
Non-Interactive Distributed Point Functions

Elette Boyle1, Lalita Devadas2, and Sacha Servan-Schreiber2

1 NTT Research and Reichman University
2 MIT

Abstract. Distributed Point Functions (DPFs) are a useful cryptographic primitive enabling
a dealer to distribute short keys to two parties, such that the keys encode additive secret shares
of a secret point function. However, in many applications of DPFs, no single dealer entity
has full knowledge of the secret point function, necessitating the parties to run an interactive
protocol to emulate the setup. Prior works have aimed to minimize complexity metrics of such
distributed setup protocols, e.g., round complexity, while remaining black-box in the underlying
cryptography.

We construct Non-Interactive DPFs (NIDPF), which have a one-round (simultaneous-message,
semi-honest) setup protocol, removing the need for a trusted dealer. Specifically, our construc-
tion allows each party to publish a special “public key” to a public channel or bulletin board,
where the public key encodes the party’s secret function parameters. Using the public key of
another party, any pair of parties can locally derive a DPF key for the point function parame-
terized by the two parties’ joint inputs.

We realize NIDPF from an array of standard assumptions, including DCR, SXDH, QR, and
LWE. Each party’s public key is of size O(N2/3), for point functions with a domain of size
N , which leads to a sublinear communication setup protocol. The only prior approach to re-
alizing such a non-interactive setup required using multi-key fully-homomorphic encryption or
indistinguishability obfuscation.

As immediate applications of our construction, we obtain “public-key setup” protocols for sev-
eral existing constructions of pseudorandom correlation generators and round-efficient protocols
for secure comparisons.

Table of Contents

1 Introduction . 2
1.1 Our results . 3
1.2 Applications . 4

2 Technical Overview . 5
2.1 Building block: Non-interactive multiplication . 5
2.2 Overview of the NIDPF construction . 6

3 Preliminaries . 10
3.1 Notation . 10
3.2 Additive secret sharing . 10
3.3 Cryptographic assumptions . 11
3.4 The NIDLS framework . 11
3.5 Degree-2 secret-key HSS . 12

4 Non-Interactive Multiplication . 14
4.1 NIM with multiplicative output reconstruction . 15
4.2 Succinct NIM for matrix multiplication . 15
4.3 Constructions from group-based assumptions . 15
4.4 Constructions from lattice-based assumptions . 18

5 Non-Interactive DPF . 18
5.1 Emulating arithmetic modulo N . 21
5.2 NIDPF framework . 22
5.3 Random-payload instantiation from SXDH . 24

6 Generalization to Succinct Multi-Key HSS . 27
7 Homomorphic Secret Sharing . 32

1 Introduction

A point function, denoted by Pi,v, is a function that evaluates to a message v on input i, and evaluates
to zero on all other inputs j ̸= i in its domain. A Distributed Point Function (DPF) [GI14,BGI15]
allows a trusted dealer to distribute short keys to two parties, where the keys jointly encode a point
function Pi,v for parameters (i, v) chosen by the dealer. Individually, a DPF key does not reveal any
information about the secret index i or message v to the party. However, using their key, each party
can locally “evaluate” the point function on a public input x, to obtain an additive secret share of
y := Pi,v(x).

DPFs are the backbone of many useful primitives and protocols relating to multi-party computa-
tion (MPC). In particular, DPFs enable communication-efficient generation of correlated randomness
in MPC protocols [BCGI18, SGRR19, BCG+19a, BCG+19b, BCG+20b, BCG+20a, YWL+20, AS22,
BCG+22,BBC+24], can be used to instantiate distributed oblivious RAM [Ds17,VHG23], privacy-
preserving machine learning [RTPB22,YJG+23,JGB+24], private database queries [WYG+17,DFL+20,
DRPS22, SSLD22] and analytics [BBC+21, MPD+24, MST24, RZCGP24], and mixed-mode secure
computation [BGI19,BCG+21].

However, in many of these applications, there is no trusted dealer that can generate and distribute
the DPF keys to the parties. Instead, the trusted dealer is emulated by the parties via a distributed
key generation protocol [Ds17, BGIK22, VSH22, VHG23], which the parties invoke to obtain their
respective DPF keys. More concretely, in a distributed generation protocol, each party holds a secret
share of the parameters (i, v). After invoking the protocol, the parties end up with DPF keys that
correspond to the point function Pi,v, such that neither party learns the parameters (i, v) in the
process.

Early approaches to distributed key generation simply used generic secure computation, resulting
in protocols with at least two rounds of communication, while being non-black-box in the underlying
cryptographic primitives. It was shown by Doerner and shelat [Ds17] how to achieve black-box dis-
tributed two-party key generation with logarithmically many communication rounds. Later, the DPF
construction of Boyle et al. [BGIK22] admitted a 5-round black-box protocol. In both approaches, the

DPF key size was polylogarithmic in the domain size N . If one instead relaxes the key size to, e.g., to
N1/2, these approaches can yield black-box distributed generation protocols with round complexity
as low as two sequential instances of 1-out-of-N1/2 oblivious transfer, resulting in a small constant
number of rounds.

At first glance, it is tempting to think that (folklore) lower-bounds from the MPC literature would
set the minimum number of rounds required for a distributed DPF generation protocol to two. How-
ever, upon closer inspection, we observe that because the parties obtain a key (which in some DPF
constructions can even be distributed pseudorandomly [BGI15,BGIK22]), a DPF generation proto-
col is not subjected to the two-round lower bound because each key can be efficiently simulated. In
particular, we can hope to achieve a non-interactive generation protocol mimicking non-interactive
key exchange protocols like Diffie–Hellman [DH76]. Indeed, spooky encryption [DHRW16] already
gives such a protocol through the use of multi-key fully homomorphic encryption (FHE) or indistin-
guishability obfuscation (iO). However, to date, this has been the only known approach to realizing
a “non-interactive” protocol (a protocol where each party only needs to read the other party’s public
key to locally derive a joint DPF key).

1.1 Our results

In this paper, we put forth and study the notion of a “non-interactive” DPF, and demonstrate
constructions from new assumptions. This is motivated by the search for (round-efficient) protocols
for eliminating the dealer, that do not require heavy tools like multi-key FHE, and can be instantiated
from an array of standard assumptions.

Non-Interactive DPFs. Our definition of a non-interactive DPF (NIDPF) enables two parties to
locally (non-interactively) derive DPF keys by simply reading each other’s public keys from a bulletin
board. More generally, this model is captured by a one-round, simultaneous-message semi-honest
protocol. A simultaneous-message communication pattern captures the interaction of non-interactive
key exchange protocols like Diffie–Hellman: (1) two parties exchange messages simultaneously, then
(2) any party can use another party’s message to locally derive a joint output (key). Such a model of
communication is highly desirable because the first message can be reused (i.e., the message of the
first party can be reused indefinitely with many different parties) and the parties do not need to be
online at the same time to participate.

The problem of generating DPF keys in a simultaneous-message protocol is much more challenging
compared to key exchange. This is due to the fact that a DPF setup requires the total communication
between parties (i.e., the size of the public keys) to be sublinear in the domain of the point function.
This requirement is generally challenging to achieve—indeed, the only way we currently know of
achieving such succinctness is via multi-key FHE [DHRW16]. Moreover, this connection to “multi-
key”-like primitives is inherent, as we remark on later.

Constructing NIDPF. Our primary contribution is to show that, perhaps surprisingly, we can
rely on simple cryptography and assumptions to achieve the sublinearity requirements. In particular,
inspired by the recent work of Abram et al. [ARS24], we show that we can realize NIDPF schemes
“directly,” without going through heavier primitives like multi-key FHE. A NIDPF scheme imme-
diately implies non-interactive key exchange, and thus public-key encryption, which eliminates the
possibility of using only lightweight symmetric-key cryptography (e.g., one-way functions). However,
we are able to realize NIDPFs from many standard assumptions, including the decisional composite
residuosity (DCR) assumption, symmetric external Diffie–Hellman (SXDH) assumption, quadratic
residuosity (QR) assumption, the enhanced Diffie–Hellman (EDDH) assumption in class groups, and
the learning with errors (LWE) assumption. We summarize our results in Table 1 and Theorem 1.

Theorem 1 (Informal). Let N be a domain size. There exists a Non-Interactive DPF (NIDPF) with
a key size O(N2/3) and evaluation time O(N5/3) under either (1) the DCR assumption, (2) the QR
assumption, (3) the EDDH assumption and the uniformity assumption in class groups, (4) the SXDH
assumption, or (5) the LWE assumption with a superpolynomial-modulus-to-noise ratio. Here, O(·)
hides polynomial factors in the security parameter.

As an independent contribution, we define a new abstraction that we call non-interactive mul-
tiplication, which captures all existing “non-interactive” primitives from a recent line of work. In

3

Assumption Transparent Setup Key Size

[DHRW16,XW23] LWE / iO+DDH ✓ log(N)

LWE / RLWE ✓ N2/3

DCR / QR ✗ N2/3This Work

SXDH⋆ / Class Groups+EDDH ✓ N2/3

Table 1: Summary of our instantiations of NIDPF with domains of size N . Constants and polynomial factors
(in the security parameter) are ignored in the asymptotic key size for readability. See Section 3 for details on
the cryptographic assumptions used. ⋆The SXDH-based construction only supports random payloads (output
messages).

particular, we identify a surprising (but rather obvious in retrospect) connection between our ab-
straction and Homomorphic Secret Sharing (HSS). This connection results in constructions of “suc-
cinct multi-key HSS” (restricted to a special class of computations) from a variety of assumptions,
including DDH, DCR, and the EDDH assumption in class groups. To the best of our knowledge,
the only prior approaches for such non-interactive computation required using multi-key FHE tech-
niques [DHRW16, XW23]. More concretely, our abstraction allows us to adapt the recent result of
Abram et al. [ARS24] constructing succinct HSS for “special RMS” programs to be non-interactive,
albeit restricted to a slightly weaker class of functions. Specifically, unlike with standard HSS, our
construction does not require a correlated setup between parties and only requires a common refer-
ence string. Moreover, the additional succinctness property allows one party to have a large input x
while maintaining that the input share is succinct in the size of x. We summarize this generalization
of our techniques in Theorem 2 and provide more details in Section 6.

Theorem 2 (Informal). Let HSS be an HSS scheme for the function class F and let P be the set of
constant-degree polynomials. There exists a succinct, multi-key HSS scheme for computing functions
of the form P (x, f(y)), where P ∈ P and f ∈ F , one party has a (large) input x, and the other party
has a (short) input y. Moreover, the total size of both parties’ input shares is o(|x|)+O(|y|), ignoring
polynomial factors in the security parameter.

1.2 Applications

We describe two immediate applications of our NIDPF construction. The primary application is
replacing multi-round DPF setup protocols with a non-interactive “public key” setup. In particular,
many applications of DPFs require two parties, each holding a secret share of an index t ∈ [N], to
generate DPF keys (through a secure setup protocol) that encode a point function parameterized by t.
Concretely, Alice and Bob hold shares tA, tB ∈ [N], such that tA+tB = tmodN , jointly generate DPF
keys for the point function Pt,1. (We assume additive secret sharing of the index t, following [BGIK22,
BBC+24]; some protocols also consider bit-wise XOR secret shares of t, however, applications typically
require working with additive secret sharing, e.g., [BCG+20b,BCCD23,BBC+24].)

PCGs with a “public-key” setup. Pseudorandom Correlation Generators (PCGs) [BCGI18,
BCG+19a, BCG+19b, SGRR19,BCG+20a, BCG+20b,BCG+22,AS22,BBC+24] are a cryptographic
primitive enabling parties to generate long pseudorandom correlations given access to short corre-
lated seeds. In particular, to jointly generate long correlations, it suffices for parties to first execute
a secure computation protocol to jointly sample the short PCG seeds, and then locally expand them
into a large number of pseudorandom correlations. PCG constructions exist for a variety of correla-
tions, including oblivious transfer (OT), vector olivious linear evaluation (VOLE), and Beaver triple
correlations, and make heavy use of DPFs. Indeed, the dominant cost of the setup protocol for these
constructions is jointly generating DPF keys [SGRR19,BCG+20b,AS22,BBC+24].

Interestingly, a recent line of work [OSY21,BCM+24] has shown that when it comes to OT/VOLE
correlations specifically, the parties do not need to engage in the initial interactive setup protocol.
Instead, two parties can non-interactively derive a pair of seeds that enables them to expand their
correlations locally. Such PCGs are said to have a “public-key setup” protocol, which follows the same
non-interactive communication pattern we motivated in Section 1. However, to date, the only such
“public-key PCG” constructions that exist are for the OT/VOLE correlation [OSY21,BCM+24]. It

4

has remained an open problem to realize public-key PCGs for other correlation types (e.g., Beaver
triple correlations), for which we have constructions of PCGs from a variety of standard assumptions
but no corresponding public-key setup protocol.

By instantiating the DPF in existing PCG constructions (for further classes of correlations) with
an NIDPF, it becomes possible to obtain a semi-honest “public-key setup” protocol for the PCG.

Mixed-mode secure computation in one round. Recent works on mixed-mode secure compu-
tation, beginning with the work of Boyle et al. [BCG+21], have demonstrated that the round and
communication complexity of MPC protocols can be improved by using DPFs to help directly eval-
uate complex functions such as comparisons and equality of secret-shared values, without needing to
express the computations as Boolean or arithmetic circuits.

For example, consider the case of securely computing secret shares of an equality predicate eval-
uated between a public threshold t and secret shared input x, in a two-party setting. The idea, at
a high level, is to have a trusted dealer distribute DPF keys to two parties for the point function
Pt+r,1 that evaluates to 1 on index t + r, where r is uniformly random in the domain. The dealer
additionally distributes additive shares of r to the parties. The parties, holding additive shares of a
value x (assumed to be in the domain of the point function), can publicly open the value y := x+ r
by locally masking their shares of x with their shares of r and sending the result. Then, observe that
by evaluating the DPF on input y, the parties obtain shares of 1 if and only if x + r = t + r, which
is the case if and only if x = t.

Because the DPF is “one-time-use” due to the masking term r, the efficiency gains obtained by
such a protocol depend heavily on the efficiency of the DPF setup protocol used by the parties to
emulate the dealer. However, when using a NIDPF to act as the dealer, the parties can simultaneously :
(1) choose their own share ⟨r⟩σ of the random mask r, (2) broadcast their masked share ⟨x⟩σ + ⟨r⟩σ,
and (3) generate and send their NIDPF key message for the point function Pt+r,1. This already
enables the parties to locally compute additive shares of the t-equality predicate on x, yielding a
single (simultaneous) round protocol for the equality predicate computation.

2 Technical Overview

In this section, we provide a detailed technical overview of our NIDPF construction. The main building
block we use in our construction is a novel abstraction we call non-interactive multiplication (NIM),
which we overview in Section 2.1, and which we view as a contribution of independent interest. In
Section 2.2, we provide an overview of our NIDPF construction.

