SoK: Trusted setups for powers-of-tau strings

Faxing Wang!,2, Shaanan Cohney', and Joseph Bonneau?,?
! University of Melbourne
2 New York University
3 al6z crypto research

Abstract. Many cryptographic protocols rely upon an initial trusted
setup to generate public parameters. While the concept is decades old,
trusted setups have gained prominence with the advent of blockchain
applications utilizing zero-knowledge succinct non-interactive arguments
of knowledge (zk-SNARKS), many of which rely on a “powers-of-tau”
setup. Because such setups feature a dangerous trapdoor which under-
mines security if leaked, multiparty protocols are used to prevent the
trapdoor from being known by any one party. Practical setups utilize an
elaborate public ceremony to build confidence that the setup was not
subveted. In this paper, we aim to systematize existing knowledge on
trusted setups, drawing the distinction between setup protocols and cer-
emonies, and shed light on the different features of various approaches.
We establish a taxonomy of protocols and evaluate real-world ceremonies
based on their design principles, strengths, and weaknesses.

1 Introduction

Consider the following well-known cryptographic setup procedure: sampling two
independent generators in a finite group g,h € G. Doing so is necessary for
a variety of schemes, such as Pedersen commitments [1] and (notoriously) the
Dual_EC pseudorandom bit generator [2]. For any two such generators in a
cyclic group, there exists a value 7 such that g™ = h (the discrete logarithm of A
to the base g). The value 7 is variously called a trapdoor, backdoor or tozic waste
[3] in that disclosure of 7 undermines the security properties of the system.

The risk of disclosure motivates a variety of approaches to sample g and h
such that no party learns 7. Given some public constant ¢ and a hash function H
which outputs elements in the group G [4], it suffices to choose g = H(c||0),h =
H(c||1). This fits into the class of public-coin protocols: all parties can see the
value ¢, which could be sampled from a randomness beacon or the output of a
multi-party randomness protocol [5].

Unfortunately, some schemes inherently require secrets or private coins. The
best-known example is powers-of-tau setups, in which the output is a sequence
of elements (97,972,973, e ,ng) in a finite group. Amongst the “Cambrian
explosion” of zero-knowledge proof systems [6] used in modern blockchain ap-
plications, the most efficient protocols rely on a powers-of-tau-like string. These
protocols have real stakes, some with billions of dollars on the line if the trusted

setup is compromised. They power proofs for many applications, including scal-
ing blockchains via zk-rollups [7], connecting disparate blockchains via zkBridges
[8], and facilitating anonymous payments[9].

Setting up the powers-of-tau string is easy with a simple trusted setup: a
trusted party can generate the string and promise not to use the trapdoor 7
maliciously. It is cliched to note that placing trust in a single entity is risky, as
that entity is a single-point-of-failure inherently exposed to targeted attacks. It
is also impossible to generally cryptographically prove trapdoor deletion since
digital data can be arbitrarily copied and pasted.* Another potential solution is
to outsource setup to a secure hardware enclave [16]-[19]. However, this model
is reliant on significant assumptions as to the security of the enclave, which has
been found not to hold in real implementations, [20]-[22].

Instead, practical instantiations bootstrap trust from a multi-party trusted
setup protocol. In a typical powers-of-tau setup protocol, each participant ends
up with a share 7; such that 7 = [[7;. An appealing feature is that all parties
must collude to reconstruct 7, and if any party deletes their 7; then 7 can never
be recovered (ensuring forward secrecy even if an honest party is later corrupted).

While in principle such a protocol could be run once and re-used for many
applications, in practice, it is difficult to find a universally trusted party, leading
to a number of disparate trusted setups for different applications. Additionally,
some proof systems require additional application-specific parameters, requiring
distinct setups. Hence, the blockchain space has already seen dozens of powers-
of-tau setup protocols. While notions of a trusted setup have long been known in
the literature, in practice, the bulk of practical instantiations have been powers-
of-tau setups ocurring within the past several years, making them the most
important case study for trusted setups.

In this work, we systematize the emerging body of knowledge on trusted
setups, specifically for powers-of-tau strings.

Protocols vs. ceremonies. While there are widespread discrepancies in terminol-
ogy within both the research literature and zk-SNARKs community, we draw a
distinction between trusted setup protocols and trusted setup ceremonies:

— Trusted setup protocols which are specified purely mathematically, enabling
an arbitrary group of n participants to construct public parameters. They
often utilize abstractions such as a public bulletin board or broadcast chan-
nels, and come with a rigorous cryptographic security proof.

— Trusted setup ceremonies are real-world instantiations of these protocols.
They operate with a specific user base or orgnaization and aim to provide
operational security, verifiability and social trust among the intended user
base. Ceremonies require, for example, implementing the adopted protocol
in software, choosing participants, instantiating required tools like bulletin
boards, and ensuring public access to data output during the protocol run.

4 Surprisingly, under specific settings and using quantum computation, it is theoreti-
cally possible to produce a proof-of-deletion [10]-[15], but we will not consider these
approaches in detail here.

The research literature often conflates these two notions, but we draw a
distinction as it allows us to define desiderata for each independently. Both are
essential to achieve security. In the current research literature, protocols are
highly formalized and often come with formal proofs, while ceremonies are often
loosely described and practitioners have had to design many details on the fly.
The purpose of this work is not to solve the significant challenge of formalizing
all aspects of ceremonies. However, though practitioners have now conducted
cryptographic ceremonies over a significant time period, there has until now
been insufficient scrutiny of practices at a systematic level. This work aims to
partially fill that gap, by reviewing past practices, and presenting the first step
towards understanding ceremonies (and their tradeoffs) in context.

Types of setups Adapting from GMR [23], we refer to a setup which requires gen-
erating and erasing secrets as a private-coin setup, whereas a secret-free setup is
called a public-coin setup. Public-coin setups are often called transparent setups
[24], [25] in the context of zk-SNARKs. They do not constitute a trusted setup
as the trapdoor, though it may be guaranteed to exist mathematically, does not
become available to any computationally-bounded party.

By contrast, many zk-SNARK systems (e.g. the popular Groth16 [26]) re-
quire a circuit-specific private-coin setup and a new setup for any new circuit to
be proved. In contrast, a universal setup [27], 28] is one-size-fits-all that can be
used in proving any circuit. Once complete, multiple statements can be proved
by reusing the materials from the ceremony assuming bounded-size statements.
Updatable setups [29] enable the parameters to be updated at any time, with
cumulative security: if any update is done securely, the trapdoor is hidden per-
manently. Note that both universal and updatable setups are independent of any
specific circuit.

Why Trusted Setups? From a security standpoint, transparent setups are ob-
viously superior to trusted setups (even universal or updateable ones). Given
this, why do we care about the trusted setup model at all? For better or for
worse, SNARKSs built with private-coin circuit-specific setups provide the most
efficient proof size, prover time, and verification time. Even if the trusted setup
is very complex and slow, it is a one-time cost (which may only be borne by
large, powerful nodes participating) and the system may enjoy substantial per-
formance benefits in the long run. For these reasons, as we will see, in practice
many real-world blockchain systems have chosen to undertake the risks and costs
of trusted setups. Hence, we consider it crucial to design the most secure and
efficient trusted setups possible.

Scope. Reviewing and evaluating all the existing trusted setups and ceremonies
is far beyond this SoK. In particular, we focus on powers-of-tau strings and
derivatives, though there are many other important types of setups such as
groups-of-unknown-order [30]. We also exclude trusted ceremonies like DNSSEC
since the corresponding underlying protocols are not trusted setups (they are
signing ceremonies which must be repeated periodically).

Paper organization. We begin with preliminaries in Section 2, including our al-
gebraic primitives, security assumption, and security definitions for trusted setup
protocols. Section 3 overviews trusted setup protocols and categorizes which
applications require which type of protocol. In Section 4 we discuss practical
trusted setup ceremonies, introducing a set of desirable properties for ceremonies
and surveying over ceremonies which have been conducted. We conclude (Sec-
tion 5) with insights from all the ceremonies we cover above and open research
questions.

2 Preliminaries

We present key notation and notions we will use henceforth. PPT denotes prob-
abilistic polynomial time. We set A as our security parameter. We use negl(\)
to denote a negligible function that vanishes faster than the inverse of any poly-
nomial of A\. We denote uniform sampling x from a set A as x<—sA. For a cyclic
group G with a generator of order g, we denote its generators as g and h.

Definition 1. g¢-strong Diffie-Hellman (¢-sDH): Given a tuple (g, g%, gzz, s, g™
) € GIT, where x+sZ,, q-sDH expects a pair where (gw%c,c) € G xZq. ¢-sDH
1s believed to be intractable, that is, for any PPT adversary A, it is hard to find
such a c. Formally,

Pr[O:g#c

(0,¢) « Alg, g, g% .- ,gzq)] < negl()\) (1)

Definition 2. Powers-of-tau: Upon a given trapdoor secret T, the powers-of-tau
is a k-size tuple (gT,gTz,ng, e ,ng), As long as q-sDH is secure, given the
powers-of-tau tuple, there is no PPT A able to obtain the trapdoor T.

2.1 Cryptographic Reference Strings

The community has not employed consistent terminology among the terms CRS
(Common Reference String), SRS (Structured Reference String), and URS (Uni-
form Reference String). In this definition, a CRS can be either a URS or an SRS.
We prefer this use, as in practice CRS has been used to mean both.® The es-
sential distinction between the two is that an SRS requires a realized trapdoor
during setup which must be discarded, whereas a URS is secret-free.

Shamir [31] showed that interactive zero-knowledge proofs are of an equiva-
lent complexity to a much larger complexity class (IP = PSPACE). However, as
a practical matter interaction in the real world implicates additional challenges.
Among them are dealing with network latency, synchronizing the prover and ver-
ifier, and ensuring the liveness of participants until a proof is complete. These
challenges naturally led to an interest in non-interactive zero-knowledge systems

5 Unhelpfully, CRS is sometimes taken to mean “comment random string” with the
same initialism CRS.

(NIZKs) [32]. However, non-interactive zero-knowledge proofs have been proven
to be impossible in the standard model (in which there is no random oracle) [32].
Instead, NIZK’s are constructed under the assumption that participants share a
“random uniform string”: a shared random number sampled by a trusted third
party. Such a construction is widely used [33]-[41]. Although originally Blum,
Feldman and Micali [32] defined a CRS as “sharing a common, short, random
string”, URS would have been more appropriate to their context. Formally, with
a PPT trusted third party (TTP) running a Setup algorithm to generate and
distribute a random string, for any PPT prover P, verifier V', and adversary.A,
a URS is a string that has:

- Randomness: given a urs, it is computationally indistinguishable from a
uniform string r of the size [.

urs<spSetup(1*)
r<sp{0,1}* b+ A\)
pr | b<s{0,1} cbh=10 < 1 + negl(\) (2)
_ Jurs, b=0 2
B r, b=1

where negl()) is a negligible function with sufficiently large A.
- Uniqueness: after TTP setting a urs for the Prover and the Verifier, ursp,

ursy, there is but one identical urs shared by the two.

urs<spSetup(1*) (ursp, ursy,) < A(1%)

/ / =1 (3>

(ursp, ursy) <= TTP(urs) : ursp = ursy,

The notion of shared randomness naturally leads to considering NIZK con-
structions. However, it still seems not enough for an efficient construction of a
SNARK. Practical zk-SNARKSs are based on “CRS” like (gT,gTz,gTB7 e ,gfk).
It’s clear to see that widespread CRSs are essentially SRSs. The embedded al-
gebraic structure of SRS somehow promises us a significant improvement in the
performance of proof systems. Essentially, for PPT P and V', given a PPT trusted
third party (TTP) running a Setup algorithm to generate and distribute ran-
dom string with a secret s, we define a secure SRS such that for any PPT A,
there is a negligible function negl(\) with sufficiently large \ satisfying:

- Randomness and Uniqueness follow as in definition 2 and definition 3.

