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Abstract. Signature schemes from multi-round interactive proofs are be-
coming increasingly relevant in post-quantum cryptography. A prominent
example is CROSS, recently admitted to the second round of the NIST
on-ramp standardisation process for post-quantum digital signatures.
While the security of these constructions relies on the Fiat-Shamir trans-
form, in the case of CROSS the use of the fixed-weight parallel-repetition
optimisation makes the security analysis fuzzier than usual. A recent
work has shown that the fixed-weight parallel repetition of a multi-round
interactive proof is still knowledge sound, but no matching result appears
to be known for the non-interactive version.
In this paper we provide two main results. First, we explicitly prove
the EUF-CMA security of CROSS, filling a gap in the literature. We
do this by showing that, in general, the Fiat-Shamir transform of an
HVZK and knowledge-sound multi-round interactive proof is EUF-CMA
secure. Second, we present a novel forgery attack on signatures obtained
from fixed-weight repetitions of 5-round interactive proofs, substantially
improving upon a previous attack on parallel repetitions due to Kales
and Zaverucha. Our new attack has particular relevance for CROSS, as
it shows that several parameter sets achieve a significantly lower security
level than claimed, with reductions up to 24% in the worst case.

1 Introduction

Post-Quantum Digital Signatures. The need to identify quantum-resistant al-
ternatives to existing public-key schemes has triggered the design of many new
cryptosystems [32], including digital signatures. While the first NIST standards
covering key encapsulation and signatures have already been made public, the
situation with the latter is not considered fully satisfactory, so NIST has launched
an “on-ramp” process to standardise new signature schemes [30], with the second
round candidates announced in October 2024 [31]. Out of the fourteen selected
signatures, more than half of them are based on the Fiat-Shamir heuristic [1, 3, 4,
5, 6, 10, 11, 19, 23]. Among them, CROSS stands out as a promising code-based
alternative to the standardised SPHINCS+ [26]. In fact, CROSS enjoys noticeably
smaller signature sizes, small public keys, and appears to be easily tunable for
different security levels and efficiency targets.



2 Battagliola et al.

Fiat-Shamir Transform. Introduced by Fiat and Shamir in [24], the Fiat-Shamir
transform allows to turn any public-coin5 interactive proof into a digital signature.
Informally, the Fiat-Shamir transform replaces random challenges sent by the ver-
ifier with outputs of some hash functions, thus removing the need for interaction.
A Fiat-Shamir digital signature inherits the main security properties of the start-
ing interactive proof, which almost always enjoys special soundness. In particular,
the security of the resulting signature relates to the knowledge error determined
by the special soundness, albeit with a notoriously loose reduction [33].

Many interactive proofs, with notable exceptions like the one at the base of
SQISign [22], only have very small (often binary) challenge spaces, which results
in a big knowledge error. A common way to reduce it is by performing t parallel
repetitions of the base interactive proof.

The Fixed-Weight Optimisation. Parallel repetitions have, however, a significant
impact on signature size. To mitigate this, a widespread optimisation consists in
using fixed-weight challenge vectors: when different challenges have significantly
different response sizes, the idea is to “maximise” the number of challenges having
a short response, i.e. choosing a special challenge c̃ which appears a specific
number of times, leading to a response of fixed and “minimal” size. In order
to preserve security, when using this technique it is necessary to increase the
number of repetitions compared to plain parallel repetition, but the tradeoff with
signature size is typically very favourable. This optimisation has been successfully
used in many signature schemes, such as [10, 12, 17, 18, 21, 25, 34].

The security of this solution is well understood in the case of a 3-round,
public-coin, 2-special-sound interactive proof, and only recently it was proven
that the fixed-weight optimisation preserves knowledge soundness in the general
case of multi-round interactive proofs [13]. This is exactly the case for CROSS,
which is derived from a fixed-weight repetition of 5-round interactive proof.

For the non-interactive case, the Fiat-Shamir transform applied to a parallel
repetition of a (k1, . . . , kµ)-special-sound interactive proof was recently analysed
in [9]. However, for fixed-weight parallel repetitions, the picture is much fuzzier
and less explored, to the extent that the choice of the original parameters of
CROSS were based on an attack adapted from a result by Kales and Zaverucha [28]
for plain parallel repetitions.

In light of this, the following questions naturally arise:

Is CROSS EUF-CMA secure? Is there a way to improve the attack
from Kales and Zaverucha by exploiting the extra structure of fixed-weight
parallel repetitions?

Our Contribution. We positively answer the two questions above by explicitly
proving that CROSS is EUF-CMA secure and by presenting a novel forgery
attack on it. For the former, we prove a more general result, i.e. that the
Fiat-Shamir transform of any interactive proof having negligible knowledge er-
ror yields an EUF-CMA signature, with a security loss of at most (Q

µ
), where

5 All verifier’s random choices are made public.
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2µ + 1 is the number of rounds and Q is the number of signature queries the
adversary is allowed to do. Thanks to the results in [13], this has as a direct
consequence the fact that signatures obtained from fixed-weight parallel repeti-
tions of (k1, . . . , kµ)-special-sound interactive proofs are EUF-CMA secure, thus
formally proving the security of CROSS.

For the novel forgery attack against CROSS that we present, we substantially
improve the forgery technique by Kales and Zaverucha [28] for signatures based on
q2-identification schemes, i.e. (2, 2)-special-sound 5-pass interactive proofs having
the first challenge space of cardinality q and the second one of cardinality 2. The
original attack exploits the fact that, in this context, the second challenge can
be repeatedly guessed without modifying the commitment and the first-round
challenge. In CROSS specifications [10] this strategy is adapted to exploit the
fixed-weight distribution of the second challenge. However, we show that, when
the distribution of the second challenge is highly unbalanced, sticking to the fixed
weight when guessing the occurrences of the special challenge c̃ is not optimal.
In fact, a better result can be achieved by using a slightly higher weight when
guessing the challenge. This might be counterintuitive, but actually aligns with
the optimal cheating probability derived for the interactive protocol in [13].

Applying the newly proposed attack to the CROSS scheme and its parameter
sets submitted to the first round of the NIST “on-ramp” process, we find a
significant reduction in the security of two of the three versions provided for each
security level, with a security loss of up to 24% compared to what is claimed.
Specifically, both the “balanced” and “small” variants employ highly unbalanced
distributions in their second challenge, making them particularly susceptible to
our attack. The “fast” variant, however, maintains its original security target.
Fixed-weight parameters should therefore be re-chosen to reach the required
security level. This should mitigate the security impact of our result, as the
underlying hard problems have not been affected in any way by our work. In
Table 1 it is reported the computational complexity of our attack for the affected
parameter sets, demonstrating practical implications for the security of CROSS.

Organisation. In Section 2 we provide some preliminaries and definitions on
interactive proofs, digital signatures and the Fiat-Shamir transform. Next, in
Section 3 we prove our main result, showing the EUF-CMA security of any
signature obtained by applying the Fiat-Shamir transform to an interactive-proof
having negligible knowledge error. Then, in Section 4 we describe our forgery
attack, that improves the one by Kales and Zaverucha [28], showing that CROSS’s
security is lower than claimed. Finally, in Section 5 we draw some conclusions
and propose some additional research directions.

2 Preliminaries

Notation. We denote by N∗ the set of non-zero natural numbers. For a finite set
X, we write ∣X ∣ for the cardinality of X. We denote by {0,1}∗ the set of binary
strings of arbitrary length.
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Table 1. An overview of the cost of our forgery attack compared to the attack considered
in [10] for choosing the first-round parameters for the “balanced” and “small” parameter
sets of CROSS. Complexities are given as log2 of the estimated gate count.

