
Quantum Algorithms for Fast Correlation
Attacks on LFSR-Based Stream Ciphers⋆

Akinori Hosoyamada

NTT Social Informatics Laboratories, Tokyo, Japan
NTT Research Center for Theoretical Quantum Information, Atsugi, Japan

akinori.hosoyamada@ntt.com

Abstract. This paper presents quantum algorithms for fast correlation
attacks, one of the most powerful techniques for cryptanalysis on LFSR-
based stream ciphers in the classical setting. Typical fast correlation at-
tacks recover a value related to the initial state of the underlying LFSR
by solving a decoding problem on a binary linear code with the Fast
Walsh-Hadamard Transform (FWHT). Applying the FWHT on a func-
tion in the classical setting is mathematically equivalent to applying the
Hadamard transform on the corresponding state in quantum computa-
tion. While the classical FWHT on a function with ℓ-bit inputs requires
O(ℓ2ℓ) operations, the Hadamard transform on ℓ-qubit states requires
only a parallel application of O(ℓ) basic gates. This difference leads to
the exponential speed-up by some quantum algorithms, including Si-
mon’s period finding algorithm.
Given these facts, the question naturally arises of whether a quantum
speedup can also be achieved for fast correlations by replacing the clas-
sical FWHT with the quantum Hadamard transform. We show quantum
algorithms achieving speed-up in such a way, introducing a new attack
model in the Q2 setting. The new model endows adversaries with a quite
strong power, but we demonstrate its feasibility by showing that certain
members of the ChaCha and Salsa20 families will likely be secure in the
new model. Our attack exploits the link between LFSRs’ state update
and multiplication in a fine field to apply Shor’s algorithm for the dis-
crete logarithm problem. We apply our attacks on SNOW 2.0, SNOW
3G, and Sosemanuk, observing a large speed-up from classical attacks.

Keywords: symmetric-key cryptography · quantum cryptanalysis · fast
correlation attacks · LFSR-based stream ciphers

1 Introduction

While research and standardization of post-quantum public-key cryptosystems
have been steadily progressing in the past decade [68], research on quantum se-
curity of symmetric-key cryptography has also been advancing. Starting with the
⋆ This article is the full version of the paper with the same title accepted to Asiacrypt

2024, ©IACR 2024.

early results of Grover’s algorithm [43] for speeding up the exhaustive key search
and the BHT algorithm [19] for speeding up collision search, a wide variety of
attack techniques have been proposed, including those breaking some schemes in
polynomial time with Simon’s algorithm pioneered by Kuwakado and Morii [54,
55], Kaplan et al. [51], and Santoli and Scaffner [74]. A more recent research [16]
has revealed that, even in the most conservative attack model, simply doubling
the size of a secret key does not necessarily ensure the same level of security as in
the classical setting. Another line of research started in [47, 28] has shown more
rounds of some hash functions are broken in the quantum setting than in the
classical setting, which underscores the importance of studying quantum attacks
on symmetric key cryptography.

Whereas some quantum attacks are based on ideas completely different from
classical attacks, others attempt to speed up classical attacks through quantum
computation (e.g., [52, 15]). A large speed-up is sometimes obtained, while in
other cases, an attack classically faster than the generic attack turns out to be
slower than the quantum generic attack. To better understand security in the
quantum setting, it is important to investigate how the efficiency and the validity
of each classical attack change.

There are two attack models in the quantum setting, which are called Q1
and Q2 [52]. Q1 assumes that an adversary has a quantum computer, but ora-
cles remain unchanged from the classical setting. In contrast, Q2 assumes both
are quantum and that an oracle allows quantum superposition queries. The as-
sumption of Q2 is strong, but Q2 attacks are still quite worth studying. If the key
length of a target scheme is sufficiently long, Q2 attacks can be converted into
Q1 by emulating the quantum oracle after getting all the outputs of the classical
oracle (full codebook). Quite powerful Q1 attacks are sometimes developed from
Q2 attacks [13, 16].

Quantum Fourier transforms (QFTs) play a crucial role in achieving exponen-
tial speedups in specific quantum algorithms, such as Shor’s [79] and Simon’s [81].
There are various types of QFTs, depending on the base group. For example,
Shor’s algorithm utilizes QFT over the cyclic group of a large order. Meanwhile,
Simon’s algorithm uses a QFT over (Z/2Z)⊕n for some n, which is referred to
as the Hadamard transform. This transform is mathematically equivalent to the
Walsh-Hadamard Transform (WHT) in classical computation.

The WHT has strong relationships with several classical attack techniques,
particularly linear cryptanalysis [60]. Linear correlations of block ciphers can
be obtained by applying the WHT, and the Fast-Walsh Hadamard Transform
(FWHT) is commonly employed to accelerate key recovery [26]. It naturally
raises the question of whether these traditional methods can be combined with
the Hadamard transform to achieve quantum speedups. In fact, a recent work
showed a framework to combine the quantum Hadamard transform and the
classical linear key recovery attack with FHWT [76].

An important class of attacks closely linked with linear cryptanalysis is (fast)
correlation attacks on LFSR-based stream ciphers. Correlation attacks, initially
proposed by Siegenthaler [80], exploit linear correlations between keystreams

2

output by a target cipher and the underlying LFSR’s output sequence. An en-
hanced version, today known as the fast correlation attack, was later given by
Meier and Staffelbach [62]. Having been continually improved ever since [89, 64,
23, 49, 50, 20, 22, 63, 25, 92, 83, 41, 91], the fast correlation attack is currently the
most effective method for attacking various LFSR-based ciphers. For major ci-
phers such as SNOW 3G [34], research is being done to see how efficient the fast
correlation attack can be, even if it is slower than the generic attack [72, 88, 40,
41, 39].

Roughly speaking, fast correlation attacks aim to recover the initial state
of the underlying LFSR (or a related value) by solving the decoding problem
of a linear code. Typical attacks perform the decoding quickly by applying the
FWHT [25]. Given the aforementioned result on linear cryptanalysis in the quan-
tum setting, the question naturally arises whether an interesting quantum attack
can also be obtained for fast correlation attacks by replacing the classical FWHT
with the Hadamard transform.

Based on the above motivation, this paper studies the quantum speedup of
fast correlation attacks on LFSR-based stream ciphers. We focus on the setting
where the decoding problem is defined over a binary code and a one-pass decod-
ing algorithm with FWHT is applied, as this has been widely applied to various
ciphers.

Technical Overview and Our Contributions. Before outlining our contri-
butions, we briefly overview the basics of classical attacks.

Classical Fast Correlation Attacks on LFSR-Based Stream Ciphers. Typical
LFSR-based stream ciphers are composed of an initialization phase and a keystream
generation phase. The initialization phase takes a secret key K and an IV as
input, non-linearly mixing them and loading the resulting values into internal
registers. Following that, the keystream generation phase computes keystream
bits, updating the internal states at each clock. Encryption and decryption are
performed by XORing the keystream bits to a message or a ciphertext, as done
in the counter mode. By the initial state, we denote the state right after the
initialization phase.

As mentioned earlier, fast correlation attacks recover a value related to the
LFSR’s initial state by solving a decoding problem. In the simplest case, when
there is a linear approximation with correlation c between the key stream output
by the cipher and the output sequence of the underlying binary LFSR of length
ℓ, a binary linear code is defined such that a message of ℓ bits (the initial state of
the LFSR) is encoded to a codeword of length N ≫ ℓ/c2. The basic idea is that
if we regard the keystream as the encoded message with some noise added and
decode it, correcting the errors, then we obtain the original message, namely the
initial state of the LFSR.

Decoding is performed in the following manner. First, a certain function Ψ(x)
with ℓ-bit inputs (determined according to the binary code and keystream bits)
is computed for all x. Second, the WHT of the function Ψ , denoted by W(Ψ),

3

is computed using FWHT with O(ℓ2ℓ) operations. For each decoded message
candidate x, the larger the value ((W)(Ψ))(x)2 is, the more likely it is that x
is the correct result. In particular, the decoding result is identified to be the x
that gives the maximum value of ((W)(Ψ))(x)2. The computational complexity
is O(N + ℓ2ℓ) in total.

The decoding complexity ℓ2ℓ too large in most cases, making the attack
slower than the exhaustive key search. To address the issue, a preprocessing
procedure is usually performed in advance to reduce the dimension of the code
(i.e., the parameter ℓ), thereby reducing the decoding complexity. However, the
preprocessing procedure is usually heavy, and reducing the dimension increases
the data complexity N . Hence, the preprocessing procedure and the number
of dimensions to reduce are carefully adjusted to balance the computational
complexity of preprocessing, the amount of dataN , and the decoding complexity.

Next, we explain our results in the quantum setting.

Attempt in Q1. First, we try to obtain a quantum speed-up in the Q1 model by
naturally extending classical attacks.

At the beginning of the attack, we obtain N bits of a keystream segment re-
quired to mount the attack (for some N). Next, we prepare a quantum state |ψ⟩
corresponding to the function Ψ(x). We show that the state |ψ⟩ can be prepared
with a complexity Õ(N) in typical cases. Then, we apply the Hadamard trans-
form to |ψ⟩. The resulting quantum state H⊗ℓ |ψ⟩ is a quantum superposition
of the message candidates |x⟩, among which the one with the largest quantum
amplitude is the correct message. To find the correct x, we apply the Quantum
Amplitude Amplification (QAA) technique. The Boolean function required to
apply QAA, denoted by f , can be chosen depending on the structure of the at-
tack target. If the decoding problem is defined from a linear approximation with
correlation c, the bit length of LFSR is ℓ, and the computational complexity to
compute f is Tf , then the attack complexity becomes O(N + 2ℓ/2Tf/

√
Nc2).

This is a quite natural extension of the classical attacks. However, we observe
that applying the above algorithm to speed up existing classical attacks does not
yield a quantum attack faster than the Grover search. Rather, we suspect it is
quite hard to mount a fast correlation attack that is faster than the generic
attack in the Q1 setting, or more fairly non-trivial techniques will be required.
So, we focus on Q2 attacks.

Attack in Q2. An important feature of stream ciphers is that they can generate
an exponentially long keystream from a single IV. In the Q2 setting, we first
introduce a new attack model and security notion that reflects this feature well.
Very roughly, the model allows an adversary to query the positions of keystream
bits as well as IVs in quantum superposition. Although this attack model is very
strong, we show that it is feasible in that some stream ciphers, such as some
members of Chacha and Salsa20 families [9, 10], are likely to achieve the security
notion.

We then show a quantum decoding algorithm in the Q2 model. The under-
lying idea is the same as in Q1, but we make a non-trivial observation that the

4

preparation of the quantum state |ψ⟩ can be performed very efficiently using
Shor’s algorithm.

Recall that, in the Q1 attack, we first prepared the state |ψ⟩ with both data
and time complexity about N , which is exponentially large in usual scenarios. In
the Q2 setting, our strong attack model allows us to reduce the data complexity
(i.e., the number of queries) from O(N) to O(1).

Our key observation is that even the time complexity can be reduced from
O(N) to polynomial time using Shor’s algorithm. In preparing the state |ψ⟩, we
need to solve the following problem: Given an arbitrary x, find an index i such
that x equals to the i-th column of the generating matrix G of the code used in
the attack. G is typically determined from the LFSR’s state update matrix and
linear correlation masks. By leveraging the fact that the LFSR’s state update
corresponds to the multiplication of an element generating (F2ℓ)

×, we find that
the problem is reduced to a discrete logarithm problem in a typical case and can
be efficiently solved with Shor’s algorithm.

As in the Q1 attack, QAA is applied to the state H⊗ℓ |ψ⟩ to amplify the
quantum amplitude of the correct message. For all attack targets, we utilize the
quantum counting algorithm to implement a Boolean function for QAA, similar
to Kaplan et al.’s approach for quantum linear distinguishers [52]. As a result,
the computational complexity of the attack is O(ℓ4/c2) when the attack is based
on a code defined from a linear approximation with absolute correlation c. The
value of c is large enough for some ciphers (around 2−20 in some cases) to achieve
faster attacks than the exhaustive key recovery with Grover’s algorithm.

As applications, we show attacks on the ISO/IEC standard SNOW 2.0 [31,
48], SNOW 3G specified by 3GPP [34], and Sosemanuk in the eSTREAM portfo-
lio [6, 29]. For SNOW 2.0, our attack works with time and query complexity 259.3

and 289.3, respectively. This is the first attack on the 256-bit key version of SNOW
2.0 faster than the Grover search1. When our technique is applied to SNOW 3G,
the resulting time and query complexity become 2102.9 and 272.9, respectively.
This is slower than the Grover search but significantly faster than classical at-
tacks. (As mentioned earlier, research of attacks on SNOW 3G has actively been
continued to determine how efficient fast correlation attacks can be [72, 88, 40,
41, 39], even though they are slower than the exhaustive key search.) About
Sosemanuk, the time and query complexity of our attack becomes 2101.11 and
273.15, respectively. This is slower than the quantum guess-and-determine attack
in the Q1 model by Ding et al. [27], but faster than the Grover search when the
key length is long (e.g., 256-bit). See also Table 1.

The quantum state H⊗ℓ |ψ⟩ appearing our attacks can be regarded as an
analogy of the correlation state in the quantum linear key recovery attack by
Schrottenloher [76], as the amplitude of each basis state |x⟩ in H⊗ℓ |ψ⟩ is, in
fact, proportional to the correlation between a binary sequence derived from
keystream and the codeword corresponding to x. Still, the techniques used in

1 A previous work [27] showed an attack on SNOW 2.0 running in time about 288, but
it requires exponentially many qubits (as large as 288) and in fact slower than the
generic attack by the parallelized Grover search. More details are given in Remark 5.

5

Target Key Length Attack Model Time Data/Query Ref./Note

SNOW 2.0 128/256 Classical
Q2

2162.86

289.3
2159.62

259.3
[41]

Section 6

SNOW 3G 128 Classical
Q2

2174.95

2102.9
2170.81

272.9
[39]

Section 6
Classical 2134.8 2135 [91]

Sosemanuk 0 ≤ κ ≤ 256 Q2 2101.11 273.15 Section 6
Q1 ≈ 288 ≈ 176 [27]

Any κ Q1/Q2 ≈ 2κ/2 ≈ κ
Generic attack

(Grover’s algorithm [43])

Table 1. Comparison of attack complexity. The previous works define the time com-
plexity unit as the time to perform arithmetic operations such as modular additions
and finite field multiplications or, more ambiguously, as the time required to run the
targeted cipher once. We regard the time complexity of an attack as the depth of the
quantum circuit implementing it, where the depth is measured in T -gates and oracle
gates.

the two attacks are quite different. The linear key recovery attack utilizes the
Hadamard operator to compute some functions’ convolutions, performing (clas-
sical and) manual computation on the Walsh-Hadamard transform of a public
function and exploiting a target cipher’s structure in which a subkey is XORed
into a state. On the other hand, such convolution and manual computation of the
Walsh-Hadamard transform do not appear in our attack, and Shor’s algorithm
for discrete logarithms is utilized to prepare the state, exploiting the relationship
between LFSRs’ state update and multiplication in a finite field.

Related Works. Independently and concurrently, Einsele and Semira also men-
tioned studies on quantum speed-up of fast correlation attacks [30], but only a
short abstract is publicly available. In particular, concrete attack models or at-
tack algorithms are not explained.

Paper Organization. Section 2 describes the notation, promises, and well-
known basic results used in later chapters. Section 3 reviews classical fast cor-
relation attacks. Section 4 discusses attacks in Q1. Section 5 introduces a new
attack model and security notion, and Section 6 shows attacks in Q2.

2 Preliminaries

Unless otherwise noted, we assume all the vectors are row vectors. For any m
and n, we naturally identify elements in Fm

2n with those in Fmn
2 , and mn-bit

strings. For x and y in Fm
2 , ⟨x,y⟩F2

denotes their formal inner product. The
linear correlation between two binary sequences x = (x0, . . . , xN−1) and y =

6

(y0, . . . , yN−1) is defined by

Cor(x,y) :=
#{i : xi = yi} −#{i : xi ̸= yi}

N
.

