
Black-Box Registered ABE from Lattices

Ziqi Zhu1, Kai Zhang2, Zhili Chen1, Junqing Gong1,3, and Haifeng Qian1

1 East China Normal University, Shanghai, China
2 Shanghai University of Electric Power, Shanghai, China

3 Shanghai Qi Zhi Institute, Shanghai China

Abstract. This paper presents the first black-box registered ABE for circuit from lattices. The selective security is
based on evasive LWE assumption [EUROCRYPT’22, CRYPTO’22]. The unique prior Reg-ABE scheme from lattices
is derived from non-black-box construction based on function-binding hash and witness encryption [CRYPTO’23].
Technically, we first extend the black-box registration-based encryption from standard LWE [CRYPTO’23] so that we
can register a public key with a function; this yields a LWE-based Reg-ABE with ciphertexts of size 𝐿 · polylog(𝐿)
where 𝐿 is the number of users. We then make use of the special structure of its ciphertext to reduce its size to
polylog(𝐿) via an algebraic obfuscator based on evasive LWE [CRYPTO’24].

1 Introduction

Registered Attribute-Based Encryption (Reg-ABE) [25] is an authority-free variant of attribute-based encryption (ABE) [34,24].
In a Reg-ABE, a user generates public-secret key pair (pk, sk) on his own. A curator, who works deterministically and
holds no secret, is responsible for registering pk along with a policy 𝑓 to a compact master public keympk. A ciphertext
under mpk for attribute 𝑥 can be decrypted using sk if 𝑓 (𝑥) = 0. Typically, the curator starts from a common reference
string crs and sends each user a helper key hsk for decryption, which may be updated later. It is crucial that each user’s
helper key should not be updated too many times during the lifetime of the system.

Early Reg-ABE for identity check (i.e., registration-based encryption, RBE) relies on non-black-box technique based
on garbling scheme or general obfuscation [19,20,23,9]. Recent pairing-based constructions [22,25,14,42,16,41,1,17] use
black-box technique and support complex functionalities at the cost of large common reference string. Under lattice
assumptions, we only see black-box construction for RBE [12,13] and non-black-box construction for Reg-ABE for
circuits [15] via witness encryption [18,7,37] — there is no black-box Reg-ABE (beyond RBE) from lattice!

Result. In this work, we propose the first black-box construction for Reg-ABE for circuits. The selective security is
based on evasive LWE assumption [39,36,37]. The scheme achieves the following profile:

|crs| = polylog(𝐿), |mpk| = polylog(𝐿), |ct| = polylog(𝐿),

and the number of updates for each user is roughly polylog(𝐿). We preserve the following advantages over pairing-
based Reg-ABE constructions that has been achieved by [15,12,13]:

– Our scheme is unbounded, which means it supports an arbitrary number of users, with an implicit bound of 𝐿 = 2𝜆

(c.f. Remark 6.12 in [15]).
– Our scheme enjoys a transparent setup, i.e., the common reference string is simply a uniform random string.

Furthermore, our black-box technique allows us to achieve more:

– Our scheme is conceptually simpler and concretely more efficient than the non-black-box scheme in [15]. In par-
ticular, we avoid costly transformations between different computation models or languages.

– Our scheme enjoys user corruption in the standard model. In [15], their basic scheme in the standard model does
not support corruption while a generic transformation that adds corruption to it relies on random oracles.

See Figure 1 for a detailed comparison. We clarify that both Reg-ABE in [15] and this work are generic: the former
uses function-binding hash (FBH) and witness encryption while ours uses algebraic obfuscator for matrix PRF. Given
the state of the art, FBH can be built from standard LWE [26,15] while the others rely on evasive LWE [7,37], re-
spectively. We finally remark that the notion of Reg-ABE has been generalized to Registered Functional Encryption
(Reg-FE) [10,5,41] but all known Reg-FE schemes do not subsume our result.

ref function black-box corruption assumption

[12,13] identity check ✓ ✓ LWE

FWW [15], §6 circuit × × evasive LWE

FWW [15], §C circuit × ✓ evasive LWE + RO

Ours circuit ✓ ✓ evasive LWE

Fig. 1: Summary of Reg-ABE from Lattices. “RO” stands for “random oracle”.

Implication & Discussion. By the generic transformation in [15], we immediately obtain a distributed broadcast en-
cryption (DBE) that is unbounded and enjoys transparent setup from evasive LWE. A very recent work [6] described
a DBE scheme with structured crs of size 𝐿2 · polylog(𝐿) from ℓ-succinct LWE assumption [40] (ℓ depends on 𝐿). Com-
pared with evasive LWE [39,36,37], ℓ-succinct LWE assumption is falsifiable and desirable [40]; we leave it as an open
problem to build Reg-ABE (and thus DBE) that achieves unboundedness and transparent setup from falsifiable lattice
assumptions such as ℓ-succinct LWE.

Strategy. Following the blueprint in [25], we consider a weaker primitive called 𝐿-slotted Reg-ABE. By this, we can
work with a simpler scenario without one-by-one registration: public keyspk1, . . . , pk𝐿 and associated functions 𝑓1, . . . , 𝑓𝐿

are given to the curator at a single time, it is then asked to produce mpk and helper keys hsk1, . . . , hsk𝐿. In this case,
the curator is called aggregator. It is proved that slotted Reg-ABE implies (full-fledged) Reg-ABE via “power-of-two”
technique [19,25] (c.f. Section B in Appendix). In the remaining of the Introduction, we focus on our slotted Reg-ABE
for circuit with formal treatment in Section 3 and 4.

1.1 Warm-up: Zero-Slotted Reg-ABE

As a warm-up, we start with a weak primitive called zero-slotted Reg-ABE that does not involve any user: The aggrega-
tor simply embeds function 𝑓 into mpk 𝑓 , a ciphertext under mpk 𝑓 for x should be publicly decryptable when 𝑓 (x) = 0.
(The decryptor should know 𝑓 and x.) Security means that ctx hides the message when 𝑓 (x) = 1; here we assume x is
claimed before crs is generated.

Homomorphic Computation. Let 𝑛, 𝑞, ℓ ∈ N and 𝑚 = 𝑛 log 𝑞. Let F ∈ Z𝑛×𝑚ℓ
𝑞 and G = I𝑛 ⊗ (1, 2, 22, . . . , 2log 𝑞). For

function 𝑓 : {0, 1}ℓ → {0, 1} and input x ∈ {0, 1}ℓ, there exist two low-norm matrices H 𝑓 ,x and H 𝑓 such that

(F − x⊤ ⊗ G) · H 𝑓 ,x = FH 𝑓 − 𝑓 (x) · G

In the literature, A is commonly used in place of F; here we use F to indicate that this part is talking about “function”.
Note that H 𝑓 solely depends on 𝑓 while H 𝑓 ,𝑥 depends on both 𝑓 and x.

2

Zero-slotted Reg-ABE via Laconic Function Evaluation. We observe that the zero-slotted Reg-ABE is syntactically
similar to attribute-based laconic functional evaluation (AB-LFE) [32] where server sends a digest digest 𝑓 of a function
𝑓 , client encrypts the message under digest 𝑓 for x, one can decrypt with the knowledge of 𝑓 when 𝑓 (x) = 0. Adapting
the AB-LFE scheme in [32] readily gives us an zero-slotted Reg-ABE:

crs = F, v

mpk 𝑓 = FH 𝑓G−1 (v)

ctx =

c⊤︷ ︸︸ ︷
s⊤ (F − x⊤ ⊗ G)
:::::::::::

,

𝑐︷ ︸︸ ︷
s⊤FH 𝑓G−1 (v) + ⌊𝑞/2⌋ ·m
::::::::::::::::::::

where s, v← Z𝑛
𝑞 and F,H 𝑓 are defined as before and operation “ ·:: ” indicates a noised version of the input. Observe

that
≈𝑐−⌊𝑞/2⌋ ·m︷ ︸︸ ︷

s⊤FH 𝑓G−1 (v) =

≈c⊤︷ ︸︸ ︷
s⊤ (F − x⊤ ⊗ G) ·H 𝑓 ,xG−1 (v) + s⊤v.

We can see that:

– When 𝑓 (x) = 0, term s⊤v disappears and decryption is straight-forward.
– When 𝑓 (x) = 1, we rewrite 𝑐 using c and apply LWE assumption w.r.t. (F, v) after change of variable F ↦→ F+x⊤⊗G.

This proves that the ciphertext is pseudorandom in the selective setting.

A recent work [11] clarified that FH 𝑓 can be seen a (functional) commitment to function 𝑓 while H 𝑓 ,x can serve as a
opening of 𝑓 at the point x.

1.2 One-slotted Scheme

Let us move from zero-slotted to one-slotted Reg-ABE where a user generates a key pair (pk, sk) and asks the aggregator
to embed (pk, 𝑓) to mpkpk, 𝑓 . A ciphertext ctx under mpkpk, 𝑓 for x can be decrypted by sk if 𝑓 (x) = 0. Security means
that ctx hides the message in all the three settings:

– pk is maliciously generated by the adversary who may not even know sk;
– pk is honestly generated but sk is leaked to the adversary later;
– pk is honestly generated and sk keeps secret.

We call them malicious, corrupted, honest key/user, respectively, and require that 𝑓 (x) = 1 for the first two settings (to
rule out trivial attacks).

Generating (pk, sk). We choose to use dual-Regev PKE [21] to generate (pk, sk). With D← Z𝑛×𝑚
𝑞 in crs, we define

sk = k← {0, 1}𝑚 and pk = u = Dk. (1)

It is helpful to recall that a ciphertext is (s⊤D
::

, s⊤u + ⌊𝑞/2⌋ ·m
::::::::::::

) and decryption relies on the equation: s⊤D · k = s⊤u.

Binding pk and 𝒇 . We bind 𝑓 with pk = u via the following commitment:

h = FH 𝑓G−1 (v) + PG−1 (u) (2)

where FH 𝑓G−1 (v) is mpk 𝑓 from zero-slotted scheme and P ← Z𝑛×𝑚
𝑞 (we use letter P to indicate that the latter part is

talking about “public key”). Inspired by [12], this readily gives a mpk for (pk, 𝑓) along with F, P,D and a ciphertext for
x ∈ {0, 1}ℓ is basically a dual-Regev PKE ciphertext under public key

Mx =

(
F − x⊤ ⊗ G P

G D

)
,

(
h

0

)
(3)

3

with trapdoor 𝜋u, 𝑓 = (H 𝑓G−1 (v),G−1 (u),−k). In more details, our one-slotted Reg-ABE scheme is as follows:

crs = F, P,D, v

(pk, sk) = (u = Dk, k)

mpkpk, 𝑓 = FH 𝑓G−1 (v) + PG−1 (u)

ctx =

c⊤1︷ ︸︸ ︷
s⊤ (F − x⊤ ⊗ G)
:::::::::::

,

c⊤2︷ ︸︸ ︷
s⊤P + t⊤G
:::::::

,

c⊤3︷︸︸︷
t⊤D
::

,

𝑐︷ ︸︸ ︷
s⊤h + ⌊𝑞/2⌋ ·m
::::::::::::

.

where s⊤, t⊤ ← Z𝑛
𝑞 . When 𝑓 (x) = 0, decryption relies on:

≈c⊤1︷ ︸︸ ︷
s⊤ (F − x⊤ ⊗ G) ·H 𝑓 ,xG−1 (v) +

≈c⊤2︷ ︸︸ ︷
(s⊤P + t⊤G) ·G−1 (u) −

≈c⊤3︷︸︸︷
t⊤D ·

sk︷︸︸︷
k

= s⊤FH 𝑓G−1 (v) + (s⊤PG−1 (u) + t⊤u) − t⊤u

= s⊤ (FH 𝑓G−1 (v) + PG−1 (u)︸ ︷︷ ︸
h

) ≈ 𝑐 − ⌊𝑞/2⌋ · 𝑚.

This is quite similar to the 1-key ABE described in [8] implicitly used in [29].

Security. For security, analogous to the analysis of correctness, we approximately rewrite 𝑐 − ⌊𝑞/2⌋ ·m as:

≈c⊤1︷ ︸︸ ︷
s⊤ (F − x⊤ ⊗ G) ·H 𝑓 ,xG−1 (v) + 𝑓 (x) · s⊤v +

≈c⊤2︷ ︸︸ ︷
(s⊤P + t⊤G) ·G−1 (u) − t⊤u

After a change of variable F ↦→ F + x⊤ ⊗ G, we consider two cases:

– When 𝑓 (x) = 1, the selective security is analogous to the zero-slotted scheme under the LWE assumption w.r.t.
(F, P, v).

– When 𝑓 (x) = 0, the above argument does not work since the term s⊤v does not appear. Fortunately, in this case,
pk = u must be honest and thus k ← {0, 1}𝑚 is secret from the adversary. The proof makes use of the entropy
from k and consists of four steps:

1. LWE assumption w.r.t. (F, P) ensures that c1 and c2 are pseudorandom.

2. Rewrite term t⊤u in the above expression as c⊤3 · k; this uses the fact that k is always known to the simulator;
here noise flooding is needed.

3. LWE assumption w.r.t. D ensures that c3 are pseudorandom.
4. Leftover hash lemma ensures that (D, c⊤3,Dk, c⊤3k) ≈ (D, c⊤3, $, $) when D, c3 are random over Z𝑞 and k are

random over {0, 1}.

We highlight that the proof does not require the adversary to claim whether the user will be honest in advance.

