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Abstract

We prove that for any 1 ≤ k ≤ logn, given a VRF setup and assuming secure erasures, there exists a
protocol for Asynchronous Distributed Key Generation (ADKG) that is resilient to a strongly adaptive
adversary that can corrupt up to f < n/3 parties. With all but negligible probability, all nonfaulty
parties terminate in an expected O(k) rounds and send a total expected Õ(n2+1/k) messages.

1 Introduction

Many efficient distributed applications require the use of a distributed key generation (DKG) protocol.
However, the best known asynchronous distributed key generation (ADKG) protocol, that is resilient to a
strongly adaptive adversary that can corrupt up to f < n/3 parties, requires cubic communication [AJM+23].
Recent ADKG implementations, proven resilient to static adversaries only, also require cubic communication
[ZDL+23, DXKKR23], significantly limiting their scalability.

In a recent major advance, [BLL+24, FLT24] show subcubic synchronous distributed key generation
protocols. A key paradigm used in these works and [FMT24] is a recursive structure (in some cases just one
level of recursion) that can be seen as following the classic recursive paradigm of [CW92, BGP92].

We study asynchronous distributed key generation protocols with nearly quadratic expected communi-
cation. Conceptually, our work adopts the recursive paradigm to the asynchronous model.

Our main result is that for any 1 ≤ k ≤ log n, security parameters λ, c, given a VRF setup and assuming
secure erasures, random oracles, and one-more discrete logarithm, there exists a protocol for (high-threshold)
Asynchronous Distributed Key Generation that is resilient to a strongly adaptive adversary that can corrupt
up to f < n/3 parties. Except for a O(2−λ logc n) error probability, all nonfaulty parties terminate in an
expected O(k) rounds and send a total expected Õ(n2+1/k) messages.

For k = log n, this is O(log n) expected time and Õ(n2) communication. For any fixed 0 < ϵ < 1, this is
O(1/ϵ) expected time and Õ(n2+ϵ) communication.

1.1 High-level overview

Recursive partition. We partition the parties recursively, splitting the set into ℓ = n1/k smaller sets of
roughly the same size at each step. This hierarchical partition forms a tree T of depth k and degree ℓ. For
a set S that is a vertex of T , let p(S) be its parent set.

The protocol for S runs a validated asynchronous Byzantine agreement (VABA) protocol on each child.
The output of this agreement is an aggregated PVSS for S and the randomness used for this agreement will
come recursively from its children.
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Input generation via PVSS aggregation. Since the output for the agreement on a child C is an
aggregated PVSS for its parent S = p(C), the protocol for S first constructs validated inputs for the
agreement. That is, parties start by collecting aggregated PVSS transcripts for S that contain (with high
probability) an unpredictable secret. We do this by having each party send a PVSS to a random set of
polylog other parties (using a VRF to make sure this set is indeed near uniform). Parties erase their PVSS
secret before sending it out.

If a party receives sufficiently many PVSS transcripts, it aggregates them to a validated input for the
agreement protocol. Parties can prove that their inputs are valid, so they forward these inputs to each
other to make sure that all parties have inputs for the next stages of the protocol. Moreover, we show
that with high probability, this aggregated PVSS contains a transcript sent by a nonfaulty party that was
generated and erased without that party being corrupted. Hence, the aggregated PVSS is unpredictable to
the adversary even if it corrupts that party following that point.

Base case. To begin the recursion, we start with the small base sets of size O(ℓ) (leaf vertices of T ). On
each such set S, we run any constant expected round and O(|S|3) = O(n3/k) expected communication VABA
protocol. So, a total of n1+2/k for the base layer. The input for this VABA protocol on a base set S is a
validated aggregated PVSS for p(S). Hence the output is some validated aggregated PVSS for p(S).

Recursion. In the recursive step, for a non-leaf set S ∈ V (T ), we assume that each child set C ∈ V (T )
runs a VABA that outputs a validated aggregated PVSS for p(C) = S.

There are several challenges:

1. Even if the fraction of nonfaulty parties in S is 2/3, we are only guaranteed that this holds for one
child node. This means that members of S can only wait for at most one child VABA to output a
valid value. Because the other children may not have enough nonfaulty parties to guarantee liveness.

2. Unfortunately, a child node that has less than a 2/3 fraction of nonfaulty parties might complete its
VABA early (this child may have no nonfaulty parties at all). There are three notable concerns for
this ’malicious child ’ case:

(a) The first is that the VABA from this malicious child may output an invalid aggregated PVSS
for S, i.e. with no nonfaulty contributions. We solve this by defining a valid output of a child
VABA to include a proof that the PVSS is valid and indeed contains 2/3− ϵ fraction of randomly
chosen parties from S where these random choices can also be verified. This is also why parties
aggregate their transcripts in S and not in any of the child nodes because we don’t know which
of the child nodes might have a dishonest majority.

(b) The second is that a malicious child node may generate several outputs from its child VABA. We
solve this by running a non-equivocation protocol by the set S to guarantee there is at most one
such valid output for S (assuming that S has less than a 1/3 fraction of faulty parties).

(c) The third is that a malicious child may cause its nonfaulty parties to send too many messages.
We overcome this by limiting the number of views in each child VABA at the cost of a negligible
probability of non-termination.

Assuming that S has a 2/3 fraction of nonfaulty parties, each nonfaulty member will eventually see some
aggregated PVSS for S from the (at most one) output of some child VABA that passeed the non-equivocation
protocol. Each such aggregated PVSS is valid and even though S may have a linear number of parties, there
are at most n1/k possible aggregated PVSSs to choose from.

NWH variant and proposal election protocol. The VABA protocol that we use is a (new) variation
of No-Waitin-Hotstuff [AJM+21] that we call Succinct-Knowledge-NWH which uses SNARKS to reduce the
communication complexity to Õ(|S|2) per view. SK-NWH runs a proposal election protocol in each view
and this proposal election needs a weak coin to obtain liveness.
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Weak coin protocol The proposal election protocol allows parties to commit to proposals using a provable
AVID protocol and then uses a weak coin protocol to determine which of the proposals to output. Unlike
previous proposal election protocols, it also deals with the case that the weak common coin may choose
parties that did not commit any input. The crux of our proposal election protocol is a new weak coin
protocol.

The weak coin protocol is built from a setup protocol we call weak distributed coin generation (WDCG)
that can be followed by any number of invocations of a weak coin flip protocol. Each instance of the weak
coin flip protocol has a communication complexity of Õ(|S|2).

The core of this paper is a recursive protocol for WDCG. For a set S, the WDCG protocol first generates
inputs for each child and recursively sets up the consensus for each child by calling a WDCG protocol with
fewer parties. Parties then call a VABA protocol (SK-NWH) that uses the output of this recursive WDCG
protocol for its randomness, finally outputting an aggregated transcript. The output of each child VABA
is used as input to a non-equivocation protocol and then each party can choose one aggregated transcript,
from a set of at most n1/k options (at most one option per child).

Weak distributed coin generation protocol and weak coin flip protocol. The goal of a WDCG is
to enable a weak coin flip protocol, that with constant probability, outputs a uniformly random validated
index in 1, . . . , |S| (and with the remaining probability, parties can disagree).

Given that each party chooses one transcript from a set of at most n1/k options, the goal is to build a
weak distributed coin generation (WDCG) for S. The challenge is to build such a WDCG for a set S at a
cost of just Õ(|S|2n1/k) communication without being able to reach agreement in S.

Weighted binding cover gather protocol. The crux of the weak distributed coin generation protocol
is a new binding cover gather protocol that we call weighted gather. In order to pay just Õ(|S|2n1/k)
communication for the weighted binding cover gather protocol, we use the fact that there are only n1/k

possible aggregated PVSS transcripts to choose from and compress the choice of potentially n parties, to a
weighted vector of length n1/k where each weight is at most log n bits (recording the number of parties that
chose it, instead of their identities).

Each member of the weighted gather protocol implicitly commits to two unique coins that are induced
from the PVSS it committed to, one coin is used to flip a random rank, and the other one is used to flip
a random coin value. The output of the weak distributed coin generation protocol is a weighted vector of
aggregated PVSS transcripts. The guarantee is that each such weighted vector is a subset of a large core
weighted vector.

After outputting a vector, parties can use each PVSS transcript to flip several coins to generate ranks.
The weights determine how many times each coin is flipped, generating more ranks for coins with larger
values in the vector. Finally, the PVSS with the highest rank is chosen and is used once more to flip a single
coin, which is the output from the protocol. With constant probability, the largest rank is associated with
a PVSS that will be flipped by all parties because they all flip any coin determined by the core. If that
happens, they all choose the same transcript to generate the final coin and agree on the output.

Total costs. The weak distributed coin generation protocol runs in Õ(|S|2n1/k) complexity. The NWH and
the weak coin flip run in O(n2) complexity per view, and the weak coin flip has constant success probability
per view when the set S contains less than a 1/3 fraction of faulty parties. After a constant expected number
of rounds and O(|S|2n1/k) expected messages, for such a set S, the VABA protocol on S will complete with
a valid aggregated PVSS for p(S). Moreover, even if it has more than a 1/3 fraction of faulty parties, we
limit the number of views so the total cost is Õ(|S|2n1/k) communication complexity. Summing up, each
level requires O(1) expected time and Õ(n2+1/k) communication. Since there are O(k) levels, from linearity,
the total expected time is O(k) and the total expected communication is Õ(n2+1/k).
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1.2 Future work and open questions

We strongly believe that similar techniques can be adopted for optimally resilient synchronous DKG, getting
O(k) expected time and Õ(n2+1/k) expected communication. Another interesting question is removing the
assumption of a VRF setup and the ability of secure erasures. Finally, for k = log n, can DKG protocols
obtain Õ(n2) communication in o(log n) time, or is there an inherent lower bound?

2 Preliminaries and Model

In this section, we define the model and preliminaries for our paper.

General Notation. Let λ denote the computational security parameter. Throughout the paper, we assume
that global parameters par := (G,GT , p, g, h, e), implicitly parameterized by λ, are fixed and known to all
parties. Here, e : G×G→ GT is a symmetric pairing of prime order p cyclic groups with two independent
generators g, h ∈ G. For two integers a ≤ b, we define the set [a, b] := {a, . . . , b}; if a = 1, we write this set
as [b], and if a = 0, we write it as JbK. For a finite set S, we write x←$ S to denote that x is sampled from S
uniformly at random. We use N to denote the set of positive integers, and N0 the set of non-negative integers.
We use the acronym PPT for probabilistic polynomial-time. We measure the communication complexity of
our distributed protocols in bits.

Vector Notation. Let v = (v1, . . . , vk) be a vector in Nk
0 . We define v[i] := vi for every i ∈ [k]. In addition,

for v, u ∈ Nk
0 , we write v ≤ u if for all i ∈ [k], vi ≤ ui. Similarly, for v1, . . . , vm ∈ Nk

0 , max{v1, . . . , vm} is the
vector u such that for all i ∈ [k], u[i] = max{vj [i] | j ∈ [m]}. Finally, for v ∈ Nk

0 , we define |v| :=
∑k

i=1 v[i].

Adversarial and Network Model. We consider a complete network of n parties P := {1, . . . , n} connected
by pairwise private and authenticated channels. We consider an asynchronous network, where any message
can be delayed arbitrarily under the constraint that messages sent between nonfaulty parties must eventually
be delivered. We assume a Byzantine adversary who can corrupt up to f < n/3 parties maliciously and may
cause them to deviate from the protocol arbitrarily. Further, the adversary is strongly adaptive: i.e., it can
corrupt a party at any time during the protocol execution, and delete or substitute any undelivered message
that this party sent while being nonfaulty. We may also refer to the nonfaulty parties as honest and to the
faulty parties as corrupt or malicious.

Public Key Infrastructure. As common in this line of work on distributed cryptographic protocols, we
assume that parties have established a bulletin board public key infrastructure (PKI) before the protocol
execution. Concretely, we assume that every party i has a public-secret key pair (pki, ski) for a digital
signature scheme DS = (KGenDS,SignDS,VerifyDS) and an encryption-decryption key pair (eki, dki) for a
public key encryption scheme, where pki and eki are known to all parties but ski and dki are known only to
i. For this, we assume that each party generates its keys locally (where corrupt parties may choose their keys
arbitrarily) and then makes its public keys known to everybody using a public bulletin board. Further, we
assume a trusted setup for generating key pairs (p̃k, s̃ki) of parties for a verifiable random function (VRF).
In particular, this thwarts common grinding attacks.

Idealized Models. We assume the random oracle model (ROM) [BR93]. In this model, a hash function
H is treated as an idealized random function to which the adversary gets oracle access. Further, we assume
the algebraic group model (AGM) [FKL18]. Here, all algorithms are treated as algebraic (over the group G):
whenever an algorithm A outputs a group element ζ ∈ G, it additionally outputs a vector z = (z1, . . . , zk)
of integers such that ζ =

∏
i∈[k] g

zi
i , where (g1, . . . , gk) ∈ Gk is the list of group elements A has received so

far (either as input or as oracle responses).

Computational Assumptions. We rely on the one-more discrete logarithm (OMDL) assumption [BNPS03]
for our security proofs. Throughout the paper, we denote by DLg an oracle that on input ξ := gz ∈ G returns
the discrete logarithm z ∈ Zp of ξ to base g.

For an algorithm A and k ∈ N, we consider the following experiment:
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• Offline Phase. Sample (z1, . . . , zk)← Zk
p and set ξi := gzi ∈ G for all i ∈ [k].

• Online Phase. Run A on input (G, p, g, h) and (ξ1, . . . , ξk). Here, A gets access to the oracle DLg.

• Winning Condition. Let (z′1, . . . , z
′
k) denote the output of A. Return 1 if (i) z′i = zi for all i ∈ [k], and

(ii) DLg was queried at most k − 1 times during the online phase. Otherwise, return 0.

We say that the one-more discrete logarithm assumption of degree k holds relative to (G, p, g, h) if for any
PPT algorithm A, the probability that the above experiment outputs 1 is negligible in λ.

2.1 Cryptographic and Consensus Primitives

In this section, we introduce the cryptographic and consensus primitives used in the paper. For formal
definitions of syntax and security, we refer to Appendix A.

Aggregatable Publicly Verifiable Secret Sharing. In a verifiable secret sharing (VSS) scheme, a dealer
distributes shares of a secret among a group of parties, ensuring the secret can only be reconstructed if a
threshold number of these parties collaborate. Publicly verifiable secret sharing (PVSS) [Sta96] extends this
concept by allowing any external entity to verify the correctness of the secret sharing via a single transcript.
We focus on PVSS schemes that enable the aggregation of multiple secret sharings while maintaining public
verifiability, also referred to as aggregatable PVSS (APVSS) schemes [GJM+21].

Distributed Coin Flip from APVSS. The work of [GJM+21] demonstrates how to use an aggregated
PVSS transcript to derive a non-interactive distributed coin flipping protocol. At a high level, the APVSS
transcript can be used as a threshold key setup for a unique threshold signature similar to BLS, which then
gives a coin via a random oracle on the threshold signature. In more detail, each party i derives a partial
signature on some message identifier using its secret decryption key dki, done via the PartialCoin algorithm
and verified via the VerifyPartial algorithm on input eki. Then, any n−f valid partial signatures can then be
combined into a full signature via the AggregateCoin algorithm. Finally, using a random oracle the common
coin can be derived from that message identifier.

Error Correcting Codes. We use standard (q, b)-Reed-Solomon codes [RS60]. These codes enable the
encoding of b data symbols into a codeword of q symbols (using the Encode algorithm), such that any subset
of b symbols from the codeword is sufficient to recover the original data (using the Decode algorithm). In
our protocols, we use Reed-Solomon codes with varying parameters (q, b). Specifically, q corresponds to the
number of parties in a designated subset Q ⊂ P := {1, . . . , n}, and b := ⌈q/3⌉. In the special case Q = P,
the parameters are (q, b) = (n, f +1), where n is the total number of parties and f the corruption threshold.
This choice ensures robust error correction while preserving security against Byzantine parties.

