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Abstract. Designing post-quantum digital signatures is a very active
research area at present, with several protocols being developed, based on
a variety of mathematical assumptions. Many of these signatures schemes
can be used as a basis to define more advanced schemes, such as ring or
threshold signatures, where multiple parties are involved in the signing
process. Unfortunately, the majority of these protocols only considers
a static adversary, that must declare which parties to corrupt at the
beginning of the execution. However, a stronger security notion can be
achieved, namely security against adaptive adversaries, that can corrupt
parties at any times.

In this paper we tackle the challenges of designing a post-quantum adap-
tively secure threshold signature scheme: starting from the GRASS sig-
nature scheme, which is only static secure, we show that it is possible to
turn it into an adaptive secure threshold signature that we call GRASS+.
In particular, we introduce two variants of the classical GAIP problem
and discuss their security. We prove that our protocol is adaptively secure
in the Random Oracle Model, if the adversary corrupts only t

2
parties.

We are also able to prove that GRASS+ achieves full adaptive security,
with a corruption threshold of t, in the Black Box Group Action Model
with Random Oracle. Finally, we improve the performance of the scheme
by exploiting a better secret sharing, inspired from the work of Desmedt,
Di Crescenzo, and Burmester from ASIACRYPT’94.

Keywords: Post-Quantum Cryptography, Digital Signature, Threshold Signa-
tures, Group Action
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1 Introduction

A (t, n)-threshold digital signature scheme is a protocol designed to distribute
the privilege to sign messages among n parties, such that any subset of at least t
of them is able to sign. Moreover, we require that any subset with t or fewer par-
ties is not able to sign any message. Recently, driven by both the NIST calls for
Post-Quantum Standardization [38, 39] and the call for Multi-Party Threshold
Schemes [15], many researchers have started to investigate post-quantum thresh-
old digital signature schemes. In this regard, we can mention [8, 18, 24, 27] that
present threshold signatures from isogeny assumptions, in particular based on
the CSi-FiSh group action; a threshold signature based on Raccoon [41]; a frame-
work for hash-based threshold signatures [36] and a group-action-based threshold
signature that uses the group action as black box [6]. Unfortunately, all these
works only consider static security, and they are not secure against an adaptive
adversary.

1.1 Static and Adaptive Security

In the static setting, the adversary decides which parties to corrupt at the be-
ginning of the protocol, before any message exchange. This model places a great
restriction on the adversary’s power: indeed in realistic protocols, malicious en-
tities may corrupt a party at any time, and often they do so after seeing some
messages.

Adaptive security is a strictly stronger notion and captures this second case.
A naive idea to transform a statically secure scheme into an adaptively secure
one is to guess the corrupted parties and aborting if incorrect. As noted in [19] by
Canetti et al., the main problem with this approach is that the resulting proof of
security results in a tightness loss of

(
n

t−1

)
, that grows exponentially in the value

of the threshold. To solve this issue, the authors of [19] proposed a method which
revolves around secure erasures of the secret state, which, however, is not easily
enforced in practice. Other alternatives, like [20, 34] usually rely on heavyweight
tools, such as non-committing encryption.

The recent NIST call for multi-party threshold schemes included adaptive
security as a main goal, ideally supporting up to 1024 participants. This caused
a surge in interest in adaptively secure threshold signature schemes, in particular
with regard to threshold Schnorr signatures, with notable examples such as [2, 3,
26] (whose techniques paved the way for our work), and lattice-based signatures
like [30, 35].

1.2 Our Contribution

As a first result, we present an improvement of the GRASS key generation algo-
rithm. In particular, GRASS relies on Replicated Secret Sharing, that becomes
quite unpractical for large n. We adapt a sharing introduced in [28] and get a
new solution that requires a number of rounds only linear in t to perform the
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signature procedure. We then analyze the performance and security of the shar-
ing scheme, obtaining new and non-asymptotic upper bounds on the number of
shares compared to the one introduced in [28]. This new method significantly
reduces the number of shares that each party needs to store, even if it still does
not achieve the same efficiency as Linear Secret Sharing Schemes.

Next, we present our main result: the design of an adaptively secure post-
quantum threshold signature scheme. To do so, we introduce and study two new
problems: Chain-GAIP and Graph GAIP (Problems 2 and 3), that translate the
classic One More Discrete Logarithm (OMDL) problem in the context of group
actions.

We modify the signature algorithm of the GRASS signature scheme [6] to
achieve adaptive security, by inserting online-extractable ZKPs7, and we reduce
the adaptive security of the full n-out-of-n threshold scheme to the hardness of
n-Chain GAIP, first against n−1

2 corruptions in the random oracle model and
then against n− 1 corruptions in the Black Box Group Action Model from [12].
Finally, we discuss when it is possible to extend these results to the more general
t-out-of-n schemes and under which assumptions.

1.3 Outline

We begin in Section 2, where we provide all the necessary preliminary definitions
and notions used in the paper. In Section 3 we introduce two new conjectured
hard problems, Chain-GAIP and Graph GAIP, that are used to prove the se-
curity of our protocol. Then, in Section 4 we present and study the new key
generation algorithm. In Section 5 we present the new signature protocol and
next we prove its security in Section 6.

2 Preliminaries

In this work we use the symbol
$←− to denote sampling from uniform distribution,

while the symbol ← denotes that the right value is assigned to the left variable.
We use again the symbol← to denote that we assign to the left variable the out-
put of a (potentially randomized) algorithm. We denote the security parameter
as λ. For any positive integer n we define [n] := {0, ..., n− 1}.

2.1 Cryptographic Group Actions

A group action (G,X, ⋆) can be described as a function, as shown below, where
X is a set and G a group.

⋆ : G×X → X

(g, x) 7→ g ⋆ x

7 ZKP(s) stands for Zero Knowledge Proof(s)
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A group action’s only requirement is to be compatible with the group; using
multiplicative notation for G and denoting with e its identity element, this means
that for all x ∈ X we have e ⋆ x = x and that moreover for all g, h ∈ G,
it holds that h ⋆ (g ⋆ x) = (h · g) ⋆ x. The orbit of a set element is the set
O(x) := {g ⋆ x | g ∈ G}. We say that two set elements x′, x′′ ∈ X are linked if
we know a group element g ∈ G such that x′′ = g ⋆ x′ or x′ = g ⋆ x′′. A group
action is also said to be:

– Transitive, if for every x, y ∈ X, there exists g ∈ G such that y = g ⋆ x;
– Faithful, if there does not exist a g ∈ G such that x = g ⋆ x for all x ∈ X,

other than the identity;
– Free, if an element g ∈ G is equal to identity whenever there exists an x ∈ X

such that x = g ⋆ x;
– Regular, if it is free and transitive.

The adjective cryptographic is added to indicate that the group action in
question has additional properties that are relevant to cryptography. For in-
stance, a cryptographic group action should be one-way, i.e., given randomly
chosen x, y ∈ X, it should be hard to find g ∈ G such that g ⋆ x = y (if such
a g exists). Indeed, the problem of finding such an element is known as the
vectorization problem, or sometimes Group Action Inverse Problem (GAIP).

Problem 1 (GAIP). Given x ∈ X and y uniformly distributed in O(x), compute
an element g ∈ G such that y = g ⋆ x.

2.2 Sigma Protocol for GAIP

x y

x̃

g ⋆

g̃ ⋆

g̃g−1 ⋆

Fig. 1: Sigma protocol for the knowledge of the group action.

Sigma protocols for the knowledge of a solution to the GAIP have been used
successfully in many cryptographic protocols and they usually follow the same
structure [14]. In this section we summarize the general idea for a generic group
action.

Let (G,X, ⋆) be a group action such that GAIP (Problem 1) is hard and
consider x, y ∈ X and g ∈ G such that y = g ⋆ x. Figure 1 shows how a
prover who knows g, can prove its knowledge to a verifier knowing only x, y.
The protocol works as follows:

– the prover picks a random g̃ ∈ G and sends x̃ = g̃ ⋆ x to the verifier,
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– the verifier chooses a random bit b ∈ {0, 1} and sends it to the prover,
– the prover sends w to the verifier, where w = g̃ if b = 0 or w = g̃g−1 if b = 1,
– the verifier accepts if w ⋆ x = x̃ when b = 0 or w ⋆ y = x̃ when b = 1.

It is easy to see that the above protocol satisfies the classical properties
of completeness, special soundness and honest verifier zero-knowledge; thus it is
possible to apply the Fiat-Shamir Transform to obtain a secure digital signature.
The protocol can then be improved by applying several optimizations, getting
different tradeoffs in the signature scheme parameters. More information on the
construction of digital signatures from group actions can be found in [14].

Examples of this approach are CSi-Fish [7], MEDS [22], Alteq [11] and LESS
[5, 9], with the latter being among the fourteen candidates selected for the second
round of the NIST call for post quantum digital signature schemes.

2.3 Threshold Signatures

We briefly summarize here the relevant notions for threshold signature schemes.
In a nutshell, a (t, n)-threshold signature is a multi-party protocol that allows
any t parties out of a total of n to compute a signature that may be verified
against a common public key. We assume that each user has access to a secure,
reliable and authenticated private channel with each of the other users, without
worrying about specific design and peculiarities of the channel.

Usually, threshold signature protocols involve a key-generation protocol that
constructs the key pair (pk, sk) as well as shares of the private key ski, and a
multiparty signature protocol TSign, such that any set of t parties who agree on
a common message mes is able to compute a signature, which is verifiable against
the public key via the procedure Ver. KeyGen can be executed by a trusted party
or by the n parties alone collaborating. In this “decentralized” case, the parties
get access to the additional exchanged information.

Even if it is possible to have a more general definition, we tailor the syntax of
our definition to both the inherited Σ-protocol-like and sequential round-robin
structures of our protocol, which are the same as the original [6]. By sequential
round-robin, we mean that the parties take turns to produce the final output,
instead of working simultaneously.

