
A Survey on Transciphering and Symmetric Ciphers for

Homomorphic Encryption

Indranil Thakur1, Angshuman Karmakar1, Chaoyun Li2,3, and Bart Preneel3

1Indian Institute of Technology Kanpur, India
{indra, angshuman}@cse.iitk.ac.in

2University of Surrey, England
c.li@surrey.ac.uk

3Katholieke Universiteit Leuven, Belgium
bart.preneel@esat.kuleuven.be

Abstract

Data privacy concerns are sharply rising in the current digital era, hyperdriven by cloud
computing, big data analytics, and the Internet of Things. Homomorphic Encryption (HE)
has emerged as an ideal technique for computing on encrypted data, but current schemes
suffer from slow encryption speed and large ciphertext expansion. Practical implementa-
tion is hindered, especially when the client has limited bandwidth, memory, and computing
power. In 2011, Naehrig et al. proposed transciphering, reducing computational and com-
munication overload on the client side. This involves symmetric ciphers with minimized
multiplicative complexity, referred to as HE-Friendly Ciphers (HEFCs).

In this work, we present a detailed study of transciphering for HE by systematizing
existing knowledge and crystallizing research challenges. Particularly we conduct a com-
prehensive study on state-of-the-art HEFC constructions. Our work highlights gaps, open
problems, and directions for future research.

Keywords— Homomorphic Encryption, Symmetric Cryptography, Data Privacy, Cloud Comput-
ing, Transciphering, Hybrid Homomorphic Encryption, Block Cipher, Stream Cipher

Version History: Date of the current version: December 18, 2024. A preliminary version of the paper
was submitted to PETS 2025(1) on June 1, 2024. After rejection, a slightly revised version was submitted
to a journal on December 18, 2024.

1

Contents

1 Introduction 3
1.1 HE in the real world . 4
1.2 Our Contribution . 5
1.3 Organization of Article . 5

2 An Overview of HE Schemes 5
2.1 Lattice Based Cryptography . 5
2.2 FHE: From Gentry to CKKS . 6
2.3 Performance Bottlenecks . 7
2.4 Applications to Privacy-Preserving Outsourced Computation 8

3 Transciphering 9
3.1 Protocols: Theory and Practice . 9
3.2 HE-Friendly Cipher Design . 11
3.3 Authenticated Transciphering . 11
3.4 Verifiable Transciphering . 12

3.4.1 Verifiable Computation . 12
3.4.2 Implications on Transciphering . 12

4 An Overview of HE-friendly Ciphers 12
4.1 BGV/BFV- Friendly Ciphers . 13

4.1.1 LowMC . 14
4.1.2 Rasta (and variants) . 14
4.1.3 Chaghri . 15

4.2 TFHE- Friendly Ciphers . 15
4.2.1 Trivium and Kreyvium . 15
4.2.2 FLIP, FiLIP and Elisabeth . 15

4.3 CKKS- Friendly Ciphers . 16
4.3.1 Hera . 16
4.3.2 Rubato . 16

5 Benchmarks and Comparisons of HEFCs 17
5.1 BGV/BFV . 17
5.2 TFHE . 18
5.3 CKKS . 18

6 Real-world Employment of HEFCs 18

A A Brief Overview of Symmetric Key Cryptography 29
A.1 Stream Ciphers . 29
A.2 Block Ciphers . 30
A.3 Authenticated Encryption . 30

B Details of Ciphers 30
B.1 Trivium and Kreyvium . 30
B.2 FLIP, FiLIP and Elisabeth . 30
B.3 LowMC . 31
B.4 Rasta . 32
B.5 Chaghri . 32
B.6 Hera . 33
B.7 Rubato . 33

C Attacks on HEFC 34
C.1 Statistical Attacks . 34
C.2 Algebraic and Structural Attacks . 34

1 Introduction

The phrase “Data is the new oil” [1] depicts how important data has become in today’s digital world. Just
like oil, when data is collected, processed, and used safely and efficiently, it can be supremely valuable in
driving innovation, economic growth, and societal evolution. However, also like oil, if data is mishandled,
stored, or processed incorrectly, it can potentially harm the interests of mankind by unauthorized access,
identity theft, and privacy breaches [2, 3, 4, 5, 6, 7].

In the last few decades, the rapid progress and ongoing innovations in web and communication
technologies have led to a manifold increase in data generation [8]. Particularly, machine learning and
artificial intelligence based methods have been used to hyperdrive the innovations in the field of infor-
mation processing [9, 10]. Often these technologies rely on massive computations performed on big data.
However, Internet of Things (IoT) and resource-constrained devices lack sufficient resources for such
tasks. As a result, outsourcing data for computations to the cloud has become a trend across several
organizations, industries, governments, and others [11, 12]. However, cloud clients have to blindly trust
third-party cloud service providers, posing data privacy concerns. To safeguard individuals’ privacy and
regulate ethical handling of data, several countries and regions have enacted data protection laws, such as
the European Union’s General Data Protection Regulation (GDPR) [13], United States’ California Con-
sumer Privacy Act (CCPA) [14], India’s Digital Personal Data Protection (DPDP) [15] etc. However,
these laws are confined by their respective jurisdictions and exert restricted influence beyond specific
geographic areas. Consequently, relying solely on these laws is inadequate.

Cryptology has become the only solution to ensure data privacy with provable security. As of now, it
has played a vital role in safeguarding data both during storage (data-at-rest) and during transmission
(data-in-transit), by using Advanced Encryption Standard (AES) [16] and by using TLS 1.3 [17] respec-
tively. However, as data is frequently processed in untrusted environments in today’s digital world, there
is a growing demand to ensure its protection while it is in process (data-in-use). A simple solution could
be Trusted Execution Environments (TEEs), such as Intel’s Software Guard Extensions [18], Technology
Lifecycle Solutions [19] technology and ARM’s TrustZone technology [20], where users can complete all
sensitive data manipulation in an isolated secure system. Specifically, data is encrypted outside the
microprocessor, decrypted upon entering it for computations, and then re-encrypted as it leaves the
processor for storage. However, modern processors with efficiency-driven features like deep pipelines,
out-of-order execution, speculative execution, etc., inherently create signals that external observers can
exploit to discern internal processor activities. This challenges TEEs as successful attacks on technolo-
gies such as SGX have been demonstrated [21, 22, 23]. This is where, cryptographic techniques such as
Homomorphic Encryption (HE), Functional Encryption, Multi-party Computation, often denoted by the
umbrella term Computing On Encrypted Data (COED), and privacy techniques such as Zero-Knowledge
Proofs have emerged with greater potential. Each of these techniques has distinct properties and can be
employed in different scenarios to facilitate ethical data processing while preserving its privacy. In this
paper, we focus solely on HE and related technologies.

HE [24] is a very powerful notion that enables one to compute on encrypted data without first having
to decrypt it. Specifically, the results of these computations remain encrypted and, when decrypted,
produce the same output as if the operations had been performed on the unencrypted data. HE is
categorized by the type of functions that can be performed on the encrypted data (i.e. type of circuits
that can be evaluated), as follows:
• Fully HE (FHE). These schemes allow the evaluation of arbitrary circuits of unbounded depth and

is often referred to as the “holy grail” in cryptography. The notion of (F)HE was first introduced
by Rivest et al. in 1978 [25], and first constructed by Gentry in 2009 [26, 27]. To this day, the
fundamental concept behind creating an FHE remains unchanged from Gentry’s approach, namely to
construct a simpler HE (capable of evaluating only limited circuits) and then transform it into an
FHE through a costly process named bootstrapping. Examples include Torus-FHE (TFHE) [28] and
Cheon-Kim-Kim-Song (CKKS) [29]. While FHE is the strongest notion of HE, its high computational
cost makes simpler HE schemes more suitable and preferable for certain applications.

• Leveled Fully HE (LHE). These schemes allow the evaluation of arbitrary circuits of bounded
(pre-determined) depth and are very useful in scenarios where a known, limited depth of computation
is sufficient for the task at hand such as in privacy-preserving machine learning. Examples include
Brakerski-Gentry-Vaikuntanathan (BGV) [30] and Brakerski-Fan-Vercauteren (BFV) [31].

• Somewhat HE (SHE). These schemes allow the evaluation of circuits containing unlimited additions
but limited multiplications. They are very useful in scenarios where simple statistical functions, such as
mean and standard deviation, need to be computed, as well as in tasks like logistic regression, which are
commonly used for predicting the likelihood of desirable or undesirable outcomes. Examples include
Boneh-Goh-Nissim (BGN) [32].

• Partially HE (PHE). These schemes allow the evaluation of circuits consisting of only one type of

3

gate, such as exclusively additions or multiplications. They are useful in scenarios such as in secure
voting protocols where the primary operation is to tally votes, which typically involves the addition of
encrypted vote values. Examples include the Paillier [33] (addition) and the RSA [34] (multiplication).

1.1 HE in the real world

There is a growing trend to update all applications that handle personal or private data to secure them
using HE. The real-world applications of HE are galore [35, 29, 36, 37, 38, 39, 40, 41, 42]. It is extremely
beneficial in the context of privacy-preserving applications such as Cloud Computing [43] (see Fig. 1),
Machine Learning [44], Recommender System [45], Biometric authentication [46], Healthcare [47] and
Finance [48].

Figure 1: Privacy-Preserving Cloud Computing; H denotes the HE scheme, m denotes the
client’s data, f denotes the function supposed to compute on m, the red arrow shows what one
needs, and the green arrows show how to do it.

HE [24], particularly FHE [49], is a very active research area. Since Gentry’s proposal of first
solution [26, 27] several FHE schemes have been designed [30, 31, 50, 51, 28, 29] so far. However, all of
them suffer from two major technical problems (compared to traditional cryptography such as Symmetric
Cryptography) as follows:
– Slow encryption speed. FHEs require more processing power, thus making them slower.
– Large ciphertext expansion. FHEs rely on noise to hide secrets, making the ciphertext-to-plaintext

ratio huge.
Consequently, the associated model for privacy-preserving applications (i.e. Fig. 1) faces three major
challenges as follows:
– Computation. The client faces computational overload while calculating the homomorphic encryptions

(i.e. H.Enc(m)), due to the slow encryption speed.
– Communication. The client faces communication overload while transmitting the large homomorphic

ciphertexts (i.e. H.Enc(m)) to the cloud, due to significant ciphertext expansion.
– Verification. Additionally, due to the inherent complexity of FHE operations, the high overhead of

existing verification techniques, and the lack of optimized, lightweight solutions for verifying encrypted
computations without compromising security or performance, the real-world applications are not yet
practical.
So, even though FHE exists theoretically, its widespread public deployment is often debated. As a

result, these limitations are often referred to as an engineering challenge. The primary goal of privacy-
preserving technologies, such as cloud computing, is to relieve clients from the need to manage their
own storage and computational resources. Therefore, addressing the computational and communication
overloads on the client side is the top priority, which is the main focus of this article.

To reduce the computational and communication overload on the client side, Transciphering, also
known as Hybrid Homomorphic Encryption (HHE) has been proposed [37, 52]. It’s a hybrid framework
employing a symmetric cipher along with an FHE, capitalizing symmetric cryptography’s fast encryp-
tion speed and minimal ciphertext expansion. However, unlike the traditional symmetric ciphers such
as AES [16], transciphering requires the symmetric cipher to be friendly towards HE, i.e. efficient under
HE operations. In other words, transciphering necessitates that symmetric ciphers focus on AND-related
metrics, such as multiplicative complexity, multiplicative complexity per encrypted bit, and multiplica-
tive depth, rather than the traditional metrics like encryption/decryption speed, throughput, power
consumption, memory footprint, etc. Since then, designing and analyzing these symmetric ciphers,
called HE-Friendly Ciphers (HEFCs), has emerged as a necessary research area.

4

1.2 Our Contribution

The primary goal of this article is to provide a complete overview of transciphering for HE, with a focus
on symmetric ciphers used in them. Since the central aim of privacy-preserving technologies such as
cloud computing is to eliminate the need for clients to maintain storage and computational resources
themselves, addressing the computational and communication overloads on the client side is more crucial
than anything else. As an emerging research domain, a considerable amount of work still needs to be
done. In recent years, there has been increased research on transciphering and HEFCs, with many new
results coming because of the shortcomings of existing algorithms and new successful attacks on existing
strategies. As a result, lots of information is scattered around in the literature while rapid development is
going on, making it harder to keep track. So, a comprehensive review is necessary to make progress. Our
motivation is to give a uniform view by organizing and collating all this information, thereby fostering
future research and development.

To systematize the knowledge, we review transciphering frameworks with a focus on the existing
HEFCs. The principal contributions of our work are as follows:
– We contextualize the knowledge of HE from Gentry’s breakthrough result to approximate HE such as

CKKS. Given the performance bottlenecks of HE schemes, we introduce the transciphering framework
for HE. In a client-server transciphering model, we identify three marjor gaps: lack of a standardized
HEFC, authentication of client’s input data, and verifiability of output returned by the server.

– We systematically present an overview of the existing HEFCs, briefly describing their design rationale,
security analysis, and presenting benchmark results. Specifically, we categorize the HEFCs based on
their methodologies, providing a solid foundation for an equitable comparison.

– We crystallize research problems to furnish future research directions.
To the best of our knowledge, this SoK explores all the existing transciphering frameworks and

HEFCs. The article intends to support enthusiastic readers in understanding the scope of HEFCs,
learning the impact of possible attacks on the schemes, and indicating possible directions to design more
efficient and secure HEFCs. Hence, our work can promote research on transciphering and the earnest
requirement to instantiate HE practically.

1.3 Organization of Article

We begin with an introduction to HE and its application to cloud computing in Section 2. Then, we
discuss the transciphering framework in Section 3, followed by an overview of HEFCs in Section 4. In
the subsequent Sections 4.2-4.3 and 5, we illustrate the design rationale, security analysis, and efficiency
of the HEFCs. Finally, we conclude in Section 6 with a discussion of real-world employment and open
problems.

2 An Overview of HE Schemes

This section briefly discusses a few relevant topics to help readers understand the rest of the article.

2.1 Lattice Based Cryptography

Using hard lattice problems to construct cryptographic schemes was first demonstrated in the seminal
work of Ajtai [53]. This work uses worst-case instances of Short Integer Solution (SIS) problems to
construct one-way functions. Later, in 2005, Regev [54] introduced the Learning With Errors (LWE)
problem, which is fundamentally solving approximate linear equations and also showed that the hard
lattice problem of finding shortest vectors in a lattice can be reduced to it. Remarkably, Regev showed
that the average-case LWE instances are as hard as the worst-case instances of the lattice, which consti-
tuted the foundation for lattice-based cryptography. Later Lyubashevsky et al. introduced a variation
of this problem known as Ring-Learning With Errors (RLWE) problem, which allows more efficient
cryptographic constructions compared to LWE problem.

RLWE Problem Let Rq = Zq[x]/<Φ(x)>, where q (¿1) is an integer and Φ(x) is a cyclotomic
polynomial. Consider a uniform random polynomial a ∈ Rq and two polynomials s (secret) and e (error)
sampled from a narrow distribution χ on Rq. An RLWE sample is denoted by a tuple (a, b) ∈ R2

q , where
b = a · s+ e. Finally, the RLWE problem has the following two variations:
– Search problem: having access to polynomially many RLWE samples, find s.
– Decision problem: distinguish between RLWE samples and uniformly random samples from R2

q .