We identify Boolean functions f : {0, . . . , N − 1} → F2 with binary sequences
(f(0), . . . , f(N−1)). The linear correlation between two Boolean functions Cor(f, g)
is naturally defined through this identification. The Walsh-Hadamrd transform
of a function F : Fn

2 → C, denoted by W(F), is the function from Fn
2 to C

defined as2

(W(F)) (z) =
1√
2n

∑
x∈Fn

2

(−1)⟨x,z⟩F2F (x).

2.1 Quantum Computation

This paper assumes the readers are familiar with quantum computation (refer
to, e.g., [71] for the basics). We adapt the quantum circuit model as a model for
quantum computation, assuming arbitrary circuits composed of a finite number
of Clifford+T gates, quantum oracle gates (only in the Q2 model), and quantum
Random Access Memory (qRAM) gates. Here, the quantum oracle gate of a
function f : Fm

2 → Fn
2 is the (m+n)-qubit gate such that, given a quantum state

of the form
∑

x,y αx,y |x, y⟩ as an input, outputs the state
∑

x,y αx,y |x, y ⊕ f(x)⟩.
About qRAM, this paper assumes a quantum-accessible classical memory is
available to an adversary. Namely, for an arbitrarily created list of classical data
(x1, . . . , xn), the adversary is given quantum oracle access to the function i 7→ xi.
CNOT gates are assumed to operate on an arbitrary pair of qubits in a circuit.
Quantum error correction is assumed to be perfectly performed with its cost
being ignored. All the measurements are performed in the computational basis.

How to Evaluate Attack Costs. We always measure the depth of quantum circuits
by calculating the depth in T gates, oracle gates, and qRAM gates. We regard the
running time of a quantum circuit as its depth in this measure. When considering
an attack on an LFSR-based stream cipher, we assume that the number of qubits
available for an adversary is in a small polynomial of the underlying LFSR’s bit
length to enable a fair comparison with the generic key-recovery attack using
Grover’s algorithm [43] without parallelization.

Quantum Amplitude Amplification. Let U be a unitary operator acting on
n-qubit quantum states, f : Fn

2 → F2 be a Boolean function, and p be the proba-
bility that an x satisfying f(x) = 1 is obtained when the quantum state U |0n⟩ is
measured. The Quantum Amplitude Amplification (QAA) technique [18] ampli-
fies the probability p by making O(p−1/2) quantum queries to f with O(p−1/2)
applications of U and U† as follows.
2 We adopt the definition with the coefficient 1/

√
2n to make it consistent with the

Hadamard operators in the quantum setting.

7

Proposition 1 (Plain QAA). Let Sf (resp., S0) be the unitary operators that
multiplies the basis state |x⟩ by (−1)f(x) (by (−1) iff x = 0n), and define a uni-
tary operator Q(U, f) := −US0U

†Sf . When the quantum state (Q(U, V))
i
U |0n⟩

is measured, an x satisfying f(x) = 1 is obtained with probability sin2 ((2i+ 1)

arcsin
(√
p
))

, which is at least max(1− p, p) when i :=
⌊

π
4 arcsin(

√
p)

⌋
.

QAA with Certainty. If an adversary knows the exact value of p, then the QAA
can be modified in such a way to obtain a good state with certainty, by mod-
ifying U to slightly lower the probability p to make (π/(4 arcsin(

√
p)) − (1/2))

be an integer [18]. In this paper, we assume the cost of this modification is neg-
ligible compared to implementing U and U† themselves, and QAA returns an
x satisfying f(x) = 1 by applying U , U†, and Sf at most arcsin(

√
p) ≤ p−1/2

times (if an adversary knows the exact value of p).

QAA without Knowing p. When applying the plain QAA in Proposition 1, the
success probability does not become large enough not only if i is too small but
also if i is too large. For instance, if i ≈ 2 ·

⌊
π

4 arcsin(
√
p)

⌋
, then the success

probability may be as small as p.
However, it is not necessarily easy to find the exact value of p, when it is

practically too hard to compute the value
⌊

π
4 arcsin(

√
p)

⌋
exactly. Even in such a

case, an x satisfying f(x) = 1 can be found by running the plain QAA multiple
times with random i as follows [18, 17].

Algorithm QAAw/oKp.

1. Let α := 1 and λ := 6/5.
2. Choose i from {0, 1, . . . , α− 1} uniformly at random.
3. Run the plain QAA with i iterations and measure the entire state, i.e.,

(Q(U, f))iU |0n⟩. Let x be the measurement result.
4. If f(x) = 1, return x as the output. Otherwise, set α := min

{
λ · α,

√
2n
}

and go to Step 2.

Proposition 2 (QAA without knowing p [18, 17]). Suppose p ≤ 3/4. Then,
the algorithm QAAw/oKp returns x satisfying f(x) = 1 with an expected number
of applications of Q(U, f) at most (9/2)p−1/2.

Grover’s algorithm [43] is the special case of QAA when U = H⊗n.

Quantum Counting Algorithm. Let QFTq denote the quantum Fourier
transform over Z/qZ. For any unitary operator W acting on n-qubit states and
any positive integer q that is a power of 2, let Λq(W) be the operator acting on
(log q+n)-qubit states such that Λq(W) |i⟩ |x⟩ = |i⟩ (W i |x⟩). Here, 0 ≤ i ≤ q−1
and x ∈ Fn

2 . For a unitary operator U and a Boolean function f : Fn
2 → F2, de-

fine the probability p and the operator Q(U, f) as in Proposition 1. In addition,
let Calcn,q be the unitary operator that, given a (classical) value θ, computes

8

2n · sin2(πθ/q) and write the result into an additional register. Now, consider
running the following algorithm without measurement.

Algorithm QC. Prepare |0log2 q⟩ |0n⟩ as the initial state. Apply (QFTq ⊗
H⊗n), Λq(Q(H⊗n, f)), and then (QFT †

q ⊗ In) in sequential order. Finally, apply
Calcn,q, taking input from the left log q-bit register and writing the output into
an auxiliary register.

Proposition 3 ([18]). Let Z := |f−1(1)|. If the above algorithm QC is run and
the auxiliary register is measured, then a value Z̃ satisfying∣∣∣Z − Z̃

∣∣∣ ≤ 2π
√
Z(2n − Z)/q + (2n · π2)/q2 (1)

is obtained with probability at least 0.8.

The depth to implement QC is typically dominated by that of Λq(Q(H⊗n, f)),
which makes exactly q queries to f . We can show that Λq(Q(H⊗n, f)) can be
implemented on a quantum circuit of depth at most about q · Df by using n
auxiliary qubits, where Df is the depth to implement the quantum oracle of f .
Hence, the depth of QC is also at most about q · Df , and the amount of the
auxiliary qubits needed is at most the number of qubits required to compute
Calqn,q. See Section B in the appendix for more details.

2.2 LFSR Basics

Let Fq be a finite field of order q. The LFSR on Fq of length L with a feedback
polynomial f(x) := cLx

L + cL−1x
L−1 + · · · c1x+ 1 ∈ Fq[x] generates an infinite

sequence (st)t≥0 in Fq from an initial state s(0) = (s0, . . . , sL−1) ∈ FL
q as

st+L :=
∑

1≤i≤L

cist+L−i for t ≥ 0,

maintaining the internal state s(t) := (st, . . . , st+L−1) at time t. The state update
can be regarded as a linear map over Fq, and s(t+1) = s(t) ·M holds for

M :=

0 0 · · · 0 cL
1 0 · · · 0 cL−1

...
. . .

...
...

0 0 · · · 1 c1

 . (2)

A well-known fact is that the period of LFSR sequences and internal states
becomes the longest (i.e., qL − 1) when f is a primitive polynomial.

Throughout the paper, we only consider LFSRs whose feedback polynomial
f is primitive and assume that q is a power of 2.

The reciprocal polynomial of f is called the characteristic polynomial of the
LFSR, which we denote by f∗(x) (that is, f∗(x) = xLf(1/x)). As we assume

9

that f is primitive (and thus irreducible), so is f∗. Hence, the quotient ring
F := Fq[x]/(f

∗(x)) becomes a field, which is isomorphic to FL
q as vector spaces

over Fq. Let ξ : FL
q → F be the isomorphism defined by

ξ(a) =
∑

0≤i≤L−1

ai · αi (3)

for a = (a0, . . . , aL−1) ∈ FL
q , where α := x + (f∗(x)) ∈ F is a generator ele-

ment of F over Fq. Since q is assumed to be a power of 2, some straightforward
calculations show

ξ(a ·M⊤) = ξ(a) · α. (4)

Since f∗ is not only irreducible but also primitive, α is a generator of the
multiplicative group F× ∼= Z/(qL − 1)Z, and so β · αi ̸= β holds for arbitrary
β ∈ F \ {0} and i = 1, . . . , qL − 2. From this fact and Eq. (4),

a ·
(
M⊤)i ̸= a for i = 1, . . . , qL − 2 (5)

follows for a ∈ FL
q \ {0}.

3 Classical Fast Correlation Attack

This section briefly reviews classical fast correlation attacks related to our re-
sults. We focus on so-called one-pass algorithms working using FWHT [25] that
can be regarded as a decoding procedure for a binary linear code, as it has been
most widely applied. First, we explain the simplest case where LFSR sequences
themselves are correlated with keystreams in Section 3.1. Then, Section 3.2 ex-
plains how the attack idea is extended to more general cases. Section 3.3 gives
a brief summary and a note on the amount of necessary data. Throughout the
section, we assume an adversary is given a keystream segment produced from a
single pair of a key and an IV. See, e.g., [2, 61, 21], for more details on classical
fast correlation attacks.

3.1 Simplest Case

Suppose a stream cipher is built upon a single LFSR of length L over F2 and
we have an N -bit keystream segment z = (z0, z1, . . . , zN−1) ∈ FN

2 . Our goal is
to recover the initial state s(0) ∈ FL

2 of the LFSR. Once s(0) is recovered, it is
often easy to determine the entire initial state, and even the master secret key
is recovered in some cases.

In the simplest case, the fast correlation attack models that the keystream
z is obtained by transmitting the LFSR sequence s = (s0, . . . , sN−1) ∈ FN

2

generated from s(0) through a Binary Symmetric Channel (BSC). Namely, it
regards as if ei := zi ⊕ si were an independent random error bit for each i (see
Fig. 1), expecting that the error bit sequence e = (e0, . . . , eN−1) is highly biased.
Note that e is biased iff the squared linear correlation Cor(s, z)2 is large. For

10

Fig. 1. LFSR-based cipher modeled as a BSC.

ease of explanation, we assume ei is biased to 0 and (the expected value of) the
correlation c := ExK,IV [Cor(s, z)] is close to 1.

In this model, the problem of recovering s(0) from z can be regarded as a
decoding problem with respect to a binary linear code. Let G be the binary L×N
matrix of which the i-th column vector is M i−1 · (1, 0, . . . , 0)⊤. Then s = s(0)G
holds by definition of LFSR. (Multiplication by M corresponds to clocking the
LFSR once, and so multiplying by G generates the sequence s = (s0, . . . , sN−1).)
In addition, G is full-rank if N is sufficiently large. Especially, G can be regarded
as a generating matrix of an [N,L] binary linear code C, where encoding a
message vector corresponds to multiplying G from right. The initial state s(0)
corresponds to an original message before the encoding, and the LFSR sequence
s = s(0)G to the codeword of C after the encoding. From this perspective,
recovering s(0) from z = s⊕ e is equivalent to correcting errors and recovering
the original message.

Concretely, s(0) is recovered by maximum likelihood decoding, which can be
realized roughly as follows.

1. For each candidate message x ∈ FL
2 , compute and store the squared linear

correlation Cor(xG, z)2 between the codeword xG ∈ C (⊂ FN
2) and z.

2. If x = s(0), the value Cor(xG, z)2 = Cor(s, z)2 will be large by assumption.
On the other hand, it will be small for a random x ̸= s(0). With this in
mind, output x with the largest Cor(xG, z)2 as the decoding result.

For each x, computing Cor(xG, z)2 requires O(N) operations because we have
to check whether (xG)i = zi for i = 0, . . . , N − 1. Hence this procedure requires
O(2L ·N) operations in total. To achieve a high success probability, N ≥ Ω(L/c2)
is necessary due to Shannon’s noisy-channel coding theorem, and some statistical
analysis shows that N = O(L/c2) is indeed sufficient (we will elaborate this later
in Section 3.3).

By applying the Fast Walsh-Hadamard Transform (FWHT), the decoding
complexity drops from O(N · 2L) to O(N +L2L). Define a function Ψ : FL

2 → C

11

by
Ψ(w) :=

∑
0≤i≤N−1:

w=the (i + 1)-th column of G

(−1)zi . (6)

Compute and store Ψ(w) for all w, which can be done with O(N) operations
and O(2L) memory. Then, apply the FWHT to compute and store the value
(W(Ψ))(x) for all x, which requires O(L2L) operations. Now, some straightfor-
ward calculations3 show

(W(Ψ))(x) =
N

2L/2
· Cor(xG,z).

Hence, the first step of the aforementioned decoding procedure can be performed
with O(N + L2L) operations.

3.2 More General Cases

Modern stream ciphers are well-designed so that keystreams themselves are not
strongly correlated with LFSR sequences, and the above attack does not work.
Yet, almost the same idea is applicable if there is another code relating initial
states and keystreams.

For instance, suppose

• there are (1) the generating matrix G of an [N, ℓ] binary code for some ℓ, (2)
a binary sequence ζ := (ζ0, . . . , ζN−1) computed from a keystream segment,
and (3) a value σ(0) ∈ Fℓ

2 that is related to the initial value s(0), such that
• (the absolute value of the expected value of) the correlation c :=

∣∣ExK,IV

[
Cor

(
σ(0)G, ζ

)]∣∣ is large.

Then, the aforementioned decoding algorithm with FWHT works in exactly
the same way, except that now the decoding algorithm recovers σ(0) and the
parameters and variables such as L and zi are replaced with ℓ and ζi, etc. The
decoding complexity with FWHT becomes O(N + ℓ2ℓ), and N ≥ Ω(ℓ/c2) is
required for a sufficiently high success probability. Once σ(0) is recovered, at
least the keystream is distinguished from random, and sometimes it is possible
to recover the entire initial state and even the master secret key of the cipher.

A typical way to find such an alternative code is to search for a linear ap-
proximation between internal states of an LFSR and keystreams. Suppose that
an attack target is based on an LFSR of length L over F2n for some n, and
that the LFSR sequence (resp., keystream) is denoted by s0, s1, · · · ∈ F2n (resp.,
z0, z1, · · · ∈ F2n). As before, let s(i) := (si, . . . , si+L−1) ∈ FL

2n be the internal
state of the LFSR at time i. Assume there are an index set Ilfsr ⊂ Z≥0 and
linear masks {Γj}j∈Ilfsr

⊂ FL
2n for the LFSR’s internal states (resp., an index

3 By definition of Ψ , W, and Cor, it immediately follows that both sides are equal to
1

2L/2

∑
w,i(−1)⟨x,gi⟩F2⊕ziδw,gi , where gi is the (i+ 1)-th column of G.

12

set Iks ⊂ Z≥0 and linear masks {Λj}j∈Iks
⊂ F2n for keystreams) such that the

linear approximation ⊕
j∈Ilfsr

⟨s(i+j),Γj⟩F2
≈
⊕
j∈Iks

⟨zi+j ,Λj⟩F2
(7)

holds with an absolute correlation c ≫ 0 for every i. Below, we explain how to
define G, ζ, and σ(0) such that

∣∣ExK,IV

[
Cor(σ(0)G, ζ)

]∣∣ ≈ c from the above
linear approximation.

Define Γ ∈ FL
2n by Γ :=

⊕
j∈Ilfsr

(
Γj ·

(
M⊤)j) . Then we have

⟨s(0),Γ · (M⊤)i⟩F2
= (the left hand side of (7)).

With this in mind, setting ℓ := L · n (and identifying FL
2n with Fℓ

2), define

• G as the ℓ×N binary matrix of which the i-th column is M i−1 · Γ⊤,
• σ(0) := s(0), and
• ζ = (ζ0, . . . , ζN−1) by ζi := (the right hand side of (7)).