1.3 From One-slotted to 𝑳-slotted Reg-ABE

This section explains how to build 𝐿-slotted scheme from one-slotted scheme. We illustrate the idea via an example of
𝐿 = 8 and set 𝐷 = log 𝐿 = 3. Namely, we have (sk1 = k1, pk1 = u1 = Dk1), . . . , (sk8 = k8, pk8 = u8 = Dk8) defined as
in (1) and ask the aggregator to bind them with 𝑓1, . . . , 𝑓8, respectively.

4

Aggregation via Merkle Hash. We start with the paradigm presented in [12]. We place the 8 users at the leaves of
Merkle tree of depth 𝐷 = 3 and compute the Merkle hash. In contrast to [12], we put h1, . . . ,h8 defined as in (2) at the
leaves rather than (pk1 = u1, . . . , pk8 = u8). In more details, let B0,B1 be the key for hash function and compute

h𝑖 = FH 𝑓𝑖G
−1 (v) + PG−1 (u𝑖), ∀𝑖 ∈ {0, 1}3

where we write index 𝑖 of slot in its binary form 𝑖 = (𝑖1, 𝑖2, 𝑖3); we compute

– h𝑏1 ,𝑏2 = B0G−1 (h𝑏1 ,𝑏2 ,0) + B1G−1 (h𝑏1 ,𝑏2 ,1) for all (𝑏1, 𝑏2) ∈ {0, 1}2;
– h𝑏 = B0G−1 (h𝑏,0) + B1G−1 (h𝑏,1) for all 𝑏 ∈ {0, 1};
– h𝜖 = B0G−1 (h0) + B1G−1 (h1).

We take h𝜖 as mpk and, for all 𝑖 = (𝑖1, 𝑖2, 𝑖3) ∈ {0, 1}3 and set:

hsk𝑖 = 𝜋𝑖 = (G−1 (h𝑖1 ,𝑖2 ,𝑏),G−1 (h𝑖1 ,𝑏),G−1 (h𝑏))𝑏∈{0,1} .

As [12], we can build a ciphertext under h𝜖 as follows: for 𝑖 ∈ {0, 1}3 and x ∈ {0, 1}ℓ, it is a dual-Regev PKE ciphertext
under the following public key

M𝑖,x︷ ︸︸ ︷©­­­­­­­­­«

B0 B1

𝑖̄1 · G 𝑖1 · G B0 B1

𝑖̄2 · G 𝑖2 · G B0 B1

𝑖̄3 · G 𝑖3 · G F − x⊤ ⊗ G P

G D

ª®®®®®®®®®¬
,

©­­­­­­«

h𝜖

0
...

0

ª®®®®®®¬
with trapdoor (𝜋𝑖 , 𝜋u𝑖 , 𝑓𝑖). Observe that this is an extension of our one-slotted scheme; the right-bottom corner of M𝑖,x

is identical to Mx in (3). Both correctness and selective security are natural extensions of one-slotted scheme. As a
summary, our eight-slotted Reg-ABE scheme is as follows:

crs = B0,B1, F, P,D, v

(pk𝑖 , sk𝑖) = (u𝑖 = Dk𝑖 , k𝑖)

mpkpk, 𝑓 = h𝜖 // defined as above

ct𝑖,x = {s⊤𝑗−1B0 + 𝑖̄ 𝑗 · s⊤𝑗G
:::::::::::::

, s⊤𝑗−1B1 + 𝑖 𝑗 · s⊤𝑗G
:::::::::::::

} 𝑗=1,2,3

s⊤3 (F − x
⊤ ⊗ G)

::::::::::::

, s⊤3 P + t
⊤G

::::::::

, t⊤D
::

, s⊤0 h + ⌊𝑞/2⌋ ·m
:::::::::::::

where s0, s1, s2, s3, t← Z𝑛
𝑞 . Compared with our one-slotted Reg-ABE, the boxed terms are added to handle Merkle Hash

and random coins are modified accordingly (see the gray boxes).

Issue & Large Ciphertexts. Unfortunately, this is not a slotted Reg-ABE:

– The above ciphertext depends on 𝑖 = (𝑖1, 𝑖2, 𝑖3), which is basically built for a single user by identifying the corre-
sponding path. This is inherited from RBE scheme in [12] where a ciphertext targets to exactly one user.

– A ciphertext in 𝐿-slotted Reg-ABE is potentially decryptable by all 𝐿 users.

A naive fix is to encrypt to all eight users: a ciphertext ctx for x consists of eight sub-ciphertexts ct000,x, ct001,x, . . . , ct111,x

each defined as above. Both decryption and selective security are easy to established. However this makes ciphertext
size unacceptable in the setting of Reg-ABE — for general 𝐿, the ciphertext size is as large as 𝐿 · polylog(𝐿) where
polylog(𝐿) is the size of each sub-cihpertext and factor 𝐿 comes from “encrypting to all users”.

5

1.4 Shaving Factor 𝑳 Off

To get an acceptable Reg-ABE scheme, we want to find out a compact representation of ctx. In this overview, let us
focus on the first term in each sub-cipertext ct𝑖,x that corresponds to the first column of M𝑖,x:

s⊤𝑖B0 + 𝑖̄1 · t⊤𝑖G
:::::::::::

, ∀𝑖 ∈ {0, 1}3

where s𝑖 and t𝑖 are parts of randomness of each sub-ciphertext.

Idea 1: Generating Random Coins via PRF. Since all (s𝑖 , t𝑖) are fresh, it seems impossible to compress the 8 terms
from an information-theoretical point of view. Our first idea is to use correlated randomness. Conceptually, we employ
PRF in [4,7], denoted by F, to generate those random coins: for 𝑖 ∈ {0, 1}3, set

s⊤𝑖 = F(K𝑠, 𝑖) = t⊤S𝑖1S𝑖2 · · · S𝑖3K𝑠
:::::::::::::

t⊤𝑖 = F(K𝑡 , 𝑖) = t⊤S𝑖1S𝑖2 · · · S𝑖3K𝑡
::::::::::::

where t is some fixed low-norm vector, S0 and S1 are low-norm and form the definition of PRF, and K𝑠 and K𝑡 are key
or seed of PRF. It is proved that {s𝑖 , t𝑖} are pseudorandom under (low-norm) LWE assumption [4]. Then, we can write
the eight terms as below:

t⊤S𝑖1S𝑖2S𝑖3K𝑠B0 + 𝑖̄1t⊤S𝑖1S𝑖2S𝑖3K𝑡G
::::::::::::::::::::::::::

, ∀𝑖 ∈ {0, 1}3.

Idea 2: Fixing the Proof via Crossing Lemma. In the proof, we will need to argue that

{t⊤S𝑖1S𝑖2S𝑖3K𝑠B0 + e⊤𝑖 }𝑖∈{0,1}3

are pseudorandom where we write noise terms e𝑖 explicitly. Clearly, we shall use the pseudorandomness of PRF. For
this, one may want to change those terms into

(

F(K𝑠 ,𝑖)︷ ︸︸ ︷
t⊤S𝑖1S𝑖2S𝑖3K𝑠 + ẽ⊤𝑖) · B0 + e⊤𝑖 , ∀𝑖 ∈ {0, 1}

3

where ẽ⊤
𝑖

are noise terms used by the PRF and apply the pseudorandomness of PRF. Unfortunately, the first step is
incorrect: due to the large norm of B0, the noise flooding technique does not work as is. We circumvent the issue with
the following proof strategy:

{t⊤S𝑖1S𝑖2S𝑖3K𝑠B0 + e⊤𝑖 }𝑖∈{0,1}3

≈𝑠 {t⊤S𝑖1S𝑖2S𝑖3 (K𝑠B0 + E) + e⊤𝑖 }𝑖∈{0,1}3

≈𝑐 {t⊤S𝑖1S𝑖2S𝑖3 K̃𝑠 + e⊤𝑖 }𝑖∈{0,1}3 ≈𝑐 {$}𝑖∈{0,1}3

where E is noise term and K̃𝑠 is uniformly random. We highlight that the first step can be ensured by the noise flooding
technique due to the fact that t, S0, S1 all have low norm. The remaining steps are standard: the second step uses LWE
assumption w.r.t. B0 and the last step applys the pseudorandomness of PRF but with new key K̃𝑠. We establish crossing
lemma (Lemma 2) to capture the idea and present our slotted Reg-ABE with large ciphertext in Section 3.

Idea 3: Decomposing & Obfuscating. We then rewrite those terms as:

Ŝ1,𝑖1︷ ︸︸ ︷
(t⊤, t⊤)

(
S𝑖1

𝑖̄1 · S𝑖1

) Ŝ2,𝑖2︷ ︸︸ ︷(
S𝑖2

S𝑖2

) Ŝ3,𝑖3︷ ︸︸ ︷(
S𝑖3

S𝑖3

) (
K𝑠B0

K𝑡G

)
::::::::::::::::::::::::::::::::::::

, ∀𝑖 ∈ {0, 1}3

6

and, more importantly, the eight terms can be assembled from six matrices Ŝ1,𝑏, Ŝ2,𝑏, Ŝ3,𝑏 with 𝑏 ∈ {0, 1}. In general, 𝐿
terms can be built from 2 log 𝐿 blocks. This almost reaches our goal; however, we quickly argue that it is insecure to
publish Ŝ 𝑗,𝑏 with 𝑗 ∈ [3] and 𝑏 ∈ {0, 1} “in the clear”. To ensure that only those eight terms can be derived, we employ
GGH encoding: sample A1,A2 with trapdoors A−1

1 and A−1
2 , we publish the following terms instead:

Ŝ1,𝑏A1
:::::

, A−1
1 (Ŝ2,𝑏A2

:::::
), A−1

2 (Ŝ3,𝑏
::
), ∀𝑏 ∈ {0, 1}.

the security is then based on evasive LWE as in [37]. Formally, we employ a recent algebraic obfuscator for relaxed
matrix PRF proposed by [30] in the entirely different context. In their work, a concrete obfuscator Obf was presented
based on evasive LWE assumption [37]; the construction is a natural extension of witness encryption in [37] which
is based on GGH encoding. This will yield a slotted Reg-ABE basically identical to the above. Our treatment gives a
generic Reg-ABE and we hope this is easier to follow. We leave a more detailed overview and our final slotted Reg-ABE
in Section 4.

2 Preliminaries

Notations. For a finite set 𝑆, we use 𝑠 ← 𝑆 to denote the procedure of sampling 𝑠 from 𝑆 uniformly. We use 𝑦 ←
Alg(𝑥; 𝑟) to denote the procedure of running algorithm Alg on input 𝑥 with random coin 𝑟 and assigning the output
to 𝑦. When 𝑟 is irrelevant to the question, we omit it and view Alg(𝑥) as a distribution. We use [Alg] to denote its
support, i.e., the set of all possible outputs 𝑦. We use lower-case boldface to denote column vectors (e.g., a) and upper-
case boldface to denote matrices (e.g. M). For A1, . . . ,A𝑛, we use diag(A1, . . . ,A𝑛) to denote a matrix with A1, . . . ,A𝑛

on its diagonal. For 𝑛 ∈ N, we use {0, 1}𝑛 to denote the set of all binary strings of length 𝑛 and define {0, 1}0 = {𝜖}. For
x = (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 and 0 ≤ 𝑗 ≤ 𝑛, define x | 𝑗 = (𝑥1, . . . , 𝑥 𝑗) with x |0 = 𝜖 and write x∥𝑏 = (𝑥1, . . . , 𝑥𝑛, 𝑏).

2.1 Lattice Background

Norm. Let 𝑛, 𝑚, 𝑞 ∈ N. For any matrix A = (𝑎𝑖, 𝑗)𝑖∈[𝑛], 𝑗∈[𝑚] ∈ Z𝑛×𝑚
𝑞 , we define ∥A∥ = max𝑖∈[𝑛]

∑𝑚
𝑗=1 |𝑎𝑖, 𝑗 |, which

is the infinity norm4. In particular, for row vector r⊤ = (𝑟1, . . . , 𝑟𝑚) ∈ Z1×𝑚
𝑞 , we have ∥r⊤∥ =

∑𝑚
𝑗=1 |𝑟 𝑗 |; for column

vector c = (𝑐1, . . . , 𝑐𝑛)⊤ ∈ Z𝑛
𝑞 , we have ∥c∥ = max𝑖∈[𝑛] |𝑐𝑖 |. For 𝑐 ∈ Z𝑞 and matrices A,B of proper sizes, we have (1)

∥𝑐 · A∥ = |𝑐| · ∥A∥; (2) ∥A + B∥ ≤ ∥A∥ + ∥B∥; (3) ∥AB∥ ≤ ∥A∥ · ∥B∥.

Leftover Hash Lemma (LHL). Let 𝑛, 𝑚, 𝑞 ∈ N with 𝑚 ≥ 2𝑛 log 𝑞. We have

{(A, Ax) : A← Z𝑛×𝑚
𝑞 , x← {0, 1}𝑚} ≈𝑠 {(A, u) : A← Z𝑛×𝑚

𝑞 ,u← Z𝑛
𝑞}.

Discrete Gaussians and Facts. Let DZ,𝜎 denote the discrete Gaussian distribution over Z with parameter 𝜎 > 0. The
Gaussian Tail Bound [31] says that: For any 𝜆 ∈ N, we have

Pr[∥𝑥∥ >
√
𝜆𝜎 : 𝑥 ← DZ,𝜎] ≤ 2−𝜆

We will use noise flooding based on the following fact: For any |𝑧 | ≤ 𝐵, we have

{𝑥 : 𝑥 ← DZ,𝜎} ≈𝑠 {𝑥 + 𝑧 : 𝑥 ← DZ,𝜎} where 𝜎 = 𝐵𝜆𝜔 (1) .