2.1 Building block: Non-interactive multiplication

At a high level, a NIM allows two parties, Alice and Bob, each holding a ring element as input, to
obtain secret shares of the multiplication of their inputs by exchanging one message simultaneously
(or posting their message to a public bulletin board). The NIM abstraction captures several primitives
recently introduced in various contexts. In particular, NIM directly implies non-interactive variants of
OT [BM90], VOLE [OSY21,ADOS22,ARS24,BCM+24,CDD+24], and inner-products [CZ22], where
parties obtain secret-shares of the computation by exchanging one message simultaneously.

The NIM abstraction also captures the case where Alice and Bob havematrices as inputs, and wish
to compute secret shares of the matrix product. In particular, a NIM scheme for matrix multiplication
allows Alice with a matrix A and Bob with a matrix B to compute additive secret shares of AB.
Surprisingly, a NIM scheme for matrix multiplication can have sublinear communication (in the size of
one input matrix), using techniques developed in two recent works that build succinct VOLE [ARS24,
BCM+24]. This succinct NIM variant is the main building block we use in Section 5 to construct
NIDPFs. We obtain the following instantiations of succinct NIM for matrix multiplication:

Theorem 3 (Informal; Implicit in [ARS24,BCM+24]). Let R be a ring and N, ℓ,m be integer pa-
rameters. For ℓ = N2/3 and m = N1/3, there exists a succinct NIM scheme computing shares of
AB with O(N2/3) communication, for all matrices A ∈ Rℓ×m and B ∈ Rm×m, if one of the follow-
ing assumptions hold: (1) DCR, (2) QR, (3) an “enhanced” DDH assumption in class groups, (4)
LWE with a superpolynomial modulus-to-noise ratio, or (5) SXDH in bilinear groups when the NIM
output sharing is defined multiplicatively. In the above, O(·) hides polynomial factors in the security
parameter.

5

Our proof of Theorem 3 follows from ideas presented in the recent work of Abram et al. [ARS24]
in their construction of “succinct” Homomorphic Secret Sharing (HSS) [BGI16] and a concurrent
work of [BCM+24] constructing succinct non-interactive VOLE. In particular, their constructions
internally use the ability to multiply a matrix A by another matrix B := ∆ · I (where ∆ is a scalar
and I is the identity matrix), with sublinear communication in the size of A. However, in both these
works, the primary goal was constructing a non-interactive VOLE scheme. Non-interactive VOLE,
in and of itself, neither implies NIDPFs nor succinct NIM for matrix multiplication, and is overall a
weaker primitive. In this paper, we show that their constructions not only generalize to any matrix
B (of appropriate size)—while still preserving sublinear communication—but also use it as a building
block to construct NIDPFs in Section 5.

Comparison to HSS.While at first glance, it may appear as though using HSS would be sufficient to
construct NIM, there are subtle yet important distinctions between these primitives which make them
very different. Concretely, we show in Section 4 that our NIM abstraction implies a form of (2-party)
multi-key HSS, in an analogous sense to multi-key FHE, which is a stronger primitive compared to
standard HSS.

In particular, the NIM abstraction has a universal setup that consists of a common reference string
used by everyone, which enables us to realize a truly “non-interactive” (or multi-key) primitive,
eliminating the requirement for multi-round setup protocols. In contrast, HSS [BGI16, BCG+17],
including succinct HSS [ARS24], requires a trusted setup process to distribute evaluation keys to each
party before any computation can be performed, and the setup cannot be used in a computation
involving other parties. In a network with many parties, each pair of parties needs to generate a
unique pair of HSS evaluation keys and can only compute over inputs assigned to them, resulting in
quadratic communication overheads. Compare this with multi-key HSS [XW23,CDH+25] or spooky
encryption [DHRW16], where any pair of parties can compute a function “on the fly” over their joint
inputs and without needing to perform a joint setup process ahead of time to do so. As such, we view
our NIM abstraction as a potential stepping-stone to uncovering new constructions for efficient MPC.
Indeed, in Section 6, we generalize the ideas we use to realize our NIDPF constructions to realize
a form of multi-key HSS for a restricted class of computations, which may prove to have additional
applications.

2.2 Overview of the NIDPF construction

A NIDPF consists of a generation algorithm Gen and evaluation algorithm Eval. We let R be a finite
ring and the message space of the NIDPF. A party Alice, with point function parameters (tA, vA),
uses Gen to generate a public key pkA and a secret key skA. Bob does the same with (tB , vB). Then,
using the public key of the other party in conjunction with their own secret key, Alice and Bob can
locally derive a DPF key encoding the point function with parameters (tA+tB , vA+vB). Importantly,
the public keys generated by Alice and Bob need to be short—sublinear in the truth-table size of the
point function.

Similarly to some other DPF constructions (and all non-generic DPF key generation proto-
cols) [CBM15,Ds17,BGIK22], our construction of NIDPF is tailored to the “full-domain evaluation”
regime, where the parties obtain the output of the point function evaluated on all inputs in the do-
main. We let N denote the domain size of the point function, and view the point function evaluation
on the entire domain (i.e., for every x ∈ [N]) as being a one-hot vector u ∈ RN , where u[t] = 1 and
t is the special index.

For suitable choices of N , we can represent x ∈ [N] by (i, j) where i = x (mod ℓ) and j = x
(mod m) for some coprime integers ℓ,m ∈ [N] such that N = ℓ ·m. Such a mapping (à la Chinese
Remainder Theorem) allows us to interpret the length-N vector u as a ℓ × m matrix, while still
preserving arithmetic modulo N via the residue number system. This places a restriction on N ,
which ideally we would like to avoid. In Section 5.1, we sketch an alternative approach that works for
arbitrary (non-coprime) integers ℓ,m, but has a 2× cost in efficiency.

At a high level, our approach to realizing our NIDPF construction is the following. Assume
that Alice parses her index tA ∈ [N] as tA = (iA, jA) ∈ [ℓ] × [m] and Bob parses his index tB as
(iB , jB) ∈ [ℓ]× [m]. The goal is to have Alice and Bob derive secret shares of the ℓ×m matrix, where
the (iA + iB , jA + jB)-th entry is non-zero. In particular, note that this matrix will be reinterpreted

6

as the unit vector u with non-zero coordinate t = tA + tB ∈ [N], where t = iA + iB (mod ℓ) and
t = jA + jB (mod m). This is equivalent to the full-domain evaluation of the point function Pt,1.

3

Our construction achieves this in two steps, which we overview next.

0
...
1
...
0

N

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

iA

jA

√
N

(a) Alice’s initial input vector parsed as
a matrix.

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

iA

jA + jB

√
N

(b) Secret-shared matrix held by the
parties after Step I.

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

iA + iB

jA + jB

√
N

(c) Secret-shared matrix held by the
parties after Step II.

Fig. 1: Running example used in the overview of the NIDPF construction. The matrix represents the full
evaluation of the point function with a domain of size N , where the parameters ℓ,m (as defined in Definition 9)
are ℓ = m =

√
N , for simplicity.

Step I: Shifting the columns using NIM. Alice begins by defining a ℓ×m matrix A with 1 at
entry (iA, jA) and zeros elsewhere. This is illustrated for the case where ℓ = m =

√
N in Figure 1a.

Then, the main idea is to obliviously “shift” this matrix by Bob’s input (iB , jB).
First, we observe that we can perform one dimension of this shift using a matrix multiplication:

Bob defines the m×m cyclic shift matrix SjB that shifts each column of A cyclically to the right by
jB (wrapping around modulo m). Using NIM, Alice and Bob can non-interactively compute shares of
the matrix ASjB . Note that ASjB is a matrix where the only non-zero entry is located at row iA and
column jA + jB . This is illustrated in Figure 1b for our running example. By applying Theorem 3,
we have that the communication between Alice and Bob in this process is sublinear in N . Moreover,
by the security of the NIM scheme (see Section 4), Bob does not learn the value of (iA, jA) and Alice
does not learn the value of jB .

Finally, by interpreting the resulting shares back to a vector y, the parties obtain secret shares
corresponding to the full-evaluation of the point function PiA·m+jA+jB ,1. Unfortunately, this is not
quite what we want, since our goal is for the parties to obtain shares of the full-evaluation corre-
sponding to the point function P(iA+iB)·m+jA+jB ,1 ≡ PtA+tB ,1. In particular, notice that following
the cyclic shift, Alice still knows which row of the resulting matrix contains the non-zero index, since
the row index does not currently depend on Bob’s input iB . To remedy this, we need a way for Bob
to cyclically shift the rows of the resulting secret-shared matrix by his secret index iB , which ideally
could be done by multiplying the result with another “shift matrix” parameterized by iB .

Sadly, multiplying by another shift matrix is not possible, since this would require a “NIM”
for the degree-3 computation SiB (ASjB), where SjB cyclically shifts the columns of A by jB and
SiB cyclically shifts the rows by iB . We do not know how to realize such a primitive for degree-3
computations (even if we sacrifice the succinctness requirement) without going through “high-end”
tools like multi-key FHE [DHRW16].

However, we show that Bob can cyclically shift the rows using degree-2, secret-key HSS (the
weakest form of non-trivial HSS [BGI16], which can be instantiated from a wide range of assumptions).
In particular, our usage of HSS to let Bob cyclically shift the rows is only possible after computing
the NIM to cyclically shift the columns, as will become apparent later. We stress that secret-key
HSS alone cannot be used to directly build NIDPFs—for one, the NIDPF abstraction directly implies
public key encryption, while secret-key HSS (even for higher degree computations) does not [DIJL23].

Step II: Shifting the rows with degree-2 HSS. Our idea is to compose degree-2 HSS with
NIM to allow Bob to obliviously cyclically shift the rows and columns of Alice’s matrix A. This
composition with HSS is inspired by the multi-party DPF construction of Abram et al. [ARS24],
where they use HSS to obliviously select an appropriate cyclic shift of a one-hot vector by computing

3 For now, we assume that the point function outputs v = 1 at the special index i and later generalize to
arbitrary outputs.

7

an inner product with all possible shifts. However, to apply this idea to the non-interactive setting,
there are several challenges we need to overcome.

The first challenge is that HSS schemes, even for degree-2 functions, require a trusted setup process,
which would prevent us from getting a non-interactive solution (the parties would need to engage in
a multi-round setup protocol).

The second challenge is that HSS does not enable computing degree-2 functions on additive secret
shares. Instead, typical HSS schemes (following [BGI16]) require parties to have “memory shares”
and “input shares” of the secret values in order to perform computations over them. In particular,
degree-2 HSS allows two parties to locally compute an additive sharing of xy from an input share of
a value x and memory share of a value y. At a very high level, an input share of a message x ∈ R
is just an encryption of x; and memory shares of a message y ∈ R are additive shares of the tuple
(x, x · sk), where sk ∈ Rk is the secret key used to encrypt the input share (see Section 3.5 for
additional background).

If the parties can somehow obtain memory shares of ASjB and input shares of an input provided
by Bob, then using HSS for computing degree-2 functions, we have the following solution for cyclically
shifting the rows. First, Bob defines the one-hot vector eiB representing his row index iB and sends
HSS input shares of eiB to Alice. Let T := ASjB which, for now, we assume Alice and Bob hold
memory shares of at the end of Step I. Then, the parties locally define the list of ℓ “shifted” matrices
T1, . . . ,Tℓ, such that Ti is the matrix T with the rows cyclically shifted down by i. Finally, using
HSS, the parties compute the following degree-2 equation to “obliviously select” TiB :

⟨eiB , (T1, . . . ,Tℓ)⟩ = TiB . (1)

Observe that this allows Alice and Bob to compute shares of the one-hot matrix with a non-zero entry
at index (iA + iB , jA + jB), as required. A similar idea underpins the multi-party DPF construction
of Abram et al. [ARS24]. However, their requirement for a trusted setup makes their approach for
obtaining the necessary compatible input and memory shares inherently interactive. We make use of
the following two ideas to avoid interaction:

Idea I: Bob generates the HSS setup. To avoid needing a trusted setup, we exploit the fact that Bob
knows the full input eiB , which means that he can act as the trusted dealer to generate the HSS setup
in our case. Moreover, we observe that secret-key HSS suffices, since only Bob needs to encrypt his
input eiB . This allows us to use the most basic form of HSS, making it easy to instantiate from many
standard assumptions, including a novel instantiation we present in Section 5.3.1 from the SXDH
assumption in bilinear groups.

Idea II: NIM outputs memory shares. To make the output of the NIM compatible with HSS, we
need a way for Alice and Bob to obtain memory shares of the matrix T rather than additive shares.
To achieve this, we use the following trick from prior work [CMPR23,ARS24] to generate memory
shares. Observe that if Bob multiplies his cyclic shift matrix SjB by any scalar c ∈ R, the output of
the NIM will be an additive share of c ·ASjB . This can be generalized to computing sk ⊗ASjB in
the natural way. Then, the idea is to have Alice and Bob engage in two copies of the NIM protocol
simultaneously. In both cases Alice inputs A. Bob, on the other hand, inputs the cyclic shift matrix
SjB in one instance, and the scaled matrix sk⊗SjB in the other. Together, the NIM outputs produce
an HSS memory share of ASjB under Bob’s secret key. In parallel to this, Bob generates an HSS
input share for his vector eiB and an evaluation key ekA, which he sends to Alice. Then, using HSS,
Alice and Bob compute shares of the inner product from Equation (1).

Examining the communication costs. The communication is dominated by the NIM encodings
and the length of eiB , which is O(ℓ) (ignoring poly(λ) factors). Thus, the total communication is
O(ℓ+m2), which is sublinear in the domain size N using Theorem 3. Moreover, because this whole
protocol only requires one simultaneous exchange of information, Alice and Bob can simply post their
messages in the form of a public key, which aligns with our design goals.

Arbitrary payload. The above overview captures a NIDPF construction where the non-zero output
(i.e., the payload) of the point function at the special index is the scalar 1 ∈ R. However, to satisfy a
more general definition, we need to allow Alice and Bob to also jointly specify the payload v as the
sum of their individual payloads vA and vB .

To achieve this, we observe that we can use the same “scaling trick” used by Bob to compute
the product with his secret key sk to allow either Alice or Bob to specify vA or vB as the output.

8

Specifically, it is enough for one of the parties (say Alice) to simply multiply their input matrix by
vσ before generating the NIM encoding. This enables a “half-chosen” variant of the NIDPF, where
only one of the two parties is allowed to specify the (secret) payload.

To generalize this to the case where the output is message v = vA + vB jointly defined by the two
parties, the parties can engage in two instances of the half-chosen protocol, in parallel, and add the
resulting shares together. We explain this further in Section 5.