5

RLWE Encryption Based on the RLWE decision problem, we have the following encryption scheme
as described in the extended version of [55]. The plaintext space is taken as Rt = Zt[x]/<Φ(x)> (integer
t > 1 being the plaintext modulus) and the ciphertext space as R2

q (integer q > 1 being the ciphertext
modulus). The public key (pk) space is taken as R2

q and the secret key (sk) space as Rq. We denote [a]t
(resp. [a]q) for some a ∈ Rt (resp. a ∈ Rq) as the element in Rt (resp. Rq) obtained by applying mod t
(resp. mod q) to all the coefficients of a. The RLWE-based encryption scheme is then defined as follows:
– Key Generation (sk, pk)

Sample a← Rq and s, e← χ

sk = (s)

pk = (b, a) where b = [−(a · s+ e)]q

– Encryption (RLWE.Enc : R2
q ×Rt → R2

q)
Sample u, e1, e2 ← χ

The encryption of a message m ∈ Rt, RLWE.Enc(pk,m) is

(c0, c1) = ([b · u+ e1 + ⌊q/t⌋ ·m]q, [a · u+ e2]q).

– Decryption (RLWE.Dec : Rq ×R2
q → Rt)

The decryption of a ciphertext (c0, c1) ∈ R2
q , RLWE.Dec(sk, c) is

m =

[⌊
t · [c0 + c1 · s]q

q

⌋]
t

.

2.2 FHE: From Gentry to CKKS

HE schemes have been developed using different approaches. Specifically, FHE schemes are often grouped
into generations corresponding to their development and the underlying approach [56].

Pre-FHE The challenge of designing an FHE scheme was first proposed by Rivest, Adleman, and
Dertouzos in 1978 [25]. For almost 30 years, there was no solution. However, some partial results were
achieved with the invention of public-key cryptosystems, such as RSA [34] allowing only infinite modular
multiplications and the Paillier [33] allowing only infinite modular additions.

First-generation FHE by Gentry In 2009, Gentry gave the first design for an FHE [26, 27]
based on ideal lattices. His groundbreaking work contains two key ingredients: a bootstrappable (i.e.
capable of evaluating its own decryption circuit and then at least one more operation) SHE scheme and
a bootstrapping (see Fig. 2) transformation that converts a bootstrappable SHE scheme into an FHE
scheme, through recursive self-embedding.

Figure 2: A graphical representation of bootstrapping.

Bootstrapping (see Fig. 2) is applying the idea of homomorphically evaluating the decryption op-
eration using encryption of the secret key. One begins with a bootstrappable SHE. Suppose we have a
ciphertext c = Encpk(m), which is the encryption of message m under the public key pk, and Encpk(sk),
encryption of the secret key sk under the same public key. Then c is encrypted under pk to obtain
Encpk(c), and homomorphically evaluates the decryption circuit on the inputs Encpk(c) and Encpk(sk).
Now, since Encpk(c) is a fresh ciphertext, homomorphic operations can be performed on Encpk(c) as
many as the SHE scheme can provide. Now taking f to be the decryption function Decsk and ho-
momorphically evaluating the function f on the ciphertext Encpk(m), we get Encpk(f(m)), which is
Encpk(Decsk(c)) = Encpk(m). But this is precisely what we started with! Thus if the SHE scheme
has enough multiplicative depth to support the decryption function and one additional operation, then

6

one additional homomorphic operation can be performed on this new ciphertext, and can repeat the
procedure ad infinitum. In this way, a bootstrappable SHE can be converted into an FHE.

In [57] Gentry et al. show that the originally proposed scheme [26, 27] takes about 30 minutes for just
a single-bit operation, which makes it impractical for real-world use. Dijk et al. [58] proposed another
FHE scheme in 2010, based on Gentry’s scheme, but instead of ideal lattices over polynomial rings, they
used integers with modular arithmetic.

In brief, this generation marks the milestone of having a theoretically feasibles FHE scheme for
the first time. The core concept involves the transformation of an SHE scheme into an FHE scheme.
However, these schemes are very inefficient and are different from the techniques used today.

Second-generation FHE The homomorphic cryptosystems of this generation are derived from
techniques developed by Brakerski, Gentry, and Vaikuntanathan (BGV), leading to the development of
much more efficient FHEs based on (R)LWE assumptions. In 2011, Brakerski et al. proposed the BGV
scheme [30], building on techniques of Brakerski-Vaikuntanathan [59]. In 2012, Fan et al. proposed the
Brakerski-Fan-Vercauteren (BFV) scheme [31], building on Brakerski’s scale-invariant cryptosystem [60].
All of the above FHE schemes feature a much slower noise growth during the homomorphic computations
than previous schemes. The optimizations in [61, 62, 63], build on the techniques introduced by [64]
that enable packing of many plaintext values in a single ciphertext and operating on all these plaintext
values in a Single Instruction Multiple Data (SIMD) fashion. Many of the advances in this generation
cryptosystems were also ported to the cryptosystem over the integers [65, 66].

This generation sees the development of much more efficient schemes than the first generation, which
are still widely used and implemented. Here the core idea involves the conversion of an LHE scheme into
an FHE scheme.

Third-generation FHE In 2013, Gentry et al. proposed an asymptotically faster scheme named
Gentry-Sahai-Waters (GSW) [50], which uses a different approach than the second-generation schemes.
They proposed a new technique for building FHE schemes that avoids an expensive re-linearization
step in homomorphic multiplication. Brakerski and Vaikuntanathan observed that for certain types of
circuits, the GSW cryptosystem features an even slower rate of noise growth, and hence better efficiency
and more robust security [67]. Sheriff and Peikert then described a very efficient bootstrapping technique
based on this observation [68]. These techniques were further improved to develop efficient ring variants
of the GSW cryptosystem: FHEW [51] in 2014 and Torus-FHE (TFHE) [28] in 2016. The FHEW scheme
was the first to show that by refreshing the ciphertexts after every single operation (gate bootstrapping),
it is possible to reduce the bootstrapping time to a fraction of a second. Specifically, FHEW introduced
a new method to compute boolean gates on encrypted data that significantly simplifies bootstrapping
and implemented a variant of the bootstrapping procedure [68]. The efficiency of FHEW was further
improved by the TFHE scheme, which implements a ring variant of the bootstrapping procedure [69]
using a method similar to the one in FHEW. In a way, TFHE can be seen as porting FHEW, which uses
both normal LWE and ring-GSW, to the Torus.

CKKS In 2016, a novel FHE scheme supporting approximate arithmetic was proposed by Cheon-Kim-
Kim-Song (CKKS) [29]. The CKKS scheme includes an efficient rescaling operation that scales down an
encrypted message after a multiplication. For comparison, such rescaling requires bootstrapping in
the BGV and BFV schemes. The rescaling operation makes CKKS scheme the most efficient method for
evaluating polynomial approximations, and is the preferred approach for implementing privacy-preserving
machine learning applications.

The advent of CKKS marks the milestone of having an approximate FHE scheme for the first time,
which can operate on floating point numbers.

2.3 Performance Bottlenecks

From a design perspective, a substantial amount of work has focused on developing asymptotically more
efficient schemes. Similarly, lots of efficient software libraries and hardware architectures have been pro-
posed to improve the efficiency of HE schemes. On the positive side, the performance of bootstrappable
SHE schemes has increased by several orders of magnitude since the earliest implementations of 2009.
However, even after decades of research, there is still considerable overhead in terms of both computa-
tional performance and parameter sizes in existing FHE designs that severely limit the practicality and
applicability of current implementations. All our current FHE schemes suffer from two main technical
problems: slow encryption speed and large ciphertext expansion.

7

Slow encryption speed The encryption/decryption time and the evaluation time of HE schemes
are relatively slow compared to conventional encryption schemes such as symmetric cryptography. The
most expensive operation in HE is bootstrapping. Although FHE schemes based on GSW, such as
TFHE enjoy very fast bootstrapping, still most of the schemes, including CKKS suffer from a very slow
bootstrapping operation. When the noise in the ciphertext grows too large due to the evaluation of some
function, the bootstrapping operation homomorphically evaluates the decryption function, effectively
refreshing the ciphertext while reducing the noise level, thereby ensuring the security and correctness of
the computation. The decryption of FHE itself is an expensive operation due to the multiplication of
polynomials, so the cost of homomorphically evaluating the decryption function is significantly higher
than the cost of regular decryption. This is because bootstrapping typically involves evaluating a more
complex function homomorphically, which is computationally intensive.

Large ciphertext expansion A major issue in HE is the huge ciphertext expansion (see Fig. 3),
i.e. the ciphertext-plaintext size ratio is huge. For example, in the worst case, an FHE encryption of a
single bit with TFHE [?] achieving 128 bits of security could result in a ciphertext size of 2.5KB. This
is due to the way HE encryption is done, i.e. the RLWE encryption (see Section 2.1). The plaintexts
(resp. ciphertexts) in RLWE encryption are polynomials (resp. polynomial pairs) from the quotient ring
of polynomials Rt = Zt[x]/<Φ(x)> (resp. Rq = Zq[x]/<Φ(x)>), where Φ(x) is a cyclotomic polynomial.
The most popular choice for expository purposes is to take Φ(x) = xn + 1 where n is a power of 2. As a
result, a plaintext (resp. ciphertext) is of size n⌈log2(t)⌉ (resp. 2n⌈log2(q)⌉) bits, which thereby results
in a ciphertext expansion factor of 2⌈log2(q)⌉/⌈log2(t)⌉. For many HE applications, t is in the range of
16 to 60 bits, and the size of q can easily exceed 800 bits, resulting in big expansion factors. Thus, HE
schemes require q >> t and, thereby, a large ciphertext expansion.

Figure 3: Large ciphertext expansion; blue (resp. red) colored boxes denote the coefficients of
the plaintext (resp. ciphertext) polynomial(s).

Importantly, the plaintext is only decoded in the constant term of the ciphertext polynomial. This
is necessary for the proper working of the HE scheme. Therefore, sending t bits of plaintext to the server
requires sending 2nq bits of ciphertext to the server. Since q >> t, this requires a massive amount of
data transfer between the client and the server.

2.4 Applications to Privacy-Preserving Outsourced Computation

Outsourcing data for computations (e.g. cloud computing) to a remote server (e.g. cloud) has become
a trend across several organizations, industries, governments, and others [11, 12]. However, in doing so,
clients often have to blindly trust third parties (e.g. cloud service providers) by sharing their private
data in plaintext. Furthermore, the client has limited visibility and control over how their data is stored,
processed, or protected once it leaves their local environment. This increases the risk of unauthorized
access, data breaches, or misuse, introducing significant data privacy concerns.

HE is the ideal solution for Privacy-Preserving Outsourced Computation (PPOC). In a typical usage
scenario, there is a client with some confidential data {mi}, who wishes to delegate the computation of
a certain function f , i.e. f({mi}), to a remote server. A simple PPOC model (see Fig. 4) employing an
HE scheme H would be as follows:
1. Client generates public/secret key pair (pkH , skH) for H
2. Client encrypts its data under H and sends the ciphertexts (i.e. Z) to the server
3. Server computes the function f on the encrypted data (gets y) and sends the result back to the client
4. Client decrypts y to get the desired result (i.e. f({mi}))

However, deploying PPOC using HE is not as simple as it may look. As discussed earlier in Section
2.3, all the HE schemes we know of have slow encryption speeds and large ciphertext expansion. For
example, in the worst case, an FHE encryption of a single bit with TFHE [?] achieving 128 bits of security

8

Figure 4: Privacy-Preserving Outsourced Computation using an HE scheme H.

could result in a ciphertext size of 2.5KB. As a result, despite the simplicity of the above-mentioned model
(i.e. Fig. 4), the client faces huge overloads in:
– Computation. The client faces computational overload while calculating the homomorphic encryptions

(i.e. Z), due to the slow encryption speed.
– Communication. The client faces communication overload while transmitting the large homomorphic

ciphertexts (i.e. Z) to the server, due to significant ciphertext expansion.
These challenges make the model practically unachievable, especially when the client is an embedded
device with limited bandwidth, memory, and computing power. The most natural approach then, is
to free the client from the burden of complex homomorphic computations. This can be accomplished
through the transciphering [37], which we will explore further in the sequel.

3 Transciphering

Practical implementation of PPOC is hindered especially due to the demerits of HE and the client
being a device with limited bandwidth, memory, and computing power (see Section 2.4). To address
this, transciphering [37], also known as HHE, has been proposed. As the name suggests, it’s a hybrid
model employing a symmetric cipher along with an FHE scheme. It starts with the client encrypting its
data using the symmetric cipher and transmitting those ciphertexts to the server. Upon receiving, the
server converts those symmetric ciphertexts into homomorphic ciphertexts, thus enabling themselves to
perform meaningful computations on encrypted data. Then, the server does the required computations
on the encrypted data and sends the encrypted result back to the client, who can decipher it using the
appropriate key. Importantly, this addresses the challenges faced by the client in Figure 4 (see Section
2.4) as follows:
– Computation. Earlier, the client had to encrypt all its data with an HE scheme, which is costly in

terms of computational resources such as time and memory (due to the slow encryption speed of HE
schemes). However, in transciphering, the client employs a symmetric cipher to encrypt all of its data
(except for the symmetric key). Symmetric cryptography facilitates faster encryption speeds compared
to HE schemes, resulting in a significant reduction in computational resource usage.

– Communication. Also earlier, the client had to send HE ciphertexts to the server, which is costly
in terms of communicational resources such as bandwidth and latency (due to the large ciphertext
expansion of HE schemes). Whereas, in transciphering, symmetric ciphertexts are sent to the server.
Symmetric cryptography facilitates minimal ciphertext expansion compared to HE schemes, resulting
in a significant reduction in communicational resource usage.
However, the problem is not yet solved fully, as the resulting ciphertext that the server computes

is still a large HE ciphertext. The solution to this is the dimension reduction technique introduced by
Brakerski et al. [59]. In particular, the dimension reduction technique converts a ciphertext in Zq[x]/(x

n+
1) (where both n and q are large in order to support expressive homomorphisms) to a ciphertext in
Zp[x]/(x

k + 1), where both k and p are small. The resulting ciphertext encrypts the same message,
although it does not support any further homomorphism. The server then applies this transformation
and sends the resulting short ciphertext to the client.

These benefits come with the downside of a higher computational load on the server side, which is
typically acceptable in practice, as servers usually have significantly more computing power than clients.
With the overheads shifted to the server, the primary goal now is to minimize the server-side overload
to a level that is practical for implementation. Till now, two transciphering frameworks are known: one
for exact computation [37] and one for approximate computation [52].