Then, Eq. (7) can be rewritten as

(σ(0)G)i ≈ ζi,

which implies
∣∣ExK,IV

[
Cor(σ(0)G, ζ)

]∣∣ ≈ c.
Usual attacks further convert the above G into another matrix G′ to reduce

the code’s dimension and the decoding complexity, at the cost of a decrease in
the (squared) correlation and an increase in the data complexity. This is usually
done by solving some k-sum problems with Wagner’s k-tree algorithm [85].

3.3 Summary and Note on the Size of N

To mount fast correlation attacks, an attacker first looks for an ℓ × N matrix
G, along with a binary sequence ζ = (ζ0, . . . , ζN−1) that can be computed from
a keystream segment, such that c :=

∣∣ExK,IV

[
Cor(σ(0)G, ζ)

]∣∣ is large for some
σ(0) ∈ Fℓ

2 that depends on the (secret) initial value s(0) of the LFSR. Here, G is
public and the adversary can compute it offline.

Once finding suchG, ζ, and σ(0), the adversary performs maximum likelihood
decoding of ζ with respect to the [N, ℓ] binary linear code of which the generating
matrix is G. The decoding can be realized with O(N+ℓ2ℓ) operations as follows.

1. Compute all the values of the function Ψ(z) :=
∑

0≤i≤N−1:
z=the (i + 1)-th column of G

(−1)ζi

and store them into a memory.
2. Apply the FWHT on Ψ(z). Now, the values (W(Ψ))(x) = N

2ℓ/2
· Cor(xG, ζ)

are stored in the memory for all x.
3. Output x such that Cor(xG, ζ)2 is significantly larger than others.

13

G and ζ are typically derived from linear approximations between LFSR se-
quences and keystreams.

Very roughly and intuitively, σ(0) corresponds to (a linear transformation of)
the initial state of LFSR, σ(0)G to the output sequence of LFSR, and ζ to the
key stream. If ζ is linearly approximated by σ(0)G, then ζ can be regarded as
the result of encoding σ(0) with a code corresponding to G and sending through
a noisy channel. Hence, σ(0) (and thus the initial state of the LFSR) can be
recovered by the most likelihood decoding, using FWHT as above.

About the Size of N . Here we explain why N = O(ℓ/c2) is sufficient to
achieve a large success probability. Let us call σ(0) the correct decoding results,
and x ∈ Fℓ

2 such that x ̸= σ(0) incorrect decoding results. We heuristically
assume that, for an incorrect x, the correlation Cor(xG, ζ) is approximated by
the linear correlation of two random binary sequences of length N , as done in
classical attacks. Then the following claim holds.

Claim. Suppose N ≥ 8ℓ/c2 and ℓ ≥ 1. Then we have

Pr
K,IV

[
There is x ̸= σ(0) such that Cor(xG, ζ)2 ≥ c2/4

]
⪅ (2/e)ℓ, (8)

Pr
K,IV

[
Cor(σ(0)G, ζ)2 ≥ c2/2

]
⪆ 0.95. (9)

Especially, the decoding algorithm succeeds with a sufficiently high probability.

See Section C in the appendix for why it is plausible to regard that this claim
holds.

4 Quantam Fast Correlation Attack in the Q1 Model

This section studies quantum speed-up of the decoding procedure of fast corre-
lation attacks with the FWHT in the Q1 model. In fact, it later turns out that
it seems hard to achieve a fast correlation attack that is faster than the Grover
search in the Q1 model by speeding-up existing classical attacks. Yet, we show a
Q1 algorithm here to make it the starting point of a more complex Q2 attack in
Section 6, and to see why achieving a meaningful speed-up of existing classical
fast correlation attacks seems hard in Q1.

As in the classical setting, we assume that a keystream segment generated
from a single key and IV pair is given to an adversary. We consider the general
cases reviewed in Section 3.2, and use the same notations.

Below, we first describe a rough idea of the quantum attack in Section 4.1, and
then provide the formal details in Section 4.2. Section 4.3 provides discussions
on applications and some observations.

14

4.1 Overview and Rough Idea

Our idea is to perform quantum analogue of the operations in the classical de-
coding procedure in a natural way.

• We first prepare the quantum counter part of the function Ψ , namely the
quantum state

|ψ⟩ :=
∑
w∈Fℓ

2

Ψ(w)√∑
w |Ψ(w)|2

|w⟩ . (10)

How we can prepare |ψ⟩ is a non-trivial question, but we show that a unitary
operator U satisfying U |0ℓ⟩ = |ψ⟩ can be realized as an efficient quantum
algorithm, given that some data are precomputed and stored in qRAM in
advance.

• Second, we apply the Hadamard tranform on the entire state. Since the
Walsh-Hadamard transform on classical functions is mathematically the same
as the Hadamard transform on quantum states, we get

H⊗ℓ |ψ⟩ =
∑
x∈Fℓ

2

(W(Ψ))(x)√∑
w |Ψ(w)|2

|x⟩ =
∑
x∈Fℓ

2

N · Cor(xG, ζ)√∑
w |Ψ(w)|2 · 2ℓ/2

|x⟩ . (11)

Measuring this state, we obtain an x with a probability proportional to the
squared correlation Cor(xG, ζ)2. Namely, we will obtain the correct decoding
result σ(0) with a higher probability than incorrect results. However, the
probability to obtain σ(0) is usually still too small.

• Thus, we amplify the probability of obtaining a correct result with QAA. To
apply QAA, we must implement a unitary operator computing the Boolean
function f : Fn

2 → F2 such that f(x) = 1 iff x = σ(0). How to choose and
implement f can depend on the internal structure of the target cipher.

4.2 Formal Details

First, we explain some precomputaiton required for later steps. Second, we show
how to prepare the state |ψ⟩ in Eq. (10). Third, we provide a formal description
and analysis of the entire attack algorithm.

We denote the i-th column vector of G by gi, and define µ := maxx∈Fℓ
2
#{i :

gi = x}. We suppose that
∣∣ExK,IV

[
Cor(σ(0)G, ζ)

]∣∣ = c for some c ≫ 0 and
8ℓ/c2 ≤ N ≤ 2ℓ.

Precomputation. Given sufficient amount of keystream bits, we first compute
ζ = (ζ0, . . . , ζN−1) and store them into qRAM. Then, we compute gi and store
the data (i, gi) into a list in a sequential order for all i. Along with gi, store the
information of how many times the value gi has appeared before. That is, store
a counter set to be 0 if gj ̸= gi for all j < i, and increment it to 1 if there is
unique j < i such that gj = gi, and so on. (Eventually, each entry of the list has
the form (i, gi, ctri).) Then, store the list into qRAM.

15

Note that 0 ≤ ctri ≤ µ − 1 for all i, and the value ctri is represented as
a logµ bit string. If gi can be computed with O(1) operations for each i, this
precomputation can be completed with O(N logN) operations.

How to Prepare |ψ⟩. We implement a unitary U satisfying U |0n⟩ = |ψ⟩ as
the following algorithm4.

Algorithm PREP1.

1. Create the superposition
∑

0≤i≤N−1

√
1/N |i⟩.

2. Access qRAM to obtain
∑

0≤i≤N−1

√
1/N |i⟩ |gi⟩ |ctri⟩. (By abuse of nota-

tion, we denote gN by g0.)
3. Multiply each basis state by the phase (−1)ζi by accessing qRAM. Now the

state is
∑

0≤i≤N−1

√
1/N(−1)ζi |i⟩ |gi⟩ |ctri⟩.

4. Set the leftmost register to |0ℓ⟩. This is done by searching for the tuple
(gi, ctri) in qRAM and adding the corresponding index to the first register.
The resulting state is |0ℓ⟩

∑
0≤i≤N−1

√
1/N(−1)ζi |gi⟩ |ctri⟩.

5. Apply the Hadamard gates to the rightmost register. Some calculations show
that the resulting state is

1√
N
√
µ
|0ℓ⟩

(∑
w

Ψ(w) |w⟩

)
|0log µ⟩+ |ε⟩ , (12)

where the third register of |ε⟩ is orthogonal to |0log µ⟩.
6. Apply QAA (that returns a correct answer with certainty) on (12) to amplify

the state of which the third register is 0log µ. This can be done by performing
Steps 1-5 and their uncomputations at most p−1/2

init times each in total, where
pinit :=

∑
w |Ψ(w)|2/Nµ.

The complexity of PREP1 depends on G and ζ but it is small in most cases.
For example, suppose gi ̸= gj holds for i ̸= j. Then µ = 1 and

∑
w |Ψ(w)|2 =

N hold, which implies pinit = 1. In particular, QAA is actually not necessary
and a single execution of Steps 1-5 is sufficient to prepare |ψ⟩.

Even if ζ and each gi are random, the number of QAA iterations in Step 6 is at
most O(ℓ/ log ℓ) on average: Since gi is random, µ ≤ ℓ/ log ℓ holds with an over-
whelming probability by the standard balls-into-bins arguments [66, Lem. 5.12].

In addition, the value |Ψ(w)|2 =
∣∣∣∑i:gi=w(−1)ζi

∣∣∣2 is always a non-negative in-

teger, and Pr
[
|Ψ(w)|2 ̸= 0

]
≥ 1/2 holds for each w because ζ is random. Hence,

the expected value
∑

w |Ψ(w)|2 is at least #{w : Ψ(w) ̸= 0} × (1/2) ≥ N/2µ,
and pinit =

∑
w |Ψ(w)|2/Nµ ≥ 1/(2µ2) ⪆ (log ℓ)2/(2ℓ2) on average.

4 The idea of applying Hadamrd to the rightmost register in Step 4 and then using
QAA is inspired from the state preparation technique by Sanders et al [73].

16

The Entire Algorithm and Analysis. Our Q1 attack runs as follows.

Algorithm QFCA1.

1. Get a keystream segment long enough to mount the attack.
2. Perform the precomputation described on p.15.
3. Run QAAw/oKp on p.8 with U := H⊗ℓ · PREP1 on the Boolean function
f : Fℓ

2 → F2 such that f(x) = 1 iff x = σ(0). (How to compute f depends
on attack targets.)

Let p be the probability that we obtain an x satisfying f(x) = 1 when we
measure the state H⊗ℓ · PREP1 |0ℓ⟩ (= H⊗ℓ |ψ⟩). That is,

p =
N2 · Cor(σ(0)G, ζ)2

2ℓ ·
∑

w |Ψ(w)|2
. (13)

By the claim at the end of Section 3.3, with probability at least 0.9 (when K
and IV are randomly chosen and ℓ is sufficiently large, e.g., ℓ ≥ 10), Cor(xG, ζ)2 ≤
c2/4 holds for all x ̸= σ(0) and Cor(σ(0)G, ζ)2 ≥ c2/2 holds. Provided these in-
equalities really hold,

p ≥ N2c2

2ℓ+1 ·
∑

w |Ψ(w)|2
(14)

holds, and the attack finds the correct decoding result σ(0) in expected time
complexity at most about

Ttotal = Tprecomp + (9/2)p−1/2 (2 · Tprepare + Tf) , (15)

where Tprepare (resp., Tf) is the running time of the algorithm PREP1 (resp.,
the time complexity required to compute f). In addition, Tprecomp is the time
complexity to collect necessary data and perform the precomputation. How to
compute f depends on the internal structure of the target cipher.

Typically, we have Tprepare ≪ Tf , Tprecomp = O(N), and
∑

w |Ψ(w)|2 =

O(N), when the complexity (15) becomes roughly about (N + Tf · 2ℓ/2√
Nc2

). Bal-
ancing the two terms, we obtain

N = 2ℓ/3 · (Tf/c)2/3. (16)

In summary, with probability at least 0.9 (on the randomness of K and IV),
the attack recovers σ(0) in expected time complexity 2ℓ/3+1 · (Tf/c)2/3.

4.3 Discussions and Observations

The above algorithm QFCA1 is a very natural extension of classical fast correla-
tion attacks. By applying QFCA1 to speed up existing classical fast correlation
attacks, we expected to achieve quantum attacks faster than the Grover search
However, we have not obtained a meaningful speedup so far with this approach.

17

One reason is that the absolute correlations in some classical attacks are too
small. For instance, the attack on Grain v1 by Todo et al. [83] utilizes linear
approximations of absolute correlation c = 2−36, while both the LFSR and key
lengths of Grain v1 are 80. If a single linear approximation is used, we need the
data complexity at least c−2 ≥ 272, which is much larger than the exhaustive
key search with Grover’s algorithm. The data complexity (and time complexity
possibly also) decreases to some extent by using multiple approximations, but
we find it still hard to achieve an attack faster than the Grover search.

Another reason is that the LFSR length is quite large in some ciphers. For in-
stance, SNOW 2.0 [31] is based on a 512-bit LFSR. As explained around Eq. (16),
we will have a factor of order 2ℓ/2 or 2ℓ/3 in the time complexity, which is too
large when ℓ = 512. Classical attacks reduce the dimension of the code (i.e., the
parameter ℓ) by solving k-sum problems. However, in the Q1 setting, we observe
that the cost to solve k-sum problems sufficiently reducing the dimension is too
heavy (even with the dedicated quantum algorithms [42, 69, 75]) compared to the
quantum exhaustive key search with Grover’s algorithm when k is small (e.g.,
k = 2), and the correlations after dimension reduction become too small when
k is large (e.g., k = 4).

Due to these reasons, we suspect it is quite hard to mount a fast correlation
attack that is faster than the generic attack in the Q1 setting, or more fairly
non-trivial techniques will be required. Given this situation, we next focus on
Q2 attacks.

Remark 1. The state H⊗ℓ |ψ⟩ in Eq. (11) is a superposition of candidate mes-
sages |x⟩ and the quantum amplitude is proportional to the correlation Cor(xG, ζ)
and so can be regarded as an analogy of the correlation state in Schrottenloher’s
quantum linear key recovery. Still, our technique and Schrottenloher’s are quite
different. Unlike the preparation of the correlation state, convolutions are not
computed in preparing H⊗ℓ |ψ⟩. Moreover, in the Q2 attack in Section 6, we will
use Shor’s algorithm to efficiently prepare a state corresponding to H⊗ℓ |ψ⟩.

Remark 2. Measuring the state (11), we obtain x with a probability propor-
tional to |W(Ψ)(x)|2. This can be regarded as a random sampling according to
the distribution induced by W(Ψ). A possible alternative approach could be to
iteratively perform this sampling and estimate the values |W(Ψ)(x)|2 instead of
applying QAA, but so far, we have not found more efficient attacks with this
idea. Leveraging such random samplings in a better way could be a possible
future research to investigate.

Remark 3. The attacks in this section essentially rely on linear approximations
of which the linear masks cover the entire state of LFSR. If one were to use
masks that only cover part of LFSR (as done in, e.g., [8]), the attacks would
proceed by applying our method for the part covered by the linear masks and
guessing the remaining part with the Grover search. The same thing holds true
for the Q2 attacks shown later.

18

5 New Attack Model and Security Definition in Q2

This section introduces a new attack model and a security definition for stream
ciphers in the Q2 setting.

When studying Q2 attacks, we must carefully consider which attack breaks
what security notion. This is because the Q2 setting allows adversaries to perform
operations that were never anticipated when some classical security notions were
defined, e.g., querying all the messages at once in superposition. Let us briefly
illustrate this with attacks on MACs as an example. A classical attack on a
deterministic MAC is considered meaningful if it forges a valid tag for a message
that has not been queried by the adversary. Meanwhile, Q2 attacks are typically
allowed to query all messages simultaneously in quantum superposition. This
makes it unclear how we should interpret the meaning of a Q2 attack on a MAC
if it produces several valid message-tag pairs after making a single quantum query
consisting of exponentially many messages in superposition. The seminal work
by Kaplan et al. [51] carefully addresses this issue and demonstrates that (some
of) their attacks on MACs are valid in that they break Boneh and Zhandry’s
EUF-qCMA security [12].

As we will see below, there is also a subtle issue regarding Q2 attacks on
stream ciphers. In what follows, We denote a random function by RF, of which
the domain and range will be clear from the context.