- Correctness: a structured reference string must be of the correct form,
relative to some public deterministic polynomial time Verify algorithm. A srs
along with a correctness-proof 7 of Setup must satisfy:

Pr[(srs,ﬂ)<—$DSetup(1)‘,s) i1« Verify(srs,ﬂ)} =1 (4)

Remark 1. The correctness proof is essentially a proof-of-knowledge of 7 to
demonstrate that the SRS is well-formed, after which 7 should be deleted. This
rules out some attacks by the trusted setup party, but cannot rule out that they
maintain knowledge of the trapdoor 7.

- Secrecy: the secret s of an SRS is the trapdoor reserved for its inner alge-
k
braic structure, such as the 7 in (gT,gTz,gTs, -++,g"). For any PPT adversary
A, given an Setup output srs and the corresponding correct-proof 7, we have

s’ < A(srs,m)

Pr| (srs, T)+spSetup(1?,s) : R

< negl(A) (5)

3 Trusted Setup Protocols

We begin by formalizing the notion of a trusted setup protocol as a purely math-
ematical representation of a trusted setup (Section 3.1). We then systematize
the core ideas of setup protocols for powers-of-tau-like strings (Section 3.2).

3.1 Trusted Setup Protocol Formalization

We present a generic definition of trusted setup protocols with formally defined
security properties. Our definition aims to capture the core notion of a process,
which enforces internal computations and communicates with other processes
through corresponding external input and output channels. We assume two key
pieces of context:

Round-Robin Communication. Power-of-tau trusted setups are typically
non-parallelizable, also known as round-robin protocols [42]. They proceed in
rounds, with only one party active in each round. The round-robin communica-
tion model is a special case of synchronized communication, with only one party
allowed to talk in a single round. A broadcast channel is a more general synchro-
nized communication channel in which every party may talk in any round and
every message is guaranteed to be delivered to every endpoint.

(Dis)Honest Participants. A protocol is secure as long as there are at
most n — 1 dishonest participants, where n is the number of participants. We
call participants who follow the protocol description honest participants whereas
participants with deviant behaviors are called dishonest participants. Specifically,
we refer to an environment in an honest majority setting if over half of the
participants are honest. In contrast, if more than half of the participants are
dishonest, this reflects the dishonest majority setting. Due to the danger of
leaking the trapdoor, most powers-of-tau setup protocols are designed to work
in a dishonest majority setting.

General Framework: A process captures a family of probability distribu-
tions among multiple runs indexed by security parameters. A process could have
multiple runs. A run of a process not only includes the process description but
also the security parameter and all random coins. Note that processes could be
composed to form a new process. We denote process A composed with process B
as A||B. Typically, we model process as probabilistic polynomial-time systems
of probabilistic polynomial-time interactive Turing machines (PPT ITM).

Channels are categorized into two types of visibility: private, public. A public
channel can be seen as broadcasting, whereas private channel is modeled as

point-to-point (P2P) communication. With external input channels I and output
channels O, we denote the set of all processes by II(I,0). We denote I4 = Ip
if the same data is transmitted in channels 14, Ig, and 4 and Ip connect the
same endpoints.

We proceed with our formal definition of trusted setup protocols:

Definition 3. A trusted setup protocol is a tuple,
TS = (S,C, OUT, {Ilp}pes, {11, }pes,t,s), where:

- S=(p1, - ,pn;0p) is a finite set of participants p;c,, and a special partic-
ipant operator op. C' contains all the channels of T'S;

- 1,0 € C are channels connecting participants in S such that O(p € S) and
O(p1 € S) are disjoint for all p # p1 and I1(p) and I(p1) are disjoint for all
p # p1 as well. We call I(p) and O(p) the set of external input and output
channels of participant p respectively;

- Explicitly, we define OUT to be output of a trusted setup. Note that post-
ceremony materials (PCM) are included in OUT;

- IIes CII(I(p), O(p)), is the set of all the possible runs of a participant p;

- H;/)es C I,es, is the set of all the honest runs of a participant p. Note that
the behaviors of participants are reflected in their corresponding runs. Thus,
our definition captures both honest and dishonest participants. An instance
of TS is a process in the form of m = (mp, ||+, ||7p,) where m,, € II,,.
We call a participant p; honest if m,, € Hz/zieS' As trusted setups tolerate
corrupted participants, we call a process ™ honest if the number of corrupted
participants is within the corruption threshold t;

- s 1s the trapdoor of a trusted setup, which is supposed to be known to no one
during the lifetime of the trusted setup.

Desired properties of trusted setup protocols. We propose the follow-
ing security properties for a trusted setup protocol:

1. Correctness: a correct trusted setup should comply with the trusted setup
procedure and produce the deterministic output to any two participants on
accepted inputs from honest participants. Consider two instances m, 7 of
a trusted setup with the same input I = I,(I,I) € C,C. For any PPT
distinguisher D, a correct trusted setup satisfies

OUT « =(S,C,1t)

Pr _
OUT + =(S,C,t)

1+ D(OUT, OUT) | < negl()\) (6)

Informally we define correctness with the following observation: if the output
is deterministic, then anyone with the trapdoor ¢ can rerun the trusted setup
and get the identical output.

2. v-e trapdoor-confidentiality: Trusted setup contain a secret (the trap-
door). Let s be the trapdoor of the setup procedure w. A trusted setup
provides -e trapdoor confidentiality if, for any PPT adversary A who could
compromise participants [pa]a<¢ up to the threshold ¢.

Pr[s’ + A(S.C,[7"(I,0)]iey, OUT) | s' = 5] < negl(}) (7)

where 7 indicates that A is allowed to repeat the instance 7 with the same
S, 1,0 up to v times. We model a powerful A who is able to rewind the
instance w of T'S. To win the game, the A must derive the trapdoor with
non-negligible probability.

3. Consistency: a consistent trusted setup is an instance w of T'S that outputs
OUT; to a participant process m,, and OUT} to party j,

Pr[my,, mp; € Mheg|OUT; = OUT;] =1 (8)

Trusted setup results are intended to be publicly accessible to anyone. More
importantly, every honest party’s view of the output should be consistent—
even for those who did not commit contributions.

4. (m,¢)-Robustness. we define a trusted setup to be (m-¢) robust if and only
if the following holds: Let m be the number of participants, T iem C 7 be
the instances of trusted setup T'S under the control of A. Then, for channels
C with inputs I and outputs O the distribution of the trusted setup output
OUT must satisfy:

[ﬂ-Pj]jer’“ﬂ-Pj ¢ HZIIGS
m<t<n

~ <1-
Pr OUT (8, C,1) OUT = OUT | <1 — negl(e) (9)

OUT + =(S,C,t)

where S is a set full of honest participants and OUT and C is the corre-

sponding output and channels of the same instance 7. The intuition is that
an adversary A who controls m participants must not be able to bias the
output of the trusted setup in a non-neglible fashion.

3.2 Powers-of-Tau Setup Protocols

We summarize popular powers-of-tau-based proof systems in Table 1 and poly-
nomial commitment schemes (PCS) in Table 2 (where we highlight the ideal
polynomial commitment scheme in red). These two applications are inherently
related, many SNARK proof systems are built on KZG commitments [56] which
benefit from fast verification and constant-size proofs. In return for these advan-
tages, of course, is the required trusted setup. Transparent proof systems remain
significantly more expensive in proof and/or verification time. Developing a PCS
with transparent setup, constant-sized proof, and constant verification is still an
open question.

KZG commitments depend inherently on an SRS powers-of-tau tuple. Knowl-
edge of the trapdoor 7 completely undermines the binding property, which in
turn breaks the soundness of every SNARK proof system built on it. This has mo-
tivated considerable work on generating the powers-of-tau SRS in a distributed
manner, ideally in the dishonest majority model where the trapdoor 7 is secure
so long as one participant has behaved honestly (and deleted the toxic waste
corresponding to their particular contribution to the protocol).

We introduce a toy protocol to illustrate this approach.

SNARKSs SRS size Universal Proof Size Year Constraint system

Paril*’] 4a G, X 2Gi+12]|F| 2024 Square R1CS4
Polymath* (2a + 24m) G, X 3Gi+1]|F| 2024 SAPI20]

Tesutdo!”) NGy, VNG, v NG, YEGy, YEG, 2023 R1CSIYT

Gemini®® (N +2) G1,2 Go v/ 3G 2022 R1CS

Vampirel® (12M + nk) Gi1, (4M + ny.) Gz v 41Gy| +2 |F| 2022 R1CSLite, sparse matrices
Basiliskl®” M Gi,1 G2 v 10 |G1| + 3 |F| 2021 Plonk constraints
Lunar(®!] M G, M G2 v 11 |G1| + 2 |F| 2020 R1CSLite, sparse matrices
Sonic?7 4M Gy, 4M Go v 20 |G|+ 16 |F]| 2019 Hadamard Product Constraint(®?
Marlin® (3n;, 4 3) G1,2 Go 4 13 |G1| + 8 |F| 2019 R1CS, sparse matrices
Plonk®® 3N G1,1 G /o TG+ T7|F| 2019 Plonkish!**!

Groth16 261 (a+2m) Gy, m Gy X 2Gi,1Gy 2016 R1CS,QAPH”

BCTV14P4 (()IL +m+1) Gl,m Go X 7 G1,1 Go 2014 R1CS,QAP

Pinocchiol® (7a +m — 21) G X 8G 2013 R1CS,QAP

Table 1. Non-transparent proof systems and their SRS. [linear relations for the
left and right inputs. Assume a circuit is of size N = 2", M is the upper bound of
the number of multiplication gates and m is the number of multiplication gates in
the circuit. ny is the number of nonzero entries in R1CS(-lite) matrices encoding the
circuit. a is the number of wires in the circuit.

PCS SRS size Setup Open proof size Prove Verify
KZGPY] Pairing O(d) G1 Univ 1 Gy O(d) o(1)
Bulletproof®” DL O(d) G Trans 2logd G O(d) O(d)
FRIP® RO O(1) G Trans Mog?(d) G, O(\d) O(Mog?(d))
DARK[P P21 GUO O(1) G Trans Mog?(d) Gy O(\d) O(MNog*(d))
Dory!2?l Pairing O(d) G Trans 6log(d) G1 O(d?) O(log d)
Dew!®] GUO O(1) G Trans 66 G2 O(d?/log d) O(log d)
Behemoth®” Pairing O(d) G Trans 47 G + 19 F O(d?/log d) O(1)
'KZ'G'[E'"‘? """ Pairing O(n) G Univ 0 G, o)~ TTo@ T
Dory!?° Pairing O(n) G1 Trans 6vGr O(n) O(v)
Bunetprooflﬁll GUO O(n) Gy Univ 20 G O(n) O(n)
Geminil*®! Pairing O(n) G1 Univ (v+4)G1 + (v + 1)F O(n) O(n)
Brakedown®®) Coding O(n) G Trans v AnF O(n) Van
Orion!®? Coding O(n) G, Trans A\v’G; O(n) O(\v?)
Zeromorph®®! Pairing O(n) G; Univ v + 3G, O(n) O(M\?)
Orion+%4 Pairing O(n) G1 Univ 4vGq O(n) O(v)
BaseFold®®! Coding O(n) G, Trans 4vG, O(n) O(v)

Ideal PCS TBA O(1) G Trans O(1)G O(d) o(1)

Table 2. Polynomial Commitment Schemes (PCS). We separate univariate PCS
and multilinear PCS with the dashline. DL is discrete logarithm, RO is random oracle,
GUO is groups-of-unknown-order. We let d be the degree of the univariate polynomial,
G1,Gz2,and Gr be generators of bilinear groups, A be the security parameter, and F
be a finite field. For the v-variate multilinear polynomial, n = 2°.

Toy powers-of-tau setup protocol. Intuitively, our goal is for parties to contribute
secrets to the SRS such that no single party knows the combined and final 7 of
the SRS. The simplest protocol relies on sequential contributions by participants.