Cryptographic Accumulator. A cryptographic accumulator [BdM94] is a primitive that allows elements
from a set D to be “accumulated” into a single (accumulation) value z, using the EvalAcc algorithm. Further,
for any element in D, it provides a compact proof of membership, called a witness, which can be generated
using the WitnessAcc algorithm and then verified using the VerifyAcc algorithm. The standard security notion
for accumulators is collision-resistance, which ensures that an adversary cannot create invalid membership
proofs. A common example of a cryptographic accumulator is a Merkle tree. Here, the tree’s root serves as
the accumulation value, while authentication paths act as membership proofs for individual leaves.

Verifiable Random Function. A verifiable random function (VRF) allows to produce a pseudorandom
string u along with a proof of correctness π. In more detail, on input a message m and a secret key s̃k, a
verifiable random function VRF produces a pseudorandom string u = VRF(s̃k,m) along with a proof π. Using
the proof π and the public key p̃k (corresponding to s̃k), anyone can verify that u was computed correctly
without revealing any information about s̃k. Looking ahead, we will make use of VRFs for randomized local
committee election, and we note that this use does not require a global source of randomness. However, we
assume a trusted setup for generating the VRF key pairs of parties to thwart known grinding attacks.
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Non-Interactive Zero-Knowledge Proofs. In our protocols, we use non-interactive zero-knowledge
(NIZK) proofs [BFM88]. Informally, a non-interactive proof system for an NP relation R with respect to a
random oracle H is a pair of PPT algorithms PS = (PProve,PVerify) such that (i) PProveH takes a statement
x and a witness w with (x,w) ∈ R as input and outputs a proof π, and (ii) PVerifyH takes the statement x
and the proof π as input and outputs a decision bit 0 (accept) or 1 (accept). Regarding security properties,
completeness requires that honestly computed proofs for (x,w) ∈ R are always accepted. And soundness
requires that no malicious prover can find an accepting proof for a false statement x, i.e., a statement such
that (x,w) /∈ R for all w. Finally, zero-knowledge requires that there is a simulator that can simulate proofs
without knowing the witness w by programming the random oracle H appropriately. For readability, we will
omit the random oracle associated to PS in our descriptions from now on.

3 Building Blocks

In this section, we describe and analyze the building blocks for our DKG protocol.

3.1 Non-Equivocation Rounds

We construct two protocols for non-equivocation, NonEquiv and AbandonableNonEquiv. In both, every party
has an input mi and a tag that can be thought of as a round identifier. Every party can output a proof
π, which signifies that this is the unique value that it input into the protocol. Parties can verify this proof
using NEVerify in the case of the NonEquiv protocol and ANEVerify in the case of the AbandonableNonEquiv
protocol. The AbandonableNonEquiv protocol has the additional property that parties can “abandon” the
round and cause it to halt. By that we mean that after f+1 nonfaulty parties abandon the protocol, no more
values can be input into the protocol, meaning that no new values will receive valid proofs. Note that the
NonEquiv protocol is similar to the provable broadcast primitive of [AMS18], and the AbandonableNonEquiv
is similar to the locked broadcast primitive described in [AS22]. Looking ahead, we use the abandonability
property in order to get the cover property for our weighted gather protocol.

3.1.1 Definition

We start by defining a non-equivocation protocol. In this protocol, each party i receives an input mi and a
tag tag, and may output a proof πi.

Definition 1. A non-equivocation protocol (NonEquiv,NEVerify) has the following properties, assuming all
nonfaulty parties call the protocol with the same tag:

• Validity. If a nonfaulty party i outputs πi, then NEVerify(i,mi, πi, tag) = 1.

• Non-Equivocation. The adversary cannot generate two tuples (j,m, π) and (j,m′, π′) such that
m ̸= m′ and NEVerify(j,m, π, tag) = NEVerify(j,m′, π′, tag) = 1.

• Liveness. Every nonfaulty party eventually outputs a proof.

An abandonable non-equivocation protocol is a non-equivocation protocol with the additional abandon-
ability property, indicating that parties can abandon the protocol, while disallowing new outputs. Formally,
we define this as follows.

Definition 2. An abandonable non-equivocation protocol (AbandonableNonEquiv,ANEVerify) has the follow-
ing properties, assuming all parties call the protocol with the same tag:

• Validity. If a nonfaulty party i outputs πi, then ANEVerify(i,mi, πi, tag) = 1.

• Non-Equivocation. The adversary cannot generate two tuples (j,m, π) and (j,m′, π′) such that
m ̸= m′ and ANEVerify(j,m, π, tag) = ANEVerify(j,m′, π′, tag) = 1.
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• Abandonability. At the time f + 1 nonfaulty parties abandon the protocol, the following holds: for
every i ∈ [n], there is a value mi such that the adversary cannot generate a tuple (m′

i, π
′
i) such that

m′
i ̸= mi and ANEVerify(i,m′

i, π
′
i, tag) = 1.

• Liveness. Either every nonfaulty party eventually outputs a proof, or some nonfaulty party abandons
the protocol.

3.1.2 Construction

The NonEquiv protocol has two logical rounds. In the first round, every party sends a “help” message with
its input mi to all parties. After receiving this message, parties reply with a signature on the first message
received from any party in a “sig” message. Parties wait to receive n − f such messages, and then output
a proof that they have received this many signatures. Since any set of n − f parties is a quorum, any two
sets of n − f parties will contain a common nonfaulty party that is only willing to sign one message per
sender, guaranteeing non-equivocation. The AbandonableNonEquiv protocol starts with the same two rounds,
and then adds two identical rounds. Concretely, after receiving n− f “sig” messages, parties send a “lock”
message with their input mi and the generated proof. Parties then reply with a “lock” message including
signatures. Finally, parties output a proof that they have received enough “lock” messages. These additional
rounds allow us to achieve the abandonability property by adding a barrier for entering the protocol. If f+1
parties abandon the protocol, they will not send any new “lockSig” messages. This means that only values
for which they have already received non-equivocation proofs might get enough “lockSig” messages, and
parties cannot change their values if they already sent a non-equivocation proof.

For our constructions, we define the following non-interactive proof system. PSTS = (PProveTS,PVerifyTS)
for the relation

RTS :=
{(

p⃗k,m;S, (σi)i∈S

) ∣∣∣ |S| = n− f, ∀i ∈ S : VerifyDS(pki,m, σi) = 1
}
,

where p⃗k := (pk1, . . . , pkn) is the list of all public keys from the PKI setup. Essentially, this proof system is
a threshold signature, proving knowledge of n− f signatures on a message from different parties.

Algorithm 1 NonEquiv(mi, tag)

1: sigsi ← ∅
2: send ⟨“help”,mi, tag⟩ to all parties

// Sign received messages
3: upon receiving the first ⟨“help”,mi, tag⟩ message from j, do
4: send ⟨“sig”,SignDS(ski, (j,mj , tag))⟩ to j

// Collect signatures, output a proof once n− f have been received
5: upon receiving the first ⟨“sig”, σj⟩ message from j, do
6: if VerifyDS(pkj , (i,mi, tag), σj) = 1 then
7: sigsi ← sigsi ∪ {(j, σj)}
8: if |sigsi| = n− f then

9: output PProveTS(p⃗k, (i,mi, tag); sigsi), but continue sending messages

Algorithm 2 NEVerify(i,m, π, tag)

1: return PVerifyTS(p⃗k, (i,m, (“lockSig”, tag));π)

3.1.3 Security Analysis

Theorem 1. The pair (NonEquiv,NEVerify) as described in Algorithms 1 and 2 is a non-equivocation protocol
resilient to f Byzantine faults if n > 3f .
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Algorithm 3 AbandonableNonEquiv(mi, tag)

1: sigsi ← ∅, locksigsi ← ∅
2: send ⟨“help”,mi, tag⟩ to all parties

// Non-equivocation of inputs
3: upon receiving the first ⟨“help”,mi, tag⟩ message from j, do
4: send ⟨“sig”,SignDS(ski, (j,mj , (“sig”, tag)))⟩ to j

5: upon receiving the first ⟨“sig”, σj⟩ message from j, do
6: if VerifyDS(pkj , (i,mi, (“sig”, tag))) = 1 then
7: sigsi ← sigsi ∪ {(j, σj)}
8: if |sigsi| = n− f then

9: send ⟨“lock”,mi,PProveTS(p⃗k, (i,mi, (“sig”, tag)); sigsi)⟩ to all parties

// Provide proof that non-equivocation proof has been heard before abandoning
10: upon receiving the first ⟨“lock”,mj , πj⟩ message from j, do

11: if PVerifyTS(p⃗k, (j,mj , (“sig”, tag));πj) = 1 then
12: send ⟨“lockSig”,SignDS(ski, (j,mj , (“lockSig”, tag)))⟩ to j

13: upon receiving the first ⟨“lockSig”, σj⟩ message from j, do
14: if VerifyDS(pkj , (i,mi, (“lockSig”, tag))) = 1 then
15: locksigsi ← locksigsi ∪ {(j, σj)}
16: if |locksigsi| = n− f then

17: output PProveTS(p⃗k, (i,mi, (“lockSig”, tag)); locksigsi), but continue sending messages

18: upon receiving an abandon signal, do
19: terminate and stop sending messages in the AbandonableNonEquiv protocol with tag tag

Algorithm 4 ANEVerify(i,m, π, tag)

1: return PVerifyTS(p⃗k, (i,m, (“lockSig”, tag));π)
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Proof. Each property is proven separately.
Validity. We have to show that if a nonfaulty party i outputs a tuple (outi, πi) from the non-equivocation

protocol, then NEVerify(i, outi, πi, tag) = 1. So assume a nonfaulty party i outputs (outi, πi) from the
protocol, then by construction πi is a threshold signature of weight n − f on outi. In particular, the
underlying threshold signature verification algorithm PVerifyTS verifies and so does NEVerify. This shows the
validity property of the protocol.

Non-Equivocation. We have to show that an adversary cannot generate two tuples (j,m, π) and
(j,m′, π′) for the same party j such that m ̸= m′ and NEVerify(j,m, π, tag) = NEVerify(j,m′, π′, tag) = 1.
By way of contradiction, assume that there are two messages m ̸= m′ with respective proofs π, π′ that
verify. By construction, we know that π and π′ are verifying threshold signatures of weight n − f each. In
particular, by quorum intersection, there is at least one nonfaulty party i that has signed both m and m′.
But this clearly contradicts the requirement that each (nonfaulty) party only signs the first received message
⟨“help”,mi, tag⟩ from any other party, including party j. This shows the non-equivocation property of the
protocol.

Liveness. We have to show that every nonfaulty party ventually outputs a proof and terminates. Since
there are at least n − f nonfaulty parties, each party will eventually receive n − f signatures on its input
message. As such, it will also be able to generate a proof π and terminate. This shows the liveness property
of the protocol.

Theorem 2. The pair (AbandonableNonEquiv,ANEVerify) as described in Algorithms 3 and 4 is an aban-
donable non-equivocation protocol resilient to f Byzantine faults if n > 3f .

Proof. Each property is proven separately.
Validity and Non-Equivocation. The same arguments as in Theorem 1 applies.
Abandonability. We have to show that at the time f + 1 nonfaulty parties abandon the protocol,

then for every i ∈ [n] there is a value mi such that the adversary cannot generate a tuple (m′
i, π

′
i) such

that m′
i ̸= mi and ANEVerify(i,m′

i, π
′
i, tag) = 1. By way of contradiction, assume that there is an index

i ∈ [n] for which the adversary can generate a verifying output tuple (m′
i, π

′
i) such that m′

i ̸= mi. By
construction, we know that π′ is a verifying threshold signature of weight n − f . In particular, there are
at least n − 2f nonfaulty parties that have signed m′

i. On the other hand, by assumption, f + 1 nonfaulty
parties have abandoned the protocol and are already locked on mi. But this is clearly a contradiction by
quorum intersection. This shows the abandonability property of the protocol.

Liveness. We have to show that if no nonfaulty party abandons the protocol, then every nonfaulty party
eventually outputs a proof and terminates. Since there are at least n− f nonfaulty parties, each party will
eventually receive n−f signatures on its input message with tag “sig”. Then, each party will also eventually
receive n− f signatures on its input message with tag “lockSig” and thus be able to generate a proof π and
terminate. This shows the liveness property of the protocol.

3.1.4 Efficiency

Theorem 3. The NonEquiv and AbandonableNonEquiv have a communication complexity of O((λ+m)n2),
where m is the size of the input, and a round complexity of O(1).

Proof. Both protocols consist of a constant number of all-to-all rounds, sending messages of size O(λ+m).
In total, this results in a constant number of rounds, and O((λ+m)n2) communication.

3.2 PVSS Exchange

In this section, we construct a PVSS exchange protocol. The goal of the protocol is to output an aggregated
PVSS transcript that can be proven to have at least one nonfaulty contribution with high probability.

Each party generates a PVSS transcript and sends it to a polylogarithmic number of parties. Parties
then output an aggregated transcript if they get a “large enough” number of contributions to know that at
least one nonfaulty transcript is included with high probability.
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3.2.1 Definition

Parties call a PVSS exchange protocol with no input, and may eventually output an aggregated transcript
and a proof. Parties can also run the VerifyExchange algorithm in order to verify that an output includes at
least one honestly generated transcript with high probability.

Definition 3. A PVSS exchange protocol (PVSSExchange,VerifyExchange) has the following properties if all
nonfaulty parties call the protocol:

• Verifiability. If some nonfaulty party outputs (transi, πi), then ExchangeVerify(transi, πi) = 1. Fur-
thermore, if the adversary provides a pair (trans, π) such that ExchangeVerify(trans, π) = 1, then trans
includes at least one contribution generated by a nonfaulty party that erased its contents without being
corrupted.

• Termination. At least one forever-nonfaulty party completes the protocol and outputs a value.

3.2.2 Construction

In this construction, we use a VRF that receives a key and an index and outputs a boolean flag and a
proof. The VRF outputs true with probability λ logc n

n for some chosen constant c > 1 and false with
the remaining probability. In addition, parties wait to hear from “around 2

3” of the expected number of
messages, with a slack of ϵ, meaning that parties wait for 2

3 − ϵ of the expected number of messages. The
parameter ϵ can be chosen to be any agreed-upon number between 0 and 1

3 , for example 1
6 . After hearing

from ( 23 − ϵ)λ logc n parties with correct VRF proofs, parties aggregate the received transcripts, and output
the aggregated transcript and a proof that it contains enough transcripts. Intuitively, in order to show that
the output is secure, we show any set of “enough” random parties should contain a nonfaulty party with
high probability. In order prove that at least one forever-nonfaulty party terminates we show that for any
given set of corrupted parties, there is an extremely low probability that no nonfaulty party terminates. In
fact, the probability is so low that even considering all possible choices of corrupted parties, there is still a
high probability of at least one forever-nonfaulty party terminating.

For our construction, we assume an additional forward secure digital signature scheme [BM99], with the
syntax KDS = (KGenKDS,UpdateKDS,SignKDS,VerifyKDS), where each party i has a base public-secret key pair
(p̄ki, s̄ki,0), the public key is fixed but the secret key s̄ki,0 is dynamically updated at regular time intervals
(in our case, for each VRF evaluation). Concretely, there exists an update function Update that on input a
secret key s̄ki,r for some time number r ∈ N0 outputs the secret key s̄ki,r+1 for the next time number r + 1.
We formally define the syntax in Appendix A. We further define the following non-interactive proof system
PSexch = (PProveexch,PVerifyexch) for the relation

Rexch :=


(
⃗̃pk, ⃗̄pk, e⃗k, trans, j;S, {(σi, transi, πi)}i∈S

) ∣∣∣∣∣∣∣∣
|S| = ( 23 − ϵ)λ logc n, ∀i ∈ S :
VerifyPVSS(transi, ek1, . . . , ekn) = 1,

VerifyVRF(p̃ki, true, j, πi) = 1,
VerifyKDS(p̄ki, (j, transi), σi) = 1

 ,

where
⃗̃pk = (p̃k1, . . . , p̃kn) (public keys for the VRF), ⃗̄pk = (p̄k1, . . . , p̄kn) (public keys for the forward-secure

DS), and e⃗k := (ek1, . . . , ekn) (encryption keys for the PVSS). Essentially, the proof system tells that a party
received ( 23 − ϵ)λ logc n valid PVSS transcripts from other parties with corresponding valid signatures along
with verifying VRF proofs.