2.2.1 Random-payload NIDPF from SXDH In some applications of DPFs, the payload can be
random and only determined by the random coins of the generation algorithms.4 Here, we overview
a construction of such a NIDPF under the SXDH assumption in bilinear groups. In a nutshell, a
bilinear group consists of a triple of cyclic groups: G1, G2, and GT with an efficient map (pairing)
e : G1 × G2 → GT . Let g1, g2, and gT be generators for G1, G2, and GT , respectively. Then, for all
gx1 and gy2 , it holds that e(g

x
1 , g

y
2) = gxyT ∈ GT . This feature enables computing the multiplication “in

the exponent” of the bilinear group.

Idea: Replacing Degree-2 HSS with a pairing. The main idea behind our NIDPF construc-
tion in bilinear groups is to follow the template outlined in Section 2.2 but replace Step II with a
“multiplication in the exponent” using the pairing. We first construct a special succinct NIM scheme
from the DDH assumption (over any suitable cyclic group G), which outputs the result of the ma-
trix product “in the exponent” of the group G, restricting the ring R to Zp. This variant of NIM is
appealing since it allows us to use any DDH group G to compute the matrix multiplication, but is
limiting in that we cannot obtain the memory shares required for the HSS computation in Step II of
Section 2.2. However, we observe that we don’t need to do so if we have a pairing! Specifically, we can
instead replace the HSS computation in Step II by computing the multiplication using the pairing,
as sketched above.

More concretely, in our DDH-based succinct NIM variant, the parties obtain multiplicative shares
gRA and gRB , respectively, such that gRA · gRB = gAB (where the notation gM denotes the matrix
of group elements gmij for all entries mij ∈M). Therefore, by instantiating this NIM scheme in the
group G1 of a bilinear group, the parties obtain multiplicative shares of gT1 , rather than additive
shares of T (defined in Step II above). Nonetheless, the parties can still define multiplicative shares of
the vectors T1, . . . ,Tℓ “in the exponent” of g1, as before. Then, Bob can encrypt his one-hot vector
eiB with the aim of selecting the appropriate TiB . However, instead of using HSS to do so, Bob simply
uses ElGamal encryption in the group G2 to compute:

(g
rj
2 , g

eiB,j

2 h
rj
2), ∀j ∈ [m],

where h2 := gsk2 is an ElGamal public key for an sk known to Bob, and each rj is uniformly random.
Since now we need DDH to hold in both G1 and G2, we must rely on the SXDH assumption.

Given these ciphertexts, Alice and Bob compute the inner product from Equation (1) “in the
exponent” using the pairing and obtain multiplicative shares of the inner product in GT :

g
⟨eiB

,(T1,...,Tℓ)⟩
T = g

TiB

T . (2)

We can view this as replacing the HSS scheme used by Bob in the overview of Section 2.2 with a
“multiplicative HSS” scheme from pairings: i.e., where the HSS outputs are multiplicatively, rather
than additively, secret shared. However, as with the first scheme, Alice and Bob still need to com-
pute “memory shares” for this multiplicative variant of HSS. Memory shares now take on the form
(gT1 , gsk·T1), which can be obtained by having Bob scale his matrix by sk.

Converting from multiplicative to additive shares. Now the issue we face is the following.
The result in Equation (2) is a multiplicative sharing of the full-domain evaluation, which does not
correspond to the desired additive shares we need for the NIDPF. To solve this problem, we need a
way to “bring down” the exponent and convert it to additive shares. One way to achieve this would
be using the Distributed Discrete Logarithm (DDLog) procedure [BGI16].

Using the DDLog algorithm, Alice and Bob can derive additive shares of TiB by applying DDLog

to each entry of g
TiB

T . However, there is now a problem of correctness for the resulting output shares

4 Note that a secret sharing of the random payload can be derived non-interactively by each party summing
all entries of its length-N DPF evaluation vector.

9

of the NIDPF. Specifically, DDLog has a 1/poly(λ) error (in which case it outputs a uniformly random
value in {0, 1, . . . ,M}), which would translate to a 1 − 1/poly(λ) correctness for the output shares
of the NIDPF. Having a (non-negligible) correctness error is undesirable, and prevents applying the
resulting NIDPF in many contexts. We show how to sidestep this problem by making an important
observation regarding use of the DDLog procedure, which we explain next.

Random payload. Surprisingly, we show that the error can in fact be avoided entirely when con-
structing a NIDPF with a random payload (i.e., a NIDPF which outputs a random message at the
special index). In particular, we observe that existing constructions of DDLog have no error when
given multiplicative shares of the identity element g0 [BGI16,DKK20]. Inspired by this observation,
we show that we can obtain a NIDPF with random payloads. We observe that TiB is a one-hot ma-
trix, and so has only one non-zero entry. By having the parties set their payload share to a uniformly
random scalar, they can further ensure the non-zero value of TiB has high (pseudo)entropy to both
parties. Thus, we can simply use a PRF FK with outputs in ZM to generate additive shares from the
multiplicative shares. To see this, note that:

– for the multiplicative shares gx0 , gx1 of the non-zero entry gx0+x1 of TiB , FK(gx0) − FK(g−x1)
is a pseudorandom value in ZM (even given the PRF key K); however,

– for all multiplicative shares gx0 , gx1 such that gx0 · gx1 = g0, we have FK(gx0)− FK(g−x1) = 0.

This means that parties obtain pseudorandom shares of zero on all entries except for the entry with
the non-zero value, where they obtain shares of some pseudorandom value. We provide details on the
DDLog algorithm and our NIDPF construction from SXDH in Section 5.

3 Preliminaries

In this section, we provide the necessary notational and cryptographic preliminaries that we use our
construction of NIDPF.

3.1 Notation

We let N denote the set of natural numbers, Z denote the set of integers, and G denote a finite group.
We let R denote a finite ring. We denote by poly(·) the set of all polynomials and by negl(·) any
negligible function. We occasionally abuse notation and let poly denote a fixed polynomial.

Vectors and matrices. We denote a vector u using bold lowercase letters and let u[i] denote the i-th
coordinate of u. We denote matrices A with bold uppercase letters and let A[i, j] denote the element
of A located at the i-th row, j-th column.

Sampling and assignment. We let x←$ S denote a uniformly random sample drawn from a set S. We
let x ← A denote assignment from a randomized algorithm A and x := y denote initialization of x
to the value of y (which may be the output of a deterministic algorithm).

Efficiency and indistinguishability. By an efficient algorithm A we mean that A is modeled by a
(possibly non-uniform) Turing Machine that runs in probabilistic polynomial time. We write D0 ≈c

D1 to mean that two distributions D0 and D1 are computationally indistinguishable to all efficient
distinguishers D and D0 ≈s D1 to mean that D0 and D1 are statistically indistinguishable.

Rounding. We let ⌊x⌉ denote the rounding of a real number x to the nearest integer. For integers
q > p ≥ 2, we define the modular rounding function ⌊·⌉p : Zq → Zp as ⌊v⌉p = ⌊(p/q) · v⌉.

Party identifiers. We identify parties with letters A and B, and use σ ∈ {A,B} to refer to a party.
We will slightly abuse notation by letting 1− σ, for some σ ∈ {A,B}, refer to the party identifier in
the singleton set {A,B} \ {σ}.

3.2 Additive secret sharing

We define the function ShareG(·) to be the (randomized) function that outputs a tuple of additive
shares in G, such that each share is individually uniformly random over G. For simplicity, we will
denote the tuple of additive shares of a secret s by (⟨s⟩0, ⟨s⟩1), such that ⟨s⟩0 + ⟨s⟩1 = s ∈ G.

10

3.3 Cryptographic assumptions

In this section, we present the cryptographic assumptions we build NIDPFs from, including the DDH
assumption, the SXDH assumption, and the NIDLS framework.

Definition 1 (Decisional Diffie–Hellman (DDH) Assumption). Let λ be a security parameter. Let G
be a cyclic group of prime order p = p(λ) ∈ poly(λ) with generator g. The DDH assumption states
that: (g, ga, gb, gab) ≈c (g, g

a, gb, gc), where a, b, c←$ Zp.

Definition 2 (Symmetric External Diffie–Hellman (SXDH) Assumption). Let (G1,G2,GT , e) be a
bilinear group, where G1,G2, and GT are cyclic groups of prime order p = p(λ) ∈ poly(λ), and
e : G1 × G2 → GT is a non-degenerate bilinear map. Let g1 and g2 be generators of G1 and G2,
respectively. The SXDH assumption states that the DDH assumption (cf. Definition 1) holds in both
G1 and G2.

Definition 3 (Learning With Errors Assumption). Let χ denote a discrete Gaussian noise distribu-
tion. Let n = n(λ),m = m(λ), and q = q(λ), all polynomial in λ. The learning with errors (LWE)
assumption states that (A,A⊤s+ e) ≈c (A,u) where A←$ Zn×m

q , s←$ Zn
q , e←$ χm,u←$ Zm

q .

Definition 4 (Distributed Discrete Logarithm [BGI16]). Let λ ∈ N be a security parameter and
ϵ = ϵ(λ). Let G be an arbitrary cyclic group with generator g and let 1 ≤M ≪ |G| be an integer. Let
crs := (G, g,M) be a common reference string. An efficient algorithm DDLog solves the distributed
discrete logarithm in G with ϵ-correctness, if for all x ∈ ZM and every pair of elements hA, hB ∈ G
such that hA · hB = gx,

Pr
[
⟨z⟩A − ⟨z⟩B = x : ⟨z⟩σ := DDLog(crs, hσ), ∀σ ∈ {A,B}

]
≥ ϵ(λ).

3.4 The NIDLS framework

The Non-Interactive Discrete Log Sharing (NIDLS) framework [ADOS22] abstracts several HSS con-
structions [OSY21,RS21]. The NIDLS framework defines a finite Abelian group G = F ×H, where
the discrete log problem is easy in F and assumed to be computationally intractable in H. Essentially,
this allows two parties to non-interactively compute secret shares of a discrete log in F .

Definition 5 (NIDLS Framework [ADOS22]). The NIDLS framework consists of three efficient al-
gorithms (GGen,D,DDLog) with the following functionality:

– GGen(1λ) → crs := (G, F,H, g, p, t, aux). The randomized group generation algorithm takes as
input the security parameter and outputs a common reference string crs which consists of:

- finite Abelian group G,

- subgroups F and H such that G = F ×H,

- generator g and order p of F ,

- positive integer t,

- and auxiliary information aux.

– D(1λ, crs) → (h, ρ). The randomized sampling algorithm takes as input the security parameter
and common reference string, and outputs a group element h ∈ G along with some auxiliary
information ρ.

– DDLog(crs, h)→ s. The deterministic distributed discrete log algorithm takes as input a common
reference string and a group element, and outputs an element s ∈ Zp.

The above functionality needs to satisfy the following properties:

Correctness. For all security parameters λ ∈ N and efficient adversaries A, there exists a negligible
function negl such that

Pr

 ⟨s⟩A − ⟨s⟩B = m (mod p) :

crs := (G, F,H, g, p, t, aux)← GGen(1λ)

(hA,m)← A(1λ, crs)
hB := gm · hA

⟨s⟩A := DDLog(crs, hA)

⟨s⟩B := DDLog(crs, hB)

 ≥ 1− negl(λ).

11

Security. For all security parameters λ ∈ N, it holds that:

 (crs, h, ρ, hr)

∣∣∣∣∣∣∣
crs := (G, F,H, g, p, t, aux)← GGen(1λ)

(h, ρ)← D(1λ, crs)
r ←$ [t]

≈s

 (crs, h, ρ, h′)

∣∣∣∣∣∣∣
crs := (G, F,H, f, p, t, aux)← GGen(1λ)

(h, ρ)← D(1λ, crs)
h′ ←$ ⟨h⟩

.

I.e., the group elements hr and h′ are statistically indistinguishable.

Known instantiations. The NIDLS framework has been instantiated in the Paillier group under
the DCR assumption, in class groups under a variant of the DDH assumption (see below), and in
the group of elements in Z∗

n with a Jacobi symbol of 1 (under the quadratic residuosity assumption),
where n is the product of two large random safe primes. We refer to [ADOS22,ARS24] for formal
definitions of these instantiations.

To instantiate “ElGamal-like” encryption in class groups, we will need to use the Enhanced DDH
assumption [ARS24]. This assumption states that given the parameters of the NIDLS group and
ℓ+ 1 group elements g0, . . . , gℓ sampled from D (along with the corresponding auxiliary information
ρ0, . . . , ρℓ), it is hard to distinguish between (gw0 , . . . , g

w
ℓ) for a random w and (fr0 · gw0 , . . . , frℓ · gwℓ)

for random r0, . . . , rℓ ∈ Zq.

Definition 6 (The ℓ-ary Enhanced DDH Assumption [ARS24]). Let GGen and D be as defined in
Definition 5. The ℓ-ary Enhanced DDH (ℓ-EDDH) assumption in the NIDLS framework states that:

crs

h0, . . . , hℓ

ρ0, . . . , ρℓ

hw
0 , . . . , h

w
ℓ

∣∣∣∣∣∣∣∣∣∣
(G, F,H, g, q, t, aux)← GGen(1λ)

(hj , ρj)← D(1λ, crs), ∀j ∈ {0, 1, . . . , ℓ}
w ←$ [t]

≈c

crs

h0, . . . , hℓ

ρ0, . . . , ρℓ

gr0 · hw
0 , . . . , g

rℓ · hw
ℓ

∣∣∣∣∣∣∣∣∣∣
(G, F,H, g, q, t, aux)← GGen(1λ)

(hj , ρj)← D(1λ, crs), ∀j ∈ {0, 1, . . . , ℓ}
w ←$ [t]

rj
$← Zq,∀j ∈ {0, 1, . . . , ℓ}

.

3.5 Degree-2 secret-key HSS

Here, we define the most minimal form of Homomorphic Secret Sharing (HSS), which will be sufficient
for our construction of NIDPFs. The definition is adapted from a more general definition of secret-key
HSS (cf. Definition 16) and is satisfied by existing HSS constructions in the NIDLS framework and
from lattice-based assumptions. For completeness, we provide a general definition of secret-key HSS
(for any function class) in Section 7.

Definition 7 (Degree-2 Secret-Key HSS; Adapted from [BGI16,DIJL23]). Let λ be a security pa-
rameter and R be a finite ring. A Degree-2 (secret key) HSS scheme with message space R consists
of four efficient algorithms HSS = (Setup,Share,Convert,Mult) with the following syntax:

– Setup(1λ)→ (sk, (ekA, ekB)). The randomized setup algorithm takes as input the security param-
eter and outputs a secret key sk and a pair of HSS evaluation keys (ekA, ekB).

– Share(sk, x)→ (JxKA, JxKB). The randomized share algorithm takes as input the secret key sk and
message x ∈ R. It outputs a pair of input shares of x.

– Convert(σ, ekσ, JxKσ) → ⟨⟨x⟩⟩σ. The deterministic conversion algorithm takes as input the party
identifier σ ∈ {A,B}, an evaluation key ekσ, and input share of x. It outputs a memory share of
x.

