
Extending Groth16 for Disjunctive Statements

Xudong Zhu1,2, Xinxuan Zhang1,2, Xuyang Song3, Yi Deng1,2, Yuanju Wei1,2,
and Liuyu Yang1,2

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, CAS, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3 Anoma

zhuxudong@iie.ac.cn
zhangxinxuan@iie.ac.cn

xuyangsong1012@gmail.com
deng@iie.ac.cn

weiyuanju@iie.ac.cn
yangliuyu@iie.ac.cn

Abstract. Two most common ways to design non-interactive zero knowl-
edge (NIZK) proofs are based on Sigma (Σ)-protocols (an efficient way to
prove algebraic statements) and zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARK) protocols (an efficient way to prove
arithmetic statements). However, in the applications of cryptocurrencies
such as privacy-preserving credentials, privacy-preserving audits, and
blockchain-based voting systems, the zk-SNARKs for general statements
are usually implemented with encryption, commitment, or other alge-
braic cryptographic schemes. Moreover, zk-SNARKs for many different
arithmetic statements may also be required to be implemented together.
Clearly, a typical solution is to extend the zk-SNARK circuit to include
the code for algebraic part. However, complex cryptographic operations
in the algebraic algorithms will significantly increase the circuit size,
which leads to impractically large proving time and CRS size. Thus, we
need a flexible enough proof system for composite statements includ-
ing both algebraic and arithmetic statements. Unfortunately, while the
conjunction of zk-SNARKs is relatively natural and numerous effective
solutions are currently available (e.g. by utilizing the commit-and-prove
technique), the disjunction of zk-SNARKs is rarely discussed in detail.

In this paper, we mainly focus on the disjunctive statements of Groth16,
and we propose a Groth16 variant—CompGroth16, which provides a
framework for Groth16 to prove the disjunctive statements that consist
of a mix of algebraic and arithmetic components. Specifically, we could
directly combine CompGroth16 with Σ-protocol or even CompGroth16
with CompGroth16 just like the logical composition of Σ-protocols. From
this, we can gain many good properties, such as broader expression, bet-
ter prover’s efficiency and shorter CRS. In addition, for the combination
of CompGroth16 and Σ-protocol, we also present two representative ap-
plication scenarios to demonstrate the practicality of our construction.

Keywords: Zk-SNARK · Sigma protocol · Disjunctive statement ·
Logical composition.

2 Xudong Zhu, Xinxuan Zhang, Xuyang Song, et al.

1 Introduction

Zero-knowledge proof (ZKP) allows a prover to convince a verifier that a state-
ment is true without revealing any other information. The introduction of zero-
knowledge argument systems [40], particularly non-interactive zero-knowledge
(NIZK) systems [17], has greatly impacted cryptography research and applica-
tions. Over the last decade, significant advancements have been made in zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARKs). The
pairing-based zk-SNARK—Groth16 [43], stands out for its verification efficiency
and small proof size. This scheme is widely used in privacy-preserving appli-
cations such as verifiable database outsourcing [68], verifiable machine learning
[65], privacy-preserving cryptocurrencies [12, 15, 60, 18], electronic voting [69],
online auctions [33], and anonymous credentials [30].

Various zk-SNARK schemes have been developed to support general compu-
tations in NP. Despite their appeal, these general-purpose schemes can introduce
overhead. Fortunately, many cryptographic relations are effectively representable
as algebraic functions over groups. And there are specialized ZKPs for efficiently
proving these algebraic relations. However, the composite statements combining
algebraic and non-algebraic elements are common, such as proving a committed
value w satisfies both an arithmetic/boolean circuit. Below we briefly survey
ZKPs for different types of statements.
ZKPs for non-algebraic statements. zk-SNARKs are general-purpose, effi-
cient ZKPs used for proving non-algebraic statements due to their compactness
and efficient verification. Recent advancements have included works [3, 11, 14,
66, 24, 62, 41] based on polynomial interactive oracle proofs (PIOPs), which do
not rely on public-key cryptography, require no trusted setup, and offer con-
jectured post-quantum security. Other works [55, 32, 23] utilize constant-round
PIOPs with KZG [50] polynomial commitment, needing a universal and updat-
able CRS with constant-size proofs and fast verification. Additionally, works [42,
52, 36, 43] based on linear probabilistic checkable proofs (LPCPs) feature very
small proofs and fast verification but are slow on the prover side and require long
and “toxic” CRS. By leveraging the KZG polynomial commitment, the recent
work [54] combined the ideas of Groth16 and IOPs to trade longer CRS and
slower prover’s efficiency for concrete smaller proof size and faster verification.

zk-SNARKs can also prove algebraic statements, like the knowledge of discrete-
log in a cyclic group, by representing the exponentiation circuit as Quadratic
Arithmetic Programs (QAP). However, proving single exponentiations involves
thousands to millions of gates, making zk-SNARKs based on QAP inefficient due
to the quasi-linear prover cost and growing CRS size. In contrast, Σ-protocols
can prove knowledge of discrete-log with a constant number of exponentiations.
ZKPs for algebraic statements. A Σ-protocol for L is a 3-move public coin
interactive proof system. Σ-protocols, introduced by Cramer [28], are commonly
used and efficient for proving algebraic statements. For example, Alice can use
a Σ-protocol to convince Bob that she knows an x such that gx = y for publicly
known values g, y ∈ G. Σ-protocol-based ZKPs are efficient for these statements,
yielding short proofs, requiring a constant number of public-key operations, and

Extending Groth16 for Disjunctive Statements 3

not needing trusted CRS generation [45, 61, 29, 56, 35, 44]. They can also be made
non-interactive using the Fiat-Shamir transformation [31]. For more complex
statements, Σ-protocols can be combined in parallel to prove compound state-
ments efficiently.

While Σ-protocols are efficient for algebraic statements, they are much slower
for non-algebraic ones. Consider a cryptographic hash function or block cipher
represented by a boolean or arithmetic circuit C. Suppose Alice wants to show
that she knows an input x such that C(x) = y for some public y. Alice can treat
each gate in C as an algebraic function and prove that the input and output wires
of each gate satisfy the related algebraic relation, to show that she indeed knows
x. However, this would be prohibitively expensive. The proving and verification
time, as well as the proof size, would grow linearly with the circuit size, which
for hash functions and block ciphers can be tens of thousands of exponentiations
and group elements.
ZKPs for composite statements. Composite statements involve both alge-
braic and non-algebraic components, such as x being a Pedersen commitment to
w with SHA256(w)=y. ZKPs for these statements have various applications [22,
2, 9], including proof of solvency for Bitcoin exchanges, anonymous credentials
based on RSA and ECDSA signatures, and 2PC with authenticated inputs.

One approach is transforming composite statements into either algebraic or
non-algebraic form, using only Σ-protocols or zk-SNARKs. However, this in-
creases proof size and computation. Instead, a better way is to use Σ-protocols
for the algebraic part and efficient zk-SNARKs for the non-algebraic part, link-
ing them with customized “glue” protocols. Many works [2, 20, 19, 4, 53, 58] have
constructed such “glue” proofs, featuring low communication costs and efficient
verification. Alternatively, [9] developed transparent ZKPs with a fast prover and
linear proof size by linking Σ-protocols with ZKBoo [37]/ZKB++ [21]. Recent
work [67] proposed a generic framework of Σ-protocols for algebraic statements
from verifiable secret sharing schemes, designing ZKPs for composite statements
without “glue” proofs.
ZKPs for disjunctive statements. Zero-knowledge techniques for disjunctive
statements have a long history [29, 1, 34]. Disjunctive statements are NP state-
ments composed of a logical “OR” of clauses. For example, Alice can prove to
Bob that x1 ∈ L1 ∨ · · · ∨ xl ∈ Ll. The witness includes one clause’s witness (also
called the active clause) and its index. These statements are common in practice,
making them crucial for proof optimizations. Disjunctive proofs provide privacy
as the verifier cannot determine which clause is satisfied. Applications include
membership proofs like ring signatures [59], proving the existence of bugs in a
large codebase [48], and proving the correct execution of a processor [13]. Recent
interest in optimizing protocols for disjunctions spans zero-knowledge [44, 26, 51,
48, 38, 6] and secure multiparty computation [10, 47, 49].

