The reason we need to hear
from a party is that we want to send encrypted date to the party and we have adaptive
corruption, so we need non-committing encryption. At the same time the receiving parties
when acting an anonymous role is only allowed to speak once, so we need non-interactive,
non-committing encryption, which has the drawback that the secret key grows linear in
the amount of data which can be sent under a fixed public key [Nie02]. So we need that
parties occasionally refreshes their public keys. We opted for a solution establishing the non-
committing encryption channel between the MPC and P . When generating a new batch
P will pick a fresh one-time pad otpb

P and send EN(otpb
P ) on the TOB. It then deletes all

randomness used to compute EN(otpb
P ) and keeps only otpb

P . The YOSO MPC generating the
keys will take EN(otpb

P ) as input and post cb
P = gskb

P ⊕ otpb
P on the TOB. In the simulation

we can equivocate by lying about otpb
P .

The ideal functionality is given in Fig. 6. Note that we leak sp to the adversary. This
means that encryption under N is not secure in a context where FRA+MPC+CF is used as
hybrid functionality. This is fine, as we only need that encryption under N is secure when
we implement FRA+MPC+CF. Note, in particular that encryption under the global keys gpki

and role keys rpki are still secure. The reason why we leak sp is that when we prove security
we need the simulator to know sp to be able to do straight-line simulation.

Note that when a party P is corrupted leakage of the secret key gskb
P happens between

batch b being ordered by the first honest party, where gskb
P may generated by the adversary

in Generate Batch, and batch b being delivered at P , where gskb
P is deleted. It models

that in the implementation, from when cb
P is posted on the TOB a corruption of P will leak

otpb
P and hence gskb

P . Once the TOB delivered at P the party P may choose to delete gskb
P .

For this to be effective it is important the FRA+MPC+CF deleted it too.
We also consider a multi-role version FPEAS,ϵ,F,γ,m

RA+MPC+CF which assigns m roles to each P per
batch. It uses the same Pb for all batches, but generates separate gpkb,k, πb,k, and rpkb,k for
k = 1, . . . ,m. This is for uses where M is small and many committees are needed per batch.

The ideal functionality also allows to evaluate a function securely. Since the network is
asynchronous we cannot ensure that all parties can give input. We therefore again give a
wait predicate W . This is a monotone predicate which tells whether we can evaluate f after
having seen inputs form parties in Q, i.e., if W (Q) = ⊤ then W (Q∪Q′) = ⊤. All parties are
assumed to agree on W in a given round and the function f to compute. Since each batch
of role assignment only generates a bounded number of roles, and the YOSO MPC used to
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MPC f consumes a number of roles depending on f , there is some set F of feasible function.
The ideal functionality FRA+MPC+CF again leaks the outputs of P until they were delivered.
To get a simpler presentation we look only at functions outputting to roles and to all roles.
Finally FRA+MPC+CF also generates a number of coin-flips which can be revealed later.

Functionality Fsetup for setup parametrised by a number of parties M , commitment key generator Gen,
PEAS, committee size n, initial number of committees eno

1. Generate (N, sp) ← PEAS.Gen, ck ← Gen, Let S = log(M), K = (K1, . . . , Klog N ) be a random bit-
string, wS ← (N + 1)uNS

mod NS+1a, c∗ ← EN,w1 (0), cKi = EN,w1 (Ki), i = 1, . . . , log N , and output
(N, ck, wS , c∗, {cKi}) to all parties.

2. For c = 1, . . . , eno do:
(a) Sample n unique random parties P c

1 , . . . , P c
n from P.

(b) For 1 ∈ [n] generate (gpkc
i , gskc

i )← PEAS.Gen(N), rpkc
j ← Ran(gpkc

i ).
(c) Sample (pvc, svc

1, . . . , svc
n)← VSS(sp) b.

(d) Output (pvc, rpkc
1, . . . , rpkc

n) to all parties.
(e) For i ∈ [n] output (gskc

i , svc
i ) to P c

i .

a A Paillier encryption of 1 serving as base for other encryptions.
b The VSS produces a public part pv and a secret part sv for each party, see Section 6.1 for details.

Fig. 7. Setup for implementing FRA+MPC+CF

Setup In our implementation we use RA to implement threshold decryption for Decsp and
threshold decryption to implement RA. To get off the ground we need that there are some
initial RA committees and that the initial committees are given a secret sharing of sp. We
assume these secret sharings are given by some setup phase modelled by Fsetup. The setup
also contains an encryption of who is whom in the initial batch such that their public keys
can be replaced by new ones once the preprocessed batch of roles have executed.

6 Implementing FRA+MPC+CF

In this section we give an implementation of FRA+MPC+CF. In the following we will define
several protocols of similar form: all members of a committee send a message of some form
to FTOB including a zero-knowledge proof that the message was computed correctly. In all
such cases, the wait predicate will say that FTOB should wait for at least n− t messages from
the committee, of the correct form, where the zero-knowledge proofs verify. Here, t < n/2 is
the bound we assume on the number of corrupted players in the committee. In the protocol
descriptions “the message is sent to FTOB” tacitly implies the above.

We will assume that when FTOB delivers a message from some role, the message was
indeed sent to FTOB by the player having the role. Note that the relevant player needs to
sign the message using the secret key corresponding to the role, which has its public key on
FTOB. The only way the assumption could fail is if a corrupt player forges the signature of
an honest player.
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We use some basic subprotocols for secure computation on ciphertexts of form EN,ws(m; r).
They include protocols for secure multiplication on encrypted values and creating random
encrypted bits. As these are mostly standard, we list them in Appendix I. We will use the
following subprotocols.
– Multiply(EN,ws(x1), . . . , EN,ws(xl)) = EN,ws(x) is shorthand for invoking the multiplica-

tion protocol a number of times on the ciphertexts EN,ws(xi) to obtain EN,ws(x) where
x = ∏

i xi mod N s.
– RandExp(EN,w1(x1), . . . , EN,w1(xl)) = (EN,w1(y1), . . . , EN,w1(yl)) is shorthand for a proto-

col that securely chooses a random exponent a of the same bit length as N and computes
output ciphertexts (EN,w1(y1), . . . , EN,w1(yl)) where yi = xa

i mod N . It also produces a set
of ciphertexts {cai

= EN,w1(ai)}, where the ai’s are the bits in the binary representation
of a.

– Exp(EN,w1(x), {cai
= EN,w1(ai)}) is short hand for a protocol that outputs EN,w1(xa mod

N), where a is the number with bits {ai} in its binary representation.

6.1 Protocols for Threshold Decryption and Resharing

The secret decryption exponent will be verifiable secret-shared among the members of a
committee using Linear Integer Secret Sharing (LISS). Using LISS instead of the integer
version of Shamir sharing will allow us to keep the size of shares from growing. For details
on LISS and the VSS we use, see Appendix F.

The notation VSS(d,vd) = (sh(d,vd), β1, . . . βc) means the following: The sharing vector
vd contains the secret d as its first entry and the other entries are the randomness used
for the sharing. The βj are commitments to the entries in vd, so β1 determines the secret.
sh(d,vd) is the vector of shares resulting from applying the sharing algorithm to vd which
concretely means multiplying vd by a public matrix M with integer entries. Therefore, given
the βj’s and M one can compute commitments αi = Comck(si; vi) to the i’th share si from
sh(d,vd), using the homomorphic property of the commitments.

A secret will always be shared among the members of a pair of committees, namely it is
additively shared among the members of the additive committee, and each additive share is
shared with threshold t among the members of the threshold committee. This is described by
a single linear sharing algorithm M .

We number the shares in sh(d,vd) such that the first n entries are the additive shares.
Further, for 1 ≤ i ≤ n and a qualified set A of the threshold committee, we let ri

A denote
the reconstruction vector that players in A can use to reconstruct the additive share si =
sh(d,vd)[i], while rA is the reconstruction vector used to reconstruct the secret itself. Ii

contains the set of indices of elements in sh(d,vd) that are threshold shares of the additive
share si. Finally, each player in the threshold committee gets several shares, we therefore use
u(i) to denote the index of the player holding the i’th share.

We say that a committee pair holds VSS(d,vd) = (sh(d,vd), β1, . . . βc), with share bound
b if it is the case that the honest parties in the committee hold the relevant shares from
sh(d,vd), the corresponding values β1, . . . βc are on the ledger, and all shares in sh(d,vd) are
at most 2b. Note that, by the linearity property of the sharing scheme, if a committee pair
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holds both VSS(d,vd) = (sh(d,vd), β1, . . . βc) and VSS(d,vd) = (sh(d′,vd′), β′
1, . . . β

′
c), we can

define linear operations on these, for a public integer γ, as

VSS(d,vd) + γ · VSS(d′,vd′) = (sh(d,vd) + γ · sh(d′,vd′), β1(β′
1)γ, . . . βc(β′

c)γ)

Clearly this new object is also a VSS, we have

VSS(d,vd) + γ · VSS(d′,vd′) = VSS(d+ γd′,vd + γvd′) .

It follows that if a committee pair holds several VSS objects, it also holds (by local operations
on shares) a VSS containing a given linear function applied to the underlying secrets, with
a share bound that is easy to compute using the coefficients in the linear function.

Discussion of the Decryption Protocol For the implementation of threshold decryption, we as-
sume a committee pair assigned to handle each batch of ciphertexts to decrypt. We maintain
the invariant that when a committee pair is about to decrypt a batch, it holds VSS(dS,vdS

)
with share bound 2b, where dS is the decryption exponent. This is ensured for the first pair
by Fsetup, and later by resharing dS for the next pairs. We split decryption and resharing in
two protocols, with one committee pair assigned to do only decryption or resharing.

We prove in Appendix K that the invariant is maintained and that hence the decryption
protocol outputs correct plaintexts. The idea for decryption is that each member of the
additive committee issues a decryption message by raising the ciphertext to its share. These
messages are distributed to all parties using a protocol called Gather.4 It ensures than when
a set of n parties (of which at most t are corrupt) all try to send a message to all parties,
all receivers will get messages from at least n − t senders, and there will be a set of at
least n− t senders that all receivers have heard from. For details, see Section C.6. Once the
Gather protocol is done, we let the threshold committee supply back-up messages that allow
reconstruction of all the missing decryption messages. We use this set-up, rather than a single
threshold committee, for technical reasons, in order to be able to show adaptive security.
For similar reasons, an initial subprotocol is included, RandomizeCiphertext (Fig. 8). When
decrypting values that serve as output from the global protocol, we call RandomizeCiphertext
on the input ciphertext before the actual decryption. This is a trick that allows us to get
the correct decryption result in the simulation. For all other decryption operations, the
call to RandomizeCiphertext is omitted, we denote this by DecryptNoRandomize. For input c̄,
Randomize(c̄) will denote the ciphertext output from this protocol5.

Keeping the Share Size Constant In the Reshare protocol we showed a simple version where
the share sizes grow with the number of reshares. Here, we sketch a variant of the reshare
protocol that allows us to ensure that the shares held by committees are of fixed size and
will not grow indefinitely.

4 For efficiency, the decryption protocol does not use FTOB to communicate its output, instead we borrow a more
efficient subprotocol from the implementation of FTOB.

5 This subprotocol uses the multiplication protocol, which in turn uses decryption. In order for this not to become
circular, the decryptions in the multiplication protocol are done without the randomization step.
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Protocol RandomizeCiphertext Recall that c∗ is the ciphertext from the global set-up and H is the random
oracle, here assumed to output a random number from ZNs+1 . Also, we assume L is a unique label assigned to
this batch of ciphertextsa. When a batch to decrypt appears on the ledger, do the following for each ciphertext
c̄ to decrypt (in parallel):

1. Call the DecryptNoRandomize protocol on input H(L) and let R be the resulting plaintext.
2. Output c = c̄ ·Multiply(c∗, H(c̄, R)) mod Ns+1.

a no randomness is required here, L could just be a counter, for instance.

Fig. 8. The RandomizeCiphertext protocol.

Protocol Decrypt
When a batch to decrypt appears on the ledger, the committee pair assigned to do the batch will execute the
operations below. The committee pair holds VSS(dS , vdS ) with share bound 2b.

1. For each ciphertext c̄ in the batch, set c = Randomize(c̄).
2. For each member of the additive committee Pi, each c = EN,ws (m) in the batch and share si =

sh(dS , vdS )[i], Pi sets:

dc,i = csi mod Ns+1

πc,i = NIZK(si, vi : dc,i = csi mod Ns+1, αi = Comck(si; vi)) ,

and send the decryption message (dc,i, πc,i) to all parties.
3. All parties: Once n− t decryption well-formed decryption messages have been received, run ΠGather (cf.

Fig. 17) with the received set as input. The input is justified by consisting of at least n − t well-formed
decryption shares.

4. For each member Pu of the threshold committee: Let D be the set of all decryption messages finally
received via ΠGather. Send D to all parties. In addition, for each additive share si for which a decryption
message was not received, for each share sj where j ∈ Ii, u(j) = u, and for each ciphertext c in the batch,
set:

dc,i,j = csj mod Ns+1 ,

πc,i,j = NIZK(sj , vj : dc,i,j = csj mod Ns+1, αj = Comck(sj ; vj))

and send the back-up message (dc,i,j , πc,i,j) to all parties.
5. All parties: Once messages from a subset A (of size at least n− t parties) of the threshold committee have

been received, then do the following for each ciphertext c = EN,ws (m) in the batch: For each additive
share si where a decryption message dc,i was not received, use the reconstruction vector ri

A to compute

dc,i =
∏

j,Pu(j)∈A

d
ri

A[j]
c,i,j mod Ns+1,

then compute
n∏

i=1

dc,i = (N + 1)m mod Ns+1

and compute m from this result.

Fig. 9. The Decrypt protocol.
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Protocol Reshare

1. For each member Pu of the threshold committee, and each share si = sh(dS , vdS )[i] for which u(i) = u,
Pu sets βi

1 = αi, as defined by VSS(dS , vdS ) held by the committee. Then compute and sends to FTOB:

NonIntVSSshare(2b, si, vsi , gpk1, . . . , gpk2n) :=
(βi

1, . . . , βi
c, ci

1, . . . , ci
2n, πi

0, πi
1, . . . , πi

2n),
where gpk1, . . . , gpk2n are the public keys of the next committee pair assigned to do decryption.

2. Each party Pu in the receiving committee pair: once at least n − t VSS messages from a subset A are
delivered from FTOB, decrypt all ciphertexts ci

j for which u = u(j). As argued elsewhere, the committee
now holds VSS(si, vsi ) for i such that Pu(i) ∈ A. The committee uses the reconstruction vector rA to
compute

VSS(dS ,
∑

i

rA[i] · vsi ) =
∑

i

rA[i] · VSS(si, vsi ) .

Fig. 10. The Reshare protocol.

We will amend the VSS protocol such that the dealer must give zero-knowledge proofs
for the commitments βj to the sharing vector, that the number contained in each βj is in
the expected range for entries of the sharing vector. This way, whenever a committee holds
VSS(dS,vdS

), we are guaranteed a publicly known bound on the size of the entries in vd.
The protocol involves 3 committee pairs: the sending pair C1, an auxiliary pair C2 and

the receiving pair C3. C1 holds VSS(dS,vdS
). The members of C1 will reshare dS to C2 as

we already described, so that C2 will eventually hold VSS(dS,v
′
dS

) for some sharing vector
v′

dS
. In addition, each threshold member Pu of C1 will choose a random integer Ru that is k

bit longer than dS. They then use NonIntVSSshare to send VSS(Ru,au) to C2. Finally each
member also sends VSS(Ru, bu) to C3. It is easy to ensure that the same Ru is sent in both
cases, Pu must use the same commitment β1 to Ru for both VSS’s. Importantly, the sharing
vector au is chosen large enough that the entries are k bit longer than any entry in v′

dS
. On

the other hand, bu is chosen of minimal size for sharing Ru, i.e. with entries that are 2k bits
longer than dS.

Now, the threshold members C2 will publicly reconstruct VSS(dS,v
′
dS

)−∑
u VSS(Ru,au)

where the sum over the (at least n−t) VSS’s that were delivered on the ledger. Concretely, this
means posting the corresponding shares on the ledger. This allows all players to reconstruct
∆ = dS −

∑
u Ru. In particular, all members of C3 can now compute (locally)

VSS(dS,v∆ +
∑

u

bu) = VSS(∆,v∆) +
∑

u

VSS(Ru, bu) ,

where v∆ is a fixed default sharing vector, say with 0 entries, except for ∆.
This works, first because the shares revealed when reconstructing ∆ are determined by

the sharing vector v′
dS
−∑

u au, which is statistically indistinguishable from a vector that is
independent of dS, so essentially no information on dS is revealed. And second because the
size of the final shares in VSS(dS,v∆ + ∑

u bu) is fixed, given the secret sharing scheme, n
and dS, and so does not depend on the sizes of shares we started from.
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YOSO MPC of the PIR Protocol. For implementation of role assignment, we start by mak-
ing a useful observation we are going to use below: Say we are given 2 ciphertexts of form
EN,ws(EN,ws−1(m1; r1);u1) and EN,ws(EN,ws−1(m2;2 r);u2). If we were to apply the multipli-
cation protocol to these two ciphertexts, we would obtain

EN,ws(EN,ws−1(m1; r1) · EN,ws−1(m2; r2) mod N s;u3) = EN,ws(EN,ws−1(m1 +m2; r1r2);u3),

thus implicitly adding the two underlying plaintexts.

Protocol RandKey

1. Take the next available set of encrypted bits c0 = EN,w1 (t0), . . . , cλ−1 = EN,wλ (tλ−1) from the ledger.
Let t be the number represented by the bits t0, . . . , tλ−1, where t0 is the most significant bit. We will use
c = EN,w∗ (t) = (c0, . . . , cλ−1) to denote the bitwise encryption of t.
Let gpk1, . . . gpk′

M be the current public keys of all parties, with encryption components h1, . . . , hM′ and
signature components h̃1, . . . , h̃M′ . The next steps are done using h1, . . . , hM′ as input. They are repeated
in parallel using h̃1, . . . , h̃M′ as input, but the same c0, . . . cλ−1

2. All parties executes the server side of the PIR protocol using h1, . . . , , hM as the database. Note that each
hi is a single number modulo N . The output is a ciphertext c = EN,wλ−1 (EN,wλ−2 (. . . EN,w1 (ht))).

3. Set c̃λ−1 = c and execute the following loop, for i = λ − 1, λ − 2, . . . , 2 using 2(λ − 2) consecutive
committees:
(a) Take the next di−1 = EN,wi (EN,wi−1 (0; r); s) available on the ledger, and set ui = Multiply(c̃i, di−1).
(b) Send ui to the Decrypt protocol and let c̃i−1 be the result. We have c̃i−1 = EN,wi−1 (0; r) · pi mod N i,

where pi is the plaintext contained in c̃i, so c̃i−1 is a random ciphertext with the same content as pi.
4. The final ciphertext produced by the loop is a random ciphertext c̃1 such that c̃1 = EN,w1 (ht). Let v =

EN,w1 (g) be an encryption of g with randomness 1. Run RandExp(c̃1, v) to get ciphertexts EN,w1 (ha
t mod

N) and EN,w1 (ga mod N) for random exponent a. Send these two ciphtertexts to the Decrypt protocol
to get the random and randomized public key component (ha

t mod N, ga mod N).
By parallel repetition we will also output (h̃a′

t mod N, ga′
mod N).

5. Output the key rpkt = ((ha
t mod N, ga mod N), (h̃a′

t mod N, ga′
mod N)).

Fig. 11. The protocol for randomized keys

We now design a protocol outputing a random and randomized public key, taken from
the global set of public keys gpk1, ..., gpkM ′ , corresponding to a subset of the parties, such
that the communication complexity is sublinear in M . We do this by modifying the PIR
protocol from Section 3, so it can be executed by a set of committees, where we think of
the set of public keys as the database, and a (set of) committees play the role of the client.
Recall, however, that each public key consists of two components hi, h̃i for encryption, and
signatures, respectively. For technical reasons, we need to randomize the two components
individually, so we run two instances of PIR, one for retrieving a random hi and one to get
a random h̃i, while making sure the random choice is the same in both cases.

More concretely, the high-level idea is that we first use the protocol for encrypted random
bits to get what corresponds to the client’s first message in the PIR protocol,

c0 = EN,w1(t0), . . . , cλ−1 = EN,wλ
(tλ−1) ,
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where the ti’s are random bits and in this application λ = logM ′. Given that these ci-
phertexts are on the ledger, any party can consider the h1, . . . , hM ′ to be the database
and locally execute the server’s part of the PIR. This will result in a ciphertext of form
EN,wλ−1(EN,wλ−2(. . . EN,w1(ht))), containing a randomly chosen public key. Since the server
side of the PIR is deterministic, any honest party will arrive at the same ciphertext. However,
it would be insecure to decrypt this, even partially. For instance, if we directly remove all
but one layer of encryption, to get EN,w1(ht), this would reveal information on which key is
chosen, as this encryption was computed in the first stage of the loop. Concretely, it is of
form EN,w1(ht) = c

hj

0 c̄
hj+M′/2
0 , for some j, where ht is either hj or hj+M ′/2. An adversary can

just try all possibilities for j.
We therefore need to randomize the encryption of ht before decrypting anything. For

this purpose, we assume that we have available on the ledger a sufficient number of random
“two level” encryptions of 0, concretely random ciphertexts of form EN,wi+1(EN,wi

(0)) for
i = 1 . . . λ−1. Such a set of ciphertexts can be used to randomize the encryption of ht before
decryption. Having done this, we can do the same protocol for the h̃i’s while using the same
encryptions of the bits tj to ensure that the choice of t is the same.

The NewRole protocol The NewRole protocol is an extension of RandKey tailored for the
below role assignment protocol. We start from the assumption that, for some set of players
P1, . . . , PM ′ , we are given gpki, for i = 1 . . .M ′.

All players can now compute H(b, i) for i = 1 . . .M ′, where H is the random oracle,
here assumed to output a random number in Z∗

N . Here b is a unique batch number decouple
the use of H in different batches. The protocol now considers a database with entries of
form (gpki, H(b, i)) and does a multiparty PIR protocol on this database similar to what we
described in detail in the RandKey protocol. In the RandKey protocol, we did the PIR twice,
with the same choice of random index t, once for each component of gpki. We now do it 3 times
since we have a total of 3 components in each database entry. Having done what corresponds
to Step 3 of RandKey we will have random encryptions EN,w1(ht), EN,w1(h̃t), EN,w1(H(b, i)).