12

– Mult(σ, ekσ, JxKσ, ⟨⟨y⟩⟩σ) → ⟨z⟩σ. The deterministic multiplication algorithm takes as input the
party identifier σ ∈ {A,B}, an evaluation key ekσ, an input share of x, and a memory share of
y. It outputs a share of z.

When Alg ∈ {Share,Convert,Mult} is given as input a vector of input (or memory) shares, it outputs
the vector obtained by evaluating Alg on each coordinate of the input vector independently.

The above algorithms must satisfy correctness and security:

Correctness. For all security parameters λ ∈ N, and for all messages x, y ∈ R, we say the HSS
scheme is ϵ-correct, for some 0 < ϵ ≤ 1 if there exists a negligible function negl(·) such that:

Pr

 ⟨z⟩A − ⟨z⟩B = xy :

(sk, (ekA, ekB))← Setup(1λ)

(JxKA, JxKB)← Share(sk, x)

(JyKA, JyKB)← Share(sk, y)

⟨⟨y⟩⟩σ := Convert(σ, ekσ, JyKσ), ∀σ ∈ {A,B}
⟨z⟩σ := Mult(σ, ekσ, JxKσ, ⟨⟨y⟩⟩σ)

 ≥ ϵ− negl(λ).

Security. For all security parameters λ ∈ N such that, for every σ ∈ {A,B}, and all efficient
adversaries A, there exists a negligible function negl(·),

Pr

 b′ = b :

(sk, (ekA, ekB))← Setup(1λ)

(x0,x1, st)← A(1λ, ekσ)
b←$ {0, 1}

(JxbKA, JxbKB)← Share(sk,xb)

b′ ← A(st, JxbKσ)

 ≤
1

2
+ negl(λ),

where for all b ∈ {0, 1}, xb ∈ Rℓ and k = k(λ) ∈ poly(λ).

3.5.1 Memory shares in HSS schemes All existing HSS constructions in the NIDLS frame-
work [ADOS22,ARS24], and direct constructions from DDH [BGI16, BCG+17] or lattice-based as-
sumptions [BKS19], are constructed using the following template. The HSS secret key sk is a vector of
ring elements from the ring R and corresponds to the decryption key of some additively-homomorphic
encryption scheme with message spaceR, supporting some form of linear (or nearly-linear) decryption.
The evaluation keys (ekA, ekB) are additive shares of the secret key sk. For degree-2 computations,
input shares are simply encryptions of the message x under sk, while memory shares consist of addi-
tive shares of x and sk ·x. Multiplication of an input share of x with a memory share of y can then be
computed as follows. First, using the homomorphism of the encryption scheme, compute an encryp-
tion of the additive share of z = x · y by multiplying the encrypted message with the additive share
of y. Second, using the linear decryption property of the encryption scheme, compute the decryption
of the resulting ciphertext using the additive share of y · sk to recover the additive share of z.

We formalize the property of “multiplication by a memory share,” which we will use in our
NIDPF construction. We note that several prior works (e.g., [CMPR23,ARS24]) make use of such
“multiplication by memory shares,” without explicitly formalizing the property.

Definition 8 (Multiplication by Memory Shares). Let HSS = (Input,Share,Eval) (cf. Definition 16)
with a finite ring R as the message space. We say an HSS scheme supports multiplication by a
memory share if the following three properties are simultaneously satisfied:

(1) The secret key of the HSS scheme is a vector sk ∈ Rk, for some k ∈ N.
(2) A memory share ⟨⟨y⟩⟩σ for any message y ∈ R consists of an additive share of the tuple (y, y · sk),

defined over R.
(3) There exists an efficient, deterministic algorithm MultEval with the same syntax as Eval, such

that for all messages y ∈ R, all memory shares (⟨⟨y⟩⟩A, ⟨⟨y⟩⟩B) of y, all input shares (JxKA, JxKB)
of x ∈ R, and all functions f in the family of functions computable by HSS, it holds that:

Pr

[
⟨z⟩A − ⟨z⟩B = y · f(x) :

⟨z⟩σ := MultEval(σ, ekσ, f, JxKσ, ⟨⟨y⟩⟩σ),
∀σ ∈ {A,B}

]
≥ 1− negl(λ).

13

In words, any computation evaluated by the HSS scheme can be “pre-multiplied” by a value y
given only a memory share of y.

We note that Definition 7 explicitly captures property (3) from Definition 8. Importantly to us,
Definition 8 is satisfied by all existing HSS constructions, including HSS construction from the
DDH [BGI16, BCG+17, BGI17], DCR [OSY21, RS21], QR [OSY21, ADOS22] (for degree-2 compu-
tations), Class Groups [ADOS22], and LWE [BKS19].

4 Non-Interactive Multiplication

In this section, we define the notion of non-interactive multiplication. As mentioned in the technical
overview, this definition captures the core ingredient used in several prior works, including the non-
interactive OT construction of [BM90], non-interactive VOLE (e.g., [OSY21,ARS24,BCM+24]), and
the notion of non-interactive inner-products [CZ22]. We believe that our abstraction is of independent
interest and may aid in further studying the applications of these primitives. Indeed, in Section 6,
we show that we can bootstrap the NIM abstraction to compute more expressive functions in a
“non-interactive” manner, which to date, was only possible from multi-key FHE techniques and
obfuscation [DHRW16].

Definition 9 (Non-Interactive Multiplication). Let λ be a security parameter and R be a finite ring.
A Non-Interactive Multiplication (NIM) scheme consists of five efficient algorithms

NIM = (Setup, (Encodeσ,Decodeσ)σ∈{A,B})

with the following syntax:

– Setup(1λ) → crs. The randomized setup algorithm takes as input the security parameter and
outputs a common reference string (CRS) crs.

– Encodeσ(crs, v) → (peσ, stσ). The randomized encoding algorithm is parameterized by a party
identifier σ ∈ {A,B}. It takes as input the CRS crs and message v. It outputs a public encoding
peσ and secret state stσ.

– Decodeσ(crs, pe1−σ, stσ)→ ⟨z⟩σ. The deterministic decoding algorithm is parameterized by a party
identifier σ ∈ {A,B}. It takes as input the CRS crs, public encoding pe1−σ belonging to the other
party, and a secret state stσ belonging to party σ. It outputs a share of z over R.

The above functionality must satisfy correctness and security:

Correctness. For all security parameters λ ∈ N and every pair of elements x, y ∈ R, a NIM scheme
is said to be correct if there exists a negligible function negl(·) such that:

Pr

 ⟨z⟩A − ⟨z⟩B = xy :

crs← Setup(1λ)

(peA, stA)← EncodeA(crs, x)

(peB , stB)← EncodeB(crs, y)

⟨z⟩A := DecodeA(crs, peB , stA)

⟨z⟩B := DecodeB(crs, peA, stB)

 ≥ 1− negl(λ).

Security. For all efficient adversaries A, for all σ ∈ {A,B}, there exists a negligible function negl(·)
such that:

Pr

 b = b′ :

crs← Setup(1λ)

(v0, v1, st)← A(crs)
b←$ {0, 1}

(peσ, stσ)← Encodeσ(crs, vb)

b′ ← A(st, peσ)

 ≤
1

2
+ negl(λ).

In words, the public encoding hides the message.

14

4.1 NIM with multiplicative output reconstruction

We also define multiplicative rather than additive reconstruction for NIM, which will serve us in
instantiating a NIDPF in bilinear groups. In this case, Decodeσ outputs a group element Zσ for
σ ∈ {A,B}, such that ZA/ZB = gxy, where g is a generator of a cyclic group G.

Definition 10 (Multiplicative Reconstruction). A NIM scheme NIM is said to have multiplicative
reconstruction if the correctness property of Definition 9 is instead stated as follows.

Multiplicative-output Correctness. Let G be an abelian group of order p with generator g. For
all security parameters λ ∈ N and every pair of elements x, y ∈ Zp, a NIM scheme (instantiated with
R = Zp) is said to be correct if there exists a negligible function negl(·) such that:

Pr

 ZA · ZB = gxy :

crs← Setup(1λ)

(peA, stA)← EncodeA(crs, x)

(peB , stB)← EncodeB(crs, y)

ZA := DecodeA(crs, peB , stA)

ZB := DecodeB(crs, peA, stB)

 ≥ 1− negl(λ).

Remark 1 (General reconstruction). We note that we could have defined NIM (Definition 9) to have an
arbitrary reconstruction algorithm, that we then instantiate either as being addition or multiplication.
However, because for most applications of NIM the additive reconstruction property is more desirable,
we choose to instead provide two definitions noting that the more general abstraction is possible.

4.2 Succinct NIM for matrix multiplication

When computing non-interactive matrix multiplication, we can realize a “batch NIM” scheme that
achieves sublinear encoding size relative to the size of the output matrix, which translates to sublin-
earity with respect to one of the party’s inputs (or the size of the joint output). Note that we cannot,
in general, require succinctness in both of the parties inputs since this would contradict information-
theoretic lower bounds [ARS24].

Definition 11 (ϵ-succinct Matrix NIM). A NIM scheme for matrix multiplication is said to be ϵ-
succinct, for some 0 ≤ ϵ < 1, if for all security parameters λ ∈ N, every CRS crs, integers ℓ,m, k ∈ N
such that ℓ > k, and every pair of matrices (MA,MB) ∈ Rℓ×m×Rm×k, it holds that for N := ℓ ·m,

|peA| ≤ N ϵ · poly(λ, log |R|),

where (peA,) ← EncodeA(crs,MA). In words, the public encoding generated by the party with the
larger matrix is sublinear in the size of its matrix.

Remark 2 (Connection to “Bilinear HSS”). Abram et al. [ARS24] define the notion of Bilinear HSS,
which is conceptually related to our formalization of succinct NIM. While the notions share some
similarities, succinct NIM is a stronger definition due to the non-interactivity requirement. Bilinear
HSS, in contrast, captures an “HSS-like” syntax, where a trusted setup process distributes keys to the
parties. Succinct NIM follows straightforwardly from Bilinear HSS with (1) Strong Hasher Privacy,
(2) Strong Matrix Privacy, (3) Transparent Hasher Privacy, and (4) Transparent Matrix Privacy,
using the terminology and definitions from [ARS24]. However, Property (4) is not defined in [ARS24],
even though we believe that it can be easily be inferred as a variant of (3).

4.3 Constructions from group-based assumptions

Our group-based construction of succinct NIM follows from the construction of succinct non-interactive
VOLE protocols [ARS24,BCM+24]. Let m be an integer. Let G be a suitable finite-order group with
generators h0, h1, . . . , hm and let g be a generator for a subgroup of G with order p (not necessar-
ily prime). The CRS consists of the group G and the generators crs := (g, h0, h1, . . . , hm), sampled
according to some distribution we will define later. The first step in realizing matrix products is non-
interactively computing the inner-product between two vectors [CZ22,ARS24,BCM+24]. To achieve

15

this, we start with the construction from [ARS24]: Alice has an input vector a ∈ Zm
p and Bob has an

input vector b ∈ Zm
p . The goal is for the parties to obtain shares of the inner product ⟨a,b⟩ in one si-

multaneous round of communication. To achieve this, Alice encodes her input vector a = (a1, . . . , am)
by computing a Pedersen commitment d := hr

0

∏m
i=1 h

ai
i , where r is uniformly random.5 Bob encodes

his input vector b by computing a “batched” ElGamal-like encryption E := (hs
0, g

b1hs
1, . . . , g

bmhs
m),

where s is uniformly random. Surprisingly, just these values are enough for Alice and Bob to obtain
shares of the inner product. In particular, given Bob’s public encoding E = (e0, e1, . . . , em), Alice
computes:

ZA := er0 ·
m∏
i=1

eai
i = (hsr

0 · gb1a1hsa1
1 · · · gbmamhsam

m) = g⟨a,b⟩ · hsr
0 ·

m∏
i=1

hsai
i ,

and given Alice’s public encoding d, Bob computes:

ZB := ds = hrs
0 (

m∏
i=1

hai
i)s = hsr

0 ·
m∏
i=1

hsai
i .

Observe that ZA · (ZB)
−1 = g⟨a,b⟩, meaning that the parties obtain multiplicative shares of the

inner-product. To obtain additive shares from the multiplicative shares (i.e., to “bring down” the
exponent), the parties can use the Distributed Discrete Logarithm (DDLog) procedure [BGI16] (see
also Definition 5). However, an algorithm for solving the DDLog in an arbitrary group G requires
tolerating a polynomial correctness error [DKK20], which is undesirable. Fortunately, however, in was
shown in [ADOS22] that for certain instantiations of G, the DDLog procedure can be made “error
free” provided that g is chosen to be a generator of a subgroup in which the discrete logarithm is
easy.6 Using the DDLog algorithm, and choosing g according to the non-interactive discrete logarithm
sharing (NIDLS) framework of [ADOS22], Alice and Bob can non-interactively derive additive shares
of ⟨a,b⟩, as required.

Succinct matrix products from inner products. Using a non-interactive protocol for inner-
products we can clearly construct NIM for matrix multiplication by invoking the inner-product pro-
tocol in parallel. In particular, simultaneous round protocols have the appealing feature that the
first messages can be reused, meaning that we can “mix-and-match” encodings of different vectors
generated by Alice and Bob.

Thus, it is enough for Alice to encode her matrix A ∈ Zℓ×m
p by generating a commitment di

using randomness ri for the row vector ai, for each i ∈ [ℓ]. The randomness masks the entries of A,
so Alice’s public encoding does not leak information. Likewise, Bob encodes his matrix B ∈ Zm×k

p

by encrypting the column vectors bi, for each i ∈ [k]. These encryptions hide the entries of B by
the semantic security of the NIDLS-ElGamal encryption, so Bob’s public encoding also does not leak
information.

This allows Alice and Bob to then non-interactively compute shares of the product AB by locally
computing the inner-products between the ai’s and bj ’s. We refer to Figure 2 for a formal construction
of the succinct NIM for matrix multiplication from group-based assumptions.

As observed in [ARS24, BCM+24], the above protocol has a special property that enables a
communication-succinct variant for certain parameters of ℓ, m, and k: Alice’s message is of size
O(ℓ) and is entirely independent of m! Moreover, Bob’s message only depends on m and k and is
independent of ℓ.

In particular, when the size of the output matrix is N = ℓ · k, there exists a sublinear protocol
(in N) by letting ℓ = N2/3 and choosing m such that m · k = N2/3. To see this, note that Alice’s
encoding is of size ℓ = N2/3 while Bob’s encoding is of size m · k = N2/3, resulting in an optimal
communication tradeoff with respect to N . This “balancing trick” works for any matrices A and B,
but has previously only been used in realizing succinct VOLE [ARS24,BCM+24]. Our construction
of non-interactive DPFs (Section 5) is the first to exploit this property explicitly for general matrix
multiplication, which proves that this technique may be of independent interest.