3.1 Protocols: Theory and Practice

The first scheme (see Fig. 5) is from Naehrig et al. [37], a transciphering framework for exact computation.
It employs a symmetric cipher S along with an HE scheme H. Suppose, there is a client with some

9

confidential data {mi}, who wishes to delegate the computation of a certain function f , i.e. f({mi}), to
a remote server. The framework works as follows:
1. Client generates secret key skS for S and public/secret key pair (pkH , skH) for H
2. Client encrypts skS under H (gets x) and its data under S to get Y .
3. Client sends pkH , x and Y to the server
4. Server encrypts the symmetric ciphertexts (i.e. Y) under H to get X.
5. Server converts the symmetric ciphertexts (i.e. Y) to homomorphic ciphertexts (i.e. Z) by homomor-

phically evaluating decryption circuit of S.
6. Server computes the function f on the resulting ciphertexts and sends back the result (i.e. y),

encrypted under the H to the client

Figure 5: Transciphering framework for exact computation. H and S refer to homomorphic
and symmetric encryption respectively

Although this framework (i.e. Fig. 5) marked a significant step in making PPOC more practical, it
has the drawback of not supporting the CKKS scheme. In other words, it cannot be used to encrypt real
(or complex) numbers, which is highly beneficial for privacy-preserving machine learning applications.
The main reason is that designing an HEFC S operating on real (or complex) numbers is infeasible. If
such an HEFC S over the real field were to exist, it would be represented as a real polynomial map.
Consequently, any ciphertext would be expressed as a polynomial in the corresponding plaintext and
the secret key over R. Then, for given plaintext-ciphertext pairs (mi, ci), an adversary can construct a
system of polynomial equations with the unknown key k. The sum of ||Sk(mi)− ci||22 over the plaintext-
ciphertext pairs forms a real polynomial, where the actual key is the zero of this function. Since this
polynomial is differentiable, its zeros can be efficiently found using iterative methods such as the gradient
descent algorithm. By using multiple plaintext-ciphertext pairs, the probability of identifying a false key
becomes negligible. To overcome this problem, another framework is proposed, which we will discuss
below.

The second scheme (see Fig. 6) is from Cho et al. [52]. It’s a transciphering framework for ap-
proximate computation, dubbed RtF (Real-to-Finite-field) framework. It employs a symmetric cipher
S and two HE schemes: BFV and CKKS. Suppose, there is a client with some confidential data {mi},
who wishes to delegate the computation of a certain function f , i.e. f({mi}), to a remote server. This
framework works as follows:
1. Client generates secret key skS for S and public/secret key pairs: (pkBFV, skBFV) for BFV and

(pkCKKS, skCKKS) for CKKS.
2. Client encrypts the symmetric key skS under BFV to get x.
3. Client encrypts its data under S to get Y .
4. Server runs S homomorphically to produce an BFV-encryption of the key stream, whilst the encryption

of the message is transformed into an BFV ciphertext. The BFV-encryption of the key stream is then
subtracted from the BFV-encryption of the symmetrically encrypted message, producing an BFV-
encryption of just the message to get X.

5. Server performs an operation termed half bootstrapping to transform the BFV ciphertext into a CKKS
ciphertext to get Z.
The main idea behind this framework (i.e. Fig. 6) is to combine the BFV and CKKS HE schemes

and use a stream cipher S exploiting modular arithmetic in between. It inherits a wide range of usability
from the previous transciphering framework (i.e. Fig. 5), such as efficient short message encryption or
flexible repacking of data on the server side. Additionally, real numbers can also be encrypted without
significant ciphertext expansion or computational overload on the client side. Furthermore, it eliminates

10

Figure 6: RtF framework for approximate computation; S refer to symmetric encryption, op-
eration termed “Half bootstrapping” transforms BFV ciphertexts into CKKS ciphertexts.

the need for using the complex domain for message spaces (as required in the CKKS scheme) or for any
expertise in CKKS parameter settings on the client side.

Research Problem 1. Apply the state-of-the-art FHE with transciphering framework to key data ana-
lytical tasks such as aggregate statistics, clustering and classification.

Transciphering is a relatively new field and is currently still under development. To employ transci-
phering HE in practice, we need to address the following problems:
– unsatisfactory performance of existing symmetric ciphers under FHE
– the server cannot verify input data integrity if symmetric encryption is used without authentication
– the client cannot verify function evaluation in the naive protocol
In the remainder of this section, we will summarize the research on the above problems by crystallizing
major research areas and presenting a taxonomy of those areas.

3.2 HE-Friendly Cipher Design

The major overhead of transciphering is that one needs to homomorphically evaluation the symmetric
ciphers, which can be very expensive as symmetric ciphers are computationally complicated functions.
The cost of a homomorphic evaluation of several symmetric primitives has been investigated, including
several optimized implementations of AES [61, 65, 70], and the lightweight block ciphers Simon [71]
and Prince [72]. Since these ciphers have not been designed for the transciphering framework (i.e.
different metrics), the performance of the homomorphic evaluation has been shown to be unsatisfactory.
This situation leads to a natural question: which symmetric ciphers would be most appropriate for
transciphering?

It was observed that this requires the symmetric cipher to be friendly towards the correspond-
ing HE (i.e. efficient under HE operations) while still cryptographically strong enough that the server
can not learn anything from the symmetrically encrypted data. Hence, the term “HE-Friendly Cipher
(HEFC)”. However, unlike traditional symmetric ciphers, the design of these HEFCs is driven by arith-
metic complexity, improving the efficiency of the protocol employing them. A thoroughly treatment of
state-of-the-art HEFCs will be given through Sections 4-6.

3.3 Authenticated Transciphering

While reducing computational and communication overload on the client side, transciphering mainly pro-
tects data confidentiality, through symmetric encryption (for the encryption step and the transmission),
and through homomorphic encryption.

However, it does not ensure data integrity over homomorphically encrypted data during transmission,
although data corruption during transmission can lead to incorrect computation and, thereby incorrect
decryption and results. To address this, Authenticated Encryption (AE) within transciphering referred
to as Authenticated Transciphering (AT) [73] can be used. However, AE schemes normally have more
operations than an encryption scheme since they provide both confidentiality and authentication. Actu-
ally, many AE schemes are built by combining an encryption scheme and an authentication algorithm.
Thus, adding authentication to transciphering means even larger overhead to the HE application.

11

As a result, only three results are known till now, Grain128-AEAD over TFHE [73], a hash-based
MAC (Message Authentication Code) over TFHE [74], and AES-GCM over CKKS [75].

Research Problem 2. Design AEAD for HEFCs. In particular, implementing transciphering using
AE over CKKS is challenging due to its approximated nature.

3.4 Verifiable Transciphering

It is common to assume that the server running FHE applications is honest-but-curious, i.e. the server
is believed to perform the homomorphic computations correctly but not trusted with access to the
confidential plaintext on which the computation is performed. However, this is not always the case in
real-life scenarios, as the server can intentionally or accidentally violate the client’s trust.

Example 1. Suppose an AI-based tool has two paid versions, AI-1 (basic) and AI-2 (advanced and
more expensive), and a user wants to use the advanced version. However, the tool uses AI-1 intention-
ally/accidentally. Without a verification option, the user has no way of confirming the result, forcing
them to blindly trust the tool while paying the higher price.

Data corruption during computation or incorrect computations by the server can lead to erroneous
decryption. Therefore, clients should have the option of verifying the correctness of computation. In
general, verifying the proper working of third-party servers is necessary before deploying transciphering
in PPOC.

3.4.1 Verifiable Computation

The trusted server assumption can be removed by adding verifiablitity to existing FHE schemes and
thereby constructing Verifiable FHE (vFHE) [76].

A common approach for constructing vFHE is to combine an FHE scheme with a Verifiable Compu-
tation (VC) scheme which is used to prove the correctness of the homomorphic computations. However,
combining these two primitives in an efficient way turns out to be a highly non-trivial task. Namely,
VC can usually prove arithmetic circuits whose gates are additions or multiplications over some field Fp,
while the homomorphic computation that the server wants to prove is performed over polynomial rings.

To overcome this, recent works [77, 78] have studied how to modify the VC protocols to work
over rings. While these are more concretely efficient than the constructions mentioned earlier, there
is a significant gap between the assumptions made by existing work and the way state-of-the-art FHE
schemes are used in practice. To address this, a combination of Zero Knowledge Proof (ZKP) and
FHE [79, 80, 76] have been proposed. Although promising, these are still far from being practical. It
is challenging to bring together modern FHE and ZKP systems, including the mismatch between the
large polynomial rings used in most state-of-the-art FHE schemes and the integer fields used in the vast
majority of ZKP systems.

3.4.2 Implications on Transciphering

While it seems straightforward to adapt the general vFHE schemes to the transciphering framework, the
cost quickly becomes prohibitive as the multiplicative depth of the circuit grows. Hence, the following
research question is relevant.

Research Problem 3. Verifiable transciphering is desirable for practical outsource computation. In-
stead of combining transciphering with expensive general verifiable computation schemes, is there a way
to leverage the symmetric encryption to reduce the overhead of verification?

4 An Overview of HE-friendly Ciphers

Traditionally, the primary goal in symmetric cipher design is to reduce the area and latency of hard-
ware/software implementations. However, when a symmetric cipher is combined with an HE scheme in
a transciphering framework, the situation is radically different: linear operations come almost for free
since they only incur local computation (resp. do not increase the noise much), whereas the bottlenecks
are non-linear operations that involve symmetric cryptographic operations and communication between
parties (resp. increases the noise considerably). Here, the main difference is that we have a different
cost function in an optimization problem. This cost metric suggests a new way of designing a symmetric
cipher where the use of non-linear operations is minimized.

All known FHE schemes are noise-based, i.e. all homomorphically encrypted ciphertext contains
some noise, and each operation on the ciphertexts incurs an increase in the noise. Moreover, in most of

12

the schemes, the noise level grows fast with the multiplicative depth of the circuit to be evaluated [81,
66]. Hence, a symmetric cryptosystem aiming for these types of applications minimizes, foremost the
multiplicative depth of the circuit to be evaluated. While the cost of the application-specific homomorphic
operations only depends on the multiplicative depth of the cipher, the cost of evaluating the additional
decryption circuit itself primarily depends on the number of multiplications. Thus, the number of
multiplications in the decryption circuit is also a relevant metric. With this observation, the efficiency
of a HEFC is evaluated by three different metrics:

(i) Multiplicative complexity (#ANDs), which is the total number of multiplications (in our case AND
gates) per decryption circuit (see [82]),

(ii) Multiplicative complexity per encrypted bit (#ANDs/bit), which is the total number of ANDs per
bit of encrypted text [83] and

(iii) Multiplicative depth (ANDdepth), which is the multiplicative depth of the decryption circuit
(see [72]).

Optimizing the above metrics requires new design paradigms for symmetric cryptography. Since then
several HEFCs has been proposed, with Table 1 providing a comprehensive overview of the literature
from multiple perspectives. As we can see from Table 1, stream ciphers (modes) dominate the zoo of
HEFCs. Compared to block ciphers, stream ciphers can exhibit a much lower multiplicative depth by
making a significant part of the computations independent of the key [83]. The dominance of FLIP-like
and Rasta-like ciphers clearly show this trend of design.

The security of a symmetric cipher highly depends on the choice of nonlinear components. It is
worth pointing out some nonlinear functions have been emerging in the design of HEFCs. For ciphers
with S-boxes in their round function, S-box is assumed to have low multiplicative complexity as well
as provide a sufficiently high degree to prevent algebraic attacks. The most popular choices are sparse
quadratic S-boxes, which are well understood in lightweight symmetric cryptography. A notable choice
is the χ-function in Keccak, which is used in Rasta and its variants. When it comes to Zp, the dominant
choice is the cubic function x 7→ x3, which exhibits excellent cryptographic properties and minimal
multiplicative complexity.

Table 1: An overview of HEFCs. SC=Stream Cipher; PBSC = Permutation Based Stream
Cipher, BC = Block Cipher, FP= Filter Permutator, SPN= Substitution-Permutation Network

Ciphers
Implemented
HE Scheme†

Field
Operation

Security
Levels

Construction
Round

Functions
References

Trivium - Z2 80 SC FSR [84]
Kreyvium BGV, BFV Z2 128 SC FSR [85]
FLIP GSW, BGV Z2 128 SC FP [86]
FiLIP TGSW, BGV, TFHE Z2 128 SC FP [87]

Elisabeth TFHE Z2k 128 SC FP [88]
Rasta BGV, BFV, TFHE Z2 80/128/256 [83]
Pasta BGV, BFV,TFHE Zp 128 [89]
Dasta BGV Z2 128 PBSC ASASA [90]
Masta BGV Zp 128 [91]
Fasta BGV Z2 128 [92]
Hera CKKS, BGV Zp,R 128 PBSC SPN [52]

Rubato CKKS Zp,R 128 PBSC SPN+Feistel [93]
LowMC v3 BGV Z2 128 BC Partial SPN [94]
Chaghri BGV F263 128 BC SPN [95]

† The schemes in bold are target HE schemes while the other schemes are used in various benchmarks

The remainder of this section mainly discuss design rationales and security analysis of HEFCs whereas
detailed specifications of all ciphers are presented in Appendix B. A brief introduction to symmetric key
cryptography and cryptanalytic attacks are shown in Appendices A and C respectively for the sake of
completeness.

4.1 BGV/BFV- Friendly Ciphers

This section introduces ciphers tailored to FHE schemes such as BGV and BFV.

13

4.1.1 LowMC

LowMC [94] is a family of block ciphers proposed by Albrecht et al. It aims to achieve low #ANDs and is
the first dedicated HEFC. Additionally, it has been used as the underlying block cipher of PICNIC [96],
one of the third-round digital signature candidates for NIST PQC standardization procedure [97].

Rationale LowMC is a block cipher based on the Substitution-Permutation Network (SPN) structure.
Notably, it adopts the so-called partial SPN construction, i.e., applying S-boxes over only partial state
bits of the cipher. The design goal is to minimize #ANDs. A 3-bit S-box with low multiplicative
complexity has been used. Moreover, the number of S-boxes applied in parallel is minimized to lower
the multiplicative complexity, leaving part of the substitution layer as the identity mapping. To reach
security despite low multiplicative complexity, pseudorandomly generated binary matrices are used in
the linear layer to introduce a very high degree of diffusion. For design details, refer to Appendix B.3
with Fig. 9 in Appendix B.

Security Analysis The security analysis aims to determine the minimal number of rounds required
to grant security for a given fixed set of parameters. Hence, the authors provided experimental and
theoretical cryptanalysis to determine the minimal number of rounds. So far, LowMC is the most studied
HEFC, owing to its innovative design and widespread applicability. It has multiple versions, with changes
limited only to the parameter set, which has been updated to keep the security intact in the face of
continuously improving cryptanalysis.

The first version, LowMCv0, was circulated at the end of 2014. In early 2015, observations by
Khovratovich led to a new version, LowMCv1 [94]. Furthermore, due to the optimized interpolation
attack by Dinur et al. [98], and new higher-order differential cryptanalysis by Dobraunig et al. [99], a
revised edition, LowMCv2 [100] was introduced. Eventually, due to the difference enumeration attack by
Rechberger et al. [101], a subsequent version, LowMCv3 [102] was introduced.

