
This paper has been accepted at 58th Asilomar Conference on Signals, Systems, and

Computers, 2024.

DL-SCADS: Deep Learning-Based Post-Silicon
Side-Channel Analysis Using Decomposed Signal

Dipayan Saha and Farimah Farahmandi
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA

dsaha@ufl.edu, farimah@ece.ufl.edu

Abstract—Side-channel analysis (SCA) does not aim at the
algorithm’s weaknesses but rather its implementations. The rise
of machine learning (ML) and deep learning (DL) is giving
adversaries advanced capabilities to perform stealthy attacks. In
this paper, we propose DL-SCADS, a DL-based approach along
with signal decomposition techniques to leverage the power of
secret key extraction from post-silicon EM/power side-channel
traces. We integrate previously proven effective ideas of model
ensembling and automated hyperparameter tuning with signal
decomposition to develop an efficient and robust side-channel
attack. Extensive experiments are performed on Advanced En-
cryption Standard (AES) and Post-Quantum Cryptography (PQC)
to demonstrate the efficacy of our approach. The evaluation of
the performance of the side-channel attack employing various
decomposition techniques and comparison with the proposed
approach in a range of datasets are also tabulated.

Index Terms—Side-Channel Analysis, Deep Learning, Signal
Decomposition, Empirical Mode Decomposition

I. INTRODUCTION

The rapid growth of embedded devices, driven by the prolif-
eration of IoT technologies, has been paralleled by an alarming
increase in hardware security threats, exposing these systems to
critical attacks such as side-channel analysis (SCA) [1]. Side-
channel attacks make use of the physical environment (software
or hardware) of a cryptosystem (timing, power, electromagnetic
radiations, etc.) to retrieve the secret information of microelec-
tronics. Since their discovery in the 1990s [2], side-channel
attacks have been the focus of extensive research. However,
deep learning (DL)-driven side-channel attacks [3] have gained
popularity due to their stealthy and highly effective nature,
making them a significant threat. The major benefit of such
DL-based techniques is the ability of these approaches to break
through even in strong masking and hiding countermeasures.
Despite their success, DL-based approaches in side-channel
analysis have room for improvement, particularly in enhancing
the feature extraction step for more efficient attacks.

Signal decomposition is another powerful processing tech-
nique that unleashes the intrinsic features unseen in raw signals.
Very few works in the domain of side-channel analysis have
adopted signal decomposition for key recovery. Moreover,
existing related works based on signal decomposition used it to
denoise signals as a pre-processing step [4]. This leaves room
for investigating the potentiality of the feature extraction of
signal decomposition techniques for the SCA task. To the best
of our knowledge, the proposed DL-SCADS is the first work
that utilizes signal decomposition as a feature extraction step
for training neural networks to execute a side-channel attack.

A. Specific Contributions

The specific contributions of this work are multifold:
• Implementation of the signal decomposition technique

along with the deep learning approach to take advantage
of the power of secret key extraction from power/EM
side-channel traces in the presence of different masking
and hiding countermeasures.

• Integration of model ensembling and automated hyper-
parameter tuning with the idea of signal decomposition
to develop an efficient and robust side-channel attack on
Advanced Encryption Standard (AES) and Post-Quantum
Cryptography (PQC).

• Evaluation of side-channel attack performance employing
various decomposition techniques and comparison with
the proposed approach in various datasets.

B. Related Works

In the literature, research on profiling side-channel attacks
is increasing due to the advantages these techniques have.
However, effective hyperparameter tuning remains a challeng-
ing aspect. Wu et al. [5] demonstrated the effectiveness of
automated hyperparameter tuning through Bayesian optimiza-
tion, enabling more successful side-channel attacks. Similarly,
Zaid et al. [6] explored efficient, shallow convolutional neural
network (CNN) architectures using techniques such as weight
and gradient visualization and heatmaps. Van et al. [7] focused
on model compression through mimicking strategies, while
Perin et al. [8] advocated for ensemble models to enhance
attack generalization. The effectiveness of transferring 1-D
side-channel traces to 2-D images was also investigated in [9].

The paper is organized as follows: Section II outlines the
proposed methodology. Section III details the experimental
setup and results. Finally, Section IV provides the conclusion.

II. PROPOSED METHODOLOGY

Empirical Mode Decomposition (EMD) [10] is an
observation-driven method that decomposes a signal into
intrinsic mode functions (IMFs) by analyzing local oscillatory
behavior. In this study, we employ EMD as a feature extraction
technique for deep learning-based side-channel attacks (SCA).
Figure 1 provides an overview of the proposed approach.