Lemma 1 (Extended from [ARS24]). Let λ be a security parameter, R be a finite ring (as defined
below), ℓ,m be integer parameters, and N = ℓ ·m. There exist the following instantiations of succinct

5 Note that Alice’s encoding is information-theoretically hiding, regardless of how the CRS was generated.
6 Examples of such groups include the Paillier group Z∗

n2 and the group of quadratic residues [ADOS22].

16

Succinct NIM for Matrix Multiplication from Groups

Public Parameters. Matrix dimensions ℓ,m, k. NIDLS framework (GGen,D,DDLog).

NIM.Setup(1λ):

1 : crsG ← GGen(1λ)

2 : foreach i ∈ {0, . . . ,m} :

3 : (hi, ρ)← D(1λ, crsG)
4 : return crs := (crsG, h0, . . . , hm)

NIM.EncodeA(crs,A):

1 : parse crs = (crsG, h0, . . . , hm)

2 : foreach i ∈ [ℓ] :

3 : ri ←$ [t]

4 : di := hri
0

∏m
j=1 h

ai,j

j

5 : peA := (d1, . . . , dℓ)

6 : stA := (A, r1, . . . , rℓ)

7 : return (peA, stA)

NIM.EncodeB(crs,B):

1 : parse crs = (crsG, h0, . . . , hm)

2 : foreach i ∈ [k] :

3 : si ←$ [t]

4 : Ei,0 := hsi
0

5 : foreach j ∈ [m] : Ei,j = gbj,ihsi
j

6 : peB := (Ei,0, . . . , Ei,m)i∈[k]

7 : stB := (s1, . . . , sk)

8 : return (peB , stB)

NIM.DecodeA(crs, peB , stA):

1 : parse crs = (crsG, h0, . . . , hm)

2 : parse peB = (Ej,0, . . . , Ej,m)j∈[k]

3 : parse stA = (A, r1, . . . , rℓ)

4 : foreach (i, j) ∈ [ℓ]× [k] :

5 : Zi,j := Eri
j,0 ·

∏m
j′=1 E

ai,j′
j,j′

6 : ZA[i, j] := DDLog(crsG, Zi,j)

7 : return ZA

NIM.DecodeB(crs, peA, stB):

1 : parse crs = (crsG, h0, . . . , hm)

2 : parse peA = (d1, . . . , dℓ)

3 : parse stB = (s1, . . . , sk)

4 : foreach (i, j) ∈ [ℓ]× [k] :

5 : Di,j := d
sj
i

6 : ZB [i, j] := DDLog(crsG, Di,j)

7 : return ZB

Fig. 2: Group-based NIM construction.

NIM with O(N2/3) encoding size, O(N) encoding time, and O(N4/3) decoding time, for all matrices
A ∈ Rℓ×m and B ∈ Rm×m, where O(·) hides a factor of poly(λ, log |R|):

(1) under the DCR assumption over the Paillier group Z∗
n2 , when R ⊆ Zn;

(2) under the QR assumption over the RSA group Z∗
n where n is the product of two large safe-primes,

when R = Z2;
(3) under the N1/3-ary EDDH assumption and the uniformity assumption in class groups, when
R = Zp, for any suitable prime p = Ω(2λ); and

(4) under the DDH assumption in a cyclic group G of order p when R = Zp and when the negligible
correctness error of Definition 9 is relaxed to 1/T 2, for T = T (λ) ∈ poly(λ), where the Decode is
allowed to run in time O(T).

4.3.1 Multiplicative-output NIM from DDH We observe that NIM (with multiplicative out-
put reconstruction; Definition 10) can be instantiated under the DDH assumption over a suitable
cyclic group G with generators g and h1, . . . , hm. To see this, observe that if we forego the DDLog
procedure in the overview above, then the parties already obtain multiplicative shares ZA and ZB

such that ZA/ZB = g⟨a,b⟩. This then carries through to the succinct NIM instantiation via the bal-

17

ancing trick. We will use this variant of NIM in Section 5 to realize a NIDPF scheme in bilinear
groups under the SXDH assumption (an analog of the DDH assumption for bilinear groups).

4.4 Constructions from lattice-based assumptions

The LWE and RingLWE constructions follow a similar template to the NIDLS-based approach. The
idea, first described in [ARS24], is to replace the Pedersen commitment computed by Alice with an
SIS-based commitment7 and replace the ElGamal encryption computed by Bob with a dual-Regev
variant.

For LWE parameters (n, q, χ) and plaintext space Zp for p≪ q, Alice and Bob encode their input
vectors a,b ∈ Zm

p as elements of Zm
q , in the natural way. For an integer t ≫ n, determined by the

SIS problem, let V ∈ Zn×m
q and U ∈ Zn×t

q be matrices. The CRS consists of the LWE parameters,
and matrices V and U.

Then, Alice computes a commitment d := Ur + Va, where r ∈ Zt
q is a random vector from a

short distribution that she saves as her secret state. The ElGamal encryption computed by Bob is
replaced with a dual-Regev encryption variant of the form: (e0, e1) where

e0 := V⊤s+ ⌊q/p⌉b+ noise and e1 := U⊤s+ noise,

for a secret s ←$ Zn
q that he saves as his secret state. As before, Alice and Bob publish d and

e := (e0, e1). Again, it holds that d is of size n (the LWE security parameter), which is independent
of the vector length m. For correctness, it is enough to note that:

(e⊤0 · a+ e⊤1 · r)− (s⊤ · d) = (s⊤ ·V + ⌊q/p⌉ · b⊤ + noise) · a+ (s⊤ ·U+ noise) · r
− s⊤ · (Ur+Va)

= ⌊q/p⌉ · b⊤ · a+ (noise) · a+ (noise) · r
= ⌊q/p⌉ · b⊤ · a+ noise

≈ ⌊q/p⌉ · ⟨a,b⟩ mod p.

Using the rounding lemma [DHRW16,BKS19], it holds that for sufficiently large q relative to p, we
can locally round the shares such that

Pr
[⌊

(e⊤0 · a+ e⊤1 · r)
⌉
p
−
⌊
(s⊤ · d)

⌉
p
=

⌊
(e⊤0 · a+ e⊤1 · r)− (s⊤ · d)

⌉
p

]
≥ 1− negl(λ),

where ⌊·⌉p denotes the modular rounding from Zq to Zp. To ensure security for Bob, we require that

the LWE assumption holds forV andU, i.e.,V⊤s+noise andU⊤s+noise look uniform, so Bob’s public
encoding (e0, e1) computationally hides his secret input b. To ensure security for Alice, we require
that SIS holds for U (which follows from a hybrid argument), i.e., Ur looks uniform, so Alice’s public
encoding d computationally hides her secret input a. We refer to Figure 3 for a formal description of
the succinct NIM for matrix multiplication from LWE. The security of the full construction follows
from the security of the dot product construction and a standard hybrid argument. We note that the
construction can be equivalently instantiated from the Ring LWE (RLWE) assumption by replacing
the matrices with a suitable polynomial ring.

5 Non-Interactive DPF

In this section, we define and construct Non-Interactive DPFs (NIDPFs). Our construction makes
use of the NIM abstraction and constructions from Section 4.

Definition 12 (Non-Interactive Distributed Point Function). Let λ be a security parameter and G be
a cyclic group. A non-interactive distributed point function (NIDPF) with input domain ZN consists
of four efficient algorithms,

NIDPF = (Setup, (Genσ,KeyDerσ,Evalσ)σ∈{A,B}),

with the following syntax:

7 The Short Integer Solution (SIS) problem [Ajt96] is implied by LWE.

18

Succinct NIM for Matrix Multiplication from Lattices

Public Parameters. Matrix dimensions ℓ,m, k. Plaintext space Zp. LWE parameters n and q ≫ p,
error distribution χ. SIS parameter t≫ n, short distribution B.

Notation. We write B[:, i] to denote the ith column of the matrix B.

NIM.Setup(1λ):

1 : V←$ Zn×m
q

2 : U←$ Zn×t
q

3 : return crs := (V,U)

NIM.EncodeA(crs,A):

1 : parse crs = (V,U)

2 : foreach i ∈ [ℓ] :

3 : ri ←$ Bt

4 : di := Uri +VA[i,]

5 : peA := (d1, . . . ,dℓ)

6 : stA := (A, r1, . . . , rℓ)

7 : return (peA, stA)

NIM.EncodeB(crs,B):

1 : parse crs = (V,U)

2 : foreach i ∈ [k] :

3 : si ←$ Zn
q , wi,w

′
i ←$ χm

4 : ei,0 := V⊤si + ⌊q/p⌉B[:, i] +wi

5 : ei,1 := U⊤si +w′
i

6 : peB := (ei,0, ei,1)i∈[k]

7 : stB := (s1, . . . , sk)

8 : return (peB , stB)

NIM.DecodeA(crs, peB , stA):

1 : parse crs = (V,U)

2 : parse peB = (ei,0, ei,1)j∈[k]

3 : parse stA = (A, r1, . . . , rℓ)

4 : foreach (i, j) ∈ [ℓ]× [k] :

5 : ZA[i, j] := e⊤
j,0 ·A[i,] + e⊤

j,1 · ri
6 : return ZA

NIM.DecodeB(crs, peA, stB):

1 : parse crs = (V,U)

2 : parse peA = (d1, . . . ,dℓ)

3 : parse stB = (s1, . . . , sk)

4 : foreach (i, j) ∈ [ℓ]× [k] :

5 : ZB [i, j] := s⊤j · di

6 : return ZB

Fig. 3: Lattice-based NIM construction.

– Setup(1λ) → crs. The randomized setup algorithm takes as input the security parameter and
outputs a common reference string crs.

– Genσ(crs, tσ, vσ) → (pkσ, skσ). The randomized generation algorithm is parameterized by a party
identifier σ ∈ {A,B}. It takes as input the crs, an index tσ ∈ ZN , and a message vσ ∈ G. It
outputs a public key pkσ and secret key skσ.

– KeyDerσ(crs, pk1−σ, skσ) → κσ. The deterministic key derivation algorithm is parameterized by
a party identifier σ ∈ {A,B}. It takes as input the crs, public key pk1−σ belonging to the other
party, and a secret key skσ belonging to party σ. It outputs a DPF key κσ for party σ.

– Evalσ(crs, κσ, x)→ ⟨y⟩σ. The deterministic evaluation algorithm is parameterized by a party iden-
tifier σ ∈ {A,B}. It takes as input the crs, the party’s DPF key κσ, and an input x ∈ ZN . It
outputs a share of the evaluation result y.

Let Pi,v : ZN → G be the point function that outputs 0 for all inputs x ̸= i and outputs v otherwise.
The above functionality must satisfy the following correctness and security properties:

19

Correctness. For all security parameters λ ∈ N, every pair of indices tA, tB ∈ ZN such that t =
tA+tB ∈ ZN , every pair of messages vA, vB ∈ G such that v = vA+vB ∈ G, and every input x ∈ ZN ,
a NIDPF scheme is correct if there exists a negligible function negl such that:

Pr

 ⟨y⟩A − ⟨y⟩B = Pt,v(x) :

crs← Setup(1λ)

(pkσ, skσ)← Genσ(crs, tσ, vσ), ∀σ ∈ {A,B}
κA := KeyDerA(crs, pkB , skA)

κB := KeyDerB(crs, pkA, skB)

⟨y⟩σ := Evalσ(crs, κσ, x), ∀σ ∈ {A,B}

 ≥ 1− negl(λ),

where the probability is taken over the random coins used by Gen.

Security. For all efficient adversaries A, for all σ ∈ {A,B}, there exists a negligible function negl(·)
such that:

Pr

 b = b′ :

crs← Setup(1λ)

(t0, v0, t1, v1, st)← A(crs)
b←$ {0, 1}

(pkσ, skσ)← Genσ(crs, tb, vb)

b′ ← A(st, pkσ)

 ≤
1

2
+ negl(λ).

In words, the public key computationally hides the encoded index and message.

We now define two variants of NIDPF that we will consider in this paper. The first variant, which
we call a half-chosen NIDPF, only allows one of the parties to specify the output message, forcing the
second party to input ⊥ to Gen. The second variant, which we call a random-output NIDPF, does not
allow the parties to specify the output message: the output v is uniformly random and determined
solely based on the random coins of GenA and GenB .

Definition 13 (Half-Chosen NIDPF). We say that a NIDPF scheme has a half-chosen payload if
for a fixed σ ∈ {A,B}, Genσ only accepts vσ = 0.

Definition 14 (Random-Payload NIDPF). We say that a NIDPF scheme has a random payload if
both GenA and GenB do not take any message parameter, and the NIDPF correctness property from
Definition 12 instead holds with respect to a random payload v ∈ G (determined by the random coins
of Gen).

Lemma 2 (Half-Chosen NIDPF =⇒ NIDPF). Given a half-chosen NIDPF with (public and secret)
encoding size S and evaluation time T , we can obtain a NIDPF with encoding size size 2S and
evaluation time 2T .

The lemma follows directly from the composition theorem of function secret sharing [BGI15,
Section 3.2]. In particular, the parties run two instances of the half-chosen NIDPF in parallel, where
each party specifies its own payload in turn by reversing roles, then the outputs of the two instances
are summed together.

Remark 3 (Full-domain evaluation). Our construction will focus on settings where the evalua-
tion algorithm Eval is applied on all inputs in the domain ZN (in which case we need to assume
that N is polynomial in the security parameter, for efficiency). That is, given a NIDPF scheme
NIDPF = (Setup, (Genσ,KeyDerσ,Evalσ)σ∈{A,B}), we will denote by EvalAllσ the algorithm that runs
NIDPF.Evalσ on every input x ∈ G. As such, EvalAllσ only takes as input the crs and key κσ.

This setting captures a motivated range of applications and implemented systems, including con-
structions of pseudorandom correlation generators, private “reading” applications such as Private
Information Retrieval, and private “writing” applications such as secure distributed storage, voting,
and aggregation. (See, e.g., [BGIK22] for further discussion.)

We additionally remark that all present black-box distributed DPF setup protocols require do-
mains of feasible size. Indeed, removing this limitation while remaining black-box in the underlying
cryptography would seem to pose a significant challenge.

20

5.1 Emulating arithmetic modulo N

Here, we briefly describe two natural approaches for representing arithmetic over the inputs of Alice
and Bob. We want our construction to give parties the ability to generate keys for the point function
with a non-zero index at tA + tB mod N . Unfortunately, our NIDPF construction requires Alice and
Bob to parse their inputs tA, tB ∈ [N] as (iA, jA), (iB , jB) ∈ Zℓ × Zm, where N = ℓ · m and only
allows them to compute a DPF key encoding a point function with special index:

(iA + iB mod ℓ) ·m+ (jA + jB mod m). (3)

If we parse the indices tA and tB of each party in the simplest way, i.e., tA = iA · m + jA and
tB = iB ·m+ jB , the above operation does not capture addition of tA and tB modulo N . Specifically,
it is possible that jA + jB has a “carry bit” b in the case when jA + jB ≥ m, which then has to be
added to the iA + iB component as:

(iA + iB + b mod ℓ) ·m+ (jA + jB mod m). (4)

Concretely, in our NIDPF construction, this will require shifting the rows of the matrix T by iB + b
in the case that the carry bit is set (recall Step II from Section 2.2).