Classical Security Notion: IV-Based Stream Ciphers as PRFs. As
shown by Berbain and Gilbert [7], the classical security definition appropriate for
IV-based stream ciphers is the Pseudo-Random Function (PRF) security. Here,
stream ciphers are regarded as keyed functions SC : Fκ

2 × Fiv
2 → FD

2 that take
key and IV as input and return a keystream of length D for some D ≫ 1. Recall
that the PRF advantage of an oracle-aided algorithm A for SC is defined as

AdvPRF
SC (A) :=

∣∣Pr [ASCK outputs 1
]
− Pr

[
ARF outputs 1

]∣∣ , (17)

where the probability is taken over both the randomness of A and the choice of
the secret key K or the random function RF. The ciphers are considered secure
iff no adversary A with reasonable computational resources can distinguish SC
and RF with a non-negligible advantage.

qPRF Security and Some Issues. The counterpart of the PRF security
in the Q2 setting is the quantum pseudo-random function (PRF) security by
Zhandry [90], where the oracle of the keyed function and the random function
are replaced with the corresponding quantum oracles that accept inputs and
returns outputs in quantum superposition. Thus, to choose a security definition
for stream ciphers in the Q2 setting, the easiest way is simply to adapt the qPRF
security.

However, the qPRF security does not mesh well with stream ciphers. Typ-
ical Q2 attacks assume a moderate (polynomial) size quantum computer with

19

qRAM, whereas the quantum oracle of stream ciphers returns an exponentially
long output in quantum superposition all at once. In other words, a quantum
computer of a moderate (e.g., 220) size has a register of a very large (e.g., 260)
size to receive outputs from the oracle, which is quite unbalanced. A potential so-
lution to this problem is to limit the output length of oracles, but this overlooks
one of the primary features of stream ciphers, which is that a long keystream can
be generated from a single IV. An alternative solution could be to assume that
the oracle’s outputs are written into qRAM, but this approach would require a
substantial amount of operations for adversaries just to read the oracle’s out-
puts. It undermines the meaning of studying Q2 attacks because unexpectedly
efficient and intriguing Q2 attacks are usually achieved by efficiently processing
a superposition of many outputs from an oracle.

qBPRF Security. To remedy this, we introduce a new security definition,
which we call the quantum Booleanized PRF security, or qBPRF security for
short.

First, let us define the Booleanization of a function F : Fn
2 → Fm

2 as the
Boolean function BF : Fn

2 × Flogm → F2 such that BF (x, i) = (F (x))i, and the
quantum Boolianized PRF (qBPRF) security as the qPRF security of BF .

We define the qBPRF advantage of an algorithm A for a stream cipher
SC : Fκ

2 × Fiv
2 → FD

2 as the qPRF advantage of its Booleanization, namely,

AdvqBPRF
SC (A) :=

(
AdvqPRF

BSC (A) =
) ∣∣Pr [ABSCK outputs 1

]
− Pr

[
ARF outputs 1

]∣∣ ,
where A is allowed to make quantum queries to the oracles. We say that the
stream cipher SC is qBPRF-secure if no adversary faster than the generic attack
can have a non-negligible qBPRF advantage.

Put differently, we regard an attack on the cipher breaks its qBPRF security
if its computational cost is less than the generic attack with Grover’s algorithm
while the qBPRF advantage is close to 1, and we aim to find such (fast corre-
lation) attacks in the next section. In particular, we assume that the quantum
oracle of the Booleanized version of the target cipher is given to an adversary. By
considering the Booleanized versions, we can keep the output length of the oracle
short while taking long keystreams into account, addressing the aforementioned
issues. To prevent trivial attacks, we set an appropriate limit on D, of which the
details will be discussed later.

Feasibility. The attack model in the definition of qBPRF security is quite strong
because it essentially assumes an adversary can query not only IVs but also
indices for keystream bits in quantum superposition. Yet, we argue that qBPRF
security is worth studying and feasible in that some stream ciphers based on the
CTR mode, e.g., (some members of) Salsa20 [10] and ChaCha [9] families, seem
to achieve it. Below, we explain this by showing a security reduction.

Let F : Fκ
2 ×Fiv

2 ×Fctr
2 → Fm

2 be a keyed function where Fκ
2 is the key space,

and D′ ≫ 1 be a parameter. Let CTRF : Fκ
2 ×Fiv

2 → FD′·m
2 be the stream cipher

20

generating a keystream segment as

CTRF
K(IV) := FK(IV, 0)||FK(IV, 1)|| · · · ||FK(IV,D′)

Then, the following proposition holds.

Proposition 4. Suppose D′ < 2iv. For any quantum algorithm A making q
queries, there is another quantum algorithm B making q quantum queries such
that

AdvqBPRF

CTRF (A) ≤ AdvqPRF
F (B),

where the time, memory complexity, and qubits required to run B are at most
O(1) times larger than those for A.

Proof. We construct B so that it simply emulates the oracle for A by using the
one given to itself. That is, when A queries a pair (IV, i), B queries (IV, ⌊i/m⌋)
to its own oracle, truncating the response y from the oracle and sending the
(i−m · ⌊i/m⌋)-th bit of y to A. (Note that arbitrary bit of y can be computed in
quantum superposition by making only a single query to B’s oracle [46].) Using
this B, the claim of the proposition obviously holds. ⊓⊔

Roughly speaking, the above proposition states that CTRF is qBPRF-secure as
long as there is no attack breaking the qPRF security of F (as long as D′ < 2iv).
ChaCha and Salsa20 families adapt the structure of the above CTR for some
F , and there have been reported no Q2 attacks distinguishing their underlying
function F faster than the Grover search. Therefore, some of these ciphers, in-
cluding Salsa20/12, Salsa20/20, and ChaCha20, will likely achieve the qBPRF
security5.

Upper Limit of Keystream Bit Index. When studying attacks to break the
qBPRF security of a stream cipher SC : Fκ

2 × Fiv
2 → FD

2 , we must set an appro-
priate upper limit for the keystream bit index, i.e., the parameter D, to prevent
trivial attacks. For example, if the (i + j)-th bit of each keystream is always
equal to the i-th bit for some exponentially large j, the parameter D should be
less than j. Otherwise, an adversary can efficiently break the qBPRF security
by, e.g., getting the first κ bits and (j+1)-th, . . . , (j+κ)-th bits of a keystream
and check whether they are equal.

When studying LFSR-based stream ciphers, we set D to be the period of the
underlying LFSR, which is 2ℓ−1 if LFSR’s bit length is ℓ. This may exceed data
limits specified by the designers of a target cipher. Still, considering that even in
the classical setting, the first step is to show an attack exceeding the designers’
limit (e.g., [78]), we set the limit D as large as possible in the quantum setting.

5 Some members of the families, e.g., Salsa20/8, have already been broken in the
classical setting [4], but we are unsure whether they can be converted into a Q2
attack faster than the Grover search.

21

Remarks. The oracle of the Booleanized version of a stream cipher enables an
adversary to efficiently get the i-th bit of a keystream for arbitrarily large i (as
long as i is smaller than an appropriately set upper limit). Some readers may be
concerned that such oracles may significantly speed up some attacks even in the
classical setting. Indeed, if such a classical oracle is available, the data complexity
of some classical fast correlation attacks will be reduced to some extent because
only specific bits of keystream segments are used [84]. However, we expect that
the time complexity of fast correlation attacks will not be significantly affected
because the decoding algorithms do not care much whether the size of the indices
i involved in decoding procedures is large or not.

Our primary objective of studying attacks on qBPRF security is to uncover
interesting properties and deepen our understanding of the power of Q2 attacks.
We do not claim that the practical security of a scheme is affected, even if
we discover an efficient attack that only compromises the qBPRF security. We
argue that it is worthwhile to study attacks on qBPRF security because we can
obtain an interesting new type of large quantum speed-up for fast correlation
attacks on some LFSR-based stream ciphers, while some other stream ciphers
including Salsa20/12, Salsa20/20, and ChaCha20 are almost completely intact,
as we showed around Proposition 4.

Often, quantum attacks breaking a rather theoretical security notion do not
immediately imply attacks that compromise more practical security notions.
Still, some of such attacks later have become the indispensable basis of other
attacks with much more practical implications. For example, the Q2 attacks on
the Even-Mansour and FX constructions [55, 56] paved the way for the tech-
nique to exponentially reduce memory complexity in some Q1 attacks by using
Simon’s algorithm [14] and achieving a more-than-quadratic speed-up in the Q1
model [16]. The subsequent sections present attacks on the qBPRF security,
hoping they will serve as the foundation for even more impactful attacks.

6 Quantum Fast Correlation Attack in the Q2 Model

6.1 Overview and Rough Idea

When mounting fast correlation attacks in the Q2 model, we aim to break the
qBPRF security of a target stream cipher, assuming that the Booleanized version
of the cipher is given as a quantum oracle.

The oracle allows an adversary to query IVs in quantum superposition as well
as indices of keystreams, but we fix an arbitrarily chosen IV through an attack
like in the classical and Q1 settings. Namely, the primary goal of the attack is to
recover the initial state of an LFSR for a single pair of the key and an IV, and
we make superposition queries only for keystream indices. The basic idea of the
attack is the same as in Section 4.1. That is, we (i) prepare the quantum state
|ψ⟩ of Eq. (10), (ii) apply the Hadamard transform on |ψ⟩, and then (iii) apply
QAA to amplify the quantum amplitude of the correct decoding result |σ(0)⟩.

The difference is as follows.

22

• We focus on decoding problems derived from a single linear approximation
as explained below Eq. (7). In particular, the parameter ℓ is equal to the bit
length of the LFSR, G is an matrix of which the i-th column is M i−1 ·Γ for
some Γ (recall that M is the LFSR’s state update matrix) and a decoding
algorithm returns σ(0) = s(0), the initial state of the LFSR.

• We set the parameter N (the number of columns of G) to be 2ℓ − 1, the
period of the LFSR. This implies that G is an ℓ× (2ℓ−1) matrix over F2. At
first glance, it might seem that this would make the preparation of |ψ⟩ pro-
hibitively costly. However, our core observation is that |ψ⟩ can be prepared
quite efficiently by regarding the state update of LFSR as multiplication in a
finite field and applying Shor’s algorithm for the discrete logarithm problem
to find the index i satisfying gi = x for a given x. (The main reason for only
focusing on G derived from a single linear approximation is to utilize this
technique.)

• The Boolean function f(x) is computed by checking whether the value
Cor(xG, ζ)2 is above a certain threshold by using the quantum counting
algorithm, like Kaplan et al. [52] did for quantum linear distinguishers6. We
do not use methods depending on the structure of target ciphers because the
method with the quantum counting algorithm is the most efficient for all the
applications we have found so far.

As the structure of G is restricted and we compute f independently from the
structure of target ciphers, our Q2 attack can be formulated as an algorithm to
solve the following general problem.

Problem 1. Let M be the state update matrix (Eq. (2)) of an LFSR of length L
over F2n and G be an ℓ× (2ℓ−1) matrix over F2 of which the i-th column vector
is M i−1 · Γ⊤ for some Γ ∈ Fℓ

2(= FL
2n), where ℓ := n · L. Let s(0) be a vector

in Fℓ
2 and ζ be a binary sequence of length 2ℓ − 1 defined as ζ := (s(0)G) ⊕ e,

where the bits of e = (e0, . . . , e2ℓ−2) are independently and randomly chosen in
such a way that Pr [ei = 1] = p for all i, with p ≈ (1 + c)/2 or (1 − c)/2 for
some c > 0. Given the quantum oracle of the Boolean function that returns ζi
on an input i ∈ {0, . . . , 2ℓ − 2}, compute s(0).

The next subsection presents a quantum algorithm to solve this problem.

6.2 Formal Details

We first explain how to compute f , and then show an algorithm to prepare |ψ⟩.
After that, we describe the entire algorithm and provide analysis.

We denote the i-th column vector of G by gi as before and put N := 2ℓ−1(=
2nL−1). Note that gi ̸= gj for i ̸= j and that {gi}1≤i≤N = Fℓ

2\{0}
(
= FnL

2 \ {0}
)

6 Saying it differently, we prepare a superposition of |x⟩ with the amplitude being
proportional to the correlation Cor(xG, ζ), and then amplify the “good” x by com-
puting the correlation again and checking whether it is large enough. The idea of
using a single value for both preparation and amplification is not new and has already
appeared in, e.g., [5].

23

follows from the definition of G and Eq. (5). In particular, we have that Ψ(gi) =
(−1)ζi for all i and

∑
w ̸=0 |Ψ(w)|2 = 2ℓ − 1(= N), which implies

|ψ⟩ =
∑

1≤i≤N

(−1)ζi−1

√
N

|gi⟩ .

In what follows, we use these properties without any mention.

Computing a Boolean Function for QAA by Quantum Counting. Here
we explain how to compute f(x) such that f(x) = 1 iff x = s(0).

Define a Boolean function f ′ by f ′(x) = 1 iff Cor(xG, ζ)2 ≥ 3c2/8. Then, the
claim at the end of Section 3.3 ensures PrK,IV [f(x) = f ′(x) for all x] ≥ 0.9.

With this in mind, we implement the unitary operator Sf ′ satisfying Sf ′ |x⟩ =
(−1)f

′(x) |x⟩. To implement this, we count the number of i satisfying (xG)i = ζi
for each i = 0, 1, . . . , N − 1 by using the quantum counting algorithm with a
sufficiently high precision. Proposition 3 ensures that the error probability of
the quantum counting algorithm is as small as 0.2, but this is still large if the
algorithm is used in QAA as a subroutine. To make the error probability small
enough, we run multiple instances and perform a majority vote.

Concretely, to implement Sf ′ , we run the following algorithm. Here, r is a
parameter fixed later, and hx : {0, . . . , N} → F2 is the Boolean function defined7

by hx(i) = (xG)i ⊕ ζi ⊕ 1 for 0 ≤ i ≤ N − 1 and hx(N) = 0.

Algorithm JDG.

0. (Assume a basis state |x⟩ is given as an input.)
1. For j = 1, . . . , r, perform the following procedure.

(a) Run the quantum counting algorithm (QC on page 9) with q = 27/c to
compute an estimation of Z := |h−1

x (1)|. Let Z̃j be the resulting output.
(b) Let C̃j :=

2Z̃j−N
N . Compute (C̃j)

2 and write it into a new auxiliary
register.

(c) Uncompute Step (a).
2. Check whether at least r/2 values among (C̃1)

2, . . . , (C̃r)
2 are greater than or

equal to 3c2/8. If so, multiply the entire state by the phase (−1). Otherwise,
do nothing.

3. Uncompute Step 1.

Proposition 5. Assume ℓ ≥ 10, Cor(xG, ζ)2 ≤ c2/4 holds for all x ̸= s(0), and
Cor(s(0)G, ζ)2 ≥ c2/2. By abuse of notation, let JDG also denote the unitary
operator corresponding to the above algorithm. Then, f = f ′ holds, and the
operator norm of (JDG−Sf) is upper bounded as ∥JDG− Sf∥op ≤ 2(ℓ/2)−(0.1r)+1.
The depth required to implement JDG on a quantum circuit is at most about
211rℓ3/c, and JDG makes 28r/c queries to the oracle.
7 hx is defined so that hx(i) = 1 iff (xG)i = ζi for i < N . The domain size is set as
(N + 1) instead of N to make it a power of two.

24

See Section D in the appendix for a proof. We will set r = 25ℓ such that the
difference ∥JDG− Sf∥op is extremely small (≤ O(2−2ℓ)) and we can use JDG
instead of Sf in QAA while keeping the success probability almost unchanged.

The amount of auxiliary qubits required for JDG is at most the maximum of

– the qubits needed to compute hx,
– the qubits needed to perform the classical computation in Step 2,
– the qubits needed for Calc on page 8,

which is in O(ℓ2). (See Section E in the appendix for details on the qubits
required for hx. For Calc, we assume that the sin function is approximately
computed using a constant number of terms in the Taylor expansion.)

How to Prepare |ψ⟩. Roughly speaking, we prepare |ψ⟩ by (i) making a
superposition of all x ∈ Fℓ

2 \ {0}, (ii) compute i such that the i-th column of G
(denoted by gi) is equal to x, and (iii) multiply the phase (−1)ζi−1 by querying
to the quantum oracle.