That is, upon receiving the powers-of-tau string S = (g7, 972, gTs7 e ,ng) from
the last participant, participant j samples a random 7; and obfuscates S by
raising each element to the corresponding powers of 7;:

S/ = (gTTj7g(TTj)27g(TTj)3’... ’g(TTj)k)

At first glance, this scheme works so long as one participant is honest. How-
ever, a malicious participant might adaptively generate their secret 7 to bias the
final SRS. For this reason, some protocols [66]-[69] aim to eliminate the adaptive
bias by adding a mandatory commitment layer beforehand. In this case, each
party is required to commit to their secret before contributing it and running
the remainder of the protocol. Thus each 7; is guaranteed to be independent
even under an adaptive adversary. Obviously, asking parties to commit their 7;
at minimum incurs another round of interaction. In addition, this imposes a
significant additional constraint as the participants must be known and remain
online throughout the trusted setup, which could take multiple days to finalize
in practice.

Additional re-randomization A key of Bowe, Gabizon and Miers [70] is that the
last powers-of-tau SRS can be mixed with another random 7’ from a public,
independent, source. As a result even an adaptively chosen 7; can not bias the
outcome and parties are no longer required to remain online during the setup.
Bowe, Gabizon and Miers [70] instantiated the random source with the random
beacon [71] primitive, designed to periodically produce fresh randomness. This
allows the design of a protocol without the commitment phase. Further it permits
constructions wherein participants can join the round-robin contribution process
in an ad-hoc manner. Participants are thus able to join the SRS trusted setup in
their reserved time slot and add their contributions, after which they are free to
leave. Restrictions on the identity and the time of participants are also removed.
This approach leads us to the MMORPG framework [70].

MMORPG Trusted Setups MMORPG (Massively Multiparty Open Reusable
Parameter Generation) is a protocol for generating the SRS used by Groth16 [26]

(a pairing-based zk-SNARK). The MMORPG approach has seen broad adoption

in systems such as Semaphore [72], TornadoCash [73], and Aztec [74]. Grothl6 is

not a universal proof system—instead, proofs apply only for the specific program

for which they were generated. This leads to a two-phase design, with an initial

universal phase and a circuit-specific phase. The universal phase is conducted

according to the powers-of-tau private-coin trusted setup we mentioned above.

The second phase is a circuit-specific phase that tailors the construction to the

specific program for which proofs are to be generated.

Generally, an MMORPG private-coin trusted setup involves three types of
entities: the coordinator, the participants, and a randomness beacon (which may
be a multiparty protocol itself [5], [75], [76]). We describe it in more detail as
follows:

10

The coordinator initializes the protocol by executing a procure Init(k, g)
with the prescribed size of the powers-of-tau tuple k£, and a group generator
g. After initialization, the coordinator chooses the first party who expressed
interest in joining the protocol and sends them the initial powers-of-tau
tuple PoTy.

After receiving the powers-of-tau tuple from the coordinator (or prior partic-
ipant), the participant (p;) first checks the correctness of prior contributions
to the string. After checking for correctness, p; picks a random 7; to update
the power-of-tau tuple in the way we mentioned in the toy proposal and
then generates the corresponding correctness proof of their contribution.
Specifically, every participant must provide a zero-knowledge proof of the
following three properties to ensure the correctness of the tuple: First, the
participant must prove knowledge of their corresponding 7;. Second, the
participant must show that the structure of the string has been preserved:
each exponent should be the square of the prior exponent. Third, the partic-
ipant showed the update was non-degenerative (where a malicious p; erases
all prior contributions by using a contribution 7; = 0). p; then transmits
the tuple and its correctness proof.

The coordinator receives the update from p,,, checks the correctness of p,’s
contribution, and samples a random contribution 7' from the randomness
beacon. Note that as long as the beacon is secure (unpredictable, live, and
unbiased), the protocol remains secure—even if all the participants are ma-
licious. The coordinator finalizes the powers-of-tau phase by updating with
71 and generating the corresponding correctness proof.

After generating the powers-of-tau tuple, the coordinator first converts the
statement to an equivalent arithmetic circuit and then linearly combines
elements in the PoT according to the circuit C' to initialize the SRS} for
the second phase protocol.

The coordinator begins the second phase by transmitting the SRS from
phase one SRS% over to the first registered phase two participant. Similar
to phase 1, participants contribute their secrets to the SRS. Each participant
checks the correctness of the last contribution, samples a random secret, and
updates the SRS with the secret.

In the final step, the coordinator checks the SRS?,L transmitted from the
prior participant, retrieves another output 72, from the random beacon,
and updates the SRS with 72 to finalize the output of the whole protocol.

Remark 2. Note that for clarity, we assume that each participant passes their
contribution consecutively to the next participant, and everyone verifies the cor-
rectness of the tuple from the last round. In practice, communication is cen-
tralized through the coordinator, who also verifies the correctness proofs. In
addition, transcripts of the whole protocol are stored and made available to the
public for further inspection, and a mandatory correctness check is not compul-
sory for participants.

Remark 3. Note that both phases are necessary to finalize an SRS, though es-
sentially, participants in both phases work in the same manner. That is because

11

the corresponding circuit-dependent SRS is a linear combination of the final

7 =[], 7. The additional contribution from the random beacon provides an

important property: even where participants collude, no set will know the final
2 3 k

powers-of-tau tuple (¢7,97 ,97 ,---,g"). Therefore, to transform powers-of-tau

to the Groth16 SRS the coordinator must ensure the powers-of-tau process has

been finalized with the random beacon.

Remark 4. A simplified and optimized version of the MMORPG framework is
Snarky Ceremonies [77]. Snarky ceremonies are a more general framework that
captures both circuit-specific [26], [55], [78] and updatable SRS [27], [28], [53].
By relaxing the security definition, it removes the need for random beacons as
slightly biased SRS is not sufficient to break SNARKs. We summarize existing
proposals for trusted setup protocol in Table 3.

AS
Y o™ o> > W e
o o OO <0 ? @ ~
Qto“oco 9&&@3’ \05‘4\6 ot ¥ %0“06 O s ﬁ\ce&\ QOI%QG @‘b"%e
BCDTV15 O(n) | O(n) | n—1 X X X X General
BGG17097 0o(1) 4 n—1 X X X X |Pinocchio
BGM17 JO(m)*| 1 n v X X X | Groth16
KMSV2107 | O(n) 1 n—1 v X X X | Groth16
KKK21[™! O(n)x* 1 n—1 v v v v General
CDKS22M2 |O(y/n)| O(vn) | n—1 X v X v PoT
NRBB22(YT | O(n)x| 1 n—1 v/ v X X PoT

Table 3. Trusted Setup Protocols. We denote the number of participants in a protocol
as n. Protocol with an additional round of applying a random beacon is denoted as
*. We use rounds for the communication complexity, individual-rounds for communi-
cations of individuals in running the protocol, corruption to denote the threshold of
corruption, round-robin to indicate if protocols are running in round-robin commu-
nication model, decentralized to distinct whether a central coordinator is necessary,
incentive to indicate if participants are incentively driven to be hoenst, UC to indicate
if protocols are proven to be UC-Secure, target for their design goals.

3.3 Powers-of-tau beyond SNARKSs

Powers-of-tau strings are not only for constructing polynomial commitments
in SNARKs. Among other further applications, they enable an adaptively se-
cure DKG [81] in an asynchronous network. They also enable a customized
weighted-threshold signature scheme [82] and eliminate the prohibitively expen-
sive DKG [83] in threshold signatures. Though DKG protocols are possible
without a trusted setup, they either assume a weaker static adversary [84] or
incur more overhead [85]. A natural open question is to explore other potential
applications that benefit from the powers-of-tau strings.

12

4 Ceremonies

Trusted setup protocols can not be executed on paper. Instead, public trust in
these setup protocols is based on “celebrating” a ceremony to convince the pub-
lic that the protocol was run correctly and securely. Ceremonies are often con-
ducted with requirements on real-world conduct—(for example lack of conflicts-
of-interest or collusion between participants, geographic diversity, rules mandat-
ing recording of proceedings). Such elements are designed to bootstrap social
trust in the systems, beyond provabile mathematical notions.

We attempted to identify all real-world ceremonies conducted to date to
construct a powers-of-tau string, proving a tabulation of more than 40 instances
Table 4. We note that all of the ceremonies we were able to find are variations
of the MMORPG framework [66], [70]. We collected details from various projects
with their corresponding trusted setup ceremonies based on an exhaustive online
search for the trusted setup ceremony keyword on Google (yielding 18 pages in
total). The details of many ceremonies, like Hermez, are already missing and
scattered despite being conducted only a few years prior to our study. In these
cases, we attempted to find their corresponding ceremony pages and blog posts
using the Internet Archive [86]. Since 2022, ceremony information can be found
on one page thanks to the DefinitelySetup project [87].

4.1 Desired Properties of Ceremonies

Based on our study of real-world trusted setup ceremonies, as well as the public
communication around trusted setup ceremonies we have observed in practice,
we distill a set of desirable properties. We propose a set of properties by the
acronym “ADOPT?”, that an ideal ceremony should follow:

— Available says that the protocol runs for a sufficient period of time that
all participants have time to broadcast contributions. Due to the round-
robin nature of protocols, it is important to leave enough time for many
contributors. cannot be suppressed by a denial-of-service attack.

— Decentralization means the absence of reliance on a central coordinator. This
coordinator might be a target for attacks, or could censor specific contribu-
tors.

— Open indicates that the ceremony welcomes any interested participant to
join and contribute.

— Persistent means that a ceremony maintains its published information for
future verification or extension even after the ceremony is finished. Note that
this may require ensuring long-term access to a non-trivial amount of data
(i.e. multiple gigabytes).

— Transparency requires that the ceremony documents all procedures for pub-
lic scrutiny, including the exact protocol specification to enable independent
implementation, as well as all procedures, identities of operators and con-
tributors, data formats for intermediate transcripts, etc.

13

Note that none of the ceremonies we observed actually satisfied all five prop-
erties, in particular the Decentralization property. Ensuring all the above proper-
ties without a centralized coordinator requires some form of multi-party compu-
tation (MPC). In general, conducting a secure MPC without an honest majority
or a trusted coordinator is impossible. Fortunately, the general MPC impossibil-
ity results on identifiable abort [88], [89] and output delivery guarantee [90], [91]
under a dishonest majority model, do not apply to ceremonies. Ceremonies can
operate in a fashion where an execution is attempted, and if it fails, rounds can
proceed by excluding parties that contributed to the failure—without losing their
security. As all the ceremonies that operate in a round-robin manner can eas-
ily identify individual malicious behaviors, aborts are easily identifiable. Given
this, a malicious party’s only option is to abort the ceremony to prevent others
from learning the output with their contribution. However, since all ceremonies
implement a timeout mechanism and the output is independent of individual
contributions, contributors who deliberately attempt to abort the process can
be excluded from future executions of the ceremony.

As noted above, we also observed widespread problems with the Persistence
and Transparency goals. Many projects did not provide clear, complete docu-
mentation sufficient for an independent third-party implementation for contribu-
tion or for verification, requiring participants to download and run the reference
source code to participate. Many projects also have not persisted the interme-
diate values or in some cases even the final results of the ceremony, making it
impossible retroactively to assess or extend their powers-of-tau string.

4.2 A case study: The Sprout Ceremony

As a concrete case study, we consider the Sprout ceremony [66] of the Zcash
project, an early ceremony conducted in 2016 (perhaps the world’s first). Lessons
learned from this ceremony have motivated much follow-up research in the area.

First, the identity of participants in the Sprout Ceremony was required to be
known to a coordinator in advance. Therefore, conspiracies and rumors of the
static flavor of MPC protocol were widely spread across the ZCash community.
This restriction undermined the Open and Decentralized goals. This led Bowe,
Gabizon and Miers [70] to propose a player-ezchangeable MPC SRS framework.
MMORPG is a two-phase round-robin process where participants are free to join
or leave in every phase. In this case, the security of the secret 7 is escalated to
the next level — you are welcome to commit your contribution to generate the
SRS if you do not trust anyone else in the ceremony. Security is preserved even
if others deviate from the protocol.