3.2.3 Security Analysis

Lemma 1. If some the adversary produces a pair (trans, π) such that Verify(trans, π) = 1 then, with high
probability, trans includes at least one transcript that was generated by a party that was nonfaulty at the time
of erasure.
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Algorithm 5 PVSSExchange()

1: messages← ∅, transcripts← ∅
// Check which parties to send messages to, generate transcripts, and store them

2: for j ∈ [n] do
3: (sendFlagj , πj)← VRF(s̃ki, j)
4: if sendFlagj = true then
5: transj ←$ DistPVSS(ek1, . . . , ekn)
6: messages← messages ∪ {(j, sendFlag, πj , transj ,SignKDS(s̄ki, (j, transj)))}

// Erase keys and then send messages to all parties
7: update s̄ki via Update and erase the old key and the randomness used for DistPVSS()
8: for all (j, sendFlag, πj , transj , σj) ∈ messages do
9: send ⟨“trans”, sendFlag, πj , transj , σj⟩ to j

// Collect transcripts and output an aggregated transcript after receiving enough of them
10: upon receiving a ⟨“trans”, sendFlag, πj , transj , σj⟩ message from j, do

11: if VerifyVRF(p̃kj , sendFlag, j, πj) = VerifyKDS(p̄kj , (i, transj), σj) = 1 and sendFlag = true then
12: transcripts← transcripts ∪ {(j, sendFlag, πj , transj , σj)}
13: if |transcripts| ≥ ( 23 − ϵ)λ logc n then
14: trans← AggregatePVSS({transj | ∃(j, sendFlagj , πj , transj , σj) ∈ transcripts})
15: π ← PProveexch((p̃k1, . . . , p̃kn), (p̄k1, . . . , p̄kn), e⃗k, trans; transcripts)
16: output (trans, π) and terminate

Algorithm 6 ExchangeVerify(trans, π)

1: return PVerifyexch((p̃k1, . . . , p̃kn), (p̄k1, . . . , p̄kn), e⃗k, trans;π)

Proof. If trans, π verify, then trans includes transcripts from at least ( 23−ϵ)λ logc n parties. For every i, j ∈ [n],
let Xi,j be a Bernoulli random variable which equals 1 if j is allowed to send i a message according to the

VRF (i.e., VRF(s̃kj , i) = true, π) and 0 otherwise. Before corrupting a party, or that party sending a message,
the adversary does not know which parties are allowed to send messages to each other. Notably, parties erase
their keys before sending messages, so the adversary cannot generate correct proofs with verifying signatures
for any other message if it corrupts a party after it starts sending messages. This means that for every party j
that the adversary corrupts, and for every party i, the probability that the adversary will be able to generate
a PVSS transcript and send it to i is distributed according to Xi,j and is independent of the rest of the X
variables. Now, for every i ∈ [n], let Xi be the number of PVSS transcripts that the adversary manages
to generate and send to i with proof. Based on the previous discussion, Xi ≤

∑
j is faulty Xi,j . Therefore:

E[Xi] ≤ E[
∑

j is faulty Xi,j ] ≤ f · λ logc n
n < 1

3λ logc n. Next, we would like to bound the probability that for

any i ∈ [n], at least ( 23λ logc n) faulty parties are allowed to to send a PVSS transcript generated by them.
Applying the Chernoff bound, assuming ϵ < 1

3 :

Pr[Xi ≥ (
2

3
− ϵ)λ logc n] = Pr[Xi ≥ (2− 3ϵ)(

1

3
λ logc n)]

≤ Pr[Xi ≥ (1 + (1− 3ϵ))E[Xi]]

≤ e−
(1−3ϵ)2

3−3ϵ · 13λ logc n

= n−λ logc−1 n· (1−3ϵ)2

9−9ϵ

From the union bound, the probability that this holds for any i is no greater than:

n−λ logc−1 n· (1−3ϵ)2

9−9ϵ +1
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Therefore, choosing any ϵ≪ 1
3 , such as ϵ = 1

6 , results in a probability of n−O(λ logc−1 n).

Lemma 2. For any adversary strategy, with high probability, at least one forever-nonfaulty party eventually
receives at least ( 23 − ϵ)λ logc n “trans” messages from nonfaulty parties.

Proof. We will start by showing that for any choice of f < 1
3n parties to corrupt, there is a low probability

that no nonfaulty party receives messages from ( 23 − ϵ)λ logc n parties. Following that, we will apply the
union bound to show that there is a low probability there is any possible set of f parties for which this event
occurs. Clearly, if this event does not occur for any possible set of f parties, then regardless of which parties
the adversary chooses to corrupt, at least one forever-nonfaulty party will eventually receive messages from
( 23 − ϵ)λ logc n nonfaulty parties with high probability.

First, let I be some set of n− f > 2
3n parties. For every i, j ∈ I, let Xi,j be a Bernoulli random variable

which equals 1 if j is allowed to send i a message according to the VRF (i.e., VRF(s̃kj , i) = true, π) and 0
otherwise. In addition, let Xi =

∑
j∈I Xi,j be the number of parties in I that are allowed to send messages

to i. Every party is allowed to send a message to i with probability λ logc n
n and thus:

E[Xi] = E[
∑
j∈I

Xi,j ] >
2

3
n
λ logc n

n
=

2

3
λ logc n.

Bounding the probability that Xi is smaller than ( 23 − ϵ), we get:

Pr[Xi < (
2

3
− ϵ)λ logc n] ≤ Pr[Xi ≤ (1− 3

2
ϵ)E[Xi]]

≤ e−( 3
2 ϵ)

2· 12 ·
2
3λ logc n

= n−λ logc−1 n· 34 ϵ
2

The probability that any i can send a message to any j is independent of any other such pair, and thus
the probability the probability that Xi is small is independent of the probability that any other Xj is small.
Therefore:

Pr[∀i ∈ I : Xi < (
2

3
− ϵ)λ logc n] ≤ n−nλ logc−1 n· 34 ϵ

2

The adversary can choose any set of f parties to corrupt. In total, the number of options the adversary
has is

(
n
f

)
≤

(
n
n
3

)
≤ (en · 3

n )
1
3n = (3e)

1
3n. Applying the union bound over all options, we can bound the

probability that there is some possible choice of parties to corrupt such that no nonfaulty party receives
enough messages.

Pr[∃I ⊆ [n] s.t. (|I| = n− f) ∧ (∀i ∈ I : Xi < (
2

3
− ϵ)λ logc n)]

≤ (3e)
1
3n · n−nλ logc−1 n· 34 ϵ

2

= e−nλ logc n· 34 ϵ
2+ 1

3n log(3e)

In other words, for every ϵ > 0, the probability that no nonfaulty party receives enough messages is
e−O(nλ logc n).

Theorem 4. The pair (PVSSExchange,ExchangeVerify) described in Algorithms 5 and 6 is a PVSS Exchange
protocol resilient to f Byzantine faults if n > 3f .

Proof. Each property is proven separately.
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Verifiability. If some nonfaulty party outputs a pair (trans, π), then it correctly computed the proof π from
trans and transcripts after receiving ( 23−ϵ) verifying “trans” messages. This means that ExchangeVerify(trans, π)
= 1. In addition, from Lemma 1, if the adversary produces a pair (trans, π), then trans includes a transcript
generated by a nonfaulty party before erasure. Even if the adversary corrupts that party after it sends its
transcript, that party erases its contents before sending the message.

Termination. From Lemma 2, for any adversary strategy, at least one forever-nonfaulty party receives at
least ( 23 − ϵ)λ logc n messages from other nonfaulty parties. After receiving these messages, it sees that the
messages and proofs are correct, performs local computations, and terminates.

3.2.4 Efficiency

Theorem 5. The PVSSExchange protocol has an expected communication complexity of O(λ2n2 logc n) and
a round complexity of O(1).

Proof. The protocol consists of a single round, with each party sending a transcript to every other party
with probability λ logc n

n . In expectation, every party sends O(λ logc n) such messages, containing transcripts
of size O(λn). In total, this means that the communication complexity is O(λ2n2 logc n), and the protocol
takes a single round.

3.3 Weighted Gather

TheWeighted Gather protocol is a modification of the Verifiable Gather protocol [AJM+21]. For the purposes
of this work, the weighted gather protocol needs to be a cover gather [DDL+24], and does not need to be
verifiable. A “regular” gather protocol only guarantees that there exists a large common core set such that
all parties’ outputs contain it. A cover gather also guarantees that there exists a common cover set such that
all parties’ outputs are included in it. In order to achieve this additional property, we use an abandonable
non-equivocation round, that allows parties to block new inputs from being considered before terminating.
Furthermore, for this work, the protocol does not even require a validity property other than external validity.

Looking forward, the verifiability of the weighted gather will be implicitly checked via a quorum of parties
in the Proposal Election protocol.

3.3.1 Definition

Every party i enters the protocol with a pair of inputs (xi, πi) such that xi ∈ [ℓ] for some commonly-known
ℓ. Every party outputs a vector vi ∈ Nℓ

0. Parties also have access to an external validity function valid that
receives a pair (xi, πi) and outputs either 1, indicating that the pair is valid, or 0, indicating that it is not.
Every nonfaulty party is assumed to have a valid input pair (xi, πi). In the definition, recall that the weight
of a vector, |v|, is the sum of all the entries in v, and that u ≥ v indicates that u is greater than or equal to
v in each entry.

Definition 4. A Weighted Gather protocol has the following properties, assuming all nonfaulty parties
participate with valid inputs:

• Binding Core. At the time the first nonfaulty party completes the protocol, there exists a vector
v ∈ Nℓ

0 such that |v| ≥ n− f and vi ≥ v for the output vi of any nonfaulty i.

• Binding Cover. At the time the first nonfaulty party completes the protocol, there exists a vector
u ∈ Nℓ

0 such that |u| ≤ n and u ≥ vi for the output vi of any nonfaulty i.

• External Validity For every j ∈ [ℓ] such that u[j] > 0, it is possible to extract a proof πj such that
valid(j, πj) = 1 at the time the first nonfaulty party completes the protocol.

• Termination. All parties output a value and complete the protocol.
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3.3.2 Construction

The weighted gather protocol proceeds in several near-identical logical rounds. In the first round, parties
call an abandonable non-equivocation protocol on their inputs, which are indices in [ℓ]. Following that, they
send their input in a “val” message, along with the proof of non-equivocation. After receiving n − f such
messages, parties construct a vector vec, which simply counts the number of times each index was received.
In the second logical round, parties call a non-equivocation protocol on their vectors and forward them in
a “vec” message along with proofs that they were correctly constructed. After Receiving n − f vectors,
parties aggregate them to a vector agg by computing the maximum of the vectors in each entry (logically,
this is similar to a relaxed union of the original sets). Again, parties call a non-equivocation protocol on the
aggregated vectors and send them in an “agg” message along with proofs of correct computation. In the final
round, parties wait until they receive n − f aggregated vectors and compute an output from them. They
then send that output to all parties in an “out” message along with a proof, and abandon the abandonable
non-equivocation protocol. Every party that receives a correct output adopts that value, forwards it and
abandons the abandonable non-equivocation protocol. Finally, after receiving n− f “out” messages, parties
terminate.

Having nonfaulty parties send their inputs makes sure that every party eventually receives n−f messages
and constructs a vector. Following a standard counting argument, as shown in Lemma 3, in any set of n− f
correctly aggregated agg values at least f + 1 include the same vec from the previous round. This vec will
then be included in every output, and thus can act as a common core. On the other hand, since parties
only terminate after receiving n − f “out” messages, they know that at least f + 1 parties abandoned
the abandonable non-equivocation protocol. This means that at that point in time, no new values can be
introduces into the protocol, and thus the values that have already been input will form a cover for the
outputs of the protocol.

In order to reduce communication complexity, we define the following non-interactive proof systems.
First, PScnt = (PProvecnt,PVerifycnt) for the relation

Rcnt :=

 (
p⃗k, vec, (mi)i∈[ℓ]; (Si)i∈[ℓ], {(σi,j , πi,j)}i∈[ℓ],j∈Si

) ∣∣∣∣∣∣
|vec| = n− f, ∀i ∈ [ℓ] : |Si| = vec[i],
∀i ∈ [ℓ], j ∈ Si : VerifyDS(pkj ,mi, σi,j) = 1,

∀i ∈ [ℓ], j ∈ Si : PVerifyTS(p⃗k,mi;πi,j) = 1

 .

This proof system essentially counts how often each message mi from a known set of messages {mi}i∈[ℓ]

was received by other parties. For all such messages, this count number is then stored in a vector vec of length
ℓ, where vec[i] tells how often message mi was received. Roughly, this can be thought of as a generalized
threshold signature for a list of messages with distinct weights.

We additionally require another proof system, which takes the maximum from a set of received vectors.
Concretely, we define the proof system PSmax = (PProvemax,PVerifymax) for the relation

Rmax :=

{ (
p⃗k, agg, (mi)i∈[ℓ];S, {(veci, πcnt,i)}i∈S

) ∣∣∣∣ |S| = n− f, agg = max{veci | i ∈ S},
∀i ∈ S : PVerifycnt(p⃗k, veci, (mi)i∈[ℓ];πcnt,i) = 1

}
.

3.3.3 Security Analysis

Lemma 3. By the time the first nonfaulty party completes the WeightedGather protocol, there exists a vector
v ∈ Nℓ

0 such that |v| ≥ n − f and the nonfaulty parties received ⟨“agg”, aggj , πagg,j , πaggNE,j⟩ messages with
verifying proofs from at least f + 1 parties j such that aggj ≥ v.

Proof. Since aggj , πagg,j verify, there are n−f vectors veck with verifying proofs such that aggj ≥ veck. Note
that from the non-equivocation property of the NonEquiv protocol for every possible party k, there exists a
single vector veck that can be included in aggj vectors. At the time the first nonfaulty party completes the
protocol, it received at least n − f aggj vectors. In total the n − f aggj vectors each include n − f veck
vectors. Therefore, we can count a total of at least (n− f)2 times veck vectors are included in aggj vectors.
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Algorithm 7 WeightedGather(xi, πi)

1: veci ← ⊥, πvec,i ← ⊥, aggi ← ⊥, πagg,i ← ⊥, outi ← ⊥, πout,i ← ⊥
// Non-equivocation of inputs

2: valsi ← ∅, vecsi ← ∅, aggsi ← ∅
3: call AbandonableNonEquiv((xi, πi), “val”)
4: upon AbandonableNonEquiv((xi, πi), “val”) outputting πvalANE,i, do
5: send ⟨“val”, xi, πi, πvalANE,i⟩ to all parties

// Collecting inputs in a vector, non-equivocation of vector
6: upon receiving the first ⟨“val”, xj , πj , πvalANE,j⟩ message from j, do
7: if ANEVerify(j, (xj , πj), πvalANE,j , “val”) = 1, valid(xj , πj) = 1 and xj ∈ [ℓ] then
8: valsi ← valsi ∪ {(j, xj , πj , πvalANE,j)}
9: if |valsi| = n− f then

10: for all i ∈ [ℓ], let vi = |{j ∈ [n] | ∃π, πvalANE s.t. (j, i, π, πvalANE) ∈ valsi}|
11: veci ← (v1, . . . , vℓ), πvec,i ← PProvecnt(p⃗k, veci, (i)i∈[ℓ]; valsi)
12: call NonEquiv(veci, “vec”)

13: upon NonEquiv(veci, “vec”) outputting πvecNE,i, do
14: send ⟨“vec”, veci, πvec,i, πvecNE,i⟩ to all parties

// Collecting vectors in an aggregated vector, non-equivocation of aggregated vector
15: upon receiving the first ⟨“vec”, vecj , πvec,j , πvecNE,j⟩ message from j, do

16: if NEVerify(j, vecj , πvecNE,j , “vec”) = 1 and PVerifycnt(p⃗k, vecj , (i)i∈[ℓ];πvec,j) = 1 then
17: vecsi ← vecsi ∪ {(j, vecj , πvec,j , πvecNE,j)}
18: if |vecsi| = n− f then
19: aggi ← max{vecj | ∃j, πvec, πvecNE s.t. (j, vecj , πvec, πvecNE) ∈ vecsi}
20: πagg,i ← PProvemax(p⃗k, aggi, (i)i∈[ℓ]; vecsi)
21: call NonEquiv(aggi, “agg”)

22: upon NonEquiv(aggi, “agg”) outputting πaggNE,i, do
23: send ⟨“agg”, aggi, πagg,i, πaggNE,i⟩ to all parties

// Collecting aggregated vectors for output, send output in order to guarantee availability
24: upon receiving the first ⟨“agg”, aggj , πagg,j , πaggNE,j⟩ message from j, do

25: if NEVerify(j, aggj , πaggNE,j , “agg”) = 1 and PVerifymax(p⃗k, aggj , (i)i∈[ℓ];πagg,j) = 1 then
26: aggsi ← aggsi ∪ {(j, aggj , πagg,j , πaggNE,j)}
27: if |aggsi| = n− f and outi = ⊥ then
28: outi ← max{aggj | ∃j, πagg, πaggNE s.t. (j, aggj , πagg, πaggNE) ∈ aggsi}
29: πout,i ← PProvemax(p⃗k, outi, (i)i∈[ℓ]; aggsi)

30: upon receiving the first ⟨“out”, outj , πout,j⟩ message from j, do

31: if PVerifymax(p⃗k, outj , (i)i∈[ℓ];πout,j) = 1 and outi = ⊥ then
32: outi ← outj , πout,i ← πout,j

// Forward output, abandon AbandonableNonEquiv to block new entries
33: upon outi ̸= ⊥ and πout,i ̸= ⊥, do
34: send ⟨“out”, outi, πout,i⟩ to all parties
35: abandon the AbandonableNonEquiv session with tag “val”

36: upon receiving “out” messages from n− f parties, do
37: output outi and terminate
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Assume by way of contradiction, that all veck vectors are included in at most f aggj vectors. This would
mean that in total, there are at most nf times that veck vectors are included in aggj vectors. Therefore:

nf ≥ (n− f)2

nf ≥ n2 − 2nf + f2

0 ≥ n2 − 3nf + f2

Note that n > 3f and thus:

0 ≥ n2 − n(3f) + f2

≥ n2 − n2 + f2

= f2 > 0

Reaching a contradiction. This means that for some k, v = veck satisfies the condition that aggj ≥ v for
f + 1 different parties j. In addition, computing that veck can easily be done by counting the number of
aggj vectors such that aggj ≥ veck for each k ∈ [ℓ] and choosing one for which the condition holds.

