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PipeSwap: Forcing the Timely Release of a Secret
for Atomic Swaps Across All Blockchains

Abstract—Atomic cross-chain swap is a critical functionality
that enables the distrusting users to atomically exchange coins,
thereby facilitating inter-currency exchange and trading. While
numerous atomic swaps protocols based on Hash Timelock Con-
tracts have been applied and deployed in practice, they are sub-
stantially far from universality due to the inherent dependence of
rich scripting language supported by the underlying blockchains.
The recently proposed Universal Atomic Swaps protocol [IEEE
S&P’22] takes a novel approach to scriptless cross-chain swaps
by ingeniously delegating scripting functionality to cryptographic
lock mechanisms, particularly the adaptor signatures and timed
commitment schemes designed to guarantee atomicity. However,
in this work, we discover a new form of attack called double-
claiming attack, such that the honest user would lose coins with
overwhelming probability and atomicity would be directly broken.
Moreover, this attack is easy to carry out and can be naturally
generalized to other scriptless cross-chain swaps protocols as
well as the payment channel networks, highlighting the general
challenges in designing universal atomic swaps protocol.

We present PipeSwap, a cross-chain swaps protocol that satis-
fies both security and practical universality. To resist the double-
claiming attack, specifically to protect the frozen coins from
being double-claimed, PipeSwap introduces a novelly designed
paradigm of pipelined coins flow leveraging the two-hop swap and
two-hop refund techniques. PipeSwap also achieves universality
by not relying on any specific script language, aside from the
basic ability to verify signatures. In addition to a detailed
security analysis in the Universal Composability framework, we
develop a proof-of-concept implementation of PipeSwap with
Schnorr/ECDSA signatures, and conduct extensive experiments
to evaluate the overhead. The experimental results show that
PipeSwap can be performed in less than 1.7 seconds and
requires less than 7 kb of communication overhead on commodity
machines, highlighting its high efficiency.

I. INTRODUCTION

With a multitude of diverse blockchain systems coexist-
ing today, it is unrealistic to envision each one evolving
in isolation, especially given the explosive development of
cryptocurrencies such as Bitcoin [1], Ethereum [2], Ripple [3]
and Monero [4]. This highlights an extremely urgent demand
of deploying financial operations to securely exchange one
currency for another. The atomic cross-chain swaps protocol
[5] is introduced as a mechanism to facilitate secure coins
exchange between two mutually distrusting users, each holding
some coins on distinct blockchains. The fundamental security
property of atomicity guarantees that the honest user cannot
lose coins. In slightly more detail, atomicity refers to the
entire execution process of swaps protocol being atomic,
which means it either succeeds in exchanging coins or fails

completely without any intermediate state. Conventionally, the
timeout parameter T , which is predefined specifically for each
frozen coin, serves as the crux of describing atomicity such
that each frozen coin is either successfully claimed by the
intended receiver before timeout T , or definitely refunded to
the original owner after timeout T .

Most classic efforts focus on studying the Hash Time-
lock Contracts (HTLC)-style protocols [6–10], which rely
on the rich scripting languages supported by the underlying
blockchains to enforce some specific spending behaviors,
namely, when and how the locked coins can be claimed by
the intended receiver or refunded back to the original owner.
At a high level, the user Alice can use an HTLC script with the
hash function H to temporarily lock some coins until timeout
T as follows: The HTLC specifies a hash value h := H(x)
such that if Bob can present x before timeout T , he can obtain
the locked coins; otherwise, these locked coins are definitely
refunded to Alice after timeout T .

Unsurprisingly, these HTLC-style proposals are incom-
patible with a wide range of cryptocurrencies that do not
support such scripts or contracts (e.g., Bitcoin [1], Monero
[4], Mimblewimble [11], Ripple [3] and Zcash [12]), and far
from the universal solutions. Additionally, due to the extensive
resources required for constructing, verifying and updating the
special scripts and contracts on the underlying blockchains,
these protocols result in significantly higher transaction fees
for the users swapping their coins. Moreover, they lack on-
chain privacy and undermine the fungibility property, as the
transactions employing special scripts are clearly distinguish-
able from the general transactions that only require signature
verification scripts. Therefore, it is not only of practically
relevant but also theoretically interesting to investigate the
minimal scripting functionalities necessary to design a secure
cross-chain swaps protocol and ultimately, present a scriptless
solution of the HTLC-style protocols.

A Desideratum for Achieving Atomic Cross-Chain
Swaps in the Absence of Custom Scripts. Universal Atomic
Swaps protocol [13] is the closest solution for a universal
proposal, which aims to ensure atomicity like the HTLC-style
protocols even in the presence of malicious users. Noticeably,
instead of relying on on-chain scripts to describe the locked
coins and their corresponding unlock conditions, Universal
Atomic Swaps only require the scripts to verify digital sig-
natures from the underlying blockchains. This is achieved by
leveraging the adaptor signature scheme [14] and verifiable



timed discrete logarithm (VTD) scheme [15]. Specifically,
the witness extractability of adaptor signature facilitates a
successful swap, where once the user holding witness y posts a
valid swap transaction, the witness y is subsequently released
to the other user to complete his swap operation. Additionally,
VTD ensures that in the event of a failed swap, the locked
coins are refunded to their original owner after a predefined
timeout T . Universal Atomic Swaps take a novel path to the
scriptless cross-chain swaps and thus become arguably the best
candidate for implementing cryptocurrency exchange.

