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Abstract. Fuzzy private set intersection (Fuzzy PSI) is a cryptographic
protocol for privacy-preserving similarity matching, which is one of the
essential operations in various real-world applications such as facial au-
thentication, information retrieval, or recommendation systems. Despite
recent advancements in fuzzy PSI protocols, still a huge barrier remains
in deploying them for these applications. The main obstacle is the high-
dimensionality, e.g., from 128 to 512, of data; lots of existing meth-
ods, Garimella et al. (CRYPTO’23, CRYPTO’24) or van Baarsen et
al. (EUROCRYPT’24), suffer from exponential overhead on communi-
cation and/or computation cost. In addition, the dominant similarity
metric in these applications is cosine similarity, which disables several
optimization tricks based on assumptions for the distribution of data,
e.g., techniques by Gao et al. (ASIACRYPT’24). In this paper, we pro-
pose a novel fuzzy PSI protocol for cosine similarity, called FPHE, that
overcomes these limitations at the same time. FPHE features linear com-
plexity on both computation and communication with respect to the di-
mension of set elements, only requiring much weaker assumption than
prior works. The basic strategy of ours is to homomorphically compute
cosine similarity and run an approximated comparison function, with a
clever packing method for efficiency. In addition, we introduce a novel
proof technique to harmonize the approximation error from the sign func-
tion with the noise flooding, proving the security of FPHE under the
semi-honest model. Moreover, we show that our construction can be ex-
tended to support various functionalities, such as labeled or circuit fuzzy
PSI. Through experiments, we show that FPHE can perform fuzzy PSI
over 512-dimensional data in a few minutes, which was computationally
infeasible for all previous proposals under the same assumption as ours.
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1 Introduction

In recent years, data-driven technologies such as artificial intelligence (AI) and
data collaboration have rapidly advanced, offering innovative and useful services
such as biometric identification systems [21,34], image or text retrieval [31,41],
recommendation systems [32], or collaborative data analysis [47]. During oper-
ating these services, one of the essential operations is similarity matching, i.e.,
measuring the similarity between the data held by the client and stored in the
service provider. However, the exchanged data would contain sensitive infor-
mation of each party, such as biometrics or location information, which could
result in privacy risks such as unauthorized surveillance and potential misuse.
Therefore, in compliance with regulations on data privacy such as GDPR [55]
or CCPA [10], it is necessary to devise a safeguard for deploying these services.

Private set intersection (PSI) [20,28,50,48,7] is one of the notable candidates
for addressing the above-mentioned problem, which is a cryptographic protocol
that allows parties to compute the intersection between their datasets with-
out revealing any additional information. For decades, several studies have been
made to improve the efficiency and functionality of PSI protocols, and these
achievements enabled practical deployment of PSI protocols in various applica-
tion scenarios. For example, private matching for compute [9,44,43] from Meta,
PSI [6] from Apple, and private join and compute [33,37] from Google enable
computing intersections and additional functionality between two parties while
protecting the underlying data privacy. However, traditional PSI protocols have
been focused on the exact matching only; their methods are not suitable for
similarity matching.

Recently, fuzzy private set intersection (fuzzy PSI), which is a PSI protocol
supporting both exact and similarity matching, was recently highlighted and
actively studied [54,29,30,13,3,27,26,49]. Several fuzzy PSI protocols have been
proposed for various similarity metrics, including Hamming distance between bi-
nary vectors, or Euclidean distance (ℓp for p ∈ N∪{∞}) between integer-valued
vectors. Moreover, recent proposals have achieved various functionalities, such
as labeled PSI or circuit PSI [3,27], or stronger security notions, including sender
privacy [3] or malicious security [30]. However, despite their theoretical achieve-
ments, we found that existing fuzzy PSI protocols would not be applicable in
our target scenarios in practice. In our target scenarios, each set element is often
represented by high-dimensional real-valued vectors, e.g., from 128 to 512 in face
recognition or recommendation system, and the dominating similarity metric is
cosine similarity. On the other hand, to our knowledge, existing proposals (1)
suffer from exponential communication and/or communication overhead with
respect to the dimension of set elements [29,30,27,3], or (2) require strong as-
sumptions on the distribution of data, e.g., each set data should be far from each
other [29,30,3,49] or all the neighborhoods of data should not overlap in at least
one [3,26] or all axes [29,30], to greatly reduce computation or communication
costs. However, we found that their assumptions are all disabled when dealing
with cosine similarity. Therefore, all these proposals are insufficient for deploying
to our target applications.
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Metric Protocol Assumption Communication
Computation

Sender Receiver

L∞

[3]

R. > 2T O(TdN + 2dM) O(2ddM) O(TdN + 2dM)

R. > 4T O(T2ddN +M) O(dM) O(T2ddN +M)

R. disj. proj. O((Td)2N +M) O(d2M) O((Td)2N +M)

[26] R. ∧ S. disj. proj. O(TdM + TdN) O(TdM +N) O(M + TdN)

[27] - O(Nd log T +NM(log T )d) O(M(log T )d + d log T ) O(N(log T )d +Md log T )

Lp∈[1,∞)

[3] R. > 2T (d1/p + 1) O(T pM + T2ddN) O((d+ T p)M) O(M + T2ddN)

[26] R ∧ S. disj. proj. O((Td+ p log T )M + TdN) O((Td+ p log T )M +N) O(p log TM + TdN)

Cos. Sim. Ours S.> 2T d+ 1 Ctxt ⌈2NM
n
⌉d PtCtMul, ⌈2NM

n
⌉ Sign d Enc

Table 1. Comparison of fuzzy PSI protocols across various metrics. N,M : number of
set elements held by receiver and sender, respectively. d: dimension of each set element.
T : threshold. n: ring dimension of FHE. Ctxt: FHE ciphertext. Enc: FHE encryption.
PtCtMul: plaintext-ciphertext multiplication in FHE. Sign: evaluation of sgn in FHE.
Note that assumptions in red turn out not to be applicable in cosine similarity.