Second, the Sprout ceremony is a two-phase SRS generation framework orig-
inally designed for [26] but it also works similarly for Linear PCP (Probalistic
Checkable Proof) zk-SNARKSs [26], [55], [92]-[96] which significantly simplified
the ceremony and quickly became the de-facto standardization in the industry.
Note that though it’s customized for pairing-based linear PCP SNARK sys-
tems, Polynomial IOPs [27], [28], [53], [97]-[101] (Interactive Oracle Proof) built
from pairing-based commitment [56] benefit from it as well. Specifically, the first

14

phase of the MMORPG ceremony is known as powers-of-tau ceremony, which
is completely orthogonal to the NP statement. Trivial to see that the powers-
of-tau SRS works for arbitrary statements of bounded size. The second phase
runs sequentially after the first phase to generate the final SRS that summarizes
the NP statement. Note that the general approach to proving an NP state-
ment in zk-SNARKSs is to first convert the NP statement to the corresponding
arithmetic circuit, which we call arithmetization. The second phase essentially
encodes the circuit into the SRS. Therefore, two phases are enough to finalize
an SRS private-coin setup. MMORPG drastically improves ceremonies overall
(2 rounds vs 4 rounds [66]). Concretely speaking, it took six days to finish the
Sprout Ceremony [66] even though there were only six participants, whereas the
Sapling ceremony only took 2.5 hours. Note that a large portion of the cost of an
MMORPG ceremony can be amortized over multiple circuits as powers-of-taus
are reusable.

Third, the robustness of the Sprout ceremony was not guaranteed as even
one of the fixed parties could deliberately force a setup to terminate thus bias
the output SRS. As a result,[70] proposed to use random beacons [5], [71], [102]-
[119] to rerandomize the protocol output for each phase so that no single par-
ticipant is able to bias it. However, the then-common practice of instantiating
a random beacon with a hash function on a recent block in Bitcoin/Ethereum
is not an secure random beacon as miners/sequencers in roll-ups are capable of
manipulating the outcome [120]. To improve this, distributed random beacons [5],
[75], [76] can bootstrap the randomness of the SRS in a more sound and reliable
way. But secure random beacons significantly increase the complexity of secu-
rity analysis because most constructions expect (public) private-coin setups as
well as MMORPG ceremonies. Examples are random beacons built from PVSS
(Publicly Verifiable Secret Share) (a dealer distributes shared-secret), threshold
signature (an additional layer of DKG is needed), and delay-based protocols rely
on group of unknown order setups and customized hardware.

4.3 Recovering from a compromised SRS

We now present, as a case study, an illustrating real-world example of how a
trusted setup can fail, outlining properties that could be preserved even under a
subverted SRS. We also note that recovering from a compromised setup is itself
a second type of ceremony, designed to build public trust.

The most prominent example was in the ZCash Sprout ceremony [66]. In
this case, the problem was not with the ceremony but the protocol itself. Specif-
ically, Gabizon [155] found a small but critical vulnerability in the private-coin
SRS protocol as described in the research paper by Ben-Sasson et al.[78], which
was the protocol used in the ZCash Sproud ceremony. Ben-Sasson et al. [78] de-
scribed an extra, unneeded parameter, which was generated in the ZCash Sprout
ceremony, but could be exploited by an adversary to generate proof of any state-
ment based on a single valid proof. This implies that an adversary can generate
arbitrary proofs for any statement given a single proof—allowing an adversary
to mint ZCash coins at will. Note that the vulnerability (which we present below

15

Project PPOT Update System Data Time # Contrib Curve Type Available
Aleo universal [121] N/A v Marlin® 44GB 9.56 howrs 146 BLS12 377 Powers-of-tau X
Aleo inner [121] N/A X Groth16% 771MB 40 mins 1059 BLS12 377 MMORPG X
Aleo outer [121] N/A X Groth16®? 256GB 42 mins 1036 BW6_761 MMORPG X
Anon Aadhaar V2 [122] 54 X Groth16) 583 MB 6.81 mins 105 BN254 MMORPG-2 v
Axiom [123] 78 v KzGlol - - - BN256 MMOPRG-1 4
Aztec [74] N/A X Sigmal'*! 571GB 3.3 hours 176 BN254 MMORPG-1 4
Celo Plumo [125] N/A X Groth16P% Unknown 10 hours 111 BLS12 377 MMORPG X
clr.fund [126] 54 X Groth162% 252MB 10 mins 2562 BN254 MMORPG-2 Xx*
DeGate [127] 71 X Groth16? 370GB 14 hours 5 BN254 MMORPG-2 X
Email Wallet [128] 54 X Groth16?) 2.83GB 50 mins 29 BN254 MMORPG-2 Xx*
S . 19 X s 952G 6 hours 17 MMORPG-2 v
FileCoin Mainnet [129)] 19 X Groth16/2% 77GB 3 hours 19 BLS12-381 | v ob G Y
FileCoin SnapDeals [130] 19 X Groth16Y 25 GB 30 mins 12 BLS12-381 MMORPG-2 v
Fractal Cash [131] 30 X Groth16?? 17.4MB 2 mins 7 BN256 MMORPG-2 v
Hermez [132] 54% X Groth16® 92GB 9 horus 6 BN254 MMORPG-2 v
KZG ceremony [133] N/A x KZGPY 7.21MB 3 mins 141416 BLS12-381 MMORPG-2 v
Loopring [134] 11 X Groth16) 75GB 5.0 hours 16 BN254 MMORPG-2 X*
MACI [135] 54 X Groth16®? 1.23GB 10 mins 45 BN254 MMORPG-2 Xx*
MACI v1.2 [136] 54 X Groth16*? 2093 MB 33 mins 41 BN254 MMORPG-2 v
MACI V2 [137] 54 X Groth16% 2010 MB 20.5 mins 246 BN254 MMORPG-2 v
Manta [138] 72 X Groth16®) 30MB 10 mins 4382 BN254 MMOPRG v
Namada [139] ZCash POT X Groth162%) 80.8MB 2 mins 2510 BLS12-377 MMORPG-2 v
Panther [140] 54 X Groth1629 38.5MB 60s 11 BN254 MMORPG-2 v
PPOT [141] N/A v N/A 97GB 24 hours 80 BN254 Powers-of-tau X*
RLN [142] 54 X Groth169 68.2MB 17 mins 62 BN254 MMORPG-2 X*
RISCZERO [143] 54 X Groth16P% 3452MB 25 mins 238 BN254 MMORPG-2 v
Semaphore [72] 25 X Groth16?) 208MB 10 mins 360 BN256 MMORPG-2 Xx*
Semaphore V4 [144] 54 X Groth16?? 102 MB 25 mins 389 BN254 MMORPG-2 v
Tornado cash [145] 30 X Groth16? 10.64MB 3 1114 BN256 MMORPG-2 v
Unirep v2 [146] 54 X Groth16 41.8MB 2 mins 5347 BN254 MMORPG-2 Xx*
ZCash Sprout [147] N/A X BCTV14™l 7GB 2 days* 6 BN254 BGG v
5)
Zcash Sapling [148] E?: § Groth1612¢) ;ﬁﬁ% %16)1;?::: SZ BLS12-381 migggg; j
ZKOPRU [149] 54 X Groth16? 400MB 40 mins 369 BN254 MMORPG-2 v
ZKP2P [150] 23 X Groth16*? 82GB 82 mins 25 BN254 MMORPG-2 Xx*
ZKP2P v2.4 [151] 54 X Groth16®% 17.1 GB 71 mins 8 BN254 MMORPG-2 v
ZKP2P Domain [152] 54 X Groth16P? 1662 MB 34.5 mins 17 BN254 MMORPG-2 v
ZKSync [153)] N/A v/ PLONKP 571GB 3.3 hours 176 BN256 MMORPG-1 v
ZK Ticket [154] 54 X Groth16% 3.62MB 2.5 mins 17 BN254 MMORPG-2 Xx*

T

Table 4. SNARK Ceremonies up-to-date in alphabetic order. PPOT denotes
the index of the powers-of-tau contributions from the PPOT ceremony. “Update” de-
notes if it is an updatable ceremony. The “Data” and “Time” columns measure the
costs to each participant in the ceremony. For a ceremony running over on multiple
circuits, we denote time and size as the amounts of efforts for one to contribute to all
circuits. “Available” indicates whether all the transcripts of a ceremony are still pub-
licly accessible. We denote a ceremony with both phases in MMORPG as “MMORPG”,
whereas a ceremony only runs the first phase as “MMORPG-1” and the one only runs
the second phase as “MMORPG-2".

16

for illustrative purposes) is not a result of the ceremony itself but is a flaw in
the underlying protocol.

Abstractly, for n polynomials Pj(z;) = Y i a; ;25,7 € n, the SRS of P;
described in [78] is ¢g7(7), g®Fi(") o <. F. For a prover, with public input
Win = Wo, -+ , Wy, and witness wp, 41, -+ , Wy, the proof 7[0] is H?:mﬂ(gpi(ﬂ)wi
and 7[1] = H?:erl(go‘Pi(T))wi. A valid proof will pass the check 7[0]* = =[1].
Obviously, SRS like g% (7):7€™ are redundant and are never used. So a malicious
prover with a valid 7 could generate valid proofs to other public inputs w}, =
why -y why, 7 [0] = w0] [T, (g7)=t ' [1] = w[1] 7L, (927 (7)) emvi, Es-
sentially, 7' [0] = QZLO P i Piw;, 1] = QZLO el DU abaw
Therefore, 7'[0]* will always be 7'[1].

The above flaw was implemented by the practical Zcash ceremony directly
from the paper|[78], and the results were widely published before the bug was
noticed. This brings up two natural questions. First, what occurs when an ad-
versary is able to set the SRS and how much security can one retain under a
maliciously generated SRS? Second, how can a practical project recover from a
compromised SRS?

Noting that circuit-specific SRS in SNARKSs [26] depends on the circuit’s
corresponding statement, a modified SRS undermines the protocol by leading to
a different statement. Further, if the secure trapdoor 7 is not random, the verifier
can learn one bit of the witness by checking the proof. Last, a sophisticated
adversary could set all strings to 0 except the string on the chosen spot. This
leaks one bit of the witness to the verifier, which inevitably breaks the zero-
knowledge property. More details can be found in [156].

Bellare, Fuchsbauer and Scafuro [157] studied subversion-resistant zk-SNARKSs
and systematically answered the extent to which security can be retained in
the event of a subverted SRS: one generated by a malicious party who knows
the trapdoor. Following the principle of trust-but-verify, subversion-resistant zk-
SNARKSs additionally allow a prover to verify if a generated SRS is well-formed.
Thus, it bypasses trust and the need for a trusted third party. Bellare, Fuchsbauer
and Scafuro [157] provides a counterintuitive result: even where an SRS/URS
is subverted, it is possible to nonetheless retain soundness of the overall pro-
tocol even while preserving the zero-knowledge property. However, the paper
also provides a negative result: one can not retain both subversion-soundness (a
property requiring that it is hard for an adversary to generate a malicious CRS)
and classical zero-knowledge properties at the same time. This is a result of the
existence of a simulator that can output valid proofs of false statements under
a valid proof.

The general approach to ensuring that SNARKSs are subversion-resistant is to
make the SRS verifiable. Fuchsbauer [158] shows that given an appropriate SRS
verification procedure: (a) no additional strings are needed to ensure verifiable
SRS in Grothl6 [26] whereas (b) four extra group elements are necessary for
provers to verify the SRS in Pinocchio [55].

In the event of the Sprout ceremony, the bug was discovered by Zcash en-
gineers in March 2018 [159]. After confirmation, the published ceremony tran-

17

scripts containing the additional were quietly removed. As there was no way
to fix the vulnerability if anybody had downloaded and cached the transcripts,
the bug was kept under embargo until after the already-planned second setup
ceremony, Sapling, was conducted in November 2018. At this point, after the
network had hard-forked away from using the parameters from the vulnerable
Sprout ceremony, the bug was publicly disclosed in February 2019. There is
(fortunately) no evidence that the bug was ever exploited.

5 Concluding Discussion

We conclude with outlining key lessons from our systematization. First are re-
search goals emerging from our systematization of protocols, followed by lessons
from our systematization of ceremonies:

5.1 Research directions for trusted setup protocols

Reducing the size of SRS from linear to sublinear. For a comparison of
the size of the SRS for different schemes, we refer the reader to [59], [60]. Recent
work [46] shows that SNARKS can be built with a linear-time prover, constant-
sized proofs, and square root-sized SRS. It is also possible [160] to achieve a
sublinear prover with a linear-sized SRS, and a constant-sized proof. It is still
an open question to construct a SNARK-proof system with a sublinear prover,
sublinear SRS, and constant-sized proof. This would dramatically alleviate par-
ticipants’/coordinators’ loads to participate in expensive SRS setup ceremonies.