Is Timeout T Really Secure for Honest User? Never-
theless, the scriptless implementation of timeout T can be
potentially used to violate the atomicity property. Herein we
introduce a new attack termed the double-claiming attack. It
is noteworthy that in the context of Universal Atomic Swaps
[13], the predefined timeout T1 is intentionally designed for
user P1 to securely refund his frozen coins β (i.e., user P1

can obtain the full secret key of frozen address after timeout
T1). However, the timeout T1 cannot deprive the right of user
P0 to claim the frozen coins β. In other words, the user
P0 with witness y still retains the ability to generate a valid
swap transaction after timeout T1. As a result, the timeout T1

becomes a focal point for security issues. For example, when
the honest user P1 posts a refund transaction after timeout T1,
the malicious user P0 can still release a valid swap transaction
to make the frozen coins β double-claimed. Unfortunately,
if the swap transaction of user P0 is accepted and finally
confirmed by the underlying blockchain, the honest user P1

will neither successfully enter into the Swap Complete Phase
nor prevail in the Swap Timeout Phase, ultimately resulting in
coins loss. Similarly, the more recent effort Sweep-UC [16] is
also susceptible to this double-claiming attack, resulting in a
similar coins loss as in Universal Atomic Swaps.

Delving into the essence of double-claiming attack, we are
surprised to observe the fatal imperfection of the timeout
T designed for each frozen coin. Specifically, the scriptless
implementation of timeout T (e.g., the timed commitment)
simply serves as an umbrella for the intended receiver of
the frozen coins. In other words, only the intended receiver
can claim these frozen coins before timeout T , while this
privilege does not be deprived after timeout T . This inherent
design flaw directly facilitates the occurrence of the double-
claiming attack. Even worse, the double-claiming attack is
general and extremely easy to carry out in all communication
network models of the underlying blockchains (cf. Section III
for detailed discussions).

The aforementioned issues bring a fundamental challenge
in the design of atomic cross-chain swaps: the HTLC-style
proposals pose significant obstacles to achieving universality,
whereas the existing scriptless solutions are vulnerable to the
double-claiming attack. This naturally raises a question:

“Can we design a cross-chain swaps protocol that achieves
both security and universality?”

A. Our Contributions
In this work, we contribute to the rigorous understanding

of atomic cross-chain swaps and answer the aforementioned
question affirmatively by introducing a novel protocol named
PipeSwap. The specific contributions are outlined as follows:
• Double-claiming attack. We analyze the security of script-

less atomic cross-chain swaps protocols [13, 16], and iden-
tify a new form of attack known as the double-claiming
attack. This attack can directly break atomicity with over-
whelming probability, specifically enabling a malicious user
to simultaneously obtain the counterparty’s frozen coins
while also refunding his own frozen coins. Moreover, this
attack is easy to carry out and can be naturally generalized
to other scriptless cross-chain swaps protocols as well as
the payment channel networks [17–20].

• Pipelined coins flow: a comprehensive solution to double-
claiming attack. To resist the double-claiming attack, we
introduce a novel paradigm of pipelined coins flow. As
depicted in Fig.1, each frozen coin is viewed as a drop of
water and flows along the one-way arrows. Informally, each
frozen coin can only flow to its intended receiver via the
green pipe for the successful swap. Otherwise, it definitely
flows to its original owner via the red pipe. In this way, if the
frozen coin has been claimed by a valid swap transaction,
it will no longer continue to flow forward. After timeout T ,
however, the frozen coin will never rewind to the intended
receiver. Therefore, the concept of pipelined coins flow
fundamentally resolves the double-claimed frozen coins
issue. As a byproduct of our approach, pipelined coins flow
can be leveraged to design the secure scriptless multi-hop
swaps (including the multi-hop payments).

Fig. 1: The pipelined life-cycle of swapped coins

• PipeSwap: the realization of pipelined coins flow. Our key
idea centers on the timely release of a swap transaction for
the frozen coins in order to successfully complete swaps or,
in the event of failure, refund the frozen coins. By intro-
ducing the “two-hop completion” method, specifically the
two-hop swap and two-hop refund techniques, we present
the atomic cross-chain swaps protocol known as PipeSwap
that realizes the pipelined coins flow for frozen coins.
Moreover, we refine the definition of atomicity by modeling
it within the Global Universal Composability framework
and provide a formal security proof of PipeSwap. Notably,
PipeSwap is universal in that it only relies on the minimal
scripting for verifying signatures, and it also preserves
fungibility, ensuring that an observer cannot distinguish a
swap transaction from a standard one. The comparisons with
prior approaches are shown in TABLE I.
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• Implementation. We develop a proof-of-concept implemen-
tation of PipeSwap for Schnorr and ECDSA, and conduct
extensive experiments to evaluate the overhead. The results
demonstrate the high efficiency and best suitability of our
design. Specifically, PipeSwap has the running time of
less than 1.7 seconds and communication costs of less
than 7 kb. Remarkably, despite providing stronger secu-
rity protection against double-claiming attack, compared
to Universal Atomic Swaps [13], PipeSwap only takes a
few milliseconds more for completing the second hop of
swap/refund operation.