- R. > v: the distance between the elements in the receiver’s set is greater than v.
- S. > v: the distance between the elements in the sender’s set is greater than v.
- R. disj. proj.: for the receiver’s set, there exists at least one dimension where the

distance between the projections of elements exceeds 2T .
- R. ∧ S.: the above assumption holds for both the receiver’s and sender’s sets.

Contribution. In this paper, we propose a novel fuzzy PSI protocol called
FPHE, which is tailored for dealing with high-dimensional data using cosine
similarity as a similarity metric. Compared to previous fuzzy PSI proposals,
FPHE is doubly efficient under the assumption that the neighborhoods of each
set element do not overlap, as it achieves both linear communication and com-
putation cost with respect to the dimension of each set element. This enables
us to handle high-dimensional data such as 512, which was computationally in-
feasible in all the existing fuzzy PSI constructions under the same assumption.
We compare our PFHE with other previous fuzzy PSI protocols in Tab. 1. We
identify that the assumptions of the works have limitations in the context of our
scenarios (see Section 3.1).

The main ingredient of FPHE is to homomorphically perform the similarity
matching procedure using CKKS [17], which is a fully homomorphic encryption
(FHE) scheme supporting real-valued arithmetic, and an (approximated) sign
function, with a clever encoding method to reduce the computation. We also
prove the security of FPHE under the semi-honest model by introducing a new
proof technique to incorporate the approximation error of a circuit into the
noise flooding technique. Moreover, we show that FPHE can be extend to its
functionalities without significant overhead, such as labeled fuzzy PSI or circuit
fuzzy PSI, to cover broader application scenarios.

As a proof-of-concept, we instantiate FPHE using the sign function approx-
imation by Cheon et al. [18] and OpenFHE [1] library. FPHE successfully per-
forms the fuzzy PSI on 512-dimensional data in a few minutes, which was compu-
tationally infeasible, not even considered, in all existing proposals. To facilitate
further study, we released our source code on github3.

3 https://github.com/Cryptology-Algorithm-Lab/FPHE
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1.1 Technical Overview

Fuzzy PSI protocol using FHE. A typical approach to constructing an exact
PSI through FHE is to subtract elements from each party and homomorphically
multiply all of them; the decrypted result would be zero if there is an overlapping
element. However, for the case of fuzzy PSI, this approach is no longer applicable
because we now need to determine whether these two elements are sufficiently
close or not, i.e., within the predetermined threshold. We detour this issue by
an alternative approach: computing similarity scores between elements in an
encrypted domain and homomorphically evaluating a sign function. The reason
to evaluate the sign function is to distinguish whether the similarity score exceeds
the threshold or not. Intuitively, our protocol goes as follows: first, the receiver
encrypts his/her input and sends it to the sender. The sender homomorphically
computes the matching scores and then evaluates the sign function. Finally, the
receiver retrieves the final result from the sender and determines whether there
is an overlapping element or not by decrypting it.

Achieving Semi-honest Security. Although the above high-level construc-
tion seems to satisfy the desirable functionality, it fails to satisfy the semi-honest
security without appropriate treatments. Note that CKKS itself does not sat-
isfy circuit privacy [38]; the ciphertext after evaluation could leak information
about the private input of the circuit, which is the set held by the sender in
our context. To mitigate this, a typical solution is for the sender to employ the
noise flooding technique [39] on the final ciphertext being sent to the sender.
However, we found that applying it as is would not ensure the semi-honest se-
curity because our circuit is an approximation of the sign function. Note that
the approximation error also leaks information about the sender’s data, inde-
pendent of the noise flooding technique. We resolved this issue by proposing a
novel technique to take into account the approximation error from the circuit in
the noise flooding technique. Thanks to this, by selecting the parameter of FHE
accordingly, we finally prove the security of the proposed protocol.

Extending Functionality. In FPHE, the receiver receives the intersection re-
sult only. However, some real-world applications require more functionalities.
For example, in image retrieval, the receiver needs to learn the corresponding
label of the intersecting set elements. For this reason, we also propose variants
for richer functionalities, including labeled fuzzy PSI and circuit fuzzy PSI. Note
that since we utilize the sign function to determine whether two set elements
are close enough or not, the resulting ciphertext contains only one of 0 or 1.
Hence, by multiplying a label on the ciphertext, we can easily embed the label.
In addition, by cleverly packing the plaintext during the protocol, we show that
the arithmetic circuit, such as summation, can be evaluated by applying homo-
morphic operations on the ciphertext from the sign function evaluation. With
these ideas, we successfully extend the functionality of FPHE without significant
overhead.
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1.2 Related Works

Traditional PSI. Efficient traditional PSI protocols have been proposed in
many studies through various cryptographic primitives: oblivious transfer (OT)
[46,45,5], oblivious pseudorandom function [53,50,8,14], vector oblivious linear
evaluation (VOLE) [50,48], oblivious key-value store (OKVS) [7,28,48], and fully
homomorphic encryption [16,15,20,52,56]. Additionally, there are PSI proto-
cols that output related information for the intersection, such as the cardinal-
ity [24,51,57,56,58], the associated labels for each set element [15,20,8], or the
evaluation of arbitrary circuit [50,52]. In particular, for FHE-based construc-
tions. Chen et al. [16] proposed the first efficient PSI protocol, along with sev-
eral optimization tricks. Based on their framework, there has been a series of
improvements, including achieving malicious security [15], improving concrete ef-
ficiency [20], extending functionalities [15,52,56]. However, all these protocols are
designed for exact matching, so they are not applicable in our target scenarios.

Fuzzy PSI. Fuzzy PSI was first introduced by Freedman et al.[25] and recently
several fuzzy PSI protocols have been proposed for various distance metrics.
For Hamming distance, Uzun et al. [54] proposed a HE-based construction, and
Chakraborti et al. [13] improved it. However, their approaches suffer from non-
negligible false-positive rates. For Euclidean distances, which is our main interest,
Garimella et al. [29,30] proposed structure-aware PSI (sa-PSI) for L∞ norm,
where the receiver only holds a set A of disjoint L∞ balls. They used weak
boolean function secret sharing (bFSS) and spatial hashing technique, which is
later improved at [27] to reduce the costs of prior works [29,30]. On the other
hand, van Baarsen et al. [3] improved the idea of prior works [29,30] by employing
the idea of Apple’s PSI [6], relying on a weaker assumption. Additionally, they
extended their idea to handle Lp∈[1,∞) distance. Gao et al. [26] proposed a fuzzy
PSI for Lp distances based on a novel primitive called fuzzy mapping, which
enables them to improve all prior works under a similar assumption. Although
fuzzy PSI protocols for L2 metric can be used for dealing with cosine similarity,
as we mentioned, all of them are not applicable in our setting.