Since a disjunction of NP statements is an NP statement, it can be proved
using proof systems for NP-completeness. but this may lead to a significant in-
crease in the complexity. Alternatively, works [44, 6, 48] have manually modified
specific ZKPs to support disjunctive statements, though these rely on individual

4 Xudong Zhu, Xinxuan Zhang, Xuyang Song, et al.

protocol structures and may not generalize. A more flexible approach is building
disjunctive compilers [29, 1, 38, 39], which transform zero-knowledge protocols
into disjunctive protocols with sub-linear communication complexity relative to
the number of clauses. Recent work [10, 63, 46] has applied these techniques to
the VOLE-based ZK setting.

1.1 Our Contributions

In this paper, we deal with the “OR” composition of the efficient zk-SNARK
Groth16 for arithmetic statements and other Σ-protocols for algebraic state-
ments, or even another Groth16 for arithmetic statements. While the logic com-
position of Σ-protocols is well-known, existing research on zk-SNARKs primar-
ily focuses on “AND” logic composite statements. Thus, our scheme is the first
solution for the “OR” composition of zk-SNARKs. Using Groth16 to prove dis-
junctive statements by encoding the entire "OR" statement into the circuit is
possible but causes circuit expansion. For the pairing-based Groth16, the CRS
length is linear with the circuit size, and the prover’s computation is quasi-linear,
creating a need for a composition-friendly variant. Our solution separates “OR”
logic from the circuit and allows combining two independent proofs for R1 and
R2 into a proof for R1∨R2 at minimal cost. Additionally, recall that the prover in
Σ-OR need to run the entire prover algorithm for the active clause and simulate
a transcript for the non-active clause. Therefore, our efficient simulator enables
the prover to simulate non-active arithmetic clauses efficiently, improving prover
efficiency. The main contributions of this paper are summarized as follows:
Build a bridge between zk-SNARKs and Σ-protocols. By using a Σ-
protocol, we create a new zk-SNARK called CompGroth16 in the RO model,
which can combine with Σ-protocols to prove disjunctive statements. Specifi-
cally, CompGroth16 handle non-algebraic statements and Σ-protocols handle
algebraic ones. These can be composed using the classic Σ-OR. Our modular
design can work with any Σ-protocol. The main advantage is avoiding the need
to encode algebraic parts into the circuit for "OR" statements, increasing effi-
ciency and reducing the size of CRS. For disjunctive statements with an active
algebraic clause, a Σ-protocol in Σ-OR can be used. For the arithmetic part,
our efficient simulator in Σ-OR eliminates the need to run Groth16’s prover
algorithm, significantly improving prover’s efficiency. We also present two repre-
sentative applications of our technique for this type of statements.
Construct a new composition friendly zk-SNARK. Following the above
contribution, we offer a new framework for proving disjunctions of non-algebraic
statements. This modular framework allows combining two zk-SNARK imple-
mentations for R1 and R2 into a zk-SNARK scheme for R1∨R2 without rewriting
circuits or regenerating the specific CRS. Using our efficient simulator in Σ-OR,
only one Groth16 prover algorithm is needed, with the other simulated efficiently.
This means the time to prove R1 ∨ R2 is nearly the same as proving R1 or R2,
depending on the active clause. Additionally, our solution can be extended to
efficiently prove more general disjunctions such as x1 ∈ L1∨· · ·∨xl ∈ Ll or even
conjunctive normal form (CNF) relations by using existing optimizations.

Extending Groth16 for Disjunctive Statements 5

2 Preliminaries

2.1 Notation

If S is a finite set, then s ← S denotes picking an element uniformly from S
and assigning it to s. We use λ ∈ N to denote a security parameter and 1λ

for its unary representation. "Probabilistic polynomial time" is abbreviated as
"PPT". By y ← A(x1, . . .) we mean running algorithm A on inputs x1, . . . to
output y. P and V represent the malicious prover and verifier, respectively. A
function negl(n) is negligible if it vanishes faster than any inverse polynomial.
A disjunctive statement consists of a logical "OR" of clauses. To distinguish
between active clauses, we use a horizontal line above L, e.g., x1 ∈ L̄1 ∨x2 ∈ L2

means the witness of x1 ∈ L1 is the witness for the entire disjunctive statement.

2.2 Bilinear Groups

Following the notation of [43], we work on bilinear groups (p,G1,G2,GT ,e, g, h)
with the following properties:
- G1,G2 and GT are groups of prime order p
- Pairing e : G1 ×G2 → GT is a bilinear map
- g is a generator for G1, h is a generator for G2, and e(g, h) is a generator for
GT

- There are efficient algorithms for computing the generic group operations.
We write [a]1 for ga, [b]2 for hb, and [c]T for e(g, h)c. For notation g = [1]1, h =

[1]2 and e(g, h) = [1]T , whereas the neutral elements are [0]1, [0]2 and [0]T . We
can then use the additive notation in all groups, and we have [a]i+[b]i = [a+ b]i
for i ∈ {1, 2, T}. Given two group elements [a]1 and [b]2, we define their dot
product as [a]1 · [b]2 = [ab]T , which can be computed efficiently by pairing e.

2.3 zk-SNARKs

We define Rλ as the set of possible NP relations R the relation generator R may
output given 1λ. R may also output some side information, an auxiliary input z,
which is given to the adversary. crs, u, w, τ , and R denote the common reference
string, statement, witness, simulation trapdoor, and relation, respectively.

Definition 1. (SNARG). Π = (Setup,P,V) is a succinct non-interactive argu-
ment (SNARG) for Rλ if it satisfies the following three properties:

Completeness: For all λ ∈ N, R ∈ Rλ, (u,w) ∈ R,

Pr [V(R, crs, u, π) = 1 |(crs, τ)← Setup (R) ;π ← P(R, crs, u, w)] = 1.

Computational Soundness: For all λ ∈ N and efficient P,

Pr

[
V(R, crs, u, π) = 1 (R, z)←R

(
1λ
)
; (crs, τ)← Setup (R)

∧u /∈ L (u, π)← P (R, z, crs)

]
= negl(λ).

Succinctness: The length of a proof is given by

|π| = poly(λ)polylog (|u|+ |w|) .

6 Xudong Zhu, Xinxuan Zhang, Xuyang Song, et al.

Definition 2. (SNARK). A succinct non-interactive argument of knowledge
(SNARK) is a SNARG that comes together with an extractor χ. Formally, sound-
ness is replaced by knowledge soundness as follows:

Computational Knowledge Soundness: For all λ ∈ N and PPT P, there

exists a PPT extractor χP ,

Pr

[
V(R, crs, u, π) = 1 (R, z)←R

(
1λ
)
; (crs, τ)← Setup (R)

∧(u,w) /∈ R ((u, π);w)← (P||χ
P
) (R, z, crs)

]
= negl(λ).