TABLE I: The comparisons among related works∗

Protocol HTLC UAS Sweep-UC Our work
Universality 7 3 3 3
Fungibility 7 3 3 3

DoC‡ attack resilience 3 7 7 3

∗ HTLC [10], UAS (Universal Atomic Swaps) [13], Sweep-UC [16].
‡ double-claiming.

B. Technique Overview

Recall that, in a general α-to-β swaps protocol [13], user P0

is given priority to post a swap transaction of frozen coins β
before timeout T1, while simultaneously releasing the witness
y w.r.t. hard relation R to user P1 to complete his swap
operation of frozen coins α. To resist double-claiming of the
same frozen coins, we resort to different techniques of forcing
the timely release of witness y, i.e., releasing witness y is
viewed as a prerequisite for posting a valid swap transaction
of frozen coins β. We elaborate on technical contributions as
detailed below.
A new freezing structure better prepared for atomicity. To in-
stantiate the pipelined coins flow, our critical step is to
correctly foresee the flow direction of each frozen coin before
its timeout T . Different from Universal Atomic Swaps [13],
we propose a new freezing structure in which the frozen coins
β are stored in two distinct frozen addresses, and the smaller
part with value ε → 0 is used to compete for the final flow
direction.
Two-hop swap. The new freezing structure inspires us to
design a two-hop swap method for claiming frozen coins β,
while frozen coins α can be directly unlocked with witness y.
Notably, a pre-swap transaction is designed for claiming frozen
coins ε, and the actual swap transaction of frozen coins β
takes the corresponding pre-transaction as one of its inputs. In
essence, the puzzle Y ((Y, y) ∈ R) is inserted in the signature
of pre-swap transaction of frozen coins ε instead of the swap
transaction of frozen coins β. The two-hop swap method of
frozen coins β can effectively compel user P0 to timely post
the pre-swap transaction if he wants to generate a valid swap
transaction, which further ensures user P1 to generate his swap
transaction with the release of witness y.
Two-hop refund. Obviously, solely relying on the two-hop
swap design is not sufficient to guarantee the pipelined coins
flow, if user P1 can directly refund the frozen coins β after

timeout T1. We further propose the corresponding two-hop
refund method for refunding frozen coins β. Specifically, the
frozen coins ε are firstly refunded by a pre-refund transaction
after time T 1 (T 1 := T1 − 2δ − ϕ, where parameter ϕ is the
confirmation latency and parameter δ is the upper bound of
network delivery delay in the underlying blockchain B1), and
then upon timeout T1, the remaining frozen coins β − ε are
refunded by the final refund transaction. Notice that the two-
hop refund method of frozen coins β can effectively compel
user P0 to timely post the pre-swap transaction before time
T 1, as any malicious delay would result in the frozen coins ε
being claimed by a pre-refund transaction, ultimately leading
to user P1 refunding frozen coins β after timeout T1.

II. PRELIMINARIES AND BACKGROUND

We first recall the formal definition of Unspent Transaction
Output (UTXO) model [14], which is adopted by the majority
of current blockchains (e.g., Bitcoin [1], Zcash [21], Monero
[22] and Cardanos ADA [23]), and then take a brief overview
of Universal Atomic Swaps [13].

A. The UTXO-based Blockchain

Transactions. In the UTXO model, a transaction is rep-
resented as a tuple (input, output,V,Ω) to transfer coins
from l ≥ 1 inputs input := {in1, . . . , inl} to o ≥ 1
outputs output := {op1, . . . , opo}. Here, V := {v1, · · · , vo}
denotes the value of coins transferred to each output and
Ω := {σ1, · · · , σl} is the witness of spending each input.
Usually, we use the public key pk to denote the input/output
address, for example, the transaction tx := (pk1,pk2, v, σ)
means transferring coins with value v from address pk1 to
pk2, with σ serving as the signature of tx that verifies w.r.t.
pk1. The coins in address pk2 can only be further spent
with a valid signature w.r.t. pk2. Additionally, the conditions
of spending coins can be some scripts supported by the
underlying blockchains, such as timelock script and HTLC,
but in this paper we focus on the scriptless ones.

We use a transaction chart to visualize the coins flow be-
tween addresses. As depicted in Fig.2(a), the rounded rectangle
represents transaction tx with the incoming arrow as input
and the blue box with value v represents the amount of coins,
whose spending condition is written above the outgoing arrow.

Blockchain. A blockchain can be used as an append-only
bulletin board T for recording the published transactions, and
also be viewed as a trusted ledger L for storing all the unspent
coins associated with each address. Essentially, a blockchain is
built and maintained by the parties who compete to be elected
as the next leader to propose a candidate block containing a
sequence of transactions. It is extremely important to notice
that in a secure real-world blockchain execution, the leaders
prioritize packaging the earliest received transactions into
blocks and, for two conflicting transactions (i.e., claiming
the same coins) received simultaneously, they randomly select
one of the two transactions as valid. Furthermore, we strictly
differentiate the parties responsible for securing the underlying
blockchains from the users participating in the cross-chain
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swaps protocol supported by these blockchains. Therefore,
the (honest) leaders do not concern themselves with the
stories behind each individual transaction, and in their views,
all the valid transactions are treated equally. Consequently,
it is reasonable that the valid transaction tx′ in a pair of
conflicting transactions {tx, tx′} is finally confirmed even if
tx′ is generated by a malicious user.