To perform (ii), we utilize Shor’s algorithm and the relationship between
the state update of LFSR and multiplication in the finite field. Let ξ be the
isomorphism defined in Eq. (3). The most important observation is that we have

i = logα (ξ(gi)/ξ(Γ)) + 1 = logα (ξ(gi))− logα (ξ(Γ)) + 1 (18)

for each i because

ξ (gi) = ξ
(
Γ (M⊤)i−1

)
=

Eq. (4)
ξ(Γ) · αi−1,

holds. Therefore, we can compute i such that gi = x for a given x ∈ Fℓ
2 \ {0}

as i = logα (ξ(gi)) − logα (ξ(Γ)) + 1, applying Shor’s discrete logarithm in the
multiplicative group F× = (F2n [x]/(f

∗(x)))
× ∼= Z/NZ.

First, we describe our algorithm when a unitary operator DLOG satisfying

DLOG |x⟩ |0⟩ = |x⟩ |logα(x)⟩

is available as a quantum circuit. After that, we discuss the complexity to ap-
proximate it with sufficeintly high precision by using Shor’s algorithm.

Algorithm PREP2.

1. Prepare the superposition ∑
x∈Fℓ

2\{0}

1√
N

|x⟩ .

2. For each basis state x, run DLOG twice to compute logα(ξ(x))) and logα(ξ(Γ)).
Then compute i := logα(ξ(x)))− logα(ξ(Γ)) + 1. Now the state is∑

x∈Fℓ
2\{0}

1√
N

|x⟩ |logα(ξ(x)))⟩ |logα(ξ(Γ))⟩ |i⟩ .

25

3. By querying (i − 1) to the oracle, multiply the entire state by the phase
(−1)ζi−1 (Recall that now we are assuming the oracle that returns ζi for the
input i in quantum superposition.)

4. Uncompute Step 2. Now, the state is |ψ⟩.

Both the T -depth and the number of ancillary qubits are dominated by Step
2 (and its uncomputation). By running 8ℓ instances of Shor’s algorithm DLOG
can be approximated with error (w.r.t. operator norm) in O(2−2ℓ), T -depth at
most 28ℓ3+O(ℓ2), and O(ℓ2) ancillary qubits (see Section F in the appendix for
details). Therefore, PREP2 can be implemented with error in O(2−2ℓ), T -depth
29ℓ3 +O(ℓ2), and O(ℓ2) ancillary qubits.

The Entire Algorithm and Analysis. Our algorithm solving Problem 1 runs
as follows.

Algorithm QFCA2. Run QAAw/oKp on p.8 with U := H⊗ℓ · PREP2 on the
Boolean function f : Fℓ

2 → F2 such that f(x) = 1 iff x = s(0). Here, f is com-
puted by using the algorithm JDG. The parameter r for JDG is chosen as r := 25ℓ.

Below we analyze the complexity of QFCA2 assuming ℓ ≥ 10 (so that the
assumption of Proposition 5 will be satisfied) and c ≤ ℓ−1, which is the case for
the applications we will see later.

Let p be the probability that we obtain an x satisfying f(x) = 1 when we
measure the state H⊗ℓ · PREP2 |0ℓ⟩ (= H⊗ℓ |ψ⟩). That is,

p =
N2 · Cor(s(0)G, ζ)2

2ℓ ·
∑

w |Ψ(w)|2
=

2ℓ

2ℓ − 1
· Cor(s(0)G, ζ)2. (19)

By the claim at the end of Section 3.3, Cor(xG, ζ)2 ≤ c2/4 holds for all x ̸= s(0),
with probability at least 0.9 (when K and IV are randomly chosen). Provided
this condition hold,

p ≥ 2ℓ

2ℓ − 1
· c2 ≈ c2 (20)

follows from Eq. (19), and the attack finds the correct decoding result s(0) in
expected time complexity at most about

Ttotal = (9/2)p−1/2 (2 · Tprepare + Tf) ⪅ (9/2)
1

c
(2 · Tprepare + Tf) (21)

where Tprepare (resp., Tf) is the running time of the algorithm PREP2 (resp.,
JDG). Since we set r = 25ℓ for JDG,

Tf ⪅ 25 · 211ℓ4/c

follows from Proposition 5. In addition, c ≤ ℓ−1 is assumed. Meanwhile, as
discussed before, Tprepare = 29ℓ3 + O(ℓ2) holds. Hence Tprepare ≪ Tf holds and

26

the total time complexity can be estimated as

Ttotal ⪅ (9/2) · 1
c
·
(
25 · 211ℓ4/c

)
≤ 218 · ℓ4/c2. (22)

In addition, since PREP2 makes onlyO(1) queries, the number of queries made by
QFCA2 can be approximated by the number of queries made by JDG multiplied
by the number of applications of JDG. Therefore, the number of quantum queries
made by QFCA2 is at most about (9/2)p−1/2 · (28(25ℓ)/c) ⪅ 215ℓ/c2.

Next, we analyze the success probability. Failure of QFCA2 is attributed to
the following four factors:

(1) Whether the assumption of Proposition 5 about the correlations (i.e., the
assumption of the claim at the end of Section 3.3) is satisfied or not.

(2) The error in JDG approximating Sf (provided the assumption of Proposi-
tion 5 is satisfied).

(3) The error in approximating DLOG.
(4) Failure of QAA to find the correct value s(0).

The error probability coming from (1) is at most 0.1 (because of the claim at
the end of Section 3.3 and the assumption ℓ ≥ 10), and (4) is already taken into
account in the expected complexity of QAA shown in Proposition 2. Hence, if
(2) and (3) could be ignored, the algorithm would successfully recover s(0) in
the expected time complexity shown in Eq. (22) with a probability of at least
0.9 (with respect to the randomness of K and IV).

Regarding (2), the distance between JDG and Sf is at most O(2−2ℓ). This
means that the failure probability of QAA with t applications of Sf increases by
O(t · 2−2ℓ) if Sf is replaced with JDG. The same holds for the approximation of
DLOG. As the overall complexity of QFCA2 is O(ℓ4c−2), the success probability
decreases by O(ℓ4c−22−2ℓ) in total when (2) and (3) are taken into account.
Therefore, the success probability of the algorithm can be estimated as at least
0.9−O(ℓ4c−22−2ℓ).

Summary. Assuming ℓ ≥ 10 and c ≤ ℓ−1, QFCA2 solves Problem 1 with time and
query complexity (approximately) at most 218ℓ4/c2 and 215ℓ/c2. The probability
of success is estimated as at least 0.9 − O(ℓ4c−22−2ℓ). The number of ancillary
qubits required is O(ℓ2) since both JDG and (the approximation of) DLOG are
implemented with O(ℓ2) qubits.

In the applications below, we will only discuss the cases where the term
O(ℓ4c−22−2ℓ) is negligibly small.

Remark 4. If QFCA2 is applied to a stream cipher with an ℓ-bit LFSR, it requires
O(ℓ2) qubits. Meanwhile, the exhaustive key search with Grover’s algorithm
would require only O(ℓ) qubits. Strictly speaking, the validity of a dedicated
quantum attack such as QFCA2 should be compared to the parallelized Grover
search using the same amount of qubits. However, O(ℓ2) qubits would allow
to run only O(ℓ) parallel instances, which yields a speed-up by a factor of at
most O(

√
ℓ). This factor is not so large as to affect the validity of the attacks

27

considered in this paper, and the cost of the Grover search also varies depending
on implementations of a target cipher. Hence, in what follows, we do not take
parallelization into account.

6.3 Applications

We show applications of QFCA2 on SNOW 2.0 [31], SNOW 3G [34], and Sose-
manuk [6]. Our goal is to break the qBPRF security of the ciphers when the
quantum oracle of the Booleanized version of the cipher is given.

SNOW 2.0 SNOW 2.0 is a stream cipher designed by Ekdahl and Johans-
son [31], which is standardized by ISO/IEC [48]. It consists of an LFSR of
length L = 16 over F232 (512 bits long in total) and a finite state machine that
keeps 64-bit states. The state update and keystream generation are carried out
in 32-bit words. The cipher outputs a 32-bit keystream segment at each clock,
updating the internal state registers. (see Figure 2). The key length is either 128

Fig. 2. SNOW 2.0. Each line corresponds to a 32-bit word. R1 and R2 are additional
32-bit registers. Modular additions are denoted by ⊞. The circled “S” at the center is
a non-linear permutation.

or 256 bit, and IVs are 128 bits. In the initialization phase, a key and an IV are
linearly expanded and loaded to the registers and then mixed by updating the
states 32 times, with the output bits fed back to the LFSR.

Linear Approximations and Classical Attacks. In the classical setting, many (lin-
ear attacks and) fast correlation attacks have been proposed on SNOW 2.0 [72,
87, 57, 92, 36, 40, 41]. Among others, [36, 40, 39] found linear approximation

⟨s(t),Γ ⟩F2
≈ ⟨zt,Λ1⟩F2

⊕ ⟨zt+1,Λ2⟩F2
(23)

for some Λ1,Λ2 ∈ F232 and Γ ∈ F2512 which holds with absolute linear corre-
lation 2−14.411. Here, s(t) is the state of the LFSR at clock t, and zt ∈ F232 is
the 32-bit word (keystream segment) output by the cipher at clock t. A recent

28

work by Gong et al. [39] also found multiple approximations with the same ab-
solute correlation. As far as we know, 2−14.411 is the highest (absolute) linear
correlation of SNOW 2.0 that has been found so far.

The current fastest classical attack on SNOW 2.0 is the fast correlation attack
in [41] that uses a few linear correlations, including the above, which recovers
not only the initial state of the LFSR but also the key with about 2159 data and
2162 time complexity.

Application of QFCA2. We apply QFCA2 on the decoding problem (Problem 1)
derived from the linear approximation of Eq. (23). The parameters are set as
c := 2−14.411 and ℓ := 512, and the sequence ζ = (ζ0, ζ2, . . . , ζN−1) is defined as
ζt := ⟨zt,Λ1⟩F2

⊕ ⟨zt+1,Λ2⟩F2
.

Recall that we aim to break the qBPRF security. Here, we briefly review the
attack model. We assume the quantum oracle of the Booleanized oracle of SNOW
2.0, which we denote by OBSNOW2.0. Given a superposition of indices i as an
input, the oracle returns the i-th bit of the keystream in quantum superposition.
Since the period of LFSR is 2ℓ − 1, the upper limit of i is set as i < 2ℓ − 1
to prevent trivial attacks. (The oracle also allows an adversary to query IV .
However, when mounting fast correlation attacks, we choose an IV arbitrarily
and fix it during the attack, as in classical attacks.)

Problem 1 (and QFCA2) assumes the quantum oracle that returns ζi for
each i (in superposition), whereas the oracle OBSNOW2.0 returns a keystream
bit of SNOW 2.0. Thus, to apply QFCA2, we simulate the oracle of ζi by using
OBSNOW2.0 as follows8.

0. (Assume a basis state |t⟩ is given as an input)
1. Query t, t+ 1, . . . , t+ 63 to OBSNOW2.0 to obtain zt, zt+1 ∈ F32.
2. Compute ζt := ⟨zt,Λ1⟩F2

⊕ ⟨zt+1,Λ2⟩F2
.

3. Copy the value ζt into the output register.
4. Uncompute Step 1-2.

Since Λ1 and Λ2 are predetermined constants, Step 2 can be executed by only
applying CNOT gates. Hence, the T -depth of Step 2 is zero, and the above simu-
lation requires 2×64 = 27 depth and the same amount of queries to OBSNOW2.0.

Using this simulation, QFCA2 recovers the initial state of the LFSR of SNOW
2.0 (and breaks its qBPRF security) with time complexity at most 27·

(
218 · (512)4

·(214.411)2
)
≤ 289.3,making quantum queries at most 27·

(
215 · (512) · (214.411)2

)
≤

259.3 times.
On the other hand, the running time of the exhaustive key search with the

Grover search is at least 210 ·2κ/2 for κ-bit keys, because of the following reasons:
The Grover search performs 2κ/2 iterations to search for a κ-bit secret key. It
evaluates a Boolean function f such that f(x) = 1 iff x matches the secret key
8 Strictly speaking, the last bit ζN cannot be computed due to the upper limit of the

index i that can be queried to OBSNOW2.0. So, we just set ζN := 0. Since N is quite
large (N = 2512 − 1), this modification has little effect on the attack complexity and
the success probability.

29

in each iteration. The only way (that we are aware of) to implement such f is
to compute a keystream segment for each input x and check whether it matches
the real keystream segment. As the initialization phase requires 32 state updates
and each update involves at least one 32-bit modular addition (in the finite state
machine), the T -depth of f should be at least 32 · 32 = 210.

In particular, when the key length is 256, our attack (time complexity 289.3) is
significantly faster than the generic attack by the Grover search (time complexity
at least 2138).

A Note on Key Recovery. Our primary aim here is to break the qBPRF security
of SNOW 2.0. Still, once the LFSR’s initial state is recovered, the remaining
64-bit state of the finite state machine can also be recovered with at most about
264 classical operations. In particular, since the initialization phase of SNOW
2.0 is reversible, we can recover the secret key with almost the same complexity.

Remark 5. A previous work [27] shows that a quantum guess-and-determine at-
tack on SNOW 2.0 with 256-bit keys breaks the cipher in time around 288.
However, the attack uses a large quantum computer of size around 288 to run
a parallelized Grover search, whereas our paper does not consider parallel com-
putation. In addition, [27] defines the unit of time (resp., size) as the time to
execute the target cipher once (resp., the size to implement the target cipher).
Under this cost metric, if a quantum computer of size 288 is available, the generic
attack (simple parallelized Grover search) recovers a 256-bit key with time com-
plexity about

√
2256/288 = 284. Thus, the attack on SNOW 2.0 with 256-bit

keys is slower than the generic attack.

We also applied QFCA2 on SNOW 3G [34] and Sosemanuk [6], of which the
structures are quite close to SNOW 2.0. For SNOW 3G, the time and query
complexity are 2102.9 and 272.9, which is slower than the Grover search but
significantly faster than the classical attacks [72, 88, 40, 41, 39]. On Sosemanuk,
the time and query complexity are 2101.11 and 273.15. This is slower than the
quantum guess-and-determine attack [27], but faster than the Grover search for
long keys (e.g., 256-bit keys). See Section G in the appendix for details.

6.4 Disuccsions

We also tried speeding up other classical fast correlation attacks [83, 78, 86, 84,
77, 93, 59, 39], which recover the initial state (or even the secret key) of Grain
v1 [45], Grain-128 [44], Grain-128a [1], Fruit-v2 [38], Fruit-80 [37], Plantlet [65],
SNOW-V [32], and SNOW-Vi [33] faster than the classical exhaustive key search.
However, we have not found Q2 attacks faster than the exhaustive key search
with Grover’s algorithm.

Except for SNOW-V/Vi, the problem is that the absolute correlations are too
small. For SNOW-V/Vi, which uses 512-bit LFSRs and 256-bit keys, the absolute
correlations are in a moderate order (> 2−50), but still the time complexity of
QFCA2 becomes at least 2150 due to the factor 218ℓ4 in Eq. (22) with ℓ = 512.

30

Acknowledgements

We thank anonymous reviewers for their insightful comments.

