
Delegated Multi-party Private Set Intersection
from Secret Sharing

Jingwei Hu1, Zhiqi Liu2 and Cong Zuo2

1 Nanyang Technological University, Singapore, davidhu@ntu.edu.sg
2 Beijing Institute of Technology, China, {liuzhiqi25,zuocong10}@gmail.com

Abstract. In this work, we address the problem of Delegated PSI (D-PSI), where a
cloud server is introduced to handle most computational and communication tasks.
D-PSI enables users to securely delegate their private sets to the cloud, ensuring
the privacy of their data while allowing efficient computation of the intersection.
The cloud operates under strict security requirements, learning nothing about the
individual sets or the intersection result. Moreover, D-PSI minimizes user-to-user
communication and supports "silent" processing, where the cloud can perform com-
putations independently without user interaction, apart from set delegation and
result retrieval.
We formally define the D-PSI problem and propose a novel construction that extends
beyond two-party scenarios to support multi-party settings. Our construction ad-
heres to the D-PSI requirements, including security against semi-honest adversaries,
and achieves computational and communication complexities close to the ideal "per-
fect" D-PSI protocol. Additionally, we demonstrate the practicality of our approach
through a baseline implementation and an optimized version that further reduces
computational overhead. Our results establish a strong foundation for secure and
efficient PSI in real-world cloud computing scenarios.
Keywords: Multi-party PSI · Secret Sharing · Randomized Intersection Encoding

1 Introduction
Private Set Intersection (PSI) is arguably one of the most extensively studied secure
multiparty computation (MPC) protocols. PSI is essentially a specialized form of MPC,
where multiple parties, each holding a private set, collaboratively compute the intersection
of their sets. During the computation, no information about the individual sets except
for the intersection is leaked to either party.

The earliest PSI protocols were based on Diffie-Hellman key exchange [Mea86, HFH99].
In recent years, the research focus has shifted toward using Oblivious Key-Value Stores
(OKVS) and Vector Oblivious Linear Evaluation (VOLE) as core constructions to achieve
high-performance PSI protocols. OKVS-based constructions encode the input sets in
a specialized manner, as described in OKVS [GPR+21], resulting in transparent data
structures known as oblivious data structures. VOLE-based method [RS21], on the other
hand, utilizes VOLE to construct Oblivious Pseudorandom Functions (OPRF), which are
then employed to develop OPRF-PSI protocols.

The research line mentioned above performs set intersection securely under the as-
sumption that no cloud server is involved, and all computing parties hold their sets locally.
However, in the real world, the cloud computing paradigm is ubiquitous, where a cloud
server is significantly more powerful in terms of both computational and communication
resources compared to individual users in the PSI protocol.

mailto:davidhu@ntu.edu.sg
mailto: {liuzhiqi25,zuocong10}@gmail.com

2 Delegated Multi-party Private Set Intersection from Secret Sharing

Therefore, it is desirable for all computing parties (users) in PSI to securely delegate
their sets to the cloud, allowing the cloud to handle most of the computational tasks
required to compute the intersection. A critical feature of this setup is that the computing
parties may not trust the cloud. Thus, the data delegated by the users must remain
oblivious to the cloud, and any operations performed on the cloud should not violate the
privacy of the sets. Additionally, it is preferable that, at the end of the protocol, the
cloud does not learn the intersection result. Instead, only the authorized user(s) should
be allowed to learn the intersection.

Definition of D-PSI To capture the intuitions above, we formally define the problem of
Delegated Private Set Intersection (Delegated PSI, D-PSI) as follows. Unlike the standard
multi-party private set intersection problem, D-PSI introduces an additional computing
party, a cloud server. Three types of computing parties are defined:

• A cloud server C,

• Delegated users A1, A2, . . . , An,

• A querying user B.

In this setup, each delegated user Ai securely delegates their set to the cloud server
C, and the querying user B also securely delegates their set to the cloud server C, and
ultimately learns the intersection result.

The goal of D-PSI is to collaboratively compute the intersection without revealing the
individual sets:

• Each delegated user Ai securely (indistinguishable from random values) stores their
set on the cloud C.

• The querying user B securely stores their set on the cloud C.

• The cloud C, together with {Ai} and B, collaboratively computes the intersection
such that B can efficiently obtain the result (∩Ai) ∩B.

The requirements are:

• Delegated users {Ai} only know their private sets.

• The cloud C learns nothing.

• The querying user B only knows their private set B and the intersection (∩Ai)∩B.

• The cloud C does not collude with the users and a user does not collude with another
user

• The cloud C should handle the majority of the computational and communication
tasks.

• Users {Ai} and B should not interact directly or should keep such interaction mini-
mal.

• Silent processing mode is desirable: the cloud can perform the computational tasks
independently, without being interrupted by users. This means that users and the
cloud can remain offline during the computation and only come online when the
user delegates their set or requests the intersection result.

Jingwei Hu, Zhiqi Liu and Cong Zuo 3

An important feature of D-PSI is its flexibility. If B learns the final intersection result,
other computing parties {Ai} can also be informed of the result through an encrypted
channel. This allows full control over who can access the intersection result, making D-PSI
much more flexible and desirable than the standard multi-party private set intersection,
which requires all parties to know the intersection.

A natural question that arises here is: what are the best achievable computation and
communication complexities for a D-PSI protocol? We analyze the performance of an
ideal "perfect" D-PSI protocol under the assumption that the cloud C is fully trustworthy.
This means that all users can directly delegate their sets to the cloud, and the cloud C
neither leaks any intermediate results observed during the PSI computation nor the final
intersection result. The protocol proceeds as follows:

1. The delegating users {Ai} upload their respective sets to the cloud C through an
encrypted channel.

2. The querying user B also uploads their set to C through an encrypted channel.

3. The cloud C computes the intersection (∩Ai) ∩B locally and privately.

4. The cloud C returns the intersection (∩Ai) ∩B to the querying user B through an
encrypted channel.

Assume there are N delegating users, each with a set size of k. If no advanced data
compression techniques are applied to reduce the size of each user’s set, the communication
complexity is clearly:

Ω(Nk).

