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Abstract: The Classical Bloom Filter (CBF) is a class of Probabilistic Data Structures (PDS) for handling Approximate
Query Membership (AMQ). The Learned Bloom Filter (LBF) is a recently proposed class of PDS that com-
bines the Classical Bloom Filter with a Learning Model while preserving the Bloom Filter’s one-sided error
guarantees. Bloom Filters have been used in settings where inputs are sensitive and need to be private in the
presence of an adversary with access to the Bloom Filter through an API or in the presence of an adversary
who has access to the internal state of the Bloom Filter. Prior work has investigated the privacy of the Classi-
cal Bloom Filter providing attacks and defenses under various privacy definitions. In this work, we formulate
a stronger differential privacy-based model for the Bloom Filter. We propose constructions of the Classical
and Learned Bloom Filter that satisfy (ε,0)-differential privacy. This is also the first work that analyses and
addresses the privacy of the Learned Bloom Filter under any rigorous model, which is an open problem.

1 INTRODUCTION

Probabilistic Data Structures (PDS) have a higher ef-
ficiency than data structures that give exact answers.
This comes at the cost of PDS only giving approx-
imate answers to queries. Probabilistic Data Struc-
tures that give approximate answers to membership
queries are called AMQ-PDS (Filić et al., 2022). The
Bloom Filter is one of the most common AMQ-PDS.
The Bloom Filter has numerous applications includ-
ing in databases, cryptography, computer network-
ing, social networking (Bose et al., 2008), and net-
work security (Broder and Mitzenmacher, 2003). The
Learned Bloom Filter (LBF) is a novel data structure
invented in 2017 (Kraska et al., 2018). We refer to a
Bloom Filter that is not an LBF as a Classical Bloom
Filter (CBF).

A CBF that stores a set S may have false positives
(s /∈ S may return true) but it never has false nega-
tives (s ∈ S is always true). An LBF provides the
same one-sided error guarantee (no false negatives) as
a CBF but with potentially better performance for the
same memory budget (Mitzenmacher, 2018a; Mitzen-
macher, 2018b; Bishop and Tirmazi, 2024). In this
work, we use Bloom Filter (BF) as a blanket term
that includes both LBFs and CBFs. An LBF can be
thought of as a CBF working in collaboration with a
Learning Model. Figure 1 shows a Standard LBF.

1.1 Contributions

The fundamental open problem this work tries to
solve is: How can we provably protect the privacy
of data stored in a Bloom Filter?
Differential privacy for Bloom Filters. We pro-
pose the first rigorous privacy framework for BFs with
provable guarantees under the (ε,δ)-differential pri-
vacy model. We also discuss set privacy which pro-
vides an intuitive and rigorous measure of privacy for
unordered sets in the context of AMQ-PDS and en-
ables privacy-preserving algorithms that can be gen-
eralized to any BF or AMQ-PDS construction.
Provably private constructions. We introduce two
privacy-preserving algorithms, Nickel and Dime, that
satisfy the notion of (ε,0)-differential privacy. Our
algorithms apply to both Classical and Learned BFs.
Instead of changing the internal state of the BF, we
use our algorithms to modify the input set stored by
the BF instead. This approach can be generalized to
other AMQ-PDS. Nickel adds privacy without sacri-
ficing the one-sided error guarantees inherent to the
BF. Dime adds privacy at the cost of introducing a
false negative probability to the BF.
First privacy model for Learned Bloom Filters. To
the best of our knowledge, this work is the first to
address and analyze the privacy of LBFs under a rig-
orous mathematical framework.



Learning 
Model

Backup 
Classical 

Bloom Filter

Input Negatives

Positives

Negatives

Positives

Figure 1: Standard Learned Bloom Filter (SLBF) with a
Learning Model (LM) and a Backup Classical Bloom Filter
(CBF). The Backup CBF only checks values that, according
to the LM, are not in SΠ. This ensures a one-sided error
bound (no false negatives) on the entire construction

.