Definition 1. (Threshold Signatures) A threshold signature scheme TSign with
two round-robin consists of polynomial time algorithms

TSign = (Setup,KeyGen, (TSign1,Fin1), (TSign2,Fin2),Ver),

defined as follows:

– Setup(1λ) → par: on input the security parameter 1λ, it outputs the public
parameters par.

– KeyGen(par, 1n, 1t) → (pk, {ski}[n]): a probabilistic algorithm that takes as
input the public parameters, the number of signers and the threshold t and
outputs the common public key pk and a share ski of the private key for each
signer.
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– (TSign1,Fin1), (TSign2,Fin2) are two pairs of algorithms where TSigni repre-
sents one round-robin each and Fini represents a final broadcast that “final-
izes” the round-robin. Both TSign1 and TSign2 are done by each party in the
signing set Ssig following the round-robin order and are defined as follows:

(pmi,1, sti,1)← TSign1(Ssig, mes, ski, {pmj,1}j∈Ssig,j<i)

dcmti ← Fin1(Ssig, mes, ski, {pmj,1}j∈Ssig)

(pmi,2, sti,2)← TSign2(Ssig, mes, ski, sti,1{pmj,2}j∈Ssig,j<i, {pmk,1, dcmtk}k∈Ssig)

σi ← Fin2(Ssig, mes, ski, {pmj,1}j∈Ssig , {pmj,2}j∈Ssig , {dcmtj}j∈Ssig)

where pmi,1, pmi,2 are public messages broadcast by party i, sti,1, sti,2 are
the states of party i at the end of each round and the final signature σ can
be computed deterministically from all the partial signature σi.

– Ver(pk, mes, σ)→ 0/1: a deterministic algorithm that takes as input the pub-
lic key pk, a message mes and a signature σ and outputs 1 if σ is valid, else
it outputs 0.

We require that the threshold signature scheme is correct, i.e., for all security
parameters λ, all 1 ≤ t ≤ n, all Ssig ⊆ [n] such that |Ssig| ≥ t, all messages mes if
KeyGen(par, n, t)→ (pk, {(pki, ski)}[n]) then the algorithms TSign1,Fin1,TSign2
and Fin2 return a valid signature σ such that Ver(pk, mes, σ) = 1.

Informally speaking, first all the parties engage in a round-robin protocol.
Each party i, on input the signing set, its secret key, the message, and all the
output from the previous rounds, outputs some public messages pmi,1 and its
secret state sti,1. Then a second round-robin is done. There, again, each party
i, on input the signing set, its secret key and state, the message, and all the
outputs from the first round-robin and from the previous rounds, outputs some
public messages pmi,2 and its secret state sti,2. After each round-robin, there is
a final broadcast, where each party, on input all the public data, outputs some
public data, in particular the second finalization protocol outputs the signature.

Remark 1. The above definition of threshold signature is very complex and no-
tation heavy. The main reason why we need such a definition is to better define
security, allowing the adversary maximum freedom in opening parallel sessions.
Indeed, when defining the security game for adaptive security, we allow the ad-
versary to freely query the oracle on each of the above four algorithms in any
order. Since each algorithm corresponds to one message sent, this simulates the
possibility of opening parallel executions.

Adaptive Security. An important notion for threshold signature security is adap-
tive security, where the adversary is able to corrupt parties dynamically, in con-
trast to static security, where it is required to declare all the corrupted parties
at the beginning of the execution. Here we adapt the definition given in [26] to
suit the case of threshold signatures having a round-robin structure.
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Definition 2 (Adaptive EUF-CMA). Let TSign be a threshold signature
scheme and A be an adversary playing the adaptive EUF-CMA game defined in
Figure 2. Let define the advantage of A as:

Adva−euf−cma
A (λ, frac) = Pr(Expa−euf−cma

A (λ, frac) = 1)

We say that TSign is unforgeable against adaptive chosen message attacks with
frac corruptions if and only if Adva−euf−cma

A is negligible for every probabilistic
polynomial time adversary A.

Informally speaking in the adaptive EUF-CMA game the adversary can in-
teract with the following oracles:

– OCorrupt: if the total number of corruptions is lower than frac, then theOCorrupt

returns the private key and all the internal states of the chosen party.
– OTSigni : the adversary asks the oracle to perform one round of the round-

robin. First the oracle checks that all the previous parties in the round-robin
have done their turn (in the case of TSign2 it also checks whether Fin1 was
executed or not); if so, it executes TSigni, publishes the public data and
stores the private data.

– OFini : the adversary asks the oracle to perform the finalization protocol. First
the oracle checks that the previous round-robin is finished; if so, it performs
the finalization algorithm Fini on behalf of all the honest parties and sends
the result to the adversary. In case of Fin1, if the adversary refuses (or fails)
to execute Fin1, then the oracle will stop the execution during the TSign2.

2.4 Black Box Group Action Model

As will become clearer later in Section 6, to prove the adaptive security of GRASS
we need to perform a rewind in order to extract all the secrets we need. Unfortu-
nately, this implies that the adversary can corrupt at most t−1

2 parties, otherwise
we would incur the risk of needing more queries than allowed to the oracle we use
in our security assumption, since the adversary could corrupt different parties
after the rewind. In order to extract all the group actions after a single forgery,
we need to use the Black Box Group Action Model (BBGAM) introduced in
[12], which generalizes the Generic Group Model to consider group actions.8

In this model, direct computation over set elements is possible only by query-
ing an oracle to do all the computation. In particular, each party is provided
with a starting set of set elements x0, ..., xr ∈ X and three oracles:9

– OEq(x, y), with x, y ∈ X that returns 1 if x = y, 0 otherwise.
– OAct(g, x) that, on input g ∈ G and a previously seen set element x ∈ X,

returns the set element g ⋆ x.

8 We do not consider [29] since they restrict themselves to the abelian group case.
9 To be very formal, the parties do not have access directly to set elements but instead
have access to handles. For the sake of simplicity, with abuse of notation, we will
simply write x instead of ⟨x⟩, even when referring to handles.
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Expa−euf−cma
A (λ, frac)

1 : par← Setup(1λ)

2 : Qmes ← ∅, Qst ← ∅
3 : (cor, stA)← A(par)
4 : if |cor| > frac ∨ cor ̸⊂ [n]

5 : return ⊥
6 : hon← [n] \ cor
7 : (pk, {(pki, ski)})← KeyGen(par, n, t)

8 : stA ← (pk, {pki, ski}cor, stA)

9 : (mes∗, σ∗)← AOTSigni ,OFini ,OCorrupt

(stA)

10 : return mes
∗ ̸∈ Qmes ∧ Ver(pk, mes∗, σ∗)

OTSign1(k, mes, ssid)

1 : Qmes ← Qmes ∪ mes

2 : if (k /∈ hon) ∨ (Qst[k, ssid, 1] ̸= ⊥)
3 : return ⊥
4 : for j ∈ Ssig, j < k

5 : if Qpm[j, ssid, 1] = ⊥
6 : return ⊥
7 : (pmssidk,1 , stssidk,1 )← TSign1(Ssig, mes, skk, {pm

ssid
j,1 }j∈Ssig,j<i)

8 : Qst[k, ssid, 1]← st
ssid
k,1

9 : Qpm[k, ssid, 1]← pm
ssid
k,1

10 : return pm
ssid
k,1

OCorrupt(k)

1 : if k /∈ hon ∨ |cor| = frac

2 : return ⊥
3 : cor← cor ∪ {k}
4 : hon← hon \ {k}
5 : // Retrieve all state for party k

6 : stk ← Qst[k, ·, ·]
7 : return (skk, stk)

OTSign2(k, mes, ssid, {pmj,1}j∈Ssig)

1 : if (k /∈ hon) ∨ (ssid = ⊥)
2 : ∨ (QFin[ssid] = ⊥) ∨ (Qpm[k, ssid, 2] ̸= ⊥)
3 : return ⊥
4 : for j ∈ Ssig, j < k

5 : if Qpm[j, ssid, 2] = ⊥
6 : return ⊥
7 : (pmssidk,2 , stssidk,2 )← TSign2(Ssig, mes, skk, {pm

ssid
j,2 }j<i, {pmssidj,2 }j∈Ssig)

8 : Qpm[k, ssid, 2]← pm
ssid
k,2

9 : Qst[k, ssid, 2]← st
ssid
k,2

10 : return (pmssidk,2 )

OFin1(mes, ssid,Ssig)

1 : for j ∈ Ssig
2 : if Qpm[j, ssid, 1] = ⊥
3 : return ⊥
4 : for i ∈ hon ∩ Ssig
5 : dcmt

ssid
i ← Fin1(Ssig, mes, ski, {pmssidj,1 }j∈Ssig)

6 : {dcmtssidj }j∈cor ← A({dcmtssidi }i∈hon)

7 : QFin[ssid] = 1

8 : for j ∈ cor

9 : if dcmt
ssid
j = ⊥

10 : QFin[ssid] = ⊥
11 : return

OFin2(mes, ssid,Ssig)

1 : for j ∈ Ssig
2 : if Qpm[j, ssid, 2] = ⊥
3 : return ⊥
4 : for i ∈ hon ∩ Ssig
5 : σi ← Fin1(Ssig, mes, ski, {pmssidj,1 , pmssidj,2 , dcmtssidi }j∈Ssig)

6 : return {σi}i∈hon

Fig. 2: Security game for adaptive EUF-CMA.
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– Osample(s) that, on input a seed s, returns a random element x ∈ X, po-
tentially on a different orbit from the previously returned set elements. For
some group action we can even not allow this oracle.

The core idea behind the model is that the only way for the adversary to
derive additional meaningful set elements is to query the action oracle OAct,
i.e., compute a group action on a defined set element. In this way, given a set
element x̄ resulted from one of the party computations, we can always look at
all the previous oracle queries. Thus, we can find a group element ḡ such that
x̄ = ḡ ⋆ xi for i = 0, ..., r or, if Osample is allowed, x̄ = ḡ ⋆ x for some x uniformly
distributed in X, which is obtained from Osample. Note that for our setting we
consider the case in which all the set elements x0, ..., xr are in the same orbit.
Moreover, if the adversary tries to cheat by sending elements from a different
orbit, the malicious behavior will be caught thanks to the ZKPs used.