References

1. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of grain-
128 with optional authentication. Int. J. Wirel. Mob. Comput. 5(1), 48–59 (2011)

2. Ågren, M., Löndahl, C., Hell, M., Johansson, T.: A survey on fast correlation
attacks. Cryptogr. Commun. 4(3-4), 173–202 (2012)

3. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 32(6), 818–830 (2013)

4. Aumasson, J., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features of
latin dances: Analysis of salsa, chacha, and rumba. In: FSE 2008, Revised Selected
Papers. LNCS, vol. 5086, pp. 470–488. Springer (2008)

5. Bera, D., Tharrmashastha, S.: Quantum and randomised algorithms for non-
linearity estimation. ACM Transactions on Quantum Computing 2(2) (June 2021)

6. Berbain, C., Billet, O., Canteaut, A., Courtois, N.T., Gilbert, H., Goubin, L.,
Gouget, A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T., Sibert, H.:
Sosemanuk, a fast software-oriented stream cipher. In: New Stream Cipher Designs
- The eSTREAM Finalists, LNCS, vol. 4986, pp. 98–118. Springer (2008)

7. Berbain, C., Gilbert, H.: On the security of IV dependent stream ciphers. In:
Biryukov, A. (ed.) FSE 2007, Revised Selected Papers. LNCS, vol. 4593, pp. 254–
273. Springer (2007)

8. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of grain. In: Robshaw, M.J.B.
(ed.) FSE 2006, Revised Selected Papers. LNCS, vol. 4047, pp. 15–29. Springer
(2006)

9. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC.
vol. 8 (2008)

10. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: New Stream Cipher
Designs - The eSTREAM Finalists, LNCS, vol. 4986, pp. 84–97. Springer (2008)

11. Biham, E., Anderson, R.J., Knudsen, L.R.: Serpent: A new block cipher pro-
posal. In: Vaudenay, S. (ed.) FSE ’98, Proceedings. LNCS, vol. 1372, pp. 222–238.
Springer (1998)

12. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: EU-
ROCRYPT 2013, Proceedings. LNCS, vol. 7881, pp. 592–608. Springer (2013)

13. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: The offline simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Proceedings, Part I.
LNCS, vol. 11921, pp. 552–583. Springer (2019)

14. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: The offline simon’s algorithm.
In: ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 552–583. Springer (2019)

15. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
In: Paterson, K.G., Stebila, D. (eds.) SAC 2019, Revised Selected Papers. LNCS,
vol. 11959, pp. 492–519. Springer (2019)

31

16. Bonnetain, X., Schrottenloher, A., Sibleyras, F.: Beyond quadratic speedups in
quantum attacks on symmetric schemes. In: Dunkelman, O., Dziembowski, S.
(eds.) EUROCRYPT 2022, Proceedings, Part III. LNCS, vol. 13277, pp. 315–344.
Springer (2022)

17. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik: Progress of Physics 46(4-5), 493–505 (1998)

18. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002)

19. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer (1998)

20. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In: EUROCRYPT 2000, Proceeding. LNCS, vol. 1807,
pp. 573–588. Springer (2000)

21. Canteut, A.: LFSR-based stream ciphers, https://www.rocq.inria.fr/secret/Anne.
Canteaut/MPRI/chapter3.pdf (Accessed on September 19, 2024)

22. Chepyzhov, V.V., Johansson, T., Smeets, B.J.M.: A simple algorithm for fast cor-
relation attacks on stream ciphers. In: FSE 2000, Proceedings. LNCS, vol. 1978,
pp. 181–195. Springer (2000)

23. Chepyzhov, V.V., Smeets, B.J.M.: On A fast correlation attack on certain stream
ciphers. In: EUROCRYPT ’91, Proceedings. LNCS, vol. 547, pp. 176–185. Springer
(1991)

24. Cho, J.Y., Hermelin, M.: Improved linear cryptanalysis of SOSEMANUK. In: Lee,
D.H., Hong, S. (eds.) ICISC 2009, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 5984, pp. 101–117. Springer (2009)

25. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of
view. In: EUROCRYPT 2002, Proceedings. LNCS, vol. 2332, pp. 209–221. Springer
(2002)

26. Collard, B., Standaert, F., Quisquater, J.: Improving the time complexity of mat-
sui’s linear cryptanalysis. In: Nam, K., Rhee, G. (eds.) ICISC 2007, Proceedings.
LNCS, vol. 4817, pp. 77–88. Springer (2007)

27. Ding, L., Wu, Z., Zhang, G., Shi, T.: Quantum guess and determine attack on
stream ciphers. Comput. J. 67(1), 292–303 (2024)

28. Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum collision attacks on
aes-like hashing with low quantum random access memories. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 727–757. Springer
(2020)

29. ECRYPT: eSTREAM: ECRYPT stream cipher project, https://www.ecrypt.eu.
org/stream/

30. Einsele, S., Wunder, G.: Quantum speed-up of fast correlation attacks against
stream ciphers. Crypto day matters 36

31. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: SAC
2002, Revised Papers. LNCS, vol. 2595, pp. 47–61. Springer (2002)

32. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: A new SNOW stream cipher
called SNOW-V. IACR Trans. Symmetric Cryptol. 2019(3), 1–42 (2019)

33. Ekdahl, P., Maximov, A., Johansson, T., Yang, J.: Snow-vi: an extreme perfor-
mance variant of SNOW-V for lower grade cpus. In: WiSec 2021. pp. 261–272.
ACM (2021)

34. ETSI/SAGE: Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 2: SNOW 3G Specification. Version 1.1 (2006)

32

35. Feng, X., Liu, J., Zhou, Z., Wu, C., Feng, D.: A byte-based guess and determine
attack on SOSEMANUK. In: ASIACRYPT 2010, Proceedings. LNCS, vol. 6477,
pp. 146–157. Springer (2010)

36. Funabiki, Y., Todo, Y., Isobe, T., Morii, M.: Several milp-aided attacks against
SNOW 2.0. In: CANS 2018, Proceedings. LNCS, vol. 11124, pp. 394–413. Springer
(2018)

37. Ghafari, V.A., Hu, H.: Fruit-80: A secure ultra-lightweight stream cipher for con-
strained environments. Entropy 20(3), 180 (2018)

38. Ghafari, V.A., Hu, H., Chen, Y.: Fruit-v2: Ultra-lightweight stream cipher with
shorter internal state. IACR Cryptology ePrint Archive 2016/355 (2016)

39. Gong, X., Hao, Y., Wang, Q.: Combining milp modeling with algebraic bias evalu-
ation for linear mask search: improved fast correlation attacks on snow. Des. Codes
Cryptogr. 92, 1663–1728 (2024)

40. Gong, X., Zhang, B.: Fast computation of linear approximation over certain com-
position functions and applications to SNOW 2.0 and SNOW 3g. Des. Codes Cryp-
togr. 88(11), 2407–2431 (2020)

41. Gong, X., Zhang, B.: Comparing large-unit and bitwise linear approximations of
SNOW 2.0 and SNOW 3g and related attacks. IACR Trans. Symmetric Cryptol.
2021(2), 71–103 (2021)

42. Grassi, L., Naya-Plasencia, M., Schrottenloher, A.: Quantum algorithms for the k
-xor problem. In: ASIACRYPT 2018, Proceedings, Part I. LNCS, vol. 11272, pp.
527–559. Springer (2018)

43. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In:
ACM STOC 1996. pp. 212–219. ACM (1996)

44. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: Proceedings 2006 IEEE International Symposium on Information Theory,
ISIT 2006, The Westin Seattle, Seattle, Washington, USA, July 9-14, 2006. pp.
1614–1618. IEEE (2006)

45. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream ci-
phers. In: New Stream Cipher Designs - The eSTREAM Finalists, LNCS, vol. 4986,
pp. 179–190. Springer (2008)

46. Hosoyamada, A., Sasaki, Y.: Quantum Demirci-Selçuk Meet-in-the-Middle At-
tacks: Applications to 6-Round Generic Feistel Constructions. In: SCN 2018.
LNCS, vol. 11035, pp. 386–403. Springer (2018)

47. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 249–279.
Springer (2020)

48. ISO/IEC: 18033-4:2011 Information technology — Security techniques — Encryp-
tion algorithms. Part 4 Stream Ciphers (2011)

49. Johansson, T., Jönsson, F.: Fast correlation attacks based on turbo code tech-
niques. In: CRYPTO ’99, Proceedings. LNCS, vol. 1666, pp. 181–197. Springer
(1999)

50. Johansson, T., Jönsson, F.: Improved fast correlation attacks on stream ciphers
via convolutional codes. In: EUROCRYPT ’99, Proceeding. LNCS, vol. 1592, pp.
347–362. Springer (1999)

51. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: CRYPTO 2016, Part II. LNCS,
vol. 11693, pp. 207–237. Springer (2016)

52. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

33

53. Kitaev, A.Y.: Quantum measurements and the abelian stabilizer problem. arXiv
preprint quant-ph/9511026 (1995)

54. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel ci-
pher and the random permutation. In: ISIT 2010. pp. 2682–2685. IEEE (2010)

55. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
ISITA 2012. pp. 312–316. IEEE (2012)

56. Leander, G., May, A.: Grover Meets Simon - Quantumly Attacking the FX-
construction. In: ASIACRYPT 2017. LNCS, vol. 10625, pp. 161–178. Springer
(2017)

57. Lee, J., Lee, D.H., Park, S.: Cryptanalysis of sosemanuk and SNOW 2.0 using linear
masks. In: Pieprzyk, J. (ed.) ASIACRYPT 2008, Proceedings. LNCS, vol. 5350,
pp. 524–538. Springer (2008)

58. Ma, S., Jin, C., Guan, J.: Improved fast correlation attack on snow 3g stream
cipher (2023), available at SSRN: https://ssrn.com/abstract=4501579

59. Ma, S., Jin, C., Shi, Z., Cui, T., Guan, J.: Correlation attacks on snow-v-like stream
ciphers based on a heuristic milp model. IEEE Transactions on Information Theory,
Early Access (2023)

60. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993, Proceedings. LNCS, vol. 765, pp. 386–397. Springer (1993)

61. Meier, W.: Fast correlation attacks: Methods and countermeasures. In: FSE 2011,
Revised Selected Papers. LNCS, vol. 6733, pp. 55–67. Springer (2011)

62. Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers (extended ab-
stract). In: EUROCRYPT ’88, Proceedings. LNCS, vol. 330, pp. 301–314. Springer
(1988)

63. Mihaljevic, M.J., Fossorier, M.P.C., Imai, H.: Fast correlation attack algorithm
with list decoding and an application. In: FSE 2001, Revised Papers. LNCS,
vol. 2355, pp. 196–210. Springer (2001)

64. Mihaljevic, M.J., Golic, J.D.: A fast iterative algorithm for A shift register ini-
tial state reconstruction given the nosiy output sequence. In: AUSCRYPT ’90,
Proceedings. LNCS, vol. 453, pp. 165–175. Springer (1990)

65. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the
non-volatile key. IACR Trans. Symmetric Cryptol. 2016(2), 52–79 (2016)

66. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis (2nd edition). Cambridge
university press (2017)

67. Nam, Y., Su, Y., Maslov, D.: Approximate quantum fourier transform with
O(n log(n)) T gates. npj Quantum Information 6 (2020), Article number: 26

68. National Institute of Standards and Technlology: Submission require-
ments and evaluation criteria for the post-quantum cryptography stan-
dardization process (2016), https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

69. Naya-Plasencia, M., Schrottenloher, A.: Optimal merging in quantum k-xor and
k-xor-sum algorithms. In: EUROCRYPT 2020, Proceedings, Part II. LNCS, vol.
12106, pp. 311–340. Springer (2020)

70. Nie, J., Zhu, Q., Li, M., Sun, X.: Quantum circuit design for integer multiplica-
tion based on schönhage–strassen algorithm. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 42(12), 4791–4802 (2023).
https://doi.org/10.1109/TCAD.2023.3279300

71. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press (2010)

34

72. Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Fast
Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria,
March 15-17, 2006, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 4047, pp. 144–162. Springer (2006)

73. Sanders, Y.R., Low, G.H., Schere, A., Berry, D.W.: Black-box quantum state prepa-
ration without arithmetic. Phys. Rev. Lett. 122, 020502 (Jan 2019)

74. Santoli, T., Schaffner, C.: Using simon’s algorithm to attack symmetric-key cryp-
tographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017)

75. Schrottenloher, A.: Improved quantum algorithms for the k-xor problem. In: SAC
2021, Revised Selected Papers. LNCS, vol. 13203, pp. 311–331. Springer (2021)

76. Schrottenloher, A.: Quantum linear key-recovery attacks using the QFT. In:
CRYPTO 2023, Proceedings, Part V. LNCS, vol. 14085, pp. 258–291. Springer
(2023)

77. Shi, Z., Jin, C., Jin, Y.: Improved linear approximations of SNOW-V and snow-vi.
IACR Cryptology ePrint Archive 2021/1105 (2021)

78. Shi, Z., Jin, C., Zhang, J., Cui, T., Ding, L., Jin, Y.: A correlation attack on full
SNOW-V and snow-vi. In: EUROCRYPT 2022, Proceedings, Part III. LNCS, vol.
13277, pp. 34–56. Springer (2022)

79. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science. pp. 124–134.
IEEE Computer Society (1994)

80. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Trans. Inf. Theory 30(5), 776–780 (1984)

81. Simon, D.R.: On the Power of Quantum Computation. In: 35th An-
nual Symposium on Foundations of Computer Science. pp. 116–123 (1994).
https://doi.org/10.1109/SFCS.1994.365701

82. Thapliyal, H., Varun, T.S.S., Muñoz-Coreas, E., Britt, K.A., Humble, T.S.: Quan-
tum circuit designs of integer division optimizing t-count and t-depth. In: iNIS
2017, Proceedings. pp. 123–128. IEEE (2017)

83. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revis-
ited - cryptanalysis on full grain-128a, grain-128, and grain-v1. In: Crypto 2018,
Proceedings, Part II. LNCS, vol. 10992, pp. 129–159. Springer (2018)

84. Todo, Y., Meier, W., Aoki, K.: On the data limitation of small-state stream ci-
phers: Correlation attacks on fruit-80 and plantlet. In: Paterson, K.G., Stebila, D.
(eds.) SAC 2019, Revised Selected Papers. LNCS, vol. 11959, pp. 365–392. Springer
(2019)

85. Wagner, D.A.: A generalized birthday problem. In: Advances in Cryptology -
CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings. LNCS, vol. 2442, pp. 288–303.
Springer (2002)

86. Wang, S., Liu, M., Lin, D., Ma, L.: On grain-like small state stream ciphers against
fast correlation attacks: Cryptanalysis of plantlet, fruit-v2 and fruit-80. Comput.
J. 66(6), 1376–1399 (2023)

87. Watanabe, D., Biryukov, A., Cannière, C.D.: A distinguishing attack of SNOW
2.0 with linear masking method. In: SAC 2003, Revised Papers. LNCS, vol. 3006,
pp. 222–233. Springer (2003)

88. Yang, J., Johansson, T., Maximov, A.: Vectorized linear approximations for attacks
on SNOW 3g. IACR Trans. Symmetric Cryptol. 2019(4), 249–271 (2019)

89. Zeng, K., Yang, C., Rao, T.R.N.: An improved linear syndrome algorithm in crypt-
analysis with applications. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO ’90,
Proceedings. LNCS, vol. 537, pp. 34–47. Springer (1990)

35

90. Zhandry, M.: How to construct quantum random functions. In: FOCS. pp. 679–687.
IEEE Computer Society (2012)

91. Zhang, B., Liu, R., Gong, X., Jiao, L.: Improved fast correlation attacks on
the Sosemanuk stream cipher. IACR Trans. Symmetric Cryptol. 2023(4), 83–111
(2023)

92. Zhang, B., Xu, C., Meier, W.: Fast correlation attacks over extension fields, large-
unit linear approximation and cryptanalysis of SNOW 2.0. In: CRYPTO 2015,
Proceedings, Part I. LNCS, vol. 9215, pp. 643–662. Springer (2015)

93. Zhou, Z., Feng, D., Zhang, B.: Efficient and extensive search for precise linear ap-
proximations with high correlations of full SNOW-V. Des. Codes Cryptogr. 90(10),
2449–2479 (2022)

A Implementations of Multiplication in F2n on Quantum
Circuits

For completeness, this section discusses the implementation cost (controlled)
multiplication in F2n on quantum circuits. The implementations are basic and
straightforward, but we will give them here for a precise complexity analysis.

Let f(x) ∈ F2[x] be an irreducible polynomial of degree n over F2. This sec-
tion identifies F2n with F2[x]/(f(x)). Each element of F2[x]/(f(x)) is represented
as a polynomial β(x) =

∑
0≤i<n bix

i, where b0, . . . , bn−1 ∈ F2, which is further
identified with the vector b = (b0, . . . , bn) ∈ Fn

2 .

Proposition 6. There is a quantum circuit realizing the unitary operator of the
field multiplication, i.e., the unitary operator Mult such that

Mult |β⟩ |γ⟩ |δ⟩ = |β⟩ |γ⟩ |δ ⊕ ((β · γ) mod f)⟩

for β, γ, δ ∈ F2[x]/(f(x)) with depth at most 3n2 and at most 2n auxiliary qubits.