Finally a randomized key rpkt is produced from EN,w1(ht), EN,w1(h̃t) and output, exactly
as in RandKey. In addition tagt = H(t)K mod N is output. This last output is produced
as follows: K is a random number of length log2(N), whose binary representation is given
in encrypted form as set-up data. We can therefore do Exp on input EN,w1(H(b, i)) and
encrypted bits EN,w1(Kj), i = 0, . . . , log2(N) − 1 to get EN,w1(H(b, i)K) which is decrypted
to get the output. Looking ahead, tagt is a pseudorandom but unique tag assigned to Pt and
can be used to detect if we have selected player Pt in a different run of the protocol, without
revealing the identity of Pt. We use NewRoleb(gpk1, . . . , gpkM ′) = (rpkt, tagt) as shorthand
for a call to this protocol.

The NewKey Protocol. This protocol generates a new key pair for a party. It assumes that
an encryption of a one-time pad EN,w1(otp) from that party appears on the ledger. It gen-
erates a public key and and an encryption of the secret key under the one-time pad. De-
tails can be found in the appendix (Fig. 34 and surrounding text). We use the notation
NewKey(EN,w1(otp)) = (rpk, Eotp(gsk)).
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Protocol OneBatcheno parametrised by a number M of parties, PEAS, and a number eno which is an upper
bound on the number of committees needed to run OneBatcheno.

Init: 1. Let c > 0 be a constant, called the honesty gap.
2. Let M = (3 + c)T be the number of parties, where T is the maximal tolerable corruption.
3. Let n = λ and let ϕ = ℓn be the largest multiple of n s.t.ϕ ≤ (c/2)T .
4. Learn N from Fsetup and output N. Define eno committees each with a secret sharing of sp from the

output of Fsetup.
5. Each P ∈ P lets boP = 0 and bdP = 0.

Next Batch: On input (NextBatch) to P , where boP = bdP , update boP ← boP + 1 and:
1. Broadcast OP ← EN,w1 (otpP ) for uniformly random otpP ∈ ZN , along with a proof of plaintext

knowledge. Deletes the randomness used for EN,w1 (otpP ) and save otpP .
2. Let the wait predicate of FTOB be that there is a set Q such that Q ∈ Q has broadcast OQ with a

correct proof and |Q| ≥M − T . Wait for FTOB and let PboP ← Q.
3. For all Q ∈ PboP in parallel run (gpkboP

Q , GQ = EotpQ
(gskboP

Q )) ← NewKey(OQ). Once P sees
(gpkboP

P , GP ) on FTOB it computes gskboP
P = EotpP

(GP ), outputs gskboP
P and deletes otpP and gskboP

P .
4. Let gpkboP =

{(
Q, gpkboP

Q

)}
Q∈PboP

.
5. For j = 1, . . . , ℓ = λ|Q|, run (tmprpkj , tagj)← NewRoleboP (gpkboP ).
6. If there is not |Pb| unique values tagj , then terminate. Otherwise, sort the outputs (tmprpk, tag) of

NewRole lexicographically on tag and for each unique tag map the first occurrence (tmprpkj , tag) unto
a unique role R ∈ Pb and let rpkboP

R = tmprpkj .
7. Let rpkboP be {(R, rpkboP

R )}R∈PboP . Let RboP = (gpkboP , rpkboP ) and output RboP .
8. Let bdP ← bdP + 1.

Renew Setup: At the same time as the above Next Batch, do a parallel of Next Batch to generate
M − T additional roles. Take the (c/2)T first of these roles and use them to form ϕ committees of size
n. If ϕ > eno then only run Renew Setup if there are not eno committees left from a previous run. If
ϕ < eno do the above ⌈eno/ϕ⌉ in parallel to get a total of eno committees. In both cases, for each of the
eno committees run a parallel instance of Reshare to secret share sp until the committee.

Fig. 12. The protocol for one batch of Role Assignment

Iterative Role Assignment We finally present the role assignment protocol in implements the
part of FRA+MPC+CF having to do only with role assignment, i.e., no MPC and no Coin-Flip.
In Fig. 12 we give the code for a single batch called OneBatcheno. For each batch each party
P broadcasts a new encrypted otpP and we use NewKey to generate a fresh public key gpkP

along with EotpP
(gskP ), where EotpP

(gskP ) is a one-time pad encryption of gskP . Once P
sent EN,w1(otpP ) it deletes the randomness used for encryption. Once P sees EotpP

(gskP ) it
decrypts using otpP . This way we never have to explain the randomness used for EN,w1(otpP )
while EotpP

(gskP ) is in transit. We wait only for M −T encryptions to not deadlock. For the
set Q of parties that got to input otpP we then generate ℓ random role keys rpk. Each is for a
random unknown P ∈ Q. We also output a tag tag which cannot be linked to P but which is
unique for P . We use this to throw away duplicates, such that each P gets one role. If some
P does not get a role, i.e., there is less than M−T unique tags, then we abort. This happens
with negligible probability (1− (M − t)−1)λ(M−T )→ e−λ, so we can ignore it. This process is
run enough times in parallel to get eno random committees for the next run of the protocol.
When we run a protocol like NewKey some m times in parallel we use the same committees in
each run, so it consumes a number of committees constant in m. Ergo, OneBatcheno consumes
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a number of committees constant in eno. We can therefore set eno large enough to generate
enough committees for the next batch without circularity. The reason why we only use (c/2)M
roles to form committees is that once we used and executed (c/2)M − 1 roles and revealed
which parties were behind them, there is still (M − T ) − (c/2)T ≥ (2 + (c/2))T parties left
unrevealed. So, even if the adversary concentrates its corruptions on this set it can corrupt
the party behind the last unrevealed role of the last committee with probability at most
1/(2+(c/2)). Therefore, by a Chernoff bound, the probability that ≥ (1/2)λ parties out of the
n = λ parties on a committee are corrupted before they executed their role is negl(λ). Hence
each committee has honest majority of executed role except with negligible probability, as
required for all our sub-protocols. We let MoreBatcheno be the protocol starting with F eno

setup
and doing repeated application of OneBatcheno.

Putting the Pieces Together Once we implemented the role assignment part of FRA+MPC+CF
it is trivial to implement the MPC part of FRA+MPC+CF. Parties contribute their inputs
by sending EN,w1(xi) and sends along an additonal encrypted otp for receiving the output.
Both encryptions are augmented by proofs of plaintext knowledge. Then we use the sub-
protocols for bits, adding, and multiplying to evaluate f on the contributed inputs and open
encryptions of outputs under the otp. We elaborate on this in Appendix J. Let FRA+MPC
be FRA+MPC+CF with the Flip Coin and Deliver Coin commands removed. What we have
specified so far implements FRA+MPC, the proof of this fact is found in Appendix Appendix K.

We can then implement FRA+MPC+CF in the FRA+MPC-hybrid model. This is done by
securely computing a function f which divides the parties into committees and robustly
secret shares a random value unto the committee. To flip the coin the committee members
all send their shares and check values to all other parties. Details and proof are found in
Appendix L.

In our implementation of FRA+MPC+CF we assume we have access to an instance of
FTOB. In Section 7 we show how to implement FTOB from an ideal functionality FCF for
coin-flip, which in turn will just be the coin-flip part of FRA+MPC+CF. This seems cyclical,
but importantly, since we open coin-flips by reconstructing robust secret sharings, the im-
plementation of openings of coin-flips on FRA+MPC+CF does not use FTOB. We can therefore
let FRA+MPC+CF implement a surplus of coin-flips in batch b. During the implementation
of batch b + 1 these can be used to implemented the instance of FTOB used in b + 1. The
implementation of FRA+MPC+CF works equally well if each batch uses a separate FTOB. This
gives a protocol which we call RAMPCCFPEAS.

Theorem 1. When for a constant c at most T < M/(3 + c) parties are adaptive corrupted
and we set n = λ then for a large enough constant eno we have that if PEAS is EUF-CMA,
SO-IND-CPA, CSO-IND-CPA and CSO-ANON, then RAMPCCF PEAS securely implements
FPEAS,1/3,F,γ

RA+MPC+CF in the (Fsetup,FTOB,Fatomic-send)-model with a random oracle. Here F can
be any class of functions with a bounded multiplication complexity over ZN and γ can be
any polynomial. If M ≥ 2eno and we use the FTOB from Section 7 then the amortized
communication in bits to generate one committee of size n = λ is M poly(λ, logM). The
amortized complexity of handling one multiplication gate in MPC is also M poly(λ, logM).
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As for the communication note that in each basic run we generate (c/2)T = Θ(M) roles.
To do this we use a number of committees which is poly(λ, logM) as we have a constant
number of runs of parallel protocols each with poly(λ, logM) rounds. Each committee con-
sists of λ parties, so we consume poly(λ, logM) roles. To generate Θ(M) roles a total of
O(M) poly(λ, logM) group elements are posted on FTOB. Therefore the amortized num-
ber of group elements posted on FTOB per generated committee is O(λ) poly(λ, logM) =
poly(λ, logM), and the same holds for generating eno ∈ poly(λ, logM) committees. Since
our implementation of FTOB uses communication O(ML) + poly(λ, logM) to broadcast L
bits to all parties, the amortized number of bits sent and received by each party to generate
eno committees is poly(λ, logM). Handling one multiplication gate uses a constant number
of committees. The reason why we generate ℓ = λ|Q| roles in Item 4 in Next Batch is that
we need each party to be sampled at least once. The overhead of λ can be reduced to O(log λ)
for roles produced by FRA+MPC and O(1) for internal roles. We discuss this in Appendix A.

7 Consensus

We present a protocol ΠTOB securely implementing FTOB. For implementing FTOB we need
an ideal functionality for asynchronous coin-flip FCF. Like for the coin related sub-interface
of FRA+MPC+CF, when the first honest party asks for the next coin it is flipped and shown
to the adversary, and after the last honest party asks for the next coin, the adversary must
eventually deliver the coin to all honest parties. For later convenience we assume FCF has a
command (coin-index) telling a party Pi how many coins it received from FCF so far.

7.1 Implementing FTOB from FCF

We give a high-level description of the protocol ΠTOB instantiating FTOB. It sequentially
runs instances of an Agreement on a Core Set (ACS) protocol ΠACS where the inputs of
each party satisfies the wait predicate. The ACS protocol is heavily inspired by the one in
[KN23], but with several changes to make it YOSO. The protocol ΠTOB uses small com-
mittees, but does not use role assignment to sample these committees. This is because role
assignment establishes private channels to future roles which would be overkill for ΠTOB
and heavily dominate its communication and computational complexity. We therefore use
simple self-nomination from VRFs as in [GHM+17], which is concretely much more efficient.
We elaborate in Appendix C.1. The decentralized nature of sampling the roles for ΠTOB
via self-nomination means that the committees will be of variable size, and that there is
no straightforward way to talk about the index of a role on the committee. Therefore, the
ACS protocol in [KN23] cannot be instantiated with the self-nominated committees without
some structural changes, because it uses the fact that each party corresponds to an integer
in [M ] both to describe parties’ causal past via M -bit vectors and to elect each leader using
a logM -bit coin.
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7.2 Agreement on Core Set

In Appendix C we present a modified version of the protocol for ACS from [KN23]. Beyond
some syntactical changes, we make the following three changes:

1. For each instance of an activation rule the set of parties who “speak” is a committee
specifically elected for that role. This is implemented using sortition on a unique identifier
associated with that instance of the activation rule as described in Appendix C.1. We do
not explicitly define these identifiers, but a natural choice is to concatenate the protocol
name, session identifier, and a unique activation rule name.

2. The underlying Causal Cast (CC) primitive is instantiated using a novel RB protocol in
Appendix C.3. This allows the CC protocol to give output to all parties, as we by design
do not know who is in the next committee.

3. Leader election is separated from CC and implemented directly in the context of graded
block selection (Appendix C.7) using an extra round of communication and the coin-flip
functionality FCF in Fig. 29. The resulting protocol has the property that if a party
selects a block with grade 2, then all possible justified outputs (cf. Appendix C.2) in the
following round have grade 2.

4. By using the justified grade of the block selected in the preceding round, as justifier that
we did not yet terminate, we make sure that all parties terminate in adjacent rounds,
and that the round number becomes a justified output of the protocol.

The first three changes make the ACS protocol YOSO and compatible with self-nominated
committees. The final change allows a substantial optimization in the amount of setup that
needs to be recomputed when instantiating FCF with a YOSO protocol that requires setup
for each coin flip.

Many natural instantiations of the coin flip requires a setup to be computed for each round
of the protocol. The number of rounds can be bounded by O(λ) but only an expected constant
number of setups are actually used. So there is a multiplicative factor O(λ) overhead on the
communication and computation required to compute setups. We cannot a priori repurpose
the unused setups for later rounds, because a party cannot determine from its local view,
whether another honest party requested a coin and thus leaked it to the adversary. Exposing
the justified output round will allow us to reach agreement on an upper bound on the number
of setups that could have been used in each iteration by supplying them as input to the next
round. This will in turn allow reducing the number of coin flipping setups being consumed
by each decision of ΠTOB to expected constant.

7.3 Total-Order Broadcast

We present a protocol ΠTOB implementing FTOB with ledgers, blocks and wait predicates as
defined in Section 5. A straightforward implementation would be to have parties who want to
broadcast a message on the TOB send the message to all parties, have an elected committee
collect these messages and then, when their local blocks satisfy the wait predicate, propose
them in ΠACS. But as each message could be included by multiple proposers this would result
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Protocol ΠTOB described from the view of party P. We use the definitions of ledger, blocks and wait predicates
from Section 5.

Init: Each party P initialises the empty ledger LP = ϵ, a broadcast index keeping track of how many messages
were broadcast by P, cP = 0, a batch index keeping track of how many wait predicates are set for P,
bP = 0, and a set of dispersed messages pending inclusion in L, PendingP = ∅. It also initialises two
instances of the coin functionality F0

CF and F1
CF and corresponding coin counters coin0 = 0 and coin1 = 0.

Broadcast message: On input (Broadcast, mid, m) party P (mid) starts an instance of ΠRB on the message
m with session identifier (Broadcast, mid, cP) with the input justifier that ΠRB has given output for all
sessions (Broadcast, mid, c) with c ∈ [1; cP). Finally, it lets cP = cP + 1.

Schedule message: On output m from an instance of ΠRB with session identifier (Broadcast, mid, c) add
(P (mid), c, m) to PendingP.

Set Wait Predicate: On input (wait, W ) let bP ← bP + 1 and let W bP = W .
Deliver: When P has output (C, r) from ΠACS with session identifier |L| + 1 and for each pair (P′, c) ∈ C

there is a an entry in PendingP of the form (P′, c, m) it does the following: Adds each of the messages m
(ignoring duplicates) in order to a block which is added to LP and removes the corresponding entries from
PendingP. Lets LocalOutputRound|L|+1 = r, and lets r′ be the minimal justified output round included in
C. It then adds r′ + 1 to coin|L|+1 mod 2 and inputs (next-coin) to F |L|+1 mod 2

CF until querying it for
input (coin-index) returns coin|L|+1 mod 2.a

Propose Block: When |PendingP| ≥ max(W |LP|+1
# , α) and W |LP|+1(LP, PendingP) = ⊤, P starts running

ΠACS with session id |LP|+1. The input block is defined as follows: We say an element (P′, c, m) ∈ PendingP
is referenced by (P′, c). Party P computes a block B consisting of references to at most W

|LP|+1
# messages

in PendingP where W |LP|+1(LP, B)b and remove those messages from PendingP. Then add references to the
max(W |LP|+1

# , α, PendingP) oldest messages from PendingP to a block B′ and remove those messages from
PendingP. Finally let B′′ be a block including only the locally observed output round from the previous
batch, LocalOutputRound|LP| and let B′′′ = B∥B′∥B′′ be the input to ΠACS. The block is justified by
consisting of a justified output round number from the previous iteration of ΠACS and references to
messages that are sent through RB in the step above, these messages satisfying the wait predicate and
the number of references being in the interval [max(W |LP|+1

# , α); max(W |LP|+1
# , α)].

a In plain English, it uses the agreement on how many coins were consumed in past iterations to skip past
any coins that it has not used but which potentially could have been used by other parties, so that all
parties are synchronised when they start flipping coins in the next instance of ΠACS.

b This can be computed efficiently as described in Section 5.

Fig. 13. Total-Order Broadcast

in a worst-case multiplicative communication overhead of O(n). Instead we will have each
party who wants to broadcast a message on the TOB send the message through reliable
broadcast with a O(logM) bit message identifier, mid, and then have the proposers include
the message in their block by referring to the message using mid. Each block proposer will
also add the round number it got as part of the output of ΠACS in the previous round to
its block. After agreement on a subset of the blocks is reached, we can take the minimum
output round, r, included in the set of blocks and via Adjacent Output Round property
conclude that no honest party participated in round r + 2 or later. Thus the corresponding
coins remain unpredictable to the adversary and their setups can be repurposed.

We require that all blocks have the same size up to a constant factor. Otherwise, the
communication in each round could be dominated by a large block which does not make
it into the core. To get around this issue, we require that all blocks include references to
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between (max(α,W#)) and 2(max(α,W#)) messages, which means that the size of blocks
that get included in the core in each epoch is not asymptotically dominated by the remaining
blocks. For the concrete complexity analysis in Theorem 5 we assume that α is at least λ.

Theorem 2. When for a constant c at most T < M/(3 + c) parties are adaptive corrupted
and we sample committees as in Lemma 2, then we have that ΠTOB implements FTOB in the
FCF-model.

Proof. Follows from Theorem 6, Theorem 5, and Lemma 2.
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A Concrete Optimisations

The reason why we generate ℓ = λ|Q| keys in Item 4 in Next Batch in Fig. 12 is that each
P ∈ Q needs to be sampled at least once in the PIR so that it gets a role, as FRA+MPC
by definition outputs a role for each party in Q. The above method is very wasteful. We
generate ℓ = λ|Q| keys to output only |Q| roles, and overhead of λ. Note, however, that
if one generates |Q| keys instead of λ|Q| keys, then a given P gets a role with constant
probability. Furthermore, we can use the tags to compute how many parties got a role key.
Repeating this in sequence until there are |Q| unique parties which got a role key will take
expected O(log |Q|) rounds. And we have that O(log |Q|) = O(logM) = O(log λ), as M is
polynomial in λ. This replaces an overhead λ by log λ. Furthermore, for the roles used to form
committees in Renew Setup we only use ϕ ≤ (c/2)T roles out of the M − T = (2 + (c/2))T
roles generated. There is no reason to generate role keys for the parties in Q which are
not used to form committees. If we generate |Q| = M − T random role keys, then by a
Chernoff bound, we will have (c/2))T unique roles except with negligible probability, saving
an additional logM factor for internal committees.

B Secure Committee Formation

In the following we let FRA+MPC denote a version of FRA+MPC+CF without the con-flipping
interface. In FRA+MPC all parties get to play exactly one role. Often what we want is to get
a sequence of random committees

((rpk1,1, . . . , rpk1,n), . . . , (rpkℓ,1, . . . , rpkℓ,n))

for some committee size n. This can be done by using only the first ψ = nℓ roles from rpkb.
For security we typically need that the adversary can corrupt at most t < n/2 parties on
each committee. This puts some limits on ℓ, as discussed now.

To see the issue, consider the following. When the random committees start executing,
some committes may execute first. As the first committee (rpk1,1, . . . , rpk1,n) executes their
roles the adversary will learn which n parties had the roles, as these parties will send the
corresponding messages. Similarly for committees 2, . . . , ℓ − 1. This means that when only
(rpkℓ,1, . . . , rpkℓ,n) is left, the adversary knows (ℓ − 1)n parties X which already executed
their roles. It also knows that the last committee is drawn uniformly at random from Pb \X.
It can therefore concentrate its corruptions on the set Pb \ X. It turns out that if we have
M = (3 + c)T parties, for a positive gap c, and the adversary can corrupt at most T parties,
then we can safely set ϕ ≤ (c/2)M and n = λ.

The reader might wonder why we did not use sampling with replacement for the commit-
tees to avoid the above complication. The reason is that if a party gets more than one role,
it would also need more global public keys to be able to execute them separately and have
to send more than one otp for receiving the secret keys. To hide who has multiple roles (they
are good targets for corruption) we would then need to generate the worst case number of
global keys for all parties and have all parties send the worst case number of one-time pads.
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Parameters 1. Let c > 0 be a constant, called the honesty gap.
2. Let M = (3 + c)T be the number of parties, where T is the corruption budget of A.
3. Let n = λ and let ϕ = ℓn be the largest multiple of n such that ϕ ≤ (c/2)T .

Run as RA Create an instance of FRA+MPC = F
PEAS,ϵ= 1

3+c
,1

RA+MPC . We describe the game for m = 1 but it can

be played for any adversarially chosen m, i.e., FRA+MPC = F
PEAS,ϵ= 1

3+c
,m

RA+MPC . Let A be a PPT adversary
interacting with FRA+MPC as the environment, with the following exceptions.

– When A inputs (DeliverBatch, P ) to FRA+MPC for an honest P , then we do not give (gskboP
P , ·) to

A. Instead we save (P, boP , gskboP
P ) for later “execution”.

– A may corrupt at most T parties.
Execute Role If at any point A outputs (exec, b, R ∈ Pb), where for P = π−1

b (R) the value (P, b, gskb
P ) is

saved, then give (P, b, gskb
P ) to the adversary.

Role PE Corruption If at any point A corrupts P then for each 1 ≤ b ≤ FRA+MPC.b let Rb
P = πb(P ). If the

adversary has not previously given the command (exec, b, Rb
P ) then we say that rpkb

P was PE corrupted.
End of Game When A ends the game, we determine a winning bit w ∈ {0, 1} as follows. For each 0 ≤

b ≤ FRA+MPC.b let (rpkb
1,1, . . . , rpkb

1,n, . . . , rpkb
ℓ,1, . . . , rpkb

ℓ,n) = (rpkb
1, . . . , rpkb

ϕ). If there exist 0 ≤ b ≤
FRA+MPC.b and 1 ≤ j ≤ ℓ such that ≥ n/2 roles in (rpkj,1, . . . , rpkj,n) are PE corrupted, then let w = 1.
Else, let w = 0.

Fig. 14. RA-ANON Game RAANONPEAS,A

This would lead to a significantly larger loss of efficiency than only using cT of the generated
roles.