Parameter Set Known Forgery Our Forgery Loss

CROSS-R-SDP 1 balanced 128.01 120.46 6%
small 128.00 97.48 24%

CROSS-R-SDP 3 balanced 192.07 179.67 6%
small 192.02 156.37 19%

CROSS-R-SDP 5 balanced 256.01 240.82 6%
small 255.22 217.15 15%

CROSS-R-SDP (G) 1 balanced 128.13 122.72 4%
small 128.01 108.22 15%

CROSS-R-SDP (G) 3 balanced 192.03 189.83 1%
small 192.03 167.56 13%

CROSS-R-SDP (G) 5 balanced 256.08 252.70 1%
small 256.03 228.58 11%

Where not otherwise specified, each algorithm is probabilistic polynomial-
time (PPT). For a deterministic algorithm A, we write y ← A(x) to denote the
assignment to y of the output of A on input x. If A is probabilistic, we write
y ←$ A(x). To make the algorithm’s use of random coins r explicit, we write
A(x; r). In a pseudocode, each variable assignment is done by either deterministic
assignment (←) or probabilistic assignment (←$), while the symbol = is reserved
for equality testing. Furthermore, we use the symbol � to denote a failure, e.g.
�← A(x).

For a set S, we write s←$ S to denote sampling from the uniform distribution
over S.

For an adversary A and an arbitrary function F, we write AF (resp., AOF) to
denote the execution of A with access (resp., with oracle access) to F.

2.1 Multi-Round Interactive Proofs

Definition 1 (Binary relation). A binary relation is a finite set R ⊆ X × Y ,
where X,Y ⊆ {0,1}∗. Given (x, y) ∈ R, we say that y is a witness for the
statement x. The set LR = {x ∈ X ∣ ∃y ∈ Y s.t. (x, y) ∈ R} is called the set of
true statements for R, or its language.

For a binary relation R we can (informally) define Experiment 1 against an
adversary A.6

6 To be more precise, the game should depend on the parameter λ, and we should
define R as a family of relations.
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Experiment 1: ExpH−RELR,A (λ)

1: (x, y)←$ R
2: y′ ←$A(x)
3: return (x, y′) ∈ R

Definition 2 (Hard Binary Relation). Let A be an adversary playing the
hard-relation experiment ExpH−RELR,A (λ) (Experiment 1) against a binary rela-
tion R. We define the advantage of A in the experiment as AdvH−REL

R,A (λ) =
Pr[ExpH−RELR,A (λ) = 1]. We say that R is hard if and only if AdvH−REL

R,A (λ) is
negligible in λ for every probabilistic polynomial-time adversary A.

Definition 3 (Interactive Proof). An interactive proof (P,V) for a binary
relation R ⊆X ×Y is an interactive protocol between two probabilistic polynomial-
time machines P and V. The prover P takes as input a pair (x, y) ∈ R while the
verifier V takes as input x. At the end of the protocol, V either accepts (outputs
1) or rejects (outputs 0). We denote the output of the protocol with (P(y),V)(x).
Furthermore, we say that a transcript, i.e. the set of all messages exchanged in a
protocol execution, is accepting ( rejecting) if V accepts (rejects, respectively).

Definition 4 (Public-Coin). An interactive proof (P,V) is public-coin if all
V’s random choices are made public.

If an interactive proof is public-coin, the verifier needs to send to the prover
only their random choices. For this reason, we call challenges the messages ch
sent by the verifier and challenge set the set Ch from which the verifier’s messages
are sampled. In the case of a (2µ + 1)-round interactive proof, we define the
challenge set Ch of the protocol as the Cartesian product of µ round challenge
sets Ch[i], with i ∈ {1, . . . , µ}, meaning that the challenge for the i-th round is
sampled from Ch[i]. When µ = 1, and thus the rounds are only 3, we use the
name Sigma protocol.

Throughout this work we assume that, within an execution of an interactive
proof (P,V), the prover P always sends the first and the last message. We also
consider µ + 1 PPT algorithms associated with the prover, namely P0, . . . ,Pµ,
which are assumed to share states. In particular, the prover first sends an
initial commitment com← P0(y) from a suitable space Com, and subsequently
undertakes µ mutual exchanges with the verifier. In the i-th exchange, with
i ∈ {1, . . . , µ}, the verifier sends a random challenge ch[i] from a challenge set
Ch[i] to which the prover replies with a response rsp[i] from a response set Rsp[i].
Each response rsp[i] is obtained as the output of an algorithm Pi that takes as
input the witness y, the commitment com and the previous challenge-response
pairs {(ch[j], rsp[j])}i−1j=1. Note that the number of communication rounds is odd,
i.e. of the form 2µ + 1 with µ ∈ N∗. We refer to an interactive proof having 2µ + 1
communication rounds with the name (2µ+ 1)-round interactive proof. We depict
such a protocol in Figure 1.
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Prover(x, y) Verifier(x)

com← P0(y) com

ch[1] ch[1] ←$ Ch[1]

rsp[1] ← P1(y, com, ch[1]) rsp[1]

⋮
[1]

ch[µ] ch[µ] ←$ Ch[µ]

rsp[µ] ← Pµ(y, com,{ch[i], rsp[i]}µ−1i=1 , ch
[µ]
)

rsp[µ]

return V(x, com,{ch[i], rsp[i]}µi=1)

Fig. 1. Public-Coin (2µ + 1)-Round Interactive Proof

Commonly, an interactive proof is required to satisfy completeness and sound-
ness, as per definitions below.

Definition 5 (Completeness). An interactive proof (P,V) for a binary relation
R ⊆X × Y is complete if, for every (x, y) ∈ R, we have:

Pr[(P(y),V)(x) = 0] ≤ ρ(x),

where the value ρ(x) — called completeness error — is negligible (in ∣x∣). If
ρ(x) = 0 for all x ∈ LR, the protocol is said to be perfectly complete.

Definition 6 (Soundness). An interactive proof (P,V) for a binary relation
R ⊆X × Y is sound if, for every x /∈ LR and a (potentially-dishonest) prover P∗,
we have:

Pr[(P∗,V)(x) = 1] ≤ σ(x),
where the value σ(x) — called soundness error — is negligible (in ∣x∣).

We note that an interactive proof which satisfies both the previous properties
allows a prover P to convince the verifier V that a statement x is true. To prove
P’s knowledge of a witness y such that (x, y) ∈ R, the following stronger feature
is required.

Definition 7 (Knowledge Soundness). An interactive proof (P,V) for a
binary relation R ⊆X × Y is knowledge sound, with knowledge error κ, if there
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exists an algorithm E that, given as input any x ∈X and rewindable oracle access
to a (potentially-dishonest) prover P∗, runs in an expected polynomial time (in
∣x∣) and outputs a witness y ∈ Y for x with probability:

Pr[(x,EP
∗

(x)) ∈ R] ≥ ε(x,P∗) − κ(x)
poly(∣x∣) ,

where ε(x,P∗) = Pr[(P∗,V)(x) = 1]. The algorithm E is called knowledge extrac-
tor.

Definition 8 (Proof of Knowledge). An interactive proof (P,V) for a binary
relation R ⊆X×Y which satisfies both completeness with completeness error ρ and
knowledge soundness with knowledge error κ is a proof of knowledge if there exists
a positive-definite polynomial p over the integers such that 1− ρ(x) ≥ κ(x)+ 1

p(∣x∣)

for all x ∈X.

A common strategy to prove the knowledge soundness of a public-coin inter-
active proof is showing that it enjoys special soundness. Informally, this means
showing that there is an extracting algorithm which can compute a witness given
enough accepting transcripts relative to a true statement x. In the following, we
recall the simple concept of k-out-of-N special soundness for Sigma protocols.
For the general notion of (k1, . . . , kµ)-out-of-(N1, . . . ,Nµ) special soundness for
(2µ + 1)-rounds, we refer to the more extensive presentation of [13].

Definition 9 (k-out-of-N Special Soundness). Let k,N ∈ N∗. A Sigma proto-
col (P,V) for a relation R, with challenge set of cardinality N ≥ k, is k-out-of-N
special sound if there exists a polynomial time algorithm that, on input a statement
x and k accepting transcripts (com, ch1, rsp1), . . . , (com, chk, rspk) with common
first message com and pairwise distinct challenges ch1, . . . , chk, outputs a witness
y for x. When N is clear from the context, we also say (P,V) is k-special sound.

Definition 10 (Honest-Verifier Zero-Knowledge (HVZK)). An inter-
active proof (P,V) for a binary relation R is computationally (resp., statisti-
cally/perfectly) honest-verifier zero-knowledge (HVZK) if there exists a PPT
algorithm S (called simulator), such that for any x ∈ LR, S produces a transcript
which is computationally (resp., statistically/perfectly) indistinguishable from the
distribution of the transcripts obtained through the interaction of P and V.