A. Algorithms

The proposed methodology, like other profiling side-channel
attacks, comprises two stages; profiling and attack. The Algo-
rithm 1 represents the profiling stage and Algorithm 2 outlines

Fig. 1: Overview of proposed methodology DL-SCADS.

Algorithm 1 Profiling Stage of DL-SCADS
1: Input: Raw (tir ∈ Tr, i = 1, 2, 3, ..., n), plaintext (pi ∈ P ,

i = 1, 2, 3, ..., n), key (ki ∈ K, i = 1, 2, 3, ..., n)
2: Output: Trained NN
3: Apply signal decomposition on raw trace Tr and derive

T j
r , j = 0, 1, 2, ..., N

4: Calculate intermediate value vi from (pi,ki) and set as label
(li ∈ L, i = 1, 2, 3, ..., n)

5: Take raw trace and Construct the dataset, D = (Tr,L)
6: Split the dataset D into Dtrain, Dval, Dtest

7: Automatic Hyperparameter Tuning:
8: Choose network architecture type based on nature of

dataset
9: Set objective function for Bayesian Optimization

10: Set hyperparameter search space
11: Select best combination of optimization and model hyper-

parameter
12: Neural Network Training:
13: Initialize the weights of neural network
14: Train NN on (Tr,train,Ltrain)
15: return Trained NN
16: for j=0:N do
17: construct dataset, Dj = (T j

r ,L)
18: repeat Lines 6-15 on dataset Dj

19: end for

the attack stage. In the profiling stage, the first step is to apply
a signal decomposition technique and split the raw trace into
multiple decomposed signals / intrinsic mode functions (IMFs)
(Line 3). Before applying the decomposition algorithm, prepro-
cessing steps such as normalization and down-sampling may be
required. The necessity of these pre-processing steps depends
on the nature of the raw trace. In the next step, intermediate
values vi must be calculated from available plaintext pi and the
correct key value ki. These values are labeled to train a neural
network (Line 4). Since model performance varies considerably
depending on the hyperparameters, it is critical to select appro-
priate hyperparameter values. As a result, after the training,
validation, and test datasets have been constructed, a Bayesian

optimization (BO)-based automated hyperparameter technique
[11] is employed to produce the best possible hyperparameters.
To discover a suitable neural network architecture and train the
network efficiently, this technique checks both the optimizer
and the model hyperparameters (Lines 8-11). Later, with the
selected hyperparameters, a neural network model is trained for
the dataset of raw traces. The same process described in Lines
6-15 is then followed for the decomposed signals.

Algorithm 2 Attack Stage of DL-SCADS
1: Input: Raw/decomposed trace Dtest, plaintext Ptest, key

Ktest, Trained NN e, e = 0, 1, 2, ..., N
2: Output: key rank, guessing entropy (GE)
3: for i = 1 : Nexp do
4: for e = 1 : N do
5: Select Nte traces from Dtest,e and shuffle
6: for n = 1 : Nte do
7: Predict probability pt

n,c
e of class c for trace tne

8: using NN e

9: Calculate probability p
tn,kg
e for key kg ∈ [0, 255]

10: end for
11: Calculate aggregated probability for kg using NN e

12: Se(kg) =
∑n

m=1 p
tm,kg
e

13: end for
14: Calculate ensembled probability for key kg
15: S(kg) =

∑N
e=1 Se(kg)

16: Calculate rank for secret key ktest based on S(kg)
17: end for
18: Estimate guessing entropy

In this work, the attack stage, described in Algorithm 2, is
performed in Nexp number of experiments. In each experiment
for evaluation, the Ntr number of traces is chosen from the
test set Ttest and shuffled (Line 3-5). For each trace, the
probability of class prediction is measured for each of the
previously trained neural networks (Line 6-8). From each of
the intermediate values predicted, the corresponding key value
is calculated using the plaintext value (Line 9). Later, the
prediction probabilities of all possible keys for current NN e

are calculated (Line 11-12). As written in Line 14-15, these
probabilities are summed for all NN e and then a key ranking
algorithm is applied to these scores to determine the rank of
the true secret key ktest, identifying the key with the highest
probability as the most likely candidate. (Line 16).