The BBGAM in Practice. The reliance of the model clearly depends on the group
actions we want to model. To justify it we need to argue that, with respect to a
particular group action, the only way to obtain a new set element is by applying
a group action on a known set element or (eventually) by random sampling (i.e.,
using Osample).

It is well known that this model can safely be applied to the group actions
based on isogenies of supersingular elliptic curve, like [21]. In fact, it is a major
open problem in isogeny based cryptography to compute a valid supersingular
elliptic curve not starting from an isogeny applied on a known one, this is known
as the hashing to the supersingular elliptic curve graph problem [13], so it may
even make sense to not even allow the use of Osample. More detailed discussion
can be found e.g., from [40, Section 4.3].

For the other group actions, like the ones used for LESS [5], MEDS [22] and
ALTEQ [11], it is always possible to generate a random set element by sampling
a random linear code or tensor, but this lies in the same orbit only with negligible
probability, thus giving no advantage to the adversary (moreover, this behavior
would be quickly caught by the honest parties, since the protocol uses ZKPs to
prevent the usage of set elements that are not linked to other ones). This can
be verified with simple computations; e.g., for LESS, the number of monomial
maps, i.e., of group elements (that is an upper bound on the orbits sizes), is
(q − 1)nn!, which for the regime of interest (n > 200) is negligible with respect

to the number of possible linear codes, ≈ q
n2

4 . We assume this is the case for
the group actions considered in this work.

Even if, to the best of our knowledge, it is not possible to use these random
elements to get additional information, we must include the possibility of sam-
pling random elements in the set X since there is no efficient way to test if two
set elements lie in the same orbit, i.e., to solve the decisional version of GAIP. In
the case of LESS, it is even known that GAIP reduces to the problem of deciding
if two codes are equivalent [4, 10].

Again, as far as we know, starting from a linear code or an alternating tensor
in the literature, there are no other meaningful ways to obtain new objects
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related to them. For example, one could try to flip or reorder some entries,
but these would yield set elements which, from a group action point of view,
unrelated to the starting ones. We believe that, for now, these observations justify
the use of the model for group actions cited above. Note that for [m×m, k]-matrix
codes, in principle it would be possible to obtain a new code by transposing the
matrices in the code. This new code preserves part of the algebraic relations
between group elements and set elements, so, even if we do not know how to
exploit this to get a meaningful attack, we have to admit that for the group
action used in MEDS, the use of the BBGAM is a stronger assumption than for
other group action frameworks.

3 Chain and Graph Versions of GAIP

In this Section we introduce two new problems, to be used in the security proof,
that aim to generalize the One More Discrete Logarithm Problem [37].

3.1 Chain-GAIP

Problem 2 (n-Chain-GAIP). Consider x ∈ X and g0, ..., gn−1 ∈ G chosen uni-
formly at random. Let xi+1 = gi⋆xi for all i = 0, ..., n−1, where we have defined
x0 as x. Given {xi}i=0,...,n and access to an oracle that, on input (xi, xi+1) re-
turns gi for at most n− 1 queries, find g such that xn = g ⋆ x0.

As we can expect, our reduction incurs a security loss which is proportional
to n, the number of elements in the chain.

Proposition 1. If there exists probabilistic polynomial-time algorithm AChain

that solves the n-Chain-GAIP problem with probability ϵ and in time T , then
there exists a probabilistic polynomial-time algorithm AGAIP that solves GAIP in
the same time T and with probability ϵ/n.

Proof. Given as input a GAIP challenge (x, y) ∈ X ×X the algorithm AGAIP:

1. samples n−1 group elements g0, ..., gℓ−1, gℓ+1, .., gn−1 ∈ G, with ℓ ∈ {0, ..., n−
1} chosen uniformly at random,

2. sets x0 = x, xn = y. Then completes the chain by defining{
xi+1 = gi ⋆ xi for 0 < i < ℓ

xi = g−1
i ⋆ xi+1 for ℓ < i < n

. (1)

3. AGAIP sends the chain to AChain and acts as oracle, returning gi when queried
on (xi, xi+1) for i ̸= ℓ and failing otherwise.

It is immediate to see that as long asAChain solves the n-Chain-GAIP instance
without querying (xℓ−1, xℓ), then AGAIP can return the n-Chain GAIP solution
as a GAIP solution. Under the claim that the chain xi is a valid n-Chain-GAIP
instance, with a probability distribution independent of ℓ, the algorithm solves
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GAIP with probability ϵ/n. Let idx be the index of the pair that is not queried in
an execution of AChain

10 interacting with the n-Chain-GAIP oracle, since, under
our claim, ℓ is independent of the distribution from item 2 we have

Pr[AChain succeeds ∧ idx = ℓ] = ϵ · 1

n
.

This property is preserved also when interacting with AGAIP (item 3) since the
distribution of group elements is the same, thusAGAIP can extract a valid solution
for (xch, ych) with probability ϵ/n.

To prove Proposition 1 we only need to prove the above claim on the distribu-
tions of the elements from item 2. Since the group elements g1, ..., gℓ−1, gℓ+1, .., gn
are uniformly distributed in G then also both g−1

i are uniformly distributed on
G. Finally, since the GAIP solution g with y = g ⋆ x is uniform on G so it is the
secret group element gℓ linking xℓ, xℓ+1.

As said, the security loss with respect to GAIP is at most proportional to n.
Luckily, since n is the number of parties, it is expected to be polynomial, so this
does not cause any major issue with the scheme. Since it is clear that any solver
to GAIP is a solver to n-Chain GAIP (just need to directly tackle the instance
and discard the chain related information), the cost of solving n-Chain GAIP
with respect to the cost of solving GAIP lies somewhat in between 1 and 1/n.

However, from a heuristic standpoint, it is reasonable to believe that any
algorithm able to solve GAIP should not gain any benefit from knowing other
group action that are sampled independently. For example, we may argue that a
solver could try to solve these n GAIP intermediate instances independently, to
then stop at the first success, thus linearly increasing the probability of success,
and ask the remaining n − 1 instances to the oracle. Anyway this does not
decrease the overall cost of the attack since it still requires n parallel independent
executions.

3.2 Graph-GAIP

To prove the adaptive security of schemes with more complicated sharing mech-
anisms, we need to introduce a second problem. Instead of having a single chain,
we consider a graph, where the vertices are set elements and the edges are the
actions that relate them. Formally we have the following:

Problem 3 (N -Graph-GAIP). Let x ∈ X and g ∈ G be chosen uniformly and
define y = g ⋆ x. Consider N set elements x1, ..., xN ∈ O(x) sampled uniformly
at random and the graph G = (V,E) with vertices V = {x, y}∪ {x1, ..., xN} and
no edges E = ∅. Find g such that y = g ⋆ x having access to a solver oracle OG

that on input two set elements x′, y′ ∈ V :

– if x′ is linked to x (resp. to y) in the graph G and y′ is linked to y (resp. to
x) in the graph G, return ⊥;

10 wlog we can suppose that it always perform n− 1 queries
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– else add {x′, y′} to E and return g′ ∈ G such that y′ = g′ ⋆ x′.

What essentially oracle OG does is providing links, i.e., solutions to the group
action inversion problem, for all the possible pairs of set elements provided at
the start, as long as they cannot be composed to get a link between x and y,
that is equivalent to get a solution for the GAIP on x, y. It is important that
the set elements are fixed from the start, otherwise the adversary could perform
a trivial attack by creating two random set element x̃ = g̃ ⋆ x and ỹ = g̃ ⋆ y,
asking a solution g′ for x̃, ỹ and find a solution g̃−1g′g̃.

As for n-Chain GAIP we can get reductions to GAIP by trying to generate
the set elements ourselves and trying to guess the queries in advance, however in
this case the security loss would be exponential in the number N of set elements,
compromising the utility of the reduction. This is because, differently from n-
Chain GAIP there is no restriction on the allowed queries to the oracle, i.e., no
fixed topology of the graph G but for having two disconnected components11

containing x and y. However, as before, we have no reason to believe that in
practice the additional information provided to a solver can be used meaningfully
to solve the GAIP between x and y.

4 Improved Secret Sharing

In this section we extend the secret sharing scheme from [28] to work for group
actions, show an improved analysis of the scheme, and discuss its main properties
of interest for our threshold signature protocol.

In [28], the authors present a multiplicative secret sharing scheme for the
(t, n)-threshold access structure, for any 1 ≤ t ≤ n, and any (non-Abelian)
group with efficiently computable operation and inverses, and show its appli-
cation to threshold cryptography (specifically, threshold zero-knowledge proofs
of knowledge of secrets encoded as graph isomorphisms). Here, we adapt this
scheme to work for any group action, show an improved analysis of the size of
the shares. The resulting scheme, denoted as (RecKeyGen,Recover), is detailed
in Figure 3.

Algorithm RecKeyGen needs to be run by a Trusted Third Party Dealer, that
recursively shares the secret key sk = g associated to the public key pk = (x, y),
i.e., such that y = g ⋆ x, between n users P with a t-out-of-n sharing. Whenever
g′, x′, LBL are sent to the user P , this party will store g′, x′ under the label LBL.
When a set T of t users wants to recover the secret, each user runs algorithm
Recover which uses the LBL labels to find the correct share to use.