1.2 Related Work

CBF Security. (Gerbet et al., 2015) suggest prac-
tical attacks on CBFs and the use of universal hash
functions and MACs to mitigate a subset of those at-
tacks. (Naor and Eylon, 2019) define an adversarial
model for CBFs and provide a method for construct-
ing adversary-resilient CBFs. (Naor and Oved, 2022)
present several robustness notions in a generalized ad-
versarial model for CBFs. (Clayton et al., 2019) an-
alyze CBFs using a stronger adversarial model than
Naor and Eylon, allowing an adversary to perform in-
sertions. Clayton et al. propose using salts and keyed
pseudo-random functions for securing CBFs. Both
Naor and Eylon, and Clayton et al. perform their anal-
ysis in a game-based setting. (Filić et al., 2022) inves-
tigate the adversarial correctness of CBFs. Filić et al.
use a stronger adversarial model than Naor and Eylon
allowing an adversary to insert entries into the CBF
and query for the internal state of the CBF. Filić et
al. perform their analysis in a simulator-based setting.
None of these works address Learned PDS including
the LBF.
LBF Security. We are aware of only two prior works
that address the Learned Bloom Filter in an adversar-
ial setting, (Reviriego et al., 2021) and (Bishop and
Tirmazi, 2024). Reviriego et al. propose a practical
attack on LBFs. They suggest possible mitigations
e.g. swapping to a CBF upon attack detection. How-
ever, they do not provide any provable security guar-
antees for LBFs. Reviriego et al. leave the security
of the LBF as an open problem. Bishop and Tirmazi
generalize the adversarial model of Naor and Eylon
to LBFs and propose provably secure LBF construc-
tions called Bodega Filters. Bishop and Tirmazi is the
first paper to provide a rigorous adversarial model and
provable security guarantees for LBFs.
CBF Privacy Attacks. Many works have shown that
CBFs are vulnerable to set reconstruction attacks i.e.
given the internal state σ it is possible to infer the
set the CBF stores with high probability. (Sengupta
et al., 2018) and (Reviriego et al., 2023) demonstrate

set reconstruction attacks on CBFs. (Galan et al.,
2023) show that set reconstruction is possible even
when an adversary only has access to the CBF’s API.
CBF Privacy. (Bianchi et al., 2012) is the first pa-
per to provide privacy metrics for CBFs. Bianchi
et al.’s metrics are based on k-anonymity (Sweeney,
2002). Under k-anonymity, when only certain at-
tributes called quasi-identifiers are under considera-
tion, each tuple in an anonymized dataset must ap-
pear at least k times. k-anonymity as a privacy notion
is generally considered weak and is not immune to
identification attacks (Li et al., 2012). (Filić et al.,
2022) propose a simulator-based notion of privacy for
CBFs based on information leakage profiles. They
provide privacy bounds for CBFs that use pseudo-
random functions (PRFs) on their input set. Filić et
al.’s proposal does not achieve meaningful privacy
for CBFs whose input sets have low min-entropy and
their notion of Elem-Rep privacy is not immune to
set reconstruction attacks from computationally un-
bounded adversaries.
LBF Privacy. We are not aware of any specific prior
work analyzing the privacy of Learned Bloom Filters.

2 PRELIMINARIES

We borrow and unify the treatment of AMQ-PDS
from a large body of prior work (Filić et al., 2022;
Filić et al., 2024; Gerbet et al., 2015; Bishop and Tir-
mazi, 2024; Broder and Mitzenmacher, 2003; Naor
and Eylon, 2019).
Notation. Given a set S, we write x←$ S to mean
that x is sampled uniformly randomly from S. For a
set S, we denote by |S| the number of elements in S.
Similarly, for a list L, |L| is the number of elements
in L. A fixed-length list of length m initialized empty
is denoted by L← ⊥n. The ith entry in list l is l[i].
We write variable assignments using ←. If the out-
put is the value of a randomized algorithm, we use
←$ instead. For a randomized algorithm A, we write
output← Ar(input1, input2, · · · , inputl), where r ∈ R
are the random coins that can be used by A and R
is the set of possible coins. For a natural number n,
we denote the set {1, · · · ,n} by [n]. ¢ p indicates a

biased coin with probability p of returning heads. h
indicates heads, t indicates tails.