Definition 11 (Min-Entropy of Messages). Let (P,V) be a proof system
for a hard relation R ⊆X × Y , (x, y) ∈ R and λ be the security parameter. Let us
consider the set of all possible messages associated to y that the prover sends:

M(y) = {P(x, y; r) ∣ r ←$ {0,1}λ} .

We define the maximum probability of a message appearing in any round of
M(y) as:

α(y) = max
a∈M(y),1≤i≤µ

{Pr[P(x, y; r)[i] = a[i] ∣ r ←$ {0,1}λ ]} ,
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Experiment 2: ExpEUF-CMA
DS,F

1: (pk, sk)←$ KGen(λ)
2: ST← ∅
3: (msg, σ)←$F

O,OSign
(pk)

4: if msg ∈ ST then
5: return 0
6: return Vrfy(pk,msg, σ)

OSign(msg):
1: σ ←$ Sign(sk,msg)
2: ST← ST ∪ {msg}
3: return σ

where a[i] denotes the message relative to the i-th round of a ∈M(y).
Then the min-entropy function associated to (P,V) is defined as follows:

β(λ) = min
(x,y)∈R

{log2
1

α(y)} .

Remark 1. If β is not super-logarithmic in λ, we can consider the generalised
randomised version of the Fiat-Shamir transform, introduced in [2, Construction
3.1]: during every round, the prover picks a random si of appropriate length such
that the min entropy of a[i] ∥ si is super-logarithmic and sets a[i] ← a[i] ∥ si.
From now on, for the sake of readability, we limit our analysis to the case of β
being super-logarithmic.

2.2 Digital Signatures

Digital Signature Schemes are cryptosystems used to provide integrity, authentic-
ity and non-repudiation to digital data.

Definition 12 (Digital Signature Scheme). A digital signature scheme DS
is defined by a tuple of polynomial-time algorithms DS = (KGen,Sign,Vrfy), where
the first two are probabilistic and the third is deterministic. In particular, we
have:

– (pk, sk)←$ KGen(λ): on input a security parameter λ, it outputs a public key
pk and the corresponding secret key sk.

– σ ←$ Sign(sk,msg): on input a private key sk and a message msg, the algo-
rithm outputs a signature σ.

– 1/0← Vrfy(pk,msg, σ): it takes as input a public key pk, a message msg and
a signature σ, and outputs 1 (accept) or 0 (reject).

We ask that an honestly generated signature is always verified, i.e. for every
security parameter λ and message msg,

Pr[Vrfy(pk,msg, σ) = 1 ∣ (pk, sk)←$ KGen(λ)
σ ←$ Sign(sk,msg) ] = 1.

The most standard security property for a digital signature scheme is unforge-
ability under chosen-message attack, where an adversary has as many couples
message-signature as it wishes and is asked to produce a forgery (i.e. a valid
signature without having direct access to the private key).
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Definition 13 (Existential unforgeability under chosen-message attack).
Let DS = (KGen,Sign,Vrfy) be a digital signature scheme, let O be a random

oracle and let F be a forger. We define the advantage of F playing the EUF-CMA
experiment ExpEUF-CMA

DS,F (Experiment 2) against DS in the random oracle model
as:

AdvEUF-CMA
DS,F (λ) = Pr[ExpEUF-CMA

DS,F (λ) = 1].
We say that DS is existential unforgeable against chosen-message attacks if
AdvEUF-CMA

DS,F (λ) is negligible in λ for every probabilistic polynomial-time forger
F .

Remark 2. The forger’s access to the random oracle O is not strictly required,
and its relevance depends on whether the security of the digital signature is given
in the Random Oracle Model (ROM) or in the standard model. Since we are
interested in digital signatures obtained by applying the Fiat-Shamir transform
(see Section 2.3) we included it in the definition.

2.3 The Fiat-Shamir Transform

Firstly introduced in [24], the Fiat-Shamir transform is a widespread heuristic,
used to design digital signature schemes starting from public-coin interactive
proofs. Intuitively, the idea is to replace the challenge-communication steps with
a hash function, evaluated on a suitable input. Formally, we have the following
definition:

Definition 14 (Fiat-Shamir Signature). Let λ be a security parameter and
let (P,V) be a knowledge sound (2µ + 1)-round interactive proof system for a
hard relation R ⊆ X × Y with knowledge error κ = negl(λ). Let H1, . . . ,Hµ be
cryptographic hash functions with Hi∶{0,1}∗ → Ch[i]. The signature scheme ob-
tained from (P,V) by applying the Fiat-Shamir transform is a triple of algorithms
FS[(P,V)] = (KGen,Sign,Vrfy) as detailed in Algorithm 1.

It is well-known that for Sigma protocols with high min-entropy, a digital
signature obtained with the Fiat-Shamir transform is EUF-CMA secure in the
ROM [2, Theorem 3.3].

Remark 3. When proving the security of a signature based on a multi-round
interactive proof, each Hi is considered a different Random Oracle. For this
reason, in the real implementation, different hash functions should be used. Real
implementations, however, sometimes use a single hash function H for all the
Random Oracle and One and “separate” the domain, for example adding iℓ as
a prefix, where iℓ denotes the representation of integer i as a bit-string of fixed
length ℓ [15]:

Hi(msg) = H(iℓ ∥ msg).
In the following we implicitly assume that all the random oracles queries are done
by using domain separation and we limit ourselves to simply denotes the message
msg, since the exact Hi can be deduced by the number of couples (ch[i], rsp[i])
in msg.
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Algorithm 1 Fiat-Shamir Transformation of a (2µ + 1)-Interactive Proof

KGen(λ):
1: (x, y)←$ R
2: sk← y
3: pk← x
4: return (pk, sk)

Sign(sk,msg):
1: com← P0(sk)
2: for i ∈ {1, . . . , µ} do
3: ch[i] ← Hi(com,{ch[j], rsp[j]}i−1j=1,msg)

4: rsp[i] ← Pi(sk, com,{ch[j], rsp[j]}i−1j=1, ch
[i]
)

5: return σ ← (com, rsp[1], . . . , rsp[µ])

Vrfy(pk,msg, σ):
1: (com, rsp[1], . . . , rsp[µ])← σ
2: for i ∈ {1, . . . , µ} do
3: ch[i] ← Hi(com,{ch[j], rsp[j]}i−1j=1,msg)

4: return V(x, com,{ch[i], rsp[i]}µi=1)

2.4 Parallel Repetition and Fixed-Weight Optimisation

When the knowledge error of a (2µ+ 1)-round knowledge sound interactive proof
(P,V) is not negligible, a common way to decrease it is to repeat the protocol in
parallel multiple times, i.e. the prover and the verifier run t parallel executions of
the protocol and the verifier accepts if the resulting t transcripts are all accepting.
We denote by (Pt,Vt) the t-fold parallel repetition of (P,V). While this technique
has been analysed since the 1990s [14], it was only in 2022 that Attema and
Fehr [7] proved that the t-fold parallel repetition of any (k1, . . . , kµ)-special-sound
(2µ + 1)-round public-coin interactive proof optimally reduces the knowledge
error from κ down to κt.

Protocols obtained by using parallel repetitions usually have the drawback of
having big transcripts. When responses to different challenges have very unbal-
anced sizes and compactness is a bigger concern than computational efficiency,
it can be beneficial to use fixed-weight challenges, that also may come with the
additional feature of making the transcript size constant.

Definition 15 (Weight). Let Ch be a finite set, t ∈ N∗ and c̃ ∈ Ch. For an
element c = (c1, . . . , ct) ∈ Cht, we define the weight of c with respect to c̃ as:

wtc̃(c) ∶= ∣{j ∈ {1, . . . , t} : cj = c̃}∣.

Definition 16. Let t,w,µ ∈ N∗ such that t ≥ w, let Ch[1], . . . ,Ch[µ] be finite sets
and let c̃ ∈ Ch[µ]. Given Ch = Ch[1] × . . . × Ch[µ], we denote by Cht,wc̃ the set of
elements c ∈ Cht for which wtc̃ (c[µ]1 , . . . ,c

[µ]
t ) = w, i.e.