Definition 3. (Zero-knowledge SNARK). A SNARK for an NP language L with
a corresponding NP relation R is computationally zero knowledge, if there exists
a simulator Sim for all λ ∈ N,(R, z) ← R(1λ), (u,w) ∈ R and every PPT
distinguisher D

Pr[(crs, τ)← Setup(R);π ← P(R, crs, u, w) : D(R, z, crs, τ, π) = 1]

≈ Pr[(crs, τ)← Setup(R);π ← Sim(R, τ, u) : D(R, z, crs, τ, π) = 1]

2.4 Σ-protocols

Our constructions utilize a special subclass of interactive zero-knowledge proof
systems, called Σ-protocols [61]. Therefore, we recall its definition here [38] .

Definition 4. (Σ-protocols). A Σ-Protocol Π for R is a 3 move protocol be-
tween a prover P and a verifier V consisting of a tuple of PPT algorithms
Π = (A,Z, ϕ) with the following interfaces:

- a ← A(x,w; rp): On input the statement x, corresponding witness w, such that
R(x,w) = 1, and prover randomness rp, output the first message a that P sends
to V in the first round.

- c← {0, 1}κ: Sample a random challenge c that V sends to P in the second round.
- z ← Z(x,w, a, c; rp): On input the statement x, the witness w, the challenge c, and

prover randomness rp, output the message z that P sends to V in the third round.
- b← ϕ(x, a, c, z): On input the statement x, prover’s message a, z, and the challenge
c, this algorithm run by V, outputs a bit b ∈ {0, 1}.

- (a, z) ← S(x, c): On input the statement x, and the challenge c, this simulator
outputs the simulated prover’s message a, z.

A Σ-protocol has completeness, special soundness, and special honest verifier
zero-knowledge properties. We recommend referring to [38] for more formal de-
scription of these properties. Notably, every Σ-protocol can be transformed into
a non-interactive, fully secure zero knowledge proof in the random oracle (RO)
model using the Fiat-Shamir heuristic [31], in which the challenge is generated
as c = O(x, a). The extractor E and simulator S could make use of rewinding
the other party and programming the random oracle.

Extending Groth16 for Disjunctive Statements 7

2.5 Disjunction of Σ-protocols
The set of relations with Σ-protocols is closed under conjunction and disjunction
[29]. The classic protocol for disjunction of Σ-protocols, which we denote Σ-OR,
is proposed by Cramer et al. [29]. Then, Ciampi et al. [25] introduced a differ-
ent Σ-OR protocol with certain advantages over the Cramer et al. construction.
We denote ΣR1

and ΣR2
as Σ-protocols for relations R1 and R2 respectively.

W.l.o.g., we assume that the prover wants to prove the disjunction of the state-
ment x = (x1, x2) and knows a witness w1 showing that (x1, w1) ∈ R1. The
proof for relation R1 ∨R2 is constructed as in Fig. 1.

Protocol ΣR1∨R2(x1, w1, x2, \)
Σ-protocol to prove the OR relation

Prover Verifier

Run ΣR2 .S(x2)→ (a2, c2, z2)
Run ΣR1 .A(x1, w1)→ a1

a1,a2−−−−−−−−−−−→
Pick c← {0, 1}κ

c←−−−−−−−−−−
Set c1 = c⊕ c2

Run ΣR1 .Z(x1, w1, a1, c1)→ z1
(c1,c2,z1,z2)−−−−−−−−−−→

Accept if:
c1 = c⊕ c2

ΣR1 .ϕ(x1, a1, c1, z1) = 1
ΣR2 .ϕ(x2, a2, c2, z2) = 1

Fig. 1: The Σ-protocol for Relation R1 ∨R2

The essence of this protocol is that the prover can freely decide one of the
challenges from two Σ-protocols, while the other challenge becomes a random
challenge due to the influence of the random challenge sent by the verifier. This
means that the prover can only simulate the proof for one statement and must
then honestly prove the another statement.

3 Framework for Disjunction of Groth16
In this section, we are going to introduce a main construction and a framework.
Specifically, in Subsection 3.1, we review the well-known zk-SNARK scheme—
Groth16. In Subsection 3.2, we introduce a new Groth16 variant scheme—
CompGroth16 to prove the disjunction of arithmetic and algebraic statements.
And we provide two representative applications for this type of statement. More-
over, we also provide a framework for Groth16 to prove more general disjunctive
arithmetic statements. In Subsection 3.3, we prove the security and analyze
the performance of our main construction.

8 Xudong Zhu, Xinxuan Zhang, Xuyang Song, et al.

3.1 Groth’s Near-Optimal SNARK

The Groth16 [43] is a state-of-the-art scheme for pairing-based zk-SNARKs.
Groth16 requires to express the computation as an arithmetic circuit and relies
on some trusted setup to prove the circuit satisfiability. Due to its short proof
size (3 group elements) and verifier’s efficiency (within several milliseconds),
Groth16 has become a de facto standard in blockchain projects. This results in a
great number of available implementations, code auditing and multiple trusted
setup ceremonies run by independent institutions. Therefore, this article takes
the construction Groth16 as the starting point. Since our construction is closely
related to Groth16, for the convenience of our future discussion, we will briefly
review Groth16 in this subsection:
Groth16. Groth16 [43] is a non-universal zk-SNARK for QAP widely used due
to its verifier-efficiency. In this paper, we denote the Groth16 scheme by ΠGroth =
(Groth. Setup,Groth.P,Groth.V,Groth. Sim). And we depict Groth16 in Fig.
2. Groth16’s prover computes three group elements ([A,C]1, [B]2) and the ver-
ifier executes a single verification equation that requires the computation of
three pairings. Groth16 can be proved to satisfy the computational knowledge
soundness in the generic group model (GGM) and perfect zero knowledge. We
recommend referring to [43] for more details.

Groth. Setup(R) :
Sample α, β, γ, δ, x← F∗ such that xn ̸= 1. Let

crsp :


[
α, β, δ,

{
xi
}n−1

i=0
,

{
xit(x)

δ

}n−2

i=0

,

{
βui(x) + αvi(x) + wi(x)

δ

}m

i=l+1

]
1

,[
β, δ,

{
xi
}n−1

i=0

]
2


crsv :

([{
βui(x) + αvi(x) + wi(x)

γ

}l

i=0

]
1

, [γ, δ]2, [αβ]T

)
crs = (crsp, crsv); td = (α, β, γ, δ, x)

Return (crs, td)

Groth.P(R, crsp, a1, . . . , am) :
u(X)←

∑m
i=0 aiui(X); v(X)←

∑m
i=0 aivi(X);w(X)←

∑m
i=0 aiwi(X);

h(X)← (u(X)v(X)− w(X))/t(X)
(r, s)← F2; [A]1 ← [α]1 + [u(x)]1 + r[δ]1; [B]2 ← [β]2 + [v(x)]2 + s[δ]2

[C]1 =
∑m

i=l+1 ai

[
βui(x)+αvi(x)+wi(x)

δ

]
1
+
[
h(x)t(x)

δ

]
1
+ s[A]1 + r[B]1 − rs[δ]1

Return π ← ([A,C]1, [B]2)

Groth.V (R, crsv, a1, . . . , al, π = ([A,C]1, [B]2)) :

[D]1 =
∑l

i=0 ai

[
βui(x)+αvi(x)+wi(x)

γ

]
1

Check that [A]1 · [B]2 = [αβ]T + [D]1 · [γ]2 + [C]1 · [δ]2
Groth. Sim(R, crs, td, a1, . . . , al) :

A← F; B ← F; [D]1 =
∑l

i=0 ai

[
βui(x)+αvi(x)+wi(x)

γ

]
1

[C]1 = AB[1]1−[αβ]1−γ[D]1
δ

Return π ← ([A,C]1, [B]2)

Fig. 2: Groth16 construction.