The computational complexity requires a more detailed analysis. A hash table can be
used to represent a set, where the hash table has h = Ω(k) rows, and each row contains
at most Ω(log k) set elements. The total number of elements in the hash table is k. To
compute the intersection, for example A1 ∩A2, it suffices to compare the set elements in
the hash tables HTA1 and HTA2 row by row according to their row correspondence. This
results in an intersection hash table HTA1∩A2 , which also has h rows.

Using this technique, the computational complexity of the D-PSI protocol is:

Ω(Nk).

Our Contributions We summarize the contributions of this paper as follows:

1. We propose a new construction for delegated PSI that extends beyond two-party
scenarios to support multi-party settings. Our construction adheres to the definition
of delegated PSI, emphasizing the "silent" processing feature and minimal user-to-
user communication.

2. We rigorously prove the security of the new construction against semi-honest ad-
versaries in the standard security model, without relying on any random oracle
assumption.

3. Our baseline implementation achieves Ω(Nk2) computational complexity and op-
timal Ω(Nk) communication complexity. Furthermore, our computation-optimized
implementation achieves Ω(Nk(log k)2) computational complexity and Ω((N+log k)k log k)
communication complexity. The optimized implementation remains sub-optimal in
terms of both computational and communication overhead compared to the ideal
"perfect" delegated PSI.

4 Delegated Multi-party Private Set Intersection from Secret Sharing

2 Related works
The research line of priviate set intersection is extensive and thus we limit our review to the
most relevant works related to delegated multi-party private set intersection. Delegated
PSI protocols leverage cloud computing for both computation and storage, and they can
be categorized into two types: protocols supporting one-off delegation and those enabling
repeated delegation for PSI computation.

The one-off delegation protocols, such as those in [Ker12, KMRS14], require clients to
locally re-encode their data for each intersection computation and do not allow the reuse
of outsourced encrypted data. However, this protocol is designed and implemented solely
for a two-party setting.

In contrast, repeated PSI delegation protocols allow clients to outsource their en-
crypted data to the cloud once and, with the data owner’s consent, perform multiple
PSI computations without requiring clients to retain a local copy of their data or re-
encode it for each computation. Among repeated PSI delegation protocols, [LNZ+14]
employs hash functions and symmetric key encryption, while [QLS+15] utilizes pub-
lic key encryption and hash functions. The protocol in [ZX15] incorporates verifica-
tion capabilities using cryptographic accumulators and proxy re-encryption. However,
these protocols ([LNZ+14, QLS+15, ZX15]) are not fully secure and are vulnerable to
various attacks, as highlighted in [ATD15, ATMD17]. In contrast, the protocols in
[ATD15, ATD17, ATMD17] provide robust security. Protocols in [ATD15, ATD17] use
public key encryption and represent the entire dataset as a blinded polynomial that is out-
sourced to the cloud. Among them, the protocol in [ATMD17] is more efficient, leveraging
a hash table to enhance PSI computation performance.

It is important to note that all these secure protocols ([ATD15, ATD17, ATMD17])
are designed and implemented for two-party settings and only support static datasets. A
more recent study [ATD20] proposes a new solution to overcome this barrier to support
multi-party and dataset updates.

Now let us focus on the recent study [ATD20]. This study explores advanced data
structures such as hash tables, bloom filters, and point-evaluation formats to improve the
concrete efficiency of the protocol. However, these enhancements make it challenging to
provide an overview of their algorithms and, for our purposes, to identify the security
flaws in their protocol design.

To address this challenge, we rewrite their protocol in a more concise form, omitting
the advanced data structures and the complex set update operations. The core intuition
of their algorithm involves setting up a cloud entity C that accepts one secret share of
the delegating user’s (denoted as A) private set. Due to the security of the secret sharing
scheme, the cloud C learns nothing about the delegating user’s private set. The crux of
computing the intersection between the delegating user A and the querying user B lies in
calculating a special encoding, which we refer to as "Randomized Intersection Encoding
(RIE)," within the secret sharing format.

2.1 Randomized Intersection Encoding (RIE)
Before delving into the description of the PSI protocol proposed in [ATD20], we provide
a brief introduction to the RIE technique. This serves as a foundation for explaining the
insecurity we identified in [ATD20], while a formal discussion of RIE is deferred to the
Preliminaries section.

A set A = {ai}i can be equivalently represented as a polynomial:

f (A)(x) =
∏

i

(x− ai),

which means the elements of the set ai are encoded as the roots of the polynomial f (A)(x).

Jingwei Hu, Zhiqi Liu and Cong Zuo 5

Moreover, the intersection of two sets A and B can be expressed as the sum of their
corresponding polynomials:

f (A∩B)(x) def= f (A)(x) + f (B)(x) =
∏

i

(x− ai) +
∏

i

(x− bi).

Clearly, the roots of f (A∩B)(x) represent the intersection A∩B. Either party can determine
the intersection A ∩B through a zero-point test.

However, in private set intersection problems, the polynomial f (A∩B)(x) not only re-
veals the intersection but can also be used to infer f (A)(x) or f (B)(x), compromising
privacy. Therefore, it is essential to construct a polynomial that satisfies two require-
ments:

• Its roots represent the intersection A ∩B.

• It is a randomized polynomial that does not provide additional information to
reverse-engineer f (A)(x) or f (B)(x).

A novel method was proposed in [KS05] for the first time to fulfil the two requirements
mentioned above, referred to as "Random Intersection Encoding (RIE)":

RIEω(A)(x), ω(B)(x)(f (A)(x), f (B)(x)) def= ω(A)(x) · f (A)(x) + ω(B)(x) · f (B)(x).

Privacy Guarantee The RIE encoding process ensures that f (A)(x) and f (B)(x) are not
disclosed given that the random polynomials ω(A)(x), ω(B)(x) are kept secret. Notably,
the RIE encoding output is a "randomized" polynomial that only contains information
about the intersection.

Linearity of RIE Encoding RIE encoding is linear. Specifically, for any polynomials
f (A)(x), g(A)(x) and f (B)(x), g(B)(x), we have:

RIEω(A)(x), ω(B)(x)(f (A)(x), f (B)(x)) + RIEω(A)(x), ω(B)(x)(g(A)(x), g(B)(x))

= RIEω(A)(x), ω(B)(x)(f (A)(x) + g(B)(x), f (A)(x) + g(B)(x)).