Note that we cannot guarantee that committees have honest majority forever. Once a
role RP executed the adversary knows who P was, so it can in the end corrupt all parties
on a committee. However, in all our uses of committees we have that for a corruption of
a party to be useful to the adversary, the party must not have executed its role yet. The
reason is that when P executes its role RP then it correctly computes the message m to
send, deletes all randomness used to compute it, and then sends m. So, corrupting P after
m was sent gives no information extra to m. We call a corruption of P before it executed RP

a pre-execution (PE) corruption of RP . We say that committee j has PE honest majority if
< n/2 roles in the committee were PE corrupted. We now formalise a committee corruption
game, where the adversary A tries to create a committee which does not have PE honest
majority, see Fig. 14.

Definition 4. We say that PEAS is RA-ANON secure if for all PPT A it holds that Pr[RAANONPEAS,A] =
1] = negl(λ).

Theorem 3. Assume that PEAS is SO-ANON secure (Definition 3). Then PEAS is RA-
ANON secure (Definition 4).

Proof. Note that |Pb| ≥M−T in all batches with this setting of M , c, and ϵ as the adversary
can exclude ϵM parties. For each batch b ≤ FRA+MPC.b let Xb be the set of at most ℓn roles
Rb

P executed in that batch.
We can use a simple reduction to SO-ANON security to prove that whenever the adver-

sary corrupts an honest party P which in batch b did not have its role Rb
P executed, i.e.,

Rb
P ∈ Pb \ Xb, then for all fixed, unexecuted roles R ∈ Pb \ Xb it holds that the probability
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that Rb
P = R is negligibly close to 1

|Pb\Xb| . Namely, if this was not the case we could do
the following. For all batches b number the corruptions of parties which did not have their
roles in batch b executed as c = 1, 2, . . .. When such a corruption happens number all the
unexecuted roles as u = 1, 2, . . ., say lexicographically. Then there is a first b, first c and first
u such that for batch b when the c’th corruption of a party which did not have their roles
in batch b executed happens, then for unexecuted role number u, call it R, it happens that
the probability that Rb

P = R is not negligibly close to 1
|Pb\Xb| . We can use (b, c, u) to do a

reduction to SO-ANON Security. We let the adversary B of the reduction get a challenge
batch from SOANONPEAS,B and use it as batch b in RAANONPEAS,A. It maps all key leakages
from RAANONPEAS,A for batch b to SOANONPEAS,B. When A does its c’th corruption of a
party Pi which did not have its role in batch b executed happens, then B guesses (i, j), where
j is the index of the u’th unexecuted role in batch b.

We now use this to argue that PEAS is RA-ANON secure. We need to argue that all
committees have < n/2 roles in the committee which were PE corrupted. Let b be any batch
and j any committees in that batch. Consider any corruption of any P made by the adversary.
When it does the corruption it executed at most ℓn = ϕ roles from batch b. Let X be the
set of at most ℓn roles executed. Let R be a role from (rpkb

j,1, . . . , rpkb
j,n) and let P be the

party having the role. We seek the probability that the adversary corrupts P . Let Yb be the
parties which have their role executed in batch b already, i.e., Yb = π−1(Xb). If the adversary
corrupts Q from Yb the probability that it hits P is 0 as Q already had an executed role in
batch b, so since R is not executed in batch b and Q had at most one role in batch b it cannot
also have role R. If the adversary corrupts a party not from Pb, then the party will not have
had any role in batch b, so cannot be P , as P has role R. Finally, if the adversary corrupts
P from Pb \Yb it follows that the probability that it hits P is 1

|Pb\X| ≤
n

M−T −c/2T
= 1

((2+(c/2))T .
For T corruptions the probability that P is corrupted is thus negligibly close to 1

2+c/2
. The

expected number of corruptions in committee ℓ is therefore negligibly close to n
2+c/2

. By a
simple Chernoff bound it follows that there are ≥ n

2 corruptions with probability 2−Θ(λ). ⊓⊔

In the real protocol we need RA-ANON security even if functions of the secret key sp is
secret shared to the committees. However, this follows from a combination of CSO-IND-CPA
security and RA-ANON security, as in RA-ANON the adversary has sp and therefore can
simulate these secret sharings itself.

Definition 5 (CSO-RA-ANON). We say that (PEAS,PPBox) is CSO-RA-ANON secure
if it holds for all PPT A that

Pr[CSORAANON0
PEAS,PPBox,A : w = 1] = negl

Pr[CSORAANON1
PEAS,PPBox,A : w = 1] = negl

|Pr[CSORAANON0
PEAS,PPBox,A : g = 0]− Pr[CSORAANON1

PEAS,PPBox,A : g = 0]| = negl .

Before proving CSO-RA-ANON security we prove a technical lemma for a common proof
pattern.
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Parameters 1. Let c > 0 be a constant, called the honesty gap.
2. Let M = (3 + c)T be the number of parties, where T is the corruption budget of A.
3. Let n = λ and let ϕ = ℓn be the largest multiple of n such that ϕ ≤ (c/2)M .

Init: Initially generate (N, sp) ← Gen. Let A be the privacy structure of PPBox. Initialize PPBox by giving
it (N, sp).

Run as RA Create an instance of FRA+MPC = F
PEAS,ϵ= 1

3+c
,1

RA+MPC . We describe the game for m = 1 but it can

be played for any adversarially chosen m, i.e., FRA+MPC = F
PEAS,ϵ= 1

3+c
,m

RA+MPC . Let A be a PPT adversary
interacting with FRA+MPC as the environment, with the following exceptions.

– Do not give sp to A.
– When A inputs (DeliverBatch, P ) to FRA+MPC for an honest P , then we do not give (gskboP

P , ·) to
A. Instead we save (P, boP , gskboP

P ) for later “execution”.
– A may corrupt at most T parties.

Form Committees: When A inputs (NextBatch, . . .) to FRA+MPC run that command then then:
1. Let (rpkb

1,1, . . . , rpkb
1,n, . . . , rpkb

ℓ,1, . . . , rpkb
ℓ,n) = (rpkb

1, . . . , rpkb
ϕ).

2. Call (rpkb
j,1, . . . , rpkb

j,n) committee j of batch b.
3. Let rb be the random tape used by FRA+MPC to generate gpkb, gpkb, rpkb.

Run PPBox: On (PPBox, aux, b, j) proceed as follows.
1. Input aux to PPBox.
2. Sample (aux′, sh1, . . . , shn)← PPBox.
3. For i = 1, . . . , n sample ci ← Encrpkb

j,i
(shi).

4. Input (aux′, c1, . . . , cn) to A.
Execute Role If at any point A outputs (exec, b, R ∈ Pb), where for P = π−1

b (R) the value (P, b, gskb
P ) is

saved, then give (P, b, gskb
P ) to the adversary.

Base IND-CPA: On input (EncBase, f : {0, 1}∗ → Za
N ) do:

1. Compute (m1
1, . . . , m1

a) = f(N, sp, r1, . . . , rb).
2. Let (m0

1, . . . , m0
a) = (0, . . . , 0).

3. Input (c1, . . . , ca)← (EncN(md
1), . . . , EncN(md

a)) to the adversary.
Role PE Corruption If at any point A corrupts P then for each 1 ≤ b ≤ FRA+MPC.b let Rb

P = πb(P ). If the
adversary has not previously given the command (exec, b, Rb

P ) then we say that rpkb
P was PE corrupted.

End of Game If there exist 0 ≤ b ≤ FRA+MPC.b and 1 ≤ j ≤ ℓ such that ≥ n/2 roles in (rpkj,1, . . . , rpkj,n)
are PE corrupted, then let w = 1. Else, let w = 0. In addition let A output a guess g ∈ {0, 1}.

Fig. 15. CSO-RA-ANON Game CSORAANONd
PEAS,A

Lemma 1 (Everywhere from Anywhere). Consider two processes D0 and D1 which
each run through a number of steps. Let A be a PPT adversary being shown a view of D = Db

and having to guess b. Let Ab and Ba be events defined on both processes. Think of Ba(Db)
as something bad happening. We let Ab(Db) (about to happen) denote the event that Ba(Db)
did not happen yet, but it will happen in the next step. Let Db

→Ab denote the process where we
run Db up until Ab(Db) happens and then stops. So, A(Db

→Ab) would have to make its guess
using its view at this step just before Ba happens. Assume that A(Db) can detect Ab(Db)
in poly-time from its view in the game with Db. Assume furthermore that we can prove the
following for all PPT A:

1. |Pr[A(D0
→Ab) = 0]− Pr[A(D1

→Ab])| = negl.
2. Ba(D0) happens with negligible probability in A(D0).

Then for all PPT A
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1. |Pr[A(D0) = 0]− Pr[A(D1) = 0]| = negl.
2. Ba(D1) happens with negligible probability in A(D1).

Proof. We prove that last conclusion first. To see this observe that if Pr[Ba(D1)] ̸= negl then
because Ba(D1) implies Ab(D1) and A can detect Ab(D1) in poly-time, we can consider the A
outputting 1 when Ab(Db) happens and outputs 0 if the execution ends without Ab(Db) hap-
pening. From Pr[Ba(D0)] = negl we have that Pr[Ab(D0)] = negl, so Pr[Ab(D0)] = negl. As-
sume that for the sake of contradiction that it is not the case that Ba(D1) happens with negli-
gible probability in A(D1). From Pr[Ba(D1)] ̸= negl we get that Pr[Ab(D1)] ̸= negl. But then
Pr[Ab(D0)] = negl and Pr[Ab(D1)] ̸= negl. But by construction Pr[A(D0)] = Pr[A(D0)→Ab]
and Pr[A(D1)] = Pr[A(D1)→Ab]. This contradicts |Pr[A(D0) = 0]− Pr[A(D1) = 0]| = negl.
Now since for all PPT A we have proven that Ba(D1) happens with negligible probability in
both A(D0) and A(D1) and we have assumed that that |Pr[A(D0

→Ab) = 0]−Pr[A(D1
→Ab])| =

negl, we have that |Pr[A(D0) = 0]− Pr[A(D1) = 0]| = negl, as desired. ⊓⊔

Theorem 4. If PEAS is SO-ANON secure and (PEAS,PPBox) is SO-IND-CPA secure and
is CSO-IND-CPA secure, then (PEAS,PPBox) is CSO-RA-ANON secure.

Proof. Consider an adversary A for CSORAANONd
PEAS,PPBox,A. Let

pb = Pr[CSORAANON0
PEAS,PPBox,A : w = 1] .

We first argue that p0 is negligible. We do this by constructing a PPT adversary B winning
RAANONPEAS,B with probability p0. The adversary B will simulate CSORAANON0

PEAS,PPBox,A.
To do this reduction we use two main observations.

1. In RAANONPEAS,B the adversary interacts with FRA+MPC as the environment and there-
fore learns sp. The only restriction is that B is not given the secret global keys gskb

P until
they are “executed”.

2. The adversary B can still simulate Base IND-CPA in CSORAANON0
PEAS,PPBox,A as Base

IND-CPA encrypts (0, . . . , 0). In particular, B does not need the secret global keys gskb
P

to run Base IND-CPA.

It is easy to see that this allows B to simulate CSORAANON0
PEAS,PPBox,A in RAANONPEAS,B.

In a bit more detail, B initialises PPBox using the (N, sp) from FRA+MPC. It can simulate
Run as RA using its own access to Run as RA. It just does not pass sp to A. In Form
Committees it will form the same committees, but will not get the random tape rb used
to sample the keys. It will run Run PPBox honestly. It maps Execute Role to Execute
Role of RAANONPEAS,B. It simulates Base IND-CPA by encrypting (0, . . . , 0). Then note
that the definitions of Execute Role are equivalent and if w = 1 in End of Game in
CSORAANON0

PEAS,PPBox,A then B wins RAANONPEAS,B. This gives us

p0 = Pr[CSORAANON0
PEAS,PPBox,A : w = 1] = Pr[RAANONPEAS,B = 1] = negl(λ) .

We would now like to show that p1 is negligible. We do this using Lemma 1. We let
Db = CSORAANONb

PEAS,PPBox,A. We let the bad event Ba be that w = 1, and we let Ab be
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the event that the adversary has ordered a corruption which would lead to w = 1 if executed.
We will first prove that

|Pr[CSORAANON0
PEAS,PPBox,A→Ab : g = 0]−Pr[CSORAANON1

PEAS,PPBox,A→Ab : g = 0]| = negl .
(1)

We already know that p0 = negl, i.e., Pr[Ba(D0)] = negl. We use this to conclude that
p1 = Pr[Ba(D1)] = negl and in particular

|Pr[CSORAANON0
PEAS,PPBox,A : g = 0]− Pr[CSORAANON1

PEAS,PPBox,A : g = 0]| = negl .

We now prove Eq. (1) by showing that we can simulate CSORAANONd
PEAS,PPBox,A→Ab from

SOINDCPAd
PEAS,PPBox,C for some PPT C. To see this, observe that as long as no committee has

had too many PE corruptions it is easy to embed committees from SOINDCPAd
PEAS,PPBox,C into

CSORAANONd
PEAS,PPBox,A by simply permuting the global keys of the committees obtained

from CSOINDCPAd
C . If A makes a guess in CSORAANONd

PEAS,PPBox,A, let C do the same guess
in SOINDCPAd

PEAS,PPBox,C . If A corrupts a party in CSORAANONd
PEAS,PPBox,A, let C corrupt

the same party in SOINDCPAd
C . If A makes a corruption which under the permutation used

for embedding would lead to too many PE corruptions on a committee, then C can detect
this in PPT. And this is the Ab event, so the execution CSORAANONd

PEAS,PPBox,A→Ab stops
before C needs to execute the disallowed corruption. This gives us

Pr[CSORAANONd
PEAS,PPBox,A→Ab = 0] = Pr[SOINDCPAd

PEAS,PPBox,C = 0] ,

which via SO-IND-CPA gives us Eq. (1). ⊓⊔

C Justified ACS with Adjacent Output Rounds and Player
Replaceable Committees

We adapt the protocol ACS protocol from [KN23] to the YOSO setting. The high-level
changes are described in Section 7.2.

C.1 Sampling Committees using Cryptographic Sortition
Our TOB protocol does not rely on private channels and the committees can simply self-
nominate using the cryptographic sortition implementation from [GHM+17], which is de-
scribed in terms of parties who each have a weight w and where the sum of corrupted weight
must be less than a third of the total weight W by some constant fraction. In short a party Pi

who has wi units of the total weight W computes (h, π, j) = Sortition(ski, seed, n, role, w,W )
to privately check how many parties they are emulating on the committee for role, and other
parties can verify this using VerifySort(pki, h, π, seed, n, role, w,W ). Assuming the seed was
chosen before the secret key of each user, the probability that each unit of weight gets to
emulate a role is n

W
. We present the protocol in the standard setting of M parties of equal

weight, by simply fixing wi := 1 for all Pi and W := M . Since the assignment of each party
(or equivalently unit of weight) to a role is drawn independently from a Bernoulli distribution
we can apply lemma 24 from [BKLZL20] which we restate (slightly simplified).
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Lemma 2 (Lemma 24 from [BKLZL20]). If n ≤M , 0 < ϵ < 1/3, and T ≤ (1−2ϵ)M/3
bounds the number of corruptions, then a committee Crole sampled as above satisfies the
following except with probability negligible in n:

1. Crole contains fewer than (1 + ϵ) · n parties.
2. Crole contains more than ((1 + ϵ/2) · 2 · n)/3 honest parties.
3. Crole contains fewer than (1− ϵ) · n/3 corrupted parties.

In the following protocols we will be using P ∈ Crole as shorthand for a party P who was
elected for the committee of role and who implicitly sends proofs of this along with messages.
This does not affect communication complexity as the parties are already sending a O(λ) bit
hash. Additionally we use n as the expected size of Crole, and assume that t := (1− ϵ) · n/3
is an upper bound on the number of corrupted parties on Crole. We can think of n as a
statistical security parameter. Additionally, except for the committees used to implement
RB, the committees only need to have honest majority, so we can have concretely smaller
committees in those instances. For simplicity we let n be security parameter λ.

C.2 Eventual Justifiers

We will use the definition of Eventual Justifiers from [KN23]. An eventual justifier is a
predicate evaluated on a message and a party’s local view. They are required to be monotone
and propagating. Monotone in the sense that a party seeing a message as justified in their
view, does not at some later point consider it to not be justified. Propagating in the sense
that a message being justified at one party means that it will eventually be justified at all
honest parties. A recent example of justifiers being used in a synchronous model include
[LN23].

Definition 6 (Justifier [KN23]). For a message identifier mid we say that Jmid is a
justifier if the following properties hold.

Monotone: If for an honest P and some time τ it holds that Jmid(m,P, τ) = ⊤ then at all
τ ′ ≥ τ it holds that Jmid(m,P, τ ′) = ⊤.

Propagating: If for honest P and some point in time τ it holds that Jmid(m,P, τ) = ⊤,
then eventually the execution will reach a time τ ′ such that Jmid(m,P′, τ ′) = ⊤ for all
honest parties P′.

The justifiers are often used as an explanation for why a party sent a particular message.
It is natural to implement this by considering the predicate satisfied when a subset of the
messages you received would prompt you to send the same message if you were performing
the same role as the sender. Most of the protocol definitions in this section will have justifiers
on inputs and outputs, meaning that all inputs and outputs can be guaranteed to have certain
properties. This holds even for adversarial inputs and outputs, in the sense that if they are
accepted as justified in the view of an honest party, then they satisfy some predicate. We say
in that case that all possible justified outputs of a protocol satisfy the predicate. Similarly,
most protocol messages will come with justifiers which are used to reason about all possible

35



justified messages of some type satisfying some property. In many cases this means that an
adversary might lie about what message they should have sent in the protocol, but it will still
be a message that can be explained as something an honest party would have sent based on
a valid sequence of events, and therefore a message that is as good as what an honest party
would have sent. We refer to [KN23] for a formal definition of possible justified messages
and outputs. Combining justifiers with RB means that Byzantine parties cannot equivocate
and have to give a explanation for why they send each message, which in many cases can
combine to make an adversarial message have all the relevant properties we require of an
honest one.

C.3 Reliable Broadcast for long messages

We present a protocol for reliable broadcast (RB) it has the usual properties of Bracha’s
RB[Bra87].

Definition 7 (Reliable Broadcast). A protocol for M parties P1, . . . ,PM , where all par-
ties have input mid. The message identifier mid contains the identity of a sender Ps.

Validity: If honest Ps has input (mid,m) and an honest Pi has output (mid,m′) then m′ =
m.

Agreement: For all honest outputs (mid,m) and (mid,m′) it holds that m = m′.
Eventual Output 1: If Ps is honest and has input (mid, ·), and all honest Pj start running

the protocol, then eventually all honest Pi have output (mid, ·).
Eventual Output 2: If an honest Pj has output (mid, ·), and all honest parties start run-

ning the protocol, then eventually all honest Pi have output (mid, ·).

Our protocol for subquadratic and message length optimal RB follows the blueprint
of algorithm 4 by Das et al. [DXR21], but relies on a distinct self-nominated committee to
perform each activation rule. At a high level: after receiving the message from the designated
sender the remaining parties essentially run Bracha’s RB protocol on a hash of the message
while distributing shares of a Reed-Solomon encoding of the message. Each party Pi is
supposed to receive the ith share of the encoding from each party sending an echo message.
So if all honest parties receive the same message from the sender, then they forward a
matching hash and shares to each other party. It follows that if any message is supported by
the echo messages of a supermajority (making it unique), then any honest party Pi who sends
a ready message includes the ith share of that message. We restate it in Fig. 16 to illustrate
how it can have subquadratic communication when T < (1− ϵ)M/3 by instantiating it with
committees.

We only need to observe that it is YOSO (i.e., each committee member sends only one
message) and that when T < (1 − ϵ)M/3 we can by Lemma 2 sample committees of size
O(λ) where at most n parties are corrupted and more than twice as many are honest. Then
lowering the degrees of the polynomials used in the Reed-Solomon code to t means that
from any set of distinct shares greater than 3t of which at most t shares are incorrect one
can reconstruct the message. To be able to send a distinct share to all M parties we need
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Protocol ΠRB

Send: Ps sends m to all parties.
Echo: On receiving the first valid message mi from Ps each party Pi ∈ Cecho computes the Reed-Solomon

encoding and hash of their value Di = (s1, . . . , sn) = Encode(mi), hi = H(mi), and sends (echo, sj , hi) to
each party Pj ∈ P.

Ready 1: On receiving messages of the form (echo, s1
i , h) with the same values of s1

i and h from n−t distinct
parties in Cecho each party Pi ∈ Cready who has not yet sent a ready message sends (ready, s1

i , h) to all
parties.

Ready 2: On receiving messages of the form (ready, ·, h) from t + 1 distinct parties in Cready and messages
of the form (echo, s2

i , h) from t + 1 distinct parties Cecho with the same hash h and share s2
i , each party

Pi ∈ Cready who has not yet sent a ready message sends (ready, s2
i , h) to all parties.

Output: On receiving messages of the form (ready, s′
j , h) from at least n−t distinct parties each party P tries

to reconstruct from the shares received. To reconstruct, P first removes any shares from parties sending
more than one share and then, if reconstruction using the remaining shares is successful, outputs the
result and terminates. This step is repeated each time a new ready message is received, until successful
reconstruction.

Fig. 16. Reliable Broadcast

to pick the polynomials of the Reed-Solomon code to be over a field that is larger than M .
Concretely the messages just need to be of size log(M) · λ to dominate the total combined
sized of the points sent by the committee, resulting in message length optimality, but since
all parties will be including a cryptographic hash, a signature, and the output of a VRF
from sortition in their messages, the dominating cost will be λ parties sending λ bits to M
parties. This lowers the communication complexity of broadcasting an |m| bit message from
O(M(|m|+Mλ)) in [DXR21] to O(M(|m|+ λ2)).

The main insight is that if two committees with honest supermajority perform the echo
and ready roles, and the reconstruction threshold of the Reed-Solomon code is less than a
third of the committee size, the proof still goes through: If an honest party, P, terminates
because they saw n− t ready messages, then (as in Bracha’s original protocol) t + 1 honest
parties sent ready, and at least one of them, P′, did so because they saw n− t echo messages.
At least t + 1 of matching echo messages seen by P′ came from honest parties, and the
messages of these t+ 1 honest parties will eventually arrive at the remaining honest parties
(with a different set of matching shares). So now every honest party will eventually see t+ 1
echo messages (from the parties who sent echo to P’) with the same hash and same share,
t + 1 ready messages (from the honest parties who sent ready to P) with the same hash,
allowing them to reconstruct the message from the shares in the consistent ready messages,
and send their own share in a ready message. All honest parties sending a ready message in
turn allows every honest party to terminate.