Accelerating SNARK ceremonies via reusing SRS: note that the
powers-of-tau ceremony can be upgraded to a perpetual version. We defer the
discussion of the perpetual powers-of-tau (PPOT) ceremony to Appendix A.
Powers-of-tau strings relieve new zk-SNARK players from generating system
parameters from scratch. To properly launch a publicly trustworthy zk-SNARK
system, they only have to fork any PPOT contribution out to continue their
specific phase 2 ceremony. Moreover, noticeably, the phase 2 ceremony is sig-
nificantly lightweight compared to the powers-of-tau ceremony. As reported in

[70], phase 2 runs 4x faster than phase 1 while incurring 3x less transmission
overhead.

Asynchronous ceremonies: Existing ceremonies are designed in a syn-
chronized model, which requires contributors to register to reserve a timeslot
for online contribution or a contributor has to queue in a line until its turn
to formally join a ceremony. To activate a fully come-contribute-go ceremony
paradigm, one requires an asynchronous ceremony. Initial work is done by Das
et al. [161], outlining an asynchronous powers-of-tau ceremony that significantly
improves the sequential MMORPG protocol. However, it is still far away from an
optimal asynchronous PPOT setup since it introduces O(An3) communication
overhead overall. This protocol[161] only targets the power-of-tau setup, though
we can trivially extend it to phase 2 since both phases essentially work in the
same manner. [t’s still not a fully asynchronous protocol as participants in phase

18

2 have to wait for the central coordinator to finalize the polynomial SRS ¢ (7).

It remains an open challenge to design a fully asynchronous protocol that is
capable of handling the whole ceremony without a centralized coordinator.

Fully decentralized and asynchronous ceremonies: A further enhance-
ment is to get rid of the centralized coordinator completely. Nikolaenko et. al.
[80] designed and evaluated an on-chain powers-of-tau ceremony to eliminate
the assumption of the centralized coordinator. For the phase 2 circuit-dependent
ceremony, Kerber et al. [79] observed that updatable SRS [27]-[29] generation
can be integrated as part of a consensus protocol so that no additional secu-
rity assumptions or off-chain computation are needed for the security of the
SRS. Both [80] and [79] open the door to providing incentives for honest partic-
ipants. However, it is still a synchronous ceremony requiring sequential updates.
Still, it opens the possibility of a fully decentralized and asynchronous phase
one ceremony for zk-SNARKSs integrated with [161]. Furthermore, we envision a
fully asynchronous and decentralized ceremony that is capable of handling both
phases of zk-SNARKSs’ protocols.

Curve transformation: So far, the PPOT ceremonies in practice have
been performed on the fixed BN254 curve[162]. However, deployed applications
may be built on other curves. For example, ZCash uses BLS12-381[163]. Prac-
titioners face trade-offs when considering implementing their applications in a
specific curve. However, outputs from the PPOT ceremony are incompatible
with applications that rely on a different curve. An interesting research question
is to design an efficient transformation scheme to enable using the output of
power-of-tau ceremonies on the BN254 curve for other pairing-friendly popular
curves [164].

The transparency requirement requires not only a commitment to open-
sourcing code, but also requires explainable system parameters. This is an often
overlooked point in SNARK ceremonies when deciding to run it on the BN254
curve. There are concerns that the base point [165] (generator) may be too
small (the generator’s x coordinate is chosen to be one) to be secure. Though
the generator is fast for pairing, it is not a truly random point.

5.2 Lessons for trustworthy setup ceremonies.

We summarize the following six lessons for running a sound and trustworthy
ceremony, many of which were not explicitly followed in multiple ceremonies we
studied. Note that those are universal principles distilled from the MMOPRG
ceremony that can be beneficial to all ceremonies.

Multiple open-sourced implementations and third-part auditing: to
reduce the risk of coordinated failure due to software bugs, contributors should
be encouraged to implement their own version of the ceremony and several of-
ficial implementations should be sanctioned, with third party audits. The MPC
protocol [166] of the Sprout Ceremony is open-sourced and is audited by a third
party — NCC [167]. The ceremony code of generating SRS for ZCash depends on
a specific circuit, and ZCash functions are open-sourced and audited. A model
example is the recent Ethereum KZG ceremony [168], community members not

19

only implement the ceremony in command-line with different programming lan-
guages to hedge potential security issues in libraries [169], but also provide web-
based interfaces implemented based on arkworks [170] and gnark [171], which
are more user-friendlier. This effort results in 10 different implementations.

Diverse participation: To boost the confidence that all participants in the
ceremony are not colluding, the ceremony should include people from different
backgrounds and interests. This may require active recruitment by the orga-
nizers. To counter a critique of anonymous participation, the Sprout Ceremony
chose participants from academia, the ZCash founder team, an independent Bit-
coin core developer, Peter Todd, who is skeptical and critical of the ceremony,
and the whistleblower Edward Snowden. People of unrelated interests and even
criticism prevent the ceremony from the interior collusion and counterfeits of the
ZCash team.

Air-gapped and one-time machines: To minimize the risk of vulnera-
bilities, air-gapped machines should be the only places processing participants’
contributions to the ceremony. Some ceremonies have gone beyond that, for ex-
ample requiring that every machine was from a random store and it was exclusive
to the ceremony. In this manner most cyber-attacks can be prevented since the
machines will never be connected to any network during their lifetime. To jointly
finish an MPC in the Sprout ceremony, an additional networked laptop was used
to burn the communication transcripts onto a disc so that air-gapped machines
can talk to each other. Every laptop was physically destroyed after the Sprout
Ceremony. In that case, the ceremony is solely vulnerable to participants’ willful
collusion.

Geographically isolation: participants should be selected from diverse ge-
ogrpahic locations and isolated worldwide to lower the chance that all of them
could be targeted physically.

Diversed source of randomness: participants should be encouraged to
secure their contributions as much as they can by sampling randomness from
diverse physical sources. Creative ideas include[172]: sampling randomness from
space aboard the Crypto 2 satellite, from the random fluctuations of a lava lamp,
from scatted biscuits over the floor after feeding a pet, or from the noisy city
Sydney, and so forth.

Publicly verifiable operation log: all communications from the ceremony
should be stored permanently and made public for later attestation. The logs
cannot convince the public that the participants did not collude, but can enable
them to verify that the transcript is consistent with the protocol. Addition-
ally, old transcripts can be used to extend a ceremony in the future by adding
additional contributions. For example, restored transcripts from the Sprout Cer-
emony guaranteed that the updated CRS of ZCash after the Sapling Ceremony
(a newer and larger ceremony) is genuine from the original six participants (not
substituted by any others who might keep his 7).

20

6 Acknowledgements

Faxing Wang is supported by Melbourne research scholarship. Joseph Bonneau
was additionally supported by DARPA Agreement HR00112020022 and NSF
Grant CNS-2239975. The views and conclusions contained in this material are
those of the authors and do not necessarily reflect the official policies or en-
dorsements of the United States Government, DARPA, al6z Crypto, or any
other supporting organization.

References

1] T. P. Pedersen Non-interactive and information-theoretic secure verifiable se-
cret sharing, in CRYPTO, 1991 (cit. on p. 1).

2] E. Barker and J. Kelsey, Recommendation for Random Number Generation
Using Deterministic Random Bit Generators, NIST Special Publication, 2006
(cit. on p. 1).

3] Z. Wilcox The Design of the Ceremony, electriccoin.co/blog/the-design-

of-the-ceremony/, 2016 (cit. on p. 1).

[4] A. Faz-Hernandez, S. Scott, N. Sullivan, R. S. Wahby and C. A. Wood Hashing
to Elliptic Curves, RFC 9380, 2023 (cit. on p. 1).

[5] K. Choi, A. Manoj and J. Bonneau SoK: Distributed Randomness Beacons, in
IEEE Security € Privacy, 2023 (cit. on pp. 1, 10, 15).

[6] E. Ben-Sasson The Cambrian Explosion of Crypto Proofs, medium.com/starkware/
the- cambrian-explosion-of - crypto-proofs-7ac080ac9aed, 2020 (cit. on
p. 1).

[7] K. Nazirkhanova, J. Neu and D. Tse Information dispersal with provable re-

trievability for rollups, in ACM AFT, 2022 (cit. on p. 2).

8] T. Xie, J. Zhang, Z. Cheng, et al Zkbridge: Trustless cross-chain bridges made
practical, in ACM CCS, 2022 (cit. on p. 2).

[9] I. Miers, C. Garman, M. Green and A. D. Rubin Zerocoin: Anonymous dis-
tributed e-cash from bitcoin, in IEEE Security € Privacy, 2013 (cit. on p. 2).

[10] J. Bartusek and D. Khurana Cryptography with certified deletion, in CRYPTO,
2023 (cit. on p. 2).

[11] A. Broadbent and R. Islam Quantum encryption with certified deletion, in
TCC, 2020 (cit. on p. 2).

[12] S. Garg, S. Goldwasser and P. N. Vasudevan Formalizing data deletion in the
context of the right to be forgotten, in Eurocrypt, 2020 (cit. on p. 2).

[13] T. Hiroka, T. Morimae, R. Nishimaki and T. Yamakawa Quantum encryp-
tion with certified deletion, revisited: Public key, attribute-based, and classical
communication, in Asiacrypt, 2021 (cit. on p. 2).

[14] A. Poremba Quantum proofs of deletion for learning with errors, 2023. arXiv:
2203.01610 [quant-ph] (cit. on p. 2).

[15] J. Bartusek, D. Khurana and A. Poremba Publicly-verifiable deletion via target-
collapsing functions, 2023. arXiv: 2303.08676 [quant-ph] (cit. on p. 2).

[16] V. Costan and S. Devadas Intel SGX explained, Cryptology ePrint Archive,
Paper 2016/086, 2016 (cit. on p. 2).

[17) V. Costan, I. Lebedev and S. Devadas Sanctum: Minimal hardware extensions
for strong software isolation, in USENIX Security, 2016 (cit. on p. 2).

21

electriccoin.co/blog/the-design-of-the-ceremony/
electriccoin.co/blog/the-design-of-the-ceremony/
medium.com/starkware/the-cambrian-explosion-of-crypto-proofs-7ac080ac9aed
medium.com/starkware/the-cambrian-explosion-of-crypto-proofs-7ac080ac9aed
https://arxiv.org/abs/2203.01610
https://arxiv.org/abs/2303.08676

18]

[19]

[20]

21]

22]

23]
24]
[25]
[26]

[27]
28]
29]
[30]
31]
32]
33]
34]
[35]
[36]

[37]

[38]

D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovi¢ and D. Song Keystone: An
open framework for architecting trusted execution environments, in FEuroSys,
2020 (cit. on p. 2).

S. Pinto and N. Santos, Demystifying arm trustzone: A comprehensive survey,
ACM Computing Surveys, 2019 (cit. on p. 2).

J. Van Bulck, M. Minkin, O. Weisse, et al Foreshadow: Extracting the keys
to the intel SGX kingdom with transient Out-of-Order execution, in USENIX
Security, 2018 (cit. on p. 2).

S. van Schaik, A. Seto, T. Yurek, et al SoK: SGX.Fail: How Stuff Gets eXposed,
in IEEE Security & Privacy, 2024 (cit. on p. 2).

Z. Zhang, M. Tao, S. O’Connell, C. Chuengsatiansup, D. Genkin and Y. Yarom
BunnyHop: Exploiting the instruction prefetcher, in USENIX Security, 2023
(cit. on p. 2).

S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interac-
tive proof-systems, SIAM Journal on Computing, 1989 (cit. on p. 3).

B. Biinz, B. Fisch and A. Szepieniec Transparent SNARKSs from DARK com-
pilers, in Furocrypt, 2020 (cit. on pp. 3, 9).

J. Lee Dory: Efficient, transparent arguments for generalised inner products
and polynomial commitments, in TCC, 2021 (cit. on pp. 3, 9).