This property ensures that the encoding process preserves the algebraic structure of the
input polynomials.

2.2 Case study
Now, let us return to the framework proposed in [ATD20]. For simplicity of notation, we
represent a polynomial p(x) directly as p, omitting "(x)". Assume that the we have only
one delegated user A, and one querying user B. The delegated user A secret-shares their
set polynomial as ([p(A)]0, [p(A)]1), such that p(A) = [p(A)]0 + [p(A)]1, and the querying
user B also secret-shares their set polynomial as ([p(B)]0, [p(B)]1). User A delegates one
share [p(A)]0 to the cloud while keeping [p(A)]1 secret. Similarly, user B delegates [p(B)]0
to the cloud while retaining [p(B)]1 privately.

The PSI protocol proceeds as follows:

1. User B splits their private share [p(B)]1 into two parts (o, z), such that [p(B)]1 = o+z.

2. User B sends o to the cloud and z to user A.

3. User A generates two random polynomials ω(A) and ω(B), and computes an RIE
encoding:

q ← RIEω(A), ω(B)([p(A)]1, z).

6 Delegated Multi-party Private Set Intersection from Secret Sharing

4. User A secret-shares q as [q]0, [q]1.

5. User A sends [q]0, ω(A) and ω(B) to the cloud.

6. The cloud C computes another RIE encoding and masks it with [q]0:

t← RIEω(A), ω(B)([p(A)]0, [p(B)]0 + o) + [q]0.

7. User A and the cloud C send [q]1 and t, respectively, to user B.

8. For each bi ∈ B:

(a) User B adds bi to the intersection A∩B if bi is a root of the polynomial [q]1 + t.

Correctness Proof We prove here that at the end of the protocol, the querying user B
indeed learns the intersection.

Proof. In the final step (Step 7), the querying user B recovers the polynomial:

[q]1 + t = RIE([p(A)]0 + [p(A)]1, [p(B)]0 + o + z) = RIE(p(A), p(B)),

due to the linearity of RIE. Therefore, the roots of this polynomial correspond to the
intersection A ∩B, proving the correctness of the protocol.

Security Analysis We identify several security weaknesses in the protocol.
First, the distribution of the shares in Step 2 is insecure. Anyone eavesdropping on the

public channel can intercept both o and z, thereby recovering the sensitive [p(A)], which
should remain private to user B only.

Second, in Step 5, the sensitive random polynomials ω(A) and ω(B) are transmitted
over the public channel. User B can intercept them, violating the security requirement
that ω(A) and ω(B) must remain secret. If user B obtains these random polynomials,
the RIE encoding RIE(p(A), p(B)) could reveal more information than the set intersection,
thereby breaking the security assumption.

Third, transmitting the share [q]0 to the cloud in Step 5 and subsequently transmitting
the other share [q]1 to B in Step 7 is jointly insecure. User B can combine [q]0 and [q]1
to derive q. Moreover, B also receives another RIE encoding t in Step 7, which uses the
same randomness ω(A) and ω(B). Since the derived RIE encoding q also uses the identical
randomness, this violates the security requirements of RIE.

Fortunately, these weaknesses can be mitigated by transmitting these values through
encrypted channels. The computing parties can initiate a key encapsulation mechanism or
a key exchange protocol to securely establish a shared symmetric key. Subsequently, this
key can be used to encrypt the transmitted values, ensuring that only encrypted values
are sent through the public and insecure channel.

Performance To analyze the protocols computational and communication complexity,
we assume that the size of each partys set is k, i.e., |Ai| = k, and there are N delegated
parties {A1, · · · , AN} and 1 querying parties.

It is easy to identify every delegated party needs to perform one RIE encoding shown
in step 3, which is dominated by two polynomial multiplications. Therefore, the total
computational cost is Ω(Nk2).

As for the communication overhead, the bottleneck occurs in step 5 and step 7 where
two shares [q]0, [q]1 of the RIE encoding are sent to the user B and thus the communication
complexity is Ω(Nk).

Finally, we highlight a critical practical concern regarding deploying this PSI protocol
in real-world applications. In Step 2, user B needs to broadcast their shares to every

Jingwei Hu, Zhiqi Liu and Cong Zuo 7

delegated user A. This effectively means that user B is delegating their data to each
delegated user, with the delegated users themselves acting as cloud endpoints. However,
this approach may not be practical as the number of delegated users increases, because the
communication channels established between individual users are often less stable than
the end-to-end communication between users and a centralized cloud.

Moreover, it appears infeasible to revise the protocol to eliminate the large amount
of frequent end-to-end communication between users while maintaining the protocol’s
security. To address this issue, we present a different but efficient solution that resolves this
problem without increasing the asymptotic computational and communication complexity.

3 Preliminaries
3.1 Random Intersection Encoding
This section introduces an essential (secure) tool for computing set intersections—Random
Intersection Encoding (RIE). Assume the presence of a trusted third party denoted as C.
Then, N computing parties {A1, . . . , AN} can compute the intersection using the following
RIE algorithm:

Input: a trusted third party denoted as C and N computing parties
{A1, . . . , AN}

Output: the intersection among the N computing parties {A1, . . . , AN}
1 Each party Ai re-encodes its set elements a ∈ Ai by appending a hash value

calculated using a hash function, denoted as

a← a||h(a)

2 Each party Ai encodes its private set into a polynomial

pi =
∏

a∈Ai

(x− a)

3 Ai and C agree on a key, and Ai securely transmits pi to C using this key
4 C generates N random polynomials ω1, . . . , ωN and computes the polynomial

r ←
∑

i

ωipi

5 C sends r to each Ai through an encrypted channel
6 Ai determines the intersection ∩Ai by checking whether its set elements are roots

of the polynomial r

Algorithm 1: Randomized Intersection Encoding (RIE) protocol

We argue the correctness of Algorithm 1 by proving that the algorithm indeed returns
the intersection ∩iAi.

Proof. Let g = gcd(p1, . . . , pN), then r =
(∑

i ωi
pi

g

)
g. The roots of r have two sources:

• Roots from the intersection polynomial g.