B. Neural Network Architecture Design

In Line 8 of Algorithm 1, the presence of a hiding coun-
termeasure in the AES implementation determines the type
of network architecture. The hiding countermeasure introduces
random delay and creates misalignment in the trace, making
the side-channel attack difficult to execute. CNNs are expected
to perform better in these situations because they have a
unique capacity to detect features of translational invariance,
eliminating the need to align misaligned traces [12]. As a result,
in this work, CNN is chosen as the network architecture if
the implementation includes a hiding countermeasure. MLP is

another key candidate, especially without a hiding countermea-
sure.

After selecting the architecture, Bayesian Optimization (BO)
is applied for automated hyperparameter tuning [11]. BO uses
a probabilistic model, represented by a Gaussian process in
this work, to iteratively explore and exploit the search space,
maximizing the target function with minimal iterations. It deter-
mines the optimal combination of both optimization and model-
specific hyperparameters, which influence the architecture’s
structure. In the case of MLP, the number of fully connected
layers (FC), the percentage of neurons in the initial layer,
and the percentage of neuron shrinkage are considered model
hyperparameters. However, the number of convolutional layers,
the number of filters, the stride value in the average pooling, the
percentage of neurons in the early FC layers, and the percentage
of neuron shrinkage in the later FC layers are considered model
hyperparameters for CNN.

After each layer, batch normalization is utilized to speed up
the learning process and add regularization. When necessary,
the dropout layer is also used to prevent overfitting. The task
of attacking AES is formulated as a 256-class classification
problem, since the proposed method is based on an 8-bit inter-
mediate value. Each architecture includes a Softmax function
for 256 classes to predict the probability of the class. In another
task, an attack is performed on the hardware implementation
of Saber targeting the vector multiplication. Since we target
polynomial 4-bit sub-key through the attack, this is a 16-class
classification problem. After the declaration of the function
to be maximized, a search space for these hyperparameters
mentioned above needs to be declared by specifying the cor-
responding bounds. With 10 steps of random exploration, 100
iterations are used to maximize the class accuracy.

III. EXPERIMENTS AND RESULTS

In this work, exhaustive experiments are carried out on both
AES and PQC (Saber [13]) algorithms to evaluate the efficacy
of the proposed methodology DL-SCADS.

A. Datasets and Evaluation Metrics

This work utilizes four publicly available post-silicon trace
datasets for the attack on AES, summarized in Table I. For the
attack on Saber, power traces collected by [14] are used. For
the attack on Saber, training is carried out on 16k traces, and
performance is evaluated on a separate set of 16k traces.

In this work, the performance of the proposed DL-SCADS
technique and other comparison methods is estimated with
respect to the guessing entropy (GE), the success rate (SR), and
the computational complexity. GE indicates the average rank
of the correct key in all possible combinations of key values.
The number of traces required for GE to reach less than 1,
denoted by nGE<1, is considered the key performance metric
in this work. For GE calculation, we perform the attack 100
times with randomly selected sub-samples of the test to find the
average number of traces to achieve. However, the success rate
is the ratio of successful attempts to total attempts to recover the
key. Computational complexity is measured through the total

TABLE I: Description of the datasets used for experiments.

Dataset Side-
Channel Platform Counter-

measure
Feature
size

of
traces

DPA.V4
[15] Power ATmega163

(Software) Masking 4000 5,000

DPA. V2
[16] Power SASEBO

GII(FPGA) NA 3253 100,000

AES RD
[17] Power AVR MCU

(Software) Hiding 3500 50,000

ASCAD
[18] EM

ATmega
8515
(Software)

Masking 700 60,000

TABLE II: Brief overview of network architectures used in
DPA.V2, DPA.V4 and ASCAD datasets

Dataset Input Features # layers Initial % Neural shrink %

DPA.V4 Raw,IMF0-3 {4,4,4,
5, 5}

{0.77,.063,0.188,
0.226,0.189}

{0.74, 0.36,
0.90, 0.44, 0.40}

DPA.V2 Raw,IMF0-2 {4,6,
5, 5}

{0.40,.25,
0.16, 0.10}

{0.63,0.77,
0.78,0.80}

ASCAD Raw,IMF2 {6,4} {0.52,0.445} {0.877,0.708}

number of parameters of the neural network architectures used
in the experiments.

B. Comparison Methods

The performance of the proposed methodology is compared
with that of some different strategies. A brief discussion of the
comparison methods goes as follows:

• DL-Raw: Only raw traces are used in this approach to
train a neural network requiring no model ensembling.