J. Groth On the size of pairing-based non-interactive arguments, in Eurocrypt,
2016 (cit. on pp. 3, 9, 10, 12, 14, 16, 17, 29).

M. Maller, S. Bowe, M. Kohlweiss and S. Meiklejohn Sonic: Zero-knowledge
snarks from linear-size universal and updatable structured reference strings, in
ACM CCS, 2019 (cit. on pp. 3, 9, 12, 14, 19).

A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely and N. Ward Marlin: Pre-
processing zkSNARKSs with universal and updatable SRS, in Furocrypt, 2020
(cit. on pp. 3, 9, 12, 14, 16, 19).

J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn and I. Miers Updatable
and Universal Common Reference Strings with Applications to zk-SNARKSs, in
CRYPTO, 2018 (cit. on pp. 3, 19).

M. Chen, C. Hazay, Y. Ishai, et al Diogenes: Lightweight scalable RSA modulus
generation with a dishonest majority, in IEEE Security & Privacy, 2021 (cit. on
p- 3).

A. Shamir, IP= PSPACE, Journal of the ACM, 1992 (cit. on p. 4).

M. Blum, P. Feldman and S. Micali Non-interactive zero-knowledge and its
applications, in STOC, 1988 (cit. on p. 5).

U. Feige, D. Lapidot and A. Shamir Multiple non-interactive zero knowledge
proofs based on a single random string, in FOCS, 1990 (cit. on p. 5).

M. Blum, A. De Santis, S. Micali and G. Persiano, Noninteractive zero-knowledge,
SIAM Journal on Computing, 1991 (cit. on p. 5).

I. Damgard Non-interactive circuit based proofs and non-interactive perfect
zero-knowledge with preprocessing, in Furocrypt, 1992 (cit. on p. 5).

A. De Santis and G. Persiano Zero-knowledge proofs of knowledge without
interaction, in FOCS, 1992 (cit. on p. 5).

J. Kilian and E. Petrank, An efficient noninteractive zero-knowledge proof sys-
tem for np with general assumptions, Journal of Cryptology, 1998 (cit. on p. 5).
A. D. Santis, G. D. Crescenzo and G. Persiano Necessary and Sufficient As-
sumptions for Non-Iterative Zero-Knowledge Proofs of Knowledge for All NP
Relations, in ICALP, 2000 (cit. on p. 5).

22

[39]

[40]

[41]
[42]
[43]
[44]
[45]

[46]

[47]
(48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

J. Groth Short non-interactive zero-knowledge proofs, in Asiacrypt, 2010 (cit.
on p. 5).

C. Gentry, J. Groth, Y. Ishai, C. Peikert, A. Sahai and A. D. Smith, Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs,
Journal of Cryptology, 2015 (cit. on p. 5).

J. Groth and R. M. Ostrovsky, Cryptography in the multi-string model, Journal
of Cryptology, 2007 (cit. on p. 5).

R. Cohen, J. Doerner, Y. Kondi and A. Shelat Guaranteed output in O(y/n)
rounds for round-robin sampling protocols, in Eurocrypt, 2022 (cit. on pp. 6,
12).

M. Dellepere, P. Mishra and A. Shirzad, Garuda and pari: Smaller and faster
snarks via equifficient polynomial commitments, Cryptology ePrint Archive,
2024 (cit. on p. 9).

J. Groth and M. Maller Snarky signatures: Minimal signatures of knowledge
from simulation-extractable snarks, in CRYPTO, 2017 (cit. on p. 9).

H. Lipmaa Polymath: Groth16 is not the limit, in CRYPTO, 2024 (cit. on p. 9).
M. Campanelli, N. Gailly, R. Gennaro, P. Jovanovic, M. Mihali and J. Thaler
Testudo: Linear Time Prover SNARKs with Constant Size Proofs and Square
Root Size Universal Setup, in Latincrypt, 2023 (cit. on pp. 9, 18).

R. Gennaro, C. Gentry, B. Parno and M. Raykova Quadratic span programs
and succinct NIZKs without PCPs, in Furocrypt, 2013 (cit. on p. 9).

J. Bootle, A. Chiesa, Y. Hu and M. Orru Gemini: Elastic SNARKSs for diverse
environments, in Eurocrypt, 2022 (cit. on p. 9).

H. Lipmaa, J. Siim and M. Zajac Counting vampires: From univariate sumcheck
to updatable zk-snark, in Asiacrypt, 2022 (cit. on p. 9).

C. Rafols and A. Zapico An algebraic framework for universal and updatable
SNARKSs, in CRYPTO, 2021 (cit. on p. 9).

M. Campanelli, A. Faonio, D. Fiore, A. Querol and H. Rodriguez Lunar: a
toolbox for more efficient universal and updatable zkSNARKs and commit-
and-prove extensions, in Asiacrypt, 2021 (cit. on p. 9).

J. Bootle, A. Cerulli, P. Chaidos, J. Groth and C. Petit Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting, in Furocrypt, 2016
(cit. on p. 9).

A. Gabizon, Z. J. Williamson and O. Ciobotaru PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge, Cryp-
tology ePrint Archive, Paper 2019/953, 2019 (cit. on pp. 9, 12, 14, 16, 29).

E. Ben-Sasson, A. Chiesa, E. Tromer and M. Virza Scalable zero knowledge
via cycles of elliptic curves, in CRYPTO, 2014 (cit. on p. 9).

B. Parno, J. Howell, C. Gentry and M. Raykova Pinocchio: Nearly practical
verifiable computation, in IEEE Security € Privacy, 2013 (cit. on pp. 9, 12, 14,
17).

A. Kate, G. M. Zaverucha and I. Goldberg Constant-size commitments to
polynomials and their applications, in Asiacrypt, 2010 (cit. on pp. 8, 9, 14, 16,
29).

B. Biinz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille and G. Maxwell Bullet-
proofs: Short proofs for confidential transactions and more, in IEEE Security &
Privacy, 2018 (cit. on p. 9).

E. Ben-Sasson, I. Bentov, Y. Horesh and M. Riabzev Fast reed-solomon inter-
active oracle proofs of proximity, in JCALP, 2018 (cit. on p. 9).

23

[59] A. Arun, C. Ganesh, S. Lokam, T. Mopuri and S. Sridhar Dew: A transparent
constant-sized polynomial commitment scheme, in PKC, 2023 (cit. on pp. 9,
18).

[60] I. A. Seres and P. Burcsi Behemoth: Transparent polynomial commitment
scheme with constant opening proof size and verifier time, Cryptology ePrint
Archive, Paper 2023/670, 2023 (cit. on pp. 9, 18).

[61] C. Papamanthou, E. Shi and R. Tamassia Signatures of correct computation,
in TCC, 2013 (cit. on p. 9).

[62] T. Xie, Y. Zhang and D. Song Orion: Zero knowledge proof with linear prover
time, in CRYPTO, 2022 (cit. on p. 9).

[63] T. Kohrita and P. Towa, Zeromorph: Zero-knowledge multilinear-evaluation
proofs from homomorphic univariate commitments, Journal of Cryptology, 2024
(cit. on p. 9).

[64] B. Chen, B. Biinz, D. Boneh and Z. Zhang Hyperplonk: Plonk with linear-time
prover and high-degree custom gates, in EurocryptO, 2023 (cit. on p. 9).

[65] H. Zeilberger, B. Chen and B. Fisch Basefold: Efficient field-agnostic polynomial
commitment schemes from foldable codes, Cryptology ePrint Archive, Paper
2023/1705, 2023 (cit. on p. 9).

[66] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer and M. Virza Secure sampling
of public parameters for succinct zero knowledge proofs, in IEEE Security &
Privacy, 2015 (cit. on pp. 10, 12-15).

[67] S. Bowe, A. Gabizon and M. D. Green A multi-party protocol for constructing
the public parameters of the Pinocchio zk-SNARK, in FC, 2019 (cit. on pp. 10,
12).

[68] B. Abdolmaleki, K. Baghery, H. Lipmaa, J. Siim and M. Zajac Uc-secure CRS
generation for SNARKs, in Africacrypt, 2019 (cit. on p. 10).

[69] A. Aggelakis, P. Fauzi, G. Korfiatis, et al A non-interactive shuffle argument
with low trust assumptions, in CT-RSA, 2020 (cit. on p. 10).

[70] S. Bowe, A. Gabizon and I. Miers Scalable multi-party computation for zk-
SNARK parameters in the random beacon model, Cryptology ePrint Archive,
Paper 2017/1050, 2017 (cit. on pp. 10, 12-15, 18, 29).

[71] M. O. Rabin, Transaction protection by beacons, Journal of Computer and
System Sciences, 1983 (cit. on pp. 10, 15).

[72] Semaphore trusted setup. [Online]. Available: https://github.com/privacy-
scaling-explorations/semaphore-phase2-setup (cit. on pp. 10, 16).

[73] Tornado.cash trusted setup ceremony app. [Online]. Available: https://github.
com/tornadocash/trusted-setup-server (cit. on p. 10).

[74] Aztec trusted ceremony. [Online]. Available: https: //medium . com/ aztec -
protocol/aztec-crs-the-biggest-mpc-setup-in-history-has-successfully-
finished-74c6909cd0c4 (cit. on pp. 10, 16).

[75] M. Raikwar and D. Gligoroski SoK: Decentralized randomness beacon pro-
tocols, in Australasian Conference on Information Security and Privacy, 2022
(cit. on pp. 10, 15).

[76] A. Kavousi, Z. Wang and P. Jovanovic SoK: Public Randomness, in Euro S&P,
2024 (cit. on pp. 10, 15).

[77] M. Kohlweiss, M. Maller, J. Siim and M. Volkhov Snarky ceremonies, in Asi-
acrypt, 2021 (cit. on p. 12).

[78] E. Ben-Sasson, A. Chiesa, E. Tromer and M. Virza Succinct non-interactive
zero knowledge for a von neumann architecture, in USENIX Security, 2014 (cit.
on pp. 12, 15-17).

24

https://github.com/privacy-scaling-explorations/semaphore-phase2-setup
https://github.com/privacy-scaling-explorations/semaphore-phase2-setup
https://github.com/tornadocash/trusted-setup-server
https://github.com/tornadocash/trusted-setup-server
https://medium.com/aztec-protocol/aztec-crs-the-biggest-mpc-setup-in-history-has-successfully-finished-74c6909cd0c4
https://medium.com/aztec-protocol/aztec-crs-the-biggest-mpc-setup-in-history-has-successfully-finished-74c6909cd0c4
https://medium.com/aztec-protocol/aztec-crs-the-biggest-mpc-setup-in-history-has-successfully-finished-74c6909cd0c4

[79]
[80]

[81]

[82]

[83]

[84]

[85]

[86]
[87]
[88]
[89]
[90]
[91]
92]
(93]

[94]

[95]

[96]

[97]

(98]

99]

T. Kerber, A. Kiayias and M. Kohlweiss Mining for Privacy: How to Bootstrap
a Snarky Blockchain, in Financial Crypto, 2021 (cit. on pp. 12, 19).

V. Nikolaenko, S. Ragsdale, J. Bonneau and D. Boneh Powers-of-tau to the
people: Decentralizing setup ceremonies, in ACNS, 2024 (cit. on pp. 12, 19).

1. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn and G. Stern Bingo: Adap-
tivity and asynchrony in verifiable secret sharing and distributed key generation,
in CRYPTO, 2023 (cit. on p. 12).

S. Das, P. Camacho, Z. Xiang, J. Nieto, B. Bunz and L. Ren Threshold signa-
tures from inner product argument: Succinct, weighted, and multi-threshold, in
ACM CCS, 2023 (cit. on p. 12).

S. Garg, A. Jain, P. Mukherjee, R. Sinha, M. Wang and Y. Zhang Hints:
Threshold signatures with silent setup, in IEEE Security & Privacy, 2024 (cit.
on p. 12).

T. Yurek, L. Luo, J. Fairoze, A. Kate and A. Miller Hbacss: How to robustly
share many secrets, in NDSS, 2022 (cit. on p. 12).