The significance of cryptanalyzing LowMC was elevated by its use in PICNIC [96], which made the
single plaintext/ciphertext pair setting an important attack scenario. This is because a successful key
recovery attack on LowMC using only a single plaintext and ciphertext is equivalent to retrieving the
signing key of PICNIC. As a result, several attacks have been presented till now [103, 104, 105, 106, 107,
108, 109, 110], making some parameters in LowMCv3 still insecure.

4.1.2 Rasta (and variants)

Rasta [83] is a family of stream ciphers proposed by Dobraunig et al. It was the first attempt to minimize
both the metrics #ANDs/bit and ANDdepth simultaneously. At the same time, the authors also proposed
Agrasta, an aggressive version of Rasta with the block size only slightly larger than the security level in
bits. Furthermore, several other variants have been proposed over time: Dasta [90] by Hebborn and
Leander, Masta [91] by Ha et al., Pasta [89] by Dobraunig et al., and Fasta [92] by Cid et al.

Rationale Rasta produces keystreams by applying the key to a cryptographic permutation which
exhibits an ASASA (affine-substitution-affine-substitution-affine) structure [111]. The core idea of Rasta
is to make large parts of the operations, i.e. the permutation nonce-dependent but key-independent.
The advantage of key-independent variations is that, on the one hand, the (key-dependent) ANDdepth
can be kept very low while at the same time many standard attacks are not applicable to Rasta due to
the nonce-dependent variations. Rasta minimizes both ANDdepth and #ANDs/bit by randomly updating
the affine layers per round. As a result, the security arguments rely on the provided randomness and the
encryption/decryption are potentially slowed down by this randomness generation.

The first variant, Agrasta was proposed to explore the limits of the design space by choosing ag-
gressive parameters and to encourage more cryptanalysis. Since generating the affine layers in each
encryption is quite time-consuming in Rasta, Dasta was proposed where the linear layer is replaced with
an ever-changing bit permutation and a deterministic linear mapping. Such a construction made Dasta
hundreds of times faster than Rasta in the offline settings. The next, Masta was proposed with two
main differences from Rasta: using modular arithmetic to support HE schemes over a non-binary plain-
text space, and a smaller number of random bits in the affine layers by defining them with finite field
multiplication. Whereas, Pasta leverages the structure of BGV and BFV to minimize the homomorphic
evaluation latency. Finally, Fasta was proposed with parameters and linear layer especially chosen to
allow efficient implementation over the BGV scheme, particularly as implemented in the HElib library.
For design details, refer to Appendix B.4 with Fig. 10 in Appendix B.

14

Security Analysis The designers have explored various attack vectors before choosing parameters
for the instantiations to rule them out conservatively. However, an algebraic attack using low-degree
equations by Liu et al. in 2021 [112] broke a few instances of Agrasta. In the case of Dasta, the only
attack is by Liu et al. [112], which applied to Rasta as well. However, the other variants have not been
studied that much, and as a result no significant cryptanalysis result exists so far.

4.1.3 Chaghri

Chaghri [95] is a block cipher based on SPN structure that has a vector state S consisting of three
elements from F263 .

Rationale Chaghri is designed following the Marvellous design strategy [113] with a specific focus on
BGV efficiency metrics. Power mappings over F263 are used as the S-boxes while 3× 3 MDS matrix are
exploited as the linear layer. For design details, refer to Appendix B.5 with Fig. 11 in Appendix B.

Security Analysis Liu et al. showed that a higher-order differential attack on eight rounds could be
achieved with time and data complexity of 238, using a new technique called coefficient grouping [114].
Hence, it indicates that the full eight rounds are far from being secure. Moreover, they have also proposed
a modification in the design to avert the attack. In [95], the authors have implemented the modified
Chaghri using HElib, achieving a throughput of 0.28 seconds-per-bit, which is 63% faster than AES in
the same setting.

4.2 TFHE- Friendly Ciphers

This section presents ciphers dedicated to third-generation FHE schemes such as GSW, FHEW and TFHE.

4.2.1 Trivium and Kreyvium

Trivium [84] proposed by De Cannière and Preneel, is a stream cipher that was one of the eSTREAM
project finalists [115] and is part of the ISO/IEC 29192-3 standard for lightweight stream ciphers.
Whereas, Kreyvium [85] is a variant of Trivium, specially designed HEFC by Canteaut et al.

Rationale Trivium, based on Feedback Shift Registers (FSRs), is designed to minimize #ANDs aiming
for resource-constraint environments such as IoT. It also provides a flexible trade-off between speed and
gate count in hardware and reasonably efficient software implementation. Whereas, Kreyvium shares the
same internal structure as Trivium but allows for bigger keys of 128 bits, thus providing 128-bit security
(instead of 80-bit) with the same ANDdepth, inheriting the same security arguments. For design details,
refer to Appendix B.1 with Fig. 7 in Appendix B.

Security Analysis Trivium being an eSTREAM finalist, has been studied deeply [116, 117, 118, 119].
Also, there are multiple articles [120, 121, 122, 123, 124, 125] which have shown weakness in reduced
rounds of Kreyvium. The best attack till now is by He et al. [126] which presents cube attacks on 851
rounds of Trivium and 899 rounds of Kreyvium.

4.2.2 FLIP, FiLIP and Elisabeth

FLIP (family of filter permutators) [86] and its variants[87, 88] are a family of stream ciphers that are
based on a variant of the filter generator construction, but drops the state update function to avoid the
algebraic degree increase.

Rationale The security of FLIP predominantly derives from the cryptographic properties of the filter
function. FLIP employs Direct Sums of Monomials (DSM) as its filter, which takes into account the most
common attacks on filter generators.

FiLIP (family of improved filter permutators) [87] is a variant of FLIP based on similar design strategy.
Compared to FLIP, FiLIP instantiates two function families: DSM and XOR-Thresholds in its filter
function.

Elisabeth [88] further extends the designs of FLIP and FiLIP by operating in an additive group such
as (Z2k ,+) rather than extensions of F2 in most traditional symmetric ciphers. Thus, Elisabeth enables
homomorphic computations in Z2k without expensive conversions. As a result, Elisabeth is well-suited
for transciphering with TFHE. For design details, refer to Appendix B.2 with Fig. 8 in Appendix B.

15

Security Analysis The initial design of the cipher was proposed by Méaux in [127]. Immediately
after that, Duval et al. [128] proposed cryptanalysis, revealing weaknesses in its filter function that can
be exploited to devise an efficient full key recovery attack based on guess-and-determine techniques.
Later, the design was tweaked to prevent the attack, and an updated design [86] was proposed. In [129],
Gilbert et al. presented several variants of a key-recovery attack on the full Elisabeth-4 that break the
128-bit security claim of that instance of Elisabeth. The most optimized attack out of all those is a
chosen-IV attack with a time complexity of 288 elementary operations, a memory complexity of 254 bits
and a data complexity of 241 bits. To mitigate the attacks, a few new instances and variants of Elisabeth
were proposed in [130].

4.3 CKKS- Friendly Ciphers

CKKS [29] is specifically designed to support computation on encrypted real numbers, making it well-
suited for real-world applications involving real-valued data such as privacy-preserving machine learn-
ing [131]. We now discuss the symmetric ciphers Hera and Rubato, both of which are specifically designed
to be CKKS-friendly.

4.3.1 Hera

Hera [52] proposed by Cho et al. is a stream cipher specially designed to be CKKS-friendly in the RtF
transciphering framework [52].

Rationale In the RtF transciphering framework, a stream cipher using modular arithmetic is required
as a building block. However, there were only a few ciphers using modular arithmetic [132, 113, 133,
134], and even such algorithms are not suitable for the transciphering framework due to their high
multiplicative depths. Recent constructions for HEFCs such as FLIP and Rasta use randomized linear
layers in order to reduce the ANDdepth without security degradation. However, this type of ciphers
spends too many random bits to generate random matrices, slowing down the overall speed on both
the client and the server sides. Instead of generating random matrices, Hera aims to randomize the key
schedule algorithm by combining the secret key with a (public) random value for every round. Using a
simple randomized key schedule is the main feature of Hera. As a result, Hera requires a smaller number
of random bits compared to FLIP and Rasta. For design details, refer to Appendix B.6 with Fig. 12 in
Appendix B.

Security Analysis In [135], Liu et al. presented new algebraic attacks with multiple collisions in the
round keys. Specifically, according to the special way to randomize the round keys in Hera, the authors
find it possible to peel off the last nonlinear layer by using collisions in the last-round key and a simple
property of the power map. In this way, they constructed an overdefined system of equations of a much
lower degree in the key, and efficiently solved the system via the linearization technique. However, the
primary instantiation of Hera, i.e. the 128-bit security version is not affected by this attack due to the
high cost of finding multiple collisions.

4.3.2 Rubato

Rubato [93] proposed by Ha et al. is a stream cipher specially designed to be CKKS-friendly in the RtF
transciphering framework [52].

Rationale Rubato follows a novel design strategy of adding noise to increase the algebraic degree of a
cipher. With this strategy, the multiplicative complexity of the cipher is significantly reduced, compared
to existing HEFCs. Rubato employs building blocks from Hera and Pasta. For linear layers and the key
schedule, the style of Hera has been followed. A nonlinear layer whose inverse is of a high degree mitigates
algebraic Meet-in-the-Middle attacks. However, due to the unavailability of a quadratic function with
the inverse of a high degree over Zq, a cubic S-box has been used in HERA, which leads to a large
multiplicative depth. For design details, refer to Appendix B.7 with Fig. 13 in Appendix B.

Security Analysis In [136] Grassi et al. showed that at least 25% of the possible choices for q satisfy
certain conditions that lead to a successful key recovery attack with complexity significantly lower than
the claimed security level for five of the six ciphers in the Rubato family.

16

5 Benchmarks and Comparisons of HEFCs

This section conducts a comparative study of HEFCs by presenting benchmarks with certain HE schemes
and libraries. It is worth noting that the benchmarks are based on many factors, ranging from the specific
HE scheme, to HE library, and to the used data type. Before presenting the performance data, we briefly
summarize some widely used HE libraries for benchmarks of HEFCs.

HE libraries The last decade has seen the development of a variety of open-source software libraries
implementing HE schemes, which have been extensively used by researchers and developers working on
HE. The libraries and schemes mentioned in this paper include: HElib [137, 138] with its implementations
of BGV and CKKS; Microsoft’s SEAL [139] supporting BFV, BGV and CKKS, TFHE [28] implementing
TFHE and its two variants Concrete [140] and TFHE-rs [141]. For a more thorough overview of HE
libraries, please refer to [142].

We incorporate the performance and efficiency data from a variety of papers based on the following
criteria:

– More recent benchmarks are preferable as they represent the state of the art. Usually, the most
recent variant of a design has the best performance compared to its predecessors due to continuous
improvements. So, we focus on the most efficient variants.

– Comparisons are justified if the benchmarks are based on the same library. So, we compared them
in the same library.

– We divide the benchmarks into three categories based on the HE schemes involved since most
HEFCs only optimize with respect to one type of HE schemes.

Table 2: Comparison of ciphers for BGV/BFV, using SEAL; security level = 128 bit [89, Tables
3 and 9]

Field Cipher
1 Block

Enc. symm. key
(s)

Decompress
(s)

LowMC 1.75 613.9
Z2 Rasta-6 1.42 88.5

Kreyvium 1.84 412.8
FiLIP-1280 16.7 1251.6

Pasta-3 0.017 9.28
Zp Masta-4 0.058 54.2

Hera 0.051 16.6

5.1 BGV/BFV

As discussed in Section 4.1, a lot of HEFCs have been proposed for BGV/BFV. LowMC was implemented
for BGV and BFV with HElib in [102]. The benchmark shows an improvement by a factor of 5 compared to
AES-128 in computation and communication complexity. In [85], the authors compared the latency and
throughput of Trivium and Kreyvium with that of LowMC for BGV and BFV in HElib. The results show
that Trivium and Kreyvium have a smaller latency than LowMC, but have a slightly smaller throughput.

BGV and BFV allow for integer plaintexts in Zq with q ≥ 2. Many HEFCs support inputs in Zp to
improve the efficiency of transciphering. A more complete and recent benchmark of ciphers for BGV/BFV
is included in Table 2 which compares ciphers operating on both Z2 and Zp. It turns out that ciphers
for Zp outperforms ciphers for Z2.

However, there is a lack of benchmark comparisons of different HEFCs across various HE libraries
when applied to different use cases. Consequently, the implications of applying them to any specific use
case are not yet fully understood. Specifically, their inefficiency for q > 2 (which is necessary for many use
cases, e.g., [36, 143, 144]) has not been realized. Once q is chosen, it cannot be changed without the secret
decryption key or bootstrapping (which many major HE libraries still do not support). Therefore, to use
one of the HEFCs over Z2, BGV/BFV must be instantiated with q = 2 to evaluate the boolean decryption
circuit of these ciphers. This results in evaluating the use case in Z2, which requires constructing
binary circuits with significantly greater multiplicative depth to achieve integer arithmetic. Consequently,
implementing transciphering in such use cases over integers leads to a substantial performance loss
compared to implementing the use case with only HE, without transciphering. [89]

17

Table 3: Runtime of Trivium and Kreyvium for TFHE, using TFHE-rs library [145, Table 2]

Cipher
Warm-Up

(ms)
Latency
(ms)

Throughput
(bit/s)

Transciphering
(ms)

Trivium 2259 121 529 259
Kreyvium 2883 150 427 291

Table 4: Performance comparison of the RtF transciphering framework with 128-bit Rubato
to Hera, LWEs- to-RLWE conversion (denoted by LWE) and the CKKS-only environment;
parameter N in parentheses implies the dimension of LWE [93]

Cipher N l
Ciphertext Client Server

Bits of precision
Size
(KB)

Expansion
Ratio

Latency
(µs)

Throughput
(MB/s)

Latency
(s)

Throughput
(KB/s)

RtF-Rubato 216 216 0.183 1.26 4.585 31.04 106.4 6.712 18.9
RtF-HERA 216 216 0.055 1.24 1.520 25.26 141.58 5.077 19.1

LWE 216(210) 210 0.007 4.84 21.91 0.051 65.88 0.010 9.3
CKKS 214 214 468 23.25 9656 2.035 none 19.1

5.2 TFHE

The ciphers in Section 4.2 has been mostly implemented with TFHE due to their bootstrapping-friendly
design.

While the FLIP and its subsequent variants has been steadily improved in terms of performance.
Note that Elisabeth-4 was completely compromised, FiLIP is the most efficient and secure variant of FLIP.
In [88], an instance of FiLIP is reported to reach a runtime of 134 ms per bit in Concrete library.

As an ISO standard, Trivium and its variant Kreyvium have been implemented for various HE schemes.
Implementing with TFHE in TFHE-rs library [145], Trivium and Kreyvium achieve a transciphering speed
of under 300 ms per 64-bit plaintext block, as shown in Table 3. Based on the benchmarks, the authors
of [145] suggested that the standardized cipher Trivium and its variant Kreyvium are good enough for
transciphering TFHE.

5.3 CKKS

A preliminary benchmark of Hera was conducted in the design paper [52], where the authors compared
the implementation of Hera with CKKS to those of LWEs-to-RLWE conversions [146] and CKKS itself. It
turns out that Hera with CKKS achieves a 23 times smaller ciphertext expansion ratio, 9085 times lower
latency and 17.8 times higher throughput on the client side than the CKKS-only environment.