Extending Groth16 for Disjunctive Statements 9

3.2 New Groth16 Variant—CompGroth16

Based on logic “AND” and logic “OR”, we can divide all the composite state-
ments into two basic categories. Notably, the “AND” composition between state-
ments with unrelated witnesses is straightforward, e.g. proving that two inde-
pendent statements x1, x2 without a common witness satisfy (x1, w1) ∈ R1 ∧
(x2, w2) ∈ R2 is trivial. This type of statements can be directly proved by prov-
ing that (x1, w1) ∈ R1 and (x2, w2) ∈ R2 respectively.

However, the “AND” composition between statements with related witnesses
is more involved, e.g. prove that two statements x1, x2 with a common witness
satisfy (x1, w) ∈ R1 ∧ (x2, w) ∈ R2. Fortunately, numerous studies have shown
that introducing “glue” protocols can effectively address such problems without
expanding the circuit. On the contrary, the “OR” composition of statements
(that is the disjunctive statements) seems to be trickier and has only been well
studied for algebraic statements (and for Σ-protocols). For more details, refer
to Subsection 2.5.

Notably, it is very succinct and efficient to prove the algebraic statements
with Σ-protocols. As for arithmetic statements, from the Subsection 3.1, we
could learn that Groth16 could also be used to prove them with very fast ver-
ification and very succinct proof size. However, when considering disjunctive
statements involving both algebraic and non-algebraic components, we face three
challenges. Firstly, we cannot simply use the Σ-protocol and Groth16 separately.
Secondly, because the circuit for computing a single exponentiation involves
thousands or even millions of gates, depending on the group size, and Groth16
has quasi-linear prover time, directly incorporating “OR” logic into the circuit
will result in a significant increase in proof time. Moreover, the CRS size of
Groth16 is very large, which includes m+ 2n elements in G1 and n elements in
G2, this also implies rapid expansion as the circuit size increases. Thirdly, inte-
grating the “OR” logic directly into the circuit essentially requires a complete
proof of the entire “OR” statement, and cannot optimize the non-active clauses.

Motivated by these challenges, we formally propose an efficient solution for
proving the disjunctive statements involving both algebraic and non-algebraic
components. We complete these compositions by establishing a connection be-
tween Groth16 and Σ-protocols, and introducing a new scheme—CompGroth16.
This scheme then allows us to perform “OR” composition of CompGroth16 and
Σ-protocols in the same way as “OR” composition of Σ-protocols, to prove dis-
junction of arithmetic and algebraic statements. The main difficulty lies in the
construction differences between Groth16 and Σ-protocols, which initially pre-
vents us from establishing such a connection. Notably, Groth16 has a large-sized
CRS while Σ-protocol does not. Σ-protocol is a 3 move protocol while Groth16
is non-interactive.

Our construction, CompGroth16, stems from the observation that the essen-
tial goal of the Groth16 prover is to demonstrate the validity of the pairing check
equation: [A]1 · [B]2 = [αβ]T + [D]1 · [γ]2 + [C]1 · [δ]2.

10 Xudong Zhu, Xinxuan Zhang, Xuyang Song, et al.

Notably, all these group elements are public in Groth16. However, we observe
that if we consider the element [B]2 as a witness, we can then use a simple Σ-
protocol to prove the following relation R1:

R1 =

{
(pp, [A,D,C]1 ∈ G1, [γ, δ]2 ∈ G2, [αβ]T ∈ GT ; [B]2 ∈ G2) :

[A]1 · [B]2 = [αβ]T + [D]1 · [γ]2 + [C]1 · [δ]2

}
The protocol denoted by ΣR1

is a Σ-protocol for relation R1. As shown in
Fig.3, this protocol is a public-coin protocol and can be transformed into a
non-interactive version using the Fiat-Shamir transformation [31]. We denote
the proof of this Σ-protocol (i.e., the transcript [a]T , c, [z]2) as π1.

Protocol ΣR1 for relation R1

PUBLIC PARAMETERS:pp
INPUT:([A,D,C]1 ∈ G1, [γ, δ]2 ∈ G2, [αβ]T ∈ GT ; [B]2 ∈ G2)

[A]1 · [B]2 = [αβ]T + [D]1 · [γ]2 + [C]1 · [δ]2

Prover Verifier

Sigma.A : Pick r ∈ Zp

Compute
[r]2 = r[1]2

[a]T = e ([A]1, [r]2)
[a]T−−−−−−−−−−→

Pick c ∈ Zp, where p is the order of G2
c←−−−−−−−−−

Sigma.Z : Compute
[z]2 = c · [B]2 + [r]2

[z]2−−−−−−−−−→
Sigma. ϕ : Check

[A]1 · [z]2
?
= c · ([αβ]T + [D]1 · [γ]2 + [C]1 · [δ]2) + [a]T

Fig. 3: The Σ-protocol ΣR1 for Relation R1

Theorem 1. ΣR1
is a three-move public-coin protocol for relation R1. It is per-

fectly complete, unconditionally special sound, and special honest-verifier zero-
knowledge (SHVZK).

The proof of Theorem 1 follows the standard proof method naturally. No-
tably, Σ-protocols can be transformed to be non-interactive in the RO model
using the Fiat-Shamir transformation [31]. Knowledge-soundness of the trans-
formed NIZK relies on the special-soundness of the Σ-protocol and therefore
requires an extractor to rewind the malicious prover in order to obtain two
transcripts with a shared prefix by programming the RO after rewinding. Zero-
knowledge of the NIZK follows from HVZK of the Σ-protocol and programming
the RO. Specifically, the simulator Sigma. S picks the challenges c← Zp, gener-
ates [z]2 ← G2 and computes [a]T = [A]1·[z]2−c·([αβ]T + [D]1 · [γ]2 + [C]1 · [δ]2).

Based on our above discussion, in our CompGroth16 construction, we could
let the prover to prove the pairing check equation with Σ-protocols, and the proof

Extending Groth16 for Disjunctive Statements 11

generated by prover includes ([A,C]1, π1) rather than ([A,C]1, [B]2). The advan-
tage of doing so is that the prover algorithm can now be seen as a Σ-protocol,
which can then be directly used with other Σ-protocols for “OR” composition.
CompGroth16 construction. Now, we formally present a new zk-SNARK
ΠCompGroth, which is based on Groth16 and compatible with Σ-protocols. We
implicitly assume the bilinear group parameter is included in R. In addition, we
assume that each algorithm checks whether their inputs belong to the correct
groups.

Finally, we will describe the main protocol as a non-interactive protocol by
using the Fiat-Shamir transformation [31]. Therefore, we denote the concatena-
tion of the statement, elements in the CRS, public input, and proof elements
written by the prover up to a certain point in time by transcript.

By the tuple ΠGroth = (Groth. Setup,Groth.P,Groth.V,Groth. Sim), we
have denoted the well-known Groth16 scheme. Now, for the convenience of dis-
cussion, we also denote the Σ-protocol for relation R1 we have mentioned before
in Fig.3 by ΣR1 = (Sigma.A, Sigma.Z, Sigma. ϕ, Sigma. S). On input QAP rela-
tion R, we denote our new construction by ΠCompGroth = (CompGroth. Setup,
CompGroth.P,CompGroth.V,CompGroth. Sim). For simpler expression, we de-
note the hash function by H. This construction is described in detail in Fig. 4.