(a) Transaction tx signed
w.r.t. pk1 transfers coins
with value v from address
pk1 to pk2, and it can be
further spent by a transac-
tion signed w.r.t. pk2.

(b) Transaction tx1 has been finally con-
firmed by the underlying blockchain, and
is subsequently spent by a valid transaction
tx2, which has been recorded in T but has
not yet been confirmed.

Fig. 2: The transaction flow

Valid transaction vs Confirmed transaction. The transaction
confirmation latency ϕ > 0 of underlying blockchain (e.g.,
it is about one hour in Bitcoin) necessitates a clear distinc-
tion between the notions of valid transaction and confirmed
transaction. Traditionally, the bulletin board T records the set
of valid transactions that could be finally confirmed but are
not yet (i.e., the input addresses have sufficient balance and
are correctly signed), while the ledger L stores transactions
that have been finally confirmed and can be further spent by
new transactions. Without loss of generality, we assume that
bulletin board T sequentially records all the valid transactions,
especially for the conflicting transactions, it only accepts the
one that arrives earlier or randomly selects one in case of
simultaneous arrival. Obviously, a valid transaction tx ∈ T
can be finally confirmed (i.e., tx ∈ L) if it has been in T for
time ϕ.

Fig. 3: Transaction tx is double-claimed. The green transaction
tx2 is honestly signed w.r.t. pk1 and received by T at time t2,
while the red transaction tx1 is maliciously signed w.r.t. pk1

and received by T at time t1.

For the clear presentation, we use double-bordered blue
rectangles and single-bordered rectangles to represent con-
firmed transactions and valid transactions, respectively (see
Fig.2(b)). Once the transaction processing mechanism of the
underlying blockchain is understood, it becomes imperative to
focus on a straightforward yet practical scenario illustrated in
Fig.3. Since a user holding secret key sk1 corresponding to

public key pk1 can sign any transactions at his will, there is
no way to prevent the malicious payer from generating two
valid transactions tx1 and tx2. Here, transaction tx2 would
be used to pay the intended receiver, while transaction tx1

would be used to transfer coins back to the payer. In the
fortunate scenario where t2 < t1, transaction tx2 defeating
tx1 can be accepted by bulletin board T , ultimately enabling
the receiver to obtain the desired coins. However, if t1 = t2,
there is a 50% probability the receiver will lose coins as tx1

being accepted by bulletin board T . Even worse, when the
network delivery delay is under adversarial control (e.g., the
δ-synchronous network [24]), the malicious transaction tx1

would compete against tx2 with a landslide.
By leveraging the above observation, we need to be cautious

about certain time points that can result in the same coins being
doubly claimed by different transactions. This is especially
important when it comes to realizing atomic cross-chain swaps
in a decentralized manner (see Section III).

B. Atomic Cross-Chain Swaps

Generally, a cross-chain swaps protocol facilitates two mu-
tually distrusting users P0 and P1, who respectively own coins
α and β in two distinct blockchains B0 and B1, to securely
exchange coins. The fundamental security property atomicity
states that the honest users cannot lose coins. Specifically, an
honest user will successfully receive the counterparty’s coins if
the swap is successful. Otherwise, after timeout T , the honest
user will definitely refund his frozen coins.

Fig. 4: Universal Atomic Swaps: the execution flow of users
P0 and P1 in an α-to-β swap. The gray rectangle stores the
messages received by each user in the corresponding phase.

Now we review the design of Universal Atomic Swaps [13]
(see Fig.4). Similar to other works in this area [14, 16, 25, 26],
in Universal Atomic Swaps protocol, the users are connected
with authenticated communication channels with guaranteed
delivery of exactly one round and the malicious user (e.g., user
P0 or P1) can deviate arbitrarily from the protocol. It takes the
underlying blockchain as a global ledger functionality, where
the communication network is under adversarial control to
delay or reorder messages within δ rounds, and prioritizes
valid transactions based on their arrival time (cf. Fig.7 for
a formal definition).

We use hereunder notations: (1) an item with superscript
{(i 1− i)|i ∈ {0, 1}} is involved in the payment from user

4



Pi to P1−i; (2) an item with subscript ∈ {frz, swp, rfd}
respectively refers to the freeze, swap and refund operations.
Informally, it consists of four phases described as follows:
Swap Setup Phase-Freezing coins: Users P0 and P1 jointly
generate the frozen addresses pk(01) and pk(10), where the
corresponding secret keys sk(01) := sk

(01)
0 ⊕ sk

(01)
1 and

sk(10) := sk
(10)
0 ⊕ sk

(10)
1 are shared between them. They

also compute the timed commitments (Def.4) VTDT1
:=

(C(1), π(1)) and VTDT0
:= (C(0), π(0)) of shares sk

(10)
0 and

sk
(01)
1 (Note that, after timeout Ti, user Pi can get secret key

sk(i1−i)). After the both VTD are verified, user Pi transfers
coins from address pk(i) to the frozen address pk(i1−i) via a
freeze transaction tx

(i)
frz .