Proof. For arbitrary i, the unitary operator

CAddxi : |b⟩ |δ⟩ 7→ |b⟩ |δ ⊕ (xi mod f)⟩ (b ∈ F2, δ ∈ F2[x]/(f(x)))

can be implemented by using at most n CNOT gates. In addition, the unitary
operator that computes the multiplication of two polynomials of degree < n in
F2[x] (not in F2[x]/(f(x))), i.e., the operator

M̃ult |β⟩ |γ⟩ |δ⟩ = |β⟩ |γ⟩ |δ ⊕ (β · γ)⟩

can be computed by using at most n2 Toffoli gates in a straightforward manner
(to compute all bi · cj for all i and j). We implement Mult as follows.

1. Apply M̃ult to compute β · γ (in F2[x], not in F2[x]/(f(x))). Suppose β · γ is
represented as β · γ =

∑
0≤i≤2n−2 uix

i.
2. Apply CAddxi with b = ui for i = 0, 1, . . . , 2n− 2 in sequential order.
3. Uncompute Step 1.

36

This procedure requires at most 2n additional auxiliary quibts and T -depth at
most 3n2 (here, we used the fact that the T -depth for the Toffoli gate is at most
3 [3]). ⊓⊔

Proposition 7. There is a quantum circuit realizing the unitary operator ExMult
satisfying

ExMult |i⟩ |β⟩ |δ⟩ = |i⟩ |β⟩ |δ ⊕ (βi mod f)⟩
for i ∈ {0, . . . , 2n− 1} and β, δ ∈ F2[x]/(f(x)) with depth at most 3n3+3n2 and
at most (2n2 + 2n) auxiliary qubits.

Proof. We implement ExMult as follows.

1. Copy β into a new register to obtain

|i⟩ |β⟩ |δ⟩ ⊗ |β⟩ .

2. Apply Mult to compute (β2 mod f) and obtain

|i⟩ |β⟩ |δ⟩ ⊗ |β⟩ |β2 mod f⟩ .

3. Copy (β2 mod f) into a new register, apply Mult to compute (β4 mod f),
and obtain

|i⟩ |β⟩ |δ⟩ ⊗ |β⟩ |β2 mod f⟩ |β2 mod f⟩ |β4 mod f⟩ .

4. Compute (β4 mod f), (β8 mod f), . . . , (β2n−1

mod f) similarly to obtain

|i⟩ |β⟩ |δ⟩ ⊗ |β⟩

2n−2⊗
j=2

|β2j mod f⟩ |β2j mod f⟩

 |β2n−1 mod f⟩ .

5. Suppose i is represented as a binary sequence i0||i1|| · · · ||in−1. For j =

0, . . . , n− 1, apply Toffoli gates to add the value ij ·
(
β2j mod f

)
into the δ

register. Now, the state is

|i⟩ |β⟩ |δ ⊕
(
βi mod f

)
⟩⊗|β⟩

2n−2⊗
j=2

|β2j mod f⟩ |β2j mod f⟩

 |β2n−1 mod f⟩ .

6. Uncompute Steps 1-4.

By Proposition 6, Steps 2-4 can be performed with at most n · (3n2) T -depth
and 2n additional auxiliary qubits. Step 5 requires T -depth at most 3n2 (as
the T -depth of Toffoli is at most 3 [3]). Therefore, the above algorithm requires
depth at most

3n3 + 3n2

and auxiliary qubits at most

2n · n+ 2n = 2n2 + 2n

in total. ⊓⊔

37

B On the Depth and Qubits to Implement Λq(Q(H⊗n, f))

Recall that, for an arbitrary unitary operator W acting an n-qubit states, the
operator Λq(W) acts on (log2 q + n)-qubit states as

Λq(W) |i⟩ |x⟩ = |i⟩ (W i |x⟩).

Here, 0 ≤ i ≤ q − 1. Suppose that i is decomposed into a binary sequence as
i = ilog2(q)−1 · · · i1i0 (ij ∈ F2 for each j).

For a non-negative integer j, let CW 2j denote the controlled-W 2j operator
such that

CW 2j |b⟩ |x⟩ =

{
|b⟩ |x⟩ if b = 0

|b⟩ (W 2j |x⟩) if b = 1

for b ∈ F2, x ∈ Fn
2 . We assume that Λq(W) is realized by applying CW 2j , where

the control qubit is ij and the target qubits are the least significant n qubits
(corresponding to |x⟩ in the initial state), for j = 0, . . . , log2(q) − 1, as done in
quantum phase estimation [53, 71].

The quantum counting algorithm (QC on page 9) invokes Λq(W) with W =
Q(H⊗n, f) := −H⊗nS0H

⊗nSf for some Boolean function f : Fn
2 → F2.

When W = Q(H⊗n, f), we implement CW 2j by just iteratively applying
C(Q(H⊗n, f)) (i.e., the controlled-Q(H⊗n, f) operator) 2j times.

The controlled-Q(H⊗n, f) operator is realized as applying the controlled ver-
sions of Sf , H⊗n, S0, and −H⊗n in sequential order. The controlled operator
of ±H⊗n can be implemented only with Clifford gates without auxiliary qubits.
In addition, the controlled-Sf operator (resp., controlled-S0 operator) can be
implemented with T -depth Df (resp., D0) if the T -depth to implement Sf is Df

(resp., D0) with n auxiliary qubits. Df ≫ D0 holds in typical cases, and thus,
the controlled-Q(H⊗n, f) operator can be implemented with T -depth at most
Df and n auxiliary qubits.

Summarizing the above arguments, the T -depth required to implement the
operator Λq(Q(H⊗n, f)) is at most about∑

0≤j≤log2(q)−1

2j ·Df = q ·Df .

The number of auxiliary qubits needed is n.

C On the Claim at the End of Section 3.3

We begin with Eq. (9). Let r, r′ be two random binary sequence of length N .
Then,

X := #{0 ≤ i ≤ N − 1 : ri = r′i}

38

follows the binomial distribution B(N, 1/2), which is approximated by the nor-
mal distribution N (N/2, N/4). Thus

√
N · Cor(r, r′) = X −N/2√

N/2
(24)

approximately follows the standard normal distribution, and so does
√
N ·Cor(xG, ζ)

for x ̸= σ(0) by the heuristic assumption. Hence we have

Pr
K,IV

[
There is an x ̸= σ(0) such that Cor(xG, ζ)2 ≥ c2/4

]
≤

∑
x ̸=σ(0)

Pr
K,IV

[
Cor(xG, ζ)2 ≥ c2/4

]
≤

∑
x ̸=σ(0)

Pr
K,IV

[
N · Cor(xG, ζ)2 ≥ Nc2/4

]
≤

∑
x ̸=σ(0)

Pr
K,IV

[
N · Cor(xG, ζ)2 ≥ 2ℓ′

]
=

∑
x ̸=σ(0)

2 Pr
K,IV

[√
N · Cor(xG, ζ) ≥

√
2ℓ′
]

⪅ 2ℓ
′
· 2 · 1√

2π

∫ ∞

√
2ℓ′
e−t2/2dt =

(∗)

2ℓ
′+1

√
2π

∫ ∞

ℓ′

1√
2t′
e−t′dt′ ≤ 2ℓ

′+1

√
2π

∫ ∞

ℓ′

1√
2
e−t′dt′

=
2ℓ

′+1

√
2π

· 1√
2
· e−ℓ′ ≤

(
2

e

)ℓ′

,

where we put t′ := t2/2 at (∗). Therefore, Eq. (8) follows.
Next, we focus on Eq. (9). Assume ExK,IV

[
Cor(σ(0)G, ζ)

]
= c > 0. Then,

the variable
Y := #{0 ≤ i ≤ N − 1 : (σ(0)G)i = ζi}

approximately follows the Binomial distributionB(N, 1+c
2), because the equation

(σ(0)G)i = ζi holds with probability 1+c
2 almost independently for each i. Since

B(N, 1+c
2) is approximated by the normal distribution N

(
N(1+c

2), N(1−c2

4)
)
,

the variable Cor(σ(0)G, ζ) = (2Y − N)/N approximately follows the normal
distribution N

(
c, 1

N · 1−c2

4

)
. Since the standard deviation of this distribution

can be upper bounded as

sd :=

√
1

N
· 1− c2

4
≤
√
c2

8ℓ′
· 1
4
≤ c

4
√
2
,

we have

Pr
[
Cor(σ(0)G, ζ) ≥ c/2

]
≥ Pr

[
Cor(σ(0)G, ζ) ≥ c− 2sd

]
⪆ 0.95.

Hence Eq. (9) holds if ExK,IV

[
Cor(σ(0)G, ζ)

]
> 0. Similar arguments also work

for ExK,IV

[
Cor(σ(0)G, ζ)

]
< 0.

39

D Proof of Proposition 5

f = f ′ immediately follows from the assumption and the definition of the algo-
rithm. In what follows, we show the claims on the number of queries, the depth,
and the operator norm.

About the Claim on the Number of Queries. JDG makes queries only at
Step 1-(a) when applying QC. Since each instance of QC makes q = 27/c queries,
JDG makes 2rq = 28r/c queries in total.

About the Claim on the Depth. Next, we show the claim about depth.
First, we consider the depth to compute hx(i) = (xG)i⊕ ζi for a given (x, i),

which we denote by Dh. By definition of G,

(xG)i = ⟨x, g⊤i+1⟩F2

= ⟨x,Γ (M⊤)i⟩F2

holds. In addition, by Eq. (4),

Γ (M⊤)i = ξ−1
(
ξ
(
Γ (M⊤)i

))
= ξ−1

(
ξ (Γ)αi

)
holds. Thus, hx(i) can be computed as follows.

1. Compute αi by using ExMult of Proposition 7 (identifying the field F =
FL
q [x]/(f(x)) with Fℓ

2[x]/(f
′(x)) for some polynomial f ′).

2. Multiply ξ(Γ) by αi with Mult of Proposition 6 to obtain ξ (Γ)αi = ξ
(
g⊤i+1

)
.

3. Compute the inner product ⟨x, g⊤i+1⟩F2
. (Note that g⊤i+1 is immediately de-

termined from ξ
(
g⊤i+1

)
due to the simplicity of the definition of ξ.)

4. Querying i to the oracle, compute ⟨x, g⊤i+1⟩F2
⊕ ζi (= hx(i)).

5. Uncpmpute Step 1-3.

Step 1 requires T -depth 3ℓ2 by Propositon 6. Step 2 requires T -depth 3ℓ3 + 3ℓ2

by Proposition 7. Step 3 can be performed with ℓ Toffoli gates, of which the
T -depth is at most by 3ℓ by [3]. Step 4 uses a single oracle gate. Therefore, the
total depth Dh to compute hx(i) is

Dh = 2 ·
(
3ℓ2 + (3ℓ3 + 3ℓ2) + 3ℓ

)
+ 1 ≤ 6(ℓ+ 1)3 ≤ 8ℓ3, (25)

where we used the assumption ℓ ≥ 10 for the last inequality.
From the definition of JDG and the explanation below Proposition 3, it follows

that the depth required for Step 1-(a) of JDG on a quantum circuit is at most
about

27rDh/c ≤ 210rℓ3/c.

40

Since addition and multiplication of O(ℓ)-bit integers can be computed in depth
O(ℓ2) (using schoolboock multiplications), the depths required for Step 1-(b),
1-(c), and 2 are quite quite small compared to the depth required for Step 1-(a).
Hence the total depth is at most about

2 · 210rℓ3/c = 211rℓ3/c.

About the Claim on Operator Norm. Note that the domain size of hx is
N + 1 = 2ℓ for all x. Recall that we denote the value |h−1

x (1)| by Z when x is
fixed. Here, we show the following lemma.

Lemma 1. Assume ℓ ≥ 10. Let x be an arbitrary element of Fℓ
2. If Cor(xG, ζ)2 ≤

c2/4, then √
Z(2ℓ − Z) ≤

(
1

2
+
c

4

)
2ℓ (26)

holds. If Cor(xG, ζ)2 ≥ c2/2, then√
Z(2ℓ − Z) ≤

(
1√
2
+

1

4

)
2ℓ (27)

holds.

Proof. First, we show Eq. (26). As |Cor(xG, ζ)| = |(2Z −N)/N | ≤ c/2 holds by
assumption, we have

|Z −N/2| ≤ cN/4,

which implies
N

2
− c

4
N ≤ Z ≤ N

2
+
c

4
N.

Hence √
Z(2ℓ − Z) =

√
Z(N + 1− Z)

≤

√(
N

2
+
c

4
N

)(
N

2
+
c

4
N + 1

)

≤

√(
N

2
+
c

4
N +

1

2

)(
N

2
+
c

4
N +

1

2

)
≤
(
1

2
+
c

4

)
(N + 1)

=

(
1

2
+
c

4

)
2ℓ

follows.

41

Next, we show Eq. (27). Since |Cor(xG, ζ)| = |(2Z − N)/N | ≥ c/
√
2 holds

by assumption, we have

Z ≤ N

2
− cN

2
√
2

or
N

2
+

cN

2
√
2
≤ Z.

In both cases,

√
Z(N − Z) ≤

√
(N/2− cN/2

√
2)N = N ·

√
1

2
− c

2
√
2
≤ N√

2

holds. Therefore

√
Z(2ℓ − Z) =

√
Z(N − Z) + Z ≤

√
Z(N − Z) +

√
Z

≤ N√
2
+

√
N ≤ 2ℓ√

2
+
√
2ℓ

≤
(

1√
2
+

1

4

)
· 2ℓ

follows, where we used the assumption ℓ ≥ 10 at the last inequality. ⊓⊔

Suppose we run the algorithm JDG on a basis state |x⟩ with x ̸= s(0), and
measure the entire state at the end of Step 1 of the algorithm. Let X be the
number defined by

#
{
1 ≤ j ≤ r : (C̃j)

2 ≥ 3c2/8
}
.

Since q = 27/c and 0 ≤ c ≤ 1, it follows that

(the right hand side of Eq. (1) with n = ℓ)
(∗)
<

π(1 + c
2)2

ℓ

q
+
π22ℓ

q2

≤ π2ℓ

q
+
π2ℓ

2q
+
π22ℓ

q2c2
.

≤
(
π

27
+
π

28
+
π2

214

)
c2ℓ

≤ 2−4.5c2ℓ, (28)

42

where we used the assumption that Cor(xG, ζ)2 ≤ c2/4 holds for all x ̸= s(0)

and Eq. (26) at (∗). In addition, for each j,

Pr
[
(C̃j)

2 ≥ 3c2/8
]
= Pr

[∣∣∣∣∣2Z̃j −N

N

∣∣∣∣∣ ≥√3/8c

]

≤ Pr

[∣∣∣∣2Z −N

N

∣∣∣∣+
∣∣∣∣∣2(Z − Z̃j)

N

∣∣∣∣∣ ≥√3/8c

]
(∗)
≤ Pr

[
c/2 +

∣∣∣∣∣2(Z − Z̃j)

N

∣∣∣∣∣ ≥√3/8c

]

= Pr

[∣∣∣Z − Z̃j

∣∣∣ ≥ √
3−

√
2

4
√
2

cN

]
≤ Pr

[∣∣∣Z − Z̃j

∣∣∣ ≥ 2−4.16cN
]

(∗∗)
≤ Pr

[∣∣∣Z − Z̃j

∣∣∣ ≥ 2−4.26c2ℓ
]

(∗∗∗)
≤ 0.2

where we used the assumption that Cor(xG, ζ)2 ≤ c2/4 holds for all x ̸= s(0)

(and thus |(2Z − N)/N | ≤ c/2) at (∗), the assumption ℓ ≥ 10 at (∗∗), and
Proposition 3 with Eq. (28) at (∗ ∗ ∗). Hence, the random variable X follows a
binomial distribution B(r, pr) with pr ≤ 0.2. By Chernoff bound, we have

Pr [X ≥ r/2] = Pr [X ≥ (1 + 1.5)× (0.2r)] ≤ Pr [X ≥ (1 + 1.5)× (pr · r)]

≤
(

e1.5

(1 + 1.5)1+1.5

)pr·r

≤
(
1

2

)0.2·r

This implies that

∥JDG |x⟩ − Sf ′ |x⟩∥ ≤ 2

(
1

2

)0.1r

(29)

for x ̸= s(0).
Next, suppose we run the algorithm JDG on a basis state |s(0)⟩, and measure

the entire state at the end of Step 1 of the algorithm. Let Y be the number
defined by

#
{
1 ≤ j ≤ r : (C̃j)

2 < 3c2/8
}
.