Theorem 6. WeightedGather is a Weighted Gather protocol resilient to f Byzantine faults if n > 3f .

Proof. Each property is proven separately.
Binding Core. As shown in Lemma 3, there exists some v such that |v| ≥ n− f and for at least f + 1

possible parties j, aggj ≥ v. Since outk, πout,k verifies, there must be at least n − f parties j with vectors
aggj such that outk ≥ aggj . Out of those, at least one is one of the f + 1 vectors for which aggj ≥ v and
thus outk ≥ aggj ≥ v, as required.

Binding Cover. At the time the first nonfaulty party completes the protocol, it had already received
“out” messages from n − f parties, with at least f + 1 of those coming from nonfaulty parties. Let I be
the set of at least f + 1 nonfaulty parties described above. When parties send the “out” messages, they
abandon the AbandonableNonEquiv instances with the tag “val”. From the Abandonability property of the
AbandonableNonEquiv protocol, at that time, there exists a unique (xj , πj) for each j ∈ [n] for which a proof
πvalNE,j might be produced. For every i ∈ [ℓ], let ui = |{j|xj = i ∧ valid(xj , πj) = 1}| and u = (u1, . . . , uℓ). If
xj = ⊥ for any j ∈ [n], then all nonfaulty parties in I didn’t output any value for party j. Since proofs can
only be produced for (xj , πj), every correct vector can only have one contribution in the index xj per such
pair such that valid(xj , πj) = 1. In other words, u ≥ vec for every correct vector vec. Following this, only
these values can be included in “vec” messages and subsequently in “agg” and “out” messages. In total, this
means that u ≥ out for any verifying out, π.

External Validity. Let u be the vector defined in the binding cover property, and let (xj , πj) be the
values defined in the proof of the property. As defined above, u[i] > 0 for any i ∈ [ℓ] if there exists some
j ∈ [n] such that xj = i and valid(xj , πj) = 1. In that case, for any i ∈ [ℓ] such that u[i] > 0, choose an
arbitrary such proof π as the extracted proof, e.g. choose π to be πj for the minimal index j such that xj = i
and valid(xj , πj) = 1.

Termination. We will start by showing that if some nonfaulty party i updates outi, πout,i to be non-⊥,
all nonfaulty parties eventually complete the protocol. Party i updates these values after either computing
them directly with a correct proof, or after checking that Verify(outi, πout,i) = 1. It then sends these values
to all parties in an “out” message, so every nonfaulty j will also update outj , πout,i to non-⊥ values after
receiving the message if it hasn’t already. After receiving such messages from n − f parties, every party
terminates.

Assume by way of contradiction that no nonfaulty party i ever has outi ̸= ⊥ and πout,i ̸= ⊥. All
parties start by calling the AbandonableNonEquiv protocol. Note that if some nonfaulty party i abandons
the AbandonableNonEquiv protocol, it has outi ̸= ⊥ and πout,i ̸= ⊥. As shown above, in that case all parties
complete the protocol, reaching a contradiction. Therefore, no nonfaulty party abandons the protocol. From
the Liveness property of AbandonableNonEquiv, every nonfaulty i eventually outputs a proof πvalNE,i from
the protocol. Following that, parties send “val” messages. Parties receive these messages, see that the
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proof verifies and that xj , πj are valid, and update their vals sets. After updating the vals sets n− f times,
every nonfaulty party calls NonEquiv with tag “vec” and outputs a verifying proof. Parties then send “vec”
messages, accept messages sent by nonfaulty parties and similarly compute agg values and call NonEquiv
with tag “agg”. Finally, nonfaulty parties send “agg” messages, accept each other’s messages, and compute
outi, πout,i, reaching a contradiction. Therefore, eventually some nonfaulty party has outi ̸= ⊥, πout,i ̸= ⊥.
As shown above, this means that eventually all parties complete the protocol.

3.3.4 Efficiency

Theorem 7. The WeightedGather protocol has a communication complexity of O((λ + ℓ log n)n2) and a
round complexity of O(1).

Proof. The protocol has a constant number of calls to NonEquiv and AbandonableNonEquiv with inputs
of size λ + log n. In addition, parties send a constant number of messages of the same size, totalling in
O((λ+ ℓ log n)n2) communication and a constant number of rounds.

3.4 Provable AVID Protocol

A Provable Asynchronous Verifiable Information Dispersal (AVID) protocol consists of two sub-protocols
Disperse and Retrieve along with a DisperseVerify function. Parties also have access to an external validity
function valid. In the Disperse protocol, a designated sender holds as input an externally valid messagem such
that valid(m) = 1. The sender may output a proof of dispersal (checked via the DisperseVerify algorithm),
which indicates that the Retrieve protocol will succeed. In the Retrieve protocol, all parties can then jointly
reconstruct the committed message. In particular, parties should only output externally valid values from
the retrieval. Note that provable AVID has totality for retrieve, but only provability for the dispersal.

3.4.1 Definition

Formally, we define a provable AVID protocol as follows.

Definition 5. In a provable AVID protocol (Disperse,DisperseVerify,Retrieve), a designated sender s has an
input m, and all parties have access to an external validity function valid. Assuming that valid(m) = 1, the
protocol has the following properties:

• Binding. At the time the first nonfaulty party completes the Disperse protocol, there exists a unique
committed value m′.

• External Validity. For the m′ defined in the binding property, valid(m′) = 1. Further, if the sender
is nonfaulty, then the committed value is its input m′ = m.

• Agreement. Any two nonfaulty parties that output a value from the Retrieve protocol, output the same
value m′ (defined in the binding property above).

• Termination. If the sender is nonfaulty, then it completes the Disperse protocol and outputs a proof
π.

• Provability. If s is nonfaulty and it outputs a proof π, then DisperseVerify(s, π) = 1.

• Totality. If a nonfaulty party receives a proof π such that DisperseVerify(s, π) = 1 and all nonfaulty
parties call Retrieve, then they all complete Retrieve.
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3.4.2 Construction

For our protocol, we assume an external validity function valid that parties have access to. Further, we define
the following non-interactive proof system. PSacc = (PProveacc,PVerifyacc) for the relation

Racc :=

{ (
p⃗k, acc, j;m,πTS

) ∣∣∣∣ acc = EvalAcc(ak,Encode(m;n, f + 1)),

valid(m) = 1, PVerifyTS(p⃗k, (j, acc);πTS) = 1

}
.

This proof system is essentially just a threshold signature proving knowledge of n − f signatures on an
accumulation value acc for a message m with proof of external validity for m.

In the following, we give an informal description of how our provable AVID protocol works, which is
based on linear erasure codes and cryptographic accumulators. We first describe the dispersal phase, where
a designated sender s ∈ [n] holds an input message m that it wants to disperse among the network of
parties. Then, we describe the retrieval phase, where all parties jointly reconstruct the message m. In
the dispersal phase, the sender first encodes its message m into n code words M ′ := (m′

1, . . . ,m
′
n) via an

(n, f + 1)-encoding function Encode. It then accumulates these code words M ′ into an accumulation value
acc. Next, it collects n−f signatures on acc from other parties to form a non-equivocation proof πTS for acc.
Additionally, it produces a proof πacc showing that acc corresponds to a message m such that valid(m) = 1
(i.e., a proof that acc is the accumulation value for an encoding of m and m is externally valid). In the next
phase, it distributes shares of m with validity proofs by sending (acc, πacc,m

′
i, wi) to each party i, where wi

is a membership proof of m′
i with respect to acc. Upon receiving such a valid tuple (which also guarantees

uniqueness of acc and external validity of the encoded m), other parties reply with signatures on the senders
index s. With that, the sender generate a final proof of dispersal πtot with n − f of these signatures and
terminates with output πtot. The function DisperseVerify is then just verifying whether πtot is a verifying
threshold signature of weight n− f . For the retrieval phase, each party simply sends its received share along
with membership proof (m′

i, wi) to all parties. Upon receiving f + 1 such valid shares for the same acc with
proof πtot, a party can then reconstruct the message m via the decoding function Decode of the underlying
erasure code.

3.4.3 Security Analysis

Theorem 8. The pair (Disperse,DisperseVerify,Retrieve) is a provable AVID protocol resilient to f Byzantine
faults if n > 3f .

Proof. Each property is proven separately.
Binding. We have to show that at the time the first nonfaulty party completes the Disperse protocol,

there exists a unique committed value m′. By way of contradiction, assume that there exists a second
committed value m ̸= m′ after the dispersal phase (that a different nonfaulty party will reconstruct in the
retrieval phase). By construction, we know that a nonfaulty party completes the dispersal phase only after
seeing a threshold signature of weight n− f on acc. In particular, by quorum intersection, there is at most
one such accumulation value acc that comes with a verifying threshold signature πacc. From this, it follows
by collision-resistance of the underlying accumulator scheme Acc that there is at most one unique M ′ that
has acc as an accumulation value (i.e., such that acc = EvalAcc(ak,M

′)). With that, it is clear that the
decoding function Decode of the underlying erasure code yields uniqueness of committed value m′.

Termination. We have to show that if the sender is nonfaulty, then all nonfaulty parties will complete
the Disperse protocol. Since there are at least n− f nonfaulty parties, we know that the sender will be able
to collect n− f signatures on the accumulation value acc of its input message m and generate a proof πacc.
With that, it will then also be able to collect n − f signatures for tag “share” from different parties. In
particular, all nonfaulty parties will receive a verifying proof πacc along with its share with corresponding
witness (mi, wi) of the input message m. Then, it is also clear the the sender will be able to collect n − f
signatures on its index and generate a proof of dispersal πtot. In particular, it will complete the Disperse
protocol and output a proof π.

Provability. We have to show that if the sender is nonfaulty and it outputs a proof π, then DisperseVerify(s, π) =
1. But this is clear from the above termination considerations, since the proof is a threshold signature of
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Algorithm 8 Disperse(m)

1: sigs← ∅, sigs′ ← ∅, πacc ← ⊥, πtot ← ⊥, M ′ ← ⊥
// Encode the message in an error-correcting code and compute an accumulator of the encoding

2: M ′ ← (m′
1, . . . ,m

′
n)← Encode(m;n, f + 1)

3: acc← EvalAcc(ak,M
′)

4: for i ∈ [n] do
5: wi ←WitnessAcc(ak, acc,m

′
i,M

′)

// Non-equivocation of accumulator
6: send ⟨“help”, acc⟩ to all parties
7: upon receiving the first ⟨“help”, acc, π⟩ message from j, do
8: if valid(acc) = 1 then
9: send ⟨“sig”,SignDS(ski, (j, acc))⟩ to j

10: upon receiving the first ⟨“sig”, σi⟩ message from i, do
11: if VerifyDS(pki, (i, acc)) = 1 then
12: sigs← sigs ∪ {(i, σi)}
13: if |sigs| = n− f then

14: πTS ← PProveTS(p⃗k, (i, acc); sigs)

15: πacc ← PProveacc(p⃗k, (j, acc);m,πTS)

// Send shares of the encoding to each party, parties reply once they receive their shares
16: upon πacc ̸= ⊥, do
17: for i ∈ [n] do
18: send ⟨“share”, acc, πacc,m

′
i, wi⟩ to i

19: upon receiving the first ⟨“share”, acc, πacc,m
′
i, wi⟩ message from j, do

20: if PVerifyacc(p⃗k, (j, acc);πacc) = 1 and VerifyAcc(ak, acc,m
′
i, wi) = 1 then

21: send ⟨“total”,SignDS(ski, j)⟩ to j

// Wait until n− f parties received their shares, and output a proof
22: upon receiving the first ⟨“total”, σi⟩ message from i, do
23: if VerifyDS(pki, i) = 1 then
24: sigs′ ← sigs′ ∪ {(i, σi)}
25: if

∣∣sigs′∣∣ = n− f then

26: πtot ← PProveTS(p⃗k, i; sigs
′)

27: output πtot and terminate

Algorithm 9 DisperseVerify(i, π)

1: return PVerifyTS(p⃗k, (i, “total”);π)

Algorithm 10 Retrieve()

1: shares← ∅, m← ⊥
2: send ⟨“retrieve”, acc, πtot,m

′
i, wi⟩ to all parties

3: upon receiving the first ⟨“retrieve”, acc, π, πtot,m
′
i, wi⟩ message, do

4: if PVerifyTS(p⃗k, j;πtot) = 1 and VerifyAcc(ak, acc,m
′
i, wi) = 1 then

5: send ⟨“retrieve”, acc, π, πtot,m
′
i, wi⟩ to all parties

6: shares← shares ∪ {(i,m′
i)}

7: if |shares| = f + 1 then
8: m← Decode(shares;n, f + 1)

9: upon m ̸= ⊥, do
10: output m, but continue sending messages
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weight n−f . As such, the underlying threshold signature verification algorithm PVerifyTS verifies for π and
so does DisperseVerify(s, π).

External Validity. We have to show that if the sender is nonfaulty, then the committed value is its
input m′ = m. Further, any nonfaulty party that outputs a value from the Retrieve protocol, outputs an
externally valid value. The first part is clear by the binding property as shown above. For the second part,
we know that the sender provides a proof π along with its input message m that shows that valid(m) = 1,
i.e., a proof of external validity. This proof is verified along with the accumulation value acc corresponding
to m. As such, parties only accept acc if the proof π is valid. This ensures that if a nonfaulty party completes
the dispersal phase, then the committed value m is externally valid.

Agreement. We have to show that any two nonfaulty parties that output a value from the Retrieve
protocol, output the same value m′ (defined in the binding property above). But this is clear from the
underlying decoding function Decode, which tells us that any f + 1 shares yield the same reconstructed
message m.