Cht,wc̃ ∶= {c ∈ Cht : wtc̃ ((c[µ]1 , . . . ,c
[µ]
t )) = w} .

When c̃ is clear from the context, we will simplify the notation and write Cht,w

instead of Cht,wc̃ . Furthermore, when Ch is not a Cartesian product but a simple
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set (i.e. µ = 1 and so Ch = Ch[µ]), we will simply denote by Cht,wc̃ the set:

{c = (c1, . . . , ct) ∈ Cht : wtc̃(c) = w} .

Definition 17 (Fixed-weight Repetition). Let k1, . . . , kµ, N1, . . . ,Nµ ∈ N∗,
R ⊆ X × Y be a binary relation and (P,V) be a (2µ + 1)-round public-coin
interactive proof for R, where V samples i-th challenges (i ∈ {1, . . . , µ}) from
a set Ch[i] of cardinality Ni ≥ ki. Therefore, the challenge set of (P,V) is
Ch =∏µ

i=1 Ch
[i]. Let c̃ be a given element of Ch[µ]. A (t,w)-fixed-weight parallel

repetition of (P,V) with respect to c̃, which we denote by (Pt,w,Vt,w), is a t-fold
parallel repetition of (P,V) whose challenge set is Cht,wc̃ .

Throughout this work, we will consider fixed-weight repetitions only for
(2µ + 1)-round public-coin interactive proofs for which there exists a unique
element c̃ ∈ Ch[µ] such that, for every possible c = (c[1], . . . , c[µ]) ∈ Ch[1]×⋯×Ch[µ],
the response size when c[µ] = c̃ is significantly higher than when c[µ] ≠ c̃. Under
this assumption, a fixed-weight repetition can lead to a more compact protocol
compared to a plain parallel repetition, as it was shown in [10, 12, 21, 25, 34].

Remark 4. In Definition 17, we consider the fixed element c̃ as an element of Ch[µ]

rather than of the challenge set of previous rounds or a Cartesian product of (a
subset of) them. This is consistent with the concrete instances of the fixed-weight
technique that have appeared so far (see the list above).

In [13], it was proven that the fixed-weight optimisation produces a knowledge
sound interactive proof for any µ. In particular:

Theorem 1 ([13] Fixed-Weight Repetition of a (k1, . . . , kµ)-Special-Sound
Multi-Round Interactive Proof). Let (P,V) be a (k1, . . . , kµ)-special-sound
(2µ+1)-round interactive proof having challenge sets Ch[1], . . . ,Ch[µ], where Ch[i]

has cardinality Ni ≥ ki. Let (Pt,w,Vt,w) be the (t,w)-fixed-weight repetition of
(P,V), where w, t ∈ N∗ and 1 ≤ w ≤ t. Then (Pt,w,Vt,w) is knowledge sound with
knowledge error κt,w, where κt,w is the maximum, taken over α ∈ {0, . . . , t}, of
the expression:

∑min(w,α)

ℓ=max(0,w−t+α)
(α
ℓ
)(t−α

w−ℓ
)Zℓ

0 (Z1 −Z0)α−ℓ (Z2)w−ℓ(Z1 −Z2)t−α−w+ℓ

( t
w
)(Nµ − 1)t−w(∏µ−1

i=1 Ni)t
, (1)

where Z0, Z1, Z2 are defined as follows:

Z0 ∶=
µ−1

∏
ℓ=1

Nℓ,

Z1 ∶=
µ

∑
ℓ=1

⎛
⎝

µ

∏
j=ℓ+1

Nj

⎞
⎠
(kℓ − 1)

⎛
⎝
ℓ−1

∏
j=1

(Nj − kj + 1)
⎞
⎠
,

Z2 ∶=
µ−1

∑
ℓ=1

⎛
⎝

µ−1

∏
j=ℓ+1

Nj

⎞
⎠
(kℓ − 1)

⎛
⎝
ℓ−1

∏
j=1

(Nj − kj + 1)
⎞
⎠
.
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Experiment 3: ExpIMP
(P,V),I(λ)

1: (x, y)←$ R
2: com←$ I

OTrGen
(x)

3: for i← 1, . . . , µ do
4: ch[i] ←$ Ch[i]

5: rsp[i] ←$ I(com,{ch[j]}j≤i,{rsp
[j]
}j<i)

6: return V(x, com,{ch[i], rsp[i]}µi=1)

OTrGen(x):
return (P(y),V)(x)

3 Unforgeability of Fiat-Shamir Signatures from
Fixed-Weight Repetitions of Multi-Round Interactive
Proofs

In this section, we prove that a digital signature scheme obtained by applying
the Fiat-Shamir transform to an interactive proof having negligible knowledge
error is EUF-CMA. As a direct consequence, following from the results in [13],
we also obtain that the Fiat-Shamir transform of a (t,w)-fixed-weight repetition
of a (k1, . . . , kµ)-special-sound protocol is EUF-CMA as long as t,w are chosen
such that the knowledge error is negligible.

3.1 Security Proof

We will use the notion of security against impersonation under passive attack,
which we recall below.

Definition 18 (Security against impersonation under passive attack).
Let R ⊆X × Y be a binary relation, (P,V) a (2µ + 1)-round interactive proof for
R and I an impersonator. We define the advantage of I playing the experiment
ExpIMP

(P,V),I(λ) (Experiment 3) against (P,V) as:

AdvIMP
(P,V),I(λ) = Pr[ExpIMP

(P,V),I(λ) = 1].

We say that (P,V) is polynomially-secure against impersonation under passive
attack if AdvIMP

(P,V),I(λ) is negligible in λ for every probabilistic polynomial-time
impersonator I.

In the following, we prove that any public-coin interactive proof which is
knowledge sound (Definition 7) and HVZK (Definition 10) is also polynomially-
secure against impersonation under passive attack.

Theorem 2. Let (P,V) be a (2µ + 1)-round interactive proof for a hard binary
relation R ⊆X ×Y which is HVZK and knowledge sound with negligible knowledge
error κ. Let I be an impersonator against (P,V) (Definition 18). Then there
exists an adversary A against the hard binary relation R such that:

AdvIMP
(P,V),I(λ) ≤ poly(∣x∣) ⋅AdvH−REL

R,A (λ) + κ,

and the expected running time of A is approximately that of I.
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Proof. Consider the impersonation experiment ExpIMP
(P,V),I(λ) of Definition 18,

and an impersonator I. We now show a hard-relation adversary A who exploits
I as a subroutine — perfectly simulating ExpIMP

(P,V),I(λ) — in order to build a
dishonest prover P∗ against (P,V).

At the start of the hard-relation experiment (Experiment 1), A receives a
statement x ∈X and forwards it to I. The transcript oracle OTrGen is simulated
by running the HVZK simulator S of (P,V). Transcripts produced in this way
and those produced by OTrGen are identically distributed by definition. Notice
that the success probability ε(x,P∗) of P∗ is equal to AdvIMP

(P,V),I(λ). Since
(P,V) is knowledge sound with knowledge error κ, there exists a knowledge
extractor E that, on input x ∈X and rewindable oracle access to P∗, outputs a
witness y ∈ Y for x with probability at least ε(x,P∗)−κ

poly(∣x∣)
. Thus, we have:

AdvH−REL
R,A (λ) ≥

AdvIMP
(P,V),I(λ) − κ
poly(∣x∣) .

Corollary 1. Let (P,V) be a HVZK (k1, . . . , kµ)-special-sound (2µ + 1)-round
interactive proof and (Pt,w,Vt,w) be the (t,w)-fixed-weight repetition of (P,V),
where w, t ∈ N∗,1 ≤ w ≤ t, are chosen such that the knowledge error κ (Equa-
tion (1)) is negligible in λ. Then (Pt,w,Vt,w) is secure against impersonation
under passive attack.

Proof. As shown in [13] (Pt,w,Vt,w) is knowledge sound with knowledge error κ
as in Equation (1). Since κ = negl(λ) by hypothesis, the result follows from the
previous theorem.

Our goal is to show that the application of the Fiat-Shamir transform to a
multi-round interactive proof, which is secure as per Definition 18, produces an
EUF-CMA signature scheme, with a security loss proportional to (Q

µ
), where Q

is the number of hash queries the adversary is allowed to do.