While Rubato was proposed to improve the efficiency of Hera, Rubato enjoys a low multiplicative
depth (2 to 5) and a small number of multiplications per encrypted word (2.1 to 6.25) at the cost of
slightly larger ciphertext expansion (1.26 to 1.31). In [93], the authors compared benchmarks of Rubato,
Hera, implementation of LWEs-to-RLWE conversions [146] and CKKS itself, summarized in Table ??.
Compared to Hera within the RtF framework, client-side and server-side throughput is improved by
22.9% and 32.2%, respectively, at the cost of only 1.6% larger ciphertext.

6 Real-world Employment of HEFCs

This section identifies the challenges for real-world employment of HEFCs and discusses probable future
work directions on transciphering.

Security analysis A major concern of using a non-standard symmetric cipher is its security strength.
As designing HEFCs is relatively new and not well-understood, the designs tend to be prone to new
attacks on their new design elements. We have seen full-round attacks on some versions of LowMC,
FLIP, Agrasta, Elisabeth and Chaghri. This reminds us that cryptanalysis is still the main approach for
evaluating the security levels of symmetric ciphers.

Research Problem 4. More cryptanalysis of the proposed ciphers is required. Due to the deployment
of low-degree components, algebraic attacks have many successes in breaking HEFCs. It is still an open
problem to propose novel algebraic attacks by leveraging the structural properties of HEFCs. Moreover,
it is desirable to see new algebraic techniques combined with statistical cryptanalytic methods, such as
linear and differential attacks.

18

Benchmarks and new cipher designs Transciphering homomorphic schemes seems to be a
good promise for the future of digital privacy. In the near future, we expect that the area will constantly
develop. However, we notice some gaps between theory and practice:

– The lack of diversity and benchmarks of ciphers for approximate HE such as CKKS hinders the
application of transciphering with approximate HE.

– Most HEFCs have been created to optimize the efficiency on software platforms. However, for sym-
metric primitives hardware platforms have a very significant impact on the performance. This is
evident from the standard algorithms like AES. But there is no benchmarks on hardware platforms
for HEFCs. One reason for this is that researchers are still continuously improving the efficiency
of HE on software platforms. Nevertheless, several hardware accelerators have been developed for
HE such as BASALISC for BGV [147]. But this has not been reflected in the design of HEFCs. It
is an open problem to leverage the hardware architecture in the design of HEFCs.

– While Section 5 focuses on benchmarks of ciphers, it is more relevant in practice to perform
benchmark of use cases such as privacy-preserving machine learning. Some preliminary works can
be found in [89, 88].

Given the above situations, the following research direction could be exploited in the future.

Research Problem 5. With a better understanding of the bottlenecks we need to look for new designs,
aiming for significant progresses from the state-of-the-art designs. It is desirable to have application-
specific and platform-aware designs for the better efficiency.

Standardization Standardization of ciphers is the long term goal in the development of symmetric
cryptography, which is the foundation for the widespread employment of a symmetric cipher. However,
the situation of HEFCs is tricky in many aspects. There are mainly two obstacles for the standardizing
HEFCs:

– Since HEFCs are intentionally tailored to HE schemes, a standardization of HE schemes is a
prerequisite for that of HEFCs. There has been significant academic and commercial effort to-
wards developing standards for HE. In 2017, an initiative called HomomorphicEncryption.org was
launched. As of 2024, there is an ongoing effort to formally standardize FHE schemes by ISO/IEC.
The schemes expected to be standardized include BGV, BFV, TFHE and CKKS with their vari-
ants [142].

– For NIST standards Ascon and AES, it takes many years of intensive cryptanalysis to gain confi-
dence in their security. But this is not the case for most HEFCs, which again calls for more efforts
in cryptanalysis of HEFCs.

References

[1] The Guardian. Tech giants may be huge, but nothing matches big data, 2013.

[2] Softonic. Microsoft Azure suffers the biggest security breach in its history, 2024.

[3] Economic Times. Bank of America names Infosys US unit for over 57,000 users data leak, 2024.

[4] WION. India: Complaints of identity theft and fake profiles up by 53.8% in delhi, 2023.

[5] Economic Times. Stolen data of 600,000 Indians sold on bot markets so far: Study, 2022.

[6] Global News. Hackers steal children’s school photos following a privacy breach, 2024.

[7] Wikipedia. List of data breaches, 2023.

[8] Statista. Global Data Creation is About to Explode, 2019.

[9] OpenAI. ChatGPT, 2022.

[10] GitHub. Copilot, 2021.

[11] AAG. The Latest Cloud Computing Statistics, 2024.

[12] Statista. Global hosting and cloud computing market 2010-2020, 2022.

[13] European Union. General Data Protection Regulation (GDPR). Online; accessed on 24th May
2025, 2018.

[14] State of California. California Consumer Privacy Act (CCPA), 2020.

19

[15] India. Digital Personal Data Protection (DPDP), 2023.

[16] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC, 2007.

[17] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, 2018.

[18] Intel® Software Guard Extensions, May 2024. [Online; accessed 1. Jun. 2024].

[19] IT Deployment, Field Services, Maintenance, and Hardware Solutions, April 2024. [Online; ac-
cessed 1. Jun. 2024].

[20] Arm Ltd. TrustZone for Cortex-A – Arm®, June 2024. [Online; accessed 1. Jun. 2024].

[21] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader AlBassam, Christina Garman,
Daniel Genkin, Andrew Miller, Eyal Ronen, and Yuval Yarom. SoK: SGX.Fail: How stuff get
eXposed, 2022.

[22] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. Sgx-bomb: Locking down the processor
via rowhammer attack. In Workshop on System Software for Trusted Execution, pages 1–6. ACM,
2017.

[23] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho Choi, Taesoo Kim,
Marcus Peinado, and Brent ByungHoon Kang. Hacking in darkness: Return-oriented programming
against secure enclaves. In USENIX Security Symposium, pages 523–539. USENIX Association,
2017.

[24] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A Survey on Homomorphic
Encryption Schemes: Theory and Implementation. ACM Computing Surveys (Csur), 51(4):1–35,
2018.

[25] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy homomor-
phisms. In Foundations of Secure Computation, pages 169–180. Citeseer, 1978.

[26] Craig Gentry. A fully homomorphic encryption scheme. Ph.D. thesis, Stanford university, 2009.

[27] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Symposium on Theory of
Computing, pages 169–178. ACM, 2009.

[28] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully homomor-
phic encryption: Bootstrapping in less than 0.1 seconds. In Advances in Cryptology – ASIACRYPT
2016, volume 10031 of LNCS, pages 3–33, Berlin, Heidelberg, 2016. Springer.

[29] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In Advances in Cryptology – ASIACRYPT 2017, volume
10624 of LNCS, pages 409–437, Cham, 2017. Springer.

[30] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully Homomorphic Encryption with-
out Bootstrapping. Cryptology ePrint Archive, Paper 2011/277, 2011.

[31] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic Encryption. Cryp-
tology ePrint Archive, Paper 2012/144, 2012.

[32] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In Theory
of Cryptography, volume 3378 of LNCS, pages 325–341, Berlin, Heidelberg, 2005. Springer.

[33] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Ad-
vances in Cryptology — EUROCRYPT ’99, volume 1592 of LNCS, pages 223–238, Berlin, Heidel-
berg, 1999. Springer.

[34] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures
and public-key cryptosystems. In Communications of the ACM, volume 21, pages 120–126, New
York, USA, 1978. ACM.

[35] Jung Hee Cheon, Miran Kim, and Kristin Lauter. Homomorphic computation of edit distance. In
Financial Cryptography and Data Security, volume 8946 of LNCS, pages 194–212, Berlin, Heidel-
berg, 2015. Springer.

[36] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A Low Latency
Framework for Secure Neural Network Inference. In USENIX Security Symposium, pages 1651–
1669, USA, 2018. USENIX Association.

20

[37] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption be
practical? In Cloud Computing Security Workshop, pages 113–124, New York, USA, 2011. ACM.

[38] Josh Benaloh, Melissa Chase, Eric Horvitz, and Kristin Lauter. Patient controlled encryption:
ensuring privacy of electronic medical records. In Proceedings of the 2009 ACM workshop on
Cloud computing security, pages 103–114, Chicago, Illinois, USA, 2009. ACM.

[39] Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Private computation on encrypted ge-
nomic data. In Progress in Cryptology - LATINCRYPT 2014, volume 8895 of LNCS, pages 3–27,
Cham, 2015. Springer.

[40] Shuang Wang, Yuchen Zhang, Wenrui Dai, Kristin Lauter, Miran Kim, Yuzhe Tang, Hongkai
Xiong, and Xiaoqian Jiang. Healer: homomorphic computation of exact logistic regression for
secure rare disease variants analysis in gwas. In Bioinformatics, volume 32, pages 211–218. Oxford
University Press, 2016.

[41] Miran Kim, Yongsoo Song, and Jung Hee Cheon. Secure searching of biomarkers through hybrid
homomorphic encryption scheme. In iDASH Privacy and Security Workshop 2016, volume 10,
pages 69–76. BMC Medical Genomics, 2017.

[42] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang, et al. Secure logistic re-
gression based on homomorphic encryption: Design and evaluation. In JMIR Medical Informatics,
volume 6, page e19, Toronto, Canada, 2018. JMIR Publications.

[43] Daniele Micciancio. A first glimpse of cryptography’s Holy Grail. In Communications of the ACM,
volume 53, pages 96–96, New York, USA, 2010. ACM.

[44] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim Deryabin,
Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al. Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network. In IEEE Access, volume 10,
pages 30039–30054, USA, 2022. IEEE.

[45] Shahriar Badsha, Xun Yi, and Ibrahim Khalil. A practical privacy-preserving recommender system.
Data Science and Engineering, 1:161–177, 2016.

[46] Cagatay Karabat, Mehmet Sabir Kiraz, Hakan Erdogan, and Erkay Savas. Thrive: threshold homo-
morphic encryption based secure and privacy preserving biometric verification system. EURASIP
Journal on Advances in Signal Processing, 2015:1–18, 2015.

[47] Xiaoqiang Sun, Peng Zhang, Mehdi Sookhak, Jianping Yu, and Weixin Xie. Utilizing fully ho-
momorphic encryption to implement secure medical computation in smart cities. Personal and
Ubiquitous Computing, 21:831–839, 2017.

[48] Hsin-Tsung Peng, William WY Hsu, Jan-Ming Ho, and Min-Ruey Yu. Homomorphic encryp-
tion application on financialcloud framework. In 2016 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–5. IEEE, 2016.

[49] Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli, Frank HP Fitzek, and Najwa
Aaraj. Survey on Fully Homomorphic Encryption, Theory, and Applications. Proceedings of the
IEEE, 110(10):1572–1609, 2022.

[50] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology –
CRYPTO 2013, volume 8042 of LNCS, pages 75–92, Berlin, Heidelberg, 2013. Springer.

[51] Léo Ducas and Daniele Micciancio. Fhew: bootstrapping homomorphic encryption in less than a
second. In Advances in Cryptology – EUROCRYPT 2015, volume 9056 of LNCS, pages 617–640,
Berlin, Heidelberg, 2015. Springer.

[52] Jihoon Cho, Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Joohee Lee, Jooyoung Lee, Dukjae
Moon, and Hyojin Yoon. Transciphering framework for approximate homomorphic encryption. In
Advances in Cryptology – ASIACRYPT 2021, volume 13092 of LNCS, pages 640–669, Cham, 2021.
Springer.

[53] Miklós Ajtai. Generating hard instances of lattice problems. In ACM Symposium on Theory of
Computing (STOC) ’96, pages 99–108, New York, USA, 1996. ACM.

[54] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Journal
of the ACM (JACM), volume 56, pages 1–40, New York, USA, 2009. ACM.

21

[55] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. In Advances in Cryptology–EUROCRYPT 2010: 29th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30–June 3,
2010. Proceedings 29, volume 6110 of LNCS, pages 1–23, Berlin, Heidelberg, 2010. Springer.

[56] Vinod Vaikuntanathan. Homomorphic Encryption References. Online. Accessed: 9th Feb 2024,
2020.

[57] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
Advances in Cryptology – EUROCRYPT 2011, volume 6632 of LNCS, pages 129–148, Berlin,
Heidelberg, 2011. Springer.

[58] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in Cryptology – EUROCRYPT 2010, volume 6110 of
LNCS, pages 24–43, Berlin, Heidelberg, 2010. Springer.

[59] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) lwe. Cryptology ePrint Archive, Paper 2011/344, 2011.

[60] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP. In Advances in Cryptology – CRYPTO 2012, volume 7417 of LNCS, pages 868–886,
Berlin, Heidelberg, 2012. Springer.

[61] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of the aes circuit. In
Advances in Cryptology – CRYPTO 2012, volume 7417 of LNCS, pages 850–867, Berlin, Heidelberg,
2012. Springer.

[62] Craig Gentry, Shai Halevi, and Nigel P Smart. Better bootstrapping in fully homomorphic en-
cryption. In Public Key Cryptography – PKC 2012, volume 7293 of LNCS, pages 1–16, Berlin,
Heidelberg, 2012. Springer.

[63] Craig Gentry, Shai Halevi, and Nigel Smart. Fully homomorphic encryption with polylog overhead.
In Advances in Cryptology – EUROCRYPT 2012, volume 7237 of LNCS, pages 465–482, Berlin,
Heidelberg, 2012. Springer.

[64] Nigel P Smart and Frederik Vercauteren. Fully homomorphic simd operations. In Designs, Codes
and Cryptography, volume 71, pages 57–81. Springer, 2014.

[65] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrede Lepoint, Mehdi
Tibouchi, and Aaram Yun. Batch fully homomorphic encryption over the integers. In Advances in
Cryptology – EUROCRYPT 2013, volume 7881 of LNCS, pages 315–335, Berlin, Heidelberg, 2013.
Springer.

[66] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully homomorphic
encryption over the integers. In Public-Key Cryptography – PKC 2014, volume 8383 of LNCS,
pages 311–328, Berlin, Heidelberg, 2014. Springer.

[67] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-Based FHE as Secure as PKE. In ACM
Innovations in Theoretical Computer Science (ITCS) 2014, pages 1–12, New York, USA, 2014.
ACM.

[68] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In Advances
in Cryptology – CRYPTO 2014, volume 8616 of LNCS, pages 297–314, Berlin, Heidelberg, 2014.
Springer.

[69] Nicolas Gama, Malika Izabachene, Phong Q Nguyen, and Xiang Xie. Structural lattice reduction:
Generalized worst-case to average-case reductions and homomorphic cryptosystems. In Advances
in Cryptology – EUROCRYPT 2016, volume 9666 of LNCS, pages 528–558, Berlin, Heidelberg,
2016. Springer.

[70] Yarkin Doroz, Yin Hu, and Berk Sunar. Homomorphic AES Evaluation using NTRU. Cryptology
ePrint Archive, Paper 2014/039, 2014.

[71] Tancrede Lepoint and Michael Naehrig. A Comparison of the Homomorphic Encryption Schemes
FV and YASHE. In Progress in Cryptology – AFRICACRYPT 2014, volume 8469 of LNCS, pages
318–335, Cham, 2014. Springer.