Totality. We have to show that if a nonfaulty party receives a proof π such that DisperseVerify(s, π) = 1
and all nonfaulty parties call Retrieve, then they all complete Retrieve. So assuming a nonfaulty party receives
a verifying proof π, we know that at least n − f parties received their shares for a common accumulation
value acc. In particular, there are n− 2f nonfaulty parties with valid shares corresponding to acc. Thus, if
all nonfaulty parties call the Retrieve protocol, then any nonfaulty party will receive at least n− 2f ≥ f + 1
valid shares from other nonfaulty parties. From that, it is clear that any nonfaulty party will be able to
reconstruct m via the decoding function Decode with its set of at least f + 1 valid shares. This shows that
all nonfaulty parties will complete the Retrieve protocol.

3.4.4 Efficiency

Theorem 9. The Disperse protocol has a communication complexity of O(λn + m), with m being the size
of the message, and a round complexity of O(1). The Retrieve protocol has a communication complexity of
O(λn2 +mn) and a round complexity of O(1).

Proof. The Disperse protocol consists of a constant number of rounds, with the disperser sending messages of
size O(λ+m

n ) and of parties responding with messages of size O(λ). In total, the protocol requires O(λn+m)
communication and O(1) rounds. The Retrieve protocol consists of a constant number of all-to-all rounds,
with parties sending messages of size O(λ+ m

n ). In total, the protocol requires O(λn2+mn) communication
and O(1) rounds.

3.5 Weak Coin

To construct a consensus protocol, we require a Proposal Election protocol. As a core building block for
the Proposal Election protocol, we construct a Weak Coin protocol that allows it to randomly sample an
index i∗ ∈ [n]. The coin is weak in the sense that parties might not agree on the output. However, with
constant probability, all parties output the same uniformly sampled index. The weak coin construction is
split into two parts: a setup phase called Weak Distributed Coin Generation (WDCG), and a protocol for
flipping the coin (Flip). The WDCG protocol runs once to set up polynomially many coin flips. Parties may
only call the Flip protocol after completing the WDCG protocol, using the WDCG protocol’s output and
state internally. Each call to Flip also requires a unique tag to differentiate different coin flips. It should be
noted that our entire call stack is recursive, keeping track of a pair of indices imin, imax indicating that only
parties {imin, imin + 1, . . . , imax} are running the protocol. These inputs are implicit in all protocols except
the WDCG protocol, as this is the only part of the stack that makes recursive calls and needs to use these
indices explicitly.

All parties enter the WDCG protocol with no input (other than the indices imin, imax) and output a value
vi. Parties enter the Flip protocol with the same value vi and a tag, and output an index i∗ ∈ [n].
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3.5.1 Definition

Definition 6. A Weak Coin protocol (WDCG,Flip) has the following properties, assuming nonfaulty parties
call Flip(vi, tag) with vi being their output from WDCG:

• α-Uniformity. Each time Flip is called with a given tag, there is an event E that occurs with proba-
bility α or greater such that given E, all nonfaulty parties output the same uniformly sampled i∗ from
Flip. Furthermore, if E takes place, the adversary’s view is independent of i∗ before some nonfaulty
party calls Flip with tag.

• Termination. If all nonfaulty parties participate in the WDCG protocol, they complete it. If all
nonfaulty parties participate in the Flip protocol with the same tag, they all complete it.

3.5.2 Construction

Weak Distribution Coin Generation Protocol The WDCG protocol is a recursive protocol for setting
up a weak coin. For a known parameter ℓ, the participating parties are recursively split into ℓ nearly equal
sets in each step of the recursion.

Informally, the protocol proceeds in three logical steps:

1. Input generation: Parties start by attempting to get an aggregate transcript by calling the PVSSExchange
protocol. Any party that manages to do so disperses the transcript using a provable AVID protocol,
and then sends a proof that it succeeded in doing so. Parties forward these proofs in order to make
sure that all parties know of at least one successful dispersal. Note that different parties may have
different proofs for different provable aggregate PVSS transcripts.

2. Reducing the number of provable aggregate PVSS transcripts to a small set of at most ℓ options:

In the base of the recursion (i.e. when there are very few parties), parties simply call a cubic consensus
protocol, BaseConsensus so trivially there is just one transcript.

This cannot be done when there are many parties, so parties instead aim to have at most one transcript
per child. This is done by doing the following three step protocol for each child:

(a) Recursively call WDCG for this child.

(b) Call a consensus protocol RecConsensus for this child, using the above WDCG for randomness.
Parties get their inputs for the RecConsensus protocol from the input generation phase described
above.

(c) Run a ”child non-equivocation” procedure on the outcome of the consensus protocol above, This
is done since some of the children might have a dishonest majority.

3. Weighted gather: After receiving a proof of non-equivocation from at least one child, parties forward
that proof, and call a weighted gather protocol with that child’s index as an input. Finally, parties
output the vector that they received in the weighted gather protocol. In the background, parties also
retrieve any transcript that was agreed upon by any of the children, after seeing a non-equivocation
proof. This means that they only need to retrieve O(ℓ) many transcripts.

Technical notes In the construction, all of the code described in ChildNonEquiv is run in the background
and is not a separate building block that is called by the WDCG protocol. This sub-protocol is a slight
adaptation of a non-equivocation protocol, allowing each child node to provide only one input to the next
stages. Note that since this is a specialized use case, the properties of this sub-protocol are proven directly
as part of the coin flip protocol.

The partition algorithm receives three arguments imin, imax and ℓ. The algorithm then outputs an array
child that partitions all parties with indices between imin and imax to ℓ nearly equal parts. In particular, the
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first (imax − imin) mod ℓ parts are of size ⌈(imax − imin)/ℓ⌉ and the rest are of size ⌊(imax − imin)/ℓ⌋. All
other entries are ⊥. If ⌊(imax − imin)/ℓ⌋ < 4, all entries between imax and imin are 1 instead.

To reduce message complexity, we also define the following non-interactive proof system, which models
a threshold signature with generalized weight r. Concretely, we define PSrTS = (PProverTS,PVerifyrTS) with
r ∈ N for the relation

RrTS :=
{(

p⃗k,m;S, {σi}i∈S

) ∣∣ |S| = r, ∀i ∈ S : VerifyDS(pki,m, σi) = 1
}
.

We call two validated consensus sub-protocols (a base case protocol and a protocol for the recursion) in
this construction. Both constructions need to be secure against a strongly adaptive adversary controlling
less than 1

3 of the total parties. In addition to the regular properties of consensus, requiring all nonfaulty
parties to output the same externally valid value, we require parties to be able to output a proof that the
output is indeed correct. We note that in any protocol in which parties generate commit certificates, the
certificates can act as such a proof. See Definition 16 for a formal definition of the protocol.

The first of the consensus protocols, BaseConsensus, is called in the base case of the recursion. For this
protocol we use the No-Waitin’ Hotstuff (NWH) protocol of [AJM+21, AJM+23]. The protocol has O(λn3)
expected bit complexity and O(1) expected round complexity. The second consensus protocol, RecConsensus
is called in every other later of the recursion. The protocol is a slightly adapted version of the NWH protocol,
with two changes from the original. Instead of using the PE protocol constructed in [AJM+21, AJM+23],
we use the PE protocol constructed in Section 3.6. Secondly, instead of sending vectors of n− f signatures
in each round, we send proofs that n− f such signatures have been collected, using PProveTS and PVerifyTS.
This reduces the costs of every part of the protocol other than the PE to O(λn2) in expectation per view.

To limit communication complexity in the case of a dishonest majority, we only run each call to RecConsensus
or BaseConsensus for λ logc n · log−1( 97 ) views. Note that this introduces a negligible probability of non-
termination. In a call to RecConsensus or to BaseConsensus with less than a 1

3 fraction of faulty parties and
a PE protocol with α-Binding, there is at most a (1− α)r probability of not terminating by round r. Using
α = 2

9 (BaseConsensus has 1
3 -Binding) and r = λ logc n · log−1( 97 ), we get a failure probability of

(1− α)r =

(
7

9

)λ logc n·log−1( 9
7 )

= 2−λ logc

,

in which case even the calls to the consensus protocols with a nonfaulty super-majority might not terminate.
Note that in the No-Waitin’ Hotstuff protocol parties only terminate after receiving a commit certificate,

which means that these protocols do indeed have verifiable outputs. Syntactically, we call the BaseConsensus
and RecConsensus protocols with 3 arguments, x, imin, imax. x is the input to the protocol, and imin, imax

signify that parties imin, . . . , imax are participating in the protocol. The Verify algorithm takes an output
y, a proof π and two indices imin, imax and checks whether y was the output from the call with parties
imin, . . . , imax.

Flip Protocol The Flip protocol is called after running the WDCG protocol. The WDCG protocol’s output
and state are used in the Flip protocol. In the Flip protocol, parties use the transcripts during the WDCG
protocol, along with the vectors they got from the weighted gather protocol to generate a random coin.
They do this by using each transcript to flip a single random value, for a total of O(ℓ) flips. They then
extract many pieces of randomness from that random value using a random oracle. Every nonfaulty party
i extracts vi[j] pieces of randomness from the j’th coin, where vi is its output from the weighted gather
protocol. These pieces of randomness are used as ranks for the transcripts, and parties choose the transcript
with the single highest associated rank. Finally, parties extract one more piece of randomness from the
winning transcript and use it as a common coin. Since the weighted gather has a large binding core, there
is fairly high probability ( 23 ) that the top rank is one that all parties will see and thus they will output the
same value. In addition, since the weighted gather is a cover gather, the adversary cannot wait to see which
transcript will win and then make slow parties include it in their gather vectors retroactively.
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Algorithm 11 WDCG(imin, imax)

1: if i < imin or i > imax then
2: terminate without participating in the protocol

3: child← partition(imin, imax, ℓ), transi ← ⊥, πtrans,i ← ⊥, agreedi ← ⊥, πagreed,i ← ⊥, πchild,i ← ⊥, sigsi ← ∅
4: ∀j ∈ [ℓ] : helped[j]← false, outputs[j]← ⊥, proofs[j]← ⊥, proofSigs[j]← ∅, retrieved[j]← ⊥

// Get aggregated PVSS, disperse and forward
5: call PVSSExchange()
6: upon PVSSExchange() terminating with output trans, π, do
7: call Disperse((trans, π)) with external validity validDisperse

8: upon Disperse() terminating with output π, do
9: if dispi = ⊥ then

10: dispi ← i, πdisp,i ← π

11: upon receiving the first ⟨“disp”, dispj , πdisp,j⟩ from j, do

12: if PVerifyTS(p⃗k, (dispj , tag);πdisp,j) = 1 and dispi = ⊥ then
13: dispi ← dispj , πdisp,i ← πdisp,j

// Recursively generate WDCG for consensus calls, call consensus for each child
14: upon dispi ̸= ⊥ and πdisp,i ̸= ⊥, do
15: send ⟨“disp”, dispi, πdisp,i⟩ to all parties
16: if ⌊(imax − imin)/ℓ⌋ < 4 then
17: call BaseConsensus((dispi, πdisp,i), imin, imax) with external validity function DisperseVerify
18: else
19: i′min ← min{j | child[j] = child[i]}, i′max ← max{j | child[j] = child[i]}
20: call WDCG(i′min, i

′
max)

21: upon WDCG(i′min, i
′
max) terminating with output vi, do

22: call RecConsensus((dispi, πdisp,i), i
′
min, i

′
max) with external validity function DisperseVerify, using

vi and the state of WDCG(i′min, i
′
max) for the PE protocol

23: upon BaseConsensus outputting (agreed, πagreed), do
24: output vi = (1, 0, . . . , 0), update outputs[1]← agreed, and terminate

25: upon RecConsensus outputting (agreed, πagreed), do
26: agreedi ← agreed, πagreed,i ← πagreed

// ChildNonEquiv runs a non-equivocation procedure per child on agreed
// When seeing non-equivocation proofs, parties send signatures, which are stored in proofSigs

27: run ChildNonEquiv()
// After seeing that the output is unique and sent to all parties, continue with WeightedGather

28: upon |proofSigs[k]| = f + 1 for any k ∈ [ℓ], do
29: if WeightedGather has not been called yet then
30: call WeightedGather(k,Prove(k, proofSigs[k])) with external validity function validWG

31: upon WeightedGather terminating with output vi, do
32: output vi, but continue updating the state according to the protocol

// Retrieve dispersed outputs and store for future use
33: upon outputs[k] ̸= ⊥ for any k ∈ [ℓ] and WeightedGather terminating, do
34: call Retrieve() for retrieving the value dispersed by disp, where outputs[k] = (disp, π)

35: upon Retrieve() outputting (transj , πj) for the value dispersed by j, do
36: retrieved[j]← transj
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Algorithm 12 ChildNonEquiv()

1: upon agreedi ̸= ⊥, do
2: send ⟨“childNE”, agreedi, πagreed,i⟩ to all parties

// Check proofs of correct outputs, only reply to each child once
3: upon receiving the first ⟨“childNE”, agreedj , πagreed,j⟩ message from j, do
4: if agreedj = (disp, π) such that DisperseVerify(disp, π) = 1 then
5: i′min ← min{k | child[k] = child[j]}, i′max ← max{k | child[k] = child[j]}
6: if ConsensusVerify(agreedj , πagreed,j , i

′
min, i

′
max) = 1, and helped[child[j]] = false then

7: send ⟨“childSig”,SignDS(ski, (child[j], agreedj , “childSig”))⟩ to all k s.t. child[k] = child[j]
8: helped[child[j]]← true

// Collect signatures, send message with proof after receiving enough
9: upon receiving the first ⟨“childSig”, σj⟩ message from j and having agreedi ̸= ⊥, do

10: if VerifyDS(pkj , (child[i], agreedi, “childSig”), σj) = 1 then
11: sigsi ← sigsi ∪ {(j, σj)}
12: if |sigsi| = n− f and outputs[child[i]] = ⊥ then

13: outputs[child[i]]← agreedi, proofs[child[i]]← PProveTS(p⃗k, (child[i], agreedi, “childSig”); sigsi)

14: upon outputs[j] ̸= ⊥ for any j ∈ [ℓ], do
15: send ⟨“childProof”, j, outputs[j], proofs[j],Sign(ski, (j, “childProof”))⟩ to all parties

// Store any output with a proof, forward output for availability
16: upon receiving a ⟨“childProof”, k, agreed, πchild, σ⟩ message from j, do

17: if PVerifyTS(p⃗k, (k, agreed, “childSig”);πchild) = Verify(pkj , (k, “childProof”), σ) = 1 then
18: if outputs[k] = ⊥ then
19: outputs[k]← agreed, proofs[k]← πchild

20: proofSigs[k]← proofSigs[k] ∪ {(j, σ)}

Algorithm 13 validDisperse((trans, π))

1: if VerifyPVSS(trans, (ek1, . . . , ekn)) = 1 and ExchangeVerify(trans, π) = 1 then
2: return 1
3: else
4: return 0

Algorithm 14 validWG(i, πi)

1: return PVerifyf+1TS(p⃗k, (i, “childProof”);πi)
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Algorithm 15 Flip(vi, tag)

1: ∀j ∈ [n] : flips[j]← ⊥, partials[j]← ∅
// Participate in flipping all coins

2: upon retrieved[j] ̸= ⊥ for any j, do
3: send ⟨“partial”,PartialCoin(dki, j, retrieved[j]), j, tag⟩ to all parties

4: upon receiving the first ⟨“partial”, pcj , k⟩ message from j for any k, do
5: if VerifyPartial(ekj , j, pcj , retrieved[k]) = 1 then
6: partials[k]← partials[k] ∪ {(j, pcj)}
7: if |partials[k]| = n− f then
8: flips[k]← AggregateCoin(partials[k])

// Derive output from flips
9: upon flips[j] ̸= ⊥ for every j such that vi[j] > 0, do

10: let rj,k = H(rj , k, tag) for every j ∈ [ℓ], k ∈ [vi[j]]
11: let j∗, k∗ = argmax{rj,k | j ∈ [ℓ], k ∈ [vi[j]]}
12: output H(rj , 0, tag)

3.5.3 Security Analysis

In the security analysis, we consider n = imax − imin + 1, i.e., the exact number of parties participating in
this call to the protocol. In addition, we consider f to be the number of faulty parties in the range imin to
imax.

Lemma 4. If all nonfaulty parties complete output a vector from WDCG and call Flip with the same tag,
then they all complete the call to Flip.