• DL-EMD Denoising: In this approach, EMD is used to
denoise the raw trace, and then the denoised trace is fed
into the neural network architecture.

• DL-HVD: In DL-HVD, the IMFs generated by Hilbert
Vibration Decomposition (HVD) [19] are used to train a
deep neural network to perform a profiling attack.

• DL-VMD: DL-VMD uses the modes generated by Vari-
ation Mode Decomposition (VMD) [20] to execute the
profiling attack through deep learning.

C. Model Setup

As described in Section II-B, the neural network architectures
are tailored to the datasets. For DPA.V4, DPA.V2, and ASCAD
datasets, MLP networks are used, while CNNs are implemented
for the AES RD dataset. Hyperparameters were optimized using
a defined search space: number of FC layers (2 to 6), initial
percentage of neurons (0.1 to 1), neuron shrink percentage
(0.1 to 1), learning rates (10−3 to 10−5), batch sizes (32, 64,
128), dropout rates (0.1 to 0.5) and activation functions (ReLU
and SeLU). Table II provides a brief description of the neural
networks used in terms of model hyperparameters tuned by the
algorithm described before. Training employs minibatch opti-
mization using the RMSprop algorithm to minimize categorical
cross-entropy loss

For DPA.V4 and AES RD, raw traces are down-sampled
4 and 3 times, respectively. ReLU is used as the activation
function across all datasets, except ASCAD, which employs
SeLU. For the AES RD dataset, CNNs have 3 convolutional
layers for raw traces and 4 for IMF0 traces, each followed

(a) DPA.V 4 (b) DPA.V 2 (c) AES RD (d) ASCAD

Fig. 2: Performance analysis on DPA.V4, DPA.V2, AES RD, and ASCAD datasets.

TABLE III: Performance comparison of different methods in
terms of nGE<1and computational complexity (in million)

Dataset Metrics DPA.V4 DPA.V2 AES RD ASCAD

DL-Raw nGE<1 >500 88 4 301
Comp.(M) 1.4 6.01 1.02 0.69

DL-EMD nGE<1 470 23 66 639
Comp.(M) 1.45 4.39 0.93 0.4

Denoising nGE<1 478 9 272 557
Comp.(M) 0.16 3.49 1.39 0.39

DL-HVD nGE<1 490 >500 228 766
Comp.(M) 4.15 2.67 6.96 2.21

DL-VMD n GE<1 >500 >500 >500 343
Comp.(M) 4.15 2.17 6.25 1.78

DL-SCADS nGE<1 358 21 5 285
Comp.(M) 2.85 10.4 2.95 1.08

by batch normalization, dropout, and average pooling. Filters
used are [32, 32, 64] for raw traces and [16, 32, 64, 128]
for IMF0, with pooling steps of 3 and 5, respectively. Fully
connected layers include 2 for raw traces and 3 for IMF0,
each followed by batch normalization and dropout. On the other
hand, for the attack on Saber, only MLPs are considered and
the hyperparameters are searched in the same way as described
before.

D. Results

1) DL-SCADS on AES: Figure 2 compares the GE per-
formance of the proposed DL-SCADS method on various
datasets with other approaches. Table III summarizes nGE<1

and computational complexity for all methods. For the DPA.V4
dataset (Figure 2a), DL-SCADS achieves the best performance,
with nGE<1 = 358, outperforming other methods. DL-Raw
shows the highest GE values, failing to reach GE < 1
within 500 traces, while DL-EMD improves performance with
nGE<1 = 470. Combining raw traces with EMD in DL-
SCADS enhances attack performance by adding multidimen-
sional features. DL-EMD Denoising performs comparable to
nGE<1 = 478, though with a lower computational cost. For the
DPA.V2 dataset (Figure 2b), DL-SCADS demonstrates superior
performance with nGE<1 = 21, while DL-EMD achieves
nGE<1 = 23. DL-EMD Denoising achieves the best result at
nGE<1 = 9. In contrast, DL-HVD and DL-VMD show limited
performance, with DL-VMD failing to extract the correct key
effectively.

In the AES RD dataset (Figure 2c), despite the misalignment
of the trace, DL-SCADS and DL-Raw recover the key with
few traces, although DL-Raw slightly outperforms DL-SCADS

TABLE IV: Performance comparison of existing approaches in
terms of nGE<1.