2.1 AMQ-PDS

We formalize the general syntax and behavior of
AMQ-PDS. Given an AMQ-PDS, Π, we denote the
set of public parameters of an AMQ-PDS by Φ. We



denote the set of elements stored in Π by SΠ. We de-
note the state of Π by σ ∈ Σ where Σ is the space of
all possible states of Π. Π can store elements from
any finite domain D, where D = ∪L

l=0{0,1}l for any
natural number L ∈ N. An AMQ-PDS, Π consists of
two algorithms.
Construction. σ←Cr(Φ,SΠ) sets up the initial state
of an empty AMQ-PDS with public parameters Φ and
a given set SΠ ⊆D.
Query. b←Q(x,σ), given an element x∈D returns a
boolean b ∈ {⊥,⊤}. The return value approximately
answers whether x ∈ SΠ (b =⊤) or x /∈ SΠ (b ̸=⊥).
The construction algorithm Cr is called first to ini-
tialize Π. The query algorithm Q is not allowed to
change the value of the state. While Cr is randomized,
Q is deterministic. Both algorithms always succeed.
A class of AMQ-PDS can be uniquely identified by
its algorithms: Π = (Cr,Q). All AMQ-PDS have the
following properties.
Definition 2.1 (AMQ-PDS). Π = (Cr,Q) is an
(n,εp,εn)-AMQ-PDS if for all sets SΠ ⊆ D of cardi-
nality n and suitable public parameters Φ, the follow-
ing two properties hold.
P-Soundness: ∀x /∈ SΠ : P[Q(x,Cr(Φ,SΠ)) =⊤]≤ εp
N-Soundness: ∀x ∈ SΠ : P[Q(x,Cr(Φ,SΠ)) =⊥]≤ εn
where the probabilities are over the coins of Cr.

2.2 Bloom Filter

A Bloom Filter (BF) is any member of a class of
AMQ-PDS whose query algorithm can yield false
positives but not false negatives (Bloom, 1970).
We formalize this notion with the following defini-
tion (Naor and Eylon, 2019; Naor and Oved, 2022;
Bishop and Tirmazi, 2024):
Definition 2.2 (Bloom Filter). Π = (Cr,Q) is an
(n,ε)-BF if for all sets SΠ ⊆ D of cardinality n and
suitable public parameters Φ, the following two prop-
erties hold.
Completeness: ∀x ∈ SΠ : P[Q(x,Cr(Φ,SΠ)) =⊤] = 1
Soundness: ∀x /∈ SΠ : P[Q(x,Cr(Φ,SΠ)) =⊤]≤ ε

where the probabilities are over the coins of Cr.

Note that Def. 2.2 holds for both CBFs and LBFs.

2.3 Learned Bloom Filter

We use definitions consistent with common math-
ematical treatments of the Learned Bloom Fil-
ter (Bishop and Tirmazi, 2024; Mitzenmacher, 2018a;
Vaidya et al., 2021; Mitzenmacher, 2018b). Let
SΠ ⊆ D be the set stored in the LBF. Consider any
set P ⊆ SΠ and N ⊆ D \ SΠ. We denote the set
T = {(xi,yi = 1)|xi ∈ P}∪ {(xi,yi = 0)|xi ∈ N} as a

Cr(Φ,SΠ)

m, k←Φ; σ← 0m

∀x∈SΠ
∀i∈[k] σ← σ∨ ĥi,m(x)

return σ

Q(x,σ)
b← 0m

∀i∈[k] b← b∨ ĥi,m(x)

return [b = σ∧b]

Figure 2: AMQ-PDS syntax instantiation for the Standard
Classical Bloom Filter (SCBF).

training dataset. LBFs use machine learning models
(LMs) trained from the training dataset, which we for-
malize below.