2 Preliminaries

Notations. For an integer d, [d] denotes a set of integers {1, 2, . . . , d}. We use
bold font with uppercase letters to represent matrices, bold font with lowercase
letters to represent vectors, and italic font to represent sets. For example, matrix
P, vector c, and set I . For a vector c, ck denotes the k-th component of c. For
a matrix P, we use p(i,·) as the i-th row and p(·,j) as the j-th column. p(i,j)
denotes a component of the matrix P at position (i, j). For P ∈ Rd×N and
Q ∈ Rd×M , p(·,i) · q(·,j) denotes the inner product operation between the i-th
column of P and the j-th column of Q, i.e., p(·,i) · q(·,j) =

∑d
k=1 p

(k,i)q(k,j).
Sd−1 = {c ∈ Rd | ||c||2 = 1} denotes a unit (d− 1)-sphere.

For any distribution D, x← D denotes sampling x from the distribution D,
and it denotes the sampling from the uniform distribution over D when D is a
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finite set. For a real σ > 0, NZ(0, σ
2) denotes a discrete Gaussian distribution

with a mean of 0 and a variance of σ2. NZn(0, σ2In) denotes a (discrete) multi-
variate normal distribution with zero mean vector and covariance matrix σ2In,
where In is an n×n identity matrix. For an integer q, we identify Z ∩ (−q/2, q/2]
as a representative of Zq. For an integer m, Z∗

m = {x ∈ Zm | gcd(x,m) = 1}.
ζ = exp(−2πi/m) denots a primitive m-th root of unity.

2.1 Fuzzy Private Set Intersection for Cosine Similarity

We now clarify our goal, fuzzy PSI protocol for cosine similarity, which is a two-
party protocol between the receiver R and the sender S. Suppose R and S have
datasets P = {p(·,1), . . . ,p(·,N)} ⊆ Sd−1 and Q = {q(·,1), . . . ,q(·,M)} ⊆ Sd−1,
respectively. For a threshold T ∈ [−1, 1], the goal of the protocol is to let R
learn indices {idx ∈ [N ] : p(·,idx) · q(·,j) > T for some j ∈ [M ]}, without leaking
any information to S. We denote the corresponding ideal functionality as FFPSI,
which is described in Fig. 1.

Ideal Functionality FFPSI

Parameters: threshold T ∈ [−1, 1].
Inputs: R has input P = {p(·,1), . . . ,p(·,N)} ⊆ Sd−1. S has input Q =
{q(·,1), . . . ,q(·,M)} ⊆ Sd−1.
Output: Returns an index set I to R such that for each idx ∈ [N ], idx ∈ I
if there exists j ∈ [M ] such that p(·,idx) · q(·,j) > T ; otherwise, idx /∈ I. S
receives nothing.

Fig. 1. Ideal Functionality FFPSI.

Security Model. Throughout this paper, we consider a semi-honest adver-
sary [11], i.e., each party honestly follows the protocol, but one of them can be
corrupted. Later, we show that the proposed protocol πFPHE securely implements
the ideal functionality FFPSI under the semi-honest model: see Theorem 2 for
details. We provide a formal definition in Appendix A.

2.2 CKKS

We use CKKS [17], an approximate FHE to perform operations with encrypted
real-valued data. As approximate FHE, each ciphertext contains some noise,
which grows with operations. The scheme begins by selecting the following pa-
rameters: an initial modulus q0, a scaling factor ∆ > 0, a ring dimension n,
and the maximum level L ∈ N. For each level l, the modulus is defined as
ql = ∆l · q0 for 0 ≤ l ≤ L. Then, it operates on the following spaces: plaintext
space R = Z[X]/⟨Xn+1⟩, and ciphertext space Rql = Zql [X]/⟨Xn+1⟩. Here, n
is a power of two, and Xn + 1 is a m-th cyclotomic polynomial, where m = 2n.

A polynomial m(X) ∈ R can be embedded into Cn/2 through the canonical
embedding δ(m). It consists of an evaluation of m(X) at the roots of Xn + 1,
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i.e., ζk for a primitive m-th root of unity ζ. Since m(ζk) = m(ζ−k), these
n evaluations can be represented as a vector in Cn/2. Then, a message m is
encoded to ⌊∆δ−1(m)⌉ ∈ R, and m(X) is decoded to ∆−1δ(m(X)).

Below, we provide a brief description of the scheme, with details available
in [17]. Note that a polynomial is sampled from a distribution D by indepen-
dently sampling each of its coefficients from D.

– KeyGen(1λ)→ (pk, evk, sk): Given the security parameter λ, set parameters
involving m and σ, and output a public key pk, an evaluation key evk, and
a secret key sk.

– Encpk (m(X))→ c ∈ R2
qL : Output a ciphertext c of plaintext m(X) ∈ R.

– Decsk (c)→ m′(X): For a ciphertext c of a plaintext m(X), output m′(X) =
m(X) + e(X) with an error e(X).

– Add(c1, c2) → cadd: For ciphertexts of m1(X) and m2(X), output a cipher-
text of m1(X) +m2(X), where it has an error that is bounded by the sum
of two errors for the inputs.

– Multevk (c1, c2) → cmult: For ciphertexts of m1(X) and m2(X), output a
ciphertext cmult, where its decryption is (m1(X)+e1(X))(m2(X)+e2(X))+
emult for some polynomial emult ∈ R.

– RSl→l′(c)→ c′ ∈ R2
ql′

: For c ∈ R2
ql

, output c′ ← ⌊(ql′/ql) · c⌉ (mod ql′).