8 Delegated Multi-party Private Set Intersection from Secret Sharing

• Roots from the random polynomial
∑

i ωi
pi

g .

The formats of these roots are easily distinguishable:

• Roots of the random polynomial are highly unlikely (with negligible probability) to
have the form a||h(a).

• Roots of the intersection polynomial g have the form a||h(a), which constitute the
intersection ∩Ai.

Thus, the algorithm is correct.

3.1.1 Security Proof

To prove the algorithm’s security, we show that Ai learns nothing beyond the intersection
information. Equivalently, this requires proving that the output r of RIE does not reveal
information beyond ∩Ai.

Randomization Lemma Let p1, p2 ∈ Z≤α
q [x] be coprime polynomials, and ω1, ω2 ∼

Z≤β
q [x], where α ≤ β. Then,

∑2
i=1 piωi is a random polynomial over Z≤α+β

q .

Proof. Consider solutions (ω1, ω2) to the equation
∑2

i=1 piωi = r ∈ Z≤α+β
q [x]. Assume

there is a particular solution (ω∗
1 , ω∗

2). Then, the general solution can be expressed as:

ω1 = ω∗
1 − k · p2, ω2 = ω∗

2 + k · p1, k ∈ Z≤β−α
q [x].

The number of solutions equals the number of k, which is qβ−α+1. As there are q2β+2

possible combinations of (ω1, ω2), we conclude that r can take any value in Z≤α+β
q [x],

completing the proof.

Security Proof From the randomization lemma, if ωi ∼ Z≤β
q [x] and pi

g ∼ Z≤α
q [x], then∑N

i=1 ωi
pi

g is a random polynomial over Z≤α+β
q [x].

Finally, since
∑N

i=1 ωipi ∼ Z≤α+β
q [x], it follows that (

∑N
i=1 ωipi) and r are indistin-

guishable. Thus, the algorithm is secure.

3.2 Delegated Private Set Intersection
Let the query user B = AN+1, and adjust the RIE algorithm step 5 as "only send r to
AN+1". In this case, delegated private set intersection can be directly reduced to Random
Intersection Encoding (RIE). The only remaining issue is that RIE assumes that C is
a trusted third party that knows the private set polynomial pi of each Ai. To remove
the trusted third-party assumption, a direct idea is to use homomorphic encryption to
construct a strengthened version of RIE, which is the solution proposed. Here, we rewrite
its simplified version in Algorithm 2.

3.2.1 Brief Security Analysis

Through homomorphic encryption, Ai can securely delegate its private set to C in step 4.
Additionally, C computes r in step 5 without learning pi. Thus, the privacy of each Ai’s
private set is preserved during the computation.

Jingwei Hu, Zhiqi Liu and Cong Zuo 9

Input: an untrusted cloud denoted as C, N delegating parties {A1, . . . , AN} and
one enquiring party AN+1

Output: the enquiring user AN+1 acquires the intersection among the N + 1
computing parties {A1, . . . , AN}

1 Each party Ai re-encodes its set elements a ∈ Ai by applying a hash function to
compute the hash value and appending it to the element. Denote the result as
a← a||h(a);

2 Each party Ai encodes its private set as a polynomial:

pi =
∏

a∈Ai

(x− a).

3 Ai and C agree on the keys of a threshold homomorphic encryption scheme. Each
Ai holds its private key ski, and C holds the public key pk

4 Ai encrypts its set polynomial as Encpk(pi) and sends it to C
5 C generates N random polynomials ω1, . . . , ωN and computes the encrypted

result polynomial homomorphically:

Enc(r)←
∑

i

ωi · Encpk(pi).

6 C sends Encpk(r) to Ai

7 All Ai collaboratively decrypt Encpk(r) and ensure that only AN+1 obtains the
final decryption result r

8 AN+1 determines the intersection
⋂

Ai by checking whether its set elements are
roots of the polynomial r

Algorithm 2: Delegated Multi-party Private Set Intersection Protocol from Ho-
momorphic Encryptions

3.3 Multiplication Triples
In (linear) secret sharing schemes, securely performing multiplication is complex. The
problem is formally described as follows:

A trusted third party (Trusted Dealer) secret-shares x ∈ Fp and y ∈ Fp as:

[x] = (x1, x2), [y] = (y1, y2).

The trusted third party securely sends the shares to computing parties P1 and P2 via
secure channels:

P1 ← (x1, y1), P2 ← (x2, y2).

The goal is for P1 and P2 to compute a secret share of xy without revealing x and y.

3.3.1 Beaver’s Triples

A common approach is to use Beaver’s triples, i.e., pre-generated random values (a, b, c)
such that c = a× b. The specific steps are as follows:

Preprocessing Phase

1. The trusted third party generates a random Beaver triple (a, b, c) and creates its
secret shares ([a], [b], [c]).

10 Delegated Multi-party Private Set Intersection from Secret Sharing

2. The trusted third party securely sends:

P1 ← (a1, b1, c1), P2 ← (a2, b2, c2).

Online Computation Phase

1. P1 computes:
[x− a]1 ← x1 − a1, [y − b]1 ← y1 − b1.

2. P2 computes:
[x− a]2 ← x2 − a2, [y − b]2 ← y2 − b2.

3. P1 and P2 collaboratively reconstruct:

e = x− a, d = y − b.

4. P1 computes its share of xy:

[xy]1 ← c1 + e · b1 + d · a1.

5. P2 computes its share of xy:

[xy]2 ← c2 + e · b2 + d · a2 + e · d.

3.3.2 Correctness of the Algorithm

The correctness of the algorithm is demonstrated as follows:

[xy]1 + [xy]2 = c + eb + da + ed = ab + (x− a)b + (y − b)a + (x− a)(y − b) = xy.

3.3.3 Security of the Algorithm

• Preprocessing Phase: Since a trusted third party is involved, the secret shares
received by P1 and P2 are uniformly distributed and indistinguishable from random
values.

• Online Computation Phase: Both P1 and P2 receive e and d. As a and b are
unknown random values, e and d appear as uniformly distributed random variables
to P1 and P2.