CompGroth. Setup(R) :
Run (crs, td)← Groth. Setup(R)

Return (crs, td)

CompGroth.P(R, crsp, a1, . . . , am) :
Run ([A,C]1, [B]2)← Groth.P(R, crsp, a1, . . . , am)
Run [a]T ← Sigma.A([A,C]1, [γ, δ]2, [αβ]T ; [B]2)
Run c← H(transcript)
Run [z]2 ← Sigma.Z ([A,C]1, [γ, δ]2, [αβ]T , [a]T , c)

Return π ← ([A,C]1, [z]2, [a]T)

CompGroth.V (R, crsv, a1, . . . , al, π = ([A,C]1, [z]2, [a]T)) :

Compute [D]1 =
∑l

i=0 ai

[
βui(x)+αvi(x)+wi(x)

γ

]
1

Run c← H(transcript)
Run b← Sigma. ϕ ([A,D,C]1, [γ, δ]2, [αβ]T , [a]T , c, [z]2)

Return b

CompGroth. Sim(R, crs, a1, . . . , al) :
Pick random group elements [A]1, [C]1 ← G1.
Compute [D]1 =

∑l
i=0 ai

[
βui(x)+αvi(x)+wi(x)

γ

]
1

Run c← H(transcript)
Run ([a]T , [z]2)← Sigma. S ([A,D,C]1, [γ, δ]2, [αβ]T , c)

Return π ← ([A,C]1, [z]2, [a]T)

Fig. 4: CompGroth16 construction.

Disjunction of arithmetic and algebraic statements. From the Fig. 4,
we can see that the current CompGroth.P algorithm in ΠCompGroth is actu-
ally a Σ-protocol. Therefore, it seems easy to perform “OR” composition of
CompGroth16 and other Σ-protocols just as “OR” composition of Σ-protocols
to prove disjunction of arithmetic and algebraic statements (just as in Fig. 1).
However, there is a detail that needs our attention here. Since we need to con-
sider two protocols now, namely a CompGroth16 protocol and a Σ-protocol, the

12 Xudong Zhu, Xinxuan Zhang, Xuyang Song, et al.

distribution of challenge spaces for these two protocols may naturally be incon-
sistent. W.l.o.g., for two prime p, q, we set the challenge from CompGroth16 to
be c1 ∈ Zp, and the challenge from Σ-protocol to be c2 ∈ Zq. When we construct
the Σ-protocol for “OR” relation just as in Fig. 1, we can just set the c to be
a random element in Zpq. Then, with the simulated challenge c2 ∈ Zq, we can
compute the c1 = (c− c2) mod p. Obviously, given that c is a random element
in Zpq, c1 is also a random element in Zp. The advantage of OR composition
of CompGroth16 and Σ-protocol is to prevent the expansion of the circuit by
separating the algebraic part and “OR” logic from the circuit, thereby avoid-
ing CRS regeneration, improving the efficiency of the prover and reducing the
size of CRS. Moreover, as we will discussed in Section 3.3, our technique can
also greatly improve the efficiency of provers when the algebraic clause of the
disjunctive statement is an active clause.
Two Representative Applications. As we have discussed in Section 1, the
general disjunctive statements occur commonly in practice, making them an im-
portant target for proof optimizations. For example, disjunctive proofs are often
used to give the prover some degree of privacy, as a verifier cannot determine
which clause is being satisfied. For the specific disjunction of arithmetic and
algebraic statements, we also give two examples of use cases here.

The first application is to directly transform Growh16 into a solution that
supports designated-verifier property. Note that in scenarios where proof transfer
is not desired, only a specific verifier should know if the proof passes verification,
such as anonymous transactions in cryptocurrencies. Of course, we can just ob-
tain the designated-verifier schemes from the well-known and efficient “LIPs to
designated-verifier zk-SNARK” transformation mentioned in [16]. In [16], Bitan-
sky et al. proposed that a two-move linear-interactive proof can be combined with
pairing-based techniques (or additively homomorphic encryption techniques) to
obtain a publicly verifiable (or designated-verifier) zk-SNARK. However, this
means that compared to the publicly verifiable scheme, we need a completely
different set of new CRS and prove/verify algorithms. In fact, we can just let the
verifier sample a secret a and publish the y = ga. Then, the prover only need to
prove that x ∈ L ∨ ∃ a s.t. y = ga. This is clearly a designated-verifier scheme,
and this solution can be directly achieved by applying our technique on existing
Groth16 proof system anytime and anywhere. Therefore, our technique provides
a plug and play interface for the designated-verifier property of Groth16.

The second application is to construct short-lived proofs. Notably, Arun et
al. [5] has provided us a framework to construct short-lived proofs from a stan-
dard Σ-protocol and a Σ-protocol for the zero knowledge verifiable delay func-
tions (zkVDF): given a Σ-protocol for RzkV DF and any relation R for which we
have a Σ-protocol ΣR, we can use the standard Σ-OR construction to create
a disjunction protocol ΣR∨RzkV DF

(See theorem 3 in section 7 of [5] for more
details). Now, because that our technique has built a bridge between Groth16
and Σ-protocols, we can generalize the conclusions in [5] to any NP relation with
generic zero knowledge proofs instead of just the relation for which we have a
Σ-protocol.

Extending Groth16 for Disjunctive Statements 13

Disjunction of arithmetic and arithmetic statements. Inspired by OR
composition of CompGroth16 and Σ-protocol, we can also provide a framework
to perform OR composition of CompGroth16 and CompGroth16. Suppose that
there are two Groth16 proof systems ΠGroth1 ,ΠGroth2 with crs1 and crs2 for
R1 and R2 respectively. We can transform ΠGroth1

,ΠGroth2
into ΠCompGroth1

,
ΠCompGroth2

. And then we can obtain the proof for R1 ∨ R2 directly by using
Σ-OR. The main advantage of OR composition of CompGroth16 protocols is
to obtain the solution for proving R1 ∨ R2 using existing schemes for proving
R1 and R2 directly, without rewriting the circuit and regenerating the relation
specific CRS. This actually broadens the expression range of Groth16 and to
some extent alleviates the deficiency of Groth16 in CRS. Moreover, as we will
discussed in Section 3.3, our technique can also greatly improve the efficiency
of provers for proving this type of statements.
More general extensions. Notably, for the reason that we have built a bridge
between Groth16 and Σ-protocols, it is natural that we could directly utilize a
series of optimizations for disjunction of Σ-protocols such as [38, 39] to prove the
more general disjunction such as x1 ∈ L1∨· · ·∨xl ∈ Ll efficiently. Recall that [38,
39] have built disjunctive compilers, generic approaches that automatically trans-
form large classes of zero-knowledge protocols into disjunctive zero-knowledge
protocols with communication complexity sub-linear in the number of clauses.
However, the LPCP based zkSNARK Groth16 is not included in these classes.
Therefore, from another perspective, our work has expanded the types of proto-
cols that can be applied by these compilers. Moreover, we could also handle state-
ments that contain multiple conjunction and disjunction statements simultane-
ously. In fact, there are already some optimizations on composition of Σ-protocol
for CNF [38, 8, 64, 7]. By building a bridge between Groth16 and Σ-protocols, our
technique could also be utilized with these optimizations for handling the general
arithmetic CNF. e.g. (x1

1 ∈ L1 ∨ · · · ∨ x1
l ∈ Ll) ∧ · · · ∧ (xk

1 ∈ L1 ∨ · · · ∨ xk
l ∈ Ll)

for arithmetic {Ri}i∈[1,l].
Notably, our technique may also be extended to other pairing-based non-

interactive arguments such as [32, 23]. However, compared to these two schemes,
Groth16 requires our technique more urgently. This is because [32, 23] do not
depend on circuit-dependent CRS, and the lookup table technique can be applied
to these two schemes to alleviate circuit expansion.