The CKKS scheme satisfies IND-CPA security under the hardness assump-
tion of the RLWE problem. Decisional RLWE problem is defined as the compu-
tational indistinguishability between the tuple (as+ e, a) ∈ R2

q, where s← χHam

and e← NZ(0, σ
2), and a uniformly random tuple (b, a)← R2

q.

2.3 Sign function

The sign function is one of the fundamental operations, especially for imple-
menting the comparison operator. Due to its discontinuity, homomorphically
computing a sign function has been a non-trivial problem, and several meth-
ods [19,18,36,42,35] have been proposed to efficiently compute its approxima-
tion. Note that we also need this for determining whether two set elements are
sufficiently close or not. First, we define the comparison function and the sign
function as follows.

Definition 1 ([18]). A comparison function comp : R × R → R and a sign
function sgn : R→ R are defined as

comp(X,Y ) =


1 if X > Y,
1
2 if X = Y,

0 if X < Y

, sgn(X) =


1 if X > 0,

0 if X = 0,

−1 if X < 0.

Note that comp(X,Y ) = sgn(X−Y )+1
2 .

For an approximated polynomial p(X) of sgn(X), we characterize its preci-
sion by defining the notion of (α, ϵ)-close. Each parameter describes how p(x) is
close to sgn and how much p(x) can be faithfully approximated near 0, respec-
tively. The formal definition is given as follows:
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Definition 2 ([18]). For α > 0 and 0 < ϵ < 1, a polynomial p(X) is said to be
(α, ϵ)-close to sgn(X) over [−1, 1] if p(X) satisfies the following:

∥p(X)− sgn(X)∥∞,[−1,−ϵ]∪[ϵ,1] ≤ 2−α,

where || · ||∞,R denotes the infinity norm over the domain R.

In this paper, we call |p(x)− sgn(x)| an accuracy error for x ∈ [−1,−ϵ] ∪ [ϵ, 1].

2.4 Noise Flooding

In our construction, the receiver finally obtains a ciphertext corresponding to an
output of homomorphic evaluation of some circuit. However, it is known that
such a ciphertext in CKKS could leak information about non-public inputs of
the circuit [38], which is the dataset of the sender in our case. Hence, we employ
noise flooding to prevent this issue.

The effect of noise flooding in CKKS was thoroughly studied by Li et al. [39].
For the sake of a rigorous security proof in our protocol, we introduce some results
of theirs. Their analysis was based on the previous result [38] that the leakage of
non-public inputs stems from the decryption error, which is defined as follows:

Definition 3 ([39]). Let Π = (KeyGen,Enc,Dec,Add,Mult,RS) be a (approx-
imation) FHE scheme with plaintext space M ⊆ M̃, which is a normed space
with norm ∥ · ∥ : M̃ → R≥0. For any ciphertext c, plaintext m, and secret key
sk, the ciphertext error of (c,m, sk) is defined to be

Error(c,m, sk) = ∥Decsk(c)−m∥.

For CKKS, canonical embedding norm is used, which is defined by for a(X) ∈
Q[X]/⟨Xn + 1⟩, ∥a(X)∥can∞ = ∥(a(ζk))k∈Z∗

m
∥∞.

Suppose c1, . . . , ck are encryptions of plaintexts m1, . . . ,mk, respectively.
Given an arithmetic circuit G, let c denote a ciphertext computed on c1, . . . , ck
for G, and let m be an output of G(m1, . . . ,mk). In this case, we call the cipher-
text error Error(c,m, sk) a circuit error. Li et al. [36] proved that one can blend
the non-trivial information from the circuit error via a similar scale of the noise,
hence achieving the desirable goal. More precisely, one can achieve q-IND-CPAD

security with this modification, which means that the adversary cannot obtain
any information about the non-public input with up to q queries to a decryption
oracle. We provide the full statement as follows:

Definition 4 ([39]). Let ct be a tuple (ct.c, ct.t) for CKKS scheme, where ct.c
is a ciphertext, and ct.t is an estimation of the worst error bound for ct.c. Then,
for σ∗ > 0, S-CKKSσ∗ is CKKS scheme which modifies decryption to compute
S-CKKSσ∗ .Decsk(ct) = Decsk(ct.c) + e for e← NZn(0, σ∗2ct.t2In).

Theorem 1 (Corollary 2 of [39]). For any q, n ∈ N, let q be a maximum
of decryption queries an attacker can make, and let n be the ring dimension.
Then, if CKKS is (c+ log2 24)-bit IND-CPA-secure, and σ∗ =

√
24qn2s/2, then

S-CKKSσ∗ is (c, s)-bit q-IND-CPAD-secure.
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Here, s is about statistical security, i.e., the adversary can gain any non-
trivial information from a decrypted result with probability 2−s. We also note
that the worst error bound can be estimated according to [17].

3 Fuzzy PSI Protocol for Cosine Similarity

We now present our Fuzzy PSI protocol for cosine similarity, denoted by πFPHE,
which is specialized for dealing with high-dimensional data. πFPHE requires weaker
assumption than those for prior works for L2 norm [3,26], which turn out to be
impractical for cosine similarity. We also prove its security in a semi-honest
model and extend its functionalities, including labeled and circuit fuzzy PSI.

3.1 Limitation of Assumptions in Previous Proposals

The cosine similarity and L2 distance are equivalent when the given two vectors
are unit. More precisely, if the cosine similarity of two vectors x,y is c, then
∥x − y∥2 =

√
2− 2c. Hence, fuzzy PSI protocols [3,26] supporting L2 distance

would be employed in our target applications. However, we point out that their
assumptions would not be achieved for unit vectors in practice.

For a precise explanation, we first focus on the assumption used in van
Baarsen et al. [3], which assumes that all elements should be far from each
other, more than 2T2(d

1/2 + 1) in L2 distance, where T2 is the threshold in L2

distance. That is, all these elements should not overlap each other when we con-
sider L∞ balls of radius T centered at these set elements. However, note that
the upper bound of L∞ distance between two unit vectors is 2. That is, this
restricts the choice of the possible threshold T2 by T2 < 1√

d+1
< 1√

d+1
, i.e., from

the perspective of cosine similarity, T > 2d+1
2d+2 . For example, if d = 512, then the

lower bound becomes ≈ 0.999, which is extremely tighter than the threshold of
usual face authentication models [22,34] that uses T ≈ 0.3.