This is also called smudging lemma in the literature.

4 The standard notation for infinity norm is ∥ · ∥∞; we omit the transcript for brevity.

7

Learning with Error (LWE). Let 𝑛, 𝑚, 𝑞, 𝜎 ∈ N. The learning with error (LWE) assumption LWE𝑛,𝑚,𝑞,𝜎 [33] says that:
For all P.P.T. A,

AdvLWE
A (𝑛) = | Pr[A(A, s⊤A + e⊤) = 1] − Pr[A(A, c⊤) = 1] | = 𝜀(𝑛)

where A ← Z𝑛×𝑚
𝑞 , s ← Z𝑛

𝑞 , e ← D𝑚
Z,𝜎 and c ← Z𝑚

𝑞 . The LWE assumption with sub-exponential hardness means: A is
allowed to run in time 2𝑛𝑐 and advantage can be bounded by 2−𝑛𝑐 when 𝑞/𝜎 ≤ 2𝑛𝑐 for some constant 𝑐 > 0.

Gadget Matrix. Let 𝑛, 𝑞 ∈ N such that 𝑞 ≥ 2 and 𝑚 = 𝑛⌈log 𝑞⌉. Define G = I𝑛 ⊗ (1, 2, . . . , 2⌈log 𝑞⌉−1) ∈ Z𝑛×𝑚
𝑞 . For any

z = (𝑧1, . . . , 𝑧𝑛)⊤ ∈ Z𝑛
𝑞 , we use G−1 (z) to denote (bin(𝑧1), . . . , bin(𝑧𝑛))⊤ where bin(·) gives the binary representation of

the input. This ensures that G · G−1 (z) = z.

Homomorphic Evaluation. Let ℓ, 𝑑, 𝑠 ∈ N, we use C𝑑,ℓ to denote the family of boolean circuits of depth 𝑑 and input
size ℓ. Let 𝑛, 𝑞 ∈ N with 𝑞 ≥ 2 and 𝑚 > 2𝑛 log 𝑞. There exists two deterministic algorithms [3,35]:

EvalF(B, 𝑓) → H 𝑓 ; EvalFX(B, 𝑓 , x) → H 𝑓 ,x

where B ∈ Z𝑛×𝑚ℓ
𝑞 , 𝑓 ∈ C𝑑,ℓ, x ∈ {0, 1}ℓ and H 𝑓 ,H 𝑓 ,x ∈ Z𝑚ℓ×𝑚 such that

(B − x ⊗ G)H 𝑓 ,x = BH 𝑓 − 𝑓 (x) · G and ∥H 𝑓 ,x∥ ≤ 𝑚𝑂(𝑑) . (4)

2.2 Relaxed Matrix Pseudorandom Function

We review relaxed pseudorandom function (PRF) [30] with adaptation.

Algorithms. Let 𝑞 ∈ N. A 𝜎-matrix pseudorandom function (𝜎-mPRF) family PRF consists of a tuple of P.P.T. algorithms
with the following syntax:

PRFGen(𝑤, 𝜒) → S

PRFKey(𝑤,𝑚, par) → K

PRFEval(S,K, x) = m⊤
∏ℓ

𝑖=1 M𝑖,𝑥𝑖K

𝑤 ∈ N : width of PRF

𝜒 > 0 : noise parameter

𝑣 ∈ N : length of PRF

𝑚 ∈ N : length of PRF output

par ∈ {0, 1}∗ : parameters for key

S ∈ Z𝑤×𝑣 : description of PRF

K ∈ Z𝑤×𝑚
𝑞 : key of PRF

ℓ ∈ N : length of input

x ∈ {0, 1}ℓ : input of PRF

where m ∈ Z𝑤 and M𝑖,𝑏 ∈ Z𝑤×𝑤 for all 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1} can publicly and deterministically computed from S, and the
following 𝜎-pseudorandomness [30]: if for all par ∈ {0, 1}∗ and all P.P.T. A,

| Pr[AO(S,K,·) (1𝜆) = 1] − Pr[ATRF(·) (1𝜆) = 1] | = 𝜀(𝜆)

where S← PRFGen(𝑤, 𝜎), K← PRFKey(𝑤,𝑚, par) , oracle O(S,K, 𝑥) outputs

PRFEval(S,K, x) + e⊤x, ex ← D𝑚
Z,𝜎 , ∀x ∈ {0, 1}

ℓ,

and TRF refers to a truly random function. We will consider a stronger version where A additionally gets aux related
to K; this is captured by replacing boxed part with (K, aux) ← PRFKey∗ (par∗) and sending aux to A. Here, K produced
by the two algorithms should have the same distribution. In this work, we focus on the setting where ℓ = log(𝜆) and
A is allowed to see evaluations at all x.

8

Norm. Let 𝑤, ℓ ∈ N and 𝜎 > 0. The norm of 𝜎-mPRF PRF = (PRFGen, PRFKey, PRFEval) on input of length ℓ is defined
as:

max
S∈[PRFGen(𝑤,𝜎)],x∈{0,1}ℓ

∥PRFEval(S, I𝑤, x)∥

Note that this is independent of key K and parameter 𝑚 as well.

Construction from LWE. The following lemma gives a LWE-based 𝜎-mPRF.

Lemma 1 ([2,4,38]). Let 𝑛, 𝑞, 𝑤, ℓ ∈ N, 𝜒, 𝜎 > 0 and

𝑤 = 6𝑛 log 𝑞, 𝜒 = Ω(
√︁
𝑛 log 𝑞), 𝜎 ≥ 𝜆ℓ+𝜔 (1) · (𝑤𝜒)ℓ .

Under LWE𝑛,poly(𝑤,ℓ,2ℓ) ,𝑞,𝜒 assumption, for all P.P.T. A,

Pr[A(M0,M1, t, {t⊤M𝑥1 · · ·M𝑥ℓK + e⊤x}x∈{0,1}ℓ) = 1]

− Pr[A(M0,M1, t, {u⊤x}x∈{0,1}ℓ) = 1] = 𝜀(𝑛)

where M0,M1 ← D𝑤×𝑤
Z,𝜒 , K← Z𝑤×𝑚

𝑞 , ex ← D𝑚
Z,𝜎 and t ∈ Z𝑤

𝑞 being the first elementary basis vector.

In particular, fix t defined in Lemma 1, the 𝜎-mPRF PRF0 works as follows:

– PRFGen0 (𝑤, 𝜒): Output S = (M0 |M1) ∈ Z𝑤×2𝑤.
– PRFKey0 (𝑤,𝑚): Output K← Z𝑤×𝑚

𝑞 .
– PRFEval0 (S,K, x) = t⊤ ·M𝑥1 · · ·M𝑥ℓ · K.

and its norm on input of length ℓ is bounded by (𝑤𝜆𝜒)ℓ.

2.3 Obfuscation for Matrix PRF

Let 𝜆, ℓ, 𝑚, 𝑞 ∈ N. An obfuscator for 𝜎-mPRF (PRFGen, PRFKey, PRFEval) is a P.P.T. algorithm with the following syntax:

Obf(1𝜆 , 1ℓ, S,K) → F̃

𝜆 : security parameter

ℓ : input length

S : description of PRF

K : key of PRF

F̃ : obfuscated PRF

and following two properties:

– Δ-Correctness: For all 𝑤,𝑚, ℓ ∈ N, all 𝜒 > 0, all par ∈ {0, 1}∗, all S ∈ [PRFGen(𝑤, 𝜒)], all K ∈ [PRFKey(𝑤,𝑚, par)]
and all x ∈ {0, 1}ℓ, we have

Pr[|̃F(x) − PRFEval(S,K, x) | ≤ Δ : F̃← Obf(1𝜆 , 1ℓ, S,K)] = 𝜀(𝜆).

– D-Security: For all 𝑤,𝑚, ℓ ∈ N, all 𝜒 > 0, all par ∈ {0, 1}∗, there exists a distribution D such that, for all A,

Pr[A(1𝜆 , F̃) = 1 : F̃← Obf(1𝜆 , 1ℓ, S,K)] − Pr[A(1𝜆 , F$) = 1 : F$ ← D] = 𝜀(𝜆)

where S← PRFGen(𝑤, 𝜒) and K← PRFKey(𝑤,𝑚, par).

9

Lattice Trapdoor & Algorithms. Let 𝑚 = 2𝑛 log 𝑞 and 𝜎 ≥ 2
√︁
𝑛 log 𝑞. We have the following P.P.T. algorithms [31]:

TrapGen(1𝑛, 𝑞) → (A,A−1)
PreSamp(1𝑛, 𝑞,A,A−1, z, 𝜎) → k

𝑛 ∈ N : dimension

𝑞 ≥ 2 : field

A ∈ Z𝑛×𝑚
𝑞 : lattice instance

A−1 ∈ Z𝑚×𝑚 : lattice trapdoor

z ∈ Z𝑛
𝑞 : target vector

𝜎 > 0 : noise parameter

k ∈ Z𝑚 : pre-image

with the following properties:
A ∼ U(Z𝑛×𝑚

𝑞), k ∼ D𝑚
Z,𝜎 and Ak = z mod 𝑞

This can be extended to matrix setting via column-wise extension. We use (A,A−1) ← Z𝑛×𝑚
𝑞 ×Z𝑚×𝑚 to refer to TrapGen

and use k← A−1 (z) to refer to PreSamp when 𝑛, 𝑞, 𝜎 is clear from the context.

Evasive LWE. Define P.P.T. algorithm:

Samp(1𝜆) → (S, P, aux)

𝜆 : security parameter

S ∈ Z𝑛′×𝑛
𝑞 : randomness

P ∈ Z𝑛×𝑡
𝑞 : target

aux ∈ {0, 1}∗ : auxiliary information

The evasive LWE assumption evLWESamp,𝜒0 ,𝜒1 [39,36] says that there exists polynomial 𝑄 such that for every P.P.T. A,
there exists P.P.T. B such that

AdvPST
A
(𝜆)︷ ︸︸ ︷

Pr[A(SA + E ,A−1
𝜒 (P), aux)] − Pr[A(C ,A−1

𝜒 (P), aux)]

≤ Pr[B(SA + E, SP + E′ , aux)] − Pr[B(C,C′ , aux)]︸ ︷︷ ︸
AdvPRE

B
(𝜆)

·𝑄(𝜆) + 𝜀(𝜆)

where (S, P, aux) ← Samp(1𝜆), (A,A−1) ← Z𝑛×𝑚
𝑞 × Z𝑚×𝑚, E ← D𝑛′×𝑚

Z,𝜒0
, E′ ← D𝑛′×𝑡

Z,𝜒1
, C ← Z𝑛′×𝑚

𝑞 and C′ ← Z𝑛′×𝑡
𝑞 . We

write evLWE𝜒0 ,𝜒1 to indicate evLWESamp,𝜒0 ,𝜒1 for some valid Samp.

Obfuscator from evasive LWE. We review the following theorem which ensures a concrete algebraic obfuscator for
matrix PRF from evasive LWE. The reader can find their construction in Section A of Appendix.

Theorem 1 ([30]). Let 𝑛, 𝑞, 𝑤, ℓ ∈ N and

𝜒 ≥
√

2𝑛, 𝐵 ≥ 𝜎
√
𝑛, 𝜎 = 2ℓ3 · (𝑛2𝜒)ℓ+1, 𝑊 = 𝑂(𝑤 + 𝑛) log 𝑞.

Under LWE𝑛,poly(𝑛) ,𝑞,𝜒 and evLWE𝜎,𝜎 assumption, for 𝜎-mPRF (PRFGen, PRFKey, PRFEval) of width 𝑤 ∈ N and with entries
of S ∈ [PRFGen(𝑤, 𝜒)] bounded by 𝐵, there exists an obfuscator Obf that achieves ℓ(𝑊𝐵)ℓ-correctness for input of length
ℓ and D-security for some D, and have

|Obf(1𝜆 , 1ℓ, S,K) | = 𝑂(ℓ𝑊2𝑚 log 𝑞)

for all S ∈ [PRFGen(𝑤, 𝜒)] and K ∈ [PRFKey(𝑤,𝑚, par)].

10

2.4 Slotted Registered Attribute-Based Encryption for Circuits

We review the notion of slotted registered attribute-based encryption (slotted Reg-ABE) adapted from [25]. See Sec-
tion B of Appendix for more information about (full-fledged) Reg-ABE.

Algorithms. Let 𝑠, 𝑑, ℓ ∈ N. A slotted registered attribute-based encryption [25] for circuit is a tuple of algorithms with
the following syntax:

Setup(1𝜆 , 1𝑑 , 1ℓ) → crs

Gen(crs) → (pk, sk)
Agg(crs, (𝑓𝑖 , pk𝑖)𝑖∈[𝐿]) → (mpk, (hsk𝑖)𝑖∈[𝐿])

Enc(mpk, 𝑥,m) → ct

Dec(sk, hsk, ct) → m/⊥

𝜆 : security parameter

𝑑, ℓ : depth/input size of circuits

crs : common reference string

pk, pk𝑖 : user’s public key

sk, sk𝑖 : user’s secret key

mpk : master public key

hsk : helper secret key

𝑓𝑖 ∈ C𝑑,ℓ : function for 𝑖-th user

𝑥 ∈ {0, 1}ℓ : input to function

We require that Agg is deterministic.