C.4 Causal Cast

The concept of Causal Cast (CC)[KN23] is an abstraction over DAG based protocols that
utilize the structure of a DAG to infer what a party would have said in a protocol that they
are in an abstract sense running without directly sending the messages. It can be thought of
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as a tool to describe protocols in this paradigm (notable examples include [Bai16,KKNS21])
without needing to explicitly consider the structure of the DAG. Using the terminology of
CC a message of a party in the protocol is a computed message when it can be inferred by
pointing to previous messages instead of explicitly sending the message. This concept was
pioneered and dubbed “virtual voting” in [Bai16]. If a message, such as a message in a block,
needs to be introduced to the DAG, then it is instead a free-choice message. For motivation
of the remaining concepts we refer to [KN23]. What is important for our purposes is that
CC is used black box in [KN23] and that we can implement it in the YOSO model by giving
YOSO implementations of Reliable Broadcast and FCF, which are in turn used black box to
implement CC in [KN23]. We provide a YOSO RB in Appendix C.3 and assume access to
an ideal coin functionality FCF. However, there is the caveat that the ideal coin functionality
does not immediately provide an implementation of Leader Election, because the committees
are sampled using sortition. We show how to get around this hurdle in Appendix C.7.

Definition 8 (Causal Cast[KN23]). A protocol for M parties P1, . . . ,PM is called a
Causal Cast (CC) if it has the following properties.

Free-Choice Send: A party Pi can have input (cc-send,mid,m) where mid is a free choice
identifier Pi = Pmid and Jmid

in (m) = ⊤ at Pmid at the time of input.
Computed-Message Send: A party Pi can have input (cc-send,mid,m,mid1, . . . ,midℓ),

where mid is a computed-message identifier, Pi = Pmid, Pi earlier gave outputs (cc-del,midj,mj)
for j = 1, . . . , ℓ, and

⊥ ≠ m = NextMessagemid((mid1,m1), . . . , (midℓ,mℓ)) .

Constant Send: A party Pi can have input (cc-send,mid,m) where mid is a constant
identifier. In that case it is guaranteed that all parties eventually have the same input
(cc-send,mid,m).

Free-Choice Validity: A party Pi can have output (cc-del,mid,m), where mid is a free-
choice identifier. It then holds that Jmid

in (m) = ⊤ at Pi at the time of output. Furthermore,
if Pj = Pmid is honest, then Pj had input (cc-send,mid,m).

Coin Flip Validity: A party Pi may output (cc-del,mid,m) where mid is a coin-flip iden-
tifier mapping to an instance of FCF as defined in Fig. 29 and the index of a coin: ℓ. In
that case Pi has previously received output FCF.L[ℓ] from FCF.

Computed-Message Validity: A party Pi can have output (cc-del,mid,m,mid1, . . . ,midℓ),
where mid is a computed-message identifier. In that case Pi earlier gave outputs (cc-del,midj,mj, . . .)
for j = 1, . . . , ℓ, and ⊥ ≠ m = NextMessagemid((mid1,m1), . . . , (midℓ,mℓ)).

Constant Validity: A party Pi can have output (cc-del,mid,m). In that case it immedi-
ately before had input (cc-send,mid,m).

Liveness: If an honest party Pi had input (cc-send,mid, . . .) or some honest party had
output (cc-del,mid, . . .) and all honest parties are running the system, then eventually
all honest parties have output (cc-del,mid, . . .).

Agreement: For all possible justified outputs (cc-del,mid,m, . . .) and (cc-del,mid,m′, . . .)
it holds that m′ = m.
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We will also be using the notion of Justified Causal Cast protocols ([KN23]) in which
outputs are associated with a message identifier mid and can be sent as a computed message
(cc-send,mid,m,mid1, . . . ,midℓ), in which case the message identifiers mid1, . . . ,midℓ justify
the output. For a Justified Causal Cast protocol Π we will use Π.Jout to denote its output
justifier. This will be useful for reporting justified outputs of subprotocols.

Remark 1 (Honest Majority Committees). For the remaining protocols in this section we
only need “honest majority” committees, by which we mean that the following holds except
with probability negligible in n:
1. Crole contains fewer than (1 + ϵ) · n parties.
2. Crole contains more than ((1 + ϵ) · n)/2 honest parties.
3. Crole contains fewer than (1− ϵ) · n/2 corrupted parties.
This is implied by the bounds in Lemma 2, but in practice allows sampling committees that
are concretely smaller by picking an appropriately smaller n and letting t := (1− ϵ) · n/2.

C.5 Justified Gather

We restate the definition Justified Gather (Definition 9) and the protocol ΠGather (Fig. 17)
which implements it. Nothing changes from [KN23] apart from notation and each activa-
tion rule being performed by parties who self-nominate using sortition as described in Ap-
pendix C.1.

Definition 9 (Justified Gather). A protocol for M parties P1, . . . ,PM . There is an input
justifier Jin and an output justifier Jout specified by the protocol. All honest Pi have an input
Bi for which Jin(Bi) = ⊤ at Pi at the time the input is given.
Liveness: If all honest parties start running the protocol with a Jin-justified input then

eventually all honest parties have a Jout-justified output.
Justified Blocks: For all possible justified outputs U and all (potentially corrupt) Pi and

all (Pi, Bi) ∈ U it holds that Jin(Bi) = ⊤.
Validity: For all possible justified outputs U and all honest Pi and all (Pi, Bi) ∈ U it holds

that Pi had input Bi.
Agreement: For all possible justified outputs U and U ′ and all (Pi, Bi) ∈ U and (Pi, B

′
i) ∈

U ′ it holds that Bi = B′
i.

Large Core: For all possible justified outputs (U1, . . . , Um) it holds that |⋂m
k=1 U

k| ≥ n− t.

The proof that ΠGather is a Justified Gather protocol is presented in [KN23]. The only
change is that the dimensions of the table T and the combinatorial argument changes from
using a fixed committee size nC and corruption bound tC with tC < nC/2 to reasoning about
committees of random but bounded size elected using sortition. Concretely, let nGather;2 be
the number of parties in CGather;2 and nGather;3 be the number of parties in CGather;3, then the
table will have nGather;2 rows and nGather;3 columns. But this does not change the conclusion,
as in either case the n− t sets included in the unions will (except with negligible probability)
be more than half than the maximal actual committee size for all other committees in the
protocol. This holds even with the bounds in Remark 1.
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1. The input of Pi is Bi with Jin(Bi) = ⊤. Party Pi lets U0
i = {(Pi, Bi)}. The singleton set is justified by

Bi satisfying Jin.
2. For r ∈ [1; 3] each party Pi ∈ CGather;r-1 causal casts Ur−1

i as a computed message. Then each party Pi

collects incoming Ur−1
j from parties Pj ∈ CGather;r-1, lets P r

i be the set of Pj it heard from, waits until
|P r

i | ≥ n− t and lets
Ur

i =
⋃

Pj ∈P r
i

Ur−1
j .

The message is justified by being computed from the set P r
i where |P r

i | ≥ n− t.
3. Finally, Pi outputs U3

i .

Fig. 17. Protocol ΠGather.

C.6 Justified Graded Gather

We restate the definition of a Justified Graded Gather protocol from [KN23] in Definition 10
and the protocol, ΠGradedGather implementing it in Fig. 18.

Definition 10 (Justified Graded Gather). A protocol for M parties P1, . . . ,PM . There
is an input justifier Jin and an output justifier Jout specified by the protocol. All honest Pi

have an input Bi for which Jin(Bi) = ⊤ at Pi at the time the input is given.

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Justified Blocks: For all possible justified outputs (U, T ) and all (potentially corrupt) Pi

and all (Pi, Bi) ∈ U it holds that Jin(Bi) = ⊤.
Sub Core: For all possible justified outputs ((U1, T 1), . . . , (Um, Tm)) it holds that T i ⊆⋂m

k=1 U
k for all i ∈ [m].

Validity: For all possible justified outputs (U, T ) and all honest Pi and all (Pi, Bi) ∈ U it
holds that Pi had input Bi.

Agreement: For all possible justified outputs (U, T ) and (U ′, T ′) and all (Pi, Bi) ∈ S and
(Pi, B

′
i) ∈ U ′ it holds that Bi = B′

i.
Large Sub Core: For all possible justified outputs ((U1, T 1), . . . , (Um, Tm)) it holds that
|⋂m

k=1 T
k| ≥ n− t.

As in Appendix C.5 besides the committee being self-nominating nothing substantial
changes, and the proof follows from the one in [KN23] because the bounds in Remark 1
imply intersection between any two subsets of the committee of size n− t.

C.7 Justified Graded Block Selection

Justified Graded Block Selection as defined in [KN23] allows a set of parties to input a
justified block and get one as output alongside a grade with the following properties:

Definition 11 (Justified Graded Block Selection[KN23]). A protocol for M parties
P1, . . . ,PM . There is an input justifier Jin and an output justifier Jout specified by the proto-
col. All honest Pi have an input Bi for which Jin(Bi) = ⊤ at the time the input Bi is given.
The output of the protocol is a block Ci justified by Jout.
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1. The input of Pi is Bi with Jin(Bi) = ⊤. All parties run ΠGather with Pi inputting Bi justified by Jin. Let
the output of Pi be U ′

i . If Pi ∈ CGradedGather it then causal casts U ′
i as a computed-message justified by

ΠGather.Jout.
2. Party Pi collects U ′

j from parties Pj ∈ CGradedGather, lets Pi be the set of Pj it heard from and waits until
|Pi| ≥ n− t.

3. Party Pi outputs
(Ui, Ti) =

( ⋃
Pj ∈Pi

U ′
j ,

⋂
Pj ∈Pi

U ′
j

)
.

The outputs are justified by being computed as above from justified sets.

Fig. 18. ΠGradedGather

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Justified Output: Jin(Ci) = ⊤ holds for all possible Jout-justified outputs Ci.
Graded Agreement: For all possible justified outputs (Ci, gi) and (Cj, gj) it holds that
|gi − gj| ≤ 1. Furthermore, if both gi, gj > 0 then Ci = Cj.

Positive Agreement: There exists α > 0 such that with probability at least α − negl all
possible justified outputs of at least n− t parties will have grade gi = 2.

Stability: If there are possible justified outputs (Ci, gi) and (Cj, gj) with Ci ̸= Cj then there
exist two justified inputs Bi and Bj with Bi ̸= Bj.

We will start out by presenting a protocol, ΠWeakGradedSelectBlock, with a weakened version
of the Positive agreement property:

Weak Positive Agreement There exists α > 0 such that with probability at least α−negl
some honest Pi will have output (Ci, gi) with gi = 2.

This will in turn be used to implement a full fledged Justified Graded Block Selection protocol
with a strengthened Stability property in Appendix C.8.

ΠWeakGradedSelectBlock is presented in Fig. 19. It is using the core principles from the cor-
responding primitive in [KN23] but needs a few modifications to function in our setting
where the committees are self-nominated. The main challenge is that parties do not have
a description of the committee. They do not even know its exact size. So, we cannot in a
straightforward manner map a random string to a member of the committee. Instead, for
each committee member seen in our accumulated set we will feed the coin output together
with their party identifier through the random oracle, H, and obtain a string which was
unpredictable before the sub core of the accumulated sets were fixed for the first honest
party. We will locally regard the party who has the lexicographically least string as a leader
candidate and then gossip candidates to get graded agreement on a leader and their block.
If it happens that the committee member with the least string is in a sub core, Ti, then Pi

gets a grade 2 output. Due to the Large Sub Core property of ΠGradedGather this happens
with good constant probability as at least one honest Ti is fixed when the first honest party
initiates FCF.

When instantiating this ΠWeakGradedSelectBlock as shown in Fig. 19 with FCF from Fig. 29,
then it satisfies Definition 11 with Weak Positive Agreement.
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1. The input of Pi is Bi with Jin(Bi) = ⊤.
2. The parties run ΠGradedGather with input Bi and input justifier Jin. Let the output of Pi be (Ui, Ti).
3. After getting output from ΠGradedGather the parties input next-coin to FCF and then coin-index to get

the corresponding coin identifier ℓ.
4. On output (ℓ, coin) from FCF if Pi ∈ CFirstRoundCandidate: for each Pj ∈ Ui let ticketj = H(Pj∥coin), let Pk

be the one with the lexicographically least ticketk value, and send (FirstRoundCandidate, Pk) as a Causal
Cast message computed from the set Ui and coin.

5. On receiving n − t (FirstRoundCandidate, Pk) messages from parties in CFirstRoundCandidate each Pi ∈
CSecondRoundCandidate: If all the relayed Pk are identical lets bi = ⊤, and otherwise bi = ⊥ and finally
sends (SecondRoundCandidate, Pk) as a Causal Cast computed message based on the set of received
FirstRoundCandidate messages.

6. On receiving n− t (SecondRoundCandidate, bj) messages from parties in CSecondRoundCandidate each Pi: lets ni

be the number of messages where bj = ⊤, if ni > 0 lets Pk be a party included in n−t FirstRoundCandidate
messages, and outputs

(Ci, gi) =


(Bk, 2) if ni ≥ n− t ∧ ∃(Pk, Bk) ∈ Ti

(Bk, 1) if ni > 0 ∧ ∃(Pk, Bk) ∈ Ui \ Ti

(Bi, 0) if ∄(Pk, ·) ∈ Ui ∨ ni = 0 .

and if it is on the committee CGradedSelectBlock Causal Casts (Ci, gi). The output is justified by being
computed as above from justified values.

Fig. 19. ΠWeakGradedSelectBlock

Lemma 3. ΠWeakGradedSelectBlock satisfies Justified Graded Block Selection Definition 11 with
Weak Positive Agreement.

Proof. Liveness and Justified Output are trivial. Stability holds because the output justifi-
cation transitively refers to a justified input through computed messages. We argue Graded
Agreement: Assume a party Pi has output (Bk, 2). Then ni ≥ n− t and Bk ∈ Ti. Now for any
other party Pj the Sub Core property of ΠGradedGather ensures that Bk ∈ Uj, and because all
second round messages were sent through CC (i.e. without equivocations) ni ≥ n− t implies
nj ≥ n−2t > 0. So, we have taken care of |gi−gj| ≤ 1 as Pj must now have grade at least 1. (If
no party has grade 2 there is nothing to show.) Now consider any party Pi with output grade
at least 1. This party had ni > 0, and thus received at least one (SecondRoundCandidate,⊤)
message justified by n− t (FirstRoundCandidate,Pk) messages on the same party Pk which by
intersection and the messages being sent through CC implies that no other party Pl can be
included in n− t FirstRoundCandidate messages, which in turn means that only Bk can get a
grade of 1 or 2. We finally argue Weak Positive Agreement: When modelling H as a random
oracle: except with negligible probability there are no collisions among the outputs of H,
and the probability that the party, Pi, which has the lexicographically least ticketi value
globally in a set S, is in any subset of size c|S| where the subset is independent from coin
is c− negl. Let Pj be the first honest party to give input next-coin to FCF. In particular Pj

already had output (Tj, Uj) from ΠGradedGather while the value of coin was unpredictable, so
an adversary cannot have chosen Tj to correlate with coin. By the Large Sub Core property
of ΠGradedGather the intersection of all possible justified T values has size at least n − t.
In particular, the probability that Pi has the lexicographically least ticketi value is in Tj is
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at least n−t
t
− negl.6 Assume Pi ∈ Tj. Then by Sub Core Pi ∈ Uk for all possible justified

Uk and thus (FirstRoundCandidate,Pi) is the only justifiable FirstRoundCandidate message,
which means that (SecondRoundCandidate,⊤) is the only justifiable SecondRoundCandidate
message and the output of Pj must be (Bi, 2).

C.8 Justified Strongly Stable Graded Block Selection

For our construction it will be useful to make sure that when instances of a Justified Graded
Block Selection are run sequentially with the outputs being fed back as justified inputs
to the next iteration, then whenever a party gets an output with grade 2 all other parties
receive grade 2 in the next iteration. This is ensured by adding the following Strong Stability
property.

Definition 12 (Justified Strongly Stable Graded Block Selection). A Justified
Graded Block Selection protocol that additionally satisfies the following Strong Stability prop-
erty.

Strong Stability: If there is a possible justified output (Ci, gi) with gi < 2 then there exist
two justified inputs Bi and Bj with Bi ̸= Bj.

Given a protocol ΠWeakGradedSelectBlock satisfying Definition 11 with Weak Positive Agree-
ment we construct ΠStronglyStableGradedSelectBlock by adding two rounds of Causal Cast in Fig. 20
and show that it satisfies Definition 12.

Lemma 4 (Strong Stability). ΠStronglyStableGradedSelectBlock is a Justified Strongly Stable
Graded Block Selection protocol.

Proof. Liveness and Justified Output is trivial. To get soft grade h = 1 one has to see the
same block from a majority. Since all block are sent through RB, at most one block can have
votes from a majority. It follows that blocks with grade g > 0 are identical as they justified
by at least one block with soft grade h = 1. It is impossible for one party to get grade g = 0
and another to get grade g = 2 as each requires a majority of votes on soft grades h = 0 and
h = 1 respectively. Finally the strong stability follows from the input values being justified,
so if only one block is justified by Jin, then all parties get h = 1 and g = 2. Note that the
Justified output property means that the inner protocol ΠWeakGradedSelectBlock preserves the
input justifier. For the same reason positive agreement holds, in fact a stronger statement
holds: a single party getting grade g = 2 in the ΠWeakGradedSelectBlock results in everyone getting
grade g = 2.

6 Note that while we informally refer to the committees as having honest majority, Remark 1 in fact specifies that
the honest parties outnumber the adversary by a number which is a constant fraction of the committee size, so
the probability of terminating is constant in every round.
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Protocol ΠStronglyStableGradedSelectBlock

1. The input of Pi is Bi with Jin(Bi) = ⊤.
2. Party Pi runs ΠWeakGradedSelectBlock with Bi as input using Jin(Bi) as justifier, and gets output (B1

i , ·).
If Pi ∈ CUpgrade1 it causal casts (Upgrade1, B1

i ) justified by ΠWeakGradedSelectBlock.Jout.
3. Party Pi collects justified messages (Upgrade1, B1

j ) from at least n− t parties Pj ∈ P 1
i ⊆ CUpgrade1 and lets

(B1
i , hi) =

{
(B, 1) if ∃B : |{P ∈ P 1

i |P sent (Upgrade1, B)}| ≥ n− t

(⊥, 0) otherwise.

If Pi ∈ CUpgrade2 it causal casts (Upgrade2, B2
i , hi) justified by P 1

i .
4. Party Pi collects justified messages (Upgrade2, B2

j , hj) from at least n− t parties Pj ∈ P 2
i ⊆ CUpgrade2.

(Ci, gi) =


(B, 2) if ∀P ∈ P 2

i : P sent (Upgrade2, B, 1)
(B, 1) if ∃P ∈ P 2

i : P sent (Upgrade2, B, 1)
(Bi, 0) if ∀P ∈ P 2

i : P sent (Upgrade2,⊥, 0) .

Output (Ci, gi) with output justifier P 2
i .

Fig. 20. ΠStronglyStableGradedSelectBlock

C.9 Justified Block Selection with Adjacent Output Round Agreement

We now present a modified version of the Justified Block Selection primitive from [KN23]. It
satisfies all of the properties of the original primitive, but adds a round number to the output
and the guarantee that all parties give output in adjacent rounds. As in the original protocol
the parties repeatedly execute a Justified Graded Block Selection protocol until a block is
selected with grade 2 which guarantees that all other parties selected the same block with
at at least grade 1. Because we are using a version with Strong Stability, all honest parties
will output in adjacent rounds, and moreover it is impossible to cook up a justification for
outputting in a round where an honest party could not have given output.

Definition 13 (Justified Block Selection with Adjacent Output Round Agree-
ment). A protocol for M parties P1, . . . ,PM . There is an input justifier Jin and an output
justifier Jout. All honest Pi have an input Bi for which Jin(Bi) = ⊤ at the time the input
was given. The output of the protocol is a block (Ci, ri) justified by Jout.

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Justified Output: Jin(Ci) = ⊤ holds for all possible Jout-justified outputs Ci.
Agreement: For all possible justified outputs (Ci, ri) and (Cj, rj) it holds that Ci = Cj.
Adjacent Output Round Agreement: For all possible justified outputs (Ci, ri) and (Cj, rj)

it holds that |ri − rj| ≤ 1, and if (·, r) is a justified output then no honest party sent a
message in any round r′ > r + 1.

The protocol ΠSelectBlock is identical to the protocol in [KN23] except it is adapted to use
committees, it has a round number added to its output, and it uses Strongly Stable Graded

44



Protocol ΠSelectBlock

1. Each party Pi initialises GaveOutputi = ⊥.
2. Each party Pi ∈ CSelectBlockInput with input Bi where Jin(Bi) = ⊤, lets B0

i = Bi and g0
i = 0 and Causal

Casts (B0
i , g0

i ), which is justified by Jin(B0
i ) = ⊤ and g0

i = 0.
3. For rounds r = 1, . . . each part Pi with GaveOutputi = ⊥ runs ΠStronglyStableGradedSelectBlock where:

(a) Pi has input Br−1
i .

(b) The input of Pi is justified by a justified (Br−1
i , gr−1

i ) with gr−1
i < 2.

(c) Pi eventually gets justified output (Br
i , gr

i ).
4. In addition to the above loop each Pi runs the following echo rules:

– In the first round r where GaveOutputi = ⊥ and gr
i = 2, set GaveOutputi = ⊤ and output (Ci, ri) =

(Br
i , r). The output justifier is the justifier for (Br

i , gr
i ).a If Pi ∈ CEchoOutput it causal casts (Br

i , gr
i )

with justifiers as a computed message.
– In the first round r where GaveOutputi = ⊥ and where some justified (Bρ

j , gρ
j ) propagated from

Pj ̸= Pi with gρ
j = 2, set GaveOutputi = ⊤, and output (Ci = Bρ

j , ρ). The output justifier is the
justifier for (Bρ

j , gρ
j ).

a Note that as the inputs had grade less than 2 this justifies the protocol not terminating earlier, forcing
even corrupt parties to output a round number in which an honest party could have terminated.