Proof. If ⌊(imax − imin)/ℓ⌋ ≥ 4, then parties complete the WDCG protocol after completing a call to
WeightedGather. From the binding core property of the WeightedGather protocol, when the first nonfaulty
party completes the WeightedGather protocol there exists a vector v ∈ Nℓ

0 such that |v| ≥ n− f and vi ≥ v
for every nonfaulty i. Similarly, from the binding cover property of the protocol, there exists a vector u ∈ Nℓ

0

such that |u| ≤ n and u ≥ vi for every nonfaulty i. From the external validity property of the protocol, for ev-
ery j ∈ [ℓ] such that u[j] > 0, it is possible to extract a proof πj such that validWG(j, πj) = 1. Since validWG
returns 1, we know that f +1 parties sent “childProof” messages with signatures on (k, “childProof”). Non-
faulty parties send such a message after storing some values agreed and πchild in outputs[j] and proofs[j] and
sending these values to all parties. Every party receives these messages and stores these values as well if
it hasn’t previously updated these variables. Note that every such πchild proves that n − f parties signed
(j, agreed, “childSig”), and every nonfaulty party signs only one such message per j ∈ [ℓ]. This means that
only one such value agreedmight receive such a proof because any two sets of n−f parties have an intersection
of f +1 parties, with one of those being a nonfaulty party that sends only one such message. In other words,
all nonfaulty parties eventually update outputs[j] to be the same value agreed. In addition, a nonfaulty party
only sends a “childSig” message on the value agreed = (disp, π) after seeing that Verify(disp, π) = 1. This
means that the party disp successfully dispersed a value. Following that, when nonfaulty parties call Flip,
they eventually have outputs[k] = (disp, π) for every k such that u[k] > 0. They then retrieve a transcript
from the dispersal, store it in retrieved[k], and send “partial” messages to each other. After receiving verifying
“partial” messages from n − f parties, they finally aggregate the coin and store the value in flips[k]. Note
that u ≥ vi for every nonfaulty party i, and thus every nonfaulty party eventually sees that flips[j] ̸= ⊥ for
every j such that vi[j] > 0. At that point, they perform local computations and complete the protocol.

On the other hand, if ⌊(imax − imin)/ℓ⌋ < 4, then parties complete the protocol after completing the
call to BaseConsensus. In that case, they all output the same value agreed from the consensus, update
outputs[1]← agreed, and output vi = (1, 0, . . . , 0). From the external validity of the BaseConsensus protocol,
agreed = (disp, π) such that DisperseVerify(disp, π) = 1. This means that disp successfully dispersed a correct
transcript trans. Following the exact same reasoning as above, all parties eventually complete the Flip
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protocol.

Theorem 10. (WDCG,Flip) are a Weak Coin protocol resilient to f Byzantine faults if n > 3f , with α = 2
3 .

Proof. Each property is proven separately.
2
3 -Uniformity. Assume all nonfaulty parties complete the WDCG protocol and call Flip with a given tag.

If ⌊(imax − imin)/ℓ⌋ ≥ 4, before completing the protocol, every party completes the call to WeightedGather
and outputs a vector vi. From Lemma 4, all nonfaulty parties complete their call to Flip. From the binding
core property of the WeightedGather protocol, when the first nonfaulty party completes the WeightedGather
protocol there exists a vector v ∈ Nℓ

0 such that |v| ≥ n− f and vi ≥ v for every nonfaulty i. Similarly, from
the binding cover property of the protocol, there exists a vector u ∈ Nℓ

0 such that |u| ≤ n and u ≥ vi for
every nonfaulty i. As shown in the proof of Lemma 4, all parties store the same correct transcripts in their
retrieved arrays, and thus compute the same values in their flips array.

For every j ∈ [ℓ], k ∈ [u[j]], let rj be the coin produced from the transcript in retrieved[j] with tag and let
rj,k = H(rj , k, tag). Let the event E be the event that for j∗, k∗ = argmax{rj,k|j ∈ [ℓ], k ∈ [u[j]]}, v[j∗] ≥ k∗.
Note that for every j ∈ [ℓ], k ∈ [u[j]], the probability that rj,k is the maximal value1 is 1

|u| ≥
1
n . Since

|v| ≥ n − f , the probability that E holds is |v|
|u| ≥

n−f
n > 2

3 . If the event E occurs, then every nonfaulty

party i will compute rj,k for every j ∈ [ℓ], k ∈ [vi[j]], which includes j∗, k∗ since vi ≥ v. All nonfaulty parties
then see that rj∗,k∗ is maximal and output H(rj∗ , 0, tag), which is uniform and independent of the other
values. In addition, before some nonfaulty party calls Flip with tag, no nonfaulty party computes PartialCoin
with tag. In addition, from the external validity of the AVID protocol, any (trans, πExchange), πDisperse such
that DisperseVerify((trans, πExchange), πDisperse) = 1 also have ExchangeVerify(trans, πExchange) = 1, meaning that
trans includes at least one contribution from a nonfaulty party that is unknown to the adversary. Therefore,
the adversary’s view is independent of rj and of the rj,k values, and thus of H(rj∗ , 0, tag).

On the other hand, if ⌊(imax − imin)/ℓ⌋ < 4, all parties complete the protocol with the same vector
vi = (1, 0, . . . , 0). In that case, they all flip the one coin stored in outputs[1] and output a uniformly sampled
value with probability 1.

Termination. Lemma 4 shows that if all nonfaulty parties complete the call to WDCG and call Flip
with the same tag, then they all complete the call as well. This means that showing that parties complete
the WDCG protocol shows that the property holds. All nonfaulty parties start the protocol by calling
PVSSExchange. From the Termination and Correctness properties of PVSSExchange, at least one forever-
nonfaulty party i completes the protocol with a verifying trans, πExchange. Party i then calls the Disperse
protocol and completes it with a valid proof π. At that point, i updates dispi to i and πdisp,i to π if it hasn’t
updated these variables previously, after verifying their correctness. Once it updates its dispi, πdisp,i variables
it sends these values to all parties in a “disp” message. Every nonfaulty party receives these messages and
updates its corresponding disp, πdisp variables if it hasn’t already done so. Following that, every nonfaulty
party calls a consensus protocol.

In the base case, all parties call the BaseConsensus protocol, eventually complete it, and complete the
WDCG protocol. Otherwise, since f < n

3 , at least one of the ℓ recursive calls to WDCG and to RecConsensus
has less than a 1

3 fraction of faulty parties. Let that call be the call of child i, i.e. the one for which every party
j participating in the call has child[j] = i. Therefore, the i’th call has all properties of a WDCG protocol and
thus all nonfaulty parties complete it. Following that, all nonfaulty parties use a correct WDCG setup in the
consensus protocol and thus all nonfaulty parties complete the consensus protocol with the same externally
valid value agreed = (disp, π) such that DisperseVerify(disp, π) = 1. Furthermore, the adversary cannot
generate a verifying proof πchild for any other value agreed′ ̸= agreed such that Verify(agreed′, πchild, i) = 1.
Every nonfaulty party j such that child[j] = i will send a “childNE” message upon completing the protocol.
Every nonfaulty party then receives that message, and responds with a “childSig”. Note that no other
verifying value can be produced for parties in the i’th recursive call, and thus nonfaulty parties will respond
to the first such message with the value agreed. After receiving n − f such signatures, every party j such
that child[j] = i will update its outputs[i] and proofs[i] variables and send a “childProof” message, if it

1We ignore the negligible probability that the maximal value is not unique.
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hasn’t done so earlier. If some nonfaulty party sends a ⟨“childProof”, k, agreed, π, σ⟩ message, it does so with
a verifying proof and signature. This means that every nonfaulty party eventually receives that message,
updates its outputs[k], proofs[k] values, adds a signature to proofSigs, and sends a “childProof” message as
well. Eventually, every nonfaulty party will gather enough signatures for in proofSigs[i] (and possibly other
entries in proofSigs), generate a proof that it saw at least f +1 such signatures, and call WeightedGather if it
hasn’t done so earlier. Since the proof is honestly generated, every nonfaulty party calls the WeightedGather
protocol with an externally valid input. From the Termination property of the WeightedGather protocol, all
nonfaulty parties complete these calls and then complete the WDCG protocol, as required.

Note that in the above discussion, we assumed that parties run until completing the calls to BaseConsensus
and RecConsensus. As discussed above, parties only run λ logc n · log−1( 97 ) views of each call. The proba-
bility that the RecConsensus call for the i’th child does not terminate in this number of rounds is at most
7
9

λ logc n·log−1( 9
7 ) = 2−λ logc n, and thus Termination holds with all but a negligible probability.

3.5.4 Efficiency

Theorem 11. The WDCG protocol has a communication complexity of O(ℓ · λ2n2 logc n) and a round com-
plexity of O(logℓ n). The Flip protocol has a communication complexity of O(λn2) and a round complexity
of O(1).

Proof. Other than the recursive calls, the WDCG protocol consists of the following:

• a single call to the PVSSExchange protocol, costing O(λ2n2 logc n);

• O(n) calls to Disperse with inputs of size O(λn), for a total of O(λn2);

• either one call to BaseConsensus with a cost of O(λn3 · λ logc n) or ℓ calls to RecConsensus, for a total
cost of O(ℓλn2 · λ logc n);

• ℓ calls to Retrieve, for a total cost of O(ℓλn2);

• a single call to WeightedGather with a total cost of O((λ+ ℓ log n)n2);

• and a constant number of all-to-all rounds with messages of size O(λ+ℓ), for a total cost of O((λ+ℓ)n2).

In total, each call not in the base case costs ℓλ2n2 logc n and each call in the base case costs

ℓλ2n2 logc n+ λ2n3 logc n = O(λ2n3 logc n).

Each call to the recursion generates O(ℓ) children, each with O(nℓ ) parties. In total, this means that the
costs for all non-base calls are:

logℓ n−1∑
i=0

ℓi · ℓλ2(
n

ℓi
)2 logc(

n

ℓi
) ≤ ℓλ2n2

logℓ n−1∑
i=0

logc n

ℓi
= O(ℓλ2n2 logc n)

In addition, in the base case there are O(nℓ ) leaves, each with O(ℓ) parties. In total, this means that the
costs of the base case are:

n

ℓ
· λ2ℓ3 logc ℓ = λ2nℓ2 logc ℓ = O(ℓλ2n2 logc n)

Note that all sub-protocols require a constant number of rounds, except the recursive calls and the calls
to consensus. The consensus call for the nonfaulty child always terminates in a constant number of rounds
in expectation. As shown in the proof of Termination, all parties complete the protocol a constant number
of rounds after the nonfaulty child does, and thus the entire protocol other than the recursive calls requires
a constant number of rounds in expectation. The depth of the recursion tree is O(logℓ n), with a constant
expected number of rounds in each layer, for a total of O(logℓ n) expected rounds.

The Flip protocol consists of a constant number of all-to-all rounds, with messages of size O(λ + log n),
for a total of O((λ+ log n)n2) communication and O(1) rounds.
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3.6 Proposal Election from Weak Coin

3.6.1 Definition

In a proposal election protocol, every nonfaulty party has an input propi and a tag signifying the PE instance.
Parties have access to an external validity function valid, that can either output 1 on a given value, indicating
that it is valid, or 0, indicating that it is not. We assume all nonfaulty parties start the protocol with valid
inputs propi. Every nonfaulty party eventually outputs a value outi and a proof πi. Parties can verify the
correctness of outputs and proofs with the PEVerify algorithm by computing PEVerify(out, π, tag).

Definition 7. A Proposal Election protocol has the following properties, assuming nonfaulty parties call
PE(prop, tag) externally valid values prop:

• α-Binding. With probability at least α, at the time the first nonfaulty party completes the PE protocol,
there exists some party i∗ that was nonfaulty when starting the protocol such that the adversary cannot
generate any pair of values out, π for which PEVerify(out, π, tag) = 1 and out ̸= propi∗ .

• Completeness. If a nonfaulty party outputs out, π, then PEVerify(out, π, tag) = 1.

• External Validity. If PEVerify(out, π, tag) = 1, then valid(out) = 1 or out = ⊥.

• Termination. If all nonfaulty parties participate in the PE protocol, they complete it.

Note that combining α-Binding and completeness, we immediately find that with probability α or greater,
all nonfaulty parties output the same value out. In addition, since PEVerify is an algorithm (not a protocol
with a state) in this construction, all nonfaulty parties output the same value for the same inputs. This
slightly changes the properties of this PE protocol when compared to that of [AJM+21]. However, simply
mapping the PEVerify protocol outputting 1 to it terminating and 0 to it not terminating (for example, by
constructing a protocol that wraps PEVerify and does this exactly) results in the exact same properties as
those of [AJM+21].

3.6.2 Construction

We construct a proposal election protocol from any weak coin protocol. Intuitively, parties would like to
provide their proposals and then use the weak common coin to elect one of those proposals. Unfortunately,
since parties can’t wait to hear all proposals, they have to proceed after hearing at most n − f . This
introduces 4 challenges:

1. First, parties might elect an index that hasn’t provided a proposal. To solve this, parties tell each other
if they’ve heard a proposal from the elected party. Any party that hears that n − f parties haven’t
received a proposal can output ⊥.

2. Second, parties might elect different indices with different proposals. Any party that hears two different
proposals can also output ⊥.

3. Third, in order to make sure that there is a “high enough” probability of success, parties output the
elected proposal even if they hear it from only one of the n− f parties. This is why parties make sure
that a quorum of parties stored their proposal before proceeding to the coin flip.

4. Fourth, an adaptive adversary can wait to see who wins the election and corrupt it retroactively to
equivocate its proposal. To overcome this, parties call a non-equivocation protocol before storing it in
a quorum.

In more detail, after setting up the coin, parties call a non-equivocation protocol on their proposals prop,
and send them with the corresponding proof in a “proposal” message. After receiving such a proof, parties
store the proposal and non-equivocation proof and respond with a “stored” message. Every party waits to
hear that n − f parties stored its message and then sends a “ready” message indicating that it is ready to
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proceed to the coin flip. After receiving n− f such “ready” messages, parties call the coin flip protocol and
send “elected” messages informing each other of the random index r they output and of any stored value for
party r. Parties then wait to receive “elected” messages from n− f parties before computing their output.
In the good case that all nonfaulty parties output the same index r of a nonfaulty party that sent a “ready”
message, they will all send the same r in their “ready” messages. Moreover, each party will hear r’s proposal
from at least one party in the quorum. In addition, the adversary will not be able to report a different
proposal, because it would have to produce a differing non-equivocation proof. Parties can then output that
proposal, along with a proof that it was computed correctly. In any other case, the protocol provides liveness
and parties can output ⊥ and prove that there was either disagreement on the elected party r, or that many
parties didn’t store its proposal.

To reduce communication complexity, we define the following non-interactive proof system, which essen-
tially shows that the same value r was received f+1 times from a total set of n−f values from other parties.
Concretely, we define the proof system PSelect = (PProveelect,PVerifyelect) for the relation

Relect :=

{ (
p⃗k, r; J, S, {(ri,mi, σi)}i∈S

) ∣∣∣∣ |S| = n− f, |J | = f + 1, ∀j ∈ J : rj = r,
∀i ∈ S : VerifyDS(pki, (ri,mi), σi) = 1

}
.

3.6.3 Security Analysis

Theorem 12. The PE protocol is a Proposal Election protocol resilient to f Byzantine faults if n > 3f , with
α = 2

9 .

Proof. Each property is proven separately.
2
9 -Binding. Assume some nonfaulty party completes the PE protocol. At that time, it had n − f non-⊥
entries in its elected variable, which it updated after receiving “elected” messages with verifying contents
from n − f different parties. At least n − f of those were sent by nonfaulty parties after completing the
Flip(vi, tag) protocol. Parties only complete the Flip protocol after receiving “ready” messages from n − f
parties. Let I be the set of all nonfaulty parties that send such messages at that time, and note that
|I| ≥ n − f . Nonfaulty parties send such a message after receiving “stored” messages from n − f parties,
with f + 1 of those being sent by nonfaulty parties. Finally, nonfaulty parties only send such a “stored”
message to j after seeing that receiving a ⟨“proposal”, propj , πpropNE,j , (“proposal”, tag)⟩ from j such that
Verify(j, propj , πpropNE,j , (“proposal”, tag)) = 1 and storing (propj , πpropNE,j) in proposals[j].