Informal Idea. The core idea is to use a recursive strategy. To do a 1-out-of-n
sharing the dealer just forward g′, x to all the n users and for an n-out-of-n

11 i.e., two disjoint non-empty subsets of the graph such that no vertex in the first set
is linked to a vertex in the second one
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RecKeyGen(g, x, y,P, t, LBL)→ {(gi, xi, LBLi) : i}

1 : n← |P|
2 : x0 ← x

3 : parse P → {P0, ..., Pn−1}
4 : if t = 1

5 : for P ∈ P :

6 : Send g, x, LBL to P

7 : if t = n > 1

8 : gi
$←− G, i = 1, ..., n− 1

9 : g0 ← (g1 · ... · gn−1)
−1 · g

10 : for i = 0, ..., n− 1

11 : xi+1 ← gi ⋆ xi

12 : Send gi, xi, LBL to Pi

13 : if 1 < t < n

14 : c← ⌊n/2⌋
15 : Pleft ← {P0, ..., Pc−1}
16 : Pright ← {Pc, ..., Pn−1}

17 : for ℓ = max
(
0, t−

⌈n
2

⌉)
, ...,min

(
t,
⌊n
2

⌋)
18 : if ℓ = 0

19 : RecKeyGen(g, x, y,Pleft, t, LBL∥(Pleft, t))

20 : elseif ℓ = t

21 : RecKeyGen(g, x, y,Pright, t, LBL∥(Pright, t))

22 : else

23 : g1
$←− G

24 : x1 ← g1 ⋆ x0

25 : g2 ← g · g−1
1

26 : RecKeyGen(g1, x, x1,Pleft, t− ℓ, LBL∥(Pleft, t− ℓ))

27 : RecKeyGen(g2, x1, y,Pright, ℓ, LBL∥(Pright, ℓ))

Recover(P, T ,P, LBL)→ gi, xi

1 : n, t← |P|, |T |
2 : assert P ∈ T
3 : parse P → {P0, ..., Pn−1}
4 : if t = 1 or t = n

5 : get share received with LBL

6 : if 1 < t < n

7 : c← ⌊n/2⌋
8 : Pleft ← {P0, ..., Pc−1}
9 : Pright ← {Pc, ..., Pn−1}

10 : ℓ← T ∩ Pright

11 : if ℓ = 0

12 : Recover(P, T ,Pleft, LBL∥(Pleft, t))

13 : if ℓ = t

14 : Recover(P, T ,Pright, LBL∥(Pright, t))

15 : else

16 : if P ∈ Pright

17 : Recover(P, T ∩ Pright,Pright, LBL∥(Pright, ℓ))

18 : if P ∈ Pleft

19 : Recover(P, T ∩ Pleft,Pleft, LBL∥(Pleft, t− ℓ))

Fig. 3: Recursive algorithms both for the sharing of the secret g between any
subset of t users of P and the recovery of each individual share, given the set of
users P and the subset of allowed users T in which P belongs. In the first call
to each of the two algorithms, LBL is set as ∅. The RecKeyGen algorithm is later
used as part of the KeyGen algorithm for the signature, while Recover is used as
part of the signing algorithm, to retrieve the correct share.
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sharing, the dealer splits g as gn−1 · · · · · g0, sets x0 = x, computes xi+1 = gi ⋆xi,
then forward gi, xi to the i-th party Pi, for i = 1, .., n.12

Otherwise, to do a t-out-of-n sharing, with t ̸= 1, n, the user set is split in
two sides Pleft and Pright of approximately the same size

⌊
n
2

⌋
and

⌈
n
2

⌉
. Then for

any ℓ such that max(0, t− ⌈n2 ⌉) ≤ ℓ ≤ min(t, ⌊n2 ⌋), split g as g2 · g1, then:

– perform recursively an ℓ-out-of-|Pright| sharing of g1, x, g1 ⋆ x on the user set
Pright;

– perform recursively a (t− ℓ)-out-of-|Pleft| sharing of g2, g1 ⋆ x, y on the user
set Pleft.

To allow each user to correctly combine their secret shares the dealer also labels
each share with a list containing all the recursive steps performed to arrive to
the sharing.

If a subset T of t users want to recover a subset of shares multiplying to g,
each user P ∈ T essentially repeats the share generation as before to recompute
the correct label. The idea is to recover ℓ∗ as |T ∩ Pright|; if P ∈ Pleft then they
compute the label of a (t− ℓ∗)-out-of-|Pleft| sharing on T ∩ Pleft recursively, or,
if P ∈ Pright, then they compute the label of an ℓ∗-out-of-|Pright| sharing on
T ∩ Pright, again recursively. When t = 1 or t = |P| they can recover the share
under the computed label.

In the signature, the algorithm RecKeyGen is used by the trusted dealer to
perform the KeyGen algorithm. The algorithm Recover is executed by each party
at the beginning of every signing session to retrieve the correct share to use in
that session.

4.1 Correctness and Secrecy

The above protocol preserves the claim in [28, Theorem 4]; i.e., it is a mul-
tiplicative (perfect) secret sharing scheme for the t-out-of-n access structure.
Specifically, it satisfies correctness (i.e., any participant subset of cardinality ≥ t
can recover the secret g), secrecy (i.e., any participant subset of size ≤ t − 1
obtains no information about g), and is multiplicative (i.e., the secret can be
reconstructed by a multiplicative expression over a non-Abelian group, to which
any t parties can apply one of their shares). All 3 properties are proved by
induction over the recursion level.

4.2 Performances

In [28], the authors show how to compute and bound the total number of shares.

Definition 3. Let t, n be the parameter of the threshold secret sharing defined
by Figure 3. We define as S(t, n) the total number of shares.

12 This point could technically be avoided and considered a consequence of the latter
point.
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Remark 2. By the recursive nature of the secret sharing scheme, it immediately
holds that

S(t, n) =

t∑
i=0

S
(
i,
⌊n

2

⌋)
+ S

(
t− i,

⌈n
2

⌉)
, for t ∈

[
2,
⌊n

2

⌋]

S(t, n) =

⌊n
2 ⌋∑

i=t−⌊n
2 ⌋

S
(
i,
⌊n

2

⌋)
+ S

(
t− i,

⌈n
2

⌉)
, for t ∈

[⌊n
2

⌋
+ 1, n− 1

]
S(t, n) =n for t = 1 or t = n

S(t, n) =0 for t ≤ 0 or t > n.

We revisit the analysis of the scheme in [28], looking for an improved upper
bound on the number of shares distributed to all participants. Our main result
is the following:

Theorem 1. For any t, n ∈ N such that t ∈ [2, n − 1], it holds that S(t, n) ≤
2n ·min{ub0, ub1, ub2}, where

ub0 =

(
e(a + b)

a

)a

, ub1 =

(
e(a + b)

b

)b

, ub2 =

√
(a + b)

2π · a · b
· (a + b)a+b

aabb
,

and where a = ⌈log n⌉, b = t− 1, and e is Euler’s constant (i.e., e = 2.781...).

The proof for these bounds is slightly technical and we inserted it in Ap-
pendix C. The total number of shares represents also a bound on the number
of group operations during the key generation procedure (Figure 3). However,
for our scenario, it is also relevant to bound on the number of shares each user
receive, lets call it U(t, n). Using the same techniques in the proof of Theorem 1,
we can bound U(t, n) using the bounds ub0, ub1, ub2, divided by the number of
parties n. We can also recursively compute U(t, n) in this way:

U (t, n) =1 if t = 1 or t = n

U (t, n) =

min(t,⌊n
2 ⌋)∑

ℓ=max(1,t−⌊n
2 ⌋)

U
(
ℓ,
⌈n

2

⌉)
otherwise.

We remark that the upper bound given in [28] for the total number of shares
can be considered an asymptotic-notation version of our upper bound ub0, fo-
cusing on large values of t (e.g., t = ω(log n)). Thus, our analysis additionally
generalizes their bound to any t, and shows that the constant hidden in their
asymptotic notation, is small. In Figure 4 we compared the 3 upper bounds for
n = 100 and all t ≤ n/2. We conclude that upper bound ub1 is lower than ub0
for small values of t, and upper bound ub2 is always smaller than both, by a fac-
tor of about 10 or more, thus positively answering the first open question from
[28] (i.e., on whether their upper bound could be improved). Similar numeri-
cal considerations were derived up to n = 10K. Now, we analyze the scheme’s
performance in specific scenarios depending on the relative values of t and n.
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Fig. 4: Comparing (the logarithm of) the 3 upper bounds as a function of t ≤ n/2,
for n = 100.

Case t constant (in n). In this case, upper bound ub1 shows that every partici-
pant is given at most a polylogarithmic in n (specifically, O((log n)t−1)) number
of group elements, thus extending the analogue observation done in [28] for t = 2,
and improving the upper bound in Replicated Secret Sharing [1, 33], which is
polynomial in n. In Figure 5 (top), we compare exact values of the number of
group elements shared among all participants or to any one participant, for both
sharing approaches, when t = 2.

Case t logarithmic (in n). Here, the upper bound ub0 shows that every partici-
pant is given at most a polynomial in n number of group elements. Specifically,
when t = c log n, for some constant c, we have that S(t, n) = O(nd), for a related
constant d = log(e(c+ 1)). This improves the upper bound in Replicated Secret
Sharing [1, 33], which is super-polynomial in n. In Figure 5 (center), we compare
exact values of the number of group elements shared among all participants or
to any one participant, for both sharing approaches, when t = ⌊log n⌋.

Case arbitrary t. Here, our upper bounds ub0 and ub2 show that participants are
given a slightly super-polynomial in n number of group elements, thus improving
the upper bound in Replicated Secret Sharing [1, 33], which is exponential in
n. In Figure 5 (bottom), we compare exact values of the number of group ele-
ments shared among all participants or to any one participant, for both sharing
approaches, when t = ⌊n/2⌋. Sequence Sharing of [16] can be used to produce a
multiplicative threshold scheme but would also require an exponential number
of group elements to be distributed. The multiplicative threshold scheme in [25]
would distribute an (asymptotically) polynomial number of group elements for
any t, but the involved constants make it a very impractical scheme. Thus, it
still remains of interest to find a multiplicative threshold scheme over arbitrary
groups, distributing a practically efficient number of group elements for any t.
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Fig. 5: Total and individual number of shares in the following parameter scenar-
ios: (top) t = 2, (center) t = ⌊log(n)⌋, (bottom) t =

⌊
n
2

⌋
, when n ∈ [2, 35]
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Comparison with GRASS key generation. This sharing, with respect to the
Replicated Secret Sharing [1, 33] used in [6], has the disadvantages of a much
more complicated sharing procedure, that was designed with a centralized key
generation in mind. In fact, the natural approach to decentralize this key gen-
eration procedure requires the participants to agree on O(S(t, n)) group values.
Moreover, now each share is composed of a group element (even if some of them
can be compressed as seed) and a full set element, that for code based group
actions are considerably more expensive than single seeds. However, this is bal-
anced by the fact that the number of total shares and individual shares is much
lower, as shown by our bounds in Theorem 1 and plots in Figure 5. More impor-
tantly, RecKeyGen has the key advantage that the number of interactive rounds
necessary for multiparty computation of g now is only t, instead of

(
n
t

)
. This can

immediately be applied to the GRASS scheme [6], obtaining a scheme with only
2t + 1 interaction rounds between the parties (t for the commitment generation
and t for the response), independently of n, greatly reducing the latency of the
protocol.