Fig. 21. ΠSelectBlock

Block Selection as subprotocol instead of Graded Block Selection7. So it still implements
Justified Block Selection by the proof in [KN23]. We only need to argue that it additionally
satisfies the Adjacent Output Round Agreement property.

Lemma 5 (Adjacent Output Round Agreement). For all possible justified outputs of
ΠSelectBlock (Ci, ri) and (Cj, rj) it holds that |ri − rj| ≤ 1.

Proof. Consider any output (Ci, ri) justified by the justifier for (Bri
i = Ci, g

ri
i = 2), and any

output (Cj, rj) justified by the justifier (Brj

j = Cj, g
rj

j = 2). If ri = rj we are done, so assume
they are different and without loss of generality that ri ≤ rj. Since the output in round ri

was justified by a grade 2, then by Graded Agreement all possible justified outputs from
ΠWeakGradedSelectBlock in round ri contain the same block. Which in turn by Strong Stability
implies that all justified outputs in round ri + 1 have grade 2, and thus that there are no
justified input to ΠWeakGradedSelectBlock in round ri+2. It follows that if (·, r) is a justified output
of ΠSelectBlock, then no honest party initiated ΠWeakGradedSelectBlock for any round r′ > r + 1.

C.10 Justified Agreement on Core Set with Adjacent Output Round
Agreement

We present a YOSO protocol for ACS ΠACS, which again is almost identical to the protocol in
[KN23], except that it is adapted to use YOSO committees and and adds a round number to
its output. Since this is just the output from ΠSelectBlock, ΠACS inherits the Adjacent Output
Round Agreement property. This just adds some auxiliary information to the output and
has no effect on the validity of the proofs showing that it satisfies the remaining properties

7 Note that the former is just a special case of the latter
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of ACS. In conclusion ΠACS satisfies Definition 14 which is identical to the ACS definition
from [KN23], except that it includes the Adjacent Output Round Agreement property.:

Definition 14 (Justified ACS with Adjacent Output Round Agreement). A pro-
tocol for M parties P1, . . . ,PM with input and output justifiers Jin and Jout. All honest Pi

have an input Bi for which Jin(Bi) = ⊤ at the time of input.

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Validity: For all possible Jout-justified outputs (U, ·) and all honest Pi and all (Pi, Bi) ∈ U
it holds that Pi had input Bi.

Justified Blocks: For all possible justified outputs (U, ·) and all (potentially corrupt) Pi

and all (Pi, Bi) ∈ U it holds that Jin(Bi) = ⊤.
Agreement: For all possible justified outputs (Ui, ·) and (Uj, ·) it holds that Ui = Uj.
Large Core: For all possible justified outputs (U, ·) it holds that |S| ≥ n− t.
Adjacent Output Round Agreement: For all possible justified outputs (Ui, ri) and (Uj, rj)

it holds that |ri − rj| ≤ 1 and if (·, r) is a justified output then no honest party sent a
message in any round r′ > r + 1.

Protocol ΠACS

1. The input of Pi is Bi with Jin(Bi) = ⊤.
2. If Pi ∈ CACSPropose is causal casts Bi. This message is justified by Jin(Bi) = ⊤ and Bi having been reliably

broadcast by Pi.
3. Party Pi collects at least n−t justified Bj from parties Pj ∈ Collectedi and lets Ui = {(Pj , Bj)}Pj ∈Collectedi .

This value is justified by each Bj being justified and |Ui| ≥ n− t.
4. Run ΠSelectBlock where Pi inputs Ui. The input justifier of ΠSelectBlock is to check that Ui is justifiable as

defined in the above step.
5. Party Pi gets output (Ci, ri) from ΠSelectBlock and outputs (Ci, ri). The output justifier is that (Ci, ri) is

a justified output from the above ΠSelectBlock.

Fig. 22. ΠACS

D Proofs for Total-Order Broadcast

In this section we will switch from simulation based security to game-based security and
prove that the protocol ΠTOB defined in Fig. 13 satisfies the following definition.

Definition 15 (Game-based TOB). We say that a protocol for M parties ΠTOB is a
game-based secure TOB if for all PPT environments corrupting at most T < (1 − ϵ)M/3
parties the following properties hold except with negligible probability for at random run
ExecΠTOB,E in the (FCF,Fatomic-send)-hybrid model. Each party P holds a ledger LP.

Agreement For any honest P and P′, either LP ⊑ LP′ or LP′ ⊏ LP.
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Validity For each honest party P with ledger LP. If (mid,m) is in a block in LP and
P (mid) = Pi and Pi is honest, then Pi sent (mid,m). Additionally, when looking at LP
as a sequence of blocks B1, . . . , Bb, the wait predicate W is satisfied for each prefix, i.e.
W i(B1|| . . . ||Bi−1, Bi) for each batch i.

Liveness Assuming new wait predicates W i and messages satisfying them are continuously
input to the protocol and that all honest parties get the same wait predicates in the same
batches, then all messages input to the protocol are eventually added to LP for all honest
parties P.

The UC and game based definitions are equivalent as long as there are no secret inputs
to simulate, only correctness properties. Appendix D.1 elaborates.

Theorem 5. The protocol ΠTOB described in Fig. 13 satisfies the game-based definition of
Total-Order Broadcast in Definition 15. Assuming block size, α = Ω(λ) it uses expected
O(M(β+ ιλ2)) bits of communication to order ι messages of combined size β in the coin flip
hybrid model, and additionally needs setup for expected amortized O(1) coin flips per batch
to be computed to instantiate the coin flip.

Proof. Agreement follows immediately from agreement of ACS and RB. Validity with respect
to the individual messages in the block follows from the validity of RB, while the validity
with respect to the wait predicate follows from all blocks input to ACS being justified by
individually satisfying the wait predicate and the fact that a list of messages that satisfy
the wait predicate will still satisfy it after permuting it or adding more message to it (cf.
Section 5). Finally liveness follows from liveness of the subprotocols. Note that unless ΠTOB
is continuously updated with new wait predicates that all parties agree on, the liveness
property is an empty statement. ΠSelectBlock terminates in expected constant rounds, and
since the protocol repurposes unused setups at most an expected constant number of new
setups needs to be computed per batch. Each batch of the TOB consists of reliable broadcasts
of the messages referenced in the block and one instance of ΠACS to agree on which messages
makes it into each batch and in which order. To produce new batch ΠTOB runs one instance
of ΠACS to agree on a set of blocks which references messages that were previously RBed.
We first account for the cost RBing messages across all batches which for ι messages of
combined size β is O(M(β + ιλ2)) when using ΠRB. In each batch a committee of expected
λ parties RB a block which references within a constant of max(α,W#) messages, which
has communication complexity O(λM(max(α,W#) logM + λ2)). Even if they all happen
to reference the same same set of messages, this gives a per message cost of O( Mλ3

max(α,W#)),
which since we assumed α = Ω(λ) is O(Mλ2) and thus dominated by the cost of RBing the
message we accounted for above. Finally to run ΠACS on the proposed blocks, a sequence of
an expected constant number of committees of expected size λ need to send descriptions of
subsets of the preceding committee through RB. This can again be done by each committee
member sending a λ2 bit list of public keys through the RB protocol which for each list
has communication complexity O(Mλ2). So, each invocation of ΠACS contributes O(Mλ3)
bits of communication. Again since we assumed at least α = Ω(λ) messages per epoch this
O(Mλ2) per message and dominated by the RB of the messages. In conclusion we get a
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communication complexity of O(M(β + ιλ2)) to add ι messages of combined size β to the
ledger, which is optimal if the average message size if Ω(λ2).

D.1 Equivalence Between Game Based and UC TOB

The following theorem shows that game-based security implies simulation based security for
TOB.

Theorem 6. If ΠTOB is a game-based TOB then ΠTOB UC security implements FTOB in
the (FCF,Fatomic-send)-hybrid model against T < (1− ϵ)M/3 adaptive corruptions.

Proof. We have to prove that there exists a PPT simulator S such that ExecΠTOB,E ≈
ExecFTOB,S,E for all PPT environments E doing at most T < (1 − ϵ)M/3 adaptive corrup-
tions. The simulator S proceeds as follows. Note that whenever an input is given to FTOB
information is leaked which allows S to compute this input. The simulator will run ΠTOB
on these inputs including copies of FCF and Fatomic-send. It lets the environment E interact
with FCF and Fatomic-send as in ExecΠTOB,E . Whenever the copy of ΠTOB run by S produces
an output then S uses its influence over FTOB to make the copy of FTOB in ExecFTOB,S,E
produce the same outputs to the same parties as ΠTOB. To be able to do this it is clearly
enough that ΠTOB is a game-based TOB, as this ensures its outputs are always possible
outputs of FTOB. ⊓⊔

When we work with game-based security definitions for sub-protocols, in all cases the
properties are tacitly meant to hold hold except with negligible probability for all PPT
environments corrupting at most T < (1 − ϵ)M/3 parties and for a random run ExecΠTOB,E
in the (FCF,Fatomic-send)-hybrid model.

E Two-level ciphertexts.

In this section, we show how parties in a committee can generate random ciphertexts of form
EN,wi+1(EN,wi

(0)) for i = 1 . . . λ− 1 and prove they are correctly formed. These can then be
combined to get a random two-level encryption of 0, and such a ciphertext can in turn be
used to randomize encryptions in the multiparty version of the PIR protocol.

For this purpose, we will need that a party P , can publish a “two-level” encryption of 0:
c = EN,wi+1(EN,wi

(0)) and give a non-interactive zero-knowledge proof that the ciphertext
was correctly formed. We will denote such a proof for the above relation by NIZK((r, s) : c =
EN,wi+1(EN,wi

(0; r); s)). Below, we present and analyse a Σ-protocol for this relation which
can then be made non-interactive in the random oracle model, as usual. The protocol is
novel, and is an application of techniques known from so-called double discrete log proofs.

Random Two-level Encryptions The protocol in Fig. 23 produces a random two-level
encryption of 0. Several instances can be run in parallel to create any desired number of
outputs.
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Protocol RandTwoLevel

1. On input i, where 0 ≤ i < S, Each member Pu of the current committee computes du =
EN,wi+1 (EN,wi (0; ru); su) and sends du, πu to FTOB, where

πu = NIZK((ru, su) : du = EN,wi+1 (EN,wi (0; ru); su)) .

2. Once h ≥ n − t valid contributions (d1, π1), . . . , (dh, πh) are delivered from FTOB, output d =
Multiply(d1, . . . , dh)

Fig. 23. The protocol for generating random two-level encryptions of 0

For correctness of RandTwoLevel, note that the plaintext inside the output ciphertext d
is the product of the plaintexts inside the du’s which are themselves ciphertexts. Hence, d is
an encryption of

t∏
u=0

EN,wi
(0; su) mod N i+1 = EN,wi

(0;
t∏

u=0
su mod N).

So, d is itself a two-level encryption of 0, where at least one contribution to the randomness
comes from an honest player since there are t + 1 contributions. We can therefore think of
the protocol as implementing a functionality that produces random two-level encryptions of
0.

The protocol in Fig. 24 allows a party, here denoted by P , to publish a two-level en-
cryption of 0: EN,wi+1(EN,wi

(0)) and convince a verifier V in (honest verifier) zero-knowledge
that is correctly formed. This protocol can then be turned into a non-interactive proof using
standard tools, to form the proof needed in the RandTwoLevel protocol

Protocol TwoLevel.

1. P sends the ciphertext c = EN,wi+1 (EN,wi (0; r); s) to V , and then the proof below is executed k times in
parallel.

2. (a) P computes EN,wi (0; r′) for random r′ and sends to V

a = cEN,wi
(0;r′)s′Ni+1

mod N i+2 = EN,wi+1 (EN,wi (0; rr′ mod N); ss′ mod N)

(b) V sends a random bit e to P .
(c) If e = 0, P sends z1 = r′ and z2 = s′ to V . If e = 1, P sends z1 = rr′ mod N and z2 = ss′ mod N .
(d) If e = 0, V checks that a = cEN,wi

(0;z1)zNi+1
2 mod N i+2.

If e = 1, V checks that a = EN,wi+1 (EN,wi (0; z1); z2).

Fig. 24. The Σ-protocol for two-level ciphertexts

Theorem 7. For any i = 0, . . . , S−1, the TwoLevel protocol is a Σ-protocol for the relation

{((N,wi, wi+1, c), (r, s))| c = EN,wi+1(EN,wi
(0; r); s)},
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i.e., P knows r, s such that c = EN,wi+1(EN,wi
(0; r); s) and the protocol is complete and perfect

honest verifier zero-knowledge.

Proof. Completeness is clear from inspection of the protocol. For special soundness (which is
well-known to imply standard knowledge soundness), we assume we are given two accepting
conversations (a, e, z1, z2) and (a, e′, z′

1, z
′
2) with e ̸= e′, and must show that we can efficiently

find valid values for r, s. Assume without loss of generality that e = 0. Then we have

cEN,wi
(0;z1)zN i+1

2 mod N i+2 = a = EN,wi+1(EN,wi
(0; z′

1); z′
2)

which implies
cEN,wi

(0;z1) = EN,wi+1(EN,wi
(0; z′

1); z′
2z

−1
2 mod N)

One can now compute EN,wi
(0; z1)−1 mod N i+1, and observe that for some integer w we have

EN,wi
(0; z1)−1 ·EN,wi

(0; z1) = 1 +wN i+1. Now, by raising both side of the above equation to
EN,wi

(0; z1)−1, we get

c = EN,wi+1(EN,wi
(0; z′

1z
−1
1 mod N); z′

2z
−1
2 c−w mod N) .

Thus we see that we can compute valid values for r, s given the two conversations.
Finally, for honest verifier zero-knowledge, we show a simulator which first chooses ran-

dom bit e and random z1, z2 ∈ Z∗
N . Then, if e = 0 it sets a = cEN,wi

(0;z1)zN i+1
2 mod N i+2. If

e = 1 it sets a = EN,wi+1(EN,wi
(0; z1); z2), and finally, it outputs (a, e, z1, z2). It is clear that

e, z1 and z2 have the right distribution, and a is set to be the only correct value, given e, z1
and z2. Hence the simulation is perfect. ⊓⊔

F Linear Integer Secret Sharing

The material on linear integer secret sharing in this section is taken from [DT06], while the
later section on non-interactive VSS is a contribution of this paper.

We will need to secret share the secret decryption exponent which of course “lives in the
exponent”. So, the natural choice would be a sharing scheme that uses arithmetic modulo
the order of the group. However, all parties need to be able to run the scheme and the group
order is not public knowledge, so we resort to secret-sharing over the integers instead. Earlier
work has used integer variants of Shamir’s scheme, but this leads to technical difficulties due
to the fact that the Lagrange coefficients needed for interpolation are not integers. In earlier
work, this implies that the size of the shares grow each time the secret key is re-shared. We
will instead use a linear integer sharing scheme (LISS), which allows us to avoid this problem
and simplify the protocols, at the cost of a larger share size in the beginning.

A LISS is defined by a sharing matrix M with integer entries, c columns and ℓ rows (one
can think of as replacing the Van der Monde matrix from Shamir’s scheme). One can share
a secret number s ∈ [0, 2b] for a publicly known upper bound b among n players. To do this,
choose a column vector vs with s as the first entry and sufficiently large random numbers in
the other entries (we make this precise in a moment). Shares are computed as the product
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M · vs. This corresponds to evaluating the polynomial in a number of points in Shamir’s
scheme.

Each row of M is labelled with an index in [1, n], we say that each row is owned by a
player. Our notation for this is that row i is owned by player number u(i). Each entry in
M · vs corresponds to a row, and the entry is handed to the player who owns that row. We
will refer to an entry in M · vs as a share, but note that each player may receive several
shares.

For each player set A we let MA denote the matrix we obtain by selecting from M only
the rows owned by players in A. If A is qualified to reconstruct the secret, there exists a
reconstruction vector rA with the property that

rA · (MA · vs) = s,

this corresponds to the interpolation in Shamir’s scheme.
If A is not qualified to reconstruct, there exists a sweeping vector wA, which has 1 as it’s

first entry, and further has the property that MA · wA is the all-0 vector. It can be shown
that the existence of wA implies statistical privacy of the scheme. Namely, we define wmax

to be the maximal numeric value of any entry occurring in any wA. Then, a valid sharing
vector for s ∈ [0, 2b] is a vector vs with s in the first entry, and with the other entries chosen
uniformly from [0, 2b+log2(wmax)+k], where k is the security parameter.

Lemma 6. For any two secrets s, s′ ∈ [0 . . . 2b], the distributions of shares seen by A from
sharing s or s′, with valid sharing vectors, are statistically indistinguishable.

Proof. (Sketch) if s was shared using vs, one could instead have shared s′ using vs+(s′−s)wA,
and the players in A would receive exactly the same shares. But the numbers in vs are a
factor 2k larger than those in (s′− s)wA, so vs + (s′− s)wA is statistically indistinguishable
from a valid sharing vector for s′, so the lemma follows.

It has been shown [DT06] that LISS schemes with polynomial share size exist for the
threshold case, where any majority of the players are qualified to reconstruct, this follows
from the fact that polynomial size monotone formulae exist for computing the majority
function. We let Mth denote such a scheme for n players. It is also straightforward to see
that simple additive secret sharing can be realized in this formalism, using a matrix Madd

with one n + 1 columns and n rows. namely, Madd is the identity matrix, except that the
first row has −1 in the last n entries. Notably, for these schemes, all entries in all sweeping
vectors are 1 or −1, so the numbers in a valid sharing vector just need to be k bits longer
than the secret.

In this paper, we will need to share a secret among the members of two committees,
that we will call the additive committee and the threshold committee. This is needed for
technical reasons, to obtain adaptive security. The idea is to share the secret additively
among the members of the additive committee, and then each additive share is shared among
the members of the threshold committee. It is not hard to see that this can be phrased as
one LISS scheme using a matrix M that we can build from Madd and Mth. We will not do
the straightforward (but very tedious) details of this.
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Note that, in the scheme defined by M the sets qualified to reconstruct the secret will
be, either all members of the additive committee, or a majority of the threshold committee.

Verifiable Secret Sharing We require a verifiable LISS scheme that can be used to do
distributed exponentiation in the groups Z∗

Ns+1 , for s = 1, . . . , S. We will use a Pedersen-style
construction for this, where the idea is that the secret and the sharing vector are committed
to using the integer commitment scheme Comck(·; ·) we described in the preliminaries. We
then define the algorithm VSSshare, in figure 25.

Algorithm VSSshare.

1. To share a secret d, choose a valid sharing vector vd and compute sh(d, vd) = M · vd.
2. Choose a vector r containing randomness values for the commitment scheme and compute commitments

to each entry vd[j] as βj = Comck(vd[j]; r[j]) as well as ra(r) := M · r.
3. Output

VSS(d, vd, r) = (sh(d, vd), ra(r), β1, . . . βc).

Fig. 25. The VSSshare algorithm.

Note that β1 = Comck(d; r[1]) and so serves as a commitment to the secret.
Assume a dealer distributes the shares in sh(d,vd) to the players who own them, as

well as the corresponding values in ra(r), and makes the βj’s public. Then the players can
verify their shares. Namely, let mi be the ith row of M , then sh(d,vd)[i] = mi · vd, and
ra(r)[i] = mi · r. So, using the βj’s and mi, the holder of the i’th share can compute a
commitment αi to his share and verify that she has been given information to correctly open
it. The check is done by verifying that:

αi :=
c∏

j=1
β

mi[j]
j = Comck(sh(d,vd)[i]; ra(r)[i]) (2)

This equation should hold by the homomorphic property of the commitments. Indeed, we
have:

αi =
c∏

j=1
β

mi[j]
j (3)

=
c∏

j=1
(Comck(vd[j]; r[j]))mi[j] (4)

= Comck(mi · vd; mi · r) (5)
= Comck(sh(d,vd)[i]; ra(r[i])). (6)

We explain below how this check ensures that the secret is well-defined and can be recon-
structed.
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Non-interactive VSS In the usual form of a VSS, players would receive shares and com-
plain if they fail verification. However, we will need a non-interactive VSS, i.e., a possibly
corrupt dealer can broadcast a single message to a set of n players and as a result they ob-
tain valid shares of the secret the dealer had in mind, or they all conclude that the dealer is
corrupt. The idea for this is straightforward: the dealer will compute VSS(d,vd), encrypt the
individual shares for each player, and attach non-interactive zero-knowledge proofs that the
correct shares are encrypted. We assume that the public keys of the share holders P1, . . . , Pn

are gpk1, . . . , gpkn, these are keys for the El Gamal-style encryption we defined before.
Then, given α = Comck(z; v) for some z, v and a ciphertext c = Egpku

((z, v); r), we require
a non-interactive zero-knowledge proof of knowledge that the ciphertext contains the integers
z, v used in forming α, and also that z is in a bounded interval [0, 2a]. We denote such a
proof by

NIZK(z, r, v : α = Comck(z; v), c = Egpku
((z, v); r), z ∈ [0..2a])

In the following we will use this proof in a case where z is a share of some secret. The secret
will be verified to be at most 2b, so it follows that the entries in the sharing vector should
be chosen from a bounded size interval as explained above, and given the sharing matrix M
this implies an upper bound on the size of any share, we denote this bound by 2sh(b), and
will use it as the bound 2a in the proof.

We also require a non-interactive zero-knowledge proof of knowledge that the prover
knows how to open a set of commitments β1, . . . , βc, and that the integer committed to in
β1 is in the interval [0, 2b], recall that the secret is committed to via β1. We denote such a
proof by

NIZK({aj, bj}c
j=1 : {βj = Comck(aj; bj)}c

j=1, a1 ∈ [0, 2b])

We will assume that the proof systems are statistical zero-knowledge, on-line extractable
and unconditionally simulation sound, as explained in Section 2. A dealer in our VSS will
proceed using the NonIntVSSshare algorithm, in Figure 26.

Algorithm NonIntVSSshare

1. To share a value d ∈ [0, 2b], first compute VSS(d, vd, r) = (sh(d, vd), ra(r), β1, . . . βc) as defined above.
2. Compute

π0 = NIZK({vd[j], r[j]}c
j=1 : {βj = Comck(vd[j]; rj)}c

j=1, vd[1] ∈ [0, 2b]).
3. For each i = 1 . . . ℓ, let si = sh(d, vd)[i] and vi = ra(r)[i]. Use equation 2 to compute αi = Comck(si; vi).

Compute a ciphertext ci = Egpku(i) ((si, vi); ri), where gpku(i) is the public key of the receiver of the i’th
share.