On the other hand, Guo et al. [26] used the disjoint projection assumption,
which claims that there exists an axis such that all the neighborhoods of set
elements are non-overlapping when projected to this axis. We can observe that
this condition is implied by that used in van Baarsen et al. Hence, to validate
this assumption as well, their choice of T subjects to the lower bound in above.
Therefore, they are not applicable in practice, and an alternative approach tai-
lored for cosine similarity is needed.

3.2 Construction of πFPHE

At a high level, our protocol consists of the following four steps. We will denote
the receiver and the sender as R and S, respectively.
1. R encrypts its data via CKKS and sends it to S.
2. S homomorphically computes the cosine similarity between each data.
3. S homomorphically evaluates a comparison function with the threshold.
4. S applies a noise flooding technique at the result and sends it to R.

In the remaining of this subsection, we will provide details about each step.
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Fig. 2. The description of our approach to compute cosine similarity scores. ⊗ and Σ
denote component-wise multiplication and summation, respectively.

Settings and Data Format. We denote P = {p(·,1), . . . ,p(·,N)} ⊆ Sd−1 and
Q = {q(·,1) . . . ,q(·,N)} ⊆ Sd−1 as datasets held by R and S, respectively. For
the ease of explanation, we assume that MN = n/2, i.e., the number of packed
components in one CKKS ciphertext. For the case when MN > n/2, we run
the protocol several times. We assume that the dataset Q held by S is non-
overlapping, i.e., no pair of elements in Q are closer to each other than the
threshold T . This is reasonable in practice because S may pre-process to delete
overlapping data before running the protocol. Note that in this setting, for each
set element in P there is at most one element in Q within the threshold. Finally,
we assume that P and Q are well-quantized so that for sufficiently small ϵ > 0,
the inner product between each pair of set elements does not lie within the
range (T − 2ϵ, T +2ϵ). Note that this is not a harsh assumption because several
quantization methods, e.g., 8-bit or 16-bit, showed that such a quantization
would not give a significant effect on the inner product value [4,23]. Throughout
this paper, we use ϵ = 2−16.

Computation of Similarity Score. Each dataset can be represented as ma-
trices, i.e., P ∈ Rd×N and Q ∈ Rd×M , respectively. In this step, the goal is to
homomorphically compute PT ·Q ∈ RN×M . To this end, our key idea is to clev-
erly encode P to take advantage of homomorphic operations between plaintext
and ciphertext, which is much cheaper than ciphertexts. This process is described
in Figure 2.R sets P by concatenating M copies of P. For j ∈ [M ], S creates Qj ,
each containing N copies of q(·,j). The final Q is generated by uniformly per-
muting Qj ’s and concatenating them. The plaintext-ciphertext multiplication
between the i-th rows of P and Q corresponds to element-wise multiplication.
Summing the results obtained from only d multiplications generates a single ci-
phertext that contains all scores si,kj

= p(·,i) · q(·,kj) between P and Q. This
single ciphertext allows the desired result to be computed with a single evalua-
tion of the comparison function.

Evaluating Comparison Function. After computing the cosine similarity
scores, S runs a comparison circuit with respect to the threshold T , i.e., sgn(c−T )+1

2 .
To this end, S utilizes a polynomial p(X) that is (α−1, ϵ)-close to the sign func-
tion sgn over the interval [−1, 1]. Here, one caveat is that the value of c− T lies
within [−2, 2], so we need to (homomorphically) multiply 1

2 to fit the desired
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range of [−1, 1]. After evaluation, we can ensure that the resulting ciphertext s
holds a message that lies within [1− 2−α, 1+2−α] if there is an overlap between
set elements, otherwise lies within [−2−α, 2−α].

Noise Flooding Technique. To ensure the privacy of S’s dataset, S finally
applies the noise flooding technique on s. Recall that the Theorem 1 tells us
the precise amount of the noise for whitening the information leakage from the
circuit error. However, in our setting, this theorem as is would not ensure the
security of our protocol because of the approximation error on evaluating sgn.
Hence, instead of adding the noise according to the worst-case circuit error ct.t,
we need to use an adjusted value ct.t that also considers the approximation error.

We also note that the decrypted values are also affected by the noise flooding.
For this reason, R employs a parameter r to determine the overlapping indices
from the received ciphertext s. More precisely, for the message z correspond-
ing to s, R checks whether each component of z lies within [1 − 2r, 1 + 2r] or
[−2r, 2r]. The precise analysis on the desired ct.t and r will be provided in the
next subsection, along with the security proof of our protocol.

The Full Protocol. By merging these building blocks all together, we finally
construct our Fuzzy PSI protocol πFPHE. For completeness, we describe the overall
protocol with details in Fig. 3.

Computation/Communication Costs. We now analyze the computation
and communication cost of πFPHE for each party. We first consider the case when
MN = n/2, and extend it to the general case. During the protocol, the commu-
nication occurs when sending and retrieving ciphertexts, i.e., d ciphertexts for
encrypting P and a ciphertext corresponding to s. That is, the communication
cost is (d + 1) ciphertexts. For computation, we first observe that R proceeds
with d encryption and 1 decryption during the protocol. On the other hand, S
takes d plaintext-ciphertext multiplications and 1 evaluation of the sign function.

We now consider the case MN > n/2. If we assume N < n/2, then we can
chunk the dataset Q of S into k = ⌈ 2MN

n ⌉ pieces, say Q1, . . . ,Qk, where each
piece has elements at most n

2N . Hence, it suffices to run k runs of πFPHE with
inputs (P,Q1), . . . , (P,Qk) for R and S, respectively. Here, we can observe that
(1) for each protocol, R sends the same ciphertexts to S, and (2) the evaluation
result of the sign function si for each run of the protocol on inputs (P,Qi)
can be aggregated by summation. Hence, the computation cost of R and the
communication cost remain the same as πFPHE, whereas the computation of S is
scaled by k.