4.3 Simulatability

We investigate simulatability properties of the presented Key Generation scheme,
which are important when using it in the context of a threshold signature scheme.
This does not follow immediately from [28] since in our protocol the dealer also
needs to publish the set elements corresponding to the group elements; however,
they can easily be simulated from the shares of the group elements. Also note that
the dealer samples new group elements at every recursion, so (with overwhelming
probability) no group element is used twice, thus the attacks from [17] cannot
be applied.

Proposition 2. The procedure RecKeyGen is simulatable, i.e., given a valid pub-
lic key pk = (x, y), there exist a simulator S that can simulate the view of
RecKeyGen applied on pk for any corrupted set with cardinality less than the
threshold t.

Proof. We prove by induction on n that given x, y set elements in the same orbit
we can simulate shards with the same distribution of RecKeyGen (i.e. uniform) in
polynomial time without knowledge of a GAIP solution, i.e. g such that y = g⋆x.
For this we exploit the recursive structure of RecKeyGen.

We start the induction from n = 2. In t = 1 we do not have anything to prove
(there are no corrupted parties). If t = 2 we sample g′ ∈ G and send it to the
corrupted party Pcor, then if Pcor is the first user we send x to Pcor, otherwise
we send x′ = g′−1 ⋆ y. Since the other share is implicitly defined as a product
of g and g′ (or its inverse), as in RecKeyGen, the shares have the same uniform
distribution. It is clear that when t = n (for any n ) we can repeat the same
simulation strategy with longer chains: let i∗ be the honest player, the simulator
knows all the gi for i ̸= i∗, so it can compute all the set elements for i ≤ i∗ by
computing xi = gi ⋆ xi−1, with X0 = x and all the set elements for i > i∗ by
computing xi = g−1

i ⋆ xi+1, with Xn = y.
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Now we prove this for n assuming that we have a simulation strategy for any
n′ < n. The cases t = 1, n are already solved above, so let’s focus on the case
t ̸= 1, n, thus we need to iterate through ℓ as it is done in line 17 of RecKeyGen
(Figure 3). If ℓ = 0, t we can just simulate the sharing on a smaller set of
users(Pleft or Pright) using the simulation strategy that we have by the induction
hypothesis since ⌈n2 ⌉ < n.

Otherwise, we define corleft = cor ∩ Pleft and corright = cor ∩ Pright. Now
since cor < t necessarily corleft < t − ℓ or corright < ℓ, wlog suppose that
corright < ℓ, the other case follows in the same way. We sample g1 ∈ G and
define x1 = g1 ⋆ x. Again, since the other share g2 is implicitly defined as g · g−1

1

all the generated shares are uniformly distributed as in RecKeyGen. Thus, we can
simulate the ℓ-out-of-|Pright| sharing on x1, y using the simulation strategy, given
by the induction hypothesis since |Pright| = ⌈n2 ⌉ < n. Then we share g1, x, x1 on
Pleft using RecKeyGen (here we do not even need to simulate anything since we
know g1).

5 Protocol Description

In this section we present GRASS+, an improved version of GRASS, presented
in [6]. The concept of the protocol remains consistent with the original work,
while we add ZKP to achieve better security and the key generation of Section 4.

Each signing session is uniquely identified by a session identifier ssid. Let
Ssig be the signing set for the session. Wlog we consider Ssig = {1, ..., t}. All the
parties involved have multiplicative shares of g such that g1 · · · gt = g. Moreover,
let (x, y) be the public key and {xj}j=0,...,t the intermediate set elements satis-
fying xi = gi ⋆ xi−1, with x0 = x and xt = y. These set elements are known to
the parties (the i-th party knows both xi and xi−1).

The signature protocol can be read in Figure 6. The signing session involves
a double round-robin (TSign1,TSign2), each followed by a finalization protocol
(Fin1,Fin2). In the Fin1 protocol, each party i discloses the value ri committed
during TSign1. These values are subsequently aggregated, and the result is uti-
lized as a salt in the challenge generation. This approach prevents the adversary
from predicting the challenge in advance during the simulation, as explained in
Remark 3.

In particular, starting from the first party, each party repeat rps = λ times
in parallel the following:

– chooses a random group element (line 8),
– apply it to the set element broadcast by the previous party,
– the resulting set element is then broadcast as well as a ZKP about the

knowledge of the group action.

The ZKPs need to be online-extractable, for reasons that will be more clear
in the proof, as explained in Remark 4. A possible proof ΠGAK obtained using
the Unruh [43] transform is shown in Appendix B. Unfortunately, this decrease
the performance of the protocol, since Unruh transform basically double the size
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of the transcript: indeed, since the challenge space is binary, during each round
the prover needs to send the response to one of the two challenges (as in normal
Fiat-Shamir) and the hash of the other one.

Then, after all the first round-robin is finished, the parties engage in a second
round-robin to compute the signature. In particular, when the challenge bit is
0 all the parties reveal the random group element chosen, while if the challenge
bit is 1 the parties engage in an iterative protocol as follows:

– each party retrieve the group element from the previous player (the first
player starts with the identity element 1),

– each player multiplies it by the nonce chosen in TSign1 (on the left) and by
the inverse of its private key (on the right).

In this way the response of each player is the group element that links the player
public key to the commitment sent during TSign1. If this equation does not hold
then the next party aborts, otherwise the protocol continue until the last player,
which produce the final signature.

The verification protocol is the same of the centralized signature, that we
report for completeness in Figure 7.

6 Adaptive Security

In our protocol we suppose the existence of a broadcast channel, where the
messages are published. To avoid the usage of a broadcast channel, when every
party sends a message to another one it is required to sign the message. For
further information about this technique see [26].

We divide the proof in three steps: first we consider the full threshold case
(i.e. all the parties are needed to sign) and we prove the security for n−1

2 cor-
ruptions (Section 6.1) and n− 1 corruptions (Section 6.2). Finally, we show how
to generalize (parts of) our proofs to any general t-out-of-n threshold.

6.1 (n − 1)/2 Corruptions

Theorem 2. Let (G,X, ⋆) be a group action such that n-Chain-GAIP (Prob-
lem 2) is hard, then the digital signature of Figure 6 is secure against adaptive
chosen message attack with up to n−1

2 corruptions in the Random Oracle Model.

Outline of the Proof. The proof follows a standard game-based approach. The
goal is to show that if an adversary is able to produce a forgery, then it is possible
to build an adversary able to win the n-Chain-GAIP problem (Problem 2). To
do so we need to simulate the EUF-CMA game of Figure 2. The strategy is very
similar to the one used to prove the honest-verifier zero-knowledge of the base
centralized protocol (see [5] for an example, where the group action used is the
code equivalence):

– every time a new session query is started the simulator choose a random
challenge ch;
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TSign1(Ssig, mes, ski, {pmj,1}j∈Ssig,j<i)

1 : x̃k
0 ← x for all k ∈ {1, ..., rps}

2 : if i ̸= 1

3 : for j ∈ Ssig, j < i

4 : {x̃k
j , }k=1,...,rps, πi ← pmj,1[1, 2]

5 : if V(πi) = ⊥
6 : return ⊥

7 : ri
$←− {0, 1}rps

8 : cmti ← H(ssid, ri)

9 : for k = 1, ..., rps

10 : g̃ki
$←− G

11 : x̃k
i ← g̃ki ⋆ x̃k

i−1

12 : πi ← ΠGAK(g̃
k
i , x̃

k
i , x̃

k
i−1)

13 : pmi,1 ← ({x̃k
i }k=1,...,rps, πi, cmti)

14 : sti,1 ← ({g̃ki }k=1,...,rps, ri)

15 : return (pmi,1, sti,1)

TSign2(Ssig, mes, ski, {pmj,1, rj}j∈Ssig , {pmj,2}j∈Ssig,j<i)

1 : parse ({g̃ki }k=1,...,rps)← sti,1[1]

2 : for j ∈ Ssig
3 : parse all ({x̃k

j }k=1,...,rps, πj , cmtj)← pmj,1

4 : if V(πj) = ⊥ or cmtj ̸= H(ssid, rj)

5 : return ⊥

6 : r ←
⊕
j∈Ssig

rj

7 : ch← H(r||x̃1
t ||...||x̃rps

t ||mes)
8 : for j ∈ Ssig, j < i

9 : parse all ({rspkj }k=1,...,rps)← pmj,2

10 : for k = 1, ..., rps

11 : if chk = 0

12 : if rsp
k
j ⋆ x̃k

j−1 ̸= x̃k
j return ⊥

13 : if chk = 1

14 : if rsp
k
j ⋆ xj ̸= x̃k

j return ⊥
15 : for k = 1, ..., rps

16 : if i = 1

17 : rsp
k
0 = 1

18 : if chk = 0

19 : rsp
k
i ← g̃ki

20 : if chk = 1

21 : rsp
k
i ← g̃ki · rspki−1 · g

−1
i

22 : pmi,2 ← {rsp
k
i }k=1,...,rps

Fin1(Ssig, mes, ski, {pmj,1}j∈Ssig)

1 : ri ← sti,1[2]

2 : return ri

Fin2(ch,Ssig, mes, ski, {pmj,1, pmj,2, rj}j∈Ssig)

1 : parse all {rspki }k=1,...,rps ← pmi,2

2 : r ←
⊕
j∈Ssig

rj

3 : for k = 1, ..., rps

4 : if chk = 0

5 : rsp
k ←

t∏
j=1

rsp
k
j

6 : if ch = 1

7 : rsp
k ← rsp

k
max(Ssig)

8 : σ ← rsp
1||...||rsprps||ch||r

9 : return σ

Fig. 6: Signature protocol for GRASS+.
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Ver((x, y), mes, σ)→ 0/1

1 : parse ({rspk}k=1,...,λ, ch, r)← σ

2 : for k = 1, ..., λ

3 : if chk = 0

4 : x̃k
t ← rspk ⋆ x

5 : if ch = 1

6 : x̃k
t ← rspk ⋆ y

7 : return ch = H(r||x̃1
t ||...||x̃λ

t ||mes)

Fig. 7: Verification algorithm for GRASS+

– the simulator then simulates the signature generation using the chosen chal-
lenge. Notice that a single round is basically an execution of the centralized
protocol, so the same strategy can be exploited.