Correctness and Compactness. For all 𝜆, 𝐿, 𝑑, ℓ ∈ N, all 𝑖∗ ∈ [𝐿], all 𝑓1, . . . , 𝑓𝐿 ∈ C𝑑,ℓ, all crs ← Setup(1𝜆 , 1𝑑 , 1ℓ), all
(pk𝑖∗ , sk𝑖∗) ← Gen(crs), all {pk𝑖}𝑖∈[𝐿]\{𝑖∗ } , all 𝑥 ∈ {0, 1}ℓ such that 𝑓𝑖∗ (𝑥) = 0, and all m ∈ M, correctness requires that

Pr[Dec(sk𝑖∗ , hsk𝑖∗ , Enc(mpk, 𝑥,m)) = m] = 1

where (mpk, (hsk𝑖)𝑖∈[𝐿]) ← Agg(crs, (𝑓𝑖 , pk𝑖)𝑖∈[𝐿]) and compactness requires that

|mpk| = poly(𝜆, 𝑑, ℓ, log 𝐿) and |hsk𝑖 | = poly(𝜆, 𝑑, ℓ, log 𝐿) ∀𝑖 ∈ [𝐿] .

Security. The (adaptive) security requires that, for all P.P.T. adversary A,

Pr


𝛽 = 𝛽′

�����������
crs← Setup(1𝜆 , 1𝑑 , 1ℓ)
(𝑥, (pk𝑖 , 𝑓𝑖)𝑖∈[𝐿] ,m0,m1) ← AOGen,OCor (crs)
(mpk, (hsk𝑖)𝑖∈[𝐿]) ← Agg(crs, (𝑓𝑖 , pk𝑖)𝑖∈[𝐿])
𝛽 ← {0, 1}, ct← Enc(mpk, 𝑥,m𝛽), 𝛽′ ← A(ct)


− 1

2
= 𝜀(𝜆)

where the oracles work as follows with initial setting C = ∅ and L = ∅:

– OGen(): run (pk, sk) ← Gen(crs), set L[pk] = sk and return pk;
– OCor(pk): return L[pk] and update C = C ∪ {pk};

and condition:
corrupted key︷ ︸︸ ︷
pk𝑖 ∈ C ∨

malicious key︷ ︸︸ ︷
L[pk𝑖] = ⊥ =⇒ 𝑓𝑖 (𝑥) = 1 ∀𝑖 ∈ [𝐿] .

Note that [25] proved that there is no need to givempk and hsk1, . . . , hsk𝐿 toA explicitly and to consider post-challenge
queries. There are two orthogonal ways to adapt the definition:

– when A claims 𝑥 before seeing crs, we get the notion of selective security;

11

– when A receives either ct ← Enc(mpk, 𝑥,m) with m chosen by A or a random string in the ciphertext space, we
get the notion of pseudorandom ciphertext.

We finally remark that, amongpk1, . . . , pk𝐿 that appear in the above definition, we distinguish three types of users/public
keys:

– pk𝑖 with L[pk𝑖] = ⊥ is malicious; challenger does not know sk𝑖 ;
– pk𝑖 with pk𝑖 ∈ C is corrupted; both challenger and adversary know sk𝑖 ;
– remaining pk𝑖 are honest; adversary does not know sk𝑖 but challenger does.

3 Slotted Registered ABE with Large Ciphertext

This section presents our slotted Reg-ABE scheme with large ciphertexts from LWE assumption. We will adapt it to a
slotted Reg-ABE scheme with compact ciphertexts in Section 4.3. For this ultimate purpose, here, we divide Dec into
two algorithms IndDec and Dec: IndDec is the core part of old Dec and will only be invoked by Dec.

3.1 Scheme

Assuming PRF0 = (PRFGen0, PRFKey0, PRFEval0) promised by Lemma 1, our slotted Reg-ABE scheme with large cipher-
text works as follow.

– Setup(1𝜆 , 1𝑑 , 1ℓ): Sample

B0,B1, P,D← Z𝑛×𝑚
𝑞 , F← Z𝑛×𝑚ℓ

𝑞 , v← Z𝑛
𝑞 .

Output

crs = (B0,B1, F, P,D, v, 𝑑, ℓ).

– Gen(crs): Sample k← {0, 1}𝑚 and set u = Dk ∈ Z𝑛
𝑞 . Output

pk = u and sk = k.

– Agg(crs, { 𝑓𝑖 , pk𝑖}𝑖∈[𝐿]): Assume 𝐿 = 2𝐷 for some 𝐷 ∈ N and write

𝑖 = (𝑖1, . . . , 𝑖𝐷) ∈ {0, 1}𝐷 .

Let

pk𝑖 = u𝑖 ∈ Z𝑛
𝑞 , H 𝑓𝑖 ← EvalF(F, 𝑓𝑖) ∀𝑖 ∈ {0, 1}𝐷 .

Compute

h𝑖 = FH 𝑓𝑖G
−1 (v) + PG−1 (u𝑖)

For 𝑗 = 𝐷 − 1, . . . , 0, recursively compute

h𝜄 = B0G−1 (h𝜄∥0) + B1G−1 (h𝜄∥1), ∀𝜄 ∈ {0, 1} 𝑗 .

Output

mpk = (crs,h𝜖, 𝐿), hsk𝑖 = {

h𝑖, 𝑗,0︷ ︸︸ ︷
h𝑖| 𝑗−1 ∥0,

h𝑖, 𝑗,1︷ ︸︸ ︷
h𝑖| 𝑗−1 ∥1} 𝑗∈[𝐷] ∀𝑖 ∈ {0, 1}

𝐷 .

We assume that one can efficiently extract both 𝑖 and 𝑓𝑖 from hsk𝑖 .

12

– Enc(mpk, x,m): Let mpk = (

crs︷ ︸︸ ︷
B0,B1, F, P,D, v, 𝑑, ℓ,h𝜖, 𝐿 = 2𝐷). Run

S← PRFGen0 (𝑚0, 𝜎0) and K0,K1, . . . ,K𝐷+1 ← PRFKey0 (𝑚0, 𝑛).

For each 𝑖 ∈ {0, 1}𝐷 and 𝑗 ∈ [0, 𝐷 + 1], define

s𝑖, 𝑗 = PRFEval0 (S,K 𝑗 , 𝑖) ∈ Z𝑛
𝑞

and sample

e𝑖 = (𝑒𝑖,0, e𝑖,1, . . . , e𝑖,𝐷, e𝑖,𝐷+1, e𝑖,𝐷+2) ← D
1+(2𝐷+ℓ+2)𝑚
Z,𝜎1

Compute

𝑐𝑖,0 = s⊤
𝑖,0h𝜖 + 𝑒𝑖,0 + ⌊𝑞/2⌋ ·m ∈ Z𝑞

c⊤
𝑖, 𝑗

= −s⊤
𝑖, 𝑗−1 (B0 | B1) + s⊤𝑖, 𝑗 (𝑖̄ 𝑗 · G | 𝑖 𝑗 · G) + e

⊤
𝑖, 𝑗
∈ Z2𝑚

𝑞 ∀ 𝑗 ∈ [𝐷]
c⊤
𝑖,𝐷+1 = −s⊤

𝑖,𝐷
(F − x⊤ ⊗ G | P) + s⊤

𝑖,𝐷+1 (0 | G) + e
⊤
𝑖,𝐷+1 ∈ Z

𝑚(ℓ+1)
𝑞

c⊤
𝑖,𝐷+2 = −s⊤

𝑖,𝐷+1D + e
⊤
𝑖,𝐷+2 ∈ Z

𝑚
𝑞

and output

ctx = {

ctx,𝑖︷ ︸︸ ︷
𝑐𝑖,0, c𝑖,1, . . . , c𝑖,𝐷, c𝑖,𝐷+1, c𝑖,𝐷+2 }𝑖∈{0,1}𝐷 .

We assume that one can efficiently extract x from ctx and note that

|ctx | = 𝐿 · polylog(𝐿).

– Dec(sk𝑖∗ , hsk𝑖∗ , ctx): Parse 𝑖∗ ∈ {0, 1}𝐷 from sk𝑖∗ and hsk𝑖∗ . Let

ctx = {

ctx,𝑖∗︷ ︸︸ ︷
𝑐𝑖,0, c𝑖,1, . . . , c𝑖,𝐷, c𝑖,𝐷+1, c𝑖,𝐷+2}𝑖∈{0,1}𝐷

Output

m← IndDec(sk𝑖∗ , hsk𝑖∗ , ctx,𝑖∗).

– IndDec(sk, hsk, ctx): Parse

sk = k and hsk = {h 𝑗,0,h 𝑗,1} 𝑗∈[𝐷] with 𝑓 ∈ C𝑑,ℓ

and

ct = (𝑐0, c1, . . . , c𝐷, c𝐷+1, c𝐷+2) with x ∈ {0, 1}ℓ .

Let u = Dk and run H 𝑓 ,x ← EvalFX(F, 𝑓 , x). Compute

𝑧 = 𝑐0 +
𝐷∑︁
𝑗=1

𝑧 𝑗︷ ︸︸ ︷
c⊤𝑗

[
G−1 (h 𝑗,0)
G−1 (h 𝑗,1)

]
+

𝑧𝐷+1︷ ︸︸ ︷
c⊤𝐷+1

[
H 𝑓 ,xG−1 (v)
G−1 (u)

]
+

𝑧𝐷+2︷︸︸︷
c⊤𝐷+2k .

and output ⌊2𝑧/𝑞⌉.

13

3.2 Parameters

We set 𝑛, 𝑚, 𝑚0, 𝑞, 𝜎0, 𝜎1 so that they satisfy the following conditions:

𝑞/4 ≥ 𝐷ℓ𝑚𝑂(𝑑)√𝜆𝜎1 // correctness

𝑚 > 2𝑛 log 𝑞 // homomorphic evaluation, LHL

𝜎1 ≥ 𝜆𝜔 (1) · 𝜒0 // G0

𝜒0 ≥ 𝐷ℓ · 𝑚𝑂(𝑑) 𝜆𝜔 (1)𝜒1 // G0 ≈𝑠 G1

𝜎0 = Ω(
√︁
𝑛 log 𝑞), 𝑚0 = 6𝑛 log 𝑞 // Lemma 1

𝜒1 ≥ 𝑂(𝜆𝐷+𝜔 (1) (𝑛 log 𝑞)2𝐷𝑚𝜒2) // Lemma 2

𝑞/𝜒2 ≤ 2𝑛𝑐 , 𝜒2 = poly(𝑛, 𝜆) // LWE hardness

where 𝜒0, 𝜒1 and 𝜒2 are introduced in the proof as intermediate parameters. We defer parameter selection to the next
section where we present our final slotted Reg-ABE scheme and two additional conditions will be added.

3.3 Correctness

Assume ctx is generated under mpk = (B0,B1, F, P,D, v, 𝑑, ℓ,h𝜖, 𝐿 = 2𝐷). Recall that Dec sends those terms correspond-
ing to 𝑖∗ in ctx to IndDec:

ctx,𝑖∗ =


𝑐𝑖∗ ,0 = s⊤

𝑖∗ ,0h𝜖 + 𝑒𝑖∗ ,0 + ⌊𝑞/2⌋ ·m
c⊤
𝑖∗ , 𝑗 = −s⊤

𝑖∗ , 𝑗−1 (B0 | B1) + s⊤𝑖∗ , 𝑗 (𝑖̄
∗
𝑗
· G | 𝑖∗

𝑗
· G) + e⊤

𝑖∗ , 𝑗 , ∀ 𝑗 ∈ [𝐷]
c⊤
𝑖∗ ,𝐷+1 = −s⊤

𝑖∗ ,𝐷 (F − x
⊤ ⊗ G | P) + s⊤

𝑖∗ ,𝐷+1 (0 | G) + e
⊤
𝑖∗ ,𝐷+1

c⊤
𝑖∗ ,𝐷+2 = −s⊤

𝑖∗ ,𝐷+1D + e
⊤
𝑖∗ ,𝐷+2

(5)

along with
sk𝑖∗ = k𝑖∗ , hsk𝑖∗ = {h𝑖∗ , 𝑗,0,h𝑖∗ , 𝑗,1} 𝑗∈[𝐷]

By the specification of Gen and Agg, we have the following relations:

h𝜖 = B0G−1 (h𝑖∗ ,1,0) + B1G−1 (h𝑖∗ ,1,1) (6)

h𝑖∗ , 𝑗−1,𝑖∗
𝑗−1

= B0G−1 (h𝑖∗ , 𝑗,0) + B1G−1 (h𝑖∗ , 𝑗,1), ∀ 𝑗 ∈ [2, 𝐷] (7)

h𝑖∗ ,𝐷,𝑖∗𝐷
= FH 𝑓𝑖∗G

−1 (v) + PG−1 (u𝑖∗) where u𝑖∗ = Dk𝑖∗ . (8)

For brevity, we discard transcript 𝑖∗ from these terms and 𝑓𝑖∗ . Observe that:

𝑧1 = (−s⊤0h𝜖 + s⊤1h1,𝑖∗1) + e
⊤
1

[
G−1 (h1,0)
G−1 (h1,1)

]
(9)

𝑧 𝑗 = (−s⊤𝑗−1h 𝑗−1,𝑖∗
𝑗−1
+ s⊤𝑗h 𝑗,𝑖∗

𝑗
) + e⊤𝑗

[
G−1 (h 𝑗,0)
G−1 (h 𝑗,1)

]
∀ 𝑗 ∈ [2, 𝐷] (10)

𝑧𝐷+1 = −s⊤𝐷h𝐷,𝑖∗𝐷
+ 𝑓 (x) · s⊤𝐷v + s⊤𝐷+1u + e⊤𝐷+1

[
H 𝑓 ,xG−1 (v)
G−1 (u)

]
(11)

𝑧𝐷+2 = −s⊤𝐷+1u + e⊤𝐷+2k (12)

We leave all details of computing 𝑧1, . . . , 𝑧𝐷+2 to Section C in Appendix. It is straight-forward to see that, when 𝑓 (x) = 0,
we have

𝑧 = 𝑐𝑖∗ ,0 +
𝐷∑︁
𝑗=1

𝑧 𝑗 + 𝑧𝐷+1 + 𝑧𝐷+2

14

= ⌊𝑞/2⌋ ·m +

𝑒︷ ︸︸ ︷
𝑒0 +

𝐷∑︁
𝑗=1

e⊤𝑗

[
G−1 (h 𝑗,0)
G−1 (h 𝑗,1)

]
+ e⊤𝐷+1

[
H 𝑓 ,xG−1 (v)
G−1 (u)

]
+ e⊤𝐷+2k

Then the correctness follows from the fact that

|𝑒| ≤ |𝑒0 | +
𝐷∑︁
𝑗=1

∥e⊤𝑗 ∥ + ∥e
⊤
𝐷+1∥ · ∥H 𝑓 ,x∥ + ∥e⊤𝐷+2∥

≤ (1 + 2𝑚𝐷 +𝑚(ℓ + 1)𝑚𝑂(𝑑) +𝑚)
√
𝜆𝜎1 = 𝐷ℓ𝑚𝑂(𝑑)√𝜆𝜎1 ≤ 𝑞/4. (13)

3.4 Security

We have the following theorem.