Approach DPA.V2 AES RD ASCAD
Hettwer et al. [9] >1500 - nGE<2 = 275

Van et al. [7] - >100 ≈ 8000
Prouff et al. [18] - - 1146
Picek et al. [21] ≈ 3000 - -
Zaid et al. [6] - 5 191

DL-SCADS 21 5 nGE<1 = 285
nGE<2 = 260

in nGE<1. DL-EMD performance is degraded due to down-
sampling during IMF construction, while DL-EMD Denoising
and DL-VMD underperform. For the ASCAD dataset (Figure
2d), all methods converge within 1000 traces, with DL-SCADS
achieving the lowest nGE<1, reducing it by 16 compared
to DL-Raw. DL-VMD performs better on ASCAD than on
other datasets. In general, DL-SCADS demonstrates the most
consistent performance across datasets.

Table IV compares DL-SCADS with recent work in which
experimental setups are comparable. DL-SCADS excels for
DPA.V2 and matches the best-performing method for AES RD.
For ASCAD, it ranks as the second best method. Due to differ-
ences in experimental setups, DPA.V4 results are excluded. In
particular, this study assumes an unknown mask for DPA.V4,
unlike many works that use known mask values.

2) DL-SCADS on PQC: Figure 3 illustrates the performance
comparison of the proposed approach in Saber with varying
input features. The lowest success rates are observed when
using only raw traces. However, incorporating IMF0 with
the raw traces significantly improves performance, increasing
single-trace attack success rates by 15.66% and multiple-trace
attack success rates by 76.59%. IMF0, the first decomposed
signal generated by EMD, introduces additional observations,
enhancing the effectiveness of profiled attacks. The highest
attack performance is achieved when raw traces are combined
with three decomposed signals (IMF0 to IMF2), resulting in
a success rate of approximately 77.03% for multiple-trace
attacks. Despite the low signal-to-noise ratio (SNR) in this
setup, the computational overhead remains manageable and is
well justified by the substantial performance gains.

Figure 4 summarizes the performance of the side-channel
attack in the Saber algorithm using different signal decompo-
sition techniques for single- and multiple-trace attacks. From
the figure, it can be seen that the DL-SCADS approach out-

Raw Raw + IMF0 Raw + IMF0-1 Raw + IMF0-2 Raw + IMF0-3
Input Features

0

10

20

30

40

50

60

70

80

Su
cc

es
s R

at
e

(%
)

8.30 9.60 10.35 9.45 9.70

37.00

65.34
69.78

77.03 75.06Single-Trace Attack
Multiple-Trace Attack

Fig. 3: Performance of DL-SCADS on Saber using different
combinations of features for single- and multiple-trace attack.

DL-Raw DL-EMD DL-HVD DL-VMD DL-SCADS
Input Features

0

10

20

30

40

50

60

70

Su
cc

es
s R

at
e

(%
)

8.30 8.90 7.95 8.25 9.70

37.00 37.00

31.06

13.00

75.06Single-Trace Attack
Multiple-Trace Attack

Fig. 4: Performance of different signal decomposition tech-
niques on Saber for single-trace and multiple-trace attack.

performs the others. The SR attained by DL-EMD is equal to
the case where only raw traces are used. Interestingly, when
both empirical modes generated by EMD and raw traces are
ensembled simultaneously, the highest success rates are attained
in single-trace and multiple-trace attacks. The EMD features
and raw traces concentrate on completely different target sub-
key classes. Due to these unseen observations, when these
discriminative features are merged, the number of misclassi-
fications decreases.

IV. CONCLUSION

To the best of our knowledge, this is the first work to
combine the feature extraction capability of signal decompo-
sition and DL in the SCA domain. The work proposes DL-
SCADS, which uses EMD to decompose signals and automated
hyperparameter tuning to find the best possible network archi-
tecture with minimum effort. This work performs exhaustive
experiments on both AES and PQC algorithms and compares
the experimental results with existing recent works and other
different decomposition-based approaches. The experimental
results prove the argument that signal decomposition has the
potential to help DL approaches in performing a superior side-
channel attack.

V. ACKNOWLEDGMENT

This work was supported by the U.S. National Science
Foundation (NSF) through the CAREER Award under Grant
2339971.

REFERENCES

[1] S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina, “Sok: Deep learning-
based physical side-channel analysis,” ACM Computing Surveys, vol. 55,
no. 11, pp. 1–35, 2023.

[2] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual Int. Cryptology Conference, pp. 104–
113, Springer, 1996.

[3] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in Security, Privacy,
and Applied Cryptography Engineering: 6th International Conference,
SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings 6,
pp. 3–26, Springer, 2016.