Remark 4 (Random point function). We remark that in the case that Alice and Bob need a point
function with a random non-zero index, they do not need to emulate addition modulo N and can
instead simply sample uniformly random (iσ, jσ) for their inputs to the NIDPF.

Here, we present two approaches for emulating addition (modulo N) using arithmetic represented
over ℓ and m, as in Equation (3).

Approach I: Emulating arithmetic via a residue number system. As described in Section 2,
we can let ℓ be coprime to m, which immediately allows us to emulate arithmetic modulo N in a
residue number system, using ℓ and m as the coprime moduli. In this case, we no longer need to
worry about the carry bit, since we can compute locally modulo Zℓ and Zm and then map back to
ZN . Alice and Bob represent their indices tA, tB ∈ [N] as (iA, jA) and (iB , jB) where

tA ≡ iA (mod ℓ), tB ≡ iB (mod ℓ),

tA ≡ jA (mod m), tB ≡ jB (mod m).

After executing the protocol, they hold secret shares of a matrix that is nonzero in location (iA + iB
(mod ℓ), jA + jB (mod m)). Let α, α′ be integers such that αℓ+ α′m = 1, which exist since ℓ and m
are coprime. Alice and Bob can each map location (i, j) of their ℓ×m matrix to location l ∈ [N] in
a vector of length N where l ≡ iα′m+ jαℓ (mod N). Suppose t is the resulting one-hot index in the
vector Alice and Bob now hold shares for. By the Chinese Remainder Theorem, we have that

t ≡ iA + iB (mod ℓ)

t ≡ jA + jB (mod m)

}
=⇒ t ≡ tA + tB (mod N).

Approach II: Emulating the carry. For some applications, it may be inconvenient or impossible
for ℓ and m to be coprime, such as if N = ℓ ·m is a power of 2. An alternative strategy we can use
in this case is to prevent the “erasure” of the carry bit modulo m. Specifically, we observe that if the
cyclic shift is performed modulo 2m, then we do not lose information on the carry: the non-zero entry
of Alice’s matrix A ∈ Rℓ×2m will either contain the non-zero entry in the “left half” or the “right
half” of the columns depending on whether or not the carry occurred. At this point, Alice and Bob will
hold shares of a matrix T that can be parsed as [T0 T1], where T0,T1 ∈ Rℓ×m and T1−b = 0 when
b is the value of the carry bit. Then, Alice and Bob can cyclically shift their rows of T1 down by one
(this operation is a linear function over their shares of T1), and compute T := T0+ShiftDown(T1, 1).
Observe that because T1−b is always zero, they obtain shares of the matrix T that has exactly one
non-zero entry and the rows cyclically shifted down precisely if the carry bit is set. Note that this
approach works regardless of the choice of ℓ and m.

21

5.2 NIDPF framework

Here, we formalize the NIDPF construction, closely following the technical overview from Section 2.2.
We present a construction for the “half-chosen payload” (Definition 13) NIDPF in Figure 4, which
can be extended to satisfy the full NIDPF definition via Lemma 2 (however, for the applications
described in Section 1.2, the payload is public, and so the half-chosen variant sufficient on its own).

Our construction uses the following auxiliary functions as building blocks.

Auxiliary functions. We define two deterministic functions that simplify the presentation of our
NIDPF construction in Figure 4.

– Shift : Rℓ×m × [ℓ]→ Rℓ×m. Shift takes as input a ℓ×m matrix (for arbitrary integers ℓ, m) and
a shift i ∈ [ℓ]. It outputs the matrix with the rows cyclically shifted down by i.

– Mat2Vec : Rℓ×m → Rℓ·m. Mat2Vec takes as input a ℓ × m matrix (for arbitrary integers ℓ, m)
and outputs the vector obtained by concatenating the rows of the matrix together.

NIDPF Framework

Public Parameters. Domain size N and matrix dimensions ℓ,m such that ℓ · m = N . Set of
cyclic shift matrices Sm = {Sj : j ∈ [m]}, where Sj is the j-th canonical cyclic shift matrix. Suc-
cinct NIM scheme NIM = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}) and (degree-2, secret-key) HSS scheme
HSS = (Setup, Share,Convert,Mult). We instantiate the full-domain evaluation algorithm NIDPF.EvalAll,
described in Remark 3.

NIDPF.Setup(1λ):

1 : crs← NIM.Setup(1λ)

2 : return crs

NIDPF.GenA(crs, tA, v):

1 : parse tA = (iA, jA) ∈ [ℓ]× [m]

2 : A := 0 ∈ Rℓ×m, A[iA, jA] := v

3 : (peA, stA)← EncodeA(crs,A)

4 : (pkA, skA) := (peA, stA)

5 : return (pkA, skA)

NIDPF.KeyDerσ(crs, pk1−σ, skσ):

1 : parse (pk1−σ, skσ) = (pe1−σ, ekσ, JeiB Kσ, stσ)
2 : Uσ := Decodeσ(pe1−σ, stσ)

3 : parse Uσ = ⟨⟨T⟩⟩σ
4 : κσ := (⟨⟨T⟩⟩σ, ekσ, JeiB Kσ)
5 : return κσ

NIDPF.GenB(crs, tB ,⊥):
1 : parse tB = (iB , jB) ∈ [ℓ]× [m]

2 : (sk, (ekA, ekB))← HSS.Setup(1λ)

3 : parse sk = (skB , . . . , skk) ∈ Rk

// k is determined by the HSS scheme.

4 : (JeiB KA, JeiB KB)← HSS.Share(sk, eiB)

// eiB is the iB-th canonical unit vector.

5 : E :=
[
SjB

∣∣ skB · SjB

∣∣ · · · ∣∣ skk · SjB

]
6 : (peB , stB)← EncodeB(crs,E)

7 : pkB := (peB , ekA, JeiB KA)
8 : skB := (stB , ekB , JeiB KB)
9 : return (pkB , skB)

NIDPF.EvalAllσ(crs, κσ):

1 : parse κσ = (⟨⟨T⟩⟩σ, ekσ, JeiB Kσ)
// JeiB Kσ = (JeiB ,1Kσ, . . . , JeiB ,kKσ).
2 : foreach j ∈ [ℓ] :

3 : ⟨⟨Tj⟩⟩σ := Shift(⟨⟨T⟩⟩σ, i)

4 : Z(j)
σ := Mult(σ, ekσ, JeiB ,jKσ, ⟨⟨Tj⟩⟩σ)

5 : Zσ :=
∑ℓ

j=1 Z
(j)
σ

6 : ⟨y⟩σ := Mat2Vec(Zσ)

7 : return ⟨y⟩σ

Fig. 4: NIDPF framework.

22

Proposition 1. Let NIM be a succinct NIM scheme (Definition 11) and let HSS be a (degree-2, secret-
key) HSS scheme (Definition 7). The construction presented in Figure 4 is a half-chosen NIDPF
(Definition 13).

Proof. We prove correctness and security in turn.

Correctness. By correctness of NIM, we have that

UA +UB = AE =
[
ASjB

∣∣ skB ·ASjB

∣∣ · · · ∣∣ skk ·ASjB

]
.

In words, Uσ is an HSS memory share of T = ASjB . Recall that the vector eiB has entries eiB ,j = 0
for j ̸= iB and eiB ,iB = 1. Then, by correctness of HSS, we have that

ZA − ZB =
∑
j∈[ℓ]

(Z
(j)
A − Z

(j)
B) = (Z

(iB)
A − Z

(iB)
B) + 0

= TiB = Shift(T, iB) = Shift(ASjB , iB).

A is zero everywhere except location (iA, jA), soASjB is zero everywhere except location (iA, jA+jB),
and Shift(ASjB , iB) is zero everywhere except location (iA + iB , jA + jB), as desired.

Security. Note that pkA = peA where peA is a public encoding generated by EncodeA for message
A defined by tA, v. This computationally hides tA and v by NIM security. To prove security for
pkB = (peB , ekA, JeiB KA), we proceed via a hybrid argument.

– Hybrid H0. This hybrid consists of the NIDPF game instantiated using the construction from
Figure 4 with index t0 and payload v0 (i.e., when b = 0).

– Hybrid H1. In this hybrid, we set E := 0 ∈ Rm×m(k+1).

Claim. H1 ≈c H0 assuming the security of NIM.

Proof. Suppose an efficient adversary A distinguishes between H1 and H0. The existence of A
contradicts NIM security: the reduction asks the NIM challenger for peB to be either a public
encoding of E or 0, samples (sk, (ekA, ekB)) ← HSS.Setup(1λ) itself, and uses A to break NIM
security of Encode. □

– Hybrid H2. In this hybrid, we set eiB := 0 ∈ Rℓ.

Claim. H2 ≈c H1 assuming the security of HSS.

Proof. Suppose an efficient adversary A distinguishes between H2 and H1. The existence of A
contradicts HSS security: the reduction asks the HSS challenger for peB to be either a share of
eiB or 0, samples crs ← NIM.Setup(1λ), computes peB ← EncodeB(crs,0) itself, and finally uses
A to break HSS security of HSS.Share. □

At this point, there is no information on t0 and v0. By continuing with the same sequence of hybrids
in reverse order, we can show that H0 is indistinguishable from the NIDPF game instantiated using
the construction from Figure 4 with index t1 and payload v1 (i.e., when b = 1). As such, no efficient
adversary can distinguish between the b = 0 and b = 1 case with better than negligible advantage,
which concludes the proof of security. ■

Corollary 1. There exist the following instantiations of Figure 4 with a O(N2/3) public key size,
O(N) key generation time, O(N4/3) key derivation time, and O(N5/3) full domain evaluation time,
where O(·) hides a factor of poly(λ, log |R|):
– under the DCR assumption over the Paillier group Z∗

n2 , when R ⊆ Zn;

– under the QR assumption over the RSA group Z∗
n where n is the product of two large safe-primes,

when R = Z2;

23

– under the N1/3-ary EDDH assumption and the uniformity assumption in class groups, when
R = Zp, for any suitable prime p = Ω(2λ); and

– under the LWE/RLWE assumption with a superpolynomial modulus-to-noise ratio, when R = Zp,
for any integer p.

The class group and LWE/RLWE instantiations have a transparent setup.

Proof. We set parameters ℓ = N2/3 and m = N1/3. Since the HSS secret key length k = k(λ) =
poly(λ), we will ignore factors of k in our analysis below.

The size of the public key generated for the larger matrix with dimensions ℓ×m grows with the
number of rows, resulting in an asymptotic size of N2/3. The size of the public key generated for a
smaller matrix with dimensions m×m grows with the size of the matrix, resulting in an asymptotic
size of N1/3 ·N1/3 = N2/3. Key generation time is dominated by the NIM encoding algorithm for a
matrix of size ℓ×m, resulting in an asymptotic runtime of N2/3 ×N1/3 = N .

Key derivation time is dominated by the NIM decoding algorithm for matrices with dimensions
ℓ × m and m × m, resulting in an asymptotic runtime of N2/3 · N1/3 · N1/3 = N4/3. Full domain
evaluation time is dominated by running the HSS multiplication algorithm ℓ times for a matrix with
dimensions ℓ×m, resulting in an asymptotic runtime of N2/3 ·N2/3 ·N1/3 = N5/3. ■

5.3 Random-payload instantiation from SXDH

Here, we provide a construction of Figure 4 with random payload (see Definition 14) from the SXDH
assumption over bilinear groups. Our starting point is the observation that if we replace the NIM in
Figure 4 with the multiplicative-output NIM (Definition 10), we can avoid the error introduced from
the DDLog procedure converting the multiplicative shares into additive shares. However, by having
the output of NIM be multiplicative, we lose the ability to compute the HSS multiplication in EvalAll,
since HSS requires additive memory shares.

We overcome this by constructing a new degree-2 HSS scheme satisfying Definition 7 and which has
“multiplicative” memory shares (i.e., additive memory shares “in the exponent”) that are compatible
with the outputs of the multiplicative NIM.

5.3.1 Degree-2 HSS with Multiplicative Memory Shares In Figure 5, we construct a (secret-
key, degree-2) HSS scheme satisfying Definition 7 under the SXDH assumption in bilinear groups.8

The construction follows the standard template for realizing HSS in cyclic groups. However, one
difference is that we define input shares over the group G1 and memory shares over the group G2,
which allows us to compute the multiplication using a pairing operations. This slightly complicates
the scheme since now we need to convert input shares to memory shares using Convert by “hopping
between groups,” which necessitates defining two independent encryptions of the message in HSS.Share
when generating an input share. Importantly, the encryptions in G1 need to be generated using an
encryption key α that is independent from the encryption key β used to encrypt the messages in G2

(otherwise the security of the encryption would be trivially broken via the pairing).

Proposition 2. The construction presented in Figure 5 satisfies Definition 7 (degree-2, secret-key)
HSS with ϵ = 1 − 1/poly(λ) correctness assuming the SXDH assumption holds in the bilinear group
G := (p,G1,G2,GT , g1, g2, e).

Proof. We prove correctness and security in turn.

Correctness. To simplify analysis later on, we show that Convert outputs memory shares that are
partially consistent with the template outlined in Section 3.5.1. Notice that given an input share JxKσ
of the form (gr1, gx+α·r

1 , gr
′

2 , gx+β·r′
2), ⟨⟨x⟩⟩σ consists of a tuple of multiplicative shares of (x, x · α)

defined over G2, since

E1 · E
−⟨β⟩σ
0 = gx+β·r′

2 · (gr
′

2)−⟨β⟩σ = g
⟨x⟩σ
2 and

E
−⟨α⟩σ
1 · E−⟨γ⟩σ

0 = (gx+β·r′
2)⟨α⟩σ · (gr

′

2)−⟨αβ⟩σ = g
⟨x·α⟩σ
2 ,

8 The construction can easily be made public key, but we present the secret-key variant for consistency with
the rest of this paper.

24

Degree-2 Secret-key HSS from SXDH

Public Parameters. Bilinear group of order p defined by (p,G1,G2,GT , g1, g2, e). For convenience, we
define gT := e(g1, g2) ∈ GT . Additive secret sharing algorithm ShareG(·) outputting two-out-of-two shares
in the group G (see Section 3.2). Distributed discrete logarithm algorithm DDLog (Definition 4) and an
integer 2 ≤M ≤ poly(λ) defining the message space {0, 1, . . . ,M − 1}.