Theorem 2. Under LWE𝑛,poly(𝑚0 ,𝐷,2𝐷) ,𝑞,𝜎0 and LWE𝑛,𝑂(𝑚) ,𝑞,𝜒2 assumption that satisfy the conditions in Section 3.2, our slot-
ted Reg-ABE presented in Section 3.1 has pseudorandom ciphertexts in the selective setting (c.f. Section 2.4).

Useful Lemma. We prepare the following simple lemma which will be frequently used in the proof. Consider a 𝜎-
mPRF PRF = (PRFGen, PRFKey, PRFEval). Given S← PRFGen(𝑤, 𝜒) and 𝑚, ℓ ∈ N, we write

F(K, x) = PRFEval(S,K, x) ∀K ∈ Z𝑤×𝑚
𝑞 , x ∈ {0, 1}ℓ .

Then, we have
F(K, x) + ex ≈𝑐 $

where K← PRFKey(𝑤,𝑚, par) and ex ← D𝑚
Z,𝜎 ; here, we use $ to refer to a random vector of proper size. However, our

proof will instead need the following argument:

F(K′, x) · P + e′x ≈𝑐 $ (14)

where K′ ← PRFKey(𝑤,𝑚′, par) with 𝑚′ < 𝑚 and P is a public random matrix. A straight-forward idea is to make use
of 𝜎-pseudorandomness. For this, we employ noise flooding that changes L.H.S. as:

(F(K′, x) + ẽx) · P + e′x

and argue that the boxed term is pseudorandom. Unfortunately, this actually does not work due to fact that P is not a
low-norm matrix. Our lemma (shown below) shows that, if PRFKey simply samples a truly random matrix K (of size
depending on the input) and PRF has low-norm (as defined in Section 2.2), we can have (14) where F(K′, x) is able to
interplay with the noise term e′x across the “large” matrix P.

Lemma 2 (Crossing Lemma). Let 𝑤, ℓ, 𝑚, 𝑛, 𝐵 ∈ N and 𝜎, 𝜒 > 0. Assume a 𝜎-mPRF PRF = (PRFGen, PRFKey, PRFEval)
of norm 𝐵 with

– PRFKey(𝑤,𝑚) outputs K̃← Z𝑤×𝑚
𝑞 .

Under LWE𝑛,𝑚,𝑞,𝜒 with 𝜆𝜔 (1)𝐵𝑚𝜒 ≤ 𝜎, we have

P, {PRFEval(S,K, x) · P + e⊤x}x∈{0,1}ℓ ≈𝑐 P, {u⊤x}x∈{0,1}ℓ

where S← PRFGen(𝑤, 𝜒′) (for some 𝜒′ > 0), K← PRFKey(𝑤, 𝑛) with 𝑛 < 𝑚, P← Z𝑛×𝑚
𝑞 , ex ← D𝑚

Z,𝜎 and ux ← Z𝑚
𝑞 for all

x ∈ {0, 1}ℓ.

15

Proof. By definition of 𝜎-mPRF, we have

{t⊤M1,𝑥1 · · ·Mℓ,𝑥ℓ K̃ + e⊤x}x∈{0,1}ℓ ≈𝑐 {u⊤x}x∈{0,1}ℓ (15)

when K̃← PRFKey(𝑤,𝑚), ex ← D𝑚
Z,𝜎 , ux ← Z𝑚

𝑞 and

∥t⊤M1,𝑥1 · · ·Mℓ,𝑥ℓ ∥ ≤ 𝐵 ∀x ∈ {0, 1}ℓ . (16)

Recall that M𝑖,𝑏 for all 𝑖 ∈ [ℓ] and 𝑏 ∈ {0, 1} are derived from S. The lemma follows from the following hybrid argu-
ments:

L.H.S. = P, {t⊤M1,𝑥1 · · ·Mℓ,𝑥ℓKP + e⊤x}x∈{0,1}ℓ

≈𝑠 P, {t⊤M1,𝑥1 · · ·Mℓ,𝑥ℓ (KP + E) + e⊤x}x∈{0,1}ℓ

≈𝑐 P, {t⊤M1,𝑥1 · · ·Mℓ,𝑥ℓ K̃ + e⊤x}x∈{0,1}ℓ

≈𝑐 P, {u⊤x}x∈{0,1}ℓ = R.H.S.

where E← D𝑤×𝑚
Z,𝜒 . Here,

– the first ≈𝑠 uses noise flooding and (16) with condition 𝜆𝜔 (1)𝐵𝑚𝜒 ≤ 𝜎;
– the second ≈𝑐 uses LWE𝑛,𝑚,𝑞,𝜒 assumption: (P,KP + E) ≈𝑐 (P, K̃);
– the third ≈𝑐 follows from 𝜎-pseudorandomness of PRF, i.e., (15).

This readily proves the lemma. ⊓⊔

Game Sequence. Let 𝐿 = 2𝐷 be the number slots chosen by the adversary. Let x be the selective challenge that are
given by A before seeing crs. Let (pk𝑖 , 𝑓𝑖)𝑖∈{0,1}𝐷 be the key-policy pairs to be aggregated. Let

Lhon = {pk𝑖 : L[pk𝑖] ≠ ⊥ ∧ pk𝑖 ∉ C}

be the set of public keys for honest users. For all 𝑖 ∈ {0, 1}𝐷, we have that

𝑓𝑖 (x) = 0 =⇒ pk𝑖 ∈ Lhon.

Our proof uses the following game sequence.

– G0: This is the real game. We have crs = (B0,B1, F, P,D, v, 𝑑, ℓ). For each 𝑖 ∈ {0, 1}𝐷, we have pk𝑖 = u𝑖 ∈ Z𝑛
𝑞 . With

S← PRFGen0 (𝑚0, 𝜎0) and K0,K1, . . . ,K𝐷+1 ← PRFKey0 (𝑚0, 𝑛),

we write
F(K 𝑗 , 𝑖) = PRFEval0 (S,K 𝑗 , 𝑖) ∀𝑖 ∈ {0, 1}𝐷, 𝑗 ∈ [𝐷 + 1] .

The challenge ciphertext is in the following form

ctx = {𝑐𝑖,0, c𝑖,1, . . . , c𝑖,𝐷, c𝑖,𝐷+1, c𝑖,𝐷+2}𝑖∈{0,1}𝐷

where
𝑐𝑖,0 = F(K0, 𝑖) · h𝜖 + 𝑒𝑖,0
c⊤
𝑖, 𝑗

= −F(K 𝑗−1, 𝑖) · (B0 | B1) + F(K 𝑗 , 𝑖) · (𝑖̄ 𝑗 · G | 𝑖 𝑗 · G) + e⊤𝑖, 𝑗 , ∀ 𝑗 ∈ [𝐷]
c⊤
𝑖,𝐷+1 = −F(K𝐷, 𝑖) · (F − x⊤ ⊗ G | P) + F(K𝐷+1, 𝑖) · (0 | G) + e⊤𝑖,𝐷+1

c⊤
𝑖,𝐷+2 = −F(K𝐷+1, 𝑖) · D + e⊤𝑖,𝐷+2

For simplicity, we omit ⌊𝑞/2⌋ ·m in 𝑐𝑖,0 and consider the following noises:

𝑒𝑖,0 ← DZ,𝜒0 , e𝑖,1, . . . , e𝑖,𝐷 ← D2𝑚
Z,𝜒1

, e𝑖,𝐷+1 ← D
𝑚(ℓ+1)
Z,𝜒1

, e𝑖,𝐷+2 ← D𝑚
Z,𝜒1

.

Smudging lemma with condition 𝜎1 ≥ 𝜆𝜔 (1) · 𝜒0 gives the same distribution as the real scheme. Looking ahead,
our proof will require that 𝜒0 ≥ 𝜒1, this implies 𝜎1 ≥ 𝜆𝜔 (1) · 𝜒1.

16

– G1: Identical to G0 except that we rewrite 𝑐𝑖,0 for all 𝑖 ∈ {0, 1}𝐷 as follows:

𝑐𝑖,0 = −
𝐷∑︁
𝑗=1

c⊤𝑖, 𝑗w𝑖, 𝑗 + c⊤𝑖,𝐷+1w𝑖,𝐷+1 + 𝑓𝑖 (x) · F(K𝐷, 𝑖) · v + F(K𝐷+1, 𝑖) · u𝑖 + 𝑒𝑖,0

where

w𝑖, 𝑗 =

[
G−1 (h𝑖| 𝑗−1 ∥0)
G−1 (h𝑖| 𝑗−1 ∥1)

]
∀ 𝑗 ∈ [𝐷] and w𝑖,𝐷+1 =

[
H 𝑓𝑖 ,xG−1 (v)
G−1 (u𝑖)

]
We claim that G0 ≈𝑠 G1. This follows (1) Gaussian tail bound which ensures that, with probability 1−2−𝜆 , we have

𝑒∗︷ ︸︸ ︷

𝐷∑︁
𝑗=1

e⊤𝑖, 𝑗w𝑖, 𝑗 + e⊤𝑖,𝐷+1w𝑖,𝐷+1

 ≤ 𝐷∑︁
𝑗=1

2𝑚·
√
𝜆𝜒1︷︸︸︷

∥e⊤𝑖, 𝑗 ∥ +

𝑚(ℓ+1) ·
√
𝜆𝜒1︷ ︸︸ ︷

∥e⊤𝑖,𝐷+1∥ ·

𝑚𝑂(𝑑)︷ ︸︸ ︷
∥H 𝑓𝑖 ,x∥

≤ 𝐷ℓ𝑚𝑂(𝑑)√𝜆𝜒1

and (2) smudging lemma with condition 𝜒0 ≥ 𝐷ℓ𝑚𝑂(𝑑) 𝜆𝜔 (1)𝜒1.
– G2.𝛿, 𝛿 ∈ [0, 𝐷]: Identical to G1 except that we replace c𝑖,𝛿 with c̃𝑖,𝛿 ← Z2𝑚

𝑞 for all 𝑖 ∈ {0, 1}𝐷. Clearly, we have G1 =

G2.0. We claim that G2.𝛿−1 ≈𝑐 G2.𝛿 for all 𝛿 ∈ [𝐷]. This follows from Lemma 1 and Lemma 2. The former ensures
that (PRFGen0, PRFKey0, PRFEval0) is 𝜒1-mPRF of norm at most (𝑚0𝜆𝜎0)𝐷 under LWE𝑛,poly(𝑚0 ,𝐷,2𝐷) ,𝑞,𝜎0 assumption
with conditions

𝑚0 = 6𝑛 log 𝑞, 𝜎0 = Ω(
√︁
𝑛 log 𝑞), 𝜒1 ≥ 𝜆𝐷+𝜔 (1) · (𝑚0𝜎0)𝐷 .

Along with the fact that PRFKey0 samples a random matrix, the latter implies that: Under LWE𝑛,𝑂(𝑚) ,𝑞,𝜒2 assumption,
it holds that

{−F(K𝛿−1, 𝑖) · (B0 | B1) + e⊤𝑖,𝛿}𝑖∈{0,1}𝐷 are pseudorandom

with condition 𝑂(𝜆𝐷+𝜔 (1) (𝑚0𝜎0)𝐷𝑚𝜒2) ≤ 𝜒1.
– G3: Identical to G2.𝐷 except that we replace 𝑐𝑖,0, c𝑖,𝐷+1 and c𝑖,𝐷+2 with 𝑐𝑖,0 ← Z𝑞, c̃𝑖,𝐷+1 ← Z𝑚(ℓ+1)

𝑞 and c̃𝑖,𝐷+2 ← Z𝑚
𝑞 ,

respectively, for all 𝑖 ∈ {0, 1}𝐷. We prove G2.𝐷 ≈𝑐 G3 later on.

This readily proves that the challenge ciphertext is pseudorandom. In the remaining of this section, we prove the last
transition in the game sequence.