Swap Lock Phase: Using adaptor signature w.r.t. hard relation
(Y, y) ∈ R (Def.1) selected by user P0, users P0 and P1

jointly generate the pre-signatures σ̃(1)
swp of swap transaction

tx
(1)
swp and σ̃(0)

swp of swap transaction tx
(0)
swp in sequence. Notice

that, from now on, user P0 with witness y can generate a valid
swap transaction tx

(0)
swp at any time.

Swap Complete Phase: If user P0 actively posts the swap
transaction tx

(0)
swp before timeout T1, user P1 can extract wit-

ness y (as indicated by the purple dotted arrow) to successfully
complete the Swap Complete Phase via positing a valid swap
transaction tx

(1)
swp. As a result, users P0 and P1 successfully

exchange their coins (as indicated by the green arrows).
Swap Timeout Phase: After timeout T1, if coins β are still
locked in the frozen address pk(10), user P1 will enter into the
Swap Timeout Phase to abort the swap protocol by posting a
refund transaction tx

(1)
rfd with secret key sk(10). Similarly, after

timeout T0, user P0 can abort the swap protocol by posting
a refund transaction tx

(0)
rfd to unlock coins α. Therefore, the

frozen coins are respectively refunded to their original owners
(as indicated by the red arrows).

Security analysis. We summarize security analysis of Uni-
versal Atomic Swaps and defer detailed proofs to [13]:
Successful Swap: If user P0 honestly posts the swap transac-
tion tx

(0)
swp before timeout T1, user P1 can extract witness y

to generate a swap transaction tx
(1)
swp successfully.

Failed Swap: If user P0 fails to post the swap transaction
tx

(0)
swp before timeout T1, user P1 will enter into the Swap

Timeout Phase to refund the frozen coins β via posting a re-
fund transaction tx

(1)
rfd and abort the swap protocol. Similarly,

user P0 can refund the frozen coins α after timeout T0.

III. THE DOUBLE-CLAIMING ATTACK

What Double-Claiming Attack Is. In a cross-chain swaps
protocol, the double-claiming attack refers to a situation where
a malicious user utilizes timeout T to create a double-claimed
state for the counterparty’s frozen coins (i.e., after timeout
T , the frozen coins are claimed simultaneously by the refund
transaction and swap transaction), thereby obtaining the of-
fered coins from the honest user while refusing to transfer his
own coins. This attack directly violates the atomicity property.

Note that the double-claiming attack is fundamentally d-
ifferent from the double-spending attack [27]. The former
attack enables a malicious user to prevent an honest transaction
from being confirmed, whereas the latter attack enables a
malicious miner who is involved in the maintenance of the
underlying blockchain to confirm both spending transactions
of the same coins. Additionally, the double-spending attack
requires the attacker (i.e., the malicious miner) to posses and
expend enough resources (e.g., computational power [1] or
stakes [28]). Conversely, the double-claiming attack is crazy-
cheap and only requires the attacker (i.e., the malicious user)
to have the ability of signing transactions. Notably, the double-
claiming attack can work in all communication network mod-
els of the underlying blockchains (e.g., the δ-synchrony [29],
partial synchrony [30] and asynchrony [31]). Moreover, as
the synchronicity level of the underlying blockchain weakens
(i.e., transitioning from synchrony to asynchrony), the double-
claiming attack has a higher probability of success, which can
be detailed as follows.

Fig.5 illustrates two manners of double-claiming attack-
s on Universal Atomic Swaps [13], where the underlying
blockchains take at most δ rounds to publish a transaction.
User P0 is malicious (Fig.5(a)). Initially, users P0 and P1

launch an α-to-β swap by successfully freezing their respec-
tive coins α and β, and then completing the Swap Lock
Phase. Subsequently, the malicious user P0 goes offline. After
timeout T1, user P1 aborts the swap protocol and enters into
the Swap Timeout Phase. During this phase, user P1 posts
a refund transaction tx

(1)
rfd to unfreeze the frozen coins β.

Concurrently, the malicious user P0 comes back online and
posts a swap transaction tx

(0)
swp. After timeout T0, the malicious

user P0 can also enter into his Swap Timeout Phase and
post a refund transaction tx

(0)
rfd to refund the frozen coins α.

Notice that, after timeout T1, even if the malicious user P0

posts a valid swap transaction tx
(0)
swp, the Universal Atomic

Swaps protocol is designed in such a way that user P1 is
not permitted to revert back to the previous Swap Complete
Phase1. Additionally, only one of transactions, tx

(0)
swp and

tx
(1)
rfd, can be finally confirmed by the underlying blockchain

B1. Accordingly, if there is a delay in publishing the refund
transaction tx

(1)
rfd while the malicious swap transaction tx

(0)
swp

arrives earlier or even worse, if the malicious user P0 colludes
with the adversary AB1

of underlying blockchain B1 to delay
publishing the refund transaction tx

(1)
rfd up to δ rounds, the

malicious swap transaction tx
(0)
swp will be finally confirmed

with an absolute advantage. This would result in the malicious
user P0 illicitly acquiring double assets, thereby violating the
atomicity property (i.e., the honest user P1 loses coins β).
User P1 is malicious (Fig.5(b)). If honest user P0 promptly
posts a swap transaction tx