As shown in Theorem 10, the Flip protocol has the 2
3 -Uniformity property. This means that with proba-

bility 2
3 or greater, all nonfaulty parties output the same uniformly sampled index r ∈ [n] that is independent

of the adversary’s view before the first nonfaulty party calls Flip. In that case, every nonfaulty party sends
the message ⟨“elected”, r, proposals[r], σ, tag⟩. If r happens to be some index in I, then at least nonfaulty
f + 1 parties stored the value (propr, πpropNE,r) sent by r in proposals[r] and sent it in its “proposal” mes-
sage. Let J be the set of nonfaulty parties that stored (propr, πpropNE,r). This means that any set of n − f
“elected” messages must include one message sent by a party in J . Note that parties in J check that
Verify(r, propr, πpropNE,r, (“proposal”, tag)) = 1 before storing the value, so the adversary will not be able to
generate any other verifying prop′r, π

′
propNE,r such that propr ̸= prop′r.

Assume the adversary provides a pair (out, (r′, πr′ , πout)) such that PEVerify(out, (r′, πr′ , πout), tag) = 1.
First, r′ = r because any set of n−f “proposal” messages contains at least f +1 messages sent by nonfaulty
parties with the value r, and the nonfaulty parties sign no other values. This means that Verify(⊥, πr′ , tag)
must equal 0, and so would Verify(r′, πr′ , tag) if r′ ̸= r. Similarly, as any set of “proposal” messages sent
by n− f parties must include a message from one party in J , and no other verifying prop′r, π

′
propNE,r can be

provided with prop′r ̸= propr, Verify(out, (r
′, πr′ , πout), tag) would equal 0 for out = ⊥ or for any out ̸= propr.

By assumption, Verify(out, (r′, πr′ , πout), tag) = 1, so out = propr. Finally, note that given the event E, the

probability that all nonfaulty parties output the same index r ∈ I is |I|
n ≥

f+1
n ≥ 1

3 . In total, if both events
take place, then there exists some party i∗ that was nonfaulty when sending its “ready” message (and thus
also when starting the protocol) such that the adversary cannot provide a verifying out, π unless out = propi∗ .
This means that the property holds with α = 2

3 ·
1
3 = 2

9 .
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Algorithm 16 PE(propi, tag)

1: ∀j ∈ [n] : proposals[j]← ⊥, elected[j]← ⊥
2: vi ← ⊥, r∗ ← ⊥, πr∗,i ← ⊥, outi ← ⊥, πout,i ← ⊥

// Lines 3-5 can be called once to set up many instances of PE
3: call WDCG()
4: upon WDCG outputting v, do
5: vi ← v

// Non-equivocation of inputs, store proposals for future use
6: call NonEquiv(propi, tag)
7: upon NonEquiv(propi, tag) terminating with output πpropNE, do
8: send ⟨“proposal”, propi, πpropNE, tag⟩ to all parties

9: upon receiving the first ⟨“proposal”, propj , πpropNE,j , (“proposal”, tag)⟩ message from j, do
10: if valid(propj) = 1 and NEVerify(j, propj , πpropNE,j , (“proposal”, tag)) = 1 then
11: proposals[j]← (propj , πpropNE,j)
12: send ⟨“stored”, tag⟩ to j

// Wait until many parties stored proposal, then flip coin
13: upon receiving ⟨“stored”, tag⟩ messages from n− f parties, do
14: send ⟨“ready”, tag⟩ messages to all parties

15: upon receiving ⟨“ready”, tag⟩ messages from n− f parties and vi ̸= ⊥, do
16: call Flip(vi, tag)

// Inform each other of coin value, and of the stored proposal for the winning party
17: upon Flip(vi, tag) terminating with output ri, do
18: send ⟨“elected”, ri, proposals[ri],SignDS(ski, (ri, proposals[ri], tag), tag⟩ to all parties

// Check whether one party won, and whether its input is stored somewhere
19: upon receiving the first ⟨“elected”, rj , valj , σj , tag⟩ message from j, do
20: if VerifyDS(pkj , (rj , valj , tag), σj) = 1 then
21: elected[j]← (rj , valj , σj)
22: if elected[j] ̸= ⊥ for exactly n− f indices j ∈ [n] then
23: if ∃r ∈ [n] such that elected[j] = (r, valj , σj) for at least f + 1 indices j ∈ [n] then

24: r∗ ← r, πr∗,i ← PProveelect(p⃗k, (r, tag); elected) ▷ choose an r arbitrarily if more than one
25: if ∃j ∈ [n] such that elected[j] = (r, valj , σj), valj = (prop, π) ̸= ⊥, valid(prop) = 1,
26: and NEVerify(r, prop, π, (“proposal”, tag)) = 1 then
27: outi ← prop, πout,i ← Prove(r∗, outi, elected, tag)
28: else
29: outi ← ⊥, πout,i ← Prove(r∗,⊥, elected, tag)
30: else
31: r∗ ← ⊥, πr∗,i ← Prove(⊥, elected, tag)
32: outi ← ⊥, πout,i ← ⊥
33: output (outi, (r

∗, πr∗,i, πout,i)) and terminate

Algorithm 17 PEVerify(out, (r, πr, πout), tag)

1: if r = out = ⊥ and Verify(⊥, πr, tag) = 1 then
2: return 1
3: else if Verify(r, πr, tag) = 1 then
4: if out ̸= ⊥ and Verify(r, out, πout, tag) = 1 then
5: return 1
6: else if out = ⊥ and Verify(r,⊥, πout, tag) = 1 then
7: return 1
8: return 0

30



Completeness. When a nonfaulty party i outputs (outi, (r
∗, πr∗,i, πout,i)), if r

∗ = ⊥, it generates a correct
proof πr∗,i and sets outi = ⊥. In that case, r∗ = outi = ⊥ and Verify(⊥, πr∗,i, tag) = 1 and thus PEVerify
outputs 1. If r∗ ̸= ⊥, then i generates a correct proof πr∗,i and thus Verify(r∗, πr∗,i, tag) = 1. In addition, i
generates a correct proof πout,i both when outi = ⊥ and when outi ̸= ⊥, and thus PEVerify outputs 1.

External Validity. If out = ⊥, the claim trivially holds. Otherwise, PEVerify(out, (r, πr, πout), tag) only if
Verify(r, πr, tag) = Verify(r, out, πout, tag) = 1. The fact that Verify(r, out, πout, tag) = 1 directly implies that
valid(out) = 1.

Termination. If every nonfaulty i calls PE(propi, tag), they all start by callingWDCG() and NonEquiv(propi,
tag). Every nonfaulty i completes both calls, updates vi, and sends a “proposal” message. Nonfaulty then
receive each other’s “proposal” messages, see that the propj values are valid and that the πpropNE,j proofs
verify, update their proposals[j] value and respond with a “stored” message. After receiving n − f such
“stored” messages, every party sends a “ready” message to all parties. Finally, after receiving “ready”
messages from n−f parties, each nonfaulty party calls Flip(vi, tag). Parties then send “elected” messages to
each other. Finally, parties receive each other’s “elected” messages and update their elected variables. After
doing so for n− f parties, parties perform local computations and complete the protocol.

3.6.4 Efficiency

Note that as stated in the protocol, the WDCG protocol can be called once to set up many instances of
PE, as each call to Flip can utilize the same WDCG setup. In fact, in the WDCG protocol, we recursively
call WDCG once per child. Because of this, in the following theorem, we analyze the costs of the protocol
without counting the costs of the WDCG. For the total costs, calling PE many times would cost an expected
O(ℓ · λ2n2 logc n) for the single call to WDCG plus O((λ+ log n+m)n2) per call to PE.

Theorem 13. The PE protocol requires a single call to WDCG plus O((λ + log n + m)n2) communication
and O(1) rounds, where m is the size of the input.

Proof. Other than the WDCG protocol, parties call the Flip protocol for a cost of O((λ + log n)n2) and a
constant number of rounds of sending messages of size λ + m. In total, this costs O((λ + log n + m)n2)
communication. In addition, the Flip protocol terminates after a constant number of rounds, and other parts
of the protocol complete after a constant number of rounds.

4 Asynchronous Distributed Key Generation

In this section, we describe a simple DKG construction. In the construction, parties call the PVSSExchange
protocol to generate a transcript, and then agree on the transcript using the RecConsensus protocol. The
RecConsensus protocol is the same one as the one used in the WDCG protocol: the No-Waitin’ Hotstuff
protocol, using the PE protocol of Section 3.6. In addition to the regular input to the protocol, parties also
input the indices of the minimal and maximal indices of parties participating in the protocol, in this case 1
and n respectively.

4.1 Definition

Definition 8 (DKG Protocol). Let Π be a protocol executed by n parties {1, . . . , n}, where for all i ∈ [n],
party i outputs a secret key share ski, a vector of public key shares (pk1, . . . , pkn), and a public key pk.
We require the following properties for Π which each holds with overwhelming probability in the presence of
a strongly adaptive adversary A corrupting at most t parties:

• Termination. All honest parties terminate and output the same public key pk and the same vector of
public key shares (pk1, . . . , pkn).
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• Correctness. There exists a deterministic algorithm Reconstruct that on input any set of t+ 1 secret
key shares {ski}i∈I , where I ⊆ [n], outputs the same unique secret key sk. Further, sk is a valid secret
key for pk.

• Secrecy. A’s success probability in the following experiment is negligible:

– Offline Phase. Initialize a corruption set C := ∅ and let H := [n] \ C. Run A on input par.

– Corruption Queries. At any point of the experiment, A may corrupt a party by submitting an
index i ∈ H. In this case, return the internal state of i and update C := C ∪ {i}. Henceforth, A
has full control over i.

– Online Phase. Initiate an execution of Π with A having control over parties in C. Let y := pk← Π
be the public key output by honest parties, and let x := sk be the respective secret key.

– Winning Condition. Let s∗ denote the output of A. Then, A is considered successful if and only
if |C| ≤ f and s∗ = x.

4.2 Construction

We describe our DKG protocol in Algorithm 18. Conceptually, the ADKG protocol calls the first parts of the
WDCG protocol, generating a transcript, dispersing it, agreeing on one transcript, and finally outputting it.
In more detail, parties start by calling the PVSSExchange protocol, and any party that manages to output a
transcript disperses it. After dispersing the transcript, the disperser informs other parties that it succeeded,
along with a proof so that they can proceed to the consensus protocol. Parties forward this information and
call a consensus protocol in order to agree on a dispersed transcript. After agreeing on the same transcript,
parties retrieve it and output it.

Algorithm 18 ADKG()

1: dispi ← ⊥, πdisp,i ← ⊥
2: call PVSSExchange()

// Generate a candidate transcript, disperse it, and inform all parties about it being dispersed
3: upon PVSSExchange() terminating with output (trans, π), do
4: call Disperse((trans, π)) with external validity validDisperse

5: upon Disperse terminating with output π, do
6: if dispi = ⊥ then
7: dispi ← i, πdisp,i ← π

8: upon receiving the first ⟨“disp”, dispj , πdisp,j⟩ message from j, do

9: if PVerifyTS(p⃗k, (dispj , tag);πdisp,j) = 1 and dispi = ⊥ then
10: dispi ← dispj , πdisp,i ← πdisp,j

// Agree on a dispersed transcript
11: upon dispi ̸= ⊥ and πdisp,i ̸= ⊥, do
12: send ⟨“disp”, dispi, πdisp,i⟩ to all parties
13: call WDCG(1, n)

14: upon the WDCG(1, n) protocol terminating with output vi, do
15: call RecConsensus((dispi, πdisp,i), 1, n) with external validity function DisperseVerify, using vi and the

state of WDCG(i′min, i
′
max) for the PE protocol

// Retrieve the agreed upon dispersed transcript and output it
16: upon RecConsensus outputting (agreed, πagreed), do
17: call Retrieve() for retrieving the value dispersed by disp, where agreed = (disp, π)

18: upon Retrieve() terminating with output (trans, π), do
19: output trans and terminate
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Algorithm 19 validDisperse((trans, π))

1: if VerifyPVSS(trans, (ek1, . . . , ekn)) = 1 and ExchangeVerify(trans, π) = 1 then
2: return 1
3: else
4: return 0

4.3 Security Analysis

Theorem 14. The ADKG protocol described in Algorithm 18 is an Asynchronous Distributed Key Generation
protocol resilient to f faults if n > 3f .

Proof. Each property is proven separately.
Correctness. If some nonfaulty party completes the protocol and outputs trans, it output (trans, π)

from some call to Retrieve. From the external validity of the AVID protocol, validDisperse(trans, π) = 1,
and thus ExchangeVerify(trans, π) = 1. From the Verifiability property of the PVSSExchange protocol, trans
includes at least one contribution that erased its contents without being corrupted. This means that trans
is uniform and sampled independently of the adversary’s view. In addition, since validDisperse(trans, π) = 1,
VerifyPVSS(trans, (ek1, . . . , ekn)) = 1. This means that the output is indeed a correct PVSS transcript, as
required.

Termination. At least one nonfaulty party i completes the PVSSExchange protocol and calls the Disperse
protocol. Following that, that party completes the disperse protocol and updates dispi, πdisp,i if it hasn’t done
so before. Party i updates its dispi, πdisp,i variables after generating the verifying proof πdisp,i or receiving
these values and verifying the proof. It then sends these values to all parties. All nonfaulty parties receive
these values and update their own disp, πdisp variables if they haven’t done so before. After updating these
variables, every nonfaulty party calls the WDCG protocol. From the Termination of WDCG, parties complete
the protocol and call RecConsensus with an externally valid input and a WDCG setup. Parties eventually
complete the call and output the same externally valid output (agreed, πagreed). Since the output is externally
valid, DisperseVerify(agreed, πagreed) = 1, and thus agreed = (i, π) for some party i that dispersed a pair
(trans, π) such that validDisperse(trans, π) = 1. Every nonfaulty party calls the Retrieve protocol, retrieves
(trans, π) and outputs trans. In particular, all parties output the same public key pk and the same vector of
public key shares (pk1, . . . , pkn).

Secrecy. We show secrecy of our DKG protocol, assuming aggregated unpredictability of the underlying
aggregatable PVSS scheme APVSS. Concretely, we build a reduction against the aggregated unpredictability
of APVSS. For this, we split our proof into two parts. First, we provide a simulation of the aggregated
unpredictability experiment to an adversary A via a sequence of games. In particular, we interpolate between
some games using reductions against the security of the consensus protocol RecConsensus and the security of
the asynchronous verifiable dispersal protocol AVID. Second, we bound A’s winning probability in the final
game by providing an efficient reduction against the aggregated unpredictability of APVSS. We consider
the following sequence of games with A as adversary. Throughout, we denote by C ⊂ [n] the set of corrupt
parties and by H := [n] \ C the set of honest parties.

Game G0: This is the real secrecy game. In particular, the game samples system parameters par and
initializes a corruption set C := ∅ and updates H := [n] \ C throughout the game. Then, the game runs
A on input par with access to a corruption oracle. Whenever A decides to corrupt a party i ∈ H, the
game honestly returns the internal state of that party i to A and updates C := C ∪ {i}. From this point
on, A gets complete control over party i. Further, all honest parties follow the protocol instructions for the
DKG protocol. In particular, each party i honestly generates its PVSS transcripts for the protocol execution
PVSSExchange(). At the end of the protocol ADKG, each party i outputs a transcript trans and derives the
public key pk, the vector of public key shares (pk1, . . . , pkn), and its secret key share ski from trans. At the
end of the game, A outputs a secret s∗ and wins the game if |C| ≤ f and s∗ = sk (which is the secret key for
pk). Clearly, A’s advantage in winning the game is given by

Pr[G0 ⇒ 1] = ε.

33



Game G1: This game is identical to the previous game, except that we add an abort condition. The idea of
this hybrid is to rule out failure of the protocol AVID. Namely, whenever an instance of AVID fails to output
the correct message trans or a verifying invalid proof π, the game aborts. Since there is a polynomial number
of instances of AVID overall, we can bound the winning probability of this game by

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ poly(n) · εAVID.

Here, we note that the probability of failure in AVID is directly given by the collision-resistance of the
underlying cryptographic accumulator scheme and by the soundness of the defined non-interactive proof
system PSTS = (PProveTS,PVerifyTS) for relation RTS.