S. Das, T. Yurek, Z. Xiang, A. Miller, L. Kokoris-Kogias and L. Ren Practical
asynchronous distributed key generation, in IEEE Security & Privacy, 2022
(cit. on p. 12).

The internet archive, 2024. [Online]. Available: https://archive.org/ (cit. on
p. 13).

Definitely setup project, 2024. [Online]. Available: https://github.com/privacy-
scaling-explorations/DefinitelySetup (cit. on p. 13).

Y. Ishai, R. Ostrovsky and H. Seyalioglu Identifying cheaters without an honest
majority, in TCC, 2012 (cit. on p. 14).

Y. Ishai, R. Ostrovsky and V. Zikas Secure multi-party computation with
identifiable abort, in CRYPTO, 2014 (cit. on p. 14).

R. Cleve Limits on the security of coin flips when half the processors are faulty,
in STOC, 1986 (cit. on p. 14).

Y. Ishai, A. Patra, S. Patranabis, D. Ravi and A. Srinivasan Fully-secure MPC
with minimal trust, in TCC, 2022 (cit. on p. 14).

Y. Ishai, E. Kushilevitz and R. Ostrovsky Efficient arguments without short
peps, in CCC, 2007 (cit. on p. 14).

N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth and R. Ostrovsky Succinct non-
interactive arguments via linear interactive proofs, in TCC, 2013 (cit. on p. 14).
S. T. Setty, R. McPherson, A. J. Blumberg and M. Walfish Making argument
systems for outsourced computation practical (sometimes), in NDSS, 2012 (cit.
on p. 14).

S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg and M. Walfish Taking
Proof-Based verified computation a few steps closer to practicality, in USENIX
Security, 2012 (cit. on p. 14).

S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno and M. Walfish Resolv-
ing the conflict between generality and plausibility in verified computation, in
EuroSys, 2013 (cit. on p. 14).

T. Xie, J. Zhang, Y. Zhang, C. Papamanthou and D. Song Libra: Succinct zero-
knowledge proofs with optimal prover computation, in CRYPTO, 2019 (cit. on
p. 14).

C. Rafols and A. Zapico An algebraic framework for universal and updatable
snarks, in CRYPTO, 2021 (cit. on p. 14).

S. Setty, J. Thaler and R. Wahby Customizable constraint systems for succinct
arguments, Cryptology ePrint Archive, Paper 2023/552, 2023 (cit. on p. 14).

25

https://archive.org/
https://github.com/privacy-scaling-explorations/DefinitelySetup
https://github.com/privacy-scaling-explorations/DefinitelySetup

[100]

[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]

[112]

[113]
[114]

[115]

[116]

[117]

[118]
[119]
[120]

[121]

Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos and C. Papamanthou Vsql:
Verifying arbitrary sql queries over dynamic outsourced databases, in IEEFE
Security & Privacy, 2017 (cit. on p. 14).

A. L. Xiong, B. Chen, Z. Zhang, et al VeriZexe: Decentralized Private Compu-
tation with Universal Setup, in USENIX Security (cit. on p. 14).

M. J. Fischer, M. Torga and R. Peralta A public randomness service, in SE-
CRYPT, 2011 (cit. on p. 15).

J. Clark and U. Hengartner On the use of financial data as a random beacon,
in EVT/WOTE, 2010 (cit. on p. 15).

J. Bonneau, J. Clark and S. Goldfeder On bitcoin as a public randomness
source, Cryptology ePrint Archive, Paper 2015/1015, 2015 (cit. on p. 15).

A. K. Lenstra and B. Wesolowski A random zoo: Sloth, unicorn, and trx, Cryp-
tology ePrint Archive, Paper 2015/366, 2015 (cit. on p. 15).

K. Choi, A. Arun, N. Tyagi and J. Bonneau Bicorn: An optimistically efficient
distributed randomness beacon, in FC, 2023 (cit. on p. 15).

D. Yakira, A. Asayag, I. Grayevsky and I. Keidar FEconomically viable random-
ness, 2020. arXiv: 2007.03531 [cs.CR] (cit. on p. 15).

I. Cascudo and B. David SCRAPE: Scalable randomness attested by public
entities, in ACNS, 2017 (cit. on p. 15).

I. Cascudo and B. David ALBATROSS: Publicly attestable batched random-
ness based on secret sharing, in Asiacrypt, 2020 (cit. on p. 15).

E. Syta, P. Jovanovic, E. K. Kogias, et al Scalable bias-resistant distributed
randomness, in IEEE Security € Privacy, 2017 (cit. on p. 15).

A. Cherniaeva, 1. Shirobokov and O. Shlomovits Homomorphic encryption ran-
dom beacon, Cryptology ePrint Archive, Paper 2019/1320, 2019 (cit. on p. 15).
A. Bhat, N. Shrestha, Z. Luo, A. Kate and K. Nayak Randpiper —reconfiguration-
friendly random beacons with quadratic communication, in ACM CCS, 2021
(cit. on p. 15).

P. Schindler, A. Judmayer, N. Stifter and E. Weippl Hydrand: Efficient contin-
uous distributed randomness, in IEEE Security & Privacy, 2020 (cit. on p. 15).
A. Kiayias, A. Russell, B. David and R. Oliynykov Ouroboros: A provably
secure proof-of-stake blockchain protocol, in CRYPTO, 2017 (cit. on p. 15).

S. Das, V. Krishnan, I. M. Isaac and L. Ren Spurt: Scalable distributed ran-
domness beacon with transparent setup, in IEEE Security € Privacy, 2022 (cit.
on p. 15).

J. Camenisch, M. Drijvers, T. Hanke, Y.-A. Pignolet, V. Shoup and D. Williams
Internet computer consensus, in PODC, 2022 (cit. on p. 15).

D. Galindo, J. Liu, M. Ordean and J.-M. Wong Fully distributed verifiable
random functions and their application to decentralised random beacons, in
IEEE EuroS&P, 2021 (cit. on p. 15).

D. Beaver, K. Chalkias, M. Kelkar, et al Strobe: Stake-based threshold random
beacons, in AFT, 2023 (cit. on p. 15).

Y. Gilad, R. Hemo, S. Micali, G. Vlachos and N. Zeldovich Algorand: Scaling
byzantine agreements for cryptocurrencies, in SOSP, 2017 (cit. on p. 15).

J. Bonneau, J. Clark and S. Goldfeder On Bitcoin as a public randomness
source, Cryptology ePrint Archive, Paper 2015/1015, 2015 (cit. on p. 15).

Aleo trusted setup. [Online]. Available: https://setup . aleo.org/ (cit. on
p. 16).

26

https://arxiv.org/abs/2007.03531
https://setup.aleo.org/

[122]

[123]

[124]
[125]

[126]
[127]

[128]

[129]

[130]

[131]

[132]
[133]
[134]
[135]
[136]
[137]

[138]

[139)]
[140]
[141]
[142]
[143]

[144]

Anon adahaar trusted ceremony. [Online]. Available: https://ceremony.pse.
dev/projects/Anon%20Aadhaar?,20V2%20Trusted’%20Setup’%20Ceremony (cit.
on p. 16).

Aziom trusted ceremony. [Online]. Available: https://docs.axiom.xyz/docs/
transparency-and-security/kzg-trusted-setup (cit. on p. 16).

I. Damgard “On X-protocols”, Tech. Rep., 2002 (cit. on p. 16).

Celo plumo trusted ceremony. [Online]. Available: https://blog. celo.org/
the-plumo-ceremony-ac7649e9c8d8 (cit. on p. 16).

Clr-fund trusted ceremony. [Online]. Available: https ://blog . clr . fund/
trusted-setup-completed (cit. on p. 16).

Degate trusted setup. [Online]. Available: https://medium.com/degate/degate-
completes-zk-trusted-setup-ceremony-4752301e379f (cit. on p. 16).
Email wallet trusted ceremony. [Online]. Available: https://ceremony . pse.
dev /projects /Email %, 20Wallet % 20Trusted % 20Setup % 20Ceremony (cit. on
p. 16).

Filecoin mainnet trusted setup. [Online]. Available: https://filecoin . io/
blog/posts/trusted-setup-complete/ (cit. on p. 16).

Filecoin snapdeal trusted setup. [Online]. Available: https://filecoin. io/
blog/posts/trusted-setup-complete-for-network-vi5-upgrade/ (cit. on
p. 16).

Fractal cash trusted setup ceremony. [Online]. Available: https : / /medium .
com/@fractalcash/fractal - cash- announces - trusted - setup - ceremony -
652445cfel76 (cit. on p. 16).

Hermez trusted setup ceremony. [Online]. Available: https://github . com/
hermeznetwork/phase2ceremony_4 (cit. on p. 16).

Ethereum kzg ceremony. [Online]. Available: https://github. com/ethereum/
kzg-ceremony (cit. on p. 16).

Loopring trusted setup ceremony. [Online]. Available: https://loopring.org/
#/ceremony (cit. on p. 16).

Maci vl trusted setup ceremony. [Online]. Available: https://ceremony . pse.
dev/projects/Maci%20v1%20Trusted’%20Setup%20Ceremony (cit. on p. 16).
Maci vl trusted setup ceremony. [Online]. Available: https://ceremony . pse.
dev/projects/MACI%20V1.2.0%20Trusted%20Setup%20Ceremony (cit. on p. 16).
Maci v2 trusted setup ceremony. [Online]. Available: https://ceremony . pse.
dev/projects/MACIY%20v2%20Trusted’%20Setup%20Ceremony (cit. on p. 16).
Manta trusted setup. [Online]. Available: https://cointelegraph.com/news/
manta-network-conducts-record-breaking-trusted-setup-ceremony-4-
000-contribute (cit. on p. 16).

Namanda trusted setup. [Online]. Available: https://namada.net/trusted-
setup (cit. on p. 16).

Panther trusted setup ceremony. [Online]. Available: https://github. com/
pantherprotocol/preZKPceremony (cit. on p. 16).

Ppot trusted setup. [Online]. Available: https://perpetualpowersoftau.com/
(cit. on p. 16).

Rin trusted setup ceremony. [Online]. Available: https://ceremony.pse.dev/
projects/RLN%20Trusted%20Setup%20Ceremony (cit. on p. 16).

Risczero trusted setup ceremony. [Online]. Available: https://ceremony.pse.
dev/projects/RISCY%20Zero’%20STARK-to-SNARKY,20Prover (cit. on p. 16).
Semaphore v trusted setup ceremony. [Online]. Available: https://ceremony.
pse.dev/projects/Semaphore%20V4%20Ceremony (cit. on p. 16).