[72] Yarkın Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. Toward practical homomor-
phic evaluation of block ciphers using prince. In Financial Cryptography and Data Security, volume
8438 of LNCS, pages 208–220, Berlin, Heidelberg, 2014. Springer.

22

[73] Adda-Akram Bendoukha, Aymen Boudguiga, and Renaud Sirdey. Revisiting Stream-Cipher-Based
Homomorphic Transciphering in the TFHE Era. In International Symposium on Foundations and
Practice of Security, pages 19–33. Springer, 2021.

[74] Adda Akram Bendoukha, Oana Stan, Renaud Sirdey, Nicolas Quero, and Luciano Freitas. Practical
Homomorphic Evaluation of Block-Cipher-Based Hash Functions with Applications. In Founda-
tions and Practice of Security, volume 13877 of LNCS, pages 88–103, Cham, 2022. Springer.

[75] Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri Soceanu. E2E near-
standard and practical authenticated transciphering. Cryptology ePrint Archive, Paper 2023/1040,
2023.

[76] Alexander Viand, Christian Knabenhans, and Anwar Hithnawi. Verifiable fully homomorphic
encryption. arXiv preprint arXiv:2301.07041, 2023.

[77] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinocchio: Snarks for ring arithmetic.
Journal of Cryptology, 36(4):41, 2023.

[78] Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. Flexible and efficient verifiable
computation on encrypted data. In IACR International Conference on Public-Key Cryptography,
volume 12711 of LNCS, pages 528–558, Cham, 2021. Springer.

[79] Enrico Bottazzi. Greco: Fast Zero-Knowledge Proofs for Valid FHE RLWE Ciphertexts Formation.
Cryptology ePrint Archive, Paper 2024/594, 2024.

[80] Shahla Atapoor, Karim Baghery, Hilder V. L. Pereira, and Jannik Spiessens. Verifiable FHE via
Lattice-based SNARKs. Cryptology ePrint Archive, Paper 2024/032, 2024.

[81] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryp-
tion without bootstrapping. In ACM Transactions on Computation Theory (ToCT), volume 6,
pages 1–36, New York, USA, 2014. ACM.

[82] Joan Boyar, René Peralta, and Denis Pochuev. On the multiplicative complexity of boolean func-
tions over the basis (∧,⊕,1). In Theoretical Computer Science, volume 235, pages 43–57. Elsevier,
2000.

[83] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gregor Leander, Eik
List, Florian Mendel, and Christian Rechberger. Rasta: A Cipher with Low ANDdepth and Few
ANDs per Bit. In Advances in Cryptology – CRYPTO 2018, volume 10991 of LNCS, pages 662–692,
Cham, 2018. Springer.

[84] Christophe De Canniere and Bart Preneel. Trivium. In New Stream Cipher Designs: The eS-
TREAM Finalists, volume 4986 of LNCS, pages 244–266. Springer, Berlin, Heidelberg, 2008.

[85] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Maŕıa Naya-Plasencia, Pas-
cal Paillier, and Renaud Sirdey. Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In Journal of Cryptology, volume 31, pages 885–916. Springer, 2018.

[86] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet. Towards
Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts. In Advances in Cryptology – EU-
ROCRYPT 2016, volume 9665 of LNCS, pages 311–343, Berlin, Heidelberg, 2016. Springer.

[87] Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier Standaert. Improved
Filter Permutators for Efficient FHE: Better Instances and Implementations. In Progress in Cryp-
tology – INDOCRYPT 2019, volume 11898 of LNCS, pages 68–91, Cham, 2019. Springer.

[88] Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and François-Xavier Standaert. Towards case-
optimized hybrid homomorphic encryption - featuring the elisabeth stream cipher. In Shweta
Agrawal and Dongdai Lin, editors, Advances in Cryptology - ASIACRYPT 2022 - 28th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, December 5-9, 2022, Proceedings, Part III, volume 13793 of Lecture Notes in Computer
Science, pages 32–67. Springer, 2022.

[89] Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger, Markus Schofneg-
ger, and Roman Walch. Pasta: A case for hybrid homomorphic encryption. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2023(3):30–73, 2023.

[90] Phil Hebborn and Gregor Leander. Dasta – Alternative Linear Layer for Rasta. In IACR Trans-
actions on Symmetric Cryptology – ToSC 2020, volume 2020, pages 46–86, 2020.

23

[91] Jincheol Ha, Seongkwang Kim, Wonseok Choi, Jooyoung Lee, Dukjae Moon, Hyojin Yoon, and
Jihoon Cho. Masta: An HE-Friendly Cipher Using Modular Arithmetic. In IEEE Access, volume 8,
pages 194741–194751, USA, 2020. IEEE.

[92] Carlos Cid, John Petter Indrøy, and H̊avard Raddum. FASTA–a stream cipher for fast FHE
evaluation. In Topics in Cryptology – CT-RSA 2022, volume 13161 of LNCS, pages 451–483,
Cham, 2022. Springer.

[93] Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Jooyoung Lee, and Mincheol Son. Rubato: Noisy
ciphers for approximate homomorphic encryption. In Advances in Cryptology – EUROCRYPT
2022, volume 13275 of LNCS, pages 581–610, Cham, 2022. Springer.

[94] Martin Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.
Ciphers for MPC and FHE. In Advances in Cryptology – EUROCRYPT 2015, volume 9056 of
LNCS, pages 430–454, Berlin, Heidelberg, 2015. Springer.

[95] Tomer Ashur, Mohammad Mahzoun, and Dilara Toprakhisar. Chaghri - a fhe-friendly block cipher.
In ACM Computer and Communications Security (CCS), page 139–150, New York, USA, 2022.
ACM.

[96] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian
Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-Quantum Zero-Knowledge and Signatures
from Symmetric-Key Primitives, 2017.

[97] NIST. Post-Quantum Cryptography Standardization. Online. Accessed 18th Mar 2024, 2016.

[98] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized Interpolation Attacks on
LowMC. In Advances in Cryptology – ASIACRYPT 2015, volume 9453 of LNCS, pages 535–560,
Berlin, Heidelberg, 2015. Springer.

[99] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Higher-Order Cryptanalysis of
LowMC. In Information Security and Cryptology - ICISC 2015, volume 9558 of LNCS, pages
87–101, Cham, 2016. Springer.

[100] Martin Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.
Ciphers for MPC and FHE. Cryptology ePrint Archive, Paper 2016/687, 2016.

[101] Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. Cryptanalysis of Low-Data Instances
of Full LowMCv2. In IACR Transactions on Symmetric Cryptology – ToSC 2018, pages 163–181,
2018.

[102] Martin Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.
Ciphers for MPC and FHE. FewMul, 2017.

[103] Subhadeep Banik, Khashayar Barooti, F Betul Durak, and Serge Vaudenay. Cryptanalysis of
LowMC instances using single plaintext/ciphertext pair. In IACR Transactions on Symmetric
Cryptology (ToSC), volume 2020, pages 130–146, 2020.

[104] Subhadeep Banik, Khashayar Barooti, Serge Vaudenay, and Hailun Yan. New Attacks on LowMC
Instances with a Single Plaintext/Ciphertext Pair. In Advances in Cryptology – ASIACRYPT
2021, volume 13090 of LNCS, pages 303–331, Cham, 2021. Springer.

[105] Itai Dinur. Cryptanalytic Applications of the Polynomial Method for Solving Multivariate Equation
Systems over GF(2). In Advances in Cryptology – EUROCRYPT 2021, volume 12696 of LNCS,
pages 374–403, Cham, 2021. Springer.

[106] Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis of Full LowMC and LowMC-M with
Algebraic Techniques. In Advances in Cryptology – CRYPTO 2021, volume 12827 of LNCS, pages
368–401, Cham, 2021. Springer.

[107] Fukang Liu, Takanori Isobe, and Willi Meier. Low-memory algebraic attacks on round-reduced
LowMC, 2021.

[108] Subhadeep Banik, Khashayar Barooti, Andrea Caforio, and Serge Vaudenay. Memory-Efficient
Single Data-Complexity Attacks on LowMC Using Partial Sets. Cryptology ePrint Archive, Paper
2022/688, 2022.

[109] Fukang Liu, Willi Meier, Santanu Sarkar, and Takanori Isobe. New Low-Memory Algebraic Attacks
on LowMC in the Picnic Setting. In IACR Transactions on Symmetric Cryptology – ToSC 2022,
pages 102–122, 2022.

24

[110] Yimeng Sun, Jiamin Cui, and Meiqin Wang. Improved Attacks on LowMC with Algebraic Tech-
niques. Cryptology ePrint Archive, Paper 2023/1718, 2023.

[111] Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. Cryptographic schemes based
on the asasa structure: Black-box, white-box, and public-key. In Advances in Cryptology–
ASIACRYPT 2014: 20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, ROC, December 7-11, 2014. Proceedings, Part I
20, volume 8873 of LNCS, pages 63–84, Berlin, Heidelberg, 2014. Springer.

[112] Fukang Liu, Santanu Sarkar, Willi Meier, and Takanori Isobe. Algebraic Attacks on Rasta and
Dasta Using Low-Degree Equations. In Advances in Cryptology – ASIACRYPT 2021, volume
13090 of LNCS, pages 214–240, Cham, 2021. Springer.

[113] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec. De-
sign of symmetric-key primitives for advanced cryptographic protocols. In IACR Transactions on
Symmetric Cryptology (ToSC), volume 2020, pages 1–45, 2020.

[114] Fukang Liu, Ravi Anand, Libo Wang, Willi Meier, and Takanori Isobe. Coefficient grouping:
Breaking chaghri and more. In Advances in Cryptology – EUROCRYPT 2023, volume 14007 of
LNCS, pages 287–317, Cham, 2023. Springer.

[115] ECRYPT. The estream stream cipher project, 2005.

[116] Pierre-Alain Fouque and Thomas Vannet. Improving Key Recovery to 784 and 799 Rounds of
Trivium Using Optimized Cube Attacks. In Fast Software Encryption – FSE, volume 8424 of
LNCS, pages 502–517, Berlin, Heidelberg, 2013. Springer.

[117] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In Advances in
Cryptology - EUROCRYPT 2009, volume 5479 of LNCS, pages 278–299, Berlin, Heidelberg, 2009.
Springer.

[118] Michael Vielhaber. Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential Attack. Cryp-
tology ePrint Archive, Paper 2007/413, 2007.

[119] Alexander Maximov and Alex Biryukov. Two Trivial Attacks on Trivium. In Selected Areas in
Cryptography, volume 4876 of LNCS, pages 36–55, Berlin, Heidelberg, 2007. Springer.

[120] Abhishek Kesarwani, Dibyendu Roy, Santanu Sarkar, and Willi Meier. New cube distinguishers
on nfsr-based stream ciphers. In Designs, Codes and Cryptography, volume 88, pages 173–199.
Springer, 2020.

[121] Meicheng Liu. Degree Evaluation of NFSR-Based Cryptosystems. In Advances in Cryptology –
CRYPTO 2017, volume 10403 of LNCS, pages 227–249, Cham, 2017. Springer.

[122] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on non-blackbox poly-
nomials based on division property. In Advances in Cryptology – CRYPTO 2017, volume 10403 of
LNCS, pages 250–279, Cham, 2017. Springer.

[123] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi Meier. Improved
division property based cube attacks exploiting algebraic properties of superpoly. In Advances in
Cryptology – CRYPTO 2018, volume 10991 of LNCS, pages 275–305, Cham, 2018. Springer.

[124] Yuhei Watanabe, Takanori Isobe, and Masakatu Morii. Cryptanalysis of reduced kreyvium. In
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
volume 101, pages 1548–1556. IEICE, 2018.

[125] Dibyendu Roy, Bhagwan Bathe, and Subhamoy Maitra. Differential Fault Attack on Kreyvium &
FLIP. In IEEE Transactions on Computers, volume 70, pages 2161–2167, USA, 2021. IEEE.

[126] Jiahui He, Kai Hu, Hao Lei, and Meiqin Wang. Massive superpoly recovery with a meet-in-the-
middle framework – improved cube attacks on trivium and kreyvium. Cryptology ePrint Archive,
Paper 2024/342, 2024.

[127] Pierrick Méaux. Symmetric encryption scheme adapted to fully homomorphic encryption scheme.
Coding and Cryptography Days 2015, 2015.

[128] Sébastien Duval, Virginie Lallemand, and Yann Rotella. Cryptanalysis of the FLIP Family of
Stream Ciphers. In Advances in Cryptology – CRYPTO 2016, volume 9814 of LNCS, pages 457–
475, Berlin, Heidelberg, 2016. Springer.

25

[129] Henri Gilbert, Rachelle Heim Boissier, Jérémy Jean, and Jean-René Reinhard. Cryptanalysis
of Elisabeth-4. In Advances in Cryptology – ASIACRYPT 2023, volume 14440 of LNCS, pages
256–284, Singapore, 2023. Springer.

[130] Clément Hoffmann, Pierrick Méaux, and François-Xavier Standaert. The patching landscape of
elisabeth-4 and the mixed filter permutator paradigm. In International Conference on Cryptology
in India, pages 134–156. Springer, 2023.

[131] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev. Simulating homomorphic
evaluation of deep learning predictions. In International Symposium on Cyber Security Cryptogra-
phy and Machine Learning, volume 11527 of LNCS, pages 212–230, Cham, 2019. Springer.

[132] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. Mimc:
Efficient encryption and cryptographic hashing with minimal multiplicative complexity. In In-
ternational Conference on the Theory and Application of Cryptology and Information Security,
volume 10031 of LNCS, pages 191–219, Berlin, Heidelberg, 2016. Springer.

[133] Tomer Ashur and Siemen Dhooghe. Marvellous: a stark-friendly family of cryptographic primitives.
Cryptology ePrint Archive, Paper 2018/1098, 2018.

[134] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P Smart. Mpc-
friendly symmetric key primitives. In ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS) 2016, pages 430–443, New York, USA, 2016. ACM.

[135] Fukang Liu, Abul Kalam, Santanu Sarkar, and Willi Meier. Algebraic Attack on FHE-Friendly
Cipher HERA Using Multiple Collisions. Cryptology ePrint Archive, Paper 2023/1800, 2023.

[136] Lorenzo Grassi, Irati Manterola Ayala, Martha Norberg Hovd, Morten Øygarden, H̊avard Raddum,
and Qingju Wang. Cryptanalysis of Symmetric Primitives over Rings and a Key Recovery Attack
on Rubato. In Advances in Cryptology – CRYPTO 2023, volume 14083 of LNCS, pages 305–339,
Cham, 2023. Springer.

[137] Shai Halevi and Victor Shoup. Design and implementation of helib: a homomorphic encryption
library. Cryptology ePrint Archive, Paper 2020/1481, 2020.

[138] Shai Halevi and Victor Shoup. Algorithms in helib. In Advances in Cryptology – CRYPTO 2014,
volume 8616 of LNCS, pages 554–571, Berlin, Heidelberg, 2014. Springer.

[139] Microsoft SEAL. https://github.com/Microsoft/SEAL, January 2023. Microsoft Research, Red-
mond, WA.