Definition 2.3 (Learning Model). Let L : D 7→
{⊥,⊤} be any function that maps elements in D to
a boolean. L is an (SΠ,εp,εn)-LM, if for set SΠ ⊆D
the following two properties hold.
P-Soundness: ∀x /∈ SΠ : P[L(x) =⊤]≤ εp
N-Soundness: ∀x ∈ SΠ : P[L(x) =⊥]≤ εn

Definition 2.4 (Learned Bloom Filter). Π = (Cr,Q)
is an (n,ε,εp,εn)-LBF if for all sets SΠ ⊆ D of car-
dinality n and suitable public parameters Φ: Π is an
(n,ε)-BF and Q uses an (SΠ,εp,εn)-LM.

The training dataset T is typically used internally by
the construction algorithm Cr to create an (SΠ,εp,εn)-
LM L which is stored as part of the state σ of the
AMQ-PDS Π. Q then extracts this LM from σ and
invokes it when answering a membership query.

2.4 Constructions

Standard CBF. There are many constructions of the
Classical Bloom Filter (Broder and Mitzenmacher,
2003; Gupta and Batra, 2017; Abdennebi and Kaya,
2021). We discuss the most common construction, the
Standard Classical Bloom Filter (SCBF). The SCBF
construction requires a family of k independent hash
functions, hi,m : D 7→ [m] for all i ∈ [k].

In SCBF, σ is a zero-initialized array of m bits.
Upon setup, For each element x ∈ SΠ (recall SΠ is the
set being encoded by the Bloom Filter), the bits hi(x)
are set to 1 for i ∈ [k]. When querying an element x,
we return true if all hi(x) map to bits that are set to 1.
If there exists an hi(x) that maps to a bit that is 0, we
return false.

Definition 2.5. ĥi,m : D 7→ {0,1}m maps an input x ∈
D to an m-bit array where all bits are 0 except the bit
at index hi,m(x)

Definition 2.6. Let m, k be positive integers. We de-
fine an (m,k)-SCBF to be any (n,ε)-BF with algo-
rithms defined in Figure 2, with Φ = (m,k).

Standard LBF. The Standard Learned Bloom Fil-
ter (SLBF) uses a Learning Model as a pre-filter in
front of a Classical Bloom Filter. The CBF is called



Cr(Φ,SΠ)

mb,m, k←Φ;
L← Tr(Gr(SΠ),mb)

S′Π←{x ∈ SΠ : L(x) =⊥}
σc← BCBF.Cr(S′Π)
return σ = (L,σc)

Q(x,σ)
L,σc← σ

l← L(x)
b← BCBF.Q(x,σc)

return [l∨b]

Figure 3: AMQ-PDS syntax instantiation for the SLBF.
Gr is any algorithm that generates a training dataset (Sec-
tion 2.3) from SΠ. Tr is any algorithm that trains a Learning
Model from a training dataset and a memory budget. BCBF
is the Backup Classical Bloom Filter.

the Backup CBF as it is only queried on inputs x for
which the LM decides that x is not an element of the
stored set (x /∈ SΠ). This maintains the completeness
property of the BF (Definition 2.2) ensuring that it
never outputs false negatives. The public parameters
of LBFs typically include a memory budget mb in ad-
dition to parameters for the Backup CBF, m,k. mb is
an upper bound on the memory the LM can use. Fig-
ure 1 illustrates an SLBF.

Definition 2.7. Let mb, m, k be positive integers. We
define an (mb,m,k)-SLBF to be any (n,ε,εp,εn)-LBF
with memory budget mb and algorithms defined in
Figure 3, with Φ = (m,k).

Sandwiched LBF. The Sandwiched Learned Bloom
Filter (Mitzenmacher, 2018a) is an SLBF which is
prefiltered by a CBF. The sandwiching technique pro-
vides better performance guarantees than the SLBF.
Figure 4 shows a Sandwiched LBF. The Sandwiched
LBF has public parameters (mb,m,k,m′,k′) where
m,k are the public parameters of the Initial CBF, m′,k′

are the public parameters of the Backup CBF, and mb
is the memory budget of the Learning Model. Con-
struction and query algorithms for Sandwiched LBFs
can be defined similarly to those of SLBFs.