4. For i = 1 . . . ℓ, compute

πi = NIZK(si, ri, vi : αi = Comck(si; vi), ci = Egpku(i) ((si, vi); ri), si ∈ [0..2sh(b)]).

5. Output NonIntVSSshare(2b, d, vd, r, gpk1, . . . , gpkn) := (β1, . . . , βc, c1, . . . , cℓ, π0, π1, . . . , πℓ).

Fig. 26. The NonIntVSSshare algorithm.
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Anyone can then use the algorithm VSSverify, in Figure 27, to check what the dealer sent.

Algorithm VSSverify(2b)

1. Given NonIntVSSshare(2b, d, vd, r, gpk1, . . . , gpkn) = (β1, . . . βc, c1, . . . , cℓ, π0, π1, . . . , πℓ), Verify π0 against
public values β1, . . . , βc. For i = 1 . . . ℓ compute αi using equation (2), verify the proof πi against public
values αi and ci. Abort if any proof fails.

Fig. 27. The VSSverify algorithm.

If the dealer’s message verifies, a receiver Pu of shares will decrypt all ciphertexts ci

for which u = u(i) and store the resulting set of shares. We say that the honest players
hold correct shares, if there exists d,vd such that for all si held by Pu(i) is honest, we have
si = sh(d,vd)[i]

Lemma 7. The event that a corrupt dealer’s message verifies but honest players do not hold
correct shares, happens with negligible probability.

Proof. Suppose we are given an adversary that can make the event specified in the lemma
happen with non-negligible probability. We show that such an adversary can be used to
break the binding property of the commitment scheme. We take a public commitment key
ck as input and run the adversary with this key. Note that the zero-knowledge proofs given
are straight-line extractable. This concretely means that if the dealer’s message verifies, then
(except with negligible probability) from the dealer’s oracle calls and the proof π0, one can
extract opening information for all the βj’s, to get a sharing vector vd. In particular we can
extract d from β1. Then, from equation (2), one can compute opening information for all the
αi’s and by construction of equation(2) this will show how to open the αi’s to reveal a set of
valid shares {si} of d, where si = sh(d,vd)[i]. On the other hand, from the proof πi one can
extract the content of ci and this will also reveal a way to open αi, to get a value s′

i. Thus, if
the adversary’s attack is successful, it must be that for some i where Pu(i) is honest, si ̸= s′

i.
We can then output the two ways to open αi and break binding.

Note that the reduction from the above proof can be used in context of our global protocol
because the commitment key is given as set-up, and is chosen independently from everything
else.

We note that we will not require an explicit reconstruction protocol, instead the shares
held by the players will be used for decryption as detailed in the main protocol. Basically,
all (honest) players in the additive committee will contribute to the decryption of a given
ciphertext. Since contributions from the entire additive committee would be required to
decrypt, we have the threshold committee fill in for the those additive players that do not
contribute.

As for privacy, the intuition is clear: an unqualified set of shares reveals essentially noth-
ing about the secret, and the commitments and zero-knowledge proofs leak (statistically) no
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additional information. However, we will need to show adaptive security of the global proto-
col, so we need to be careful. To this end, we will use in our security proof given elsewhere
the so-called single inconsistent player (SIP) technique. Here, the idea is that the simulator
is set up such that it knows a complete set of shares for players in the additive and threshold
committees, however, these shares determine some dummy value. The simulator selects at
random a player from the additive committee to be the SIP. When simulating decryption, it
can fake the contribution from the SIP to make the output plaintext be correct. Therefore,
as long as the SIP is not corrupted and its contribution is delivered on time, the simulation
will be statistically indistinguishable. This happens with probability at least 1/n.

G Σ-protocols and Non-interactive Zero-Knowledge Proofs

In this section we sketch the (well-known) techniques one can use to get Σ-protocols for the
relevant relations. Once we have these, we can get NIZK’s in the random oracle model, using
the Fischlin transform [Fis05].

For the case of two-level Paillier ciphertexts, the required protocol was already described
and analysed in.

Otherwise, we use two main types of proofs in our protocols, namely those that are used
in the Role assignment and MPC protocols, and those that are used in the Decryption and
Reshare protocols.

The first type of proofs work only on Paillier ciphertexts, and the protocols we need for
this can be found in [DJN10], they can be used here with no essential change.

The second type of proofs work with the personal keys of players gpki, and the integer
commitments we use and involve showing that, for a commitment Comck(z; r), z, r have been
encrypted under gpki and that this z and r are in a certain interval.

Recall that a commitment to integer x is of form αxβr mod N ′, where r is randomly
chosen in a large enough interval (we do not need the low-level details of the scheme for
this discussion). We will later use Com(z) as shorthand for a commitments to z. Note that
commitments are linearly homomorphic, we have Com(z) ·Com(z′)f = Com(z+fz′) mod N ′.

Consider now the proof we require in the Reshare protocol where we are given Comck(z; r)
for some z and ciphertexts cz = Egpku

(z; vz), cr = Egpku
(r; vr), we require a non-interactive

zero-knowledge proof of knowledge of x, r, vz and vr such that commitment and ciphertext
are of the claimed form.

To build a Σ-protocol for this setting, the prover does a number of different Σ-protocols in
parallel. We first explain how we establish connection from the commitment to the ciphertext
containing z. First, known techniques from [DF02] are used to show that the prover knows
z. The prover also writes z as z = ∑a

j=0 2γjzj, where z1, . . . , za are of size γ bits. Recall that
Egpku

(z; rz) is actually a tuple {Egpku
(zj; rj)} of encryptions of the zj’s where the bit size

γ is chosen small enough that decrypting each individual zi is feasible. The prover makes
commitments Com(zj), proves he knows the zj and that they are in the interval [0, 2γ], again
using techniques from [DF02]. The verifier checks that Com(z) = ∏

j Com(zj)2γj . Note that
this establishes the equation z = ∑a

j=0 2γjzj, and therefore also implies that z is in the

55



required range. Finally the prover shows for each j that the commitment Com(zj) contains
the same integer as the ciphertext Egpku

(zj; rj). Since the zj and the randomness use are all
in the exponent, this is easily done using known techniques for proving equality of discrete
logs.

For the ciphertext containing r, the prover makes an additional commitment Com(r) and
shows that this was the value occurring in Comck(z; r). This is easy using known techniques
for equality of discrete logs. Then proceed exactly as above using Com(r) instead of Com(z)
and cr instead of cz.

There is, however, one technicality we need to address: we want, of course, that the
protocol has negligible soundness error, and we want to avoid having to use binary challenges
and repeat protocols many times. For this to work out, it needs to be the case that all
group elements involved in the statement to prove are in a group with only exponentially
large prime factors in the order. This is potentially an issue as these elements may be
adversarially generated. For α, β we are fine, as they are generated honestly by the set-up.
For the ciphertext Egpku

(zj; rj), we would be fine if we knew that its constituents were in the
subgroup of squares in Z∗

N . But we cannot verify membership in this subgroup efficiently. To
solve this, we simply square the elements of the ciphertext and do the proof on the result.
More concretely, we have Egpku

(zj; rj) = (grj
u , g

zj
u h

rj
u mod N). We now define

Egpku
(zj; rj)2 = ((grj

u )2 mod N, (gzj
u h

rj
u )2 mod N) (7)

= ((g2
u mod N)rj mod N, ((g2

u mod N)zj (h2
u mod N)rj mod N)

We can see that Egpku
(zj; rj)2 only contains elements in the group of squares, moreover, if

the ciphertext is honestly generated, it is an encryption of the same plaintext zj under the
public key (g2

u mod N, h2
u mod N), and finally it can be decrypted using the original secret

key. Therefore, if in the proof we replace Egpku
(zj; rj) by Egpku

(zj; rj)2 and the public key
by (g2

u mod N, h2
u mod N), we are guaranteed negligible soundness error and everything else

works the same way.
Finally, for the proofs used in the decryption protocol, we observe that these are again

simple applications of equality of discrete log techniques, as all the secret parameters are in
the exponent. This is clear for the case of public decryption.

We need to address the same technicality as before, that the involved ciphertexts may
be adversarially generated and so might not be in the subgroup they are supposed to. We
solve this by the same trick of squaring before we do the proof.

H Supplementary UC Formalization

H.1 Eventual Liveness

When modelling asynchronous security we will as usual have to talk about an event eventually
happening, for instance saying that if a message is sent then it is eventually delivered. We
now discuss how we model this. When specifying an ideal functionality we will as usual let
the adversary specify when certain events E happen. We sometimes say that under certain
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preconditions C the adversary must eventually make E happen. This means that whenever
C becomes true it holds at some future point in time that either C stopped being true
or E became true. As an example we might say that if m was sent from an honest party
which is still honest, then eventually m will be delivered, where C is “m was sent by an
honest party which is still honest and” and E is “m was delivered by the adversary”. We call
this an eventual event. We say that a protocol π using ideal functionalities F1, . . . ,Fℓ and
implementing F is live if it holds that when all eventual events on F1, . . . ,Fℓ happened, then
π made all eventual events of F happen. This way we do not need to define what it means
for an event to eventually happen, rather we just require that protocols are “eventuality-
preserving”. As an example, if F1 is a functionality for sending messages on point-to-point
channels and F the ideal functionality for broadcast then eventuality-preserving liveness
could be of the form “if all messages sent on the point-to-point channels by honest parties
in π have been delivered then all messages broadcast by honest parties via π have been
delivered”. This is a crude model but good enough for our study.

H.2 Ideal Functionality for Atomic Send

The ideal functionality for atomic send is given in Fig. 28.

Functionality Fatomic-send

Init: Let Accepted = ∅.
Broadcast: On input (atomic-send, (mid1, m1, P1), . . . , (midℓ, mℓ, P1)), where P (midi) = P for i = 1, . . . , ℓ,

add each (midi, mi, Pi) to Accepted and leak (atomic-send, (mid1, m1), . . . , (midℓ, mℓ)) to the adversary.
We assume that honest parties use each mid at most once.

Deliver: On input (Deliver, (mid, m, R)), where (mid, m, R) ∈ Accepted or P (mid) is currently corrupted,
remove (mid, m, R) from Accepted and output (mid, m) to R.

Eventual Liveness: If (mid, m, R) ∈ Accepted the adversary must eventually input (Deliver, (mid, m, R)).

Fig. 28. Atomic Send

H.3 Discussion of FTOB

For each batch the parties input a wait predicate indicating which messages should be col-
lected. We assume that all honest parties agree on the wait predicate W for each block.
That means that we only prove an implementation secure under this condition and that, on
the other hand, when we use FTOB in a protocol π then π must guarantee that all honest
parties input the same W to FTOB. We cannot guarantee that all messages attempted to
be sent are delivered in a given round, as the network is asynchronous. We therefore let
the adversary choose which messages are delivered. This happens in Next Batch, where
it picks the next block. However, the adversary is only allowed to pick a block valid by W .
Note that this means that if the messages input by the honest parties do not satisfy W then
FTOB might deadlock. This is a feature. It is the obligation of the protocol using FTOB to
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pick W and send messages m such that W gets satisfied in each round. On the other hand
this allows an implementation of FTOB to wait until it saw messages satisfying W . Note that
FTOB is guaranteed to produce the next block once all honest parties requested it and their
messages satisfy W . It might, however, produce the block before all honest parties ordered
the block. We could not possibly wait for all honest parties to have ordered the block in an
asynchronous network. Notice, however, that at least one honest party must have ordered
the next block before it can be produced as W b+1 needs to be defined. The wait predicate
W b+1 can therefore be used to control that the block is not produced too early—it might
for instance say that the next block is valid only if there are messages from enough parties
that at least one must be honest. Notice, finally that even though we cannot ensure that a
message sent in round b will make it into block b + 1 we do require that any message sent
will eventually make it into some block. Finally, we require that all blocks are eventually
delivered to all honest parties. This all in all means that all messages broadcast by honest
parties are eventually delivered to all honest parties.

Looking forward, the implementation for FTOB will use small committees and YOSO role
assignment. It might seem puzzling that this is not reflected in FTOB. However, the commit-
tees are an implementation detail, not a part of the specification of total-order broadcast.

H.4 Threshold Coin-Flip

The ideal functionality for coin-flip is given in Fig. 29. It can trivially be implemented given
FRA+MPC+CF. We introduce it as a separate ideal functionality to not use FRA+MPC+CF in
its full glory when implementing FTOB from coin-flip.

Functionality FCF for coin flip.

Init: For each party P let ℓP = 0 be the number of coins delivered at P and let bP = 0 be the number of
coins ordered by P . Let b = 0 be the number of coins flipped so far. Let L be the empty ledger.

Order next coin: On input (next-coin) from honest P leak (next-coin, P ) to the adversary, let bP =
bP + 1, flip uniformly random cbP ∈ {0, 1}κ if cbP was not already flipped, and give cbP to the adversary.

Coin Index: On input (coin-index) from honest P output bP to P .
Next coin: On input (next-coin) from the adversary where bP > b for some honest P , let b← b + 1, and

let L = L∥cb.
Deliver: On input (Deliver, P ) from the adversary where ℓP < |L| update ℓP = ℓP + 1 and output

(ℓP , L[ℓP ]) to P .
Eventual Liveness: If bP > b for all honest P the adversary eventually calls Next coin again. Furthermore,

if ℓP < |L| then eventually the adversary inputs (Deliver, P ) again.

Fig. 29. Threshold Coinflip
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I Basic Protocol for Secure Computation

This section contains some basic protocols for secure computation that we will need for the
implementation of FRA+MPC. Many of these are standard, but we incorporate some new
ideas, as accounted for in the text below.

Secure Multiplication. For secure multiplication, we use the standard idea of producing
multiplication triples and using one triple later for each multiplication. The protocol for
making triples is in Figure 30. It lets all parties compute the output triple locally from data
on the ledger. Once a triple is produced it is placed on an ordered list, and when we say in
the following that we use the next available triple, we mean that all parties take the next
unused triple on the list.

Protocol Triple.
This protocol is parametrized by s, and will produce ciphertexts in ZNs+1 .

1. Each member Pu of the committee assigned to do this protocol instance chooses random au, ru, computes
cu = EN,ws (mu; ru) and sends to FTOB the pair

(cu, NIZK(au, ru : cu = EN,ws (au; ru)).

2. Once n− t valid pairs appear on the ledger, all parties compute ca =
∏

u
cu mod Ns+1 where the product

is over the u’s that appeared. We have ca = EN,ws (a) where a =
∑

u
au mod Ns.

Each member Pv of the next committee chooses random bv, rv, sv. They compute cv = EN,ws (bv; rv) and
c′

v = cbv
a · EN,ws (0; sv) mod Ns+1. They send to FTOB the tuple:

(cv, c′
v, NIZK(bv, rv, sv : cv = EN,ws (bv; rv), c′

v = cbv
a · EN,ws (0; sv) mod Ns+1).

3. Once n − t valid tuples appear on the ledger, all parties compute cb =
∏

v
cv mod Ns+1 and cab =∏

v
c′

v mod Ns+1, where the product are over the v’s that appeared. We have cb = EN,ws (b) where
b =

∑
v

av mod Ns.
And, because each c′

v contains bva mod Ns, we have cab = EN,ws (ab mod Ns) where d = ab mod Ns.
All parties output (ca, cb, cab).

Fig. 30. The Triple protocol.

The Triple and Multiply protocols can be run in parallel as many times as we want. In the
following, we use c = Multiply(c1, . . . , ca) as shorthand for invoking Multiply an appropriate
number of times on ciphertexts c1 = EN,ws(x1), . . . , ca = EN,ws(xa) to obtain c = EN,ws(x1 ·
· · · · xa mod N s). This can be done in a standard tree structure and will then consume log a
consecutive commitees, but one can also use the well-known Bar-Ilan and Beaver constant
round technique to use only a constant number of committees. We will not go into details
with this.

The Multiply protocol uses a decryption step when it consumes a triple. For this case, the
decryption protocol (Fig. 9) is run without calling the RandomizeCiphertext subprotocol. We
refer to this as DecryptNoRandomize. This is done because RandomizeCiphertext itself calls
Multiply and we need to avoid circularity.
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Protocol Multiply.
This protocol is parametrized by s, and will do secure multiplication on ciphertexts in ZNs+1 . The input
consists of two ciphertexts cx = EN,ws (x), cy = EN,ws (y)

1. Let (ca, cb, cab) be the next available triple. All parties compute cϵ = cx(ca)−1 mod Ns+1 and cδ =
cy(cb)−1 mod Ns+1. Send cϵ, cδ to the DecryptNoRandomize protocol for decryption.

2. Once the decryption results ϵ, δ are returned, all parties compute and output

cxy = cab · cϵ
b · cδ

a · (N + 1)ϵδ mod Ns+1.

It is straightforward to see that cxy = EN,ws (xy mod Ns).

Fig. 31. The Multiply protocol.

The first part of the Triple protocol where the random ciphertext ca is created can be
used stand-alone, and based on this we can do inversion using a well-known trick, also
from Bar-Ilan and Beaver. Namely, given a ciphertext c = EN,ws(x), let a committee create
ca = EN,ws(a) for a random a, and then decrypt Multiply(c, ca), to get e = xa mod N s. Finally
all players compute ce−1

a mod N s+1 = EN,ws(x−1 mod N s). We will refer to this ciphertext as
Inverse(c).

Creating Random Encrypted Bits To make a random encrypted bit, we call the random
oracle on input a label for this instance of the protocol, which produces an encryption of
a random value x. The idea is now to compute securely a new encryption containing the
Jacobi symbol

(
x
N

)
of x modulo N which can easily be converted to a random bit. All

parties compute the output ciphertext locally from data on the ledger. Once an encrypted
bit is produced it is placed on an ordered list, and when we say in the following that we use
the next available encrypted bit, we mean that all parties take the next unused ciphertext
on the list. The protocol is found in Figure 32.

The required zero-knowledge proof in the RandBit protocol can be constructed from a
Σ-protocol, which is turn a standard construction where the prover sends a random new
pair du, d

′
u containing a random number zu and its Jacobi symbol. The prover gets a binary

challenge and must either open du, d
′
u, or open auzu mod N s and

(
auzu

N

)
. In the latter case, it

must also be shown that auzu mod N s is indeed the product of the plaintexts inside du and
d′

u, and similarly for the Jacobi symbol. This is easy using standard techniques, where we
can have a protocol with exponentially many challenges so this only adds a constant factor
overhead.

Random Exponentiation Given a ciphertext EN,w1(x), we want to produce a ciphertext
EN,w1(xa mod N) where a is random exponent of specified bitlength κ bits. We can take from
the next available encryptions of random bits EN,w1(ai), for i = 0, . . . , κ− 1, and then follow
a constant round protocol for secure exponentiation. This will allow us to use a constant
number of committees for this operation. Our protocol is somewhat similar to the one from
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Protocol RandBit.
This protocol is parametrized by s, and will create a random bit inside a ciphertext in ZNs+1 . The random
oracle H is a here assumed to output a random value modulo Ns+1.

1. Let ℓ be a unique label for this instance of the protocol, and let cx = H(ℓ), then for some x we have
cx = EN,ws (x).

2. Each party Pu on the first committee assigned to this protocol instance will choose random au, ru, r′
u and

compute cu = EN,ws (au; ru), c′
u = EN,ws (( au

N
); r′

u) and send to FTOB the triple:

(cu, c′
u, NIZK(au, ru, r′

u : cu = EN,ws (au; ru), c′
u = EN,ws (yu; r′

u), yu = (au

N
)).

3. Once h = n− t valid triples (cuj , c′
uj

πuj ) appear on the ledger, set ca = Multiply(cu1 , . . . , cuh ) and c′
a =

Multiply(c′
u1 , . . . , c′

uh
). Since the Jacobi symbol is multiplicative, we will have that ca = EN,ws (a), c′

a =
EN,ws (( a

N
)) for a random a.

4. Decrypt Multiply(cx, ca) to get xa mod Ns, and decrypt Multiply(cx, ca) to get σ = ( x
N

)( a
N

) = ( xa
N

).
Therefore c′

x := (c′
a)σ mod Ns+1 = EN,ws (( x

N
)).

5. All parties compute and output

cb = (c′
x · (N + 1))2−1 mod Ns

mod Ns+1.

This operation ensure that cb will contain (( x
N

) + 1)/2 which is indeed a 0/1 value.

Fig. 32. The RandBit protocol.

[DFK+06], but is much easier to make maliciously secure in our context. It is found in Figure
33.

We will also need a protocol Exp for raising an encrypted number to a specific exponent.
This is done exactly as RandEXP, except that we take an encrypted binary exponent Bi =
EN,w1(bi), i = 0, . . . , κ− 1 as input instead of choosing it at random.

We will need this protocol to obliviously raise several different encrypted numbers to the
same exponent, this can obviously be done by using the same encrypted bits in all instances
of the protocol.

We will also need a protocol NewKey for generating a new key pair for a party, such that
the secret key can be sent privately to that party, se Figure 34. The protocol therefore takes
as input an encrypted one-time pad otp and outputs the secret encrypted under otp. For
simpler exposition, the one-time pad is here assumed to consist of 2 log(N) := 2δ random
numbers in ZN . We one-time pad encrypt a bit xi as otpi+xi mod N , so decryption is obvious.
Several obvious optimizations could be done to get a much more compact implementation.

J Implementing MPC

In this section, we describe how to add MPC capability to the Role Assignment Protocol.
This is done almost entirely by using subprotocols we have already presented. We first
explain an extension of the NewRole protocol, NewRoleMPC: The original version outputs
a randomized tag and a randomized public key belonging to some party P . The extended
version also output a randomized encryption EN,w1(otpout

P ), where otpout
P was chosen by
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Protocol RandEXP.
This protocol is parametrized by κ, the number of bits in the exponent to use. The input is c = EN,w1 (x)

1. Each party Pu on the first committee assigned to this protocol instance chooses random yu and ru,i, i =
0, . . . , κ − 1 and computes cu,i = EN,w1 (y2i

u mod N ; ru,i), for i = 0, . . . , κ − 1. They send to FTOB the
tuple

(cu,0, . . . , cu,κ−1, NIZK((yu, ru,0, . . . , ru,κ−1) : cu,i = EN,w1 (y2i

u mod N ; ru,i), i = 0 . . . κ− 1)

2. Once h = n− t valid tuples appear on the ledger, say with indices u1, . . . uh, then:
For each i = 0, . . . , κ − 1, set ci = Multiply(cu1,i, · · · , cuh,i). Setting y =

∏h

j=1 yuj mod N , we have that
ci = EN,w1 (y2i

mod N).
3. Set c′ = Inverse(c0) = EN,w1 (x−1 mod N). Send Multiply(c′, c) to the Decrypt protocol.
4. Once the result z (which will equal to xy−1 mod N) is returned, all parties compute, for i = 0, . . . , κ− 1

di = cz2i

i mod N2. We have that di = EN,w1 (x2i

mod N).
5. Take the next κ available encrypted bits Bi = EN,w1 (bi), i = 0, . . . , κ− 1. Set

Xi = Multiply(Bi, di) · (N + 1) ·B−1
i mod N2 = EN,w1 (xbi2i

mod N).