(0)
swp before timeout T1, this swap

protocol should be successful such that both swap transactions,
tx

(0)
swp and tx

(1)
swp, are finally confirmed by their respective

1If the user P1, who has initiated the abort operation, is allowed to
perform the aforementioned actions (e.g., the swap operation), the final result
of Universal Atomic Swaps protocol cannot be guaranteed.
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blockchains. However, once the honest user P0 posts a swap
transaction tx

(0)
swp close to the timeout T1 (e.g., within δ

rounds), the malicious user P1 can immediately post his swap
transaction tx

(1)
swp and then enter into his Swap Timeout Phase

by posting a valid refund transaction tx
(1)
rfd after timeout T1

2.
At this time, a race condition occurs between transactions
tx

(0)
swp and tx

(1)
rfd. According to the same attack strategies as

above, the malicious refund transaction tx
(1)
rfd can be finally

confirmed by the underlying blockchain B1. As a result, the
malicious user P1 harvests double assets, thereby violating the
atomicity property (i.e., the honest user P0 loses coins α).3

(a) When the malicious user P0 successfully executes a double-claiming
attack, the honest user P1 fails in the Swap Complete Phase and Swap
Timeout Phase. The finally confirmed transactions are tx

(0)
rfd and tx

(0)
swp.

(b) When the malicious user P1 successfully executes a double-claiming
attack, the honest user P0 fails in the Swap Complete Phase and cannot
enter into the Swap Timeout Phase. The finally confirmed transactions
are tx

(1)
rfd and tx

(1)
swp.

Fig. 5: The double-claiming attack works in Universal Atomic
Swaps [13]

Why There Exists This Attack. Essentially, the core
reasons that lead to the double-claiming attack are:
Reason 1: The transaction balance security. Independent of
the inner workings in cross-chain swaps protocols, the total
balances of all addresses in the underlying blockchain remain
unchanged. This means that no new coins are generated
causelessly, and the coins can only be equivalently transferred
from some addresses to new addresses. Furthermore, the
scriptless nature of cross-chain swaps determines that the

2As long as the swap transaction tx
(0)
swp of user P0 is not published by

the underlying blockchain B1, the malicious user P1 still has the chance to
publish his refund transaction tx

(1)
rfd (cf. Fig.7).

3Even if the above attacks are failed, the malicious user will never lose
coins.

transaction verification relies solely on the balance and
signature. Thus, in the view of the underlying blockchain, the
conflicting transactions (e.g., the swap and refund transactions
of the same frozen coins) are separately valid and the balance
security determines that only one of these two transactions
can be finally confirmed.
Reason 2: After timeout T , the frozen coins can be claimed
by both the original owner and intended receiver. It should
be noted that the frozen coins can only be refunded after the
predefined timeout T , while the intended receiver is able to
claim these coins both before and after timeout T (i.e., by
generating a valid swap transaction). This may initially seem
reasonable as the timeout T provides sufficient time for the
intended receiver to complete the swaps and guarantees that
the frozen coins can be refunded in case of failure. However,
there is no mechanism in place to revoke the intended
receiver’s ability to claim these frozen coins after timeout T ,
which is the source of double-claiming attack.

Where the Timeouts T0 and T1 Fall Short. we start
by offering a detailed discussions of the timeouts T0 and T1

adopted in Universal Atomic Swaps to show their insufficiency
in protecting the honest user from losing coins in the double
claiming scenario.

For the timing hardness parameters T0 and T1, Univer-
sal Atomic Swaps suggest that the parameter ∆ (such that
T0 = T1 + ∆) is large enough to tolerate the time differences
in opening the VTD commitments. In essence, parameter ∆
is designed to prevent the malicious user P0 from stealing
coins if he can open his VTD commitment much earlier than
expected. For example, if malicious user P0 opens the VTD
commitment much earlier than timeout T1, he can first post
a refund transaction tx

(0)
rfd to refund frozen coins α, followed

by posting a swap transaction tx
(0)
swp to steal the frozen coins

β of user P1. Similarly, if malicious user P0 opens the VTD
commitment after timeout T1 but much earlier than timeout T0,
he can first post a swap transaction tx

(0)
swp to obtain the frozen

coins β of user P1, followed by posting a refund transaction
tx

(0)
rfd to refund frozen coins α 4. Therefore, the parameter

∆ is set sufficiently large such that provides enough time to
finally confirm the swap transaction tx

(1)
swp of user P1 before

user P0 can generate a valid refund transaction tx
(0)
rfd.

However, a sufficiently large parameter ∆ still cannot
protect honest user P1 from losing coins in the following
malicious scenario (as illustrated in Fig.5(a)). Informally, the
malicious user P0 deliberately delays posting a swap trans-
action tx

(0)
swp until timeout T1, which is exactly the time that

user P1 enters into his Swap Timeout Phase to abort the swap
protocol by posting a refund transaction tx

(1)
rfd. Consequently,

the frozen coins β of honest user P1 are subjected to double-
claim. Since the user P1 is no longer permitted to submit a
swap transaction tx

(1)
swp after timeout T1, there is no measure

in place to prevent malicious user P0 from entering into the

4As long as the swap transaction tx
(1)
swp of user P1 is not published by

the underlying blockchain B0, the malicious user P0 still has the chance to
refund his frozen coins α by doubly claiming them (cf. Fig.7).
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Swap Timeout Phase to refund frozen coins α after timeout
T0, even if ∆ is large enough. For the conflicting transactions
tx

(0)
swp and tx

(1)
rfd, once the swap transaction tx

(0)
swp is finally

confirmed by the underlying blockchain B1, the malicious user
P0 will harvest double assets.