3 PRIVACY MODEL

We formulate an adaption of differential pri-
vacy (Dwork and Roth, 2014) for unordered sets. For
any two sets, we introduce the notion of the Simple-
Jaccard distance1 to measure set similarity.

Definition 3.1 (Simple-Jaccard). For any two sets
A,B: ds j(A,B) = |A∪B|− |A∩B|
We define (ε,δ)-differential privacy for sets and BFs.

Definition 3.2 (Set Privacy). A randomized algorithm
Ar satisfies (ε,δ)-differential privacy if for any two

1An unweighted version of the Jaccard distance

sets S,S′ s.t ds j(S,S′)≤ 1 and for any possible output
range O⊆ Range(Ar),

P[Ar(S) ∈ O]≤ eεP[Ar(S′ ∈ O]+δ

where the probabilities are over the coins of Ar.
Definition 3.3 (Bloom Filter Privacy). An AMQ-PDS
Π = (Cr,Q) is an (n,ε, ε̃, δ̃)-P̃BF if Π is an (n,ε)-BF
and if for all SΠ,S′Π ⊆D such that ds j(SΠ,S′Π)≤ 1,

∀σ ∈ Σ : P[Cr(Φ,SΠ) = σ]≤ eε̃P[Cr(Φ,S′Π) = σ]+ δ̃

where the probabilities are over the coins of Cr.
We use identical definitions for a Private Learned
Bloom Filter, (n,ε,εp,εn, ε̃, δ̃)-P̃LBF, and for a Pri-
vate AMQ-PDS, (n′,ε′p,ε

′
n, ε̃, δ̃)-P̃AMQ-PDS.

3.1 Set Release Games

We introduce two games, which will prove useful
later on in establishing bounds on BF privacy. The
games enforce no bounds on the adversary’s compu-
tational power or auxiliary information.
Game 3.1 (STRICT-SET-RELEASE). We have a
dealer ϒ, a player P, and an adversary A. Sets in
the game are subsets of a suitable universe U.
Round 1 A gives ϒ any two sets S0 and S1 s.t

ds j(S,S′)≤ 1.
Round 2 ϒ flips a bit b←$ {0,1} and gives Sb to P.

P can add elements to S but not change or remove
elements. P returns a modified set S̃.

Round 3 ϒ gives A the set S̃. A returns bit b′. If
b = b′, A wins. Otherwise, P wins.

We also define a more lenient Set Release game,
which also allows element deletion.
Game 3.2 (SET-RELEASE). Identical to STRICT-
SET-RELEASE (Game 3.1) except that in Round 2,
player P can add elements to set S as well as remove
elements from S.
It follows from Definition 3.2 that any algorithm that
bounds the winning probability of an adversary in a
Set Release Game satisfies (ε,δ)-differential privacy
in the same setting for suitable ε,δ values.

3.2 Nickel & Dime Algorithms

Figure 5 introduces Dime, an algorithm for player P
in SET-RELEASE (Game 3.2) that satisfies the notion
of (ε,0)-differential privacy. S̃ is initialized to S. For
each element x in the universe U that is not in S, we
flip a biased coin with probability 1

1+eε . If the coin
flips heads, we add x to S̃. For each element x in S, we
flip another biased coin with the same probability. If
the coin flips heads, we remove x from S̃.
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Figure 4: A Sandwiched Learned Bloom Filter. The initial filter only allows positives to reach the Learned Bloom Filter.

Dime(S,U,ε)

S̃← S; p← 1
1+eε

for each x ∈U \S: if ¢ p = h then S̃← S∪{x}

for each x ∈ S: if ¢ p = h then S̃← S\{x}

return S̃

Figure 5: Algorithm for SET-RELEASE (Game 3.2)

Theorem 3.1. Dime satisfies (ε,0)-differential pri-
vacy in the SET-RELEASE Game setting.