To avoid inconsistencies when answering the random oracle queries, we need that
the simulator knows the input in challenge computation before the adversary.
This is done by adding a random salt as additional input of the hash function,
that the simulator can extract from the adversary.

Lastly, the simulator needs to answer to the corruption queries. Unfortunately
the strategy adopted makes impossible to reconstruct all the private data, so the
simulator needs some additional information. In particular, the simulator needs
to be able to extract all the secret nonces used by the adversary, this is possible
thanks to the online-extractable ZKP introduced during the execution of TSign1.

Proof. Consider a probabilistic polynomial-time adversary A that make up to
n−1
2 corruption queries, qs sign queries and qh quantum call to the random

oracle OH. We build a probabilistic polynomial-time algorithm S for n-Chain-
GAIP that use A as a subroutine. In the proof S runs A two times. In this way,
S makes no more than n− 1 queries to its oracle Ochain and aims to output the
n groups elements that constitute the chain. If the total number of queries is
less than n − 1 then S performs the additional queries required to extract the
solution.

The idea of the proof is that during the two iterations, S reprograms the
random oracle OH to output a different random value on a single input, so that
it can extract the action from x to y.

We now describe how S can simulate the game Expeuf−cma
A . In particular S

is responsible for simulating the key generation and the response to the oracles
OCorrupt,OTSign1 and OTSign2 as well as all the random oracle queries OH. S
initializes two empty tables to save all the oracle queries and the sign queries
done by the adversary. Let QH and QTSign such tables. At the beginning of the
second iteration of A, S resets QTSign to the empty set, while it keeps QH. Lastly
S initialize a corruption counter cc = 0 that will count the number of corruption
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made by the adversary. If cc ever surpass n−1
2 S aborts. S resets such counter

to 0 at the beginning of the second iteration.

n-Chain-GAIP challenge. S takes as input an n-Chain-GAIP challenge in the
form of {xi}i=0,...,n. S has also access to an oracle Ochain that can answer to up
to n − 1 queries, S will use it to answer to the corruption queries made by the
adversary. S sets (x, y) = (x0, xn) as the public key of the Expeuf−cma

A game, with
(xi−1, xi) being the public key of party i and gi be the corresponding private
key.

Simulating the RO Queries. When A queries the random oracle OH on input
X, S checks whether X ∈ QH. If this is the case then S answers with the same

output, otherwise S samples c
$←− {0, 1}rps randomly, saves (X, c) in the table

QH and returns c.

Simulating Signature. S needs to simulate both OTSign1 and OTSign2 . The simu-
lation proceeds as follows:

– OTSign1(). S do the checks in at the beginning of the game of Figure 2. In
particular S checks whether i is an honest party and whether the session
id ssid is correctly defined (in the case i = 0, then S choose a random
session id ssid) or not. Lastly, S checks whether all the previous player
correctly sent their data and the corresponding ZKP. During this step S
can also extract all the previous g̃j from the adversary. If all the checks are
passed then S checks whether a challenge chssid is defined or not. In case it
is not defined (meaning that this is the first time S participate in the signing
session ssid), S choose a random string and sets it as chssid. See Remark 3
for more details. For k = 1, ..., rps does the following:
• if chssidi = 0 then follows the protocol normally,
• if chssidi = 1 then S choose a random g̃ki ∈ G and sets x̃k

i = g̃ki ⋆ xi−1.
Then it simulates the ZKPs necessary and compute πi.

– OTSign2(): by construction, the challenge is ch = chssid, except with negligi-
ble probability (see Remark 3). Thanks to the value chosen in the simulation
of OTSign1() S can successfully answer both challenges.

Corruption Query. S needs to answer the corruption queries made by the ad-
versary. When A asks for the corruption of party i, S checks that i is an honest
party and if there are less than n−1

2 corrupted parties. If both checks are true
then S queries Ochain on input (xi−1, xi) to get gi.

At this point Si can successfully retrieve all the g̃ki used in all the active
signing session involving i, filling all the sti,1 (excluding those for which i has not
yet sent a message). In particular S needs to reconstruct g̃ki when the challenge
is 1, since S follows the protocol honestly when the challenge is 0. For every
session, let i∗ < i be the last honest player, controlled by S. In the case where
all the player before i are corrupted or i is the first player we set i∗ = 0. Clearly
S knows all the gj with i∗ < j < i, as well as gi since they are all corrupted
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parties. Moreover, S extracted all the g̃kj from the ZKPs (lines 5 and 10 of

TSign1). Thus, S knows both the action from xi∗ to xi and the action from x̃k
i∗

to x̃k
i−1. Lastly S knows both the action from xi to x̃k

i and the action from xi∗

to x̃k
i∗ by construction (see the simulation of TSign1 when the challenge bit is

1). In the case i∗ = 0 S can simply set x̃k
i∗ = x0 for all k and thus the action is

the identity element. In this way S can compute the actions from x̃k
i−1 to x̃k

i .

x0 x1 x2 x3

x̃1

x̃2

x̃3

g̃1 ⋆

g1 ⋆ g2 ⋆ g3 ⋆

g̃2 ⋆

g̃3 ⋆

(a) The previous player is honest.

x0 x1 x2 x3

x̃1

x̃2

x̃3

g̃1 ⋆

g1 ⋆ g2 ⋆ g3 ⋆

g̃2 ⋆

g̃3 ⋆

(b) The previous player is corrupted.

Fig. 8: Simulation of a corruption query on player P2 (in green).

Figure 8a and Figure 8b show schematically how the corruption queries (on
P2, in green) are simulated, depending on whether the previous player is cor-
rupted (in red) or not.

– Figure 8a since P1 is honest, the simulator knows both the blued arrows and
the green arrow (thanks to the OCorrupt made to the n-Chain-GAIP oracle).
Thus, it can compute g̃3 by composing the three actions.

– Figure 8b since P2 is corrupted, the simulator cannot do the same compu-
tation of the previous case. However, the simulator knows both the blued
arrows, the green arrow (thanks to the OCorrupt made to the n-Chain-GAIP
oracle) and both the red arrows (thanks to the online extractable ZKP and
a previous corruption query). Hence, it can compute g̃3 by composing the
five actions.

Solving n-Chain-GAIP. After the simulation the adversary outputs a forgery.
At this point the simulator rewind and change the challenge corresponding to
the forgery made by the adversary, thus extracting the action form x to y. S the
use the same action to win the n-Chain-GAIP game.

Remark 3. The simulator chooses the challenge for each session after receiving
a query for it for the first time. Then, for all the session, the simulator continues
to use the same challenge chosen. To reprogram the random oracle in such a
way chssid is as expected the Simulator just need to collect the set elements x̃k

t

for k = 1, ..., rps, sent after the last execution of TSign1, and all the random salt
values ri. The adversary need to commit on these salt values, so the simulator
can extract them from the random oracle queries, but they are all revealed only
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in Fin1 after the x̃k
t are produced. Thus, the simulator learns them ahead of time

and can reprogram the random oracle accordingly.
The only way that the simulation fails is if a query with the same input has

already been sent to the random oracle, however this happens with negligible
probability since at least one of the salt values is chosen uniformly at random.

x0 x1 x2 x3

x̃1

x̃2

g̃1 ⋆

g1 ⋆ g2 ⋆ g3 ⋆

f̃2⋆
g̃2 ⋆

Fig. 9: The simulation failure without the ZKP of TSign1. If the simulator com-
putes x̃2 using the red arrow and then the adversary, that controls P1, corrupts
P2, the simulator is not able to retrieve the blue arrow.

Remark 4. The main difference from the original static secure signature [6] is
the non-interactive ZKP in TSign1. Unfortunately, this is necessary to allow the
simulator to correctly answer to the corruption queries. Indeed, let us consider
a (3, 3) signature where the adversary controls P1, while P2, P3 are honest (see
Figure 9). Notice that since the threshold is 3, the adversary can perform a
second corruption query at any time. Moreover, suppose that the challenge is 1.
According to the simulator strategy, the simulator compute x̃2 starting from x2

(red arrow) instead of x̃1 (blue arrow).
Now, suppose that after receiving x̃2 the adversary perform a corruption

query on P2. The simulator then get g2 from the n-Chain-GAIP oracle, however
it is unable to retrieve g̃2, and thus the simulation fails. Notice that the simulator
knows f̃2 by construction and g1, g2 thanks to the n-Chain-GAIP oracle. In this
way, the oracle can compute g̃1 · g̃2, however it cannot compute neither g̃1 nor
g̃2, otherwise it would be able to break the GAIP problem.

6.2 n − 1 Corruptions

Theorem 3. Let (G,X, ⋆) be a group action such that n-Chain-GAIP (Prob-
lem 2) is hard. Then the digital signature of Figure 6, with rps = λ + log(n) is
secure against adaptive chosen message attack with up to n − 1 corruptions in
the Random Oracle and Black Box Group Action Model.