[140] Zama. Concrete: TFHE Compiler that converts python programs into FHE equivalent, 2022.
https://github.com/zama-ai/concrete.

[141] Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean and Integer
Arithmetics Over Encrypted Data, 2022. https://github.com/zama-ai/tfhe-rs.

[142] Jean-Philippe Bossuat, Rosario Cammarota, Jung Hee Cheon, Ilaria Chillotti, Benjamin R Curtis,
Wei Dai, Huijing Gong, Erin Hales, Duhyeong Kim, Bryan Kumara, et al. Security guidelines for
implementing homomorphic encryption. Cryptology ePrint Archive, 2024.

[143] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Iliashenko, Kim
Laine, and Michael Rosenberg. Labeled PSI from Homomorphic Encryption with Reduced Com-
putation and Communication. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 1135–1150, 2021.

[144] Alexandros Bampoulidis, Alessandro Bruni, Lukas Helminger, Daniel Kales, Christian Rechberger,
and RomanWalch. Privately Connecting Mobility to Infectious Diseases via Applied Cryptography.
arXiv preprint arXiv:2005.02061, 2020.

[145] Thibault Balenbois, Jean-Baptiste Orfila, and Nigel Smart. Trivial transciphering with trivium
and tfhe. In Proceedings of the 11th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, pages 69–78, 2023.

[146] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. Pegasus: Bridging polyno-
mial and non-polynomial evaluations in homomorphic encryption. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1057–1073, USA, 2021. IEEE.

26

https://github.com/Microsoft/SEAL
https://github.com/zama-ai/concrete
https://github.com/zama-ai/tfhe-rs

[147] Robin Geelen, Michiel Van Beirendonck, Hilder Vitor Lima Pereira, Brian Huffman, Tynan
McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid Verbauwhede, Frederik Ver-
cauteren, et al. Basalisc: programmable hardware accelerator for bgv fully homomorphic en-
cryption. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023(4):32–57,
2023.

[148] David A. McGrew and John Viega. The security and performance of the galois/counter mode
(GCM) of operation. In Anne Canteaut and Kapalee Viswanathan, editors, Progress in Cryptol-
ogy - INDOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai, India,
December 20-22, 2004, Proceedings, volume 3348 of Lecture Notes in Computer Science, pages
343–355. Springer, 2004.

[149] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri, editor,
Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS 2002,
Washington, DC, USA, November 18-22, 2002, pages 98–107. ACM, 2002.

[150] Christina Boura and Maria Naya-Plasencia. Symmetric Cryptography, Volume 1: Design and
Security Proofs. John Wiley & Sons, 2023.

[151] Dilara Toprakhisar and Tomer Ashur. A Comparative Study of Vision and AES in FHE Setting.
In 41st WIC Symposium on Information Theory and Signal Processing in the Benelux, SITB2021,
page 110, Eindhoven, Netherlands, 2021. TU Eindhoven.

[152] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Advances in Cryptology —
EUROCRYPT ’93, volume 765 of LNCS, pages 55–64, Berlin, Heidelberg, 1993. Springer.

[153] Doreen Hertel. A Note on the Kasami Power Function. Cryptology ePrint Archive, Paper 2005/436,
2005.

[154] Hans Dobbertin. Almost Perfect Nonlinear Power Functions on GF(2n): The Niho Case. In
Information and Computation, volume 151, pages 57–72. Elsevier, 1999.

[155] IACR. Lowmc cryptanalysis challenge, 2020.

[156] R Radheshwar, Meenakshi Kansal, Pierrick Méaux, and Dibyendu Roy. Differential Fault Attack
on Rasta and FiLIPDSM. In IEEE Transactions on Computers, volume 72, pages 2418–2425, USA,
2023. IEEE.

[157] Jung Hee Cheon, Jinhyuck Jeong, Joohee Lee, and Keewoo Lee. Privacy-preserving computations
of predictive medical models with minimax approximation and non-adjacent form. In Financial
Cryptography and Data Security, pages 53–74. Springer, 2017.

[158] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. In Journal of
CRYPTOLOGY, volume 4, pages 3–72. Springer, 1991.

[159] Thomas Jakobsen and Lars R Knudsen. The interpolation attack on block ciphers. In Fast Software
Encryption, volume 1267 of LNCS, pages 28–40, Berlin, Heidelberg, 1997. Springer.

[160] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal. Ph. D. Thesis, Math. Inst., University of Innsbruck, 1965.

[161] Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Communications and Cryp-
tography: Two Sides of One Tapestry, volume 276 of SECS, pages 227–233, Boston, MA, 1994.
Springer.

[162] Lars Knudsen and David Wagner. Integral cryptanalysis. In Fast Software Encryption (FSE),
volume 2365 of LNCS, pages 112–127, Berlin, Heidelberg, 2002. Springer.

[163] Fukang Liu, Santanu Sarkar, Gaoli Wang, Willi Meier, and Takanori Isobe. Algebraic meet-in-the-
middle attack on LowMC. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 225–255. Springer, 2022.

[164] Christoph Dobraunig, Farokhlagha Moazami, Christian Rechberger, and Hadi Soleimany. Frame-
work for faster key search using related-key higher-order differential properties: applications to
Agrasta. In IET Information Security, volume 14, pages 202–209, USA, 2020. John Wiley & Sons,
Inc.

[165] Jonathan J Hoch and Adi Shamir. Fault analysis of stream ciphers. In Cryptographic Hardware
and Embedded Systems (CHES), pages 240–253. Springer, 2004.

27

[166] W. Diffie and M.E. Hellman. Special Feature Exhaustive Cryptanalysis of the NBS Data Encryption
Standard. In Computer, volume 10, pages 74–84, 1977.

[167] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryptology —
EUROCRYPT ’93, volume 765 of LNCS, pages 386–397, Berlin, Heidelberg, 1993. Springer.

[168] Lars R Knudsen. Truncated and higher order differentials. In Fast Software Encryption – FSE,
volume 1008 of LNCS, pages 196–211, Berlin, Heidelberg, 1995. Springer.

[169] Statista. Number of internet users worldwide 2022. Online. Accessed 25th Feb 2024, 2023.

[170] Microsoft. What is ElectionGuard? Online. Accessed 29th Feb 2024, 2020.

[171] MarketsandMarkets. Cloud Computing Market Size, Share, Growth Drivers, Opportunities &
Statistics. Online. Accessed 2nd Mar 2024, 2024.

[172] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho Lee. Over 100x faster
bootstrapping in fully homomorphic encryption through memory-centric optimization with gpus.
In IACR Transactions on Cryptographic Hardware and Embedded Systems, volume 2021, pages
114–148. IACR, 2021.

[173] Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniël Kuijsters. Ciminion: symmetric
encryption based on toffoli-gates over large finite fields. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, volume 12697 of LNCS, pages 3–34, Cham,
2021. Springer.

[174] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. Online.
Accessed 18th Mar 2024, 2015.

[175] Massimo Chenal and Qiang Tang. On Key Recovery Attacks Against Existing Somewhat Ho-
momorphic Encryption Schemes. In Progress in Cryptology-LATINCRYPT 2014: Third Interna-
tional Conference on Cryptology and Information Security in Latin America Florianópolis, Brazil,
September 17–19, 2014 Revised Selected Papers 3, volume 8895 of LNCS, pages 239–258, Cham,
2015. Springer.

[176] Ilaria Chillotti, Nicolas Gama, and Louis Goubin. Attacking FHE-based applications by software
fault injections. Cryptology ePrint Archive, Paper 2016/1164, 2016. https://eprint.iacr.org/
2016/1164.

[177] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently Verifiable Computation on Encrypted
Data. In Computer and Communications Security (CCS) ’14, pages 844–855. ACM, 2014.

[178] Bhuvnesh Chaturvedi, Anirban Chakraborty, Ayantika Chatterjee, and Debdeep Mukhopadhyay.
A Practical Full Key Recovery Attack on TFHE and FHEW by Inducing Decryption Errors.
Cryptology ePrint Archive, Paper 2022/1563, 2022. https://eprint.iacr.org/2022/1563.

[179] Michael Walter. On side-channel and cvo attacks against tfhe and fhew. Cryptology ePrint Archive,
Paper 2022/1722, 2022. https://eprint.iacr.org/2022/1722.

[180] Bhuvnesh Chaturvedi, Anirban Chakraborty, Ayantika Chatterjee, and Debdeep Mukhopadhyay.
Demystifying the comments made on “a practical full key recovery attack on tfhe and fhew by
inducing decryption errors”. Cryptology ePrint Archive, Paper 2022/1741, 2022. https://eprint.
iacr.org/2022/1741.

[181] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing, 36(5):1301–1328, 2007.

[182] Jake Loftus, Alexander May, Nigel P Smart, and Frederik Vercauteren. On cca-secure somewhat
homomorphic encryption. In Selected Areas in Cryptography: 18th International Workshop, SAC
2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers 18, volume 7118 of
LNCS, pages 55–72, Berlin, Heidelberg, 2012. Springer.

[183] Zengpeng Li, Steven D Galbraith, and Chunguang Ma. Preventing adaptive key recovery attacks
on the gsw levelled homomorphic encryption scheme. In Provable Security: 10th International
Conference, ProvSec 2016, Nanjing, China, November 10-11, 2016, Proceedings 10, volume 10005
of LNCS, pages 373–383, Cham, 2016. Springer.

[184] Junzuo Lai, Robert H Deng, Changshe Ma, Kouichi Sakurai, and Jian Weng. Cca-secure keyed-
fully homomorphic encryption. In Public-Key Cryptography–PKC 2016: 19th IACR International
Conference on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-9, 2016,
Proceedings, Part I, volume 9614 of LNCS, pages 70–98, Berlin, Heidelberg, 2016. Springer.

28

https://eprint.iacr.org/2016/1164
https://eprint.iacr.org/2016/1164
https://eprint.iacr.org/2022/1563
https://eprint.iacr.org/2022/1722
https://eprint.iacr.org/2022/1741
https://eprint.iacr.org/2022/1741

[185] Keita Emura, Goichiro Hanaoka, Koji Nuida, Go Ohtake, Takahiro Matsuda, and Shota Yamada.
Chosen ciphertext secure keyed-homomorphic public-key cryptosystems. Designs, Codes and Cryp-
tography, 86(8):1623–1683, 2018.

[186] Biao Wang, Xueqing Wang, and Rui Xue. Cca1 secure fhe from pio, revisited. Cybersecurity, 1:1–8,
2018.

[187] Keita Emura. On the security of keyed-homomorphic pke: preventing key recovery attacks and
ciphertext validity attacks. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, 104(1):310–314, 2021.

[188] Shingo Sato, Keita Emura, and Atsushi Takayasu. Keyed-fully homomorphic encryption without
indistinguishability obfuscation. In International Conference on Applied Cryptography and Network
Security, volume 13269 of LNCS, pages 3–23, Cham, 2022. Springer.

[189] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In Advances in Cryptology–CRYPTO 2010: 30th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings 30, volume
6223 of LNCS, pages 465–482, Berlin, Heidelberg, 2010. Springer.

[190] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. In International
Conference on the Theory and Application of Cryptology and Information Security, volume 8270
of LNCS, pages 301–320, Berlin, Heidelberg, 2013. Springer.

[191] Dario Catalano and Dario Fiore. Practical homomorphic macs for arithmetic circuits. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, volume
7881 of LNCS, pages 336–352, Berlin, Heidelberg, 2013. Springer.

[192] Dario Fiore, Anca Nitulescu, and David Pointcheval. Boosting verifiable computation on encrypted
data. In Public-Key Cryptography–PKC 2020: 23rd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Edinburgh, UK, May 4–7, 2020, Proceedings, Part II 23,
volume 12111 of LNCS, pages 124–154, Cham, 2020. Springer.

[193] Sylvain Chatel, Christian Knabenhans, Apostolos Pyrgelis, and Jean-Pierre Hubaux. Verifiable
encodings for secure homomorphic analytics. arXiv preprint arXiv:2207.14071, 2022.

[194] Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. How to run turing machines on encrypted data. In Advances in Cryptology–CRYPTO 2013:
33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, volume 8043 of LNCS, pages 536–553, Berlin, Heidelberg, 2013. Springer.

[195] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-Pierre Hubaux.
Multiparty Homomorphic Encryption from Ring-Learning-with-Errors. Proceedings on Privacy
Enhancing Technologies, 2021(4):291–311, 2021.

A A Brief Overview of Symmetric Key Cryptography

This section provides a concise introduction to symmetric cryptography. A more in-depth and updated
exploration can be found in [150].

A.1 Stream Ciphers

A (synchronous) stream cipher consists of an internal state S, a state initialization function G, a state
update function F , and an output function H. For an input (k, IV), the following operations are
performed:

1. During the initialization phase, the initial state S0 is generated by S0 = G(k, IV).

2. At clock t, the keystream bit/word zt is produced by

zt = H(k,St), St+1 = F (k,St).

3. The message mt is encrypted by ct = mt ⊕ zt to obtain the ciphertext ct.

Similarly, decryption is performed by mt = ct ⊕ zt. The triple (G,F,H) is called a keystream generator,
which generates the keystream from the input (k, IV).

29

A.2 Block Ciphers

A block cipher is a keyed permutation that operates on fixed-length bit strings. For any fixed key k, a
keyed permutation E(k, ·) and a decryption function D(k, ·) can be defined such that D(k,E(k,m)) = m
for any message m. Most block ciphers used in practice, like AES, are constructed as iterated mappings
based on round functions. More specifically, AES and AES-like ciphers have a round function consisting of
an addition with a round key, followed by a substitution layer (the S-box layer) and a linear permutation
layer (the P-layer). The S-box layer is usually implemented as a parallel application of several, not
necessarily identical, small S-boxes.

A.3 Authenticated Encryption

Authenticated encryption (AE) simultaneously ensures confidentiality and data integrity of messages
between the sender and the receiver. Most existing AE schemes also allow the authentication of a public
string, the associated data, along with the message. These AE schemes are also called AE with associated
data (AEAD) [149]. For instance, AES in Galois Counter Mode (GCM) [148] is a widely used AEAD
cryptosystem.

B Details of Ciphers

B.1 Trivium and Kreyvium

Trivium [84] (see Fig. 7) is a synchronous stream cipher with an 80-bit secret key (K) and an 80-bit
initial value (IV). Its internal structure consists of three shift registers comprising 288 bits, ten XOR
gates, and three AND gates for feedback. Each of these three shift registers is composed of 93, 84, and
111 bits, respectively. The K and the IV are loaded in the internal register, along with some prefixed
constants. At each round, a bit is shifted into the three shift registers using a non-linear combination of
taps from that and one other register; one bit of output is produced. After the first 1152 clock cycles,
the cipher generates a valid pseudorandom bit sequence. Finally, the ciphertext is the result of XOR of
the generated bit sequence and plaintext.

Kreyvium [85] is a variant of Trivium with a 128-bit secret key and a 128-bit initial value. It maintains
an internal state consisting of three shift registers similar to Trivium, but with different lengths (128 bits,
128 bits, and 256 bits). Moreover, it incorporates additional mixing steps within the update functions
for the internal state registers.