[4] S. Zhang et al., “A highly effective data preprocessing in side-channel at-
tack using empirical mode decomposition,” Security and Communication
Networks, vol. 2019, no. 1, p. 6124165, 2019.

[5] L. Wu, G. Perin, and S. Picek, “I choose you: Automated hyperparameter
tuning for deep learning-based side-channel analysis,” IEEE Transactions
on Emerging Topics in Computing, 2022.

[6] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for effi-
cient cnn architectures in profiling attacks,” IACR Trans. Cryptographic
Hardware and Embedded Systems, vol. 2020, no. 1, pp. 1–36, 2020.

[7] van der Valk et al., “Learning from a big brother-mimicking neural
networks in profiled side-channel analysis,” in 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, IEEE, 2020.

[8] G. Perin, Ł. Chmielewski, and S. Picek, “Strength in numbers: Improving
generalization with ensembles in machine learning-based profiled side-
channel analysis,” IACR Trans. Cryptographic Hardware and Embedded
Systems, pp. 337–364, 2020.

[9] B. Hettwer, T. Horn, S. Gehrer, and T. Güneysu, “Encoding power traces
as images for efficient side-channel analysis,” in IEEE Int. Symposium on
Hardware Oriented Security and Trust (HOST), pp. 46–56, IEEE, 2020.

[10] N. E. Huang et al., “The empirical mode decomposition and the hilbert
spectrum for nonlinear and non-stationary time series analysis,” in Proc.
the Royal Society of London. Series A: mathematical, physical and
engineering sciences, vol. 454, no. 1971, pp. 903–995, 1998.

[11] F. Nogueira, “Bayesian Optimization: Open source constrained global
optimization tool for Python,” 2014.

[12] R. Gens and P. M. Domingos, “Deep symmetry networks,” Advances in
neural information processing systems, vol. 27, pp. 2537–2545, 2014.

[13] D’Anvers et al., “Saber: Module-lwr based key exchange, cpa-secure en-
cryption and cca-secure kem,” in Progress in Cryptology–AFRICACRYPT
2018: 10th International Conference on Cryptology in Africa, Marrakesh,
Morocco, May 7–9, 2018, Proceedings 10, pp. 282–305, Springer, 2018.

[14] J. Park, N. N. Anandakumar, D. Saha, D. Mehta, N. Pundir, F. Rahman,
F. Farahmandi, and M. M. Tehranipoor, “Pqc-sep: Power side-channel
evaluation platform for post-quantum cryptography algorithms.,” IACR
Cryptol. ePrint Arch., vol. 2022, p. 527, 2022.

[15] S. Bhasin et al., “Analysis and improvements of the dpa contest v4 im-
plementation,” in Int. Conf. Security, Privacy, and Applied Cryptography
Engineering, pp. 201–218, Springer, 2014.

[16] F.-X. Standaert, P. Bulens, G. de Meulenaer, and N. Veyrat-Charvillon,
“Improving the rules of the dpa contest.,” IACR Cryptol. ePrint Arch.,
vol. 2008, p. 517, 2008.

[17] J.-S. Coron and I. Kizhvatov, “An efficient method for random delay
generation in embedded software,” in Int. Workshop on Cryptographic
Hardware and Embedded Systems, pp. 156–170, Springer, 2009.

[18] E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumas, “Study of
deep learning techniques for side-channel analysis and introduction to
ascad database,” Cryptology ePrint Archive, 2018.

[19] M. Feldman, “Time-varying vibration decomposition and analysis based
on the hilbert transform,” Journal of Sound and Vibration, vol. 295, no. 3-
5, pp. 518–530, 2006.

[20] K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,”
IEEE Trans. signal processing, vol. 62, no. 3, pp. 531–544, 2013.

[21] S. Picek, I. P. Samiotis, J. Kim, A. Heuser, S. Bhasin, and A. Legay,
“On the performance of convolutional neural networks for side-channel
analysis,” in Int. Conf. Security, Privacy, and Applied Cryptography
Engineering, pp. 157–176, Springer, 2018.

	Introduction
	Specific Contributions
	Related Works

	Proposed Methodology
	Algorithms
	Neural Network Architecture Design

	Experiments and Results
	Datasets and Evaluation Metrics
	Comparison Methods
	Model Setup
	Results
	DL-SCADS on AES
	DL-SCADS on PQC

	Conclusion
	ACKNOWLEDGMENT
	References