Theorem 3. Let (P,V) be a (2µ + 1)-round interactive proof having super-
polynomially large challenge sets Ch[1], . . . ,Ch[µ]. If (P,V) is secure against
impersonation under passive attack, then the signature scheme FS[(P,V)], ob-
tained by applying the Fiat-Shamir transform, is EUF-CMA.

Proof. The proof is very similar to the one in [2]. We first provide a general idea
of the proof, then we detail it.

Overview. Let F be a forger for the signature scheme FS[(P,V)], and let Q(λ)
and Qs(λ) be the number of hash and sign queries, respectively, that F is allowed
to do (for the sake of readability, in the following we omit the dependency on
λ). Our goal is to build an impersonator I for the interactive proof system
(P,V). The impersonator I interacts with the challenger of the experiment
ExpIMP

(P,V),I(λ) and has access to transcripts obtained from the oracle OTrGen. In
order to exploit F as a subroutine, I simulates the challenger of the experiment
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ExpEUF-CMA
FS[(P,V)],F(λ) with which F interacts. To do so, I needs to answer both sign

and random-oracle queries.
We make some assumptions on F :

– All the random-oracle queries are well-formed, i.e. they are of the form:

(com,{ch[i], rsp[i]}ki=1,msg),

for some message msg, com ∈ Com, ch[i] ∈ Ch[i], rsp[i] ∈ Rsp[i] and k < µ. 7 For
the sake of readability, when the exact content of the random-oracle query is
not relevant we simply write x[k] in place of it. Notice that the dependence
from k is necessary to properly identify the correct output space.

– Before outputting a forgery σ = (com, rsp[1], . . . , rsp[µ]) on a message msg,
the forger has made all the random-oracle queries (com,{ch[i], rsp[i]}ki=1,msg)
for k = 0, . . . , µ − 1.

– The forger F has made the random-oracle queries of the previous point
sequentially, and following the conventional order.

These hypotheses are the same as in [2], except for the last one about the
sequentiality of the queries, that instead is typical of the multi-round setting.
However, since σ is a forgery, we have that all the intermediate challenges are
evaluations of a hash function. By contradiction, let us suppose that the forger
does not perform the queries in order and let j be such that the query for
(com,{ch[i], rsp[i]}j−1i=1 ,msg) is after the one for (com,{ch[i], rsp[i]}ji=1,msg). By
construction, ch[j] = Hj(com,{ch[i], rsp[i]}j−1i=1 ,msg) and, since the challenge space
is super-polynomially large, F has negligible probability of guessing it.

Initialisation. I initialises the random-oracle-query counter hc = 0 and the sign-
query counter sc = 0. I also initialises the hash table HT = ∅, and the sign table
ST = ∅, then randomly generates an increasing ordered list of forge pointers
FP ⊂ {1, . . . ,Q} with cardinality µ, and a forge pointer counter fpc = 1. These
forge pointers will be used by I during the simulation to try to guess when F is
doing a query related to the forgery.
I receives the public statement x in the impersonation game and sets it as

the public key for the digital signature FS[(P,V)], i.e. pk = x. I forwards this
information to F .

Training phase. Now F can perform Q random-oracle queries and Qs sign queries
to I. In the first case I uses the hash table HT to answer, while in the second case
I uses one of the transcripts obtained from the oracle OTrGen. Specifically, the
simulation works as follows (if at any times sc > Qs or hc > Q then the simulation
aborts):

– F performs a hash query with input x[k] ∈ {0,1}∗: we have two cases
7 See Remark 3 for a discussion about domain separation and how to identify a random

oracle correctly.
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1. If HT[x[k]] is already defined, I returns it.
2. Otherwise, I increases the counter hc by 1, then,
● if hc /∈ FP, I picks uniformly at random d ∈ Ch[k+1], sends it to F and

sets HT[x[k]]← d.
● If hc ∈ FP then I checks whether k = FP[fpc]. If so, it parses x[k] as
(com,{ch[i], rsp[i]}ki=1,msg), sends rsp[k] to the verifier in the imper-
sonation game as the (2k + 1)-th move of the impersonation attempt
and receives back from the verifier a challenge ch[k+1]. Otherwise,
I pads x[k] so that it has the form (com,{ch[i], rsp[i]}FP[fpc]i=1 ,msg)
and then proceeds in the same way. Then, I sets HT[x[k]]← ch[k+1],
sends it to F and increase fpc by one.

This procedure allows I to perfectly simulate the random oracle.
– F performs a sign query for message msg: I increases the sign-query counter

sc by one, picks an unused transcript and parses it as the signature of msg,
defining all the hash values according to it, and storing them in HT. Notice
that in this step I may need to overwrite an entry in HT, we will show later
that this happens with negligible probability.

In order to state that I correctly simulates the experiment, it remains to show
that the simulation fails only with negligible probability and to bound the success
probability of I.

Simulation Failure. We now focus on the cases in which the simulation may fail,
and we find an upper bound on the probability that such failure happens. We
have shown that the simulation of ExpEUF-CMA

FS[(P,V)],F(λ) fails only if I is forced to
overwrite the hash table HT during a sign query performed by F . The overwriting
of HT during a sign query might refer to a previous hash query or to a previous
sign query. In particular, during the i-th sign query we have already set at most
Q+µ(i− 1) entries of HT, where the term µ(i− 1) is due to the fact that in each
sign query we modify µ entries in the hash table. Thus, the failure probability is
bounded by:

µ
µ +Q + µ(i − 1)

2β(λ)
,

where β(λ) is the min-entropy (Definition 11) associated with (P,V).
Then, the overall failure probability is, at most:

µ
Qs

∑
i=1

µ +Q + µ(i − 1)
2β(λ)

= µµQs +QsQ

2β(λ)
+ µ2Qs(Qs − 1)

2 ⋅ 2β(λ) ≤ µ2Qs
Qs +Q
2β(λ)

. (2)

Exploit of F ’s Forgery. Once F has concluded the training phase, F outputs
a forgery σ = (com, rsp[1], . . . , rsp[µ]) for a message m̂sg not previously queried.
Then I concludes its impersonation attempt by sending the message rsp[µ] as
response to the last challenge ch[µ] received.

Note that if I guesses all the indexes in FP correctly, then the impersonator
succeeds if and only if the forgery verifies.
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Evaluation of I’s Advantage. From our assumptions, we have that the forger F
must perform all hash queries involved in the forgery among the Q hash queries
it is allowed to perform during the training phase, and that it needs to perform
them in order. Therefore, with probability:

Pr[I guesses FP ∣I simulates ] = (Q
µ
)
−1

,

the impersonator guesses the right set FP. If I correctly simulates the experiment
ExpEUF-CMA

FS[(P,V)],F(λ), F wins the simulated experiment, while interacting with I,
with the same non-negligible probability:

Pr[FI wins ∣I simulates] = Pr[ExpEUF-CMA
FS[(P,V)],F(λ) = 1] = ϵ(λ).

Finally, we can find a lower bound to the probability of success of the
impersonator I in playing the experiment:

(Q
µ
)
−1

(ϵ(λ) − µ2Qs
Qs +Q
2β(λ)

) ,

which is non-negligible in the security parameter λ. 8

Corollary 2. Let (P,V) be a HVZK (k1, . . . , kµ)-special-sound (2µ + 1)-round
interactive proof and (Pt,w,Vt,w) be the (t,w)-fixed-weight repetition of (P,V),
where w, t ∈ N∗,1 ≤ w ≤ t, are chosen such that the knowledge error κ (Equa-
tion (1)) is negligible in λ. Then the digital signature FS[(Pt,w,Vt,w)] obtained
by the application of the Fiat-Shamir transform is EUF-CMA secure.

Proof. It is a straightforward application of Corollary 1 and Theorem 3. In fact,
by Corollary 1 we have that (Pt,w,Vt,w) is secure against impersonation under
passive attack. Thus, by Theorem 3 we have that the obtained signature is
EUF-CMA secure.

Remark 5. At the basis of the proof of Theorem 2 there is the extractor defined
in [13, Lemma 3], which works in expected polynomial time. Even if expected
polynomial time is acceptable in many contexts [27, 29], it is often preferable to
work in strict polynomial time, since most of the hard problems are stated with
respect of polynomial-time adversaries.