• P1’s share [xy]1 includes the random value c1, making it completely random from
P2’s perspective. Similarly, P2’s share [xy]2 appears random to P1.

Thus, the algorithm preserves the secrecy of the inputs while securely computing the
secret-shared product.

4 Delegated PSI Framework
This section presents a new framework for delegated PSI on the basis of Random Inter-
section Encoding (RIE) and secret sharing. For a polynomial

p =
n∑

i=0
p[i] · xi ∈ Z≤n

q [x],

Jingwei Hu, Zhiqi Liu and Cong Zuo 11

a simple (2, 2) secret sharing scheme is used, where:

[p] = ([p]1, [p]2) such that p = [p]1 + [p]2.

Secret sharing is linear, so addition in the shares (denoted as algorithm A_add) is
straightforward:

[p + q] = ([p]1 + [q]1, [p]2 + [q]2).

The main challenge is performing multiplication in the shares, which requires designing
an algorithm A_mul such that:

P1 holds [p]1, [q]1, P2 holds [p]2, [q]2, and computes [p · q]1, [p · q]2.

4.1 Polynomial multiplication in the shares
To address this, Beaver’s Triples are introduced for securely multiplying shares over Zq.
For any a ∈ Zq, b ∈ Zq, Beaver’s Triples are defined as:

[a · b]1, [a · b]2 ← A_Beaver([a], [b]).

Polynomial multiplication p · q can be rewritten as:

p · q =
2n∑

i=0

i∑
j=0

(p[j] · q[i− j])xi.

Using this property, the algorithm A_mul is constructed as follows:

1. Pi receives its shares, including:

([p[0]]i, . . . , [p[n]]i), ([q[0]]i, . . . , [q[n]]i).

2. Pi invokes A_Beaver to compute:

[p[j] · q[k − j]]i for all 0 ≤ k ≤ 2n, 0 ≤ j ≤ k.

3. Pi calculates the sums:

[p · q[k]]i ←
k∑

j=0
[p[j] · q[k − j]]i for all k.

4.2 Distributive Generation of Beaver’s Triples
It is important to note that the method shown in the aforementioned section for gen-
erating multiplication triples assumes the existence of a trusted third party during the
preprocessing phase. However, in real-world scenarios, such an idealized trusted third
party often does not exist. Therefore, a critical requirement is to design a solution that
allows computing parties to efficiently generate multiplication triples even in a setting
where they do not trust each other. To address this challenge, we propose a construction
of Beaver’s triples generation protocol between the user Ai and the cloud server C under
the semi-honest security model using Fully Homomorphic Encryption (FHE). The detailed
algorithm for genereating the random tiples ([a], [b], [ab]) is described as follows:

1. The party Ai generates a private key:

sk ← FHE .KeyGen().

12 Delegated Multi-party Private Set Intersection from Secret Sharing

2. Ai randomly generates secret shares a1, b1 sampled from Fq:

a1, b1
$← Fq.

3. C randomly generates secret shares a2, b2 sampled from Fq:

a2, b2
$← Fq.

4. Ai encrypts his secret shares:

Encsk(a1)← FHE .Encrypt(sk, a1), Encsk(b1)← FHE .Encrypt(sk, b1),

and sends these encrypted values to C.

5. Party C performs homomorphic additions to compute:

Encsk(a)← a1 + Encsk(a2), Encsk(b)← b1 + Encsk(b2).

6. Party C performs a homomorphic multiplication to compute the encrypted product:

Encsk(ab)← Encsk(a) · Encsk(b).

7. Party C randomly generates a secret share:

c2
$← Fq.

8. Party C computes another secret share of the product:

Encsk(c1)← Encsk(ab)− c2.

and sends the computed value to Ai.

9. Party Ai decrypt Encsk(c1):

c1 ← FHE .Decrypt(sk, Encsk(c1)).

Remarks The user Ai first generates a private key, then encrypts his secret shares a1 and
b1, and sends the encrypted values to C. Party C computes the homomorphic addition
and multiplcation to obtain the encrypted ab. Subsequently, the two parties sequentially
retrieve the secret shares of ab, i.e., [ab] = (c1, c2) ensuring both privacy and correctness.

4.3 Key Exchange
To ensure the functionality of our PSI framework, all computing parties, including A1, . . . , AN+1,
must share a common secret key s∗ without the cloud server knowing the key. To adhere
to the definition of delegated PSI, all communication must go through the cloud, avoiding
direct communication between users. We propose the following simple yet efficient key
exchange protocol based on any semantically secure public key encryption scheme PKE :

1. Each Ai invokes the key generation algorithm to generate its key pair:

ski, pki ← PKE .KeyGen().

2. Each Ai broadcasts its public key pki via the cloud to all other parties Aj , j ̸= i.

3. One randomly selected party among {Ai}i generates a common symmetric secret
key s∗ and encrypts it for each Aj , j ̸= i:

cj ← PKE .Encrypt(pkj , s∗),

and broadcasts cj via the cloud to Aj .

4. Each Aj decrypts cj using its private key skj to obtain the common symmetric
secret key s∗.

Jingwei Hu, Zhiqi Liu and Cong Zuo 13

4.4 New Framework

With the capability to perform addition and multiplication on secret shares, we present a
complete delegated multi-party PSI framework in Algorithm 3. We assume that the com-
mon secret key s∗ and the Beaver’s triples have been pre-generated prior to the initiation
of the PSI protocol.

Input: An untrusted cloud server C, N delegating parties {A1, . . . , AN}, and one
querying party AN+1.

Output: The querying party AN+1 obtains the intersection among the N + 1
computing parties {A1, . . . , AN+1}.

1 Each Ai re-encodes its set elements a ∈ Ai by appending a hash value:

a← a||h(a).

2 Each Ai encodes its private set into a polynomial:

pi =
∏

a∈Ai

(x− a).