HSS.Setup(1λ):

1 : α, β ←$ Zp, γ := αβ, sk := (α, β, γ)

2 : (⟨α⟩A, ⟨α⟩B)← ShareZp(α)

3 : (⟨β⟩A, ⟨β⟩B)← ShareZp(β)

4 : (⟨γ⟩A, ⟨γ⟩B)← ShareZp(γ)

5 : foreach σ ∈ {A,B} :
6 : ekσ := (⟨α⟩σ, ⟨β⟩σ, ⟨γ⟩σ)
7 : return (sk, (ekA, ekB))

HSS.Convert(σ, ekσ, JxKσ):

1 : parse ekσ = (⟨α⟩σ, ⟨β⟩σ, ⟨γ⟩σ)
2 : parse JxKσ = (, , E0, E1)

3 : ⟨⟨x⟩⟩σ := (E1 · E−⟨β⟩σ
0 , E

⟨α⟩σ
1 · E−⟨γ⟩σ

0)

4 : return ⟨⟨x⟩⟩σ

HSS.Share(sk, x):

1 : r, r′ ←$ Zp

2 : foreach σ ∈ {A,B} :

3 : JxKσ := (gr1 , g
x+α·r
1 , gr

′
2 , gx+β·r′

2)

4 : return (JxKA, JxKB)

HSS.Mult(σ, ekσ, JxKσ, ⟨⟨y⟩⟩σ):
1 : parse JxKσ = (D0, D1, ,)

2 : parse ⟨⟨y⟩⟩σ = (S(0)
σ , S(1)

σ)

3 : Zσ := e(D0, S
(1)
σ) · e(D1, S

(0)
σ)

4 : τ := 0 if σ = A; else τ := 1

5 : ⟨z⟩σ := DDLog((GT , gT ,M), Z−1τ

σ)

6 : return ⟨z⟩σ

Fig. 5: Degree-2 secret-key HSS from SXDH.

which follows the template from Section 3.5.1, when memory shares are defined multiplicatively in
the group G2 with respect to secret key α. Specifically, we can “ignore” the secret key β, which is
only used to convert from input to memory shares and does not aid in decryption when performing
HSS.Mult.

Now, we turn to proving correctness, as defined in Definition 7. First, observe that Zσ, as computed
in HSS.Mult (line 3), is defined as

ZA = e(gr1, g
⟨−y·α⟩A
2) · e(gx+α·r

1 , g
⟨y⟩A
2) = g

⟨−α·(ry)⟩A
T · g⟨yx+α·(ry)⟩A

T = g
⟨xy⟩A
T

ZB = e(gr1, g
⟨−y·α⟩B
2) · e(gx+α·r

1 , g
⟨y⟩B
2) = g

⟨−α·(ry)⟩B
T · g⟨yx+α·(ry)⟩B

T = g
⟨xy⟩B
T .

Therefore, party σ ∈ {A,B} obtains Zσ, which is a multiplicative share of gxyT . By correctness of the
DDLog, the parties obtain an additive share of z := xy with probability ϵ := 1 − poly(λ). As such,
the error of the HSS scheme is also ϵ.

Security. We prove security via a hybrid argument.

– Hybrid H0. This hybrid consists of the HSS security game instantiated using the construction in
Figure 5 with message xb.

– Hybrid H1. In this hybrid, we replace the evaluation key ekσ produced by HSS.Setup (and given
to the adversary) with uniformly random value in Z3

p. It is trivial to verify that this hybrid game
is perfectly indistinguishable from H0.

– Hybrid H2. In this hybrid, we replace the elements of G1 of each input share produced by
HSS.Share with uniformly random group elements in G1.

25

Claim. H2 ≈c H1 assuming DDH in G1.

Proof. Notice that in H1, the adversary A receives a vector of input shares

JxbKσ := (Jx(1)
b K

σ
, . . . , Jx(k)

b K
σ
),

distributed as:(
(gr11 , g

x
(1)
b +α·r1

1 , g
r′1
2 , g

x
(1)
b +β·r′1

2), . . . , (grk1 , g
x
(k)
b +α·rk

1 , g
r′k
2 , g

x
(k)
b +β·r′k

2)

)
=

(
(gr11 , g

x
(1)
b

1 hr1
1 , g

r′1
2 , g

x
(1)
b

2 h
r′1
2), . . . , (grk1 , g

x
(k)
b

1 hrk
1 , g

r′k
2 , g

x
(k)
b

2 h
r′k
2)

)
,

where h1 := gα1 and h2 := gβ2 . In turn, this is distributed identically to:(
(gr11 , . . . , grk1 , g

x
(1)
b

1 hr1
1 , . . . , g

x
(k)
b

1 hrk
1), (g

r′1
2 , . . . , g

r′k
2 , g

x
(1)
b

2 h
r′1
2 , . . . , g

x
(k)
b

2 h
r′k
2)

)
,

by rearranging the terms. Note that all elements of the input share from G2 are independent of
the G1 elements (they are computed with different randomness r′i and using a different secret key
β, sampled independently of ri and α).

Suppose, towards contradiction, that A distinguishes between H2 and H1 with non-negligible ad-

vantage. By a separate hybrid argument, it follows thatA distinguishes between some (gri1 , g
x
(i)
b

1 hri
1)

and uniformly random (ui, vi) ∈ G2
1, for some i ∈ [k] (note that all elements of G2 in each input

share are still computed as in hybrid H1). This contradicts the DDH assumption in G1, since
by a straightforward reduction, the adversary is able to distinguish between (gα1 , g

ri
1 , gαri1) and

(gα1 , ui, vi). □

– Hybrid H3. In this hybrid, we replace the elements of G2 of each input share produced by
HSS.Share with uniformly random group elements in G2.

Claim. H3 ≈c H2 assuming DDH in G2.

Proof. The proof follows the same strategy as in the proof of the previous claim, except that now
the adversary contradicts the DDH assumption in G2. □

At this point, we have proven that under the SXDH assumption, A cannot distinguish between
JxbKσ and uniform tuple over (G2

1×G2
2)

k, with better than negligible advantage. In turn, it follows that
A’s distinguishing advantage between Jx0Kσ and Jx1Kσ is negligible, which concludes the proof. ■

5.3.2 Random “DDLog” procedure In Figure 5, correctness of the output shares depends on
the correctness of the DDLog procedure. However, in cyclic groups G, the DDLog procedure has an
inherent 1/poly(λ) error [BGI16,DKK20], which the NIDLS framework overcomes by using specific
groups G (e.g., Z∗

n2) and requiring different assumptions (e.g., DCR). This is why Figure 5 only
achieves ϵ = 1 − 1/poly(λ) correctness, in general. The crucial observation we make here is that the
DDLog procedure has no error when given multiplicative shares of g0 ∈ G and, moreover, because we
additionally only require uniformly random payloads in the case where the parties hold multiplicative
shares of gu, for some u ̸= 0, we can construct a trivial algorithm “DDLog” procedure using just a
PRF, as we show in the following lemma.

Lemma 3 (Random Distributed Discrete Logarithm). Let G be an arbitrary cyclic group with gen-
erator g and 1 ≤ M ≪ |G| be an integer. There exists an efficient algorithm DDLog satisfying
Definition 4 such that:

(1) For all elements hA, hB ∈ G where hA · hB = g0,

Pr
[
⟨z⟩A − ⟨z⟩B = 0 : ⟨z⟩σ := DDLog((G, g,M), hσ), ∀σ ∈ {A,B}

]
= 1;

26

(2) For all hA, hB ∈ G where hA · hB ̸= g0, it holds that for all σ ∈ {A,B}:{
(⟨z⟩σ, h1−σ)

∣∣∣ ⟨z⟩σ := DDLog((G, g,M), hσ)
}
≈c

{
(⟨z⟩σ, h1−σ)

∣∣∣ ⟨z⟩σ ←$ ZM

}
.

Proof. We construct DDLog satisfying the two required properties using any PRF family F : {0, 1}λ×
G→ ZM . Define DDLog as ((G, g,M), hσ) 7→ FK((hσ)

−1τ),9 where K is a public uniformly random
PRF key. Then, (1) the output of DDLog consists of pseudorandom shares of zero whenever hA ·hB =
g0 and (2) the output of DDLog for all non-zero values is uniformly random in ZM (thus satisfying
the second property).

To see (1), note that if hA · hB = g0, then it holds that hA = h−1
B , which in turn implies that

FK(hA)− FK(hB) = 0, with probability 1.
To see (2), note that if hA · hB = gu, for some non-zero u with high (pseudo)entropy independent

of the PRF key K, then DDLog outputs two pseudorandom and independent elements of ZM , which
guarantees computational indistinguishability by the security of the PRF. ■

Corollary 2. Under the SXDH assumption over a bilinear group, there exists an instantiation of
Figure 4 with random payloads (cf. Definition 14) in the message space ZM , for any integer M , with
a O(N2/3) public key size, O(N) key generation time, O(N4/3) key derivation time, and O(N5/3) full
domain evaluation time, where O(·) hides a factor of poly(λ, log |R|).

Proof. The construction consists of Figure 4 instantiated with a multiplicative-output NIM (Defini-
tion 10) and the degree-2 HSS construction from SXDH (Figure 5) using the modified DDLog from
Lemma 3.

The public key size, key generation time, and evaluation time follows from the proof of Corollary 1.
Then, by Lemma 3 we immediately get correctness and a random payload on the non-zero coordinate.
However, to additionally ensure pseudorandomness of the payload given the PRF key K, the parties
must set their payload to a uniformly random scalar. That is, party σ sets the non-zero coordinate
to be ∆σ (for some uniformly random ∆σ ←$ Zp, where p is the prime order of G). Then, the parties
obtain multiplicative shares of a uniformly random value in ∆A · ∆B ∈ Zp which guarantees the
resulting PRF output is pseudorandom.

■

Remark 5 (Guaranteeing a non-zero output). We remark that because the payload is uniformly ran-
dom in ZM , it may be zero with noticeable probability if M is small. To guarantee a negligible
probability of the payload being zero, we can choose the M ≥ Ω(2λ) so as to ensure the output is
non-zero with all but negligible probability. In particular, the DDLog procedure of Lemma 3 does not
require M to be polynomial in the security parameter.

6 Generalization to Succinct Multi-Key HSS

In this section, we show that we can generalize the ideas behind our NIDPF construction to construct
succinct, two-party “multi-key” HSS for a restricted class of computations. In particular, with multi-
key HSS [XW23, CDH+25], two parties can provide inputs to a computation without having to
agree on a common public key ahead of time (similarly to spooky encryption, which is based on
multi-key FHE [DHRW16]). We consider a setting where Alice has a large input x and Bob has a
short input y, where we will require succinctness in the large input (similarly to Definition 11 and
succinct HSS [ARS24]). Then, by exchanging input shares, Alice and Bob can compute secret shares
of P (x, f(y)), where f is any NC1 function and P is a constant-degree polynomial.

Abram et al. [ARS24] achieved succinct HSS for a similar, slightly larger computational class
which they call “Special RMS” programs. Effectively, this class supports computations of the form

P (xA, xB , f(yA, yB)),

where again f ∈ NC1 and P is a constant-degree polynomial, and Alice and Bob can each contribute
inputs xσ, yσ for each computation role. In their construction, they have x = (xA, xB) as a “special”

9 Here, DDLog is implicitly parameterized by the party identifier σ and the global PRF key K. We leave this
implicit for readability.

27

input share and y = (yA, yB) as a standard HSS input share. However, since they let the HSS input y
be defined by both parties, this prevents their construction from being “multi-key” or, in other words,
non-interactive. That is, in their construction, the parties need to have a common HSS public key to
generate the inputs yA and yB used in the evaluation of f through HSS.10

We show that we can extend succinct NIM for “special RMS” programs provided that only one
party specifies the input to the function f—which is exactly the generalization of our NIDPF con-
struction in Section 5. That is, instead of letting both parties provide inputs to the function f , we
consider computations of the form P (x, f(yσ)), where only party σ is allowed to input y. However, we
still get the succinctness property since the total communication incurred is only o(|x|) + O(|yσ|),11
which is sublinear in the size of the large input. Formally, we capture the following extension to NIM
for computing general functions:

Definition 15 (Extended NIM). Let ℓ0, ℓ1 be integers. An extended NIM scheme for a function class
F , consists of five efficient algorithms

ExtNIM = (Setup, (Encodeσ,Decodeσ)σ∈{A,B})

with the same syntax and security property as defined in Definition 9 except that Decodeσ takes an
additional input f ∈ F . The algorithms must satisfy the following extended correctness property:

Extended Correctness. For all security parameters λ ∈ N, every function f ∈ F , and every pair
of inputs x, y ∈ {0, 1}ℓ0 × {0, 1}ℓ1 , an extended NIM scheme is said to be correct if there exists a
negligible function negl(·) such that:

Pr

 ⟨z⟩A − ⟨z⟩B = f(x, y) :

crs← Setup(1λ)

(peA, stA)← EncodeA(crs, x)

(peB , stB)← EncodeB(crs, y)

⟨z⟩A := DecodeA(crs, peB , stA, f)

⟨z⟩B := DecodeB(crs, peA, stB , f)

 ≥ 1− negl(λ).

We can additionally consider succinctness, analogously to Definition 11; we specify the succinctness
directly in the following theorem:

Theorem 4. Let ℓ0, ℓ1, ℓ2 ∈ N, let R be a ring, and let P be the set of all constant-degree polyno-
mials defined over R. Let HSS = (Setup,Share,Eval) be a secret-key HSS scheme (cf. Definition 16)
for the function class F : {0, 1}ℓ1 → Rℓ2 and satisfying multiplication by memory shares (cf. Defini-
tion 8). Then, there exists an extended NIM (cf. Definition 15) for the class of functions described by
P (x, f(y)), where P ∈ P, f ∈ F , x ∈ Rℓ0 and y ∈ {0, 1}ℓ1 . Moreover, the size of the public encoding
output by EncodeA is bounded by:

poly(λ, log |R|) · (ℓ0)ϵ,

for some 0 ≤ ϵ < 1.

Proof (sketch). The main idea is that Alice, given an HSS input share of y from Bob, as well as the
evaluation key ekA, can locally compute memory shares of f(y) under Bob’s secret key sk. Simulta-
neously, Alice and Bob can use NIM to compute memory shares of x under Bob’s secret key sk. More
concretely, Alice inputs x and Bob inputs sk, to instantiate non-interactive VOLE [ARS24,BCM+24].
This then allows Alice and Bob to compute x · f(y) via the “multiplication by memory shares” sup-
ported by the HSS scheme (recall Definition 8). This immediately generalizes to computing P (x, f(y)),
for any constant-degree polynomial P . To see this, note that Alice can input the vector x corre-
sponding to the coefficients of all the monomials of P and Bob can input y for the function f̂
that outputs a vector y := (1, f(y)1, f(y)2, . . . , f(y)d−1), where d ∈ O(1) is the degree of P . Then,

P (x, f(y)) = ⟨x,y⟩ =
∑d

i=1 xi · f(y)i−1. Moreover, when using succinct NIM (Definition 11), Alice’s
encoding is sublinear in ℓ0 and Bob’s encoding is independent of d. ■

10 In particular, this approach requires a trusted setup to distribute the evaluation keys to both parties before
parties can share their inputs yA and yB , respectively.