In order to make the problem more concrete, we briefly summarise how the
extractor works in the context of 3-round interactive proof9, as per [7]. Let
(P,V) be a k-special-sound interactive proof with challenge space Ch. Given an
adversary A for it, the considered extractor — denoted by Ek(Ch)A — has the

8 The above equation is a consequence of [16, Lemma 2]. Indeed, the only differ-
ence between the real execution of ExpEUF-CMA

FS[(P,V)],F and the simulation is the failure
probability.

9 The extractor for the general case of (k1, . . . , kµ)-special-sound interactive proofs is
a recursive application of this simpler extractor.
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goal of finding k couples of accepting transcripts {chi, rspi}ki=1. The idea is to
define a base extractor that output a single accepting transcript (ch1, rsp1), then
the whole extractor Ek is defined recursively: first it runs the base extractor, then
removes the extracted challenge from the challenge space and runs Ek−1 on the
new challenge space. In details:

– E1(Ch)A samples uniformly at random a challenge ch1 ∈ Ch and gets from
the adversary rsp1 ← A(ch1). If Vrfy(ch1, rsp1) = 1, then it returns (ch1, rsp1),
otherwise it returns �.

– Ek(Ch)A, with k > 1. First, it runs the base extractor E1(Ch)A. If E1(Ch)A fails
and returns �, then Ek(Ch)A fails as well and returns �. Otherwise, if E1(Ch)A
successfully returns a couple (ch1, rsp1), it removes ch1 from the challenge
space, defining Ch′ = Ch∖{ch1} and runs EAk−1(Ch

′), with the goal of obtaining
the remaining k−1 transcripts. If EAk−1(Ch

′) successfully returns k−1 couples
(ch2, rsp2), . . . , (chk, rspk), then Ek(Ch)A returns (ch1, rsp1), . . . , (chk, rspk),
otherwise it flips a coin: if the coin returns heads, then EAk (Ch) returns �,
otherwise it runs EAk−1(Ch

′) once more, repeating the process above.

It is clear that the only cases where the above extractor runs in super-polynomial
time are when EAk−1(Ch

′) returns � and the coin lands on tails for a super-
polynomial number z of consecutive instances. The probability of this happening
is upper-bounded by the probability of the coin landing on tails for that number
of instances. Thus, defined p as the (non-negligible) probability that the coin
lands on tail, we have that this happens with probability pz, which is clearly
negligible.

Now, let us consider the following modification of the extractor above: after a
polynomial number of tries, the extractor EAk (Ch) halts and returns �. Clearly,
in this way the extractor runs in (strict) polynomial time, however we need to
adjust the success probability.

In particular, the new success probability is:

Pr[� /← EAk (Ch)](1 −Pr[EAk (Ch) runs in super-polynomial time])

As proved above, the probability that EAk (Ch) is allowed to run for more than a
polynomial number of iterations is, at most, pz, thus the loss in success probability
is negligible.

4 A Novel Forgery for q2-Identification Schemes

In this section, we describe a novel forgery attack for the signature schemes
obtained from a fixed-weight repetition of a q2-identification scheme [20], i.e. a
(2,2)-out-of-(q,2)-special-sound interactive proof10. The forgery is a generalisa-
tion of the attack described for CROSS [10], which in turn is obtained from the
attack in [28] for the plain parallel repetition of q2 schemes.
10 In the following we assume that Ch[2] = {0, 1} and that, in the fixed-weight repetition,

the value 1 appears exactly w times in the second challenge.
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In Section 4.3 we also show how this attack impacts first round parameters
of CROSS [10].

4.1 Forgery Attack on the Interactive Protocol

Let (P,V) be a q2-identification scheme, and consider its (t,w)-fixed-weight rep-
etition (Pt,w,Vt,w). Before presenting the forgery attack for the digital signature
obtained by applying Fiat-Shamir on (Pt,w,Vt,w), we briefly comment on the
forgery attack for the underlying interactive proof described in [10, Proposition
17]. There, the authors describe a forgery running in average time O( 1

P (t,w,q)
),

where:

P (t,w, q) =
min{w,t−w}

∑
ℓ=0

(w
ℓ
)(t−w

ℓ
)

( t
w
)

q−2l. (3)

Notice that P (t,w, q) describes the cheating probability of a dishonest prover
attacking the interactive proof (Pt,w,Vt,w). As discussed in Section 2.4, in [13]
it is proved that such an interactive proof is knowledge sound, and an explicit
expression for the optimal cheating probability of a dishonest prover is given
in Theorem 1. By applying this result to q2-identification schemes, where µ =
2,N1 = q,N2 = 2, and k1 = k2 = 2, we obtain that the optimal cheating probability
is given by:

max
α∈{0,...,t}

min{w,α}

∑
ℓ=max{0,w−t+α}

(α
ℓ
)(t−α

w−ℓ
)

( t
w
)

q−(α−ℓ)−(w−ℓ). (4)

It is easy to show that the expression in Equation (3) coincides with that in
Equation (4) when α = w. Unfortunately, this value for α is not optimal when w
is larger than t/2, thus the adversary’s cheating probability is underestimated.

On a high-level, the original strategy of [10, Proposition 17] is as follows.
The adversary wins if in each parallel execution it is able to guess one of the
two individual challenges. This is a consequence of the existence of an efficient
strategy for the adversary that has some peculiarities. Namely, in each round
the adversary can prepare a response for which, if the next challenge is correctly
guessed, it can complete the protocol and have the verifier to accept, no matter
what challenges are provided in the remaining rounds. The existence of such a
strategy is a property enjoyed by CROSS and most (k1, . . . , kµ)-special-sound
protocols. This property can be formalised in general with the notion of special-
unsoundness [8], but in the scope of our attack it will be expressed in more details
in the next section, with the notion of piecewise simulatability.

Since we are considering t parallel repetitions of (P,V) where the second
challenge is a binary string of length t and weight w, the adversary can try to
guess w executions in which they expect the second individual challenge to be 1.
If for one execution the choice is wrong, the adversary can still win by guessing
the first individual challenge, which happens with probability q−1. Assuming that
the adversary’s choice was wrong for ℓ of the selected w executions, it will have
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to guess the first individual challenges for 2ℓ executions11. Since there are (w
ℓ
)

different ways of choosing ℓ wrong positions among the selected w, and (t−w
ℓ
)

ways of finding these positions among the remaining t −w, the obtained cheating
probability is that of Equation (3).

This strategy appears to be optimal when w ≈ t/2, where the maximum for
Equation (4) is reached for α = w. However, a more general approach can be
obtained by allowing the adversary to select α ∈ {0, . . . , t} executions in which it
guesses a value 1 for the second individual challenge. In particular, when w ≈ t,
choosing α > w results in a better strategy. In fact, making mistakes in a few
positions is more efficient than guessing all the positions for the 1-entries in the
second challenge.

Proposition 1. Consider the (t,w)-fixed-weight repetition of a (2,2)-out-of-
(q,2)-special-sound interactive proof. A dishonest prover can convince a verifier
if, for all parallel executions, they either guess the first or the second individual
challenge (or both) correctly. If the prover selects α ≥ w executions for the
fixed-weight element in the second challenge, the attack runs in average time
O( 1

Pα(t,w,q)
), where

Pα(t,w, q) =
min{w,α}

∑
ℓ=max{0,w−t+α}

(α
ℓ
)(t−α

w−ℓ
)

( t
w
)

q−(α−ℓ)−(w−ℓ).

The overall cost of the attack is estimated by optimizing over α ∈ {0, . . . , t}.

Proof. As discussed above, the cheating strategy associated with Theorem 1
for (k1, . . . , kµ)-special-sound interactive proofs is optimal. By substituting the
parameters of q2-identification schemes, namely µ = 2,N1 = q,N2 = 2, and
k1 = k2 = 2, in the expression of Equation (1), we immediately obtain Pα(t,w, q).