3.3 Security Analysis

In this subsection, we show that the proposed πFPHE indeed achieves the semi-
honest security, i.e., securely implements the ideal functionality FFPSI in Fig. 1.
The core part of our security proof is to analyze the scale ct.t of noise flooding
to ensure that the retrieved ciphertext s did not contain any useful information.
For this reason, we will focus on providing our analysis about ct.t.
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Parameters: threshold T ∈ [−1, 1], and security parameters λ and r.
Inputs: R has input P = {p(·,1), . . . ,p(·,N)} ⊆ Sd−1. S has input Q =
{q(·,1), . . . ,q(·,M)} ⊆ Sd−1. i.e., P ∈ Rd×N and Q ∈ Rd×M .
Procedure:

1. R runs (pk, evk, sk)← KeyGen(1λ).
2. R sets a matrix P = P∥ · · · ∥P ∈ Rd×n/2 by concatenating M copies of

P.
3. For each i ∈ [d], R encodes p(i,·) to a polynomial p(i,·)(X) ∈ R and runs

pi ← Encpk(p
(i,·)(X)).

4. R sends pk, evk, and {pi}i∈[d] to S.
5. For j ∈ [M ], S creates Qj ∈ Rd×N by concatenating N copies of q(·,j),

then sets Q = Qk1
∥ · · · ∥QkM

∈ Rd×n/2 through random permutation.
6. For each i ∈ [d], S encodes q(i,·) to a polynomial q(i,·)(X) ∈ R.
7. For each i ∈ [d], S computes vi = q(i,·)(X) · pi and vi ← RS(vi).
8. S computes c by adding vi for all i ∈ [d] using the Add algorithm.
9. S computes T ← ⌊∆T ⌉ ∈ R and w = c− (T , 0).

10. S computes s for the sign function sgn with w by using the Add, Mult
and RS algorithms.

11. S samples e← NZn(0, σ∗2ct.t
2
In) and computes z = s+ (e, 0).

12. S sends z to R.
13. R runs z(X)← Decsk(z) and decodes z(X) to obtain a message z.
14. For z = (z1, . . . , zn/2), R sets an index set I ⊂ [N ] satisfying idx ∈ I if

and only if ∃j ∈ [M ] such that z(j−1)N+idx ∈ [1− 2r, 1 + 2r]

Fig. 3. The description of the proposed Fuzzy PSI Protocol πFPHE.

Deriving ct.t for Noise Flooding. We first recall that the rationale of em-
ploying the noise flooding is to cover the circuit error via a large noise. For a
precise description, let us denote x0 = Decsk(ct.c) = m(X)+ ec(X) as a decryp-
tion result with a circuit error ec(X) and x1 = m(X). Then the effect of the
noise flooding can be viewed as adding e∗(X) on both x0 and x1, ensuring that
e∗(X) and ec(X)+e∗(X) are statistically indistinguishable. The Theorem 1 tells
us the scale of noise when ∥ec(X)∥can∞ ≤ ct.t.

On the other hand, in our setting, one more thing needs to be considered: if
we decrypt s, say s(X) = Decsk(s), then s(X) contains not only the circuit error
but also the accuracy error. More precisely, if we denote acci as the accuracy
error of the i’th component, i.e., the difference between the evaluation result of
p(X) and the actual comparison function, then we have that acci ∈ [−2−α, 2−α].
Note that acci ∈ R, so in the context of plaintexts, we need to consider an
encoded polynomial eacc(X) = ⌊∆δ−1((acci)i∈[N ])⌉. This can be interpreted as
an additional error added to the circuit error ec(X). That is, by using the same
argument as above and Theorem 1, it suffices to compute the upper bound of
∥ec(X) + eacc(X)∥can∞ for applying the noise flooding. Note that by the property
of canonical norm and the triangular inequality, we obtain that

||ec(X) + eacc(X)||can∞ ≤ ||ec(X)||can∞ + ||eacc(X)||can∞ ≤ ct.t+∆2−α.
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Therefore, for the scale term ct.t = ct.t+∆2−α, we finally can exploit the result
of Theorem 1 by replacing ct.t with ct.t.

Parameter Selection. To ensure the correctness of our protocol πFPHE, R
should be able to distinguish whether the retrieved ciphertext from S with noise
flooding contains 0 or 1. That is, two intervals [1 − 2r, 1 + 2r] and [−2r, 2r] in
the previous section should be non-overlapping. In this paragraph, we show that
this is possible by a careful parameter selection of CKKS. Therefore, combin-
ing with Theorem 1, we can conclude that πFPHE securely implements the ideal
functionality FFPSI.

To address this, let us assume that the noise e∗(X) from N(0, σ∗2

ct.t
2
In)

is added to s, in accordance with Theorem 1. Note that σ∗ =
√
24qn2s/2 for

parameters q, s ∈ N, which will be chosen later. Then we can observe that the
total error compared to the result from the actual comparison function becomes

∥ec(X) + eacc(X) + e∗(X)∥can∞ ≤ ct.t+ ∥e∗(X)∥can∞ .

Hence, the error corresponding to each message is at most ct.t+∥e∗(X)∥can
∞

∆ .
To analyze this, we attempt to put β

√
nσ∗ct.t in place of ∥e∗(X)∥can∞ , where

β is a parameter determined later. Then we obtain

ct.t+ β
√
nσ∗ct.t

∆
= (β

√
nσ∗ + 1)

(
ct.t

∆
+ 2−α

)
= (1 + βn

√
24q2s/2)

(
ct.t

∆
+ 2−α

)
.

If we choose q = 25, s = 40, and n = 217, then the R.H.S. of the above equality
becomes ≈ β · 241.79( ct.t∆ + 2−α).