Proof. The simulation strategy is the same as the previous proofs, the only
difference is that the simulator needs to extract the solution for the n-Chain-
GAIP after a single forgery.
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For this proof we use the same notation of the previous proof, so x0 = x, xn =
y, x1, ..., xn−1 are the intermediate set elements and g0, .., gn−1 the secret group
elements from n-Chain-GAIP. Let mes, σ the forgery sent by the adversary, from
which we can recover the commitment set elements x̃1, ..., x̃rps, the salt r and the
responses resp = (resp1, ..., resprps). Recall that ch ← H(r||x̃1

t ||...||x̃
rps
t ||mes).

We summarise the input of the random oracle as

cmt = (r, x̃1, ..., x̃rps, mes) . (2)

Since we are in the BBGAM for each x̃i we can “follow” the adversary queries and
the computations done by the simulator to recursively find a group element ḡ and
an index j such that x̃i = ḡ ⋆ xj , i.e. to find a link to one of the known elements
x0, x1, ..., xn = y, let idx(x̃i) := j. Observe that the validity of the transcript
implies that the commitment elements x̃i are all part of the same orbit O(x) ∋
x, y. Thus, it is not possible for the adversary to link one of the commitment
elements to a random set element got using Osample since the probability that
a random set element lies in the same orbit of a given element is negligible (as
discussed in Section 2.4).

Let IDX be (idx(x̃1), ..., idx(x̃rps)). Thanks to our simulation strategy ch has
been sampled uniformly at random and its distribution is independent of the
one the adversary used to generate cmt. In fact, thanks to the salt, A get access
to it only after querying the random oracle on cmt.

Using this independence we want to show that we extract a solution to n-
Chain-GAIP with non-negligible probability. Now, for any ℓ ∈ {0, ..., n − 1} we
can define the vector splitℓ (IDX) such that its i-th entry is 1 if idx(x̃i) > ℓ and
0 otherwise. Now consider the union set of these n vectors derived from :

S(IDX) = {splitℓ (IDX) for ℓ = 0, .., n− 1} .

This set is a deterministic function of cmt, thus its distribution is independent
of ch, thus

Pr[ch ∈ S(IDX)] =
n

2rps
=

n

2λ+log(n)
= 2−λ ,

i.e. with overwhelming probability splitℓ (IDX) ̸= ch for all ℓ.

We can finally use the forgery information to solve the n-Chain-GAIP. To
perform the simulation we have queried n− 1 solutions gi to the n-Chain-GAIP
oracle (if less we perform the missing one at random), define ℓ such that the only
missing pair is (xℓ, xℓ+1). We show now how to extract the missing secret gℓ.

By the previous discussion splitℓ (IDX) ̸= ch. Let i be one of the indexes
where they differ.

Consider the case in which chi = 1. Thus, x̃i is linked to both y (thanks to
resp) and xj , with j = idx(x̃i) (thanks to the BBGAM). We can combine this
information to get a group element g′ such that y = g′ ⋆xj . Also, chi = 1 implies
that the i-th entry of splitℓ is 0, i.e. that j = idx(x̃i) ≤ ℓ. Thus, by previous queries
to n-Chain-GAIP oracle, we known g0, ..., gj−1 such that xj = (gj−1 · · · g0) ⋆ x0

and we can solve n-Chain GAIP since

y = g ⋆ x0 with g = g′(gj−1 · · · g0)−1 .
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If chi = 0 we can adapt the same strategy using instead that x̃i is linked to
both x and xj for j > ℓ. Thus, with probability 1− 1

2λ
we can solve the n-Chain

GAIP problem, without rewinding.

6.3 Adapting the Proof for any Threshold

Replicated Secret Sharing. It is easy to see that the above technique can be easily
adapted to any threshold t when the key generation is done via replicated secret
sharing, as in the original work [6].

Proof (Sketch). Indeed, it is enough to consider a
(
n
t

)
-Chain-GAIP instance

having the total number of elements equal to the total number of shards. Then,
the simulator can simulate the key distribution by sharing the {xi} among all the
parties, according to the replicated secret sharing algorithm (notice that it is not
important to know all the action gi during this step). Then the simulation can
be carried out as before, except that when the adversary asks for a corruption
query the oracle needs to retrieve all the secret key, by doing multiple query to
the oracle. This is not a problem since by doing at most t − 1 corruptions the
simulator will not ask all the group elements to the oracle.

While the above proof sketch is enough to prove the adaptive security of
GRASS against t − 1 corruptions, there is a performance issue: indeed using
replicated secret sharing implies that the total number of shares is

(
n
t

)
, and thus

the Chain-GAIP challenge should have
(
n
t

)
actions. It is immediate to see from

the proof to Theorem 3, that the security loss is thus
(
n
t

)
. This is exactly the same

security loss that can be achieved by guessing the corrupted set of parties and
abort if the guess is incorrect. However, it is important to notice that, while the
“naive” approach inherently incurs in such a security loss, our proof is instead
tight with respect to the new Chain-GAIP problem. Thus, if the total number of
shares is reduced using a better algorithm, then the security loss can be reduced
as well, leading to a tighter security compared to simply guessing the adversary
corruptions.

Lastly, note that this performance issue impacts also other aspects of the
protocol, thus we need anyway

(
n
t

)
to be small.

New Secret Sharing. Given the considerations of the previous paragraph, the
first idea to solve the issue would be to use the newly introduced secret sharing
of Section 4. However, this is not as straightforward as it could seem. Indeed,
the secret sharing of Section 4 does not output a single chain of group actions,
but many of them, with many intersections. Thus, we cannot reduce the secu-
rity of the signature to the n-Chain-GAIP. In particular, to prove the security
with the improved secret sharing, we reduce it to N -Graph-GAIP, introduced in
Problem 3.

Theorem 4. Let (G,X, ⋆) be a group action such that N -Graph-GAIP (Prob-
lem 3) is hard. Then the digital signature of Figure 6 with the secret sharing
of Section 4 is secure against adaptive chosen message attack with up to n−1

2
corruptions in the Random Oracle and Black Box Group Action Model.
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Proof. The proof is the same as the full threshold case (Theorem 2), where
instead of receiving an n-Chain-GAIP challenge, the simulator receives as input
an N -Graph-GAIP (Problem 3) challenge. Then the simulator set the public
key according to it, distributing all the shards to the users following the secret
sharing of Section 4 and start the interaction with the adversary. The number of
set elements N involved in N -Graph-GAIP is set in such a way to have enough
shares for the sharing in Section 4, thus it is bounded by the number of shards
S(t, n).

Every time the adversary asks for the corruption of party Pi, the simulator
retrieves all the public key of Pi and queries the oracle on them. Notice that
since the adversary performs at most t corruptions, then the simulator never
asks for an invalid query (i.e., a query that links x, y) by construction, so the
simulator can answer all the queries correctly.

The remaining part of the simulation is the same, since the signature algo-
rithm is equal to the full threshold case.

7 Conclusion

In this paper we improved the GRASS signature scheme [6] in two ways: our main
result is a post-quantum threshold signature scheme secure against adaptive
attacks. This schemes can be instantiated with a variety of cryptographic group
actions, in particular [5, 7, 11, 22]. Additionally, as a second result, we were able
to improve the key generation protocol.

Even if the asymptotic complexity remains the same, concrete results show
a considerable reduction in the number of shares that each party needs to store,
allowing a wider choice for the parameters. Improving the secret sharing, possibly
reaching a constant number of shares, is still an open problem. In this context,
a possible research area is to adapt classical techniques from MPC, like Beaver
Triples, to achieve better performance. Another open problem is to define an
efficient decentralized version of the new Key Generation procedure.

It is also important to note that improving the secret sharing and the key
generation algorithm does not impact only the performance, but also the security
of the scheme. As discussed in Section 6, the security loss is often proportional
to the number of shares used, so a more efficient protocol would lead to a tighter
security reduction.

Unfortunately, our protocol still suffers the same performance issues of the
original GRASS and other group-based threshold signature schemes like [24],
since we require a double round-robin13, moreover we introduced expensive ZKPs
that are necessary for achieving adaptive security. Trying to reduce the computa-
tional overhead while still reaching the higher level of security is a very important
challenge to tackle, and possible improvements can be obtained both by com-
pressing the ZKPs (since the Unruh transform is very expensive) or by finding
a way to reduce the number of ZKPs needed.

13 It is worth noting that the usage of one round-robin is optimal, as shown in [23].
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A Secret Sharing

We briefly recall the definition and main properties of the type of secret sharing
scheme that is sufficient for this paper’s needs.

Let P = {P1, . . . , Pn} denote a set of n participants. The (t, n)-threshold
access structure over P is the set of subsets of P of size at least t. A secret sharing
scheme for the (t, n)-threshold access structure is a pair of efficient algorithms
(Share, Recover) with the following syntax and requirements. On input a value s,
called the secret, algorithm Share returns n (sets of) values sh1, . . . , shn, called
shares. On input a subset of shares, algorithm Recover returns a value in s′. The
correctness requirement says that if an authorized subset of shares (i.e., at least t
out of n) is input to Recover, then s′ = s. The secrecy requirement says that the
distribution of the secret is independent on the distribution of any unauthorized
subset of shares (i.e., at most t− 1 out of n).

A secret sharing scheme for the (t, n)-threshold access structure with values in
a group G is multiplicative (see, e.g., Definition 2 in [28]) if in the reconstruction
phase the secret can be written as the group product of t values in G, each of
these being locally computed by a different participant, as a function of the share
obtained at the end of the distribution phase. A major research question in the
area of secret sharing schemes is minimizing the size of the shares.

B Online Extractable Proofs

In this section we provide the online-extractable ZKP used in the signature
protocol. Our protocol is essentially the Unruh transform [43] of the standard
proof for group action knowledge. Other alternatives are possible, such as using
the Fischilin transform [31].

Let g be the secret group action and x, y public set elements, with y = g ⋆ x.
Let H,Hch two hash functions, with Hch : {0, 1}∗ → {0, 1}λ. Figure 10 shows
how the prover, who knows g, can convince the verifier about it.