3.3 Security and Performance Analysis
Theorem 2. Protocol ΠCompGroth is a non-interactive argument with perfect
completeness and perfect zero-knowledge in the RO model. It has computational
knowledge soundness in the RO model against adversaries that use only the poly-
nomial number of generic bilinear group operations.
Proof. Completeness: The completeness of this construction comes straightly
from the completeness of Groth16 and Σ-protocol.
Knowledge Soundness: Notably, the Σ-proof generated by prover can be
transformed to be non-interactive in the RO model. Using the knowledge sound-
ness of the forking lemma discussed in [57], if the prover of the Σ-protocol can

14 Xudong Zhu, Xinxuan Zhang, Xuyang Song, et al.

find, with non-negligible probability, a valid transcript (a, c, z), the prover of the
Σ-protocol can also find another transcript (a, c′, z′). This yields an extractor
with the expected polynomial time to extract [B]2 which satisfies the Groth16’s
pairing check verification equation [A]1 · [B]2 = [αβ]T + [D]1 · [γ]2 + [C]1 · [δ]2
with probability 1. Now, we get all the statements and proofs appearing in the
original Groth16, and the our CRS is the same as the CRS of Groth16. Then, we
can extract the witness by running the extractor of original Groth16 in GGM.
Zero-Knowledge: The simulator CompGroth. Sim is constructed in Fig.4. On
the one hand, our scheme run the Groth.P to obtain the [A,C]1, and from Fig.
2 we can see that the elements [A]1 and [C]1 in real transcript are blinded by
factors r and s respectively. Therefore, the elements [A,C]1 in both real and
simulated transcript are independent and random. On the other hand, from the
ZK property of the ΣR1

, we can directly know that the distributions of the tuple
([z]2, [a]T) in both real and simulated transcript are the same. Thus, taking into
account all the above discussions, the distributions of ([A,C]1, [z]2, [a]T) in both
real and simulated transcript are the same, and zero knowledge property holds.

Performance comparison. Notably, our scheme is a specially designed solution
for disjunctive statements. Therefore, we give a performance comparison for
disjunction of arithmetic and algebraic statements (e.g. x1 ∈ Lari ∨ x2 ∈ Lalg,
where x2 ∈ Lalg means ∃ a s.t. y = ga) in Table 1. By m,n and l, we denote
the number of wires, multiplication gates and the length of public input of the
circuit for x ∈ Lari, respectively. By adding a tilde to m,n and l, we want to
express the circuit parameters for x ∈ Lalg. In comparison, the number of wires
m (m̃) exceeds the number of multiplication gates n (ñ), since each gate has
an output wire. The statement size l (l̃) is typical small compared to m (m̃)
and n (ñ). Notably, the exact size of m (m̃) and n (ñ) depends on the specific
“OR” statement to be proven. Therefore, compared with the traditional method,
although sacrificing a bit of proof size, our solution does not require the heavy
generation of a new CRS, has smaller CRS size, and has faster prover efficiency.
Additionally, it is worth noting that our approach exhibits significant differences
in the efficiency of prover based on which clause is the active clause. In the
traditional way, in order to prove the “OR” statement, we have to run Groth16’s
prover algorithm no matter what. However, in our CompGroth16, if the algebraic
clause of the disjunctive statement is an active clause, we can use a very efficient
simulator in Σ-OR to simulate the proof transcript of the arithmetic part (just
as the CompGroth. Sim shown in Fig. 4). Therefore, by utilizing our technique,
we can completely avoid running the expensive Growh16’s prover algorithm for
such statements. This is a significant improvement in the efficiency of prover.

We also give a performance comparison for disjunction of arithmetic and
arithmetic statements (e.g. x1 ∈ L1 ∨ x2 ∈ L2) in Table 2. We use n,m, l and
n̄, m̄, l̄ to represent the circuit parameters of R1 and R2 respectively. Then, we
can see from the Table 2 that compared with the traditional method, although
sacrificing a bit of proof size and verifier efficiency, our solution has a significantly
faster prover efficiency. The main advantage is that our solution does not require
the heavy generation of a new CRS, and we directly use the existing CRS for

Extending Groth16 for Disjunctive Statements 15

R1 and R2 to prove that R1∨R2. Moreover, just as we have discussed above, by
utilizing the efficient simulator we have constructed, we can obtain significant
efficiency improvements in provers from the non-active clause. Suppose that the
circuit scales of R1 and R2 are the same, anyway, our scheme can save more
than half of the proving time when proving the disjunction of arithmetic and
arithmetic statements.

In summary, for disjunction of arithmetic and algebraic statements, our solu-
tion has a good improvement in the efficiency of the prover (especially when the
algebraic clause is an active clause) without the need to generate a new CRS. For
disjunction of arithmetic and arithmetic statements, our technology enables us
to prove as many statements as possible using existing CRSs without the need
to generate new CRSs, which to some extent broadens the expressiveness of
Groth16, while also having significantly better prover’s efficiency and acceptable
communication performance.

Table 1: Theoretical comparison for x1 ∈ Lari ∨ x2 ∈ Lalg
CRS renew CRS size Proof size Prover comp. Verifier comp. PPE

Groth16 for x1 ∈ Lari ∨ x2 ∈ Lalg Yes M + 2NG1, NG2 2G1, 1G2 M + 3N − LE1, NE2, Θ(N)F LE1, 3P 1

This work for x1 ∈ L̄ari ∨ x2 ∈ Lalg No m+ 2nG1, nG2 2G1, 1G2, 1GT , 1G0, 3F m+ 3n− lE1, nE2, Θ(n)F lE1, 3P 1

This work for x1 ∈ Lari ∨ x2 ∈ L̄alg No m+ 2nG1, nG2 2G1, 1G2, 1GT , 1G0, 3F lE1, 3P lE1, 3P 1

This table show us the theoretical performance comparison. By m(m̃), n(ñ) and l(l̃),
we denote the number of wires, multiplication gates and the length of public input,
respectively. These parameters satisfy M = m+m̃,N = n+ñ, L = l+ l̃. We use G0 to
represent a standard group and Gi for i ∈ {1, 2, T} to form the bilinear groups.“Ei”
represents the exponential computation in group Gi for i ∈ {1, 2, T}. “P” means the
pairing operation. The “PPE” represents the number of pairing product equations
used to verify a proof. The “F” represents both field elements and field operations.
And we have omitted some very small constants in this table.

Table 2: Theoretical comparison for x1 ∈ L1 ∨ x2 ∈ L2
CRS renew CRS size Proof size Prover comp. Verifier comp. PPE

Groth16 for x1 ∈ L1 ∨ x2 ∈ L2 Yes M + 2NG1, NG2 2G1, 1G2 M + 3N − LE1, NE2, Θ(N)F LE1, 3P 1

This work for x1 ∈ L̄1 ∨ x2 ∈ L2 No M + 2NG1, NG2 4G1, 2G2, 2GT m+ 3nE1, nE2, Θ(n)F LE1, 6P 2

This work for x1 ∈ L1 ∨ x2 ∈ L̄2 No M + 2NG1, NG2 4G1, 2G2, 2GT m̄+ 3n̄E1, n̄E2, Θ(n̄)F LE1, 6P 2

This table show us the theoretical performance comparison. By m(m̄), n(n̄) and
l(l̄), we denote the number of wires, multiplication gates and the length of public
input, respectively. These parameters satisfy M = m+ m̄,N = n+ n̄, L = l+ l̄. We
use Gi for i ∈ {1, 2, T} to form the bilinear groups.“Ei” represents the exponential
computation in group Gi for i ∈ {1, 2, T}. “P” means the pairing operation. The
“PPE” represents the number of pairing product equations used to verify a proof.
The “F” represents both field elements and field operations. And we have omitted
some very small constants in this table.