4.2 Forgery Attack on the Signature Scheme

We now describe a forgery attack for a signature scheme obtained by applying the
Fiat-Shamir transform on the (t,w)-fixed-weight repetition of a q2-identification
scheme. The forgery is based on the attack described in [10, Proposition 18],
which exploits the fact that the second round challenge can be repeatedly guessed
without modifying the initial commitment and the first round challenge. In this
way, the attack can be split into two phases. In the first phase, the adversary
tries to guess the value of the first challenge for at least t∗ parallel executions of
the protocol. Then, in the second phase, the adversary tries to guess the second
challenge for the remaining incorrect executions. As in the interactive case, this
strategy can be improved for fixed-weight challenges by selecting α ≥ w parallel

11 For each of the ℓ wrong positions for the choice of 1s, there is a corresponding wrong
choice among the 0s.



20 Battagliola et al.

executions where the fixed-weight elements appears inside the second challenge,
i.e. guessing ch[2] from (Ch[2])t,α instead of (Ch[2])t,w.

To carry out the attack, the adversary must be able to generate valid tran-
scripts after correctly guessing either the first or the second challenge. This
capability is slightly stronger than that granted by the HVZK simulator S of
Definition 10, where S takes as input only a public key. This property can be
obtained by requiring the base interactive proof to be piecewise simulatable [28].
Informally, this means that the HVZK simulator can be split into two algorithms
(in two different ways). By doing so, it is possible to first produce a partial tran-
script from the first algorithm, then complete it by giving one of the challenges
as input to the second algorithm.

Definition 19 (Piecewise Simulatability). A HVZK 5-round interactive
proof is piecewise simulatable if there exist probabilistic-polynomial time algo-
rithms A = (A1,A2) and B = (B1,B2), defined as follows:

Simulator A:
1: T1 = (com, ch[1], rsp[1])←$ A1(pk)
2: rsp[2] ←$ A2(pk, T1, c̃h

[2]
)

3: T ← (com, ch[1], rsp[1], c̃h[2], rsp[2])

Simulator B:
1: T1 = com←$ B1(pk)
2: (rsp[1], rsp[2])←$ B2(pk, T1, c̃h

[1], ch[2])
3: T ′ ← (com, c̃h[1], rsp[1], ch[2], rsp[2])

where T and T ′ are distributed as the output of the HVZK simulator S(pk), for
all ch[2] ∈ Ch[2] and when c̃h[1] (resp., c̃h[2]) is chosen uniformly at random from
Ch[1] (resp., Ch[2]).

If the interactive proof satisfies Definition 19, Simulator A can be employed to
produce a valid transcript on a random second challenge c̃h[2] for a given prefix
(com, ch[1], rsp[1]). On the other hand, Simulator B can be employed to produce
a valid transcript on a random first challenge c̃h[1]. Compared with the original
definition of [28], algorithm B2 has been modified so that it can also accept as
input the second challenge ch[2]. By making no assumption on the distribution
of ch[2], we capture the ability of the adversary to attempt to produce a valid
transcript without changing the commitment and the first challenge. Although
this is a stronger notion, it is fulfilled by CROSS12 and the q2-identification
schemes investigated in [28].

We are now ready to describe the anticipated forgery attack, which is detailed
in Algorithm 2. There, the adversary has access to the user’s public key pk and
uses Algorithms (A1,A2), (B1,B2) to produce a forgery for an arbitrary message
msg.

Proposition 2. By optimizing over the choice of t∗ and α, the forgery of Algo-
rithm 2 runs on average time

O( min
t∗∈{0,...,t}

{ 1

P1(t, t∗, q)
+ 1

P2(t, t∗,w, q)
}),

12 In the forgery procedure of [10, Proposition 18], a detailed description of the required
algorithms is provided.
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Algorithm 2 Forgery attack
Let t∗ ∈ {0, . . . , t} be the number of executions where the first challenged is guessed,
and α ≥ w be the number of executions where the fixed-weight element is chosen
in the second challenge. Let H1,H2 be cryptographic hash functions from {0,1}∗ to
(Ch[1])t, (Ch[2])t,w, respectively.
Forge(pk,msg):
1: repeat
2: for i ∈ {1, . . . , t} do
3: T

[1]
i ← (comi, c̃h

[1]
i , rsp[1]i )←$ A1(pk) ▹ Guess values for the first challenge

4: (ch[1]1 , . . . , ch[1]t )← H1(pk,{comi}
t
i=1,msg)

5: S ← {i ∈ {1, . . . , t} ∣ ch[1]i = c̃h
[1]
i }

6: until ∣S∣ ≥ t∗

7: (c̃h[2]1 , . . . , c̃h[2]t )←$ (Ch[2])t,α ▹ Guess values for the second challenge

8: for i ∈ S do
9: r̃sp[1]i ← rsp[1]i

10: repeat
11: for i /∈ S do
12: (r̃sp[1]i , r̃sp[2]i )←$ B2(pk, comi, ch

[1]
i , c̃h[2]i )

13: (ch[2]1 , . . . , ch[2]t )← H2(pk,{comi, ch
[1]
i , r̃sp[1]i }

t
i=1,msg)

14: until ch[2]i = c̃h
[2]
i for all i /∈ S

15: for i ∈ S do
16: r̃sp[2]i ←$ A2(pk, T

[1]
i , ch[2]i )

17: return σ ← ({comi, r̃sp
[1]
i , r̃sp[2]i }

t
i=1)

where

P1(t, t∗, q) =
t

∑
j=t∗
(t
j
)(1

q
)
j

(1 − 1

q
)
t−j

,

P2(t, t∗,w, q) = max
α∈{w,...,t}

t

∑
j=t∗

(t
j
)( 1

q
)
j
(1 − 1

q
)
t−j

P1(t, t∗, q)

min{t−j,α}

∑
w∗=max{0,α−j}

(t−j
w∗
)( j

α−w∗
)

( t
α
)

( j
w−w∗

)
( t
w
)

.

Proof. Complexity estimation for the forgery attack is essentially the same as
that described in [10, Proposition 18], except that in guessing the values of the
second challenge, the adversary can now choose a number α ≥ w of parallel
executions for the fixed-weight elements (Line 7).

The algorithm iterates over the first loop (Lines 1 to 6) until the choices on
the first challenge are valid for at least t∗ parallel executions. These prefixes
of the transcript are obtained by repeatedly executing the simulator A1. Once
this is obtained, the algorithm freezes the individual commitments and the first
challenge. Then, it starts making attempts for the second challenge, and it only
stops when the latter is correctly generated for the remaining t − t∗ executions
(Lines 10 to 14). For each attempt, the algorithm executes the probabilistic
algorithm B2, obtaining fresh values for the first response and, consequently,
ensuring new values for the second challenges (ch[2]1 , . . . , ch

[2]
t ) on Line 13. By
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doing this, the commitments prepared in the initial loop remain unchanged. This
procedure gets repeated until the second challenge is suitably chosen. Namely, in
every execution where the attacker did not guess the correct value for the first
challenge, the value for the second challenge must be correctly guessed (Line 14).

The total cost of the attack is the sum of the costs for the two phases. The
probability that the initial guess (c̃h[1]1 , . . . , c̃h

[1]
t ) is valid, i.e. that it matches in

at least t∗ positions with (ch[1]1 , . . . , ch
[1]
t ) generated on Line 4, is

P1(t, t∗, q) =
t

∑
j=t∗
(t
j
)(1

q
)
j

(1 − 1

q
)
t−j

.

Consequently, the average cost for the first loop is O ( 1
P1(t,t∗,q)

).
We now consider the second loop. Let S denote the set of indices i for which

ch
[1]
i = c̃h

[1]
i and its complement by S̄. We define j = ∣S∣ and we notice that

Pr[∣S∣ = j ∣ ∣S∣ ≥ t∗ ] =
(t
j
) ( 1

q
)
j
(1 − 1

q
)
t−j

P1(t, t∗, q)
.

Denote by ch
[2]
S (resp., c̃h[2]S ) the vector formed by the coordinates of ch[2] (resp.,

c̃h[2]) which are indexed by S. Analogously, we denote by ch
[2]

S̄
(resp., c̃h[2]

S̄
) the

vector formed by the coordinates of ch[2] (resp., c̃h[2]) which are not indexed
by S. For the second loop to halt, ch[2] must be such that ch

[2]

S̄
= c̃h[2]

S̄
. Let w∗

denote the number of 1-guesses for the individual executions indexed by S̄; that
is, w∗ is the Hamming weight of c̃h[2]

S̄
. Recall that, in guessing c̃h[2] the adversary

chooses α ≥ w position for the 1-entries (Line 7). It follows that

Pr[wt(c̃h[2]
S̄
) = w∗] =

(t−j
w∗
)( j

α−w∗
)

( t
α
)

.