Proof. Let S0 and S1 be two sets with Simple-Jaccard
distance ds j(S0,S1) ≤ 1. To prove (ε,0)-differential
privacy, we have to show that

P[Dime(S0,U,ε) = S̃]≤ eεP[Dime(S1,U,ε) = S̃]

Let x be the single element where S0 and S1 differ.
Then either S0 = S1∪{x} or S1 = S0∪{x}.
Case 1: x ∈ S0 but x /∈ S1. The Dime algorithm en-
sures that:

P[x ∈ S̃|S0] = 1− 1
1+ eε

=
eε

1+ eε

P[x ∈ S̃|S1] =
1

1+ eε

Therefore,

P[x ∈ S̃|S0]

P[x ∈ S̃|S1]
= eε

Case 2: x /∈ S0 but x ∈ S1. Using the same method,
we can derive:

P[x ∈ S̃|S0]

P[x ∈ S̃|S1]
= e−ε

Since an independent coin is flipped for each decision
in the Dime algorithm, the probability of generating
any given S̃ is the product of the individual probabil-
ities of the addition/removal decision taken for every
element x ∈U i.e for each b ∈ {0,1}:

Nickel(S,U,ε)

S̃← S; p← 1
eε

for each x ∈U \S: if ¢ p = h then S̃← S∪{x}

return S̃

Figure 6: Algorithm for STRICT-SET-RELEASE (Game 3.1)

P[Dime(Sb,U,ε) = S̃] = ∏
x∈U

P[x ∈ S̃|Sb]

Since S0 and S1 differ by at most a single element x,
the above expression simplifies to

P[Dime(S0,U,ε) = S̃]
P[Dime(S1,U,ε) = S̃]

=
P[x ∈ S̃|S0]

P[x ∈ S̃|S1]

≤max(eε,e−ε) = eε

We have shown that the probability ratio is bounded
by eε for all outputs S̃. Hence we have proven an
upper bound on the probability of an adversary win-
ning the SET-RELEASE game and proven that the al-
gorithm satisfies (ε,0)-differential privacy.

Figure 6 introduces Nickel, an algorithm for player
P in STRICT-SET-RELEASE (Game 3.1) that satisfies
the notion of (ε,0)-differential privacy. S̃ is initialized
to S. For each element x in the universe U that is not
in S, we flip a biased coin with probability 1

eε . If the
coin flips heads, we add x to S̃.

Theorem 3.2. Nickel satisfies (ε,0)-differential pri-
vacy in the STRICT-SET-RELEASE Game setting.

Proof. Let S0 and S1 be two sets with Simple-Jaccard
distance ds j(S0,S1) ≤ 1. To prove (ε,0)-differential
privacy, we have to show that

P[Nickel(S0,U,ε)= S̃]≤ eεP[Nickel(S1,U,ε)= S̃]+δ

Let x be the single element where S0 and S1 differ.
Then either S0 = S1∪{x} or S1 = S0∪{x}.



Case 1: x ∈ S0 but x /∈ S1. The Nickle algorithm en-
sures that:

P[x ∈ S̃|S0] = 1

P[x ∈ S̃|S1] =
1
eε

Therefore,

P[x ∈ S̃|S0]

P[x ∈ S̃|S1]
= eε

Case 2: x /∈ S0 but x ∈ S1. We can similarly derive:

P[x ∈ S̃|S0]

P[x ∈ S̃|S1]
=

1
eε

= e−ε

Since an independent coin is flipped for each deci-
sion in the algorithm, the probability of generating
any given S̃ is the product of the individual probabili-
ties of the addition decisions taken for every element
x ∈U i.e for each b ∈ {0,1}:

P[Nickel(Sb,U,ε) = S̃] = ∏
x∈S̃

P[x ∈ S̃|Sb]∏
x/∈S̃

P[x /∈ S̃|Sb]

Since S0 and S1 differ by at most a single element x,
the above expression simplifies to

P[Nickel(S0,U,ε) = S̃]
P[Nickel(S1,U,ε) = S̃]

=
P[x ∈ S̃|S0]

P[x ∈ S̃|S1]

≤max(eε,e−ε) = eε

We have shown that the probability ratio is bounded
by eε for all outputs S̃. Hence we have proven an up-
per bound on the probability of an adversary winning
the STRICT-SET-RELEASE game and proven that the
algorithm satisfies (ε,0)-differential privacy.