The Generality of This Attack. It should be emphasized
that the double-claiming attack is not exclusive to Universal
Atomic Swaps, but can also be generally applied to other
scriptless cross-chain swaps protocols (e.g., Sweep-UC [16])
and multi-hop payments [17–20], all of which involve a
predefined timeout T to realize the payment expire. In these
protocols, the primary vulnerability leading to the double-
claiming attack is that the two competing users simultaneously
hold the ability to claim the same frozen coins immediately
after the timeout T .

IV. OUR SOLUTION IN A NUTSHELL

As previously elaborated, the core challenge posed by the
double-claiming attack lies in the fact that the frozen coins
β can be claimed by both users P0 and P1 after timeout T1.
Therefore, our goal is to protect the frozen coins β from being
double-claimed after timeout T and ensure their refund to the
original owner P1 with certainty as the HTLC dose.

Fig. 6: PipeSwap: the execution flow of users P0 and P1 in
an α-to-β swap. The gray rectangle stores messages received
by each user in this phase and the pre-transaction items are
denoted with overline. Time parameters are set such that:
T1 := T 1 + 2δ + ϕ, T0 = T1 + ∆ (where ϕ is confirmation
latency and δ is the upper bound of network delivery delay in
the underlying blockchain B1). The gap 2δ+ϕ between T 1 and
T1 ensures that, even under the maximum adversarial delay δ,
the frozen coins β can only be swaped before timeout T1;
otherwise, they are definitely refunded to their original owner
P1 after timeout T1.

Our straightforward solution is to realize the pipelined coins
flow (Fig.1) of frozen coins β, that is, the corresponding
swap transaction tx

(0)
swp and refund transaction tx

(1)
rfd cannot

be both valid. As depicted in Fig.6, the key idea is how
to force the timely release of witness y (as indicated by
the purple dotted arrow), such that a valid transaction of
frozen coins β (i.e., either the swap transaction tx

(0)
swp or

refund tx
(1)
rfd) can be pre-determined before timeout T1. For

this purpose, we introduce a “two-hop completion” method,
known as two-hop swap and two-hop refund. The two-hop

swap compels user P0 to post the pre-swap transaction tx
(0)
swp

at least ϕ time before posting a valid swap transaction tx
(0)
swp.

Similarly, the corresponding two-hop refund requires user P1

to post a pre-refund transaction tx
(1)
rfd (it is locked until time

T 1 := T1 − 2δ − ϕ) before refunding his frozen coins β by
the refund transaction tx

(1)
rfd. Thus, the “two-hop completion”

method forces user P0 to actively post a pre-swap transaction
tx

(0)
swp before time T 1, as otherwise the pre-refund transaction

tx
(1)
rfd could be confirmed and he cannot generate a valid swap

transaction tx
(0)
swp at any time. As a result, before timeout T1,

the final flow direction of frozen coins β can be determined in
that if the pre-swap transaction tx

(0)
swp is finally confirmed, the

frozen coins β can only be swapped by user P0; otherwise,
the frozen coins β can only be refunded by user P1. Now we
walk through how to realize the “two-hop completion”.
First ingredient: splitting frozen coins β into two parts. To
ensure the flow direction of frozen coins β, the coins β are
frozen in two distinct addresses with values ε (where ε > 0
is arbitrarily small, i.e., ε → 0) and β − ε respectively.
Specifically, coins ε and β − ε can only be further spent with
the respective secret keys sk

(10)
and sk(10), which are shared

between users P0 and P1.
Second ingredient: two-hop swap. To prevent the malicious
user P0 from suddenly releasing the swap transaction tx

(0)
swp,

a new swap method called two-hop swap is proposed. Specifi-
cally, user P0 can only generate a valid swap transaction tx

(0)
swp

when the corresponding pre-swap transaction tx
(0)
swp has been

confirmed by the underlying blockchain B1. In particular, the
pre-swap transaction tx

(0)
swp is jointly pre-signed by both users

with the respective key shares (i.e., sk
(10)

0 , sk
(10)

1 ) and puzzle
Y, where the statement-witness pair (Y, y) ∈ R is selected
by user P0. While the swap transaction tx

(0)
swp takes tx

(0)
swp

as one of its inputs, and is jointly signed by both users with
the respective key shares sk

(10)
0 and sk

(10)
1 . Essentially, the

validity of swap transaction tx
(0)
swp implies that user P0 has

posted the pre-swap transaction tx
(0)
swp at least ϕ time ago,

where ϕ is the confirmation latency of underlying blockchain
B1. Furthermore, since the witness y has been released by
the posted pre-swap transaction tx

(0)
swp, user P1 can generate a

valid swap transaction tx
(1)
swp at least ϕ time earlier than user

P0 does.
Third ingredient: two-hop refund. To pre-determine a valid
transaction between the swap transaction tx