16 Xudong Zhu, Xinxuan Zhang, Xuyang Song, et al.

4 Implementation

To support our theoretical comparison, we also compare the concrete efficiency
of Groth’s zk-SNARK—Groth16 and our zk-SNARK construction (denoted by
CompGroth16) during implementation in Table 3 and Table 4. In particular,
we distinguish between active clauses, and compare their CRS size (denoted by
|CRS|), CRS generation time (denoted by CG), proof time (denoted by P), and
verification time (denoted by V) across different circuit scales. Similar to the pre-
existing implementation of Groth’s zk-SNARK in the arkworks [27] library, we
implemented our zk-SNARKs in the Rust library using low-level subroutines of
arkworks. The specific results were measured in a 64-bit Windows 10 Operating
System, which was installed on a standard laptop (Victus by HP Laptop 16-
d0xxx), with an Intel core i5-11400H 2.70 GHz CPU and 16GB RAM.

Table 3: Performance of the implementations for x1 ∈ Lari ∨ x2 ∈ Lalg.
Groth16 CompGroth16 (L̄ari) CompGroth16 (L̄alg)

Scales |CRS| CG P V |CRS| CG P V |CRS| CG P V

n = 214,ñ = 212 2MB 276ms 273ms 3ms 985KB 120ms 112ms 4ms 985KB 120ms 5ms 4ms
n = 214,ñ = 217 12MB 1.2s 1.2s 3ms 985KB 120ms 106ms 4ms 985KB 120ms 5ms 4ms
n = 216,ñ = 212 7MB 738ms 691ms 3ms 3MB 425ms 414ms 4ms 3MB 425ms 5ms 4ms
n = 216,ñ = 217 12MB 1.3s 1.4s 3ms 3MB 425ms 412ms 4ms 3MB 425ms 5ms 4ms
n = 218,ñ = 212 25MB 2.3s 2.5s 3ms 12MB 1.5s 1.5s 4ms 12MB 1.5s 5ms 4ms
n = 218,ñ = 217 24MB 2.5s 2.8s 3ms 12MB 1.5s 1.5s 4ms 12MB 1.5s 5ms 4ms

This table show us the specific performance comparison (in seconds) for x1 ∈ Lari ∨
x2 ∈ Lalg across different circuit scales (we fix the number of witness to be 210). For
the algebraic statements, we prove that ∃ a s.t. y = ga, where g is selected from a
native group G (ñ = 212, meaning that the base field of G is the same as the scalar
field of BLS12-318 curve) and a non-native ECDSA group (ñ = 217, which is the
secp256k1 curve) respectively.

Table 4: Performance of the implementations for x1 ∈ L1 ∨ x2 ∈ L2.
Groth16 CompGroth16 (L̄1) CompGroth16 (L̄2)

Scales |CRS| CG P V |CRS| CG P V |CRS| CG P V

n = 216,n̄ = 216 6MB 797ms 780ms 3ms 6MB 871ms 404ms 8ms 6MB 871ms 400ms 8ms
n = 216,n̄ = 218 24MB 2.4s 2.5s 3ms 15MB 2s 413ms 8ms 15MB 2s 1.5s 8ms
n = 216,n̄ = 220 96MB 8.5s 10.2s 3ms 51MB 6.2s 414ms 8ms 51MB 6.2s 6.5s 8ms
n = 218,n̄ = 218 24MB 3s 3.1s 3ms 24MB 2.9s 1.5s 8ms 24MB 2.9s 1.5s 8ms
n = 218,n̄ = 220 96MB 9s 11s 3ms 60MB 7.3s 1.6s 8ms 60MB 7.3s 6.4s 8ms
n = 220,n̄ = 220 96MB 12s 15.8s 3ms 96MB 11.7s 6.7s 8ms 96MB 11.7s 6.7s 8ms

This table show us the specific performance comparison (in seconds) for x1 ∈ L1 ∨
x2 ∈ L2 across different circuit scales (we fix the number of witness to be 210).

Acknowledgments. We are supported by the National Key Research and Develop-
ment Program of China (Grant No. 2023YFB4503203), the Strategic Priority Research
Program of Chinese Academy of Sciences (Grant No. XDB0690200), and the National
Natural Science Foundation of China (Grant No. 62372447 and No. 61932019).

Extending Groth16 for Disjunctive Statements 17

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In:
Advances in Cryptology - ASIACRYPT 2002. pp. 415–432. LNCS 2501, Springer
(2002)

2. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for
composite statements. In: Advances in Cryptology - CRYPTO 2018. pp. 643–673.
LNCS 10993, Springer (2018)

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. Des. Codes Cryptogr. 91(11), 3379–3424
(2023)

4. Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Taka-
hashi, A.: ECLIPSE: enhanced compiling method for pedersen-committed zksnark
engines. In: PKC 2022. pp. 584–614. LNCS 13177, Springer (2022)

5. Arun, A., Bonneau, J., Clark, J.: Short-lived zero-knowledge proofs and signa-
tures. In: Advances in Cryptology - ASIACRYPT 2022. pp. 487–516. LNCS 13793,
Springer (2022)

6. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n partial knowl-
edge. In: Advances in Cryptology - CRYPTO 2021. pp. 65–91. LNCS 12828,
Springer (2021)

7. Avitabile, G., Botta, V., Friolo, D., Venturi, D., Visconti, I.: Compact proofs of par-
tial knowledge for overlapping CNF formulae. IACR Cryptol. ePrint Arch. p. 1488
(2024)

8. Avitabile, G., Botta, V., Friolo, D., Visconti, I.: Efficient proofs of knowledge for
threshold relations. In: Computer Security - ESORICS 2022. pp. 42–62. LNCS
13556, Springer (2022)

9. Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient non-
interactive zero-knowledge proofs in cross-domains without trusted setup. In: PKC
2019. pp. 286–313. LNCS 11442, Springer (2019)

10. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In: Advances
in Cryptology - CRYPTO 2021. pp. 92–122. LNCS 12828, Springer (2021)

11. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Advances in Cryptology - CRYPTO 2019. pp. 701–732. LNCS
11694, Springer (2019)

12. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474 (2014)

13. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Snarks for C: veri-
fying program executions succinctly and in zero knowledge. In: Advances in Cryp-
tology - CRYPTO 2013. pp. 90–108. LNCS 8043, Springer (2013)

14. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Advances in Cryptology -
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer (2019)

15. Benet, J., Greco, N.: Filecoin: A decentralized storage network. Protocol Labs pp.
1–36 (2017)

16. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: TCC 2013. pp. 315–333.
LNCS 7785, Springer (2013)

18 Xudong Zhu, Xinxuan Zhang, Xuyang Song, et al.

17. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: Proceedings of the 20th Annual ACM Symposium
on Theory of Computing - STOC’88. pp. 103–112. ACM (1988)

18. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized cryptocurrency
at scale. IACR Cryptol. ePrint Arch. p. 352 (2020)

19. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: A toolbox
for more efficient universal and updatable zksnarks and commit-and-prove exten-
sions. In: Advances in Cryptology - ASIACRYPT 2021. pp. 3–33. LNCS 13092,
Springer (2021)

20. Campanelli, M., Fiore, D., Querol, A.: Legosnark: Modular design and composi-
tion of succinct zero-knowledge proofs. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019. pp. 2075–2092.
ACM (2019)

21. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017. pp. 1825–1842. ACM
(2017)

22. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: Advances in Cryptology - CRYPTO 2016. pp. 499–530. LNCS 9816, Springer
(2016)

23. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.P.: Marlin: Prepro-
cessing zksnarks with universal and updatable SRS. In: Advances in Cryptology -
EUROCRYPT 2020. pp. 738–768. LNCS 12105, Springer (2020)

24. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography. In: Advances in Cryptology - EUROCRYPT 2020. pp.
769–793. LNCS 12105, Springer (2020)

25. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved
or-composition of sigma-protocols. In: TCC 2016-A. pp. 112–141. LNCS 9563,
Springer (2016)

26. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/offline
OR composition of sigma protocols. In: Advances in Cryptology - EUROCRYPT
2016. pp. 63–92. LNCS 9666, Springer (2016)

27. arkworks contributors: arkworks zksnark ecosystem (2022), https://arkworks.rs
28. Cramer, R.: Modular design of secure yet practical cryptographic protocols (1997),

https://api.semanticscholar.org/CorpusID:60892379
29. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and sim-

plified design of witness hiding protocols. In: Advances in Cryptology - CRYPTO
’94. pp. 174–187. LNCS 839, Springer (1994)

30. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella: Turning
shabby x.509 certificates into elegant anonymous credentials with the magic of
verifiable computation. In: 2016 IEEE Symposium on Security and Privacy (SP).
pp. 235–254 (2016)

31. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Advances in Cryptology - CRYPTO ’86. pp. 186–194.
LNCS 263, Springer (1986)

32. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR
Cryptol. ePrint Arch. p. 953 (2019)

Extending Groth16 for Disjunctive Statements 19

33. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the ethereum
blockchain. In: Financial Cryptography and Data Security. pp. 265–278. Springer
(2019)

34. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols
using signatures. In: Advances in Cryptology - EUROCRYPT 2003. pp. 177–194.
LNCS 2656, Springer (2003)

35. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols
using signatures. J. Cryptol. 19(2), 169–209 (2006)

36. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Advances in Cryptology - EUROCRYPT 2013.
pp. 626–645. LNCS 7881, Springer (2013)

37. Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: Faster zero-knowledge for boolean
circuits. In: 25th USENIX Security Symposium, USENIX Security 16. pp. 1069–
1083. USENIX Association (2016)

38. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: A frame-
work to compose $\varsigma $-protocols for disjunctions. In: Advances in Cryp-
tology - EUROCRYPT 2022. pp. 458–487. LNCS 13276, Springer (2022)

39. Goel, A., Hall-Andersen, M., Kaptchuk, G., Spooner, N.: Speed-stacking: Fast
sublinear zero-knowledge proofs for disjunctions. In: Advances in Cryptology -
EUROCRYPT 2023. pp. 347–378. LNCS 14005, Springer (2023)

40. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

41. Golovnev, A., Lee, J., Setty, S.T.V., Thaler, J., Wahby, R.S.: Brakedown: Linear-
time and field-agnostic snarks for R1CS. In: Advances in Cryptology - CRYPTO
2023. pp. 193–226. LNCS 14082, Springer (2023)

42. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Ad-
vances in Cryptology - ASIACRYPT 2010. pp. 321–340. LNCS 6477, Springer
(2010)

43. Groth, J.: On the size of pairing-based non-interactive arguments. In: Advances in
Cryptology - EUROCRYPT 2016. pp. 305–326. LNCS 9666, Springer (2016)

44. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Advances in Cryptology - EUROCRYPT 2015. pp. 253–280.
LNCS 9057, Springer (2015)

45. Guillou, L.C., Quisquater, J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Advances in
Cryptology - EUROCRYPT ’88. pp. 123–128. LNCS 330, Springer (1988)

46. Hazay, C., Heath, D., Kolesnikov, V., Venkitasubramaniam, M., Yang, Y.:
Logrobin++: Optimizing proofs of disjunctive statements in vole-based ZK. IACR
Cryptol. ePrint Arch. p. 1427 (2024)

47. Heath, D., Kolesnikov, V.: Stacked garbling - garbled circuit proportional to longest
execution path. In: Advances in Cryptology - CRYPTO 2020. pp. 763–792. LNCS
12171, Springer (2020)

48. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: Advances in Cryptology - EUROCRYPT 2020. pp. 569–598. LNCS 12107,
Springer (2020)

49. Heath, D., Kolesnikov, V.: sf logstack: Stacked garbling with o(b log b) computa-
tion. In: Advances in Cryptology - EUROCRYPT 2021. pp. 3–32. LNCS 12698,
Springer (2021)

50. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Advances in Cryptology - ASIACRYPT 2010. pp.
177–194. LNCS 6477, Springer (2010)

20 Xudong Zhu, Xinxuan Zhang, Xuyang Song, et al.

51. Kolesnikov, V.: $$\mathsf {Free\ }{} \mathtt{IF} $$: How to omit inactive
branches and implement S -universal garbled circuit (almost) for free. In: Advances
in Cryptology - ASIACRYPT 2018. pp. 34–58. LNCS 11274, Springer (2018)

52. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: TCC 2012. pp. 169–189. LNCS 7194, Springer (2012)

53. Lipmaa, H.: On black-box knowledge-sound commit-and-prove snarks. In: Ad-
vances in Cryptology - ASIACRYPT 2023. pp. 41–76. LNCS 14439, Springer (2023)

54. Lipmaa, H.: Polymath: Groth16 is not the limit. In: Advances in Cryptology -
CRYPTO 2024. pp. 170–206. LNCS 14929, Springer (2024)

55. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019. pp. 2111–2128. ACM (2019)

56. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Advances in
Cryptology - EUROCRYPT ’96. pp. 387–398. LNCS 1070, Springer (1996)

57. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Advances in
Cryptology — EUROCRYPT ’96. pp. 387–398. Springer (1996)

58. Raymond, M., Evers, G., Ponti, J., Krishnan, D., Fu, X.: Efficient zero knowledge
for regular language. IACR Cryptol. ePrint Arch. p. 907 (2023)

59. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Advances in Cryp-
tology - ASIACRYPT 2001. pp. 552–565. LNCS 2248, Springer (2001)

60. Rondelet, A., Zajac, M.: ZETH: on integrating zerocash on ethereum. CoRR
abs/1904.00905 (2019)

61. Schnorr, C.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

62. Setty, S.T.V.: Spartan: Efficient and general-purpose zksnarks without trusted
setup. In: Advances in Cryptology - CRYPTO 2020. pp. 704–737. LNCS 12172,
Springer (2020)

63. Yang, Y., Heath, D., Hazay, C., Kolesnikov, V., Venkitasubramaniam, M.: Batch-
man and robin: Batched and non-batched branching for interactive ZK. In: Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2023. pp. 1452–1466. ACM (2023)

64. Zeng, G., Lai, J., Huang, Z., Wang, Y., Zheng, Z.: Dag-Σ: A dag-based sigma
protocol for relations in CNF. In: Advances in Cryptology - ASIACRYPT 2022.
pp. 340–370. LNCS 13792, Springer (2022)

65. Zhang, J., Fang, Z., Zhang, Y., Song, D.: Zero knowledge proofs for decision tree
predictions and accuracy. In: Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security. p. 20392053. CCS ’20, ACM (2020)

66. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its
applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and
Privacy, SP 2020. pp. 859–876. IEEE (2020)

67. Zhang, M., Chen, Y., Yao, C., Wang, Z.: Sigma protocols from verifiable secret
sharing and their applications. In: Advances in Cryptology - ASIACRYPT 2023.
pp. 208–242. LNCS 14439, Springer (2023)

68. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vsql: Ver-
ifying arbitrary sql queries over dynamic outsourced databases. In: 2017 IEEE
Symposium on Security and Privacy (SP). pp. 863–880 (2017)

69. Zhao, Z., Chan, T.H.H.: How to vote privately using bitcoin. In: Information and
Communications Security. pp. 82–96. Springer International Publishing (2016)