3.3 Privacy Theorems

We now show how we can create Private Bloom Fil-
ters from algorithms that satisfy (ε,δ)-differential pri-
vacy in the setting of Set Release Games. The fol-
lowing two theorems hold for any BF including CBFs
and LBFs. For ease of exposition, we only use BF no-
tation. However, identical proofs work in LBF nota-
tion. Just like in the context of Set Release Games, we
assume the adversary is computationally unbounded
and has unbounded auxiliary information. We also
assume that the adversary can invoke the BF’s algo-
rithms (Cr,Q), and access the BF’s internal state (σ).
Theorem 3.3. Let Π = (Cr,Q) be any (n,ε)-BF. If
algorithm Ar satisfies (ε̃, δ̃)-differential privacy in the
setting of the STRICT-SET-RELEASE Game, then Π̃=
(C̃r,Q) is an (n′,ε′, ε̃, δ̃)-P̃BF, for some n′ ≥ n,ε′ ≥ ε

where C̃r(Φ,SΠ) =Cr(Φ,Ar(SΠ)).

Proof. Π̃ is an (n′,ε′)-BF because the player in a
STRICT-SET-RELEASE game is only allowed to add
elements, which does not invalidate the completeness
and soundness properties of the Bloom Filter. We
can prove our privacy bound by contradiction. As-
sume Π̃ is not an (n,ε, ε̃, δ̃)-P̃BF. This means there
exist SΠ,S′Π with ds j(SΠ,S′Π) ≤ 1 and some state σ

for which

P[Cr(Φ,Ar(SΠ)) = σ]> eε̃P[Cr(Φ,Ar(S′Π)) = σ]+ δ̃

However, this allows an adversary to win the STRICT-
SET-RELEASE game with probability larger than our
differential privacy bound and contradicts the as-
sumption that Ar satisfies (ε̃, δ̃)-differential privacy in
our setting.

Theorem 3.4. Let Π = (Cr,Q) be any (n,ε)-BF. If
algorithm Ar satisfies (ε̃, δ̃)-differential privacy in the
setting of the SET-RELEASE Game, then Π̃ = (C̃r,Q)

is an (n′,ε′p,ε
′
n, ε̃, δ̃)-P̃AMQ-PDS, for some n′,ε′p,ε

′
n

where C̃r(Φ,SΠ) =Cr(Φ,Ar(SΠ)).

Proof. We can prove our privacy bound by contra-
diction identical to Thm. 3.3. The difference here
is that the SET-RELEASE game allows removing ele-
ments from the input set. Therefore the completeness
property of the BF is no longer guaranteed. How-
ever, Π̃ still satisfies the positive and negative sound-
ness properties of an (n′,ε′p,ε

′
n)-AMQ-PDS for suit-

able values of n′, ε′p, and ε′n.

4 DISCUSSION

4.1 Performance Analysis

We investigate how our method for adding privacy
affects the performance of a given BF in terms of
its False Positive Rate (FPR) and its False Negative
Rate (FNR). We do not classify queries to elements
added by our privacy-preserving algorithms as false
positives i.e. a query on x ∈ S̃ \ S is not a false posi-
tive. These elements are not representative of typical
false positives, which arise naturally due to the prob-
abilistic nature of the BF. As such, we exclude these
elements from the FPR calculations to focus on the
inherent accuracy of the BF under privacy-preserving
conditions. This distinction ensures a clear separation
between errors due to the BF’s one-sided guarantees
and those intentionally introduced for privacy.