3 Each Ai create secret shares of its polynomial [pi] such that [pi] = ([pi]0, [pi]1),
4 retaining [pi]1 and sending [pi]0 to the cloud server C.
5 Each Ai generate a random polynomial ωi and create its shares:

[ωi] = ([ωi]0, [ωi]1), ∀i. Retain [ωi]1 and send [ωi]0 to the cloud C.
6 The cloud C computes: [

N∑
i=1

ωipi

]
0

=
∑

i

[ωi]0 · [pi]0,

using algorithms A_add and A_mul multiple times.
7 Each Ai computes:

[ωipi]1 = [ωi]1 · [pi]1,

using A_mul.
8 The cloud C sends

[∑N
i=1 ωipi

]
0

to AN+1 through an encrypted channel.
9 Each Ai sends the encrypted [ωipi]1 (using a common secret key s∗) to C, which

then forwards it to AN+1.
10 Party AN+1 decrypts the received [ωipi]1 for all i and, together with[∑N

i=1 ωipi

]
0
, reconstructs:

r =
∑

i

ωipi,

and determines the intersection:
∩Ai.

Algorithm 3: Delegated Multi-party Private Set Intersection Protocol Using Se-
cret Sharing

14 Delegated Multi-party Private Set Intersection from Secret Sharing

Remarks The correctness of the algroithm can be proved using the analogous argument
we used to prove Algorithm 2. We focus here to argue that the proposed framework is
secure against semi-honest adversaries.

Proof. The security of the protocol is proved using the simulation paradigm. The ideal
model is described as follows:

1. Each computing party Ai holds a private set Ai and constructs the corresponding
set polynomial pi.

2. The cloud server C holds private random polynomials ωi for all i.

3. Through some "supernatural" operation (oracle machine access), AN+1 directly ob-
tains:

r =
∑

i

ωipi,

and computes the intersection:
∩iAi.

To show security, simulators Si, Sc, and SN+1 are constructed to mimic the views of
Ai, C, and AN+1, respectively, in the real world.

Simulator Si simulates Ai’s perspective in the real-world protocol (Algorithm 3):

1. Generate random polynomials:

ri ← Z≤k
q [x] for all i,

to simulate Step 3 in the real model.

2. Generate random polynomials:

si ← Z≤k
q [x] for all i,

to simulate Step 5 in the real model.

3. Generate two additional random polynomials to simulate Steps 8 and 9 in the real
model.

Simulator Sc simulates C’s perspective in the real-world protocol:

1. Generate random polynomials:

ri ← Z≤k
q [x] for all i,

to simulate Step 3 from C’s perspective in the real model.

2. Generate a random polynomial:

s← Z≤k
q [x],

to simulate Step 9 from C’s perspective in the real model.

Simulator SN+1 simulates AN+1’s perspective in the real-world protocol:

1. Generate random polynomials:

ri ← Z≤k
q [x] for all i,

to simulate Step 3 from AN+1’s perspective.

Jingwei Hu, Zhiqi Liu and Cong Zuo 15

2. Generate random polynomials:

si ← Z≤k
q [x] for all i,

to simulate Step 5 from AN+1’s perspective.

3. Extract the real-world value of: r =
∑

i ωipi, and construct secret shares: [r]0, . . . , [r]N .

4. Encrypt [r]0 to simulate Step 8 as Enc([r]0).

5. Encrypt [r]1, . . . , [r]N to simulate Step 9 as Enc([r]1), . . . , Enc([r]N).

The views generated by simulators Si, Sc, and SN+1 are indistinguishable from the
real-world protocol executions. This is because the random polynomials ri and si do not
reveal any private information about the sets Ai or the polynomials pi, and the encryption
ensures that the cloud server C and other parties cannot access unauthorized information.
Thus, the protocol securely emulates the ideal model.

4.5 Performance
To analyze the protocol’s computational and communication complexity, we assume that
the size of each party’s set is k, i.e., |Ai| = k.

Computational Complexity The computational bottleneck of the protocol occurs in Step
6, which involves multiple invocations of A_mul. Specifically, Step 6 performs Ω(N) poly-
nomial multiplications in the share state. Each polynomial multiplication requires Ω(k2)
A_mul invocations, and each A_mul invocation completes in constant time. Consequently,
the total computational complexity of the protocol is:

Ω(Nk2).

Communication Complexity The polynomial pi representing the set Ai has a length of
k log q bits. The communication bottleneck arises in Steps 3 and 4, where Ω(N) polyno-
mials are transmitted in total. Thus, the total communication complexity is:

Ω(Nk log q).

4.6 Optimization Strategies
We propose the following techniques to reduce the computational complexity of the pro-
tocol.

1. Binning Technique Use a hash table with approximately h ≈ k rows. According
to the hash-to-bins principle, each row of the hash table contains Ω(log k) set elements.
Each row is encoded into a polynomial, with a degree of Ω(log k). With this technique,
the computational complexity in Step 6 is reduced to:

Ω(Nk(log k)2).

2. Lagrange Interpolation A polynomial p(x) can be uniquely represented using its
interpolated form, given k distinct interpolation points (xi, p(xi)) for i ∈ {1, . . . , k}. Using
Lagrange interpolation, p(x) can be reconstructed in Ω(k2) time.

Addition and multiplication of polynomials in the interpolated form become element-
wise operations:

p(x) + q(x)⇔ (xi, p(xi) + q(xi)) for i ∈ {1, . . . , k},

16 Delegated Multi-party Private Set Intersection from Secret Sharing

p(x) · q(x)⇔ (xi, p(xi) · q(xi)) for i ∈ {1, . . . , 2k}.

Note that the complexity of the multiplication operation is reduced to Ω(k). By combining
this with the binning technique, the overall protocol complexity is further reduced to:

Ω(Nk log k + k(log k)2).

5 Set Update
Before describing the set update strategies, we introduce another set representation method:
the hash table (HT) on top of the set polynomial repreentation.

The hash table of a set S is a two-dimensional linked list (or equivalently, a matrix)
denoted as HT[·], which satisfies:

∀s ∈ S ⇔ HT[H(s)] = s,

where H(·) : {0, 1}∗ → {0, 1}Ψ is a hash function. The algorithmic process (denoted as
Aht) for constructing a hash table for a set S procceds as follows:

1. For every s ∈ S:

(a) Compute the address H(s).
(b) Access the corresponding position H(s) in the hash table, HT[H(s)].
(c) Insert the element s into HT[H(s)].