43

Since q = 27/c and 0 ≤ c ≤ 1, it follows that

(the right hand side of Eq. (1) with n = ℓ)
(∗)
<

π(
√
2 + 1

2)2
ℓ

q
+
π22ℓ

q2
(30)

≤ π
√
2 · 2ℓ

q
+
π2ℓ

2q
+
π22ℓ

q2c2
.

≤
(

π

26.5
+
π

28
+
π2

214

)
c2ℓ

≤ 2−4c2ℓ, (31)

we used the assumption that Cor(s(0)G, ζ)2 ≥ c2/2 holds and Eq. (27) at (∗).
For each j, we have

Pr
[
(C̃j)

2 < 3c2/8
]
= Pr

[∣∣∣∣∣2Z̃j −N

N

∣∣∣∣∣ <√3/8c

]

≤ Pr

[∣∣∣∣2Z −N

N

∣∣∣∣−
∣∣∣∣∣2(Z − Z̃j)

N

∣∣∣∣∣ <√3/8c

]
(∗)
≤ Pr

[
c/
√
2−

∣∣∣∣∣2(Z − Z̃j)

N

∣∣∣∣∣ <√3/8c

]

= Pr

[∣∣∣Z − Z̃j

∣∣∣ > 2−
√
3

2
√
2
cN

]
≤ Pr

[∣∣∣Z − Z̃j

∣∣∣ > 2−3.4cN
]

(∗∗)
≤ Pr

[∣∣∣Z − Z̃j

∣∣∣ > 2−3.5c2ℓ
]

(∗∗∗)
≤ 0.2

where we used the assumption that Cor(s(0)G, ζ)2 ≥ c2/2 holds (and thus |(2Z−
N)/N | ≥ c/

√
2) at (∗), the assumption ℓ ≥ 10 at (∗∗), and used Proposition 3

and Eq. (31) at (∗ ∗ ∗). Therefore, we can show

∥∥∥JDG |s(0)⟩ − Sf ′ |s(0)⟩
∥∥∥ ≤ 2

(
1

2

)0.1r

(32)

in the same way we showed Eq. (29).

44

Let |ϕ⟩ :=
∑

x∈Fℓ
2
ϕx |x⟩ be an arbitrary ℓ-qubit quantum state (ϕx ∈ C for

each x). Then we have

∥JDG |ϕ⟩ − Sf ′ |ϕ⟩∥ ≤
∑
x∈Fℓ

2

|ϕx| ∥JDG |x⟩ − Sf ′ |x⟩∥

(∗)
≤ 2−(0.1r)+1

∑
x∈Fℓ

2

|ϕx|

(∗∗)
≤ 2−(0.1r)+1 ·

√
2ℓ
∑
x∈Fℓ

2

|ϕx|2

≤ 2(ℓ/2)−(0.1r)+1,

where we used Eq. (29) and Eq. (32) for (∗) and Jensen’s inequality for (∗∗).
Therefore, ∥JDG− Sf∥op = ∥JDG− Sf ′∥op ≤ 2(ℓ/2)−(0.1r)+1 follows.

E On the Qubits Required to Compute h

Assume hx(i) is implemented as in the five steps above Eq. (25). Then, ExMult of
Step 1 and Mult of Step 2 use at most O(ℓ2) qubits and O(ℓ) qubits, respectively
(due to Proposition 6 and Proposition 7), and other steps require at most O(ℓ)
qubits. Hence the number of qubits required is O(ℓ2) in total.

F On Discrete Logarithm

Section F.1 reviews the details of Shor’s algorithm for discrete logarithms with
constant error probability. Section F.1 explains how much computational re-
source is needed to make the error probability exponentially small and approxi-
mate the unitary operator DLOG satisfying

DLOG |x⟩ |0⟩ = |x⟩ |logα x⟩

so that it can be incorporated into fast correlation attacks.

F.1 Algorithm with Constant Error Probability

We basically follow the style of [71, Section 5], modifying details to fit our prob-
lem in question. Our goal is to compute logα β for α, β ∈ (F2ℓ)

×, where α is a
generator of the multiplicative group and 0 ≤ logα β < N := |F×

2ℓ
| = 2ℓ − 1.

Let ϵ > 0 be a parameter (which will be fixed later) and t := 2ℓ+2 ⌈log(2 + 1/ϵ)⌉.
The algorithm runs as follows.

45

Quantum Algorithm for Discrete Logarithm.

1. Prepare the initial state |0t⟩ |0t⟩ |0ℓ⟩. (The rightmost register will store ele-
ments in F2ℓ .)

2. Apply the Hadamrd operators to the left and middle registers to obtain

1

2t

∑
0≤x,y<2t

|x⟩ |y⟩ |0ℓ⟩

3. For each x and y, compute βxαy and store the result in the right register to
obtain

1

2t

∑
0≤x,y<2t

|x⟩ |y⟩ |βxαy⟩ .

4. Apply the inverse of QFT over Z/2tZ to the left and middle registers.
Then, measure the left and middle registers to obtain two t-bit strings
z = z1||z2|| · · · ||zt and w = w1|| · · · ||wt (zi, wi ∈ {0, 1}).

5. Identifying z (resp., w) with the binary fraction 0.z1 . . . zt (resp., 0.w1 . . . wt),
compute the integer which is closest to z ·N (resp., w ·N) and denote it by
Z (resp., W).

6. Do Steps 1-5 again to obtain another pair (Z ′,W ′).
7. Check if W and W ′ are coprime. If so, go to the next step. If not, output ⊥

(which means that the algorithm has failed.)
8. Compute integers (X,Y) such that XW + YW ′ = 1. Then, set ρ := XZ +
Y Z ′ mod N .

9. Compute αρ and check if αρ = β. If so, output ρ. Otherwise, output ⊥.

Note that the above algorithm is presented in a way to contain intermediate
measurements, but it is straightforward to make it measurement-free.

Complexity. Steps 1 and 2 do not require T gates nor ancillary qubits.
Step 3 can be performed by computing βx and αy on auxiliary registers with

ExMult of Proposition 7 (in parallel), then multiplying βx and αy with Mult of
Proposition 6. This requires T -depth 3ℓ3 +O(ℓ2) and O(ℓ2) qubits.

The QFT for Step 4 can be approximated with negligible error withO(t log t) =
O(ℓ log ℓ) T gates with O(t) = O(ℓ) qubits [67].

Step 5 requires some arithmetic computations but their complexity is much
smaller than that for Steps 7 and 8 explained later.

Step 6 can be performed independently from Steps 1-5, and so the T -depth
for Steps 1-6 is 3ℓ3+O(ℓ2) and the number of ancillary qubits are O(ℓ2) in total
(ignoring the cost of Step 5).

Steps 7 and 8 are performed by running the (extended) Euclidean algorithm
with O(t) = O(ℓ) arithmetic operations, each of which requires O(ℓ) T -depth
and O(ℓ2) ancillary qubits [82, 70]. Hence the total T -depth and ancillary qubits
for Steps 7 and 8 are O(ℓ2) and O(ℓ2), respectively.

Step 9 uses ExMult again to compute αρ, and requires T -depth 3ℓ3 + O(ℓ2)
with O(ℓ2) qubits.

46

In summary, (a measurement-free version of) the algorithm can be imple-
mented on a quantum circuit of T -depth at most 6ℓ3+O(ℓ2) with O(ℓ2) ancillary
qubits.

Success Probability. Some calculations show that the state after Step 3 is
equal to

∑
0≤a<N

1√
N

 ∑
0≤x<2t

1√
2t
e

2πi
N ·ax logα β |x⟩

 ∑
0≤y<2t

1√
2t
e

2πi
N ·ay |y⟩

 |ψa⟩ ,

where |ψa⟩ = 1√
N

∑
0≤b<N e−

2πi
N ·ab |αb⟩ . Since ⟨ψa′ |ψa⟩ = 0 for a ̸= a′, the

success probability remains unchanged even if Step 4 is modified as follows.

Step 4-(i). Measure the third register with the orthonormal basis {|ψa⟩}0≤a<N ,
when each |ψa⟩ is obtained with probability 1/N and the state of the left
and middle registers collapses into ∑

0≤x<2t

1√
2t
e

2πi
N ·ax logα β |x⟩

 ∑
0≤y<2t

1√
2t
e

2πi
N ·ay |y⟩

 .

Step 4-(ii). As before, apply the inverse QFT to the remaining two registers,
measure them according to the computational basis, and obtain (z, w).

By the discussions in [71, Section 5], the following things hold.

– Suppose that |ψa⟩ with a ̸= 0 is obtained at Step 4-(i). Then, by the discus-
sions in [71, Section 5] about phase estimation, w and z at Step 4-(ii) are
2ℓ-bit approximations of ((logα β) · a mod N) /N and a/N with probability
at least 1− ϵ. The same is true for Z ′ and W ′.

– If W and W ′ are chosen independently and uniformly at random, then W
and W ′ are coprime with probability at least 1/4.

In addition, if z and w are good approximations and W,W ′ are coprime, then
ρ = XZ + Y Z ′ ≡ (logα β)(XW + YW ′) = logα β holds modulo N . As |ψa⟩
is obtained with probability 1/N for each a at Step 4-(i), the overall success
probability of the algorithm is at least

1/4− ϵ−O(1/N). (33)

We choose ϵ so that this success probability will be at least 1/3 for ℓ ≥ 10 (e.g.,
ϵ = 1/10).

F.2 Algorithm with Exponentially Small Error Probability

To make the error probability exponentially small and approximate DLOG, we
run the following procedure.

47

0. (Assume a basis state |x⟩ is given as an input.)
1. For j = 1, . . . , r, perform the following procedure.

(a) Run the quantum algorithm described in the previous subsection (with-
out measurement) and let ρj denote the result. (ρj is either the correct
value logα x or ⊥.)

(b) Copy ρj into a new auxiliary register.
(c) Uncompute Step (a).

2. Check at least one of ρ1, . . . , ρr is not ⊥. If so, write the value to the output
register. Otherwise, do nothing.

3. Uncompute Step 1.

Running the procedure and measuring the output register, we obtain the desired
value logα x with probability at least

1− (2/3)r.

So, setting r := 8ℓ, the above algorithm approximates DLOG with the error
(measured with the operator norm) at most 2−2ℓ, when the T depth is at most
32ℓ · (6ℓ3 + O(ℓ2)) ≤ 28ℓ3 + O(ℓ2) and the auxiliary qubits required is at most
O(ℓ2).

G Applications of QFCA2 to SNOW 3G and Sosemanuk

SNOW 3G. SNOW 3G is a stream cipher designed by ETSI/SAGE and spec-
ified by 3GPP for use in UMTS and LTE [34]. The design is basically the same
as SNOW 2.0, but the finite state machine is modified and has 96-bit internal
states. The LFSR is unchanged (see Figure 3). Both the key and IV lengths are

Fig. 3. SNOW 3G. Each line corresponds to a 32-bit word. R1, R2, and R3 are addi-
tional 32-bit registers. Modular additions are denoted by ⊞. The circled “S1” and “S2”
are non-linear permutations.

128. Like SNOW 2.0, the initialization phase linearly maps a key and an IV into
internal registers in a linear manner and then updates the state 32 times, with
the output bits fed back to the LFSR.

48

Linear Approximations and Classical Attacks. So far, no work has shown a
classical attack faster than the exhaustive key search, but many previous works
have studied how efficient fast correlation attacks (and linear attacks) on SNOW
3G can be [72, 88, 40, 41, 39]. The (bitwise) linear approximation with the current
highest absolute correlation is the one9 found by Gong et al. [39], which has the
form

⟨s(t),Γ ⟩F2
≈ ⟨zt,Λ1⟩F2

⊕ ⟨zt+1,Λ2⟩F2
⊕ ⟨zt+2,Λ3⟩F2

(34)

for some Λ1,Λ2,Λ3 ∈ F232 , and Γ ∈ F2512 and holds with absolute linear cor-
relation 2−20.386. Using multiple linear approximations including the above one,
they presented a fast correlation attack data and time complexity 2170.81 and
2174.95, respectively.

Application of QFCA2. The application of QFCA2 on SNOW 3G is almost iden-
tical to the one we showed on SNOW 2.0. The difference is as follows. First, since
the correlation of the linear approximation is now 2−20.386 instead of 2−14.411,
the term (214.411)2 is replaced with (220.386)2. Second, since there are three terms
on the right-hand side of Eq. (34) while there are two in Eq. (34), the cost to
simulate the oracle of ζi increases by a factor of 1.5. Hence, the query and time
complexity of QFCA2 when applied to SNOW 3G is

259.3 × (220.386)2

(214.411)2
· 1.5 ≤ 272.9

and

289.3 × (220.386)2

(214.411)2
· 1.5 ≤ 2102.9,

respectively. (Since the initialization phase of SNOW 3G is also reversible, we can
recover the secret key with some additional classical operations like the attack
on SNOW 2.0.)

The time complexity of the above attack, 2102.9, will be worse than an ex-
haustive key search using Grover’s algorithm on 128-bit keys10, just as existing
classical attacks are slower than the classical generic attack. Still, it is signifi-
cantly lower compared to the current best time complexity 2174.95 of classical
fast correlation attacks.

Sosemanuk. Sosemanuk [6] is a stream cipher designed by Berbain et al., which
is included in the eSTREAM portfolio [29]. Following the design of the SNOW
family, Sosemanuk consists of an LFSR and a finite state machine, carrying out
state update and key generation in 32-bit words. The LFSR is defined over F232

and of length L = 10, and thus the total bit length is ℓ = 320. The finite state
machine keeps 64-bit states (see Figure 4). The key length can be any integer
9 A recent preprint paper [58] also reports a linear approximation with the same

absolute correlation.
10 Similarly to the analysis on SNOW 2.0, the complexity of the Grover search will be

at least 210 · 2128/2 = 274.

49

Fig. 4. Sosemanuk. R1 and R2 are additional registers. “Trans” is a permutation, and
MUX is a function that outputs either st+1 or st+1 ⊕ st+8 depending on a bit of R1.
“Serpent 1” denotes a permutation derived from Serpent (in fact, it processes four
consecutive output words from the finite state machine simultaneously, but we omit
the details).

between 128 and 256. The initialization phase mixes a key and an IV using the
key scheduling algorithm and round functions of Serpent [11], loading the result
into Sosemanuk’s internal registers. The designers claim 128-bit security for all
the key lengths from 128 to 256.

Linear Approximations and Classical Attacks. Lee et al. [57] found the follow-
ing linear approximation that holds with (absolute) correlation c = 2−21.41 for
some Λ1,Λ2 ∈ F232 , and Γ ∈ F2320 , yielding a fast correlation attack of time
complexity around 2147.

⟨s(t),Γ ⟩F2
≈ ⟨zt,Λ1⟩F2

⊕ ⟨zt+3,Λ2⟩F2

The attack was later improved by multiple works [24, 92, 91], and the current
most efficient attack, which is also a fast correlation attack, breaks the cipher
with data and time complexity around 2135 [91] by using a linear approximation
with the same (absolute) correlation and an advanced decoding technique.

Application of QFCA2. The application of QFCA2 on Sosemanuk is again almost
identical to the one we showed on SNOW 2.0. The difference are that the (ab-
solute) correlation is now 2−21.41 instead of 2−14.411, and the LFSR length is
320-bit. Similarly to the analysis on SNOW 2.0, the query and time complexity
of QFCA2 when applied to Sosemanuk become 27 ·

(
215 · (320) · (221.41)2

)
≤ 273.15

and 27 ·
(
218 · (320)4 · (221.41)2

)
≤ 2101.11, respectively.

The attack is slower than the quantum version [27] of a classical guess-and-
determine attack [35], which breaks the cipher in the Q1 model with time com-
plexity around 288. Still, it is faster than the exhaustive key search with Grover’s
algorithm for long (e.g., 224 or 256-bit) keys. (Sosemanuk’s initialization phase
is irreversible, so the attack does not extend to key recovery.)

50