The verify procedure V consist in computing all the x̃i and cmti,j for j = 0, 1
i = 1, ..., λ and then checking the correctness by computing ch. In particular, for
each challenge bit chi the verifier compute the following

– if chi = 0 then x̃i = rspi,0 ⋆ x and cmti,0 = H(rspi,0),
– if chi = 1 then x̃i = rspi,1 ⋆ y and cmti,0 = H(rspi,1),

then check whether ch = Hch(x̃1||cmt1,0||cmt1,1||...||x̃λ||cmtλ,0||cmtλ,1) or
not.

The correctness, honest-verifier zero-knowledge and online-extractability prop-
erties follow directly from the security of the base protocol and the properties
of the Unruh transform. The protocol efficiency can be improved by using well-
known optimizations like seed trees and fixed-weight challenges (see e.g. a survey
in [14]) and by storing the commitments cmti,j in more efficient structures, like
Merkle Trees. In the interest of clarity, we omit these optimizations from the
description.
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ΠGAK(g, x, y)

1 : for i = 1, ..., λ

2 : g̃i
$←− G

3 : x̃i = g̃i ⋆ x

4 : rspi,0 = g̃i

5 : rspi,1 = g̃i · g−1

6 : cmti,0 = H(rspi,0)

7 : cmti,1 = H(rspi,1)

8 : ch = Hch(x̃1||cmt1,0||cmt1,1||...||x̃λ||cmtλ,0||cmtλ,1)
9 : for i = 1, ..., λ

10 : if ch = 0

11 : rspi = (rspi,0, cmti,1)

12 : else

13 : rspi = (rspi,1, cmti,0)

14 : π = (ch, {rspi})

Fig. 10: Online extractable ZKP for group action knowledge

C Improved Analysis of the Threshold Scheme

The formal proof of Theorem 1 is organized as follows. We start by deriving
in Section C.1 upper bounds on binomial coefficients from some of their well-
known properties. Then, in Section C.2, we recall the definition of the total
number S(t, n) of shares distributed in the threshold scheme from [28], and
some analysis from the same paper. Finally, in Section C.3 we show some new
analysis and conclude the proof. The analysis includes a lemma characterizing
the nested sums with dependent indices in terms of a binomial coefficient of the
‘combinations with repetitions’ type.

C.1 Preliminary Facts

Let e denote Euler’s number (i.e., 2.781 . . .). We start by recalling a well-known
property of binomial coefficients and an upper bound for them.

Fact 1. For any n, k ∈ N, such that k ≤ n, it holds that

1.
(
n
k

)
=
(

n
n−k

)
,

2.
(
n
k

)
≤
(
en
k

)k
.

By applying both items in Fact 1, we derive the following
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Fact 2. For any a, b ∈ N, it holds that

(
a + b

a

)
≤ min

((
e(a + b)

b

)b

,

(
e(a + b)

a

)a
)
.

The following fact recalls bounds on the factorial, as from [42], based on
Stirling’s factorial approximation.

Fact 3. [42] For any n ∈ N, it holds that

√
2πn ·

(n
e

)n
·
(
e1/(12n+1)

)
< n! <

√
2πn ·

(n
e

)n
·
(
e1/12n

)
.

Based on Fact 3, we obtain the following alternative upper bound on binomial
coefficients.

Fact 4. For any a, b ∈ N, it holds that(
a + b

a

)
≤
√

(a + b)

2π · a · b
· (a + b)a+b

aabb
.

Proof. The bound follows by starting with the definition of binomial coefficients,
i.e., (

a + b

a

)
=

(a + b)!

a! · b!
,

then applying the upper bound on (a + b)! derived from Fact 3, and the lower
bounds on a! and b! also derived from Fact 3, and then performing algebraic
simplifications. ⊓⊔

We will also use the following parallel summation equality for binomial coef-
ficients (see, e.g., Eq. (5.9) in [32]).

Fact 5. For any n, k ∈ N, it holds that

∑
r≤n

(
k + r

r

)
=

(
k + n + 1

n

)
.

C.2 Definitions and Analysis from [28]

To analyze the number of shares (i.e., group elements) distributed in the thresh-
old scheme from [28], we recall definitions and facts of interest from that paper,
as well as the definitions of Section 4.
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Let S(t, n) denote the number of group elements distributed to all n parties
in the scheme. Then, it holds that

S(t, n) =

t∑
i=0

S
(
i,
⌊n

2

⌋)
+ S

(
t− i,

⌈n
2

⌉)
, for t ∈

[
2,
⌊n

2

⌋]

S(t, n) =

⌊n
2 ⌋∑

i=t−⌊n
2 ⌋

S
(
i,
⌊n

2

⌋)
+ S

(
t− i,

⌈n
2

⌉)
, for t ∈

[⌊n
2

⌋
+ 1, n− 1

]
S(t, n) =n for t = 1 or t = n

S(t, n) =0 for t ≤ 0 or t > n.

The following preliminary fact helps determining a common upper bound for
the above two equations for S(t, n).

Fact 6. [28] For any t, n ∈ N, such that t ∈ [
⌊
n
2

⌋
+ 1, n− 1], it holds that

⌊n
2 ⌋∑

i=t−⌊n
2 ⌋

S
(
i,
⌊n

2

⌋)
+ S

(
t− i,

⌈n
2

⌉)
≤

t∑
i=0

S
(
i,
⌊n

2

⌋)
+ S

(
t− i,

⌈n
2

⌉)
.

Proof. The proof follows by observing that the right-hand-side sum contains at
least all elements in the left-hand-side sum. ⊓⊔

The following lemma characterizes S(t, n) in terms of nested sums with de-
pendent indices.

Lemma 1. [28] For any t, n ∈ N, such that t ∈ [2, n− 1], it holds that

S(t, n) ≤ 2n ·
t∑

i1=0

i1∑
i2=0

· · ·
i⌈log n⌉−1∑
i⌈log n⌉=0

1.

Proof. For t ∈ [2, n− 1], it holds that

S(t, n) ≤
t∑

i=0

S(i, ⌊n/2⌋) + S(t− i, ⌈n/2⌉),

≤ 2 ·
t∑

i=0

S(i, ⌈n/2⌉),

≤ 22 ·
t∑

i1=0

i1∑
i2=0

S(i2, ⌈n/4⌉),

≤ ...

≤ 2⌈logn⌉ ·
t∑

i1=0

i1∑
i2=0

· · ·
i⌈log n⌉−1∑
i⌈log n⌉=0

S(i⌈logn⌉, 1),

≤ 2n ·
t∑

i1=0

i1∑
i2=0

· · ·
i⌈log n⌉−1∑
i⌈log n⌉=0

1,
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where the first inequality follows by Fact 6, the second inequality by term group-
ing, the next inequalities by repeated applications of Fact 6 and term grouping,
and the last inequality follows from the definition of S(t, n), for n = 1. This
proves the lemma. ⊓⊔

C.3 Proof of Theorem 1

The following lemma characterizes the nested sums with dependent indices in
the statement of Lemma 1 in terms of a binomial coefficient of the ‘combinations
with repetitions’ type.

Lemma 2. For any t,m ∈ N, it holds that

t∑
i1=0

i1∑
i2=0

· · ·
im−1∑
im=0

1 =

(
t + m− 1

m

)
.

Proof. We prove that the equality in the lemma statement holds, by double
induction over variables t and m.

When t′ = m′ = 1, both the left-hand side and the right-hand side are = 1.

Assuming the equality holds for t′ ≤ t and m′ ≤ m, to show that the equality
holds for t′ = t + 1 and m′ = m, we can write

t+1∑
i1=0

i1∑
i2=0

· · ·
im−1∑
im=0

1 =

t∑
i1=0

i1∑
i2=0

· · ·
im−1∑
im=0

1 +

t+1∑
i2=0

· · ·
im−1∑
im=0

1

=

(
t + m− 1

m

)
+

t+1∑
i2=0

· · ·
im−1∑
im=0

1

= · · ·

=

(
t + m− 1

m

)
+

(
t + m− 2

m− 1

)
+ · · ·+

(
t + 1

2

)
+ t + 1

=

m∑
i=0

(
t− 1 + i

i

)
=

(
t + m

m

)
=

(
(t + 1) + m− 1

m

)
,

where the 2nd equality follows a single application of the induction hypothesis,
the 4th equality follows from multiple applications of the induction hypothesis,
and the 6th equality follows from Fact 5.
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Now, assuming the equality holds for t′ ≤ t and m′ ≤ m, to show that the
equality holds for t′ = t and m′ = m + 1, we can write

t∑
i1=0

i1∑
i2=0

· · ·
im∑

im+1=0

1 =

0∑
i2=0

· · ·
im∑

im+1=0

1 + · · ·+
t∑

i2=0

· · ·
im∑

im+1=0

1

=

(
m− 1

m

)
+ · · ·+

(
m− 1 + t

m

)
=

(
m

m

)
+ · · ·+

(
m + t− 1

m

)
=

(
m

0

)
+ · · ·+

(
m− 1 + t

t− 1

)
=

t−1∑
i=0

(
m + i

i

)
=

(
m + t

t− 1

)
=

(
t− 1 + (m + 1)

m + 1

)
,

where the 2nd equality follows by t+ 1 applications of the induction hypothesis,
and the 6th equality follows from Fact 5. ⊓⊔

We can finally conclude the proof of Theorem 1, by using lemmas and facts
so far established in this section to show the upper bounds on the number of
group elements distributed in the threshold scheme.

Specifically, denoting ⌈log n⌉ as ℓ, we have that

S(t, n) ≤ 2n ·
t∑

i1=0

i1∑
i2=0

· · ·
iℓ−1∑
iℓ=0

1 ≤ 2n ·
(
t− 1 + ℓ

t− 1

)
≤ 2n ·min{ub0, ub1, ub2},

where the 1st inequality follows from Lemma 1, the 2nd inequality follows from
Lemma 2 for m = ⌈log n⌉, and the 3rd inequality follows from Fact 1 (bounds
ub0 and ub1) and Fact 2 (bound ub2).

This concludes the proof of Theorem 1.
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