2. return the hash table HT

Each position j ∈ {0, 1, . . . , 2Ψ − 1} in the hash table may contain multiple elements
from the set S. Thus, HT[j] itself forms a small subset comprising elements that share
the same hash address. In the literature, these subsets HT[j] are commonly referred to
as "bins."

According to the balls-into-bins principle, when the row number of the hash table
(denoted as h

def= 2Ψ) is asympotically as large as set size |S|, such that h = Ω(|S|), each
bin will contain at most Ω(log |S|) elements with high probability. For security reason,
the number of elements in each row should be identical to prevent inforamtion leakage
on the dataset distribution. This can be achived by inserting ’dummy’ items (dentoed as
sdummy) to make the length of each row identical. In other terms, the size of the hash
table should be Ω(|S| log |S|).

5.1 A Simple Update Algorithm Without Information Leakage
We present a method for a delegated user to securely delegate their set without compro-
mising privacy, denoted as Asimple_delegate:

1. The delegated user A invokes Aht to create a private hash table associated with
their set:

HTA ← Aht(A).

2. The delegated user replaces each row of HTA with a corresponding set polynomial,
i.e., a polynomial with all elements in that row of HTA as its roots.

3. The delegated user A randomly selects a seed r and uses a pseudo-random number
generator (PRG) to produce a sequence of random values matching the length of
HTA, treating this sequence as one secret share of the hash table:

[HTA]1 ← PRG(r).

Jingwei Hu, Zhiqi Liu and Cong Zuo 17

4. The delegated user computes the other secret share as:

[HTA]0 ← HTA − [HTA]1.

5. The delegated user retains r and uploads [HTA]0 to the cloud C through an en-
crypted channel.

Remark The security of this delegation process is straightforward, based on the security
of the pseudo-random number generator and the additive secret sharing scheme. The
share [HTA]1 retained by user A is essentially a random sequence. Therefore, it suffices
to store only the random seed r and discard [HTA]1 generated in Step 3. This approach
significantly reduces the delegated user’s local storage requirements while fully delegating
their set to the cloud.

Next, we describe how a delegated user can securely update their set, denoted as
Asimple_update:

1. The delegated user A reconstructs their private share using the random seed r:

[HTA]1 ← PRG(r).

2. A requests the other secret share [HTA]0 from the cloud through an encrypted
channel and reconstructs the hash table:

HTA ← [HTA]0 + [HTA]1.

3. If A wants to add an item s to their set:

(a) Compute the address H(s).

(b) Update the set polynomial in the corresponding bin:

HTA[H(s)]← HTA[H(s)] · x− s

x− sdummy
.

4. If A wants to delete an item s from their set:

(a) Compute the address H(s).

(b) Update the set polynomial in the corresponding bin:

HTA[H(s)]← HTA[H(s)] · x− sdummy

x− s
.

5. Randomly select a new seed r′ and compute one share:

[HTA]1 ← PRG(r′).

6. Compute the other share:

[HTA]0 ← HTA − [HTA]1.

7. Retain r′ and upload [HTA]0 to the cloud C through an encrypted channel.

18 Delegated Multi-party Private Set Intersection from Secret Sharing

Remark The security of the update operation is straightforward, as all sensitive opera-
tions are performed locally by A. By secret-sharing the updated hash table, A ensures
the cloud learns nothing about what or where updates occurred.

The computational complexity of the update process is minimal compared to the multi-
party intersection protocol in Algorithm 3, as the primary bottleneck is the randomness
generation in Step 1 and Step 5, which is very efficient. The communication complexity
involves downloading and uploading shares, amounting to k log k, where k denotes the size
of the delegated user’s set. For moderately sized datasets, this communication overhead
is entirely practical.

5.2 A more efficient update algorithm with access pattern leakage
We describe another approach inspired by a novel updating mechanism proposed in
[ATD20] to achieve a more efficient updating algorithm, assuming that a certain level
of information leakage is acceptable. Suppose the user wishes to update only a small num-
ber of items, such as adding a single item to the hash table. Without privacy guarantees,
a natural approach is to compute the address (row number of the hash table) associated
with the item, extract the specific row from the cloud, and insert the item into the hash
table. This approach achieves constant-time updates and constant communication over-
head, independent of the user’s dataset size. However, the privacy issue arises because the
cloud learns which row of the hash table is accessed (i.e., learns H(s)), thereby leaking
critical side information about the element s.

To address this information leakage, the user can perform a random permutation on
their secret hash table before uploading it to the cloud. Consequently, the cloud cannot
infer the sensitive H(s) by observing the user’s access pattern. However, the cloud may
still deduce hash collisions (e.g., h(s1) = h(s2)) when the user accesses the same row
multiple times during updates.

We formalize the delegating process as Aefficient_delegate as follows:

1. User A repeats Steps 1–4 in Asimple_delegate to generate:

{ri}i=1,··· ,h, [HTA]0, [HTA]1,

where each row of the hash table HTA is masked with a unique randomness seed ri.

2. User A obfuscates the mapping between the row indices of the hash table and the
rows of the vector by applying a random permutation:

ˆ[HTA]0 = πA([HTA]0),

where πA is a random permutation applied to the rows of HTA.

3. User A uploads ˆ[HTA]0 to the cloud C, while retaining the randomness {ri} and the
permutation πA.

The updating process Aefficient_update proceeds as follows:

1. User A initializes h counters {cnti} to zero, indicating the number of times the i-th
row of the hash table HTA has been accessed.

2. User A computes the row number for the targeted item s as H(s).

3. User A computes the scrambled row number πA(H(s)) and downloads [ĤT(πA(H(s)))]0
from the cloud.

4. User A reconstructs the polynomial HT(H(s)).

Jingwei Hu, Zhiqi Liu and Cong Zuo 19

5. User A updates (either adds or deletes) the polynomial HT(H(s)) using the tech-
niques described in Steps 3 and 4 of Asimple_delegate.

6. User A increments the counter cntH(s) as:

cntH(s) ← cntH(s) + 1,

indicating that the H(s)-th row of HTA has been accessed.

7. User A re-shares the polynomial HT(H(s)) as [HT(H(s))]0, [HT(H(s))]1 with newly
generated randomness:

r′ ← PRG(rH(s)||cntH(s)).