Here, note that the random variable e∗(ζk) for k ∈ Z∗
m follows NZ(0, nσ

∗2

ct.t
2
),

since it is a linear combination of n independent samples of NZ(0, σ
∗2

ct.t
2
) with

weights {ζk(i−1)}ni=1. Since all random variables {e∗(ζk)}k∈Zm∗ are mutually in-
dependent because of its structure, we obtain

Pr[∥e∗(X)∥can∞ > β
√
nσ∗ct.t] = 1−

(
1− Pr[|e∗(ζk)| > β

√
nσ∗ct.t]

)n

< np

for any k ∈ Z∗
m, where p = Pr[|e∗(ζk)| > β

√
nσ∗ct.t]. The last inequality holds

because (1− p)n ≥ 1−np. Finally, by using the fact that PrZ∼NZ(0,1) [|Z| > λ] ≤

e−
λ2

2 [12], we obtain Pr[∥e∗(X)∥can∞ > β
√
nσ∗ct.t] < n · e−

β2

2 < n · 2−
β2

2 .
If we select β = 16 = 24, then the above bound becomes 2−111. Therefore,

by setting ∆ and α to satisfy ∆ ≥ 24 · 241.79ct.t > α, we can expect that
R successfully achieves its goal with an error of probability 2−111. Note that
q means the number of possible queries for q-IND-CPAD, which becomes the
number of possible runs of our protocol without regenerating keys. That is, after
25 runs of πFPHE without changing the key, both R and S regenerate the key pair.

Under the above parameter setting, we finally show the semi-honest security
of πFPHE protocol, as stated in Theorem 2. The full proof is given in Appendix B.

Theorem 2. The protocol πFPHE described in Figure 3 securely implements the
ideal functionality FFPSI under the static semi-honest model.
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3.4 Extending Functionality of πPFHE

As we can figure out in Fig. 1, the πFPHE is only designed for the scenario where
the receiver is sufficient to learn whether the input elements are overlapping with
some other elements of the sender or not. However, this functionality is insuf-
ficient for covering other practical applications, for example, where the receiver
needs to know the label of the intersecting set elements. For this reason, we now
focus on extending the functionality of πFPHE.

Labeled and Circuit Fuzzy PSI. For the candidate of extended functionali-
ties, we consider the labeled fuzzy PSI and circuit fuzzy PSI, which are analogues
of labeled PSI [15,20,8] and circuit PSI [50,52] for traditional PSIs. We briefly in-
troduce their functionalities. For the labeled fuzzy PSI, we assume that there is a
label li ∈ L ⊂ N assigned to each set element q(·,i) for i ∈ [M ] held by the sender
S. We assume that these labels are represented by w-bit (unsigned) integers, so
for all l ∈ L, l < 2w holds. From this setting, the receiver R wishes to learn a
pair of an index i ∈ [N ] and a label lj such that p(·,i) · q(·,j) > T . For indices of
non-overlapping set elements, R gets 0 ∈ Z. On the other hand, in circuit fuzzy
PSI, the R wishes to learn the evaluation result of an arbitrary function f that
takes N integers v1, . . . , vN such that vi = |{j ∈ [M ] : p(·,i) · q(·,j) > T}| as
inputs. Note that under the non-overlapping assumption, vi ∈ {0, 1}.

We note that achieving labeled fuzzy PSI is straightforward in our construc-
tion. This is because we can easily embed labels in the output of the comparison
function s by a single plaintext-ciphertext multiplication, with a careful ordering
about the index permutation for computing cosine similarity. The security proof
also remains the same, except for a simple treatment on analyzing an additional
noise accompanied by the label.

Leveraging the Packing Structure for Circuit Fuzzy PSI. Achieving
circuit fuzzy PSI seems to be rather tricky compared to labeled fuzzy PSI. Nev-
ertheless, we show that our πFPHE can be easily extended to achieve this function-
ality by utilizing the structure of packed messages. For the ease of explanation,
we assume that the indices of data held by S are not permuted. We first note
that in our protocol, we set MN = n/2. If we denote ci,j = comp(p(·,i) ·q(·,j), T ),
then with ignoring errors, the final ciphertext s before noise flooding contains a
decoded message z denoted by

z = (c1,1, . . . , cN,1, c1,2. . . . , cM,2, . . . , c1,M , . . . , cN,M ) ∈ RMN .

Here, we can observe that the subvector zj := (z[i+jN ])M−1
j=0 of stride N , where

z[k] denotes the k’th component of z, corresponds to (ci,1, . . . , ci,N ), i.e., values
with the same first index i.

We now explain why this packing structure enables us to achieve the circuit
Fuzzy PSI. Because of the structure, we can observe that when rotating z by N
on the left, then the corresponding zj becomes (ci,2, . . . , ci,M , ci,1), i.e., rotation
on the original subvector (ci,1, . . . , ci,N ) by 1 on the left. Therefore, by a folklore
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Fig. 4. The description of our approach when N = M = 4. Best viewed in color.

rotation-and-add technique, we can compute the ciphertext s̃ containing M con-
catenations of (

∑M
j=1 c1,j ,

∑M
j=1 c2,j , . . . ,

∑M
i=1 cN,j). Here, note that this result

is regardless of the permutation on the indices of {q(·,j)}j∈[M ] because the sum-
mation is done over [M ]. Since

∑M
j=1 ci,j = |{j ∈ [M ] : p(·,i) · q(·,j) > T}| = vi

holds by definition, we finally implement the desired functionality by homomor-
phically evaluating the circuit f on s̃. To help understand, we depict an overview
of our idea with the structure of z in Fig. 4.

The security proof goes similarly to Theorem 2. The only difference comes
from calculating the scale of noise flooding. To this end, we need to consider the
error appeared by the rotation-and-add technique and evaluating f , tracking
how much the accuracy error acc is magnified during these operations. Since the
remaining part of the security proof is straightforward, we omit the proof.

4 Implementation Results

We now provide the implementation result of πFPHE. We used the official Python
wrapper of OpenFHE [1] for CKKS. All experiments were done on a machine
with i7-11700K CPU (8 cores with 16 threads; 3.6 GHz) and 64 GB of RAM.

Detials on Instantitation. We use an approximation sign function in Cheon
et al. [18] to implement (α, ϵ)-close to sgn(X). We select α = 66 to make ct.t
reasonably small and select ϵ = 2−16. We evaluate a polynomial composed of g4
(7 times) and f4 (3 times) from Algorithm 3 in [18]. To estimate ct.t, we use the
static noise estimation in OpenFHE. With MN = n/2, we measure ct.t ≈ 28.1;
hence we select ct.t = 29 for noise flooding.