6. Finally, output Multiply(X0, . . . Xκ−1) and Bi = EN,w1 (bi), i = 0, . . . , κ− 1.

Fig. 33. The RandExp protocol.

Protocol NewKey(EN,w1 (otp1), · · ·EN,w2δ (otp)).

1. Let cg = EN,w1 (g) be an encryption with default randomness of the fixed generator g ∈ Z∗
N . Run

RandExp(cg) twice with κ = δ to get ciphertexts EN,w1 (h), Xi = EN,w1 (xi), i = 1, . . . , δ and
EN,w1 (h̃), X̃i = EN,w1 (x̃i), i = 1, . . . , δ.
Note that we have h = gx mod N and h̃ = gx̃ mod N , where x is number with binary representation
x1, . . . xδ and similarly for x̃. So this is a key pair of the form we require.

2. Decrypt and output h, h̃. Also multiply the encryptions of the otpi’s by the encryptions of the bits
in x and x̃, and output the results EN,w1 (otp1 + x1 mod N), . . . , EN,w1 (otpδ + xδ mod N), as well as
EN,w1 (otpδ + x̃1 mod N), . . . , EN,w1 (otp2δ + x̃δ mod N)

Fig. 34. The NewKey protocol.
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party P . The ciphertext is connected to the role, but cannot be connected to P because of
the randomization.

We give some more details here on how we do the NewRoleMPC protocol. The protocol is
an extension of RandKey described in the main text.

1. We start from the assumption that, for some set of players P1, . . . , PM ′ , we are given
(gpki), for i = 1, . . . ,M ′.

2. All players can now compute H(b, i) for i = 1 . . .M ′, where H is the random oracle, here
assumed to output a random number in Z∗

N . Here b is a unique batch number decouple
the use of H in different batches. The protocol now considers a database with entries of
form (gpki, EN,w1(otpout

i ), H(b, i)) and does a multiparty PIR protocol on this database
similar to what we described in detail in the RandKey protocol. In the RandKey protocol,
we did the PIR twice, with the same choice of random index t, once for each component of
gpki. We now do it 4 times since we have a total of 4 components in each database entry.
Having done what corresponds to Step 3 of RandKey we will have random encryptions
EN,w1(ht), EN,w1(h̃t), EN,w1(otpout

t ), EN,w1(H(b, i)).
3. In the final step, a randomized key rpkt is produced from EN,w1(ht), EN,w1(h̃t) and is

output, exactly as in RandKey. Further EN,w1(otpout
t ) is output, and finally tagt =

H(t)K mod N is output. This last output is produced as follows: K is a random num-
ber of length log2(N), whose binary representation is given in encrypted form as set-up
data. We can therefore do Exp on input EN,w1(H(b, i)) and encrypted bits EN,w1(Kj), i =
0, . . . , log2(N)− 1 to get EN,w1(H(b, i)K) which is decrypted to get the output.

We will use NewRoleMPC((gpk1, O1), . . . , (gpkM ′ , OM ′)) = (rpkt, tagt, eotpout) as shorthand
for a call to this protocol, where OP = EN,w1(otpout

P ) is the encryption of the one-time pad
provided by P .

Next, we describe how to evaluate a function f : We assume that f is given by an arith-
metic circuit with addition and multiplication in ZN . We assume we are given encrypted
inputs cx1=EN,w1(x1), . . . , cxa = EN,w1(xa). Starting from the inputs, parties compute addi-
tion by multiplying ciphertexts and multiplication by doing c3 = Multiply(c1, c2) where c1, c2
contain the two plaintext values to be multiplied. We can allow random choices in the func-
tion by using RandBit to generate random encrypted bits. In the end we obtain the outputs
on encrypted form: cy1=EN,w1(y1), . . . , cyb

= EN,w1(yb).
First of all, inputs are supplied by parties in the beginning of a batch, where each party

broadcasts information for the role assignment, each party P additionally broadcasts cP =
EN,w1(xP ), πP , cotpout

P
= EN,w1(otpout

P ), where πP as usual is a zero-knowledge proof of plain-
text knowledge for cP , and cotpout

P
is an encrypted one-time pad to be used later for receiving

output. P will delete his state except otpout
P . We will use Eval(f, cx1 , . . . cxa) = (cy1 , . . . , cyb

)
as shorthand for a call to this protocol.

Finally, we specify how to extend the role assignment protocol to allow for MPC, we do
this by extending the OneBatch protocol from Figure 12 as follows, to get a protocol we call
OneBatchMPC:
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1. In the Next Batch step, each party P broadcasts additionally an encrypted input EN,w1(xP )
and an encrypted one-time pad EN,w1(otpout

P ), both with zero-knowledge proofs of plain-
text knowledge.

2. The calls to NewRole are replaced by NewRoleMPC, with the effect than an encrypted
one-time pad eotpout is assigned to each role.

3. Let cx1 , . . . cxa be the encrypted inputs that were delivered. Do (cy1 , . . . , cyb
)← Eval(f, cx1 , . . . cxa).

4. Given an encryption of the output cyj
= EN,w1(yj) to be delivered to role j, use eotpout

j
to compute and output an encryption of y under otpout

j , as we did in the the NewKey
protocol in Figure 34. This allows the party P who sent otpout

j to get the output.

We define the protocol ΠRA+MPC to be a number of sequential iterations of OneBatchMPC.

K Proofs of Security for the Role Assignment and MPC Protocol

In section J we specified a protocolΠRA+MPC. The goal in this section is to show the following:

Theorem 8. When for a constant c at most T < M/(3 + c) parties are adaptive corrupted
and we set n = λ then for a large enough constant eno we have that if PEAS is EUF-
CMA, SO-IND-CPA, CSO-IND-CPA and CSO-ANON, then ΠRA+MPC securely implements
FPEAS,1/3,F,γ,m

RA+MPC in the (Fsetup,FTOB,Fatomic-send)-model with a random oracle. Here F can be
any class of functions with a bounded multiplication complexity over ZN and γ and m can
be any polynomial.

We prove the theorem for m = 1 for notational convenience. The proof trivially adapts
to m > 1.

We start by showing that the Decrypt and Reshare protocols in Figures 9, 10 produce
correct outputs. Recall that there is a committee pair assigned to handle each batch of
ciphertexts to decrypt. We maintain the invariant that when a pair is about to decrypt a
batch, it holds VSS(dS,vdS

) with share bound 2b, where dS is the decryption exponent. This
is ensured for the first pairs by Fsetup, and later by resharing dS for the next committee
pairs.

At all times, we will use αi to denote the commitment computed from the public βj’s
in the VSS, according to equation (2). This ensures that the i’th share of dS satisfies αi =
Comck(vd[i]; vi). Note that we have no issue of ciphertexts being ill-formed: any number is
an encryption of some message.

Regarding the share bound after resharing, assume we use the specific sharing scheme
mentioned in Section F, where the share matrix is of size polynomial in n, say we have
at most na rows and columns, and where all entries in the sharing matrix, sweeping and
recombination vectors are 1 or −1. Then, by inspection of the operations done, one obtains
that if the share bound is 2b before resharing, it will be 22a log n+b+2k after the resharing
where k is the statistical security parameter. Namely, resharing a number with at most b
bits first results in additive shares of size at most b + k bits. These are now in turn shared
using the threshold scheme. For this we need sharing vectors with (b + k) + k = b + 2k
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bits entries, resulting in threshold shares with a log n + b + 2k bits8. These are combined
using a recombination vector, which adds another a log n bits. This is already better than
the approach using the integer version of Shamir’s scheme, as here one gets a factor n!
multiplied on shares for each resharing, so that we add Ω(n log n) + k bits to the share size
for each resharing. We also sketched a protocol that even allows us to reduce the share size
to a fixed amount.

For later use in the argument for security of our role assignment and MPC protocol, we
want to argue that the decryption and reshare protocols work correctly. These proofs and
many of the ones to follow make the following assumption:

Assumption HCNF (Honest committees, no forgeries): all committees used have honest
majority and no signature of an honest party is forged.

If this assumption does not hold the protocol may, for instance, abort early or a corrupt
player can send a message for a role she does not hold. It is shown elsewhere that under the
security assumptions we make, HCNF holds with overwhelming probability, provided the
global public keys and role keys are generated by an ideal functionality. This is of course
not the case in the protocol. However, in a hybrid we construct later we can plug in ideally
generated keys and conclude the assumption holds there. One now wants to say that if
this failed in the protocol, we could distinguish, but on the other hand, indistinguishability
depends on the assumption being true, so it seems the argument is circular. But this is not
the case, as we use the first offending event to distinguish and up to that point, there is no
difference. This is formalized in Lemma 1.

We now have:

Lemma 8. Under HCNF, the invariant is maintained by protocol Reshare except with negli-
gible probability. That is, the j’th committee doing decryption holds VSS(dS,vdS

) with share
bound 2(S+1) log N+k+(j−1)(a log n+2k).

Proof. The fact that the committee pair holds a VSS of dS follows for the first pair from
the fact that it receives the shares from the ideal functionality. For subsequent committee
pairs, note that the reshare protocol only considers VSS’s that pass the check in VSSverify,
and the proof of Lemma 7 implies that, except with negligible probability, each such VSS
all honest players in the receiving committee have shares of a well-defined value with a well-
defined share vector. So such a VSS for player Pi is indeed of form VSS(z,vz) for some z,vz.
Moreover, this value is equal to the original share si held by the player, as αi defining that
share is used as βi

1 in the VSS. The share bound follows immediately from the discussion
above, and the fact that dS it self is a number with at most (S + 1) logN bits. ⊓⊔

Lemma 9. Under HCNF, the decryption protocol outputs correct plaintexts except with neg-
ligible probability.

Proof. We first consider a ciphertext c that is output by the initial call to RandomizeCipertext.
Since the committee holds a VSS of the correct dS, by Lemma 8, each αi is a commitment

8 Note that all players must prove in zero-knowledge that the shares they encrypt are in range, so corrupt players
cannot force shares to be too large.
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containing the correct i’th share si of dS. Hence, by soundness of the zero-knowledge proof
πc,i, we can assume that, except with negligible probability, each decryption message dc,i

that is delivered from the Gather protocol (and relayed by the threshold committee) is of
form dc,i = csi mod N s+1, where si is the corresponding additive share of dS.

Consider now some fixed but arbitrary receiving party, and assume that there is some
decryption message dc,i that this party did not receive in any of the messages coming from a
set A of parties in the threshold committee. This means that all parties in A (claim they) did
not get dc,i and so, for their last step message to be valid, they must have included a valid
back-up message for dc,i. We therefore have back-up messages {dc,i,j| Pu(j) ∈ A}. Again by
soundness of the zero-knowledge proofs, we can assume that dc,i,j = csj mod N s+1 So, since
A is a qualified set, by the properties of the reconstruction vector ri

A, it follows immediately
that ∏

j,Pu(j)∈A

d
ri

A[j]
c,i,j = dc,i = csi mod N s+1 ,

and so we can conclude that the final product computed satisfies
n∏

i=1
dc,i = c

∑n

i=1 si = cdS mod N s+1

resulting in correct decryption of c.
Considering the randomization step, recall that it outputs

c = c̄ ·Multiply(c∗, H(c̄, R)) mod N s+1 ,

where c̄ is the original input ciphertext. The Multiply protocol relies for correctness on the
decryption protocol without the randomization, but this is what we just proved is correct.
By the homomorphic property, we can therefore assume that the plaintext contained in c
is of form m + α · β mod N s, where m,α, β are the plaintexts contained in c̄, H(str) and
c∗, respectively. In the set-up for the protocol, c∗ is generated such that β = 0, and so we
conclude that c also contains m and the decryption is correct. ⊓⊔

Main idea for proof of security We now outline the idea for the proof of security of the
global role assignment protocol: We first show a UC simulator UCsim, it will do a straight-
line simulation (as required for UC) which is possible because it knows the factorization of
N and hence can do most of its job by simply following the protocol. The only caveat occurs
when the protocol decrypts an output corresponding to an output from FRA+MPC, such as
a public key for a role. In such a case, the ciphertext produced in the simulation cannot be
assumed to contain the right value. UCsim fixes this by changing the ciphertext c∗ from the
set-up such that it contains 1 instead of 0. This allows it to engineer the randomization step
in the decryption such that the “randomized” ciphertext that is actually decrypted contains
the correct value. Therefore, at the end of the day, the only difference between simulation
and real protocol is that some of the Paillier ciphertexts that are never decrypted contain
different values in the two cases.
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However, since UCsim knows the factorization of N (it gets it from FRA+MPC), we cannot
directly appeal to CPA security of Paillier to say that this difference cannot be detected.
Instead, we exploit the fact that when proving indistinguishability of simulation and protocol,
we are no longer doing UC simulation, so rewinding is allowed. We show that, even without
the factorization of N , we can emulate both the real protocol and the simulation using
rewinding and a variant of the single inconsistent player (SIP) technique. This way, we
define two processes called ProtRewind and SimRewind producing views for the environment
that are perfectly indistinguishable from the protocol and from the simulation, respectively.
Note the in doing this we are rewinding the environment. This is allowed as we do it as a
proof technique. The UC simulator itself is straight line. Finally, skipping many details, we
use the fact that the SIP technique allows us to simulate decryption without knowing the
secret Paillier key and the computational assumptions we make to argue that ProtRewind
and SimRewind are computationally indistinguishable.

The UC Simulator The high-level approach of UCsim, shown in Figure 35, is standard:
emulate the honest parties by following the protocol, and when output is generated or a new
party is corrupted, adjust the internal state so it matches what the functionality requires.
We will use the variant of the UC framework where there is no explicit adversary, and the
environment Z acts also as adversary.

Towards understanding the simulator, we note a few points: decryption of Paillier ci-
phertext occurs in two cases: one case is when a ciphertext is decrypted as a part of the
multiplication subprotocol, where we consume a multiplication triple, or when the decryp-
tion corresponds to a private output for an honest player. The other case is called an output
decryption where decryption occurs, corresponding to an output that FRA+MPC leaks to the
simulator; either a public output or a private output for a corrupt player. Here, the result
of the decryption is dictated by FRA+MPC, and the simulator takes measures to ensure that
the correct output is generated.

When an honest player is corrupted, the player may possess several different types of
data as listed below. Note that, in general, a player always deletes data that is no longer
needed, so the only data found in memory are the latest private keys received and possibly
data pertaining to the current (unexecuted) role of the player.

– Private output: the player may hold private output from the MPC.
– Private keys: the player may hold some private keys, corresponding to public keys it

has been assigned. The key may be external, i.e., it is a key produced as output from
FRA+MPC, or it can be internal, i.e., it is produced only for the purpose of executing the
protocol.

– Shares: the player may hold shares of the Paillier decryption key.
– One-time pad: the player may hold a one-time pad, if it is waiting for private output,

either a private key or private output from the MPC.

It can be seen in the simulation that the simulator handles corruptions in a very simple
way: it has a simulated state sti for the corrupted player Pi containing simulated output that
the player has, and has not yet been deleted. Now, the simulator receives the correct output
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Simulator UCsim for the Role Assignment protocol.

Intialize. Receive N and the factors of N from FRA+MPC. Use this to emulate Fsetup, with one adjustment:
the ciphertext c∗ is generated as an encryption of 1 instead of 0. Initialize a copy of all honest players
and give them the simulated set-up data from Fsetup. Send all private set-up data meant for corrupted
players to Z. Initialize a copy of FTOB.

Main Process Execute the code of the honest players according to the protocol (while Z plays for the
corrupted players). The interface of the internal emulation of FTOB is connected to Z and the honest
players as in the real protocol.

– The random oracle H is emulated using standard lazy sampling of random values, however, certain
inputs are handled in a special way as detailed below.

– Whenever a corrupt player supplies a ciphertext, it is always accompanied by a zero-knowledge proof,
from which the simulator straight-line extracts the corresponding secret data used to generate the
message. As a result, the simulator knows plaintext and randomness for all ciphertexts in the global
state, as well as all shares of the secret Paillier key held by the committees.

– When an output decryption occurs, execute the decryption subroutine below.
– When a corruption occurs, execute the corruption handling subroutine below.

Output Decryption Let c̄ ∈ Z∗
Ns+1 be the ciphertext to be decrypted, and let z be the output generated

by FRA+MPC. Let m be the plaintext contained in c̄, which most likely is different from z. To fix this, the
simulator does the following:
1. Let L be the label of the relevant batch of ciphertexts to decrypt. The simulator chooses R at random

and programs H(L) to be an encryption of R. Once the batch appears on the ledger, the simulator
programs H(c̄, R) to be a random encryption of z −m. If the random oracle has been called before
with an input containing R, the simulator fails and aborts.

2. Since c∗ contains 1, the output c = c̄ · Multiply(c∗, H(c̄, str)) mod Ns+1 from RandomizeCiphertext
contains z. The simulator can therefore let the rest of the decryption proceed normally.

Corruption Handling When a player Pi is corrupted, the simulator is given whatever output outi that
FRA+MPC has given to Pi and has not yet been deleted. The simulator also has the internal state sti of
Pi as generated in the simulation so far. Note that sti will contain output values generated for Pi in the
simulation. The simulator replaces these values by outi and hands the resulting state to Z.

Fig. 35. The UCsim simulator.
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outi from FRA+MPC, and it simply replaces the simulated output in sti by outi and hands the
resulting state to Z. Let us explain intuitively why this does not create any inconsistencies
that Z could use to tell it is in the simulation: In the real protocol, Pi gets output by first
broadcasting an encrypted one-time pad otpi, and then later the value outi + otpi mod N is
decrypted in public, allowing Pi to compute outi. In the simulation, some random value rndi

was decrypted, so when the simulation claims that the output was outi, it implicitly claims
that the original one-time pad was rndi− outi mod N . This is most likely not the value used
for the simulated encryption of the pad, but Z cannot detect that the claim is false, as it only
knows the encryption of the pad, and the randomness for the encryption has been deleted
by Pi by construction.

Finally, the simulator can fail, if it is not able to program the oracle as needed. Intuitively,
this should not happen, as the programming is done beforeR is decrypted, so the environment
would have to guess R from EN,ws(R) to make an offending call. As the secret Paillier key
is used in the simulation we cannot immediately argue that failure happens with negligible
probability, but we will do so later, in a hybrid that is shown indistinguishable without
assuming that offending calls are unlikely.

As a consequence of these observation and Lemma 9, we get:

Lemma 10. Under HCNF, the ΠRA+MPC protocol and the protocol instance run by UCsim
produce correct outputs, except with negligible probabilty.

Proof. In the protocol, one sees by simple inspection of the subprotocols, that as long as the
decryption produces correct results, each subprotocol works correctly. This is because they
all consist of homomorphic evaluation on ciphertexts, inputs supported by zero-knowledge
proofs of plaintext knowledge and decryption. Further, the supply of random bits comes
from the random oracle, so is correctly distributed. For the simulation, UCsim engineers the
output ciphertexts so they contain the correct values, and Lemma 9 guarantees that these
values are actually decrypted. ⊓⊔

Processes. In the following, a process is an algorithm that runs the environment Z is its head,
as well as some number of other parties. The output of a process is whatever Z outputs.
The Protocol process runs the protocol composed with Z and the resource functionalities the
protocol requires, random oracle H, Fsetup and FTOB. The Simulation process is the standard
ideal process in the UC framework, it runs UCsim composed with Z and FRA+MPC.

We first define Simulationzksim and Protocolzksim, which are exactly the same as Simulation
and Protocol, respectively, except that all ZK proofs done by honest parties are simulated.

We proceed to define two new processes ProtRewind(dS) and SimRewind(dS). Both take
the secret Paillier key dS as input.

To give a precise description, we recall that both simulation and protocol proceed in
batches: in a batch, the first step is that some parties may give input to whatever secure
computation is specified for the batch. Then, the secure computation is done, and new keys
to be used in future batches are generated. After inputs have come in, the execution of a
batch proceeds in a number of epochs. An epoch starts at the time a committee reshares the
secret Paillier key for a number of committees, or more precisely, at the time where the first
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honest party in the resharing committee starts executing the Reshare protocol. Note that the
first epoch will not start until all inputs for the batch have been specified. Some committee
C, that receives shares of the secret key, is assigned to do resharing in the next epoch. The
epoch ends when the first member of C starts executing the Reshare protocol. This will not
happen until it can be seen on the ledger that all committees in the epoch have done their
work. We assume throughout that each epoch involves a constant number of committees.

As a final prerequisite, note that there is an initial committee pair C0 that receives from
Fsetup a VSS of the secret Paillier key dS. Fsetup is executed in both protocol and simulation
(with a change in the simulation that is irrelevant here). The ProtRewind(sec) process can
be found in Figure 36.

Process ProtRewind(sec).

Intialize. It is assumed that sec is a number chosen from the same domain as the secret Pailier key dS .
Emulate Fsetup, with one modification: Choose a valid sharing vector vsec and give VSS(sec, vsec) to C0.
Now, execute the protocol composed with Z and random oracle H, as specified, except that each epoch is
done differently, as specified below. For every zero-knowledge proof from a corrupt player, extract on-line
the witness used. As a result of this, and because the actions of honest players can be observed, the
process knows the content of every Pailler ciphertext and every VSS share computed in the protocol.

Epochs execution. We specify how each epoch is done:
1. At the start of the epoch, let the assigned committee execute the Reshare protocol as specified. For

each committee pair (Cadd, Cth) receiving a VSS in this epoch, where Cadd is the additive committee
and Cth is the threshold one, do as follows:
(a) Pick a random member of Cadd to be the single inconsistent player (SIP).
(b) When the committee pair does decryption of a batch of ciphertexts, execute the Decrypt protocol

as is, except that the decryption messages of the SIP are computed in a special way. Let c be a
ciphertext to decrypt after the randomization step (see Figure 9), and note that the decryption
result m is known. Let Pu be the SIP. Let the (correctly computed) decryption messages of the
other parties in Cadd be {dc,i| i ̸= u} and set

dc,u = (N + 1)m
∏
i ̸=u

d−1
c,i mod Ns+1.