From G2.𝑫 to G3. Recall that challenge ciphertext ctx in G2.𝐷 looks like:

𝑐𝑖,0 = −∑𝐷
𝑗=1 c̃

⊤
𝑖, 𝑗
w𝑖, 𝑗 + c⊤𝑖,𝐷+1w𝑖,𝐷+1 + 𝑓𝑖 (x) · F(K𝐷, 𝑖) · v + F(K𝐷+1, 𝑖) · u𝑖 + 𝑒𝑖,0

c⊤
𝑖,𝐷+1 = −F(K𝐷, 𝑖) · (F − x⊤ ⊗ G | P) + F(K𝐷+1, 𝑖) · (0 | G) + e⊤𝑖,𝐷+1

c⊤
𝑖,𝐷+2 = −F(K𝐷+1, 𝑖) · D + e⊤𝑖,𝐷+2

where we omit c𝑖, 𝑗 = c̃𝑖, 𝑗 ← Z2𝑚
𝑞 for all 𝑖 ∈ {0, 1}𝐷 and 𝑗 ∈ [𝐷]. We prove that they are pseudorandom as in G3 via the

following hybrid arguments:
G2.𝐷 ≡ G2.𝐷.1 ≈𝑐 G2.𝐷.2 ≈𝑐 G3

where

– G2.𝐷.1: Identical to G2.𝐷 except that we carry out the change of variable F ↦→ F + x⊤ ⊗ G. It is straight-forward to
conclude G2.𝐷 ≡ G2.𝐷.1. We remark that, with F + x⊤ ⊗ G in crs, we only achieve selective security.

– G2.𝐷.2: Identical to G2.𝐷.1 except that we
• replace c𝑖,𝐷+1 for all 𝑖 ∈ {0, 1}𝐷 with c̃𝑖,𝐷+1 ← Z𝑚(ℓ+1)

𝑞 ;

17

• replace 𝑐𝑖,0 for all 𝑖 such that 𝑓𝑖 (x) = 1 with 𝑐𝑖,0 ← Z𝑞.
We claim that G2.𝐷.1 ≈𝑐 G2.𝐷.2. This is analogous to G2.𝛿−1 ≈𝑐 G2.𝛿 by Lemma 1 and Lemma 2 which implies that

{F(K𝐷, 𝑖) · (v|F|P) + (𝑒𝑖,0 |e⊤𝑖,𝐷+1)}𝑖∈{0,1}𝐷 are pseudorandom.

We note that when generating challenge ciphertext ct, we know 𝑓𝑖 for all 𝑖 ∈ {0, 1}𝐷 and x, therefore the game is
well-defined.

It remains to prove that G2.𝐷.2 ≈𝑐 G3.

From G2.𝑫.2 to G3. Recall that, in G2.𝐷.2, we almost have a pseudorandom ciphertext except the following terms:

𝑐𝑖,0 = −∑𝐷
𝑗=1 c̃

⊤
𝑖, 𝑗
w𝑖, 𝑗 + c⊤𝑖,𝐷+1w𝑖,𝐷+1 + F(K𝐷+1, 𝑖) · u𝑖 + 𝑒𝑖,0 ∀ 𝑓𝑖 (x) = 0

c⊤
𝑖,𝐷+2 = −F(K𝐷+1, 𝑖) · D + e⊤𝑖,𝐷+2 ∀𝑖 ∈ {0, 1}

𝐷 .

We prove that they are pseudorandom via the following hybrid arguments:

G2.𝐷.2 ≡ G2.𝐷.2.1 ≈𝑠 G2.𝐷.2.2 ≈𝑐 G2.𝐷.2.3 ≈𝑠 G3

where

– G2.𝐷.2.1: Identical to G2.𝐷.2 except that we replace u𝑖 in 𝑐𝑖,0 such that 𝑓𝑖 (x) = 0 with Dk𝑖 where k𝑖 = L[u𝑖]; namely,
we have

𝑐𝑖,0 = −
𝐷∑︁
𝑗=1

c̃⊤𝑖, 𝑗w𝑖, 𝑗 + c⊤𝑖,𝐷+1w𝑖,𝐷+1 + F(K𝐷+1, 𝑖) · D · k𝑖 + 𝑒𝑖,0 ∀ 𝑓𝑖 (x) = 0

It is straight-forward to see that G2.𝐷.2 ≡ G2.𝐷.2.1.Here we use the fact that

𝑓𝑖 (x) = 0 =⇒ u𝑖 ∈ Lhon =⇒ k𝑖 = L[u𝑖] ≠ ⊥;

the specification of security game ensures that u𝑖 = Dk𝑖 .
– G2.𝐷.2.2: Identical to G2.𝐷.2.1 except that we replace 𝑐𝑖,0 such that 𝑓𝑖 (x) = 0 with

𝑐𝑖,0 = −
𝐷∑︁
𝑗=1

c̃⊤𝑖, 𝑗w𝑖, 𝑗 + c⊤𝑖,𝐷+1w𝑖,𝐷+1 + c⊤𝑖,𝐷+2 · k𝑖 + 𝑒𝑖,0 ∀ 𝑓𝑖 (x) = 0

We claim that G2.𝐷.2.1 ≈𝑠 G2.𝐷.2.2. This is analogous to G0 ≈𝑠 G1; we use the fact that ∥k𝑖 ∥ = 1 for all 𝑖 and rely on
smudging lemma with condition 𝜒0 ≥ 𝑚𝜆𝜔 (1)𝜒1.

– G2.𝐷.2.3: Identical to G2.𝐷.2.2 except that we replace c𝑖,𝐷+2 for all 𝑖 ∈ {0, 1}𝐷 with c̃⊤
𝑖,𝐷+2 ← Z𝑚

𝑞 . This is analogous to
G2.𝛿−1 ≈𝑐 G2.𝛿 by Lemma 1 and Lemma 2 which implies that

{F(K𝐷+1, 𝑖) · D + e⊤𝑖,𝐷+2}𝑖∈{0,1}𝐷 are pseudorandom.

Finally, we claim that G2.𝐷.2.4 ≈𝑠 G3. This uses the fact that

𝑓𝑖 (x) = 0 =⇒ u𝑖 ∈ Lhon =⇒ u𝑖 ∉ C ∧ k𝑖 = L[pk𝑖] ≠ ⊥

which means k𝑖 is sampled honestly and keeps secret from A. Applying the leftover hash lemma with condition 𝑚 ≥
𝑂(log 𝑞) gives us [

u𝑖

c⊤
𝑖,𝐷+2 · k𝑖

]
=

[
D

c̃⊤
𝑖,𝐷+2

]
· k𝑖 ≈𝑠

[
ũ𝑖

𝑢̃𝑖

]
∀ 𝑓𝑖 (x) = 0

This suffices to hide 𝑐𝑖,0 such that 𝑓𝑖 (x) = 0 and completes the proof.

18

4 Our Slotted Registered ABE Scheme

This section presents our final slotted Reg-ABE scheme from the slotted Reg-ABE with large ciphertext in Section 3.1
and algebraic obfuscator for mPRF promised in Lemma 1. This yields a slotted Reg-ABE from LWE and evasive LWE.
Applying the “power-of-two” transformation (c.f. Section B in Appendix) yields our final Reg-ABE from the same set of
assumptions. We begin with an overview in the language of mPRF and obfuscation; see Section 1.4 for a brief overview
using GGH encoding from scratch.

4.1 Overview

Let mpk = (B0,B1, F, P,D, v,h𝜖, 𝐿). Plugging the PRF scheme PRF0 = (PRFGen0, PRFKey0, PRFEval0) in Lemma 1 into the
slotted Reg-ABE scheme in Section 3.1, a ciphertext for x ∈ {0, 1}ℓ of m ∈ {0, 1} is in the following form

ctx = {

ctx,𝑖︷ ︸︸ ︷
𝑐𝑖,0, c𝑖,1, . . . , c𝑖,𝐷, c𝑖,𝐷+1, c𝑖,𝐷+2}𝑖∈{0,1}𝐷

where
𝑐𝑖,0 = t⊤M𝑖1 · · ·M𝑖𝐷K0h𝜖 + 𝑒𝑖,0 + ⌊𝑞/2⌋ ·m
c⊤
𝑖, 𝑗

= −t⊤M𝑖1 · · ·M𝑖𝐷K 𝑗−1 (B0 | B1) + t⊤M𝑖1 · · ·M𝑖𝐷K 𝑗 (𝑖̄ 𝑗 · G | 𝑖 𝑗 · G) + e⊤𝑖, 𝑗
c⊤
𝑖,𝐷+1 = −t⊤M𝑖1 · · ·M𝑖𝐷K𝐷 (F − x ⊗ G | P) + t⊤M𝑖1 · · ·M𝑖𝐷K𝐷+1 (0 | G) + e⊤𝑖,𝐷+1

c⊤
𝑖,𝐷+2 = −t⊤M𝑖1 · · ·M𝑖𝐷K𝐷+1D + e⊤𝑖,𝐷+2

Recall that we sample M0,M1 ← D
𝑚0
Z,𝜎0

, K 𝑗 ← Z𝑚0×𝑛
𝑞 for all 𝑗 ∈ [0, 𝐷 + 1] and

e𝑖 = (𝑒𝑖,0, e𝑖,1, . . . , e𝑖,𝐷, e𝑖,𝐷+1, e𝑖,𝐷+2) ← D
1+(2𝐷+ℓ+2)𝑚
Z,𝜎1

Motivated by decryption procedure, our idea is to build a ciphertext generator CTGen which (1) returns ctx,𝑖 on input
𝑖 ∈ {0, 1}𝐷 and (2) has much smaller size than enumerating ctx,𝑖 for all 𝑖 ∈ {0, 1}𝐷 (as in Section 3.1). With this, we can
simply publish CTGen as the ciphertext ideally.

Rewriting Each Terms. We begin with studying the algebraic structure of ctx,𝑖 . First, by linear algebra, we can write
all terms without index 𝑖 as follows:

𝑐𝑖,0 = (t⊤, 1)

N𝑖1︷ ︸︸ ︷[
M𝑖1

1

]
· · ·

N𝑖𝐷︷ ︸︸ ︷[
M𝑖𝐷

1

] Kroot,msg︷ ︸︸ ︷[
K0h𝜖

⌊𝑞/2⌋ ·m

]
+𝑒𝑖,0

c⊤𝑖,𝐷+1 = (−t⊤, t⊤)

Q𝑖1︷ ︸︸ ︷[
M𝑖1

M𝑖1

]
· · ·

Q𝑖𝐷︷ ︸︸ ︷[
M𝑖𝐷

M𝑖𝐷

] Kfunc︷ ︸︸ ︷[
K𝐷 (F − x⊤ ⊗ G|P)

K𝐷+1 (0|G)

]
+e⊤𝑖,𝐷+1

c⊤𝑖,𝐷+2 = −t⊤M𝑖1 · · ·M𝑖𝐷

Kuser︷ ︸︸ ︷
K𝐷+1D+e⊤𝑖,𝐷+2

Then, for all 𝑗 ∈ [𝐷], we can rewrite terms c⊤
𝑖, 𝑗

involving index 𝑖 as follows:

(−t⊤, t⊤, t⊤)

T𝑖1︷ ︸︸ ︷
M𝑖1

M𝑖1

M𝑖1

 · · ·
T𝑖 𝑗−1︷ ︸︸ ︷

M𝑖 𝑗−1

M𝑖 𝑗−1

M𝑖 𝑗−1

 ·
V𝑖 𝑗︷ ︸︸ ︷

M𝑖 𝑗

𝑖̄ 𝑗 ·M𝑖 𝑗

𝑖 𝑗 ·M𝑖 𝑗


19

·

T𝑖 𝑗+1︷ ︸︸ ︷
M𝑖 𝑗+1

M𝑖 𝑗+1

M𝑖 𝑗+1

 · · ·
T𝑖𝐷︷ ︸︸ ︷

M𝑖𝐷

M𝑖𝐷

M𝑖𝐷



Ktree, 𝑗︷ ︸︸ ︷
K 𝑗−1B0 K 𝑗−1B1

K 𝑗G

K 𝑗G

 +e
⊤
𝑖, 𝑗 .

Note that it is crucial to embed 𝑖 𝑗 into the 𝑗-th matrix V𝑖 𝑗 ; this makes V𝑏 quite different from other matrices, i.e., T𝑏

with 𝑏 ∈ {0, 1}.

Rewriting Ciphertexts. Putting them together and defining

s⊤ = (

𝑐𝑖,0︷︸︸︷
t⊤, 1 ,

c⊤
𝑖,1︷ ︸︸ ︷

−t⊤, t⊤, t⊤, . . . ,

c⊤
𝑖,𝐷︷ ︸︸ ︷

−t⊤, t⊤, t⊤,

c⊤
𝑖,𝐷+1︷︸︸︷
−t⊤, t⊤,

c⊤
𝑖,𝐷+2︷︸︸︷
−t⊤)

S𝜄,𝑏 = diag(N𝑏, T𝑏, . . . ,V𝑏, . . . , T𝑏, Q𝑏, M𝑏)
K = diag(Kroot,msg, Ktree,1, . . . , Ktree,𝐷, Kfunc, Kuser)

where V𝑏 appears at the (𝜄 + 1)-th block of S𝜄,𝑏 for all 𝜄 ∈ [𝐷], we have

ctx,𝑖 = s⊤ · S1,𝑖1 · · · S𝐷,𝑖𝐷 · K + e⊤𝑖 ∀𝑖 ∈ {0, 1}
𝐷 .

Surprisingly, this already gives us a ciphertext generator, denoted by CTGen∗. It is defined by s, S = {S𝜄,𝑏}𝜄∈[𝐷],𝑏∈{0,1}
and K and works as follows:

CTGen∗ (𝑖) = s⊤ · S1,𝑖1 · · · S𝐷,𝑖𝐷 · K + e⊤𝑖 .

However, we can not simply publish (s, S,K) as the ciphertext because this will leak m. Furthermore, there are two
more issues: (1) we can not ask the decryptor to sample e𝑖 ; (2) the decryptor might manipulate those vectors/matrices
in an unexpected way.