From the above settings, we set the following parameters of CKKS: the ring
dimenstion n = 217, the scaling factor ∆ = 259, maximum level L = 42. The
remaining parameters are chosen to ensure 128-bit security according to to ho-
momorphic encryption standard [2]. In addition, we apply the noise flooding to
ensure 40-bit statistical security and q = 25 by following our analysis.

Evaluation Results. For the performance evaluation, we measured the elapsed
time and communication cost for various values of M and N , increasing M from
211 ≈ 2, 000 to 211 × 6 ≈ 12, 000, with fixed d and N . To show the effect of set
element dimensions, we also experimented with d = 24 to d = 29. Note that pre-
vious studies [29,30,3,26] only considered cases where d is at most 10. The results
in Tab. 2 show that both communication and computation costs grow linearly
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(N,M)
d = 27

d
(N,M) = (25, 211)

Comm. (GB) Comp. (s) Comm. (GB) Comp. (s)
R S R S

(25, 211)

10.15 65.71

53.63 24 1.41 11.20 30.06
(25, 211 · 2) 106.71 25 2.65 19.00 32.80
(25, 211 · 3) 160.15 26 5.15 34.67 39.42
(25, 211 · 4) 216.19 27 10.15 65.97 51.60
(25, 211 · 5) 273.19 28 20.14 128.07 76.29
(25, 211 · 6) 334.10 29 40.13 243.46 128.59

Table 2. Implementation results of πFPHE.

with the dimension, and as M increases linearly, the sender’s computational cost
grows accordingly while the receiver’s costs remain unchanged. We also highlight
that πPFHE covers the case d = 29, which was computationally infeasible in all
existing works but is necessary to handle real-world applications [31,21,34,32].

5 Conclusion

In this work, we propose FPHE, a novel doubly efficient fuzzy PSI protocol
designed for handling high-dimensional data with cosine similarity score as a
similarity metric. FPHE achieves linear communication and computation costs
with respect to the dimension, requiring much weaker assumptions compared to
several previous Fuzzy PSI proposals [29,30,3,27]. This overcomes the limitations
of previous works that either rely on strong assumptions or incur exponential
costs. We also show that our FPHE is secure under semi-honest security model,
by carefully addressing the information leakage from approximation operations
with noise flooding technique. Additionally, we extend FPHE to support labeled
and circuit fuzzy PSI, enriching its applicability to various scenarios.

We leave several interesting future directions. First, we note that the major
bottleneck of our protocol is computing the approximation of the sign function.
We expect that our protocol can be improved by employing more efficient meth-
ods [36,42,35]. Of independent interest, it would also be interesting to devise an
alternative approach for designing fuzzy PSI protocols without sign function. In
addition, our protocol is based on the semi-honest security model. Extending our
protocol to defend against stronger adversaries, such as malicious security, would
be another interesting research direction. Finally, with a slight modification, we
expect that our framework would support the fuzzy PSI with Lp distance over
the Euclidean space, hence increasing its flexibility for a wider range of applica-
tions. We leave investigations for these aspects as future work.
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A Definition of Semi-honest Security

In this section, we provide the formal definition for semi-honest security. We
borrow the notations in [40]. Let us consider a two-party protocol π for comput-
ing F = (F1,F2), where one party computes F1(x, y) on input x and the other



20 Son et al.

computes F2(x, y) on input y. Then, π securely computes F in the presence of
static semi-honest adversaries if it satisfies the following definition.

Definition 5 ( [40]). Let F = (F1,F2) be a functionality. We say that π se-
curely computes a functionality F in the presence of static semi-honest adver-
saries if there exists probabilistic polynomial-time algorithm S1 and S2 such that

{S1(1n, x,F1(x, y)),F(x, y)}x,y,n
c≡ {viewπ

1 (x, y, n), output
π(x, y, n)}x,y,n, and

{S2(1n, y,F2(x, y)),F(x, y)}x,y,n
c≡ {viewπ

2 (x, y, n), output
π(x, y, n)}x,y,n,

where x and y are inputs of protocol, and n ∈ N is a security parameter.

Here, viewπ
i (x, y, n) denotes the view of party Pi during an execution of π, includ-

ing the messages it received. outputπ(x, y, n) denotes the outputs of the parties.
In addition, the notation

c≡ means computational indistinguishability between
two probability ensembles.

B Proof for Theorem 2

Proof. Due to the parameter settings described earlier, the index set and the out-
put of the functionality are identical with a negligible failure probability. Hence,
it suffices to show the existence of probabilistic polynomial-time algorithms S1
and S2, which simulate the views of the client and the server, respectively.

First, we show how S1 simulates the client’s view in the real protocol. Specif-
ically, the client’s view consists of z ∈ R2. The simulator S1 receives the index
set I as the output of the functionality. From the set, it generates a vector z′ =
(z′1, . . . , z

′
n/2) as follows.; For each i ∈ [N ], let Pi = {(j− 1)N + i | j ∈ [M − 1]}.

If idx ∈ I , the simulator randomly selects k ∈ Pidx, sets z′k = 1, and sets z′j = 0
for all j ∈ Pidx \ {k}. If idx /∈ I , it sets z′j = 0 for all j ∈ Pidx. Then, S1 runs
z′ ← Encpk(z

′) and add (e, 0) to it for e← NZn(0, σ∗2ct.t
2
).

The remaining part is to show the indistinguishability between z and z′ with
the knowledge of secret key. Note that this corresponds to the scenario of q-IND-
CPAD game, where the knowledge of the secret key corresponds to the decryption
query. First of all, since the indices of the server’s data, qi, is randomly permuted
during running the protocol, we can ensure that the the distribution of nonzero
entries in z and z′ are identical. Moreover, in Section 3.3, we already show that
the proposed amount of noise is sufficient for satisfying q-IND-CPAD security
according to Theorem 1.

Finally, we show how S2 simulates the server’s view in the real protocol.
Specifically, the server’s view consists of pk, evk, and {pi}i∈[d]. Similarly, the
simulator S2 can simulate the server’s view by uniformly sampling 2d+ 4 com-
ponents fromR. Since CKKS is IND-CPA secure under the hardness assumption
of the Ring-LWE problem, the server’s view and simulated view are computa-
tionally indistinguishable.
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