Let Pu send the following decryption message using the Gather protocol:

dc,i, πc,u,

where πc,u is a simulated proof.
2. If at any point, the SIP in some additive committee is corrupted, or is not in the core set after the

Gather protocol is done, rewind the entire process to the state it had at the start of the epoch, and
go to step 1. If the epoch ends without rewinding happening, consider the set of honest parties that
are in the core set after Gather (since we assume honest majority in committees, and the core has
size at least n− t, there must be at least 1 such party). Select a random party P in this set. If P is
not the SIP, rewind.
If no rewind took place, continue to the next epoch.

Fig. 36. The ProtRewind process.

We then define the SimRewind(sec) process. We get it by modifying the simulation in
exactly the same way as we modified the protocol to get ProtRewind(sec). More precisely,
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UCSim works by directly executing the protocol. In SimRewind(sec), we will modify the
execution of each epoch to use rewinding exactly as in ProtRewind.

By various lemmas proved below, we will first be able to conclude the following

Protocol ≈s Protocolzksim ≈p ProtRewind(dS)

SimRewind(dS) ≈p Simulationzksim ≈s Simulation ,
where ≈p denotes perfect indistinguishability and ≈s denotes statistical indistinguishability.
And then, using the computational assumptions we make we will, via a number of interme-
diate hybrids, conclude that ProtRewind(dS) ≈c SimRewind(dS), which implies the result we
want. Here ≈c denote computational indistinguishability.

Lemma 11. We have
Protocol ≈s Protocolzksim,

Simulationzksim ≈s Simulation.

Proof. This is immediate by statistical zero-knowledge of the proofs we use – even under
adaptive corruption, as an honest party always deletes randomness and witness immediately
after sending its single message. ⊓⊔

Lemma 12. Under HCNF, we have

Protocolzksim ≈p ProtRewind(dS),

SimRewind(dS) ≈p Simulationzksim,

and each of the two processes run in expected polynomial time.

Proof. We argue that Protocolzksim ≈p ProtRewind(dS): Note that the only difference between
the two processes is that the decryption step is executed differently in the two cases, while
the output plaintext is always the correct one that is actually contained in the ciphertext to
decrypt.

Moreover, note that when ProtRewind(dS) creates an execution of an epoch, it has exactly
the same distribution as in Protocolzksim. The decryption message from the SIP is computed
in a different way, but its distribution remains the same, namely we maintain, even in the
rewinding process that the decryption messages for ciphertext c and plaintext m are com-
puted correctly from the corresponding shares for all parties except the SIP, and then the
SIP’s message is fixed by the equation ∏

i dc,i = (N + 1)m mod N s+1. Note that we do not
get the the decryption messages from the parties when they send them, which would give a
problem with rushing. We compute them from the corresponding shares, which are known as
we know the contents of all encryption sent by corrupted parties. We are merely computing
the correct decryption messages for the SIP in an indirect way from the result and the share
of all other parties. This will perfectly give the same decryption message. In particular, this
means that Z has no information on which party we choose as the SIP, all parties in Cadd

behave the same way in the view of Z. This in turn implies that all decisions that lead to the
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choice of the player P at the end of an epoch are taken independently of the choice of SIP.
Therefore, the probability that we do not rewind and keep the view for Z that we generated
is exactly 1/n, and the decision to rewind or not is independent of the actual view. This,
and the fact that each view we make going forward has the right distribution, implies the
first conclusion.

The second conclusion follows by essentially the same argument, we leave the details to
the reader.

Finally, the claim on the expected run time follows from the fact that everything in
the protoocol is polynomial time so the only question is regarding the expected number of
time we rewind. If there is a constant c number of committees in an epoch, then since each
decryption avoids rewinding with an independent probability 1/n, the probability we get
a complete simulation of an epoch is 1/nc and hence the expected number of rewinds is
polynomial, nc. ⊓⊔

We now define a two new processes ProtRewindzrnd(dS), SimRewindzrnd(dS) which are
“zeroing the randomness” used in the MPC. They are the same as ProtRewind(dS) and
SimRewind(dS), respectively except for the following:

1. Let b be the string of random bits used for generating the new keys gpk, gsk and rpki, in
some batch. Thus, b determines the secret and public keys generated, the random indices
used in the PIR protocols, and the random exponents used for randomizing role keys.
The process selects b at random, but programs the random oracle such that the bit used
in the protocol is always 0. This is done by letting the oracle output for each such bit
EN,ws(x) where x is a random number of Jacobi symbol −1 mod N .

2. The process computes the set of keys gpk, gsk, rpk that would result from b. It runs
the protocol exactly as ProtRewind(dS) (SimRewind(dS)) does, except when decrypting a
Paillier ciphertext c that is supposed to contain information about a key in gpk, gsk, rpk.
For such a ciphertext it does the following: Let m′ be the plaintext that is consistent with
gpk, gsk, rpk. Ignore the content of c and when computing the decryption message of the
SIP, set

dc,u = (N + 1)m′ ∏
i ̸=u

d−1
c,i mod N s+1.

3. b contains, in particular, the indices used for sampling random parties when the roles are
determined. It therefore also determines which executions of the PIR protocol would lead
to collisions. The process uses the PRF key K to compute the tag that would indicate
the collision and will force decryption of that tag, as described in the previous step.

Intuitively, ProtRewindzrnd(dS) removes from the process all information about how gpk, gsk, rpk
were generated, but still tries to make it seem like a correctly generated set of keys were
produced.

In the proof of the following lemma, we will use a PPBox specified in Figure 37. It is
designed to allow emulation of the resharing and decryption steps in the protocol. Towards
understanding its specification: a VSS VSS(sec,vsec) consists of commitments to the secret
sec and the randomness for the sharing (found in the vector vsec). A non-interactive VSS
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PPBox(sec).
This PPBox gets a master secret sec as input and will now compute and output a series of VSSs following the
pattern of our Reshare protocol. Each time it is called (by an adversary) it will receive an auxiliary input that
it will interpret as a command, sometimes with an extra input for executing the command. It may return sets
of shares, but also other information as auxiliary output.

Intialize. When asked to initialize, it will get a commitment public key ck and names of the members of an
initial committee pair C0 as auxiliary input. It computes VSS(sec, vsec), and returns as auxiliary output
the commitments from the VSS. It sets ReshareVSS = (VSS(sec, vsec), C0), and marks all members of C0
as honest (so far).
In the following, we always let C denote the committee pair in ReshareVSS, and VSS(sec, vsec) denotes
the VSS held by C.

Reshare When asked to reshare to a committee pair R, for each share si belonging to an honest member
of the threshold committee in C, compute VSS(si, vsi ), return each share si and opening information for
the commitment αi to si in the VSS. Return as auxiliary output the commitments from the VSS. Note
that in the game, the shares returned will be encrypted under the receivers’ public keys before being
returned to the adversary.

Recombine When asked to recombine for a committee pair R, receive a qualified set A chosen from the
threshold committee in C. For each corrupted member P of A and each si belonging to P , get VSS(si, vsi )
as well as all shares inside that VSS and opening information for all commitments in the VSS. Note that
the box has the same information for the honest members of A as it created VSS for those on its own.
Compute a linear combination over the VSSs from A exactly as in the recombination step in the Reshare
protocol and store the resulting VSS(sec, vsec).

Decrypt On command Decrypt 1 and input ciphertext c, committee pair R and the name of an SIP party
from the additive committee in R, compute decryption messages dc,i as in the Decrypt protocol for all
honest parties in the additive committee except the SIP, and return the dc,i’s.
On command Decrypt 2 and input ciphertext c, committee pair R and SIP name, compute backup
messages as in the Decrypt protocol for all honest parties in the threshold committee, backing up all
parties in the additive committee except the SIP, in the notation from the Decrypt protocol, all di,j,c

where i ̸= SIP and sj belongs to an honest party. Return the backup messages computed.
End of Epoch On command End of Epoch and input some committee pair R that was reshared to earlier,

set ReshareVSS = (VSS(sec, vsec), R). Note that box indeed holds a VSS for the committee pair.
Corrupt On command Corrupt and the name of a party P , then for all VSS’s where this party was a

receiver of shares return all shares and corresponding opening information for the commitments. Mark P
as corrupt.

Fig. 37. The PPBox we use.
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message for a secret s is computed from VSS(s,vs) and consists of the commitments (to
secret and randomness) and for every share si, a ciphertext that contains si encrypted for
the receiver of si and also a ciphertext containing opening information for a commitment
αi to si. αi can be computed from the commitments in the VSS. Finally, the VSS message
contains zero-knowledge proofs that everything was computed correctly.

It is straightforward to verify that it is a box with privacy structure that contains a set
in every involved committee pair that is unqualified in the secret sharing scheme we use.
Namely: the shares of corrupt parties is statistically independent of the master secret sec,
the commitments returned are statistically hiding, and the decryption and backup message
returned for decryption only depend on an unqualified set of shares.

Lemma 13. Under HCNF, and assuming PEAS is CSO-IND-CPA secure we have

ProtRewindzrnd(dS) ≈c ProtRewind(dS),

SimRewindzrnd(dS) ≈c SimRewind(dS).

Proof. We will show that ProtRewindzrnd(dS) ≈c ProtRewind(dS), the proof of the other
conclusion is essentially the same. We will use the CSO-IND-CPA game with the PPBox
specified in Figure 37. This box will hold the secret Paillier key dS.

We define a process Hybrid that interacts with Z and also plays the CSO-IND-CPA game.
It runs in the same way as ProtRewindzrnd(dS), with the following modifications:
1. Instead of selecting b itself, it gets the keys gpk, gsk, rpk for the current batch from the

game, and asks in the game for a leakage function f defined as follows: by definition in
the game, f knows the random bits used for generating the keys. For each such bit bi, it
encodes the bit as a random number Xi ∈ Z∗

N of Jacobi symbol (−1)1−bi and returns an
encryption EN,w1(Xi) 9. Hybrid programs the random oracle such that EN,w1(Xi) is used
in the protocol when the i’th random bit is generated.

2. For decryption of ciphertext c, do as in ProtRewindzrnd(dS), except that we send Decrypt
1 and Decrypt 2 commands to PPBox to get the appropriate decryption and backup
messages for c. The process adds simulated zero-knowledge proofs as required to match
the format sent in the protocol.

3. For each call to Reshare, make a call to the PPBox in the game to get each of the VSS’s
sent by honest players. For each such VSS from player P , also get encryptions from the
game of each share si and of opening information for the commitments αi to si. Put this
together with simulated zero-knowledge proofs to get a complete VSS message and send
it on behalf of P . When enough VSS messages from a set A of parties are delivered by
FTOB, extract the shares and opening information for commitments from the VSSs by
corrupt players in A and send these to the PPBox together with A. The PPBox will do
the recombination to get a new sharing of dS for the receiving committee pair.
When a player P on a committee is corrupted, send a corrupt P message to the game to
get gskP and also make a call to PPBox to get the share of P and opening information for
the commitments it made in the VSSs. Return this to Z in response to the corruption.

9 In some cases, one actually wants Xi ∈ Z∗
Ns for some s, but we ignore this here for simplicity.
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Once the process has ended, output the bit that Z outputs.
It is now easy to verify that if the game is played when the secret bit to guess is 1, we

get a process that is perfectly indistinguishable from ProtRewind(dS), while if the bit is 0
we are perfectly indistinguishable from ProtRewindzrnd(dS). Namely, in both cases the VSSs
occurring in the resharing steps and the decryption messages are perfectly emulated and the
secret bit exactly switches between using the real randomness or zeros. Hence Z’s distin-
guishing advantage equals the advantage we have in winning the game, which is negligible
by assumption, as we do corruptions in the privacy structure of the PPBox by the HCNF
premise. So the lemma follows. ⊓⊔

We define ProtRewindzrnd(0) to the the same as ProtRewindzrnd(dS), except that dS is
replaced by 0. ProtRewindzrnd(0) is defined similarly.

Lemma 14. Under HCNF, and if PEAS is SO-IND-CPA secure we have

ProtRewindzrnd(dS) ≈c ProtRewindzrnd(0),

SimRewindzrnd(dS) ≈c SimRewindzrnd(0).

Proof. We show that ProtRewindzrnd(dS) ≈c ProtRewindzrnd(0), the proof of the other part is
essentially the same. We define a process that interacts with Z and also plays the SO-IND-
CPA game, where the PPBox (the same as in the previous proof) is given dS or 0 initially.
It operates exactly as ProtRewindzrnd(dS), except that it uses calls to PPBox to emulate
the VSSs in resharing, and the decryption messages, exactly as we did in the proof of the
previous lemma, and it does not compute the keys gpk, gsk, rpk itself, but gets them from
the game. When the process ends, output what Z outputs.

Note that the process no longer contains any information on the random bits used for
generating keys, and therefore Z cannot detect that the keys are received from the game
and not generated by the process. Therefore, if the PPBox holds dS, we are perfectly emu-
lating ProtRewindzrnd(dS), and if it holds 0 we perfectly emulate ProtRewindzrnd(0). Hence
Z’s distinguishing advantage equals the advantage we have in winning the game, which is
negligible by assumption. The lemma follows. ⊓⊔

For the next two lemmas, we note that CPA security of Paillier encryption clearly follows
from CSO-IND-CPA security, which we assume throughout.

We define a modification of SimRewindzrnd(0): SimRewindzrnd,prot(0), where we make
the process look more like the protocol: we set the ciphertext c∗ from the set-up used in the
RandomizeCiphertext protocol so it contains 0 as in the protocol and we drop the programming
of the random oracle that UCSim uses.

Lemma 15. Under HCNF and CPA security of Paillier, we have

SimRewindzrnd(0) ≈c SimRewindzrnd,prot(0).

Moreover an offending call to the random oracle that would make UCSim fail, occurs with
negligible probability in SimRewindzrnd(0).
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Proof. Follows immediately by CPA security of Paillier, as the only effect of the changes
occur inside Paillier ciphertexts that we can control by programming the setup or the random
oracle. ⊓⊔

From the above lemma and the previous ones, we can now conclude that the offending call
also must occur with negligible probability in Simulation (and the intermediate processes).
By Lemma 1 this means that it holds in all hybrids that there is a negligible probability that
there are offending calls to the random oracle.

We define processes ProtRewindzrnd
lossy(0) and SimRewindzrnd,prot

lossy (0) where we replace the
ciphertext wS from the set-up by a ciphertext containing 0. This means that all ciphertexts
generated by parties or in set-up are lossy, i.e., they actually contain 0, instead of the plaintext
the party had in mind. Note, however, that it is still possible to extract witnesses from zero-
knowledge proofs, showing how a ciphertext was formed, and hence which plaintext the party
had in mind.

Lemma 16. Under HCNF and CPA security of Paillier, we have

SimRewindzrnd,prot(0) ≈c SimRewindzrnd,prot
lossy (0),

ProtRewindzrnd(0) ≈c ProtRewindzrnd
lossy(0).

Proof. Follows immediately from CPA security of Paillier, as the only effect of the changes
occur inside a Paillier ciphertext from the setup. ⊓⊔

In both ProtRewindzrnd
lossy(0) and SimRewindzrnd,prot

lossy (0), the ciphertexts from the set-up
that would contain the PRF key K now contain 0. We can therefore replace the tags com-
puted from K by random values and force decryption of these random tags at the end of
every PIR protocol execution. Since there is no information on K available in the view of
Z, we can use PRF security to argue that this change cannot be detected. Naming the new
processes SimRewindzrnd,prot

lossy,rndtag(0) and ProtRewindzrnd
lossy,rndtag(0), we conclude that

Lemma 17. Under HCNF, we have

SimRewindzrnd,prot(0) ≈c SimRewindzrnd,prot
lossy,rndtag(0),

ProtRewindzrnd(0) ≈c ProtRewindzrnd
lossy,rndtag(0).

Proof. Note that the function we use to compute tags x 7→ H(x)K is a secure PRF under the
DDH assumption which clearly follows from the SO-IND-CPA security we assume through-
out. Hence a distinguisher contradicting the lemma would contradict SO-IND-CPA security
by the reduction we just sketched. ⊓⊔

In both SimRewindzrnd,prot
lossy,rndtag(0) and ProtRewindzrnd

lossy,rndtag(0), all information about how
new keys are generated has been removed. In the view of Z, the situation is therefore equiv-
alent to the keys being generated by the ideal functionality. We can therefore conclude that
assuming SO-ANON security, we will have honest majority in all commitees except with
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negligible probability, and no signature from an honest party will be forged, assuming CMA
security of the signature scheme. So, under the complexity assumptions we made, the HCNF
assumption holds in these processes, and by Lemma 1, we conclude that it also holds in all
other processes, except with negligible probability.

It therefore follows by Lemma 10 that the original Protocol process generates correct
outputs and this is preserved over the processes we have derived from the protocol. The same
can be concluded for the processes derived from Simulation. We conclude that the output
generated by SimRewindzrnd,prot

lossy,rndtag(0) and ProtRewindzrnd
lossy,rndtag(0) have indistinguishable

distributions, i.e., indistinguishable from correctly generated keys gpk, gsk, rpk and correct
outputs from the MPC. Further, even though Simulation and processes derived from it use
dummy inputs for honest players to the MPC, this cannot be detected once ciphertexts are
lossy. Also observe that, except for the choice of inputs, the protocol is executed in exactly
the same way in SimRewindzrnd,prot

lossy,rndtag(0) and ProtRewindzrnd
lossy,rndtag(0). We conclude that

Lemma 18. SimRewindzrnd,prot
lossy,rndtag(0) ≈p ProtRewindzrnd

lossy,rndtag(0)

This concludes the proof of Theorem 8.

L Secure Coinflips Based on MPC

In this section we show how to implement FRA+MPC+CF based on FRA+MPC. Thus, we need
to describe a protocol that runs assuming FRA+MPC is available. The only new thing we
need to implement is the coin flip, and this is done by asking FRA+MPC to evaluate an
appropriate function and give the output to a number of committees. Concretely, the function
fRSS(P1, . . . , Pn) creates a standard robust secret sharing of a random value modulo N ,
playing the role of the coin. The members of the committee P1, . . . , Pn each learn a share and
can then later reveal the value of the coin by sending shares to all players. Here, P1, . . . , Pn

should be understood as roles, that map to n random actual parties under the random
permutation defined by FRA+MPC. Note that technically the function just gives the outputs
to n consecutive parties. The permutation of the output unto roles is done by FRA+MPC.

We first describe the function to compute:

1. fRSS(P1, . . . , Pn) chooses random values coin, a1, . . . , at ∈ Z∗
N , defines a polynomial

p(X) = coin + a1X + · · ·+ atX
t mod N

and sets shj = p(j), j = 1, . . . , n.
2. For i = 1, . . . , n, chooses αi ∈ Z∗

N at random. For i, j = 1, . . . , n, choose βi,j ∈ Z∗
N at

random. Set maci,j = αishj + βi,j mod N .
3. Define the output outj, for i = j, . . . , n as follows:

outj = shj, αj, βj,1, . . . , βj,n,mac1,j, . . . ,macn,j,

and output outj to Pj.
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The idea is that shj is the actual share of coin, the αj and βj,i are keys that can verify
authentication codes for other shares, and the maci,j-values are authentication codes for shj

that can be verified using key material from other players. It is well known that these macs
are information theoretically secure: given shj,maci,j, producing a different pair sh′

j,mac′
i,j

satisfying αish′
j + βi,j = mac′

i,j requires that you guess αi, which happens with negligible
probability 1/N .

In the protocol below, players will receive a subset of the outj’s, some of which may be
incorrect. Given a received value shj, we will say that shj has support from Pi if it is the case
that maci,j = αishj + βi,j, where αi, βi,j are the values received from Pi.

The protocol to implement FRA+MPC+CF in Figure 38 is very simple and is only described
for a single coin, the extension to several coins is trivial.

Protocol Coinflip.

1. The protocol connects the interface of FRA+MPC+CF directly to the corresponding interface of FRA+MPC,
except for the part relating to coinflip.

2. If a coinflip ordered in the current batch, ask FRA+MPC to compute fRSS(P1, . . . , Pn), where P1, . . . , Pn

stand for the next n available roles. It uses two batches on FRA+MPC for each batch of FRA+MPC+CF. The
first batch is used to emulate the batch of role assignment and MPC in one batch of FRA+MPC+CF. The
second batch is used to generate coin-flips.

3. The Flip Coin command is implemented by having Pj send outj to all players.
4. Each player waits until it has received n−t shares that have support from at least n−t players. Interpolate

a value coin from the first t + 1 such shares and output coin.

Fig. 38. Protocol for Coin-Flip

We first show that the protocol has liveness and outputs the correct value.

Lemma 19. Except with negligible probability, each player in the Coinflip protocol eventually
outputs the correct value of coin.

Proof. It follows from the above security property of the macs that (with overwhelming
probability) no incorrect share can have support from more than t players. Thus, a share
having support from n − t > t players can be assumed to be correct. On the other hand, a
correct share will eventually have support from all n− t honest players, since all n− t honest
messages are eventually delivered. So, a player can safely wait until it gets n− t shares with
enough support, and since these shares can be assumed correct, the output is correct. ⊓⊔

Theorem 9. The Coinflip protocol implements FRA+MPC+CF in the FRA+MPC-hybrid model.

Proof. We describe a simulator for the protocol. When a coin is ordered, the simulator
evaluates fRSS but sets coin = 0. It hands the resulting outj-values to Pj for corrupt Pj and
stores the honest values. Until the coin is to be revealed, if a new player Pj is corrupted,
hand outj to Pj. When coin is leaked from FRA+MPC+CF, interpolate a polynomial g(X),
such that g(0) = coin and g(j) = 0 for all corrupt Pj. For each honest Pi, update outi as
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follows: set shi = shi + g(i), and update all macj,i values such that the new value of shi and
the new macs verify against all the key material. This is trivial by solving n linear equations.
Send the resulting outi values on behalf of the honest players. When enough messages are
delivered to honest player P , send a Deliver command to FRA+MPC+CF.

It is straightforward to verify that this simulation is statistically indistinguishable from
the protocol. The data from honest players and resource functionality seen by the environ-
ment have exactly the same distribution as in the real protocol, so by (the proof of) Lemma
19, the only source of error is when a corrupt player successfully forges a share, which hap-
pens with negligible probability. ⊓⊔
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