The probability that a generated ch[2] is valid, i.e. ch[2]
S̄
= c̃h[2]

S̄
, is

Pr[ch[2] is valid ∣wt(c̃h[2]
S̄
) = w∗ ] =

∣{ ch[2] ∈ {0,1}t ∣ wt(c̃h[2]
S̄
) = w∗, ch[2]

S̄
= c̃h[2]

S̄
}∣

( t
w
)

=
∣{ ch[2] ∈ {0,1}t ∣ wt(ch[2]S ) = w −w∗, ch

[2]

S̄
= c̃h[2]

S̄
}∣

( t
w
)

=
( j
w−w∗

)
( t
w
)

.
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Putting everything together, we have that in each execution of the second
loop, ch[2] is correctly guessed with an average probability of

P2(t, t∗,w, q) = max
α∈{w,...,t}

t

∑
j=t∗

Pr[∣S∣ = j ∣ ∣S∣ ≥ t∗ ]

⋅
min{t−j,α}

∑
w∗=max{0,α−j}

Pr[wt(c̃h[2]
S̄
) = w∗] ⋅Pr[ch[2] is valid ∣wt(c̃h[2]

S̄
= w∗)]

= max
α∈{w,...,t}

t

∑
j=t∗

(t
j
) ( 1

q
)
j
(1 − 1

q
)
t−j

P1(t, t∗, q)

min{t−j,w}

∑
w∗=max{0,α−j}

(t−j
w∗
)( j

α−w∗
)

( t
α
)

( j
w−w∗

)
( t
w
)

.

The overall cost of the attack is estimated by summing the costs for both phases
and optimizing over t∗, that is

min
t∗∈{0,...,t}

{ 1

P1(t, t∗, q)
+ 1

P2(t, t∗,w, q)
} .

4.3 Application to CROSS

CROSS [10] is a code-based signature scheme submitted to the “on-ramp” NIST
competition, which was recently admitted to the second round. The signature
scheme is obtained by applying the Fiat-Shamir transform to a parallel repetition
of a 5-round interactive proof. This interactive proof — which we will denote by
ΠCR — is a q2-identification scheme.

CROSS specifications provide parameters for two variants: R-SDP and
R-SDP (G). In particular, for each variant, different parameter sets are provided
for NIST security categories 1, 3, and 5. In turn, for each security category, three
parameter sets are proposed, aiming at three distinct optimisation corners: com-
putational speed in signature and verification (“fast” parameters), signature size
(“small” parameters), and a balanced version which aims for a balance between
the previous two (“balanced” parameters).

Every parameter set employs the fixed-weight optimisation on the second
challenge of Πt

CR. In particular, the second challenge from Ch[2] has always a
given weight w. The modification of Πt

CR obtained via this optimisation is denoted
by Πt,w

CR . Within CROSS specifications, the fixed-weight element is 1. The three
different parameter sets for each variant of the protocol and each NIST security
category are chosen accordingly to the ratio between w and t. For the “fast”
variant, we have w ≈ t/2 and t slightly larger than the security parameter λ. In
the “balanced” and “small” versions, we instead have that w is close to t and
t≫ λ. The choice of fixed-weight parameters (t,w) in [10] is done such that the
complexity of the best forgery attack against CROSS exceeds 2λ, and the value
of t is the minimum possible.

In the parameter sets of CROSS, submitted to the first round of the NIST
“on-ramp” process, the choice of the parameters t,w is made by evaluating the
complexity of a forgery that does not exploit the fixed-weight of the second
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Table 2. Cost of our forgery attack (Proposition 2) compared to the attack considered
in [10] for choosing the parameters of CROSS as submitted to the first round of the
NIST “on-ramp” process [30]. Complexities are given as log2 of the estimated gate count.
t∗ and α show the optimal choices for the attack parameters.

Parameters CROSS Forgery Our Forgery

Set Optim. p t w Compl. t∗ Compl. t∗ α

CROSS-R-SDP 1
fast 127 163 85 128.06 35 128.05 35 86
balanced 127 252 212 128.01 40 120.46 38 227
small 127 960 938 128.00 65 97.48 55 960

CROSS-R-SDP 3
fast 127 245 127 192.08 52 192.05 52 128
balanced 127 398 340 192.07 61 179.67 59 365
small 127 945 907 192.02 83 156.37 73 944

CROSS-R-SDP 5
fast 127 327 169 256.06 70 256.03 70 171
balanced 127 327 169 256.01 81 240.82 78 459
small 127 968 912 255.22 101 217.15 91 957

CROSS-R-SDP (G) 1
fast 509 153 79 128.06 24 128.06 24 79
balanced 509 243 206 128.13 27 122.72 26 216
small 509 871 850 128.01 38 108.22 34 867

CROSS-R-SDP (G) 3
fast 509 230 123 192.03 37 191.98 37 125
balanced 509 255 176 192.03 37 189.83 37 184
small 509 949 914 192.03 53 167.56 48 937

CROSS-R-SDP (G) 5
fast 509 306 157 256.01 49 256.00 49 158
balanced 509 356 257 256.08 51 252.70 50 270
small 509 996 945 256.03 66 228.58 61 974

challenge. Applying the forgery described in the previous section and evaluating
its complexity with the expression of Proposition 2, we can observe that the
previous strategy is not optimal, and when w ≈ t (e.g., for “balanced” and “small”
parameter sets) the CROSS parameters do not achieve the expected security level
(Table 2). In particular, Proposition 2 leads to a more efficient adversary for any
choice of parameters t and w. For the R-SDP variant of CROSS, the “balanced”
parameterisation loses 6% of security margin on average across all NIST security
categories, while the “small” parameterisation loses 19% on average. The largest
security loss is incurred by the “small” parameterisation for NIST security category
1, with a loss of 30 bits compared to the security target of 128 bits. For the
R-SDP (G) variant, the incurred security loss is lower due to an increased value
for q, with an average reduction of 2% for the “balanced” parametrisation and of
13% for the “small” parametrisation. Again, the largest security loss is incurred
by the “small” parameterisation for NIST security category 1, with a loss of 20
bits compared to the security target of 128 bits.

Artifacts. Scripts for reproducing the attack costs, including all presented tables,
are available at https://github.com/edoars/revise-cross-parameters.

https://github.com/edoars/revise-cross-parameters
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5 Conclusions

In this work we provided an explicit proof of the EUF-CMA security of CROSS,
a signature scheme currently in the second round of the NIST “on-ramp” stan-
dardisation process for post-quantum signatures. We did that by proving that the
Fiat-Shamir transform of any interactive proof with negligible knowledge error
yields an EUF-CMA secure signature scheme, with a security loss of at most (Q

µ
),

where Q is the number of signature queries and 2µ + 1 is the number of rounds.
As a second contribution, we presented a novel forgery attack against signa-

tures based on q2-identification schemes, significantly improving upon previous
results. When applied to CROSS, our attack demonstrates that some parameter
sets achieve lower security levels than originally claimed, with reductions of up
to 24% in the worst case. This has practical implications for CROSS’s parameter
selection.

Several interesting directions remain open for future research. First, while we
proved an upper bound for the security loss of the Fiat-Shamir transform, we do
not have a matching lower bound that proves the optimality of our attack. Finding
such a bound would provide a complete picture of the exact security guarantees
provided by Fiat-Shamir signatures obtained from fixed-weight repetitions of
multi-round interactive proofs.

A second direction concerns the requirements for our forgery attack. Currently,
the attack requires the underlying interactive proof to satisfy piecewise simu-
latability, a stronger property than typically needed for Fiat-Shamir signatures.
Although this property is satisfied by CROSS and most 5-round interactive proofs
in the literature, it would be valuable to understand how the attack could be
adapted to protocols with different security properties. Of particular interest
would be investigating the impact of early abort capabilities [28] in intermediate
rounds, as this could potentially prove certain protocols more resistant to our
forgery technique.
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