For any BF that stores set SΠ from a suitable uni-
verse U , has public parameters Φ, and internal state
σ: let FPR(SΠ,Φ,σ) and FNR(SΠ,Φ,σ) be func-
tions that return the expected FPR and expected FNR



of the BF respectively. Then the FPR and FNR of
a Private BF on the same set constructed using the
Nickel algorithm will be FPR(Nickel(SΠ,U,ε),Φ,σ)
and FNR(Nickel(SΠ,U,ε),Φ,σ) respectively. Simi-
lar expressions hold for the Dime algorithm.

4.2 Performance of (ε,0)-Private SCBFs

We demonstrate a simple instance of our analysis, tak-
ing the Standard Classical Bloom Filter (SCBF) as
a case study. An (m,k)-SCBF has zero FNR and its
FPR is approximately given by (Broder and Mitzen-
macher, 2003),

FPR(SΠ,(m,k)) = (1− e−k·|SΠ|/m)k

For a given set input S, the expected cardinality of
the set output by the Nickel algorithm and the Dime
algorithm is

|Nickel(SΠ,U,ε)|= |SΠ|+ e−ε(|U |− |SΠ|)

|Dime(SΠ,U,ε)|= |SΠ|+
1

1+ eε
(|U |− |SΠ|)

− 1
1+ eε

|SΠ|

We can replace |SΠ| in the FPR equation for the SCBF
with these expressions to get FPR expressions for
(ε,0)-Private SCBFs. When using the Dime algo-
rithm, we will also have a non-zero FNR which will
simply be the probability that a given x ∈ SΠ was re-
moved from the set SΠ by the algorithm i.e 1

1+eε .

4.3 Illustrative Example

Randomized response is one of the most common
private set membership techniques, first proposed in
1965. Scientists have used it to survey set mem-
bership among a population for things that individ-
ual members wish to retain confidentiality about. A
commonly used example is “Are you a member of
the Communist Party?” (Hox and Lensvelt-Mulders,
2008). Other examples include surveying the number
of people who have had abortions (Abernathy et al.,
1970) and questions relevant to a person’s sexual ori-
entation (Chen et al., 2014). In such surveys, the re-
spondent, e.g., when asked if they are a member of
the Communist Party, must secretly flip a fair coin and
say “Yes” if it returns heads regardless of the real an-
swer. Otherwise, the respondent must answer truth-
fully. Thanks to this technique each respondent has
plausible deniability regarding their membership.

We illustrate our privacy-preserving techniques in
this popular setting. Assume there are 50 citizens in
a repressive regime and we wish to release a contact

list of 10 citizens in the form of a queryable Bloom
Filter. These citizens have volunteered as people who
minority citizens can contact for support. However,
each citizen in the contact list can be incarcerated if
found out, so they want to maintain plausible deni-
ability. Let the privacy parameter we need to main-
tain plausible deniability be ε = 3. They can use the
Nickel algorithm to store an expected 40/e3 ≈ 2 more
members in the Bloom Filter who are uniformly ran-
domly chosen from the remaining population to main-
tain plausible deniability.

5 CONCLUSIONS

In this paper, we addressed the privacy of Proba-
bilistic Data Structures for Approximate Membership
Queries (AMQ-PDS). We focused on the Classical
Bloom Filter and the Learned Bloom Filter. We in-
troduced a rigorous privacy model based on differ-
ential privacy, providing formal guarantees that pro-
tect the privacy of the set stored by the Bloom Fil-
ter against adversarial inference. We demonstrated a
practical construction that satisfies (ε,0)-differential
privacy while maintaining a Bloom Filter’s one-sided
error guarantees. Our work is the first to develop
a privacy framework for the Learned Bloom Filter
and provide provably private constructions for the
Learned Bloom Filter. We complemented our theo-
retical contributions with a performance analysis dis-
cussing the trade-offs between privacy and member-
ship query error rates. This research lays the founda-
tion for privacy-preserving uses of probabilistic data
structures in diverse domains. We leave the problem
of extending our private constructions or designing
new ones for other Probabilistic Data Structures such
as the Count-Min Sketch (Cormode and Muthukrish-
nan, 2005) to future work.
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