27

https://ceremony.pse.dev/projects/Anon%20Aadhaar%20V2%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/Anon%20Aadhaar%20V2%20Trusted%20Setup%20Ceremony
https://docs.axiom.xyz/docs/transparency-and-security/kzg-trusted-setup
https://docs.axiom.xyz/docs/transparency-and-security/kzg-trusted-setup
https://blog.celo.org/the-plumo-ceremony-ac7649e9c8d8
https://blog.celo.org/the-plumo-ceremony-ac7649e9c8d8
https://blog.clr.fund/trusted-setup-completed
https://blog.clr.fund/trusted-setup-completed
https://medium.com/degate/degate-completes-zk-trusted-setup-ceremony-4752301e379f
https://medium.com/degate/degate-completes-zk-trusted-setup-ceremony-4752301e379f
https://ceremony.pse.dev/projects/Email%20Wallet%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/Email%20Wallet%20Trusted%20Setup%20Ceremony
https://filecoin.io/blog/posts/trusted-setup-complete/
https://filecoin.io/blog/posts/trusted-setup-complete/
https://filecoin.io/blog/posts/trusted-setup-complete-for-network-v15-upgrade/
https://filecoin.io/blog/posts/trusted-setup-complete-for-network-v15-upgrade/
https://medium.com/@fractalcash/fractal-cash-announces-trusted-setup-ceremony-652445cfe176
https://medium.com/@fractalcash/fractal-cash-announces-trusted-setup-ceremony-652445cfe176
https://medium.com/@fractalcash/fractal-cash-announces-trusted-setup-ceremony-652445cfe176
https://github.com/hermeznetwork/phase2ceremony_4
https://github.com/hermeznetwork/phase2ceremony_4
https://github.com/ethereum/kzg-ceremony
https://github.com/ethereum/kzg-ceremony
https://loopring.org/#/ceremony
https://loopring.org/#/ceremony
https://ceremony.pse.dev/projects/Maci%20v1%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/Maci%20v1%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/MACI%20V1.2.0%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/MACI%20V1.2.0%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/MACI%20v2%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/MACI%20v2%20Trusted%20Setup%20Ceremony
https://cointelegraph.com/news/manta-network-conducts-record-breaking-trusted-setup-ceremony-4-000-contribute
https://cointelegraph.com/news/manta-network-conducts-record-breaking-trusted-setup-ceremony-4-000-contribute
https://cointelegraph.com/news/manta-network-conducts-record-breaking-trusted-setup-ceremony-4-000-contribute
https://namada.net/trusted-setup
https://namada.net/trusted-setup
https://github.com/pantherprotocol/preZKPceremony
https://github.com/pantherprotocol/preZKPceremony
https://perpetualpowersoftau.com/
https://ceremony.pse.dev/projects/RLN%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/RLN%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/RISC%20Zero%20STARK-to-SNARK%20Prover
https://ceremony.pse.dev/projects/RISC%20Zero%20STARK-to-SNARK%20Prover
https://ceremony.pse.dev/projects/Semaphore%20V4%20Ceremony
https://ceremony.pse.dev/projects/Semaphore%20V4%20Ceremony

[145] Tornadocash trusted setup ceremony. [Online]. Available: https://tornado-
cash.medium. com/the-biggest-trusted-setup-ceremony-in-the-world-
3c6ab9c8fffa (cit. on p. 16).

[146] Unirep trusted setup ceremony. [Online]. Available: https://ceremony.unirep.
io/ (cit. on p. 16).

[147] Zcash sprout setup ceremony. [Online|. Available: https://electriccoin.co/
blog/the-design-of-the-ceremony/ (cit. on p. 16).

[148] Zcash sapling mpc. [Online]. Available: https : //electriccoin. co/blog/
completion-of-the-sapling-mpc/ (cit. on p. 16).

[149] Zkopru trusted setup ceremony. [Online]. Available: https://medium . com/
privacy-scaling-explorations/zkopru-trusted-setup-ceremony-£f2824bfebb0f
(cit. on p. 16).

[150] Zkp2p trusted setup. [Online]. Available: https://ceremony.pse.dev/projects/
ZKP2PY,20Trusted%20Setup%20Ceremony (cit. on p. 16).

[151] Zkp2p v2 trusted setup. [Online]. Available: https : // ceremony . pse . dev/
projects/ZKP2P%20Trusted’20Setup’20Ceremony%20V2 (cit. on p. 16).

[152] Zkp2p domain trusted setup. [Online]. Available: https://ceremony.pse.dev/
projects/ZKP2P},20Domain¥20Marketplace (cit. on p. 16).

[153] Zksync trusted setup. [Online]. Available: https://docs. lite.zksync . io/
userdocs/security/#universal-crs-setup (cit. on p. 16).

[154] Zkticket trusted setup. [Online]. Available: https://ceremony.pse.dev/projects/
ZK%20Ticket%20Trusted%20Setup%20Ceremony (cit. on p. 16).

[155] A. Gabizon On the security of the BCTV Pinocchio zk-SNARK variant, Cryp-
tology ePrint Archive, Paper 2019/119, 2019 (cit. on p. 15).

[156] M. Campanelli, R. Gennaro, S. Goldfeder and L. Nizzardo Zero-knowledge
contingent payments revisited: Attacks and payments for services, in ACM CCS,
2017 (cit. on p. 17).

[157] M. Bellare, G. Fuchsbauer and A. Scafuro NIZKs with an untrusted CRS:
security in the face of parameter subversion, in Asiacrypt, 2016 (cit. on p. 17).

[158] G. Fuchsbauer Subversion-zero-knowledge SNARKs, in PKC, 2018 (cit. on
p. 17).

[159] J. Swihart Zcash Counterfeiting Vulnerability Successfully Remediated, ECC
Blog, Feb. 2019 (cit. on p. 17).

[160] A. R. Choudhuri, S. Garg, A. Goel, S. Sekar and R. Sinha Sublonk: Sublinear
prover plonk, Cryptology ePrint Archive, Paper 2023/902, 2023 (cit. on p. 18).

[161] S. Das, Z. Xiang and L. Ren Powers of tau in asynchrony, in NDSS, 2024 (cit.
on pp. 18, 19).

[162] P. S. L. M. Barreto and M. Naehrig Pairing-friendly elliptic curves of prime
order, in SAC, 2006 (cit. on pp. 19, 29).

[163] P.S. Barreto, B. Lynn and M. Scott Constructing elliptic curves with prescribed
embedding degrees, in SCN, 2003 (cit. on p. 19).

[164] M. Bellés-Muiioz, B. Whitehat, J. Baylina, V. Daza and J. L. Muifioz-Tapia,
Twisted edwards elliptic curves for zero-knowledge circuits, Mathematics, 2021
(cit. on p. 19).

[165] V. Buterin and C. Reitwiessner FEIP-197: Precompiled contracts for optimal ate
pairing check on the elliptic curve alt_bni128, 2017 (cit. on p. 19).

[166] Multi-party computation protocol for the key-generation step of Pinocchio zk-
SNARKs, github.com/zcash/mpc (cit. on p. 19).

[167] N. G. R. Blog Zcash cryptography and code review (cit. on p. 19).

[168] KZG ceremony, github.com/ethereum/kzg-ceremony, 2023 (cit. on p. 19).

28

https://tornado-cash.medium.com/the-biggest-trusted-setup-ceremony-in-the-world-3c6ab9c8fffa
https://tornado-cash.medium.com/the-biggest-trusted-setup-ceremony-in-the-world-3c6ab9c8fffa
https://tornado-cash.medium.com/the-biggest-trusted-setup-ceremony-in-the-world-3c6ab9c8fffa
https://ceremony.unirep.io/
https://ceremony.unirep.io/
https://electriccoin.co/blog/the-design-of-the-ceremony/
https://electriccoin.co/blog/the-design-of-the-ceremony/
https://electriccoin.co/blog/completion-of-the-sapling-mpc/
https://electriccoin.co/blog/completion-of-the-sapling-mpc/
https://medium.com/privacy-scaling-explorations/zkopru-trusted-setup-ceremony-f2824bfebb0f
https://medium.com/privacy-scaling-explorations/zkopru-trusted-setup-ceremony-f2824bfebb0f
https://ceremony.pse.dev/projects/ZKP2P%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/ZKP2P%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/ZKP2P%20Trusted%20Setup%20Ceremony%20V2
https://ceremony.pse.dev/projects/ZKP2P%20Trusted%20Setup%20Ceremony%20V2
https://ceremony.pse.dev/projects/ZKP2P%20Domain%20Marketplace
https://ceremony.pse.dev/projects/ZKP2P%20Domain%20Marketplace
https://docs.lite.zksync.io/userdocs/security/#universal-crs-setup
https://docs.lite.zksync.io/userdocs/security/#universal-crs-setup
https://ceremony.pse.dev/projects/ZK%20Ticket%20Trusted%20Setup%20Ceremony
https://ceremony.pse.dev/projects/ZK%20Ticket%20Trusted%20Setup%20Ceremony
github.com/zcash/mpc
github.com/ethereum/kzg-ceremony

[169] S. Kim, S. Woo, H. Lee and H. Oh Vuddy: A scalable approach for vulnerable
code clone discovery, in IEEE Security & Privacy, 2017 (cit. on p. 20).

[170] arkworks contributors Arkworks zksnark ecosystem, arkworks.rs, 2022 (cit. on
p. 20).

[171] G. Botrel, T. Piellard, Y. E. Housni, I. Kubjas and A. Tabaie Consensys/gnark:
V0.9.0, doi.org/10.5281/zenodo.5819104, 2023 (cit. on p. 20).

[172] KZG Ceremony Special Contributions, 2023. [Online]. Available: https://
github.com/ethereum/kzg-ceremony/blob/main/special_contributions.md
(cit. on p. 20).

[173] Semaphore project, semaphore.appliedzkp.org/ (cit. on p. 29).

[174] K. W. Jie Announcing the perpetual powers of tau ceremony to benefit all zk-
snark projects, 2019 (cit. on p. 29).

[175] D. Wang, J. Zhou, A. Wang and M. Finestone Loopring: A decentralized token
exchange protocol, 2018 (cit. on p. 29).

[176] Loopring trusted setup, loopring.org/ceremony, 2023 (cit. on p. 29).

[177] Tornado.cash Tornado.cash trusted setup ceremony (cit. on p. 29).

[178] Polygon hermez: Scalable payments. decentralised by design, open for everyone
(cit. on p. 29).

A Perpetual Powers-of-tau Ceremony

Ethereum project Semaphore [173], an anonymous membership proof system,
launched a large private coin setup, the Perpetual Powers-of-Tau (PPOT) cer-
emony, for its internal Groth16 [26] proof system. They followed the impactful
Sapling ceremony paradigm, developed by [70]. Two distinctions stand out in the
PPOT ceremony. First, the Semaphore team visions a once-for-all Powers-of-Tau
ceremony to enable SNARKSs on as many circuits (aka constraints) as possible.
The size of powers-of-tau targeted up to 228, which is even capable of cover-
ing the zk-rollup circuit (260 million constraints) [174]. Such a computation-
intensive ceremony will take almost a whole day on a fast machine with 97GB
downstream and 49GB upstream bandwidth per participant to contribute to the
ceremony. Although the underlying proof system of Semphore is Groth16, other
zk-SNARKs like Plonkish proof systems [53] can still benefit from the PPOT cer-
emony. Generally speaking, any protocol (not necessarily SNARKSs) built on the
KZG commitment [56] is relieved from the burden of running a powers-of-tau
private coin ceremony.

Second, PPOT is a perprtual ceremony that supports fluid participants and
continuous running mode. Though it started back in 2019, it is still open to
accepting contributions on the BN254 curve [162]. Indeed, the 77th contribu-
tion was just submitted last week by the time of writing. Unlike any other past
ceremonies, projects are free to choose whichever contribution to start their spe-
cific phase two ceremonies. Popular examples around the community include:
Loopring [175] moves on their phase two setup [176] with the 11th rounds of
PPOT ceremony, Semaphore [173] heads to its phase two ceremony after 25th
contribution, and Tornado.cash [177] built their circuit-depend ceremony based
on the 30th contribution to PPOT ceremony, polygon Hermez [178] selecting
the 54th contribution as its starting point. The best practice, which is adopted

29

arkworks.rs
doi.org/10.5281/zenodo.5819104
https://github.com/ethereum/kzg-ceremony/blob/main/special_contributions.md
https://github.com/ethereum/kzg-ceremony/blob/main/special_contributions.md
semaphore.appliedzkp.org/
loopring.org/ceremony

by the above projects based on existing contributions, is to rotate the one you
chose into the customized next round with your contribution. In addition, un-
predictable randomness (even if all the participants colluded) reinforces the all-
but-one-honest security. In practice, a random beacon derived from a designated
future block in Bitcoin/Ethereum is utilized to add extra randomness and boost
the trustworthiness of the whole ceremony. Upon that, the phase 1 ceremony
(powers-of-tau) can be efficiently bootstrapped without organizing, coordinat-
ing, and repeating the same process repeatedly for every project. As mentioned,
a successful contribution indicates a participant does no more than raise cor-
responding numbers to powers of an identical 7. Raised criticism of the PPOT
ceremony lies in the coordinator. Specifically, the The Sword of Damocles of
PPOT ceremonies is the centralized coordinator who orders and verifies partic-
ipants’ contributions. Trust in a reputation-based coordinator can be risky if
he is capable of deliberately introducing biased randomness in the final round.
Specifically, in practice biased randomness comes from a random beacon, which
is usually instantiated with future blocks of blockchain systems, as the coordi-
nator is usually the one who runs a ceremony.

30

	SoK: Trusted setups for powers-of-tau strings