11 Ignoring polynomial factors in the security parameter.

28

Acknowledgments

We thank Srini Devadas and the anonymous reviewers for helpful comments and suggestions. Elette
Boyle’s research is supported, in part, by AFOSR Award FA9550-21-1-0046 and ERC Project HSS
(852952).

References

ADOS22. D. Abram, I. Damg̊ard, C. Orlandi, and P. Scholl. An algebraic framework for silent preprocessing
with trustless setup and active security. In CRYPTO 2022, Part IV, LNCS 13510, pages 421–452.
Springer, Cham, August 2022.

Ajt96. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM STOC,
pages 99–108. ACM Press, May 1996.

ARS24. D. Abram, L. Roy, and P. Scholl. Succinct homomorphic secret sharing. In EUROCRYPT 2024,
Part VI, LNCS 14656, pages 301–330. Springer, Cham, May 2024.

AS22. D. Abram and P. Scholl. Low-communication multiparty triple generation for SPDZ from ring-
LPN. In PKC 2022, Part I, LNCS 13177, pages 221–251. Springer, Cham, March 2022.

BBC+21. D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai. Lightweight techniques for
private heavy hitters. In 2021 IEEE Symposium on Security and Privacy, pages 762–776. IEEE
Computer Society Press, May 2021.

BBC+24. M. Bombar, D. Bui, G. Couteau, A. Couvreur, C. Ducros, and S. Servan-Schreiber. FOLEAGE:
F4OLE-based multi-party computation for boolean circuits. In ASIACRYPT 2024, Part VI,
LNCS 15489, pages 69–101. Springer, Singapore, 2024.

BCCD23. M. Bombar, G. Couteau, A. Couvreur, and C. Ducros. Correlated pseudorandomness from the
hardness of quasi-abelian decoding. In CRYPTO 2023, Part IV, LNCS 14084, pages 567–601.
Springer, Cham, August 2023.

BCG+17. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù. Homomorphic secret sharing: Optimiza-
tions and applications. In ACM CCS 2017, pages 2105–2122. ACM Press, October / November
2017.

BCG+19a. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl. Efficient two-round
OT extension and silent non-interactive secure computation. In ACM CCS 2019, pages 291–308.
ACM Press, November 2019.

BCG+19b. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom
correlation generators: Silent OT extension and more. In CRYPTO 2019, Part III, LNCS 11694,
pages 489–518. Springer, Cham, August 2019.

BCG+20a. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Correlated pseudorandom
functions from variable-density LPN. In 61st FOCS, pages 1069–1080. IEEE Computer Society
Press, November 2020.

BCG+20b. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom
correlation generators from ring-LPN. In CRYPTO 2020, Part II, LNCS 12171, pages 387–416.
Springer, Cham, August 2020.

BCG+21. E. Boyle, N. Chandran, N. Gilboa, D. Gupta, Y. Ishai, N. Kumar, and M. Rathee. Function secret
sharing for mixed-mode and fixed-point secure computation. In EUROCRYPT 2021, Part II,
LNCS 12697, pages 871–900. Springer, Cham, October 2021.

BCG+22. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, N. Resch, and P. Scholl. Correlated pseu-
dorandomness from expand-accumulate codes. In CRYPTO 2022, Part II, LNCS 13508, pages
603–633. Springer, Cham, August 2022.

BCGI18. E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. Compressing vector OLE. In ACM CCS 2018,
pages 896–912. ACM Press, October 2018.

BCM+24. D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia. Fast public-key silent OT and
more from constrained Naor-Reingold. In EUROCRYPT 2024, Part VI, LNCS 14656, pages
88–118. Springer, Cham, May 2024.

BGI15. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In EUROCRYPT 2015, Part II,
LNCS 9057, pages 337–367. Springer, Berlin, Heidelberg, April 2015.

BGI16. E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure computation under
DDH. In CRYPTO 2016, Part I, LNCS 9814, pages 509–539. Springer, Berlin, Heidelberg, August
2016.

BGI17. E. Boyle, N. Gilboa, and Y. Ishai. Group-based secure computation: Optimizing rounds, com-
munication, and computation. In EUROCRYPT 2017, Part II, LNCS 10211, pages 163–193.
Springer, Cham, April / May 2017.

BGI19. E. Boyle, N. Gilboa, and Y. Ishai. Secure computation with preprocessing via function secret
sharing. In TCC 2019, Part I, LNCS 11891, pages 341–371. Springer, Cham, December 2019.

29

BGIK22. E. Boyle, N. Gilboa, Y. Ishai, and V. I. Kolobov. Programmable distributed point functions. In
CRYPTO 2022, Part IV, LNCS 13510, pages 121–151. Springer, Cham, August 2022.

BKS19. E. Boyle, L. Kohl, and P. Scholl. Homomorphic secret sharing from lattices without FHE. In
EUROCRYPT 2019, Part II, LNCS 11477, pages 3–33. Springer, Cham, May 2019.

BM90. M. Bellare and S. Micali. Non-interactive oblivious transfer and applications. In CRYPTO’89,
LNCS 435, pages 547–557. Springer, New York, August 1990.

CBM15. H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An anonymous messaging system han-
dling millions of users. In 2015 IEEE Symposium on Security and Privacy, pages 321–338. IEEE
Computer Society Press, May 2015.

CDD+24. G. Couteau, L. Devadas, S. Devadas, A. Koch, and S. Servan-Schreiber. QuietOT: Lightweight
oblivious transfer with a public-key setup. In ASIACRYPT 2024, Part II, LNCS 15485, pages
197–231. Springer, Singapore, 2024.

CDH+25. G. Couteau, L. Devadas, A. Hegde, A. Jain, and S. Servan-Schreiber. Multi-key homomorphic
secret sharing. Cryptology ePrint Archive, Paper 2025/094, 2025.

CMPR23. G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia. Constrained pseudorandom functions
from homomorphic secret sharing. In EUROCRYPT 2023, Part III, LNCS 14006, pages 194–224.
Springer, Cham, April 2023.

CZ22. G. Couteau and M. Zarezadeh. Non-interactive secure computation of inner-product from LPN
and LWE. In ASIACRYPT 2022, Part I, LNCS 13791, pages 474–503. Springer, Cham, December
2022.

DFL+20. E. Dauterman, E. Feng, E. Luo, R. A. Popa, and I. Stoica. DORY: An encrypted search system
with distributed trust. In 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 1101–1119, 2020.

DH76. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

DHRW16. Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. Spooky encryption and its applications. In
CRYPTO 2016, Part III, LNCS 9816, pages 93–122. Springer, Berlin, Heidelberg, August 2016.

DIJL23. Q. Dao, Y. Ishai, A. Jain, and H. Lin. Multi-party homomorphic secret sharing and sublinear
MPC from sparse LPN. In CRYPTO 2023, Part II, LNCS 14082, pages 315–348. Springer, Cham,
August 2023.

DKK20. I. Dinur, N. Keller, and O. Klein. An optimal distributed discrete log protocol with applications
to homomorphic secret sharing. Journal of Cryptology, 33(3):824–873, July 2020.

DRPS22. E. Dauterman, M. Rathee, R. A. Popa, and I. Stoica. Waldo: A private time-series database from
function secret sharing. In 2022 IEEE Symposium on Security and Privacy, pages 2450–2468.
IEEE Computer Society Press, May 2022.

Ds17. J. Doerner and a. shelat. Scaling ORAM for secure computation. In ACM CCS 2017, pages
523–535. ACM Press, October / November 2017.

GI14. N. Gilboa and Y. Ishai. Distributed point functions and their applications. In EUROCRYPT 2014,
LNCS 8441, pages 640–658. Springer, Berlin, Heidelberg, May 2014.

JGB+24. N. Jawalkar, K. Gupta, A. Basu, N. Chandran, D. Gupta, and R. Sharma. Orca: FSS-based
secure training and inference with GPUs. In 2024 IEEE Symposium on Security and Privacy,
pages 597–616. IEEE Computer Society Press, May 2024.

MPD+24. D. Mouris, C. Patton, H. Davis, P. Sarkar, and N. G. Tsoutsos. Mastic: Private weighted heavy-
hitters and attribute-based metrics. Cryptology ePrint Archive, Report 2024/221, 2024.

MST24. D. Mouris, P. Sarkar, and N. G. Tsoutsos. PLASMA: Private, lightweight aggregated statistics
against malicious adversaries. PoPETs, 2024(3):4–24, July 2024.

OSY21. C. Orlandi, P. Scholl, and S. Yakoubov. The rise of paillier: Homomorphic secret sharing and
public-key silent OT. In EUROCRYPT 2021, Part I, LNCS 12696, pages 678–708. Springer,
Cham, October 2021.

RS21. L. Roy and J. Singh. Large message homomorphic secret sharing from DCR and applications.
In CRYPTO 2021, Part III, LNCS 12827, pages 687–717, Virtual Event, August 2021. Springer,
Cham.

RTPB22. T. Ryffel, P. Tholoniat, D. Pointcheval, and F. R. Bach. AriaNN: Low-interaction privacy-
preserving deep learning via function secret sharing. PoPETs, 2022(1):291–316, January 2022.

RZCGP24. M. Rathee, Y. Zhang, H. Corrigan-Gibbs, and R. A. Popa. Private analytics via streaming,
sketching, and silently verifiable proofs. Cryptology ePrint Archive, 2024.

SGRR19. P. Schoppmann, A. Gascón, L. Reichert, and M. Raykova. Distributed vector-OLE: Improved
constructions and implementation. In ACM CCS 2019, pages 1055–1072. ACM Press, November
2019.

SSLD22. S. Servan-Schreiber, S. Langowski, and S. Devadas. Private approximate nearest neighbor search
with sublinear communication. In 2022 IEEE Symposium on Security and Privacy, pages 911–929.
IEEE Computer Society Press, May 2022.

30

VHG23. A. Vadapalli, R. Henry, and I. Goldberg. Duoram: A bandwidth-efficient distributed ORAM for
2- and 3-party computation. In USENIX Security 2023, pages 3907–3924. USENIX Association,
August 2023.

VSH22. A. Vadapalli, K. Storrier, and R. Henry. Sabre: Sender-anonymous messaging with fast audits.
In 2022 IEEE Symposium on Security and Privacy, pages 1953–1970. IEEE Computer Society
Press, May 2022.

WYG+17. F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia. Splinter: Practical pri-
vate queries on public data. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 299–313, 2017.

XW23. P. Xu and L.-P. Wang. Multi-key homomorphic secret sharing from LWE without multi-key HE.
In ACISP 23, LNCS 13915, pages 248–269. Springer, Cham, July 2023.

YJG+23. P. Yang, Z. L. Jiang, S. Gao, J. Zhuang, H. Wang, J. Fang, S. Yiu, and Y. Wu. FssNN:
Communication-efficient secure neural network training via function secret sharing. Cryptology
ePrint Archive, Report 2023/073, 2023.

YWL+20. K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang. Ferret: Fast extension for correlated OT
with small communication. In ACM CCS 2020, pages 1607–1626. ACM Press, November 2020.

31

Supplementary Material

7 Homomorphic Secret Sharing

Here, we provide the full definition of Homomorphic Secret Sharing (HSS).

Definition 16 (Secret-Key HSS; Adapted from [BGI16, BKS19, DIJL23]). Let λ be a security pa-
rameter, R be a finite ring, and F be a class of ℓ input functions defined over R. A (secret key) HSS
scheme with message space R consists of six efficient algorithms HSS = (Setup,Share,Eval,Output)
with the following syntax:

– Setup(1λ)→ (sk, (ekA, ekB)). The randomized setup algorithm takes as input the security param-
eter. It outputs a secret key sk and a pair of HSS evaluation keys (ekA, ekB).

– Share(sk, x)→ (JxKA, JxKB). The randomized share algorithm takes as input the secret key sk and
message x ∈ R. It outputs an input share of x.

– Eval(σ, ekσ, f, JxKσ)→ ⟨⟨y⟩⟩σ. The deterministic evaluation algorithm takes as input the party iden-
tifier σ ∈ {A,B}, an evaluation key ekσ, function f ∈ F , and input shares of x := (x1, . . . , xℓ).
It outputs a memory share of y := f(x).

– Output(σ, ⟨⟨y⟩⟩σ) → ⟨y⟩σ. The deterministic output algorithm takes as input the party identifier
σ ∈ {A,B} and a memory share of y. It outputs a share of y.

When Alg ∈ {Share,Output} is given as input vector of input (or memory) shares, it outputs the
vector obtained by evaluating Alg on each coordinate of the input vector independently.

The above algorithms must satisfy correctness and security:

Correctness. We say the HSS scheme is ϵ-correct, for some 0 < ϵ ≤ 1, if for all functions f ∈ F ,
and for all vectors x ∈ Rℓ, it holds that:

Pr

 ⟨z⟩A − ⟨z⟩B = f(x) :

(sk, (ekA, ekB))← Setup(1λ)

(JxKA, JxKB)← Share(sk,x)

⟨⟨y⟩⟩σ := Eval(σ, ekσ, f, JxKσ)
⟨z⟩σ := Output(σ, ⟨⟨y⟩⟩σ)

 ≥ ϵ− negl(λ).

Security. For every σ ∈ {A,B}, and all efficient adversaries A, there exists a negligible function
negl(·), such that for all λ ∈ N we have that:

Pr

 b′ = b :

(sk, (ekA, ekB))← Setup(1λ)

(x0,x1, st)← A(1λ, ekσ)
b←$ {0, 1}

(JxbKA, JxbKB)← Share(sk,xb)

b′ ← A(st, JxbKσ)

 ≤
1

2
+ negl(λ),

where for all b ∈ {0, 1}, xb ∈ Rℓ and k = k(λ) ∈ poly(λ).

	Non-Interactive Distributed Point Functions
	Introduction
	Our results
	Applications

	Technical Overview
	Building block: Non-interactive multiplication
	Overview of the NIDPF construction

	Preliminaries
	Notation
	Additive secret sharing
	Cryptographic assumptions
	The NIDLS framework
	Degree-2 secret-key HSS

	Non-Interactive Multiplication
	NIM with multiplicative output reconstruction
	Succinct NIM for matrix multiplication
	Constructions from group-based assumptions
	Constructions from lattice-based assumptions

	Non-Interactive DPF
	Emulating arithmetic modulo N
	NIDPF framework
	Random-payload instantiation from SXDH

	Generalization to Succinct Multi-Key HSS
	Homomorphic Secret Sharing