Figure 7: Trivium

B.2 FLIP, FiLIP and Elisabeth

FLIP [86] proposed by Méaux et al. is based on the Filter Permutator (FP) paradigm (see Fig. 8).
FP is composed of four parts: a register where the key is stored, a Pseudo Random Number Generator
(PRNG) initialized with a public IV, a generator of wire-cross permutations, and a filter function that
produces the keystream. For a security parameter λ, to encrypt m ≤ 2λ bits under a secret key K ∈ Fn

2

30

(such that wH(K) = n/2), the public parameters of the PRNG are chosen and then the following process
is executed for each keystream bit si (for i ∈ [m]):

– The PRNG is updated, its output determines the n-bit permutation Pi at time i,
– the keystream bit zi is computed as zi = F (Pi(K)).

(a) Filter Permutator paradigm (b) Improved Filter Permutator
paradigm

(c) Group Filter Permutator
paradigm

Figure 8: Permutator paradigms: (a) for FLIP, (b) for FiLIP and (c) for Elisabeth; mi denotes
plaintext; zi denotes the keystream; ci denots the ciphertext.

FiLIP [87] proposed by Méaux et al. is based on the Improved Filter Permutator (IFP) paradigm (see
Fig. 8). The IFP contains the four parts of the filter permutator (FP) and two generators, one to select
subsets of the key and one to generate fixed-size binary strings called whitenings. The main differences
of these modifications to the FP paradigm are that the key register is bigger than the input size of the
filter function and that a pseudorandom binary string is added to the input of the filter functions. For a
security parameter λ, to encrypt m ≤ 2λ bits under a secret key K ∈ FN

2 , the public parameters of the
PRNG are chosen. Then the following process is executed for each keystream bit zi (for i ∈ [m]):

– The PRNG is updated, its output determines the subset Si of n-out-of-N elements, the permutation
Pi from n to n elements at time i, and the whitening wi , that is a n-size binary vector,

– the subset is applied to the key, and the permutation is applied,
– the whitening is added, and the keystream bit zi is computed, zi = F (Pi(Si(K)) + wi).
Elisabeth [88] proposed by Cosseron et al. is based on Group Filter Permutator (GFP) paradigm

(see Fig. 8), a generalization of the improved filter permutator where G = F2. The XOR is replaced by
the addition of G and the Boolean function by a function from Gn to G. Here, each key stream symbol
belongs to an additive group G and is derived from a large key by a filtering function that operates on
G. Unlike for traditional filtered-LFSR stream ciphers, the filtering function used in Elisabeth varies at
each clock, most notably in the values of additive constants called masks. The group filter permutator
is defined by a group G with operation noted +, a forward secure PRNG, a key size N , a subset size
n, and a filtering function f from Gn to G. To encrypt m elements of G under a secret key K ∈ GN

, the public parameters of the PRNG are chosen and then the following process is executed for each
key-stream si (for i ∈ [m]):

– The PRNG is updated, its output determines a subset, a permutation, and a length-n vector of
G.

– the subset Si is chosen, as a subset of n elements over N ; the permutation Pi (a re-ordering) from
n to n elements is chosen; the vector, called whitening and denoted by wi, from Gn is chosen,

– the key-stream element si is computed as si = f(Pi(Si(K)) + wi)

B.3 LowMC

The block cipher LowMC [94] over Z2, starts with a key whitening, followed by applying the round func-
tion r times; r depends on the chosen parameter set. A single round comprises three layers: SboxLayer,
AffineLayer, and KeyAddition as shown in Fig. 9. SboxLayer is an m-fold parallel application of the
same 3-bit S-box on the first 3m bits of the state. If the block size n > 3m, then for the remaining
n − 3m bits, the SboxLayer is the identity. AffineLayer starts with a multiplication of the state with a
pseudorandomly generated invertible binary matrix, followed by an addition of the state with a pseudo-
randomly generated binary vector. Finally, KeyAddition adds the state with the round key, generated
by multiplying pseudorandomly generated binary matrices of full rank with the master key.

31

Figure 9: The round function of LowMC

B.4 Rasta

The stream cipher Rasta [83] over F2, takes a key k ∈ Fn
2 , a nonce nc, a counter i and a message block

m ∈ Fn
2 as input and returns a keystream z ∈ Fn

2 as output. The nonce and counter is then fed to an
Extendable Output Function (XOF) to generate n×n matrices Mj,nc,i and round constants rcj,nc,i ∈ Fn

2

for j = 0, . . . , r. The state of Rasta is Fn
2 , i.e. a vector of n elements from F2. The process of Rasta with

r rounds is defined as (see Fig. 10):

Rasta[k, nc, i] = (Ar,nc,i ◦ S ◦Ar−1,nc,i ◦ S ◦ · · · ◦A1,nc,i ◦ S ◦A0,nc,i(k))⊕ k

where affine layer Ai,nc,i for j = 0, . . . , r is defined as:

Aj,nc,i(x) = Mj,nc,i · x⊕ rcj,nc,i

and nonlinear layer S for j = 0, . . . , n− 1 is defined as:

S(x0, . . . , xn−1) = (y0, . . . , yn−1)

yj = xj ⊕ xj+2(mod n) ⊕ xj+1(mod n)xj+2(mod n)

Figure 10: The r round Rasta construction; operations in the box with dotted (resp. thick)
lines are public (resp. secret).

B.5 Chaghri

The block cipher Chaghri [95] over F263 , takes a secret key k ∈ F3
263 and a plaintext m as input. The

key is then fed into the key scheduling algorithm to get 2r+1 round keys, say rk0, . . . , rk2r ∈ F3
263 . The

state of Chaghri S is F3
263 , i.e. a vector of three elements from F263 . The process of Chaghri with r rounds

is defined as:
Chaghri[k,m] = RF [r] ◦ · · · ◦RF [1] ◦ARK[0]

where the i-th round function RF [i] for i = 1, 2, . . . , r is defined as (see Fig. 11):

RF [i] = ARK[2i] ◦G−1 ◦B−1 ◦M ◦ARK[2i− 1] ◦G−1 ◦B−1 ◦M

where the nonlinear function G(x) : F263 → F263 is defined as G(x) = x232+1, the affine transform
B(x) : F263 → F263 is defined as B(x) = c1x

256 + c2x
4 + c3x + c4 (c1, c2, c3, c4 ∈ F263 are constants),

the linear transform M : F3
263 → F3

263 is a 3 × 3 matrix and the add round key function ARK[j] for
j = 0, . . . , 2r and x ∈ F3

263 is defined as ARK[j](x) = x+ rkj .

Figure 11: The round function of Chaghri

32

B.6 Hera

The stream cipher Hera [52] over Zt, for λ-bit security takes a secret key k ∈ Z16
t , a nonce nc ∈ {0, 1}λ as

input and returns a keystream knc ∈ Z16
t as output. The state of Hera is Z16

t , which can also be viewed
as a 4× 4 matrix over Zt. The process of Hera with r rounds is defined as:

Hera[k, nc] = Fin[k, nc, r] ◦RF [k, nc, r − 1] ◦ · · · ◦RF [k, nc, 1] ◦ARK[k, nc, 0]

where the i-th round function RF [k, nc, i] for i = 1, 2, . . . , r − 1 is defined as (see Fig. 12):

RF [k, nc, i] = ARK[k, nc, i] ◦ Cube ◦MixRows ◦MixColumns

and the final round function Fin[k, nc, r] is defined as:

Fin[k, nc, r] = ARK[k, nc, r] ◦MixRows ◦MixColumns ◦ Cube ◦MixRows ◦MixColumns.

The nonce is fed to the underlying XOF that outputs an element in (Z16
t)r+1, say rc = (rc0, . . . , rcr).

Then the add round key function ARK[k, nc, i] for i = 0, 1, . . . , r and x ∈ Z16
t is defined as:

ARK[k, nc, i](x) = x+ k • rci

where • (resp. +) denotes component-wise multiplication (resp. addition) modulo t. The linear map
MixRows (resp. MixColumns) multiplies a certain 4 × 4 matrix to each row (resp. column) of the
state. Whereas, the nonlinear map Cube(x) = (x3

0, . . . , x
3
15) for x = (x0, . . . , x15) ∈ Z16

t .

Figure 12: The round function of Hera; operations in the box with dotted (resp. thick) lines are
public (resp. secret). “MC” and “MR” represent MixColumns and MixRows, respectively.

B.7 Rubato

The stream cipher Rubato [93] over Zq, for λ-bit security and a prime number q takes a secret key k ∈ Zn
q ,

a nonce nc ∈ {0, 1}λ as input, and returns a keystream knc ∈ Zl
q as output for some l < n. The state of

Rubato is Zn
q , which can also be viewed as a v × v matrix over Zq where n = v2. The process of Rubato

with r rounds is defined as:

Rubato[k, nc] = AGN ◦ Fin[k, nc, r] ◦RF [k, nc, r − 1] ◦ · · · ◦RF [k, nc, 1] ◦ARK[k, nc, 0]

where the i-th round function RF [k, nc, i] for i = 1, 2, . . . , r − 1 is defined as (see Fig. 13):

RF [k, nc, i] = ARK[k, nc, i] ◦ Feistel ◦MixRows ◦MixColumns

and the final round function Fin[k, nc, r] is defined as:

Fin[k, nc, r] = Trn,l ◦ARK[k, nc, r] ◦MixRows ◦MixColumns ◦ Feistel ◦MixRows ◦MixColumns

where Trn,l is the truncation of the last n−l words, i.e. Trn,l(x) = (x1, . . . , xl) for x = (x1, . . . , xn) ∈ Zn
q .

The nonce is fed to the underlying XOF that outputs an element in (Zn
q)

r+1, say rc = (rc0, . . . , rcr).
Then the add round key function ARK[k, nc, i] for i = 0, 1, . . . , r and x ∈ Zn

q is defined as:

ARK[k, nc, i](x) = x+ k • rci

33

where • (resp. +) denotes component-wise multiplication (resp. addition) modulo q. The add Gaussian
noise function AGN(x) for x = (x1, . . . , xl) ∈ Zl

q is defined as:

AGN(x) = (x1 + e1, . . . , xl + el)

where e1, . . . , el are sampled independently from a one-dimensional discrete Gaussian distribution
Dαq with zero mean and variance (αq)2/2π. The linear map MixRows (resp. MixColumns)
multiplies a certain v × v matrix to each row (resp. column) of the state. Whereas, the nonlinear map
Feistel(x) = (x1, x2 + x2

1, . . . , xn + x2
n−1) for x = (x1, . . . , xn) ∈ Zn

q .

Figure 13: The round function of Rubato; operations in the box with dotted (resp. thick) lines
are public (resp. secret). “MC” and “MR” representMixColumns andMixRows, respectively.

C Attacks on HEFC

In this section, we give a rough idea of some significant attacks on symmetric ciphers, categorized into
three main categories: statistical attacks, algebraic and structural attacks.

C.1 Statistical Attacks

They are performed by exploiting statistical biases in the output of a cipher or some intermediate
values and/or abnormal correlation with the inputs. With the appropriate input, an attacker tries to
find anomalous statistical behavior in the output and recover secret information related to the original
plaintext or the secret key. These statistical attacks usually require a large data complexity to exploit
this undesired statistical behavior.

Linear Cryptanalysis. It exploits linear relationships between plaintext, ciphertext, and key bits to
deduce information about the secret key. In 1993, Matsui [167] applied this technique to analyze the
block cipher Data Encryption Standard (DES). There are two parts to it. The first is to construct linear
equations relating plaintext, ciphertext, and key bits that have a high bias, i.e., whose probabilities
of holding are as close as possible to 0 or 1. The second is to use these linear equations and known
plaintext/ciphertext pairs to derive the key bits.

Differential Cryptanalysis. It is the study of how differences in information input can affect the
resultant difference in the output. In 1990, Biham and Shamir [158] were the first to apply this tech-
nique to the DES. Essentially, it examines differences (differentials) between pairs of plaintexts and their
corresponding ciphertexts to deduce patterns and reveal information about the secret key.

C.2 Algebraic and Structural Attacks

As its name indicates, they are performed by exploiting algebraic techniques such as equation-solving
algorithms and zero-sum properties. The attacker views the problem of recovering the secret information
by modeling using some algebraic system, where the structure and solvability of the system depend on
the internal design of a cipher.

Gröbner Basis Attack. It involves using Gröbner basis theory to analyze and simplify systems of
polynomial equations derived from the cipher’s operations. The concept behind the attack is to consider

34

a ciphertext c and solve the system P (x) − c = 0 for the plaintext x by searching a Gröbner basis
of the ideal generated by the polynomials P (x) − c. The main cost of the Gröbner basis attack lies
in the computation of the Gröbner basis. A notable approach for computing the Gröbner basis is the
Buchberger algorithm [160].

Interpolation Attack. It targets the low degree of the polynomial description of a block cipher. The
attacker reconstructs the polynomial description using plaintext/ciphertext pairs by means of polyno-
mial interpolation. In 1997, Jakobsen and Knudsen [159] introduced this attack and demonstrated its
effectiveness against certain ciphers with statistically strong S-boxes.

Higher-Order Differential Cryptanalysis. It extends the principles of differential cryptanalysis by
analyzing differences in the higher-order differentials (changes in differences) between plaintext pairs and
their corresponding ciphertexts to gain insights into the cryptographic algorithm and potentially recover
the secret key. Lai [161] and Knudsen [168] initiated the field of higher-order differential cryptanalysis,
each contributing crucial elements to its development and application.

Cube Attack. It was formally introduced in 2008 by Dinur and Shamir [117] as an extension of
higher order differential cryptanalysis and AIDA [118]. Cube attacks exploit more subtle properties than
higher-order differential properties. By carefully choosing the summing cube, one tries to get reduced
polynomials with detectable properties such as (non)constanceness, linearity, balanceness, and neutrality.

35

	Introduction
	HE in the real world
	Our Contribution
	Organization of Article

	An Overview of HE Schemes
	Lattice Based Cryptography
	FHE: From Gentry to CKKS
	Performance Bottlenecks
	Applications to Privacy-Preserving Outsourced Computation

	Transciphering
	Protocols: Theory and Practice
	HE-Friendly Cipher Design
	Authenticated Transciphering
	Verifiable Transciphering
	Verifiable Computation
	Implications on Transciphering

	An Overview of HE-friendly Ciphers
	BGV/BFV- Friendly Ciphers
	LowMC
	Rasta (and variants)
	Chaghri

	TFHE- Friendly Ciphers
	Trivium and Kreyvium
	FLIP, FiLIP and Elisabeth

	CKKS- Friendly Ciphers
	Hera
	Rubato

	Benchmarks and Comparisons of HEFCs
	BGV/BFV
	TFHE
	CKKS

	Real-world Employment of HEFCs
	A Brief Overview of Symmetric Key Cryptography
	Stream Ciphers
	Block Ciphers
	Authenticated Encryption

	Details of Ciphers
	Trivium and Kreyvium
	FLIP, FiLIP and Elisabeth
	LowMC
	Rasta
	Chaghri
	Hera
	Rubato

	Attacks on HEFC
	Statistical Attacks
	Algebraic and Structural Attacks