Final Step. To fix the above issues, we may choose to obfuscating CTGen∗. However a general 𝑖O is highly impracti-
cal [27,28] and will make a non-black-box use of underlying algebraic objects. Fortunately, the following observation
rescues us: Without the noise e⊤

𝑖
,

CTGen∗∗ (𝑖) = s⊤ · S1,𝑖1 · · · S𝐷,𝑖𝐷K

looks like the evaluation algorithm of a mPRF. In fact, Theorem 2 basically says that CTGen∗∗ is actually a 𝜎1-mPRF
against some aux depending on security game with A. This allows us to employ the algebraic obfuscator Obf recently
proposed in [30] (c.f. Theorem 1), the ciphertext will be

ctx = CTGen← Obf(CTGen∗∗)

Decryption works as follows: run ctx,𝑖 = CTGen(𝑖) for some 𝑖 and invoke IndDec to recover the message as in Section 3.1.
We note that the resulting scheme is a black-box construction and avoid the use of Barrington Theorem.

4.2 Matrix PRF Induced by Slotted Reg-ABE in Section 3.1

Motivated by Section 4.1, we describe a mPRF that generates ctx,𝑖 as follows:

– PRFGen(𝑤, 𝜎0): Output S = (M0,M1) ← PRFGen0 (𝑤, 𝜎0).

20

– PRFKey(𝑤,mpk, x,m): Let mpk = (B0,B1, F, P,D, v,h𝜖, 𝐿 = 2𝐷). Sample

K 𝑗 ← PRFKey0 (𝑤, 𝑛) ∀ 𝑗 ∈ [0, 𝐷 + 1]

and define

Kroot,msg =

[
K0h𝜖

⌊𝑞/2⌋ ·m

]
Ktree, 𝑗 =

[
K 𝑗−1 (B0 |B1)
I2 ⊗ K 𝑗G

]
∀ 𝑗 ∈ [𝐷]

Kfunc =

[
K𝐷 (F − x ⊗ G|P)

K𝐷+1 (0|G)

]
Kuser = K𝐷+1D

Output
K = diag(Kroot,msg,Ktree,1, . . . ,Ktree,𝐷,Kfunc,K𝐷+1D).

We assume that one can efficiently extract 𝐷 from K.
– PRFEval(S,K, x): Parse S = (M0,M1). For all 𝑏 ∈ {0, 1}, define

N𝑏 = diag(M𝑏, 1), Q𝑏 = I2 ⊗M𝑏, T𝑏 = I3 ⊗M𝑏, V𝑏 = diag(1, 𝑏, 𝑏) ⊗M𝑏

and for all 𝜄 ∈ [𝐷] and 𝑏 ∈ {0, 1}, define

s⊤ = (t⊤, 1, 1⊤ℓ ⊗ (−t
⊤, t⊤, t⊤),−t⊤, t⊤,−t⊤)

S𝜄,𝑏 = diag(N𝑏, I𝜄−1 ⊗ T𝑏,V𝑏, Iℓ−𝜄 ⊗ T𝑏,Q𝑏,M𝑏)

Output
s⊤S1,𝑖1 · · · S𝐷,𝑖𝐷K.

For security, we define the following algorithm that generates K along with aux:

– PRFKey∗ (𝑤, par∗ = A): Run A with random coin 𝑟 as follows:
1. Given x← A, sample crs← Setup(1𝜆 , 1𝑑 , 1ℓ);
2. Send crs to A and maintain OGen and OCor with responses rsp ∈ {0, 1}∗;
3. Receiving m and {pk𝑖 , 𝑓𝑖}𝑖∈{0,1}𝐷 , run mpk← Agg(crs, {pk𝑖 , 𝑓𝑖}𝑖∈{0,1}𝐷).

Output
auxA = (𝑟, x, crs, rsp,mpk) and KA ← PRFKey(𝑚0,mpk, x,m).

Security. Before we proceed to describe the security of (PRFGen, PRFKey, PRFEval) defined above, it is useful to rewrite
Enc of the slotted Reg-ABE in Section 3.1 with it; other algorithms are not relevant.

– Enc(mpk, x,m): Let 𝐿 = 2𝐷 (read from mpk). Sample

S← PRFGen(𝑚0, 𝜎0) and K← PRFKey(𝑚0,mpk, x,m).

Output
ctx = {PRFEval(K, 𝑖) + e⊤𝑖 }𝑖∈{0,1}𝐷

where e𝑖 ← D
1+(2𝐷+ℓ+2)𝑚
Z,𝜎1

for all 𝑖 ∈ {0, 1}𝐷.

This suggests Lemma 3 which is a straight-forward implication of Theorem 2.

Lemma 3. Under the same assumptions mentioned in Theorem 2 and conditions in Section 3.2, (PRFGen, PRFKey, PRFEval)
is a 𝜎1-mPRF against PRFKey∗. In particular, for all P.P.T. algorithms A,B,

Pr[B(1𝜆 , {PRFEval(S,KA, 𝑖)}𝑖∈{0,1}𝐷 , auxA) = 1]

− Pr[B(1𝜆 , {c̃𝑖}𝑖∈{0,1}𝐷 , auxA) = 1] = 𝜀(𝜆)

where S← PRFGen(𝑚0, 𝜎0), (KA, auxA) ← PRFKey∗ (𝑚0,A) and c̃𝑖 ← Z1+(2𝐷+ℓ+2)𝑚
𝑞 for all 𝑖 ∈ {0, 1}𝐷.

21

4.3 Scheme

Our final slotted Reg-ABE is identical to the scheme presented in Section 3.1 except that we replace Enc and Dec with
Enc∗ and Dec∗, respectively.

– Enc∗ (mpk, x,m): Let 𝐿 = 2𝐷 (read from mpk). Sample

S← PRFGen(𝑚0, 𝜎0) and K← PRFKey(𝑚0,mpk, x,m).

Output
ctx = CTGen← Obf(1𝜆 , 1𝐷, S,K).

– Dec∗ (sk𝑖∗ , hsk𝑖∗ , ctx): Let ct = CTGen and run

ctx,𝑖∗ ← CTGen(𝑖∗) .

Return IndDec(sk𝑖∗ , hsk𝑖∗ , ctx,𝑖∗).

We highlight the differences with Enc and Dec with boxes.

Parameter Selection. We set

𝑛 = poly(𝜆), 𝑚 = 𝑂(𝑛1+𝑐), 𝑚0 = 6𝑛 log 𝑞,

𝑞 = poly(ℓ) · 𝑛poly(𝐷,𝑑) , 𝜎0 = Ω(
√︁
𝑛 log 𝑞), 𝜎1 = 𝑂(ℓ) · (𝑛 log 𝑞)poly(𝐷,𝑑)

so that they satisfy conditions in Section 3.2 and the following additional ones:

𝑞/4 ≥ ℓ𝑚𝑂(𝑑) (𝐷𝑚0
√
𝜆𝜎0)𝐷 // correctness

𝜎1 = 2𝐷3 (𝑛2√2𝑛)𝐷+1 // obfuscation

Correctness & Compactness. Observe that PRF has width 3𝐷𝑚0 + 4𝑚0 + 1 and length 𝐷; furthermore, with over-
whelming probability, each entry of s and S is bounded by 𝐵 =

√
𝜆𝜎0. By Theorem 1, for all 𝑖∗ ∈ {0, 1}𝐷, we have

that
ctx,𝑖∗ = (𝑐𝑖∗ ,0, c𝑖∗ ,1, . . . , c𝑖∗ ,𝐷, c𝑖∗ ,𝐷+1, c𝑖∗ ,𝐷+2) ← CTGen(𝑖∗)

where 𝑐𝑖∗ ,0, c𝑖∗ ,1, . . . , c𝑖∗ ,𝐷+2 are defined as in (5) except that we have

e𝑖 = (𝑒𝑖,0, e𝑖,1, . . . , e𝑖,𝐷, e𝑖,𝐷+1, e𝑖,𝐷+2) ∈ [−𝐵′, 𝐵′]1+(2𝐷+ℓ+2)𝑚

with 𝐵′ = (𝐷𝑚0
√
𝜆𝜎0)𝐷 . Analogous to (13), correctness holds under the following condition:

(1 + 2𝑚𝐷 +𝑚(ℓ + 1)𝑚𝑂(𝑑) +𝑚)𝐵 ≤ ℓ𝑚𝑂(𝑑) (𝐷𝑚0
√
𝜆𝜎0)𝐷 ≤ 𝑞/4.

Furthermore we have
|CTGen| = 𝑂(𝐷4𝑚2

0𝑚ℓ log 𝑞) = poly(𝐷, 𝑚0, 𝑚, ℓ, log 𝑞).

Security. We prove the following theorem.

Theorem 3. Under LWE𝑛,poly(𝑛) ,𝑞,√2𝑛 and evLWE𝜎1 ,𝜎1 where 𝜎1 = 2𝐷3 (𝑛2√2𝑛)𝐷+1 with conditions in Section 3.2 and Sec-
tion 4.3, our slotted Reg-ABE scheme presented in Section 4.3 is selectively secure (c.f. Section 2.4).

Before we proceed, we present the following lemma which immediately follows from Lemma 3 and Theorem 1. We
omit the proof.

22

Lemma 4. Under the same assumptions mentioned in Theorem 1 and Theorem 2 and conditions in Section 3.2, for all
P.P.T. A,B,

| Pr[B(1𝜆 , CTGen , auxA) = 1] − Pr[B(1𝜆 , CTGen$, auxA) = 1] | = 𝜀(𝜆)

where S← PRFGen(𝑚0, 𝜎0), (KA, auxA) ← PRFKey∗ (𝑚0,A), CTGen← Obf(1𝜆 , 1𝐷, S,KA) and CTGen$ ← D.

Proof (of Theorem 3). We prove via hybrid arguments:

– G0: The real game.
– G1: Identical to G0 except that we replace ct with CTGen$ ← D.

Clearly, in G1, ct is independent of challenge message pair. It remains to prove that G0 ≈𝑐 G1. It suffices to prove that
if there exists A who can distinguish G0 and G1, then we have B against Lemma 4 with respect to A. First, B runs
A as in PRFKey∗ (A) with the random coin 𝑟 in auxA. Then, B sends the challenge to A, which is either CTGen ←
Obf(1𝜆 , 1𝐷, S,KA) or CTGen$ ← D, and returns the output of A. Observe that the advantage of B in distinguishing
CTGen and CTGen$ is exactly the advantage of A in distinguishing G0 and G0. This proves the theorem. ⊓⊔

References

1. Nuttapong Attrapadung and Junichi Tomida. A modular approach to registered ABE for unbounded predicates. In Leonid
Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part III, volume 14922 of LNCS, pages 280–316. Springer, Cham, August 2024.
1

2. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer, Berlin, Heidelberg, April 2012. 9

3. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran
Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In Phong Q. Nguyen
and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture
Notes in Computer Science, pages 533–556. Springer, 2014. 8

4. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic PRFs and their applications.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428. Springer, Berlin, Heidelberg,
August 2013. 6, 9

5. Pedro Branco, Russell W. F. Lai, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Ivy K. Y. Woo. Traitor tracing without
trusted authority from registered functional encryption. Cryptology ePrint Archive, Report 2024/179, 2024. 2

6. Jeffrey Champion and David J. Wu. Distributed broadcast encryption from lattices. TCC, 2024. 2
7. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching programs: Proofs, attacks, and

candidates. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577–607.
Springer, Cham, August 2018. 1, 2, 6

8. Valerio Cini and Hoeteck Wee. ABE for circuits with poly (𝜆) -sized keys from LWE. In 64th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 435–446. IEEE, 2023. 4

9. Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing registration based encryption. In Maura B. Paterson, editor,
Cryptography and Coding - 18th IMA International Conference, IMACC 2021, Virtual Event, December 14-15, 2021, Proceedings,
volume 13129 of Lecture Notes in Computer Science, pages 129–157. Springer, 2021. 1

10. Pratish Datta, Tapas Pal, and Shota Yamada. Registered FE beyond predicates: (attribute-based) linear functions and more.
Cryptology ePrint Archive, Report 2023/457, 2023. 2

11. Leo de Castro and Chris Peikert. Functional commitments for all functions, with transparent setup and from SIS. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 287–320. Springer, Cham, April 2023.
3

12. Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza Rahimi. Efficient laconic
cryptography from learning with errors. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006
of LNCS, pages 417–446. Springer, Cham, April 2023. 1, 2, 3, 5

23

13. Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: Registration-based encryption and key-value
map commitments for large spaces. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part V, volume 14442 of LNCS,
pages 166–200. Springer, Singapore, December 2023. 1, 2

14. Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Daniele Venturi. Registered (inner-
product) functional encryption. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part V, volume 14442 of LNCS, pages
98–133. Springer, Singapore, December 2023. 1

15. Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered ABE, flexible broadcast, and
more. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of LNCS, pages 498–531.
Springer, Cham, August 2023. 1, 2, 27

16. Rachit Garg, George Lu, Brent Waters, and David J. Wu. Realizing flexible broadcast encryption: How to broadcast to a public-
key directory. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, ACM CCS 2023, pages
1093–1107. ACM Press, November 2023. 1

17. Rachit Garg, George Lu, Brent Waters, and David J. Wu. Reducing the CRS size in registered ABE systems. In Leonid Reyzin and
Douglas Stebila, editors, CRYPTO 2024, Part III, volume 14922 of LNCS, pages 143–177. Springer, Cham, August 2024. 1

18. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications. In Dan Boneh, Tim Rough-
garden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 467–476. ACM Press, June 2013. 1

19. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-based encryption: Remov-
ing private-key generator from IBE. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS,
pages 689–718. Springer, Cham, November 2018. 1, 2

20. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar. Registration-based en-
cryption from standard assumptions. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages
63–93. Springer, Cham, April 2019. 1

21. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In
Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008. 3

22. Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient registration-based encryption. In Weizhi
Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, ACM CCS 2023, pages 1065–1079. ACM Press, Novem-
ber 2023. 1

23. Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 621–651. Springer, Cham, August 2020. 1

24. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained access control of
encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98.
ACM Press, October / November 2006. Available as Cryptology ePrint Archive Report 2006/309. 1

25. Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-based encryption. In Carmit Hazay and
Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 511–542. Springer, Cham, April 2023. 1, 2, 11, 27

26. Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation with long output. In Tim
Roughgarden, editor, ITCS 2015, pages 163–172. ACM, January 2015. 2

27. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions. In Samir Khuller
and Virginia Vassilevska Williams, editors, 53rd ACM STOC, pages 60–73. ACM Press, June 2021. 20

28. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over F𝑝, DLIN, and PRGs in 𝑁𝐶0. In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 670–699. Springer, Cham,
May / June 2022. 20

29. Hanjun Li, Huijia Lin, and Ji Luo. ABE for circuits with constant-size secret keys and adaptive security. In Eike Kiltz and Vinod
Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 680–710. Springer, Cham, November 2022. 4

30. Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. Adaptively sound zero-knowledge SNARKs for UP. In Leonid
Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part X, volume 14929 of LNCS, pages 38–71. Springer, Cham, August 2024. 7,
8, 10, 20, 26

31. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Berlin, Heidelberg, April 2012. 7, 10

32. Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications. In Mikkel Thorup, editor, 59th
FOCS, pages 859–870. IEEE Computer Society Press, October 2018. 3

24

33. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N. Gabow and Ronald Fagin,
editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005. 8

34. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 457–473. Springer, Berlin, Heidelberg, May 2005. 1

35. Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 62–85. Springer, Cham, August 2019. 8

36. Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part I, volume 13507 of LNCS, pages 535–559. Springer, Cham, August 2022. 1, 2, 10

37. Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-IO from evasive LWE. In Shweta Agrawal
and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS, pages 195–221. Springer, Cham, December 2022. 1, 2,
7

38. Brent Waters, Hoeteck Wee, and David J. Wu. Multi-authority ABE from lattices without random oracles. In Eike Kiltz and
Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 651–679. Springer, Cham, November 2022. 9

39. Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In Orr Dunkelman and Stefan
Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 217–241. Springer, Cham, May / June 2022. 1, 2,
10

40. Hoeteck Wee. Circuit ABE with poly(depth, 𝜆)-sized ciphertexts and keys from lattices. In Leonid Reyzin and Douglas Stebila,
editors, CRYPTO 2024, Part III, volume 14922 of LNCS, pages 178–209. Springer, Cham, August 2024. 2

41. Ziqi Zhu, Jiangtao Li, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered functional encryptions from pairings. In Marc
Joye and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume 14652 of LNCS, pages 373–402. Springer, Cham, May 2024.
1, 2

42. Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via predicate encodings. In Jian Guo and Ron Steinfeld,
editors, ASIACRYPT 2023, Part V, volume 14442 of LNCS, pages 66–97. Springer, Singapore, December 2023. 1

25

Appendix

A Concrete Obfuscator from Evasive LWE

The obfuscator described in [30] works as follows:

– Obf(1𝜆 , 1ℓ, S,K): Compute

m ∈ Z𝑤 and M𝑖,𝑏 ∈ Z𝑤×𝑤 ∀𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}.

This is ensured by the definition of mPRF, c.f., Section 2.2. For all 𝑖 ∈ [ℓ] and 𝑏 ∈ {0, 1}, sample

Ŝ𝑖,𝑏 = diag(M𝑖,𝑏, S̃𝑖,𝑏) ∈ Z(𝑤+𝑛)×(𝑤+𝑛) where S̃𝑖,𝑏 ← D𝑛×𝑛
Z,𝜎

Define

u⊤ = (m⊤ |1⊤𝑛) ∈ Z1×(𝑤+𝑛) and V =

[
K

0𝑛×𝑚

]
∈ Z(𝑤+𝑛)×𝑚𝑞

Sample (A𝑖 ,A−1
𝑖
) ← Z(𝑤+𝑛)×𝑊𝑞 × Z𝑊×𝑊 for all 𝑖 ∈ [ℓ − 1] and

e⊤1,𝑏 ← D1×𝑊
𝑍,𝜒 , E2,𝑏, . . . ,Eℓ−1,𝑏 ← D

(𝑤+𝑛)×𝑊
Z,𝜒 , Eℓ,𝑏 ← D

(𝑤+𝑛)×𝑚
Z,𝜒 ∀𝑏 ∈ {0, 1}.

Output

{

D1,𝑏︷ ︸︸ ︷
u⊤Ŝ1,𝑏A1 + E1,𝑏,

B𝑖,𝑏︷ ︸︸ ︷
A−1
𝑖−1 (Ŝ𝑖,𝑏A𝑖 + E𝑖,𝑏),

Dℓ,𝑏︷ ︸︸ ︷
A−1
ℓ−1 (Ŝℓ,𝑏V + Eℓ,𝑏) }𝑏∈{0,1} .

B Registered Attribute-Based Encryption

Algorithms. Let 𝑑, ℓ ∈ N. A registered attribute-based encryption (Reg-ABE) for circuits is a tuple of algorithms with
the following syntax:

Setup(1𝜆 , 1𝑑 , 1ℓ) → crs,mpk, aux

Gen(crs) → (pk, sk)
Regaux (crs,mpk, 𝑓 , pk) → mpk′

Updaux (crs,mpk, 𝑓 , pk) → hsk

Enc(mpk, 𝑥,m) → ct

Dec(sk, hsk, ct) → m/⊥/getupd

𝜆 : security parameter

𝑑 : depth of circuits

ℓ : input length of circuits

crs : common reference string

mpk,mpk′ : master public key

aux : auxiliary information

pk : user’s public key

sk : user’s secret key

hsk : helper secret key

𝑓 ∈ C𝑑,ℓ : function

m : message

𝑥 ∈ {0, 1}ℓ : input to function

We require that Reg and Upd are deterministic.

26

Correctness. For all 𝜆, 𝑑, ℓ and all (unbounded) adversary A, it holds that

Pr


m = m∗

�������������

(crs,mpk, aux) ← Setup(1𝜆 , 1𝑑 , 1ℓ)
(𝑥∗,m∗, 𝑓 ∗) ← Ampk,aux,ORegH,ORegM (crs)

ct∗ ← Enc(mpk, 𝑥∗,m∗)
(sk∗, hsk∗, 𝑓 ∗) ← hon[pk∗]

m = Dec(sk∗, hsk∗, ct∗)


≥ 1 − 𝜀(𝜆)

where we initialize mpk = ⊥, aux = ⊥ and oracles work as follows:

– ORegH(𝑓): Run (pk, sk) ← Gen(crs) and update mpk ← Regaux (crs,mpk, 𝑓 , pk), hsk ← Updaux (crs,mpk, 𝑓 , pk),
return pk and record hon[pk] = (sk, hsk, 𝑓).

– ORegM(𝑓 , pk): If hon[pk] = ⊥, update mpk ← Regaux (crs,mpk, 𝑓 , pk) and mal = mal ∪ { 𝑓 }, return hsk ←
Updaux (crs,mpk, 𝑓 , pk).

and we require that hon[pk∗] ≠ ⊥ and 𝑓 ∗ (𝑥∗) = 0 in the fourth line.

Security. For all P.P.T. stateful adversary A,

Pr


𝛽 = 𝛽′

�����������
𝑥∗ ← A; (crs,mpk, aux) ← Setup(1𝜆 ,F)
(m∗0,m∗1) ← Ampk,aux,ORegH,ORegM,OCorHK (crs)
𝛽 ← {0, 1}, ct∗ ← Enc(mpk, 𝑥∗,m∗

𝛽
)

𝛽′ ← Ampk,aux,ORegH,ORegM,OCorHK (ct∗)


− 1

2
≤ 𝜀(𝜆)

where oracles ORegH,ORegM work as above, and oracle OCorHK works as follows:

– OCorHK(pk): Let hon[pk] = (sk, hsk, 𝑓), set cor = cor ∪ { 𝑓 } and return sk.

and we require that for all 𝑓 ∈ mal ∪ cor, 𝑓 (𝑥∗) = 1.

Transformation. In [25], it is proved that slotted Reg-ABE generically implies Reg-ABE preserving efficiency and
security via so-called “power-of-two” transformation. We restate their theorem. The details of transformation can be
found in Construction 6.1 in Section 6 in [25].

Theorem 4 ([25,15]). Assume a 𝐿-slotted Reg-ABE scheme for𝐶𝑑,ℓ achieving adaptive (resp. selective) security with |crs|,
|mpk|, |ct|, and |hsk| bounded by polylog(𝜆, 𝐿). There exists a Reg-ABE scheme for 𝐶𝑑,ℓ achieving adaptive (resp. selective)
security with the same efficiency profile, asymptotically, and the number of updates is bounded by polylog(𝜆, 𝐿).

C Details of Correctness in Section 3.3

For completeness, we verify (9), (10), (11), (12) as follows. First, we have

𝑧1 = c⊤1

[
G−1 (h1,0)
G−1 (h1,1)

]
= (−s⊤0 (B0 | B1) + s⊤1 (𝑖̄∗1 · G | 𝑖∗1 · G) + e⊤1)

[
G−1 (h1,0)
G−1 (h1,1)

]
(6)
= (−s⊤0h𝜖 + s⊤1 (𝑖̄∗1 · h1,0 + 𝑖∗1 · h1,1)) + e⊤1

[
G−1 (h1,0)
G−1 (h1,1)

]
= (−s⊤0h𝜖 + s⊤1h1,𝑖∗1) + e

⊤
1

[
G−1 (h1,0)
G−1 (h1,1)

]

27

The last equality follows from the fact 𝑥 · h0 + 𝑥 · h1 = h𝑥 for all 𝑥 ∈ {0, 1}. Analogously, we have

𝑧 𝑗 = c⊤𝑗

[
G−1 (h 𝑗,0)
G−1 (h 𝑗,1)

]
= (−s⊤𝑗−1 (B0 | B1) + s⊤𝑗 (𝑖̄

∗
𝑗 · G | 𝑖

∗
𝑗 · G) + e

⊤
𝑗)

[
G−1 (h 𝑗,0)
G−1 (h 𝑗,1)

]
(7)
= (−s⊤𝑗−1h 𝑗−1,𝑖∗

𝑗−1
+ s⊤𝑗 (𝑖̄

∗
𝑗 · h 𝑗,0 + 𝑖∗𝑗 · h 𝑗,1)) + e⊤𝑗

[
G−1 (h 𝑗,0)
G−1 (h 𝑗,1)

]
= (−s⊤𝑗−1h 𝑗−1,𝑖∗

𝑗−1
+ s⊤𝑗h 𝑗,𝑖∗

𝑗
) + e⊤𝑗

[
G−1 (h 𝑗,0)
G−1 (h 𝑗,1)

]
and also

𝑧𝐷+1 = c⊤𝐷+1

[
H 𝑓 ,xG−1 (v)
G−1 (u)

]
= (−s⊤𝐷 (F − x⊤ ⊗ G | P) + s⊤𝐷+1 (0 | G) + e⊤𝐷+1)

[
H 𝑓 ,xG−1 (v)
G−1 (u)

]
(4)
= −s⊤𝐷 (FH 𝑓G−1 (v) − 𝑓 (x) · v + PG−1 (u)) + s⊤𝐷+1u + e⊤𝐷+1

[
H 𝑓 ,xG−1 (v)
G−1 (u)

]
(8)
= −s⊤𝐷h∗𝐷,𝑖∗𝐷 + 𝑓 (x) · s⊤𝐷v + s⊤𝐷+1u + e⊤𝐷+1

[
H 𝑓 ,xG−1 (v)
G−1 (u)

]
Finally, it is straight-forward to see that

𝑧𝐷+2 = (−s⊤𝐷+1D + e⊤𝐷+2)k = −s⊤𝐷+1u + e⊤𝐷+2k.

28

Table of Contents

Black-Box Registered ABE from Lattices . 1
Ziqi Zhu, Kai Zhang, Zhili Chen, Junqing Gong, and Haifeng Qian

1 Introduction . 1
1.1 Warm-up: Zero-Slotted Reg-ABE . 2
1.2 One-slotted Scheme . 3
1.3 From One-slotted to 𝐿-slotted Reg-ABE . 4
1.4 Shaving Factor 𝐿 Off . 6

2 Preliminaries . 7
2.1 Lattice Background . 7
2.2 Relaxed Matrix Pseudorandom Function . 8
2.3 Obfuscation for Matrix PRF . 9
2.4 Slotted Registered Attribute-Based Encryption for Circuits . 11

3 Slotted Registered ABE with Large Ciphertext . 12
3.1 Scheme . 12
3.2 Parameters . 14
3.3 Correctness . 14
3.4 Security . 15

4 Our Slotted Registered ABE Scheme . 19
4.1 Overview . 19
4.2 Matrix PRF Induced by Slotted Reg-ABE in Section 3.1 . 20
4.3 Scheme . 22

A Concrete Obfuscator from Evasive LWE . 26
B Registered Attribute-Based Encryption . 26
C Details of Correctness in Section 3.3 . 27

	Black-Box Registered ABE from Lattices