8. User A uploads [HT(H(s))]0 to [ĤT(πA(H(s)))]0 in the cloud and retains {ri}i and
{cnti}.

Remark Suppose q updates are performed for items s1, . . . , sq. The access pattern can
be quantified in a table Tpattern_access. During the q updates, if the cloud observes that
the i-th and j-th updates access the same k-th (1 ≤ k ≤ h) row, it records i, j in the k-th
row of Tpattern_access. The information leakage is fully captured in Tpattern_access, and we
assume this level of leakage is acceptable for most real-world applications.

It is evident that the user downloads/uploads only one row of the hash table share
ˆ[HTA]0 and updates this row locally. As a result, both computational and communication

overheads are reduced to Ω(log k).

6 Conclusion
In this work, we redefine the Delegated PSI problem, emphasizing the importance of
silent processing and minimal user-to-user communication as critical requirements for
real-world cloud computing scenarios. We propose an ideal construction for the Delegated
PSI protocol, demonstrating that the best achievable computational and communication
complexities are both Ω(Nk), where N is the number of users in the protocol and k is the
size of each user’s set.

We first present a baseline construction based on randomized intersection encoding
and additive secret sharing, augmented by Beaver’s multiplication trick. This baseline
construction achieves Ω(Nk2) computational overhead and optimal Ω(Nk) communica-
tion overhead. We then introduce a computationally optimized construction that reduces
the computational overhead to Ω̃(Nk), at the cost of increasing the communication com-
plexity to Ω̃(Nk). The optimization techniques employed include hash table representa-
tion of a set and evaluation point representation of a polynomial. However, we argue
that the optimized construction achieves near-optimal performance compared to the ideal
construction, ignoring logarithmic factors in the asymptotic complexity analysis.

Additionally, we explore the problem of performing Delegated PSI efficiently in dy-
namic settings, where users may frequently update their delegated sets stored on the
cloud.

We are currently implementing the protocols proposed in this work to provide experi-
mental evidence demonstrating that these protocols are not only asymptotically efficient
but also concretely practical. Upon completing our experiments, we will release the source
code and update this paper with the corresponding experimental results.

20 Delegated Multi-party Private Set Intersection from Secret Sharing

References
[ATD15] Aydin Abadi, Sotirios Terzis, and Changyu Dong. O-psi: delegated private

set intersection on outsourced datasets. In ICT Systems Security and Privacy
Protection: 30th IFIP TC 11 International Conference, SEC 2015, Hamburg,
Germany, May 26-28, 2015, Proceedings 30, pages 3–17. Springer, 2015.

[ATD17] Aydin Abadi, Sotirios Terzis, and Changyu Dong. Vd-psi: verifiable delegated
private set intersection on outsourced private datasets. In Financial Cryp-
tography and Data Security: 20th International Conference, FC 2016, Christ
Church, Barbados, February 22–26, 2016, Revised Selected Papers 20, pages
149–168. Springer, 2017.

[ATD20] Aydin Abadi, Sotirios Terzis, and Changyu Dong. Feather: Lightweight multi-
party updatable delegated private set intersection. Cryptology ePrint Archive,
2020.

[ATMD17] Aydin Abadi, Sotirios Terzis, Roberto Metere, and Changyu Dong. Efficient
delegated private set intersection on outsourced private datasets. IEEE Trans-
actions on Dependable and Secure Computing, 16(4):608–624, 2017.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Oblivious key-value stores and amplification for private set intersec-
tion. In Annual International Cryptology Conference, pages 395–425. Springer,
2021.

[HFH99] Bernardo A Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and
trust in electronic communities. In Proceedings of the 1st ACM conference on
Electronic commerce, pages 78–86, 1999.

[Ker12] Florian Kerschbaum. Outsourced private set intersection using homomorphic
encryption. In Proceedings of the 7th ACM Symposium on Information, Com-
puter and Communications Security, pages 85–86, 2012.

[KMRS14] Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed Sadeghian.
Scaling private set intersection to billion-element sets. In Financial Cryp-
tography and Data Security: 18th International Conference, FC 2014, Christ
Church, Barbados, March 3-7, 2014, Revised Selected Papers 18, pages 195–
215. Springer, 2014.

[KS05] Lea Kissner and Dawn Song. Privacy-preserving set operations. In Annual
International Cryptology Conference, pages 241–257. Springer, 2005.

[LNZ+14] Fang Liu, Wee Keong Ng, Wei Zhang, Shuguo Han, et al. Encrypted set
intersection protocol for outsourced datasets. In 2014 IEEE International
Conference on Cloud Engineering, pages 135–140. IEEE, 2014.

[Mea86] Catherine Meadows. A more efficient cryptographic matchmaking protocol
for use in the absence of a continuously available third party. In 1986 IEEE
Symposium on Security and Privacy, pages 134–134. IEEE, 1986.

[QLS+15] Shuo Qiu, Jiqiang Liu, Yanfeng Shi, Ming Li, and Wei Wang. Identity-based
private matching over outsourced encrypted datasets. IEEE Transactions on
cloud Computing, 6(3):747–759, 2015.

[RS21] Peter Rindal and Phillipp Schoppmann. Vole-psi: fast oprf and circuit-psi from
vector-ole. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 901–930. Springer, 2021.

Jingwei Hu, Zhiqi Liu and Cong Zuo 21

[ZX15] Qingji Zheng and Shouhuai Xu. Verifiable delegated set intersection operations
on outsourced encrypted data. In 2015 IEEE International Conference on
Cloud Engineering, pages 175–184. IEEE, 2015.

	Introduction
	Related works
	Randomized Intersection Encoding (RIE)
	Case study

	Preliminaries
	Random Intersection Encoding
	Delegated Private Set Intersection
	Multiplication Triples

	Delegated PSI Framework
	Polynomial multiplication in the shares
	Distributive Generation of Beaver's Triples
	Key Exchange
	New Framework
	Performance
	Optimization Strategies

	Set Update
	A Simple Update Algorithm Without Information Leakage
	A more efficient update algorithm with access pattern leakage

	Conclusion