Game G2: This game is identical to the previous game, except that we add another abort condition. The
idea of this hybrid is to rule out failure of the consensus protocol RecConsensus. Namely, whenever an
instance of the consensus protocol RecConsensus fails to establish consensus, the game aborts. Assuming the
security of the consensus protocol being given by εRecConsensus, we can bound the winning probability of this
game by

|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ εRecConsensus.

Game G3: This game is identical to the previous game, except that we add another abort condition. So
far we have rule out failure of the distributed protocols RecConsensus and AVID. From our termination and
correctness considerations in the first part of our proof and the security of the PVSSExchange protocol, it then
follows that the protocol establishes the same aggregated transcript trans for all parties that has contribution
from at least one honest party. As such, the idea of this hybrid is to guess this special party i∗ ∈ [n] that
contributes to the aggregated transcript trans and that remains honest until the end of the game. Concretely,
at the beginning of the game, the game makes a random guess by sampling ĩ←$ [n] and executes the game
as in G2. At the end of the game, the game aborts if ĩ ̸= i∗ or i∗ /∈ H (i.e., we gues the wrong special party
or the special party gets corrupted). Since the choice of ĩ remains information-theoretically hidden from A’s
view, we can bound the winning probability of this game by by

Pr[G3 ⇒ 1] ≥ Pr[G2 ⇒ 1]/(3n).

We note that the factor n comes from the condition ĩ ̸= i∗, while the factor 3 comes from the condition
i∗ /∈ H. It remains to bound the probability that the final game G3 outputs 1. For that, we build an efficient
reduction R against the aggregated unpredictability of APVSS. The design is straightforward.

Building a reduction. We build an efficient reductionR to the aggregated unpredictability game of APVSS.
For this, we first recall the unpredictability game. At a high level, it captures malleability attacks and
prohibits any adversary (corrupting at most f parties) from learning the secret of an aggregated transcript
that has contribution from at least one honest party. In more detail, there are two kinds of queries we can
make: (i) corruption queries, and (ii) PVSS transcript queries. For the second point (ii), we specify a party
index i ∈ H and obtain a PVSS transcript on behalf of that party i from the game. At the end of the game,
we have to output a PVSS transcript trans∗ along with a secret s∗ and win the game if we have made at
most f corruption queries, trans∗ is a valid PVSS transcript with contribution from at least one honest party
i∗ ∈ H and s∗ is the secret encoded in the transcript trans∗. Having said that, building a reduction should
be immediate.

At the beginning of the aggregated unpredictability experiment, R submits a PVSS transcript request for
party index i∗ ∈ H and obtains a PVSS transcript transi∗ . Then it simulates the game G3 to A by honestly
generating PVSS transcripts in the PVSSExchange protocol execution for all parties i ∈ H \ {i∗}. For the
special party i∗, however, it uses transi∗ that will be included in trans (other PVSS transcripts of i∗ will also
be generated honestly). Whenever A decides to corrupt a party i ∈ H, the reduction R simply forwards
this corruption query to its own challenger in its aggregated unpredictability experiment and returns the
output to the adversary A. In this way, R can correctly answer all corruption queries of A. At the end
of the simulation to A, the adversary A outputs a secret s∗ to R. We assume that the adversary outputs
a correct forgery s∗, so that s∗ is the secret of the final aggregated transcript trans which has contribution
from i∗. Now, the reduction R outputs the tuple (trans, s∗) to the challenger of its underlying aggregated
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unpredictability experiment. In particular, the winning conditions are satisfied: (i) |C| ≤ f is clear, since the
same holds true for the adversary A. (ii) VerifyPVSS(trans, ek1, . . . , ekn) = 1 is clear, since the DKG protocol
execution succeeded by assumption. (iii) The existence of an index i ∈ H such that i ∈ Contr(trans) ⊆ [n] is
clear, since i∗ is this index. Finally, it follows that we can bound the winning probability of this final

Pr[G3 ⇒ 1] ≤ εAPVSS.

4.4 Efficiency

Theorem 15. The ADKG protocol has an expected communication complexity of O(ℓ · λ2n2 logc n) and an
expected round complexity of O(logℓ n).

Proof. The protocol consists of a single call to PVSSExchange costing O(λ2n2 logc n), a constant number of
all-to-all rounds sending messages of size O(λ), a single call to the WDCG protocol and a single call to the
RecConsensus with inputs of size O(λ). The WDCG protocol has an expected communication complexity of
O(ℓ ·λ2n2 logc n) and the consensus costs an expected O(λn2). In total, the ADKG protocol has an expected
complexity of O(ℓ ·λ2n2 logc n). In addition, every part of the protocol requires a constant expected number
of rounds, except the WDCG, with a round complexity of O(logℓ n).

Observing two extremes for the value of ℓ, we can evaluate the complexities of the protocol. One could
choose a constant fan-out in the recursion, e.g. ℓ = 2, resulting in a nearly quadratic communication
complexity of O(λ2n2 logc n), but a round complexity of log(n). On the other extreme, setting the number

of children in the recursion to be larger, e.g. ℓ = n
1
2 (or any other ℓ = nϵ for 0 < ϵ ≤ 1/2), results in

a very low round complexity of O(logℓ n) = O(1) (or more generally O(1/ϵ)), but a larger communication

complexity of O(λ2n2+ 1
2 logc n) (or more generally O(λ2n2+ϵ).
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A Formal Definitions

In this section, we give formal definitions for the primitives introduced in Section 2.1. For our definitions,
recall that G is a cyclic group of prime order p with independent generators g, h ∈ G.

Definition 9 (Aggregatable PVSS Scheme). A (t, n)-threshold aggregatable PVSS (APVSS) scheme over
group G is a tuple of algorithms APVSS = (KGen,Encr,Decr,Dist,Agg,Contr,Ver,Rec) such that:

• KGen(par) → (ek, dk) : The randomized key generation algorithm takes as input system parameters
par. It outputs a public encryption key ek and a secret decryption key dk.

• Encr(ek,m) → c : The randomized encryption algorithm takes as input an encryption key ek and a
message m. It outputs a ciphertext c. We may also write Encrek(m) instead of Encr(ek,m).

• Decr(dk, c) → m : The deterministic decryption algorithm takes as input a decryption key dk and a
ciphertext c. It outputs a message m (optionally with a proof of correct decryption). We may sometimes
also write Decrdk(c) instead of Decr(dk, c). Further, for all messages m and keys (ek, dk) ∈ KGen(par),
we require that Pr [Decrdk(Encrek(m)) = m] = 1.

• Dist(ek1, . . . , ekn)→ (E⃗, π) : The randomized secret sharing algorithm takes as input a list of n encryp-

tion keys (ek1, . . . , ekn). It outputs a vector of encrypted shares E⃗ := (Encrek1(S1), . . . ,Encrekn(Sn))
along with a proof π, where S1, . . . , Sn are (t, n)-threshold shares of a secret S = S0 ∈ G. We also refer

to the tuple T := (E⃗, π) as a PVSS transcript.

• Agg({(E⃗i, πi)}i∈[k]) → ((E⃗, π), w⃗) : The deterministic aggregation algorithm takes as input PVSS

transcripts (E⃗1, π1), . . . , (E⃗k, πk) for k ∈ N. It outputs an (aggregated) PVSS transcript T := (E⃗, π)
along with a weight vector w⃗ ∈ Nn

0 (indication contributing parties and their weights).

• Contr((E⃗, π), w⃗)→ I : The deterministic contributor identifier algorithm takes as input an (aggregated)

PVSS transcript T = (E⃗, π) with weight vector w⃗. It outputs a set of indices I ⊆ [n] specifying the
contributors.

• Ver((E⃗, π), w⃗, (ek1, . . . , ekn))→ 0/1 : The deterministic verification algorithm takes as input an (aggre-

gated) PVSS transcript T = (E⃗, π) with weight vector w⃗, and a list of n encryption keys (ek1, . . . , ekn).
It outputs 1 (valid transcript) or 0 (invalid transcript).

• Rec(S1, . . . , St+1) → S : The deterministic reconstruction algorithm takes as input t + 1 (decrypted)
shares S1, . . . , St+1. It outputs a secret S ∈ G.

Definition 10 (Reed-Solomon Code). A Reed-Solomon code with parameters (q, b) is a tuple of deterministic
algorithms Σ = (Encode,Decode) with the following properties:

• Encode(m) → (s1, . . . , sq) : The deterministic encoding algorithm takes as input a message m (which
is internally split into b data symbols m1, . . . ,mb). It outputs a code word (s1, . . . , sq) of length q.
Knowledge of any b elements of the code word uniquely determines the input message and the remaining
of the code word.

• Decode(s1, . . . , sq)→ m : The deterministic decoding algorithm takes as input a code word (s1, . . . , sq)
of length q. It outputs a decoded message m. This algorithm tolerates up to c errors and d erasures in
a code word (s1, . . . , sq) if and only if q − b ≥ 2c+ d.

Definition 11 (Cryptographic Accumulator). A cryptographic accumulator scheme is a tuple of algorithms
Σ = (GenAcc,EvalAcc,WitnessAcc,VerifyAcc) with the following properties:
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• GenAcc(n)→ ak : The randomized accumulator key generation algorithm takes as input an accumula-
tion threshold n. It outputs a public accumulator key ak.

• EvalAcc(ak,D)→ z : The deterministic evaluation algorithm takes as input an accumulator key ak and
a list of n elements D := (d1, . . . , dn). It outputs an accumulation value z for D.

• WitnessAcc(ak, z, d,D) → w/⊥ : The possibly randomized witness generation algorithm takes as input
an accumulator key ak, an accumulation value z, an element d, and a list of elements D. It outputs
⊥ if d /∈ D, and a witness w otherwise.

• VerifyAcc(ak, z, d, w,D)→ 0/1 : The deterministic verification algorithm takes as input an accumulator
key ak, an accumulation value z, an element d, a witness w, and a list of element D. It outputs 1
(accept) if w is a valid proof for membership d ∈ D and 0 (reject) otherwise.

Definition 12 (Key-Evolving Digital Signature Scheme). A key-evolving digital signature scheme is a tuple
of algorithms KDS = (KGenKDS,UpdateKDS,SignKDS,VerifyKDS) with the following properties:

• KGenKDS(λ, T ) → (pk, sk0) : The randomized key generation algorithm takes as input the security
parameter λ and the total number of periods T ∈ N over which the scheme will operate. It outputs a
base public key pk and corresponding base secret key sk0.

• UpdateKDS(skr) → skr+1 : The deterministic secret key update algorithm takes as input a secret key
skr of some period r ∈ N0. It outputs an updated secret key skr+1 for the period r + 1.

• SignKDS(skr,m) → σ : The possibly randomized signature generation algorithm takes as input the
current secret key skr and a message m. It outputs a signature σr for the period r.

• VerifyKDS(pk,m, σr)→ 0/1 : The deterministic verification algorithm takes as input the public key pk,
a message m, and a signature σr. It outputs 1 (accept) if σr is a valid signature for period r and 0
(reject) otherwise.

Definition 13 (Verifiable Random Function). A verifiable random function is a tuple of PPT algorithms
VRF = (GenVRF,EvalVRF,VerifyVRF) with the following properties:

• GenVRF(λ)→ (pk, sk) : The randomized key generation algorithm takes as input the security parameter
λ. It outputs a public key pk and a corresponding secret key sk.

• EvalVRF(sk,m) → (u, π) : The deterministic function evaluation algorithm takes as input a secret key
sk and a message m. It outputs a function value u ∈ S along with a proof π. Here, S is a finite set
denoting the codomain of the function.

• VerifyVRF(pk,m, u, π)→ 0/1 : The deterministic verification algorithm takes as input the public key pk,
a message m, an output u, and a proof π. It outputs 1 (accept) or 0 (reject).

Additionally, VRF must satisfy the following security properties.

• Correctness. For all λ ∈ N, for all (pk, sk) ∈ GenVRF(λ), for all m, and for all (u, π) in the image of
EvalVRF(sk,m), it holds VerifyVRF(pk,m, u, π) = 1.

• Unique Provability. For all possible pk (not necessarily in the image of GenVRF), for all m, for all
u1, u2 ∈ S, and for all possible proofs π1, π2, the following implication holds:

(VerifyVRF(pk,m, u1, π1) = VerifyVRF(pk,m, u2, π2) = 1) =⇒ (u1 = u2) .

Informally, this means that for every message m, there exists a valid proof π for at most one function
value u.
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• Pseudorandomness. For all PPT adversaries A, its advantage in the pseudorandomness experiment
defined hereafter is negligible: |Pr[PseudoRandA

VRF = 1]− 1/2| ≤ negl(λ).

Definition 14 (Pseudorandomness for VRF). Let VRF = (GenVRF,EvalVRF,VerifyVRF) be as defined above.
For an algorithm A, define the pseudorandomness experiment PseudoRandA

VRF as follows:

• Offline Phase. Initialize set M := ∅. Run the key generation algorithm on input λ to obtain keys
(pk, sk)← GenVRF(λ). Run A on input pk.

• Evaluation Queries. At any point of the experiment, A may submit a message m. In this case, return
(u, π)← EvalVRF(sk,m) and updateM :=M∪ {m}.

• Online Phase. When A outputs a message m∗, run the evaluation algorithm on it to obtain (u0, π)←
EvalVRF(sk,m

∗). Sample a bit b←$ {0, 1} and a value u1←$ S uniformly at random.

• Winning Condition. On input ub, A outputs a bit b′ ∈ {0, 1}. Return 1 if b′ = b and m∗ /∈ M.
Otherwise, return 0.

Definition 15 (Non-Interactive Proof System). Let R be an NP relation and H be a random oracle. A
non-interactive proof system for R with respect to H is a tuple of PPT algorithms PS = (PProve,PVerify)
with oracle access to H with the following properties:

• PProveH(x,w) → π : The randomized proof generation algorithm takes as input a statement x and a
witness w. It outputs a proof π.

• PVerifyH(x, π) → 0/1 : The deterministic verification algorithm takes as input a statement x and a
proof π. It outputs 1 (accept) or 0 (reject).

We require completeness to hold: For any (x,w) ∈ R, we have

Pr
[
PVerifyH(x, π) = 1 | π ← PProveH(x,w)

]
= 1.

Further, we also require soundness to hold. Concretely, we say that PS is sound if for every PPT algorithm
A, the following advantage is negligible:

Pr
[
b = 1 ∧ ∀w : (x,w) /∈ R

∣∣∣ (x, π)← AH, b := PVerifyH(x, π)
]
.

We also require the proof system to be zero-knowledge. Concretely, we say that PS is zero-knowledge, if
there is a possibly stateful PPT algorithm PSim such that for every (potentially unbounded) adversary A with
polynomial-time access to H, the following advantage is negligible:∣∣∣Pr [AH,Oracle0 = 1

]
− Pr

[
AHPSim,Oracle1 = 1

]∣∣∣ ,
where HPSim denotes a random oracle simulated by PSim, and Oracleb for b ∈ {0, 1} takes as input pairs
(x,w) ∈ R and outputs π ← PProveH(x,w) if b = 0 and π ← PSim(x) if b = 1.

Definition 16. In a verifiable consensus protocol (Consensus,ConsensusVerify), every party has an input xi

and outputs a value yi and a proof πi. Parties have access to an external validity function valid. Assuming
all nonfaulty parties participate in the protocol and that valid(xi) = 1 for every nonfaulty i, the protocol has
the following properties:

• Correctness. Every nonfaulty party that completes the protocol outputs the same yi.

• External Validity. If some nonfaulty party outputs yi, then valid(yi) = 1.
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• Verifiability. If some nonfaulty party outputs yi, πi, then ConsensusVerify(yi, πi) = 1. Furthermore,
the adversary cannot generate any y, π such that y ̸= yi and ConsensusVerify(y, π) = 1.

• Termination. All nonfaulty parties almost-surely terminate.

Note that most consensus constructions have additional properties disallowing trivial solutions such as
α-Quality (there is at least an α probability of outputting a nonfaulty party’s input), validity (if all nonfaulty
parties have the same input, they output that value), or weak validity (if all parties are nonfaulty and have
the same input, they output that value). While the protocols we use have these properties, this is not
necessary in our construction.
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