(0)
swp and refund

transaction tx
(1)
rfd before timeout T1, we present the corre-

sponding two-hop refund method. In this way, user P1 can
only refund the frozen coins β with a refund transaction tx

(1)
rfd

after timeout T1 when the pre-refund transaction tx
(1)
rfd has

been finally confirmed by the underlying blockchain B1, and
the pre-refund transaction tx

(1)
rfd is locked until time T 1. This

implies that once the pre-swap transaction tx
(0)
swp is finally

confirmed, it would be impossible to generate a valid refund
transaction tx

(1)
rfd even after timeout T1. Conversely, if the pre-
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refund transaction tx
(1)
rfd is finally confirmed, there will never

exist a valid swap transaction tx
(0)
swp.

So far, the final flow direction of frozen coins β can be
determined before timeout T1, leaving only a subtle issue
to be addressed. In particular, if user P0 posts the pre-swap
transaction tx

(0)
swp almost near time T 1, the malicious user P1

can also initiate the double-claiming attack by posting the
pre-refund transaction tx

(1)
rfd immediately after time T 1 and

making both transactions tx
(0)
swp and tx

(1)
rfd valid. To address

this issue, we simply let the pre-swap transaction tx
(0)
swp be

posted at least δ time units before time T 1.
We now give an intuition that PipeSwap satisfies atomicity:

Successful Swap: If user P0 is honest, the pre-swap transaction
tx

(0)
swp posted before time T 1 − δ will be finally confirmed

before timeout T1, and then both swap transactions tx
(0)
swp and

tx
(1)
swp could be valid before timeout T1. Additionally, no valid

refund transaction tx
(1)
rfd exists even after timeout T1. As a

result, both users P0 and P1 obtain their desired coins.
Failed Swap: If user P0 is malicious and user P1 has entered
into his Swap Timeout Phase after timeout T1, i.e., the pre-
refund transaction tx

(1)
rfd has been finally confirmed by the

underlying blockchain B1, user P1 can generate a valid refund
transaction tx

(1)
rfd after timeout T1 and there will never be a

valid swap transaction tx
(0)
swp at any time. As a result, user P1

can definitely refund the frozen coins β after timeout T1.

V. FORMAL DEFINITION OF PIPESWAP

Notations. We denote by λ the security parameter and by
A(x; r) → z or z ← A(x; r) the output z of algorithm
A with inputs x and randomness r ∈$ {0, 1}λ (it is only
mentioned explicitly when required). We write the events that
“send message m to P at time t” as “m

t
↪→ P ” and “receive

message m from P at time t” as “m
t←↩ P ”, where P could

be a user or an ideal functionality.

A. Modeling the System and Threats

We now discuss the security model of generalized cross-
chain swaps, which exactly follows the previous works in this
area [13, 16, 18, 19, 25, 32]. In order to formally model the
security of cross-chain swaps protocol, we adopt the Universal
Composability (UC) model [33] framework and deploy the
version with a global setup (GUC) [34]. We define the cross-
chain swaps model over two users {P0,P1} and take the un-
derlying blockchains B =: {B0,B1} as the global blockchain
(ledger) functionalities FB := {FB0 ,FB1} with a maximum
confirmation delay of ϕ (see Fig.7). The GUC model specifies
two worlds, a protocol Π is executed in the real world by
the users, interacting with the adversary A and environment
Z . While in the ideal world, an ideal functionality F is
executed by the users, interacting with the simulator S and
environment Z . We denote the ensemble corresponding to real
world protocol execution as EXEC(λ)FB

Π,Z,A and the ensemble
corresponding to the ideal world execution as EXEC(λ)FB

F,Z,S .
UC security. Protocol Π UC-realizes the ideal functionality F

w.r.t. a global blockchain FB if for any PPT adversary A there
exists a simulator S such that EXECFB

Π,Z,A ≈ EXECFB
F,Z,S ,

where “≈” denotes the computational indistinguishability.
The adversary. In the cross-chain swaps protocol, two desig-
nated users P0 and P1 are involved. The static adversary A
selects and fully controls one user, either user P0 or P1, at
the beginning of the process. Moreover, the adversary A is
fully malicious and can deviate arbitrarily from the protocol
specification (e.g., by carrying out the double-claiming attack).
The communication network. We consider the synchronous
communication between the participating users P0 and P1,
implying that we assume a global clock functionality Fclock
[24]. The cross-chain swaps protocol executes in rounds,
ensuring that each user is aware of the current round and can
expect messages to be received at a certain time. There is also
a secure message transmission channel between users P0 and
P1 modeled by the ideal functionality Fsmt [13, 33].
The atomicity. At the end of a cross-chain swaps protocol,
both users will either successfully exchange their coins or, in
the event of a failed swap, the frozen coins will be refunded
to their original owners. In accordance with the HTLC, we
specifically aim to achieve that: each frozen coin should only
be claimed by the intended receiver before its timeout T ; if not
claimed by then, it will be definitely refunded to its original
owner after its timeout T .
The blockchain functionality. Similarly, we also assume
the δ-synchronous communication network of the underlying
blockchains, i.e., the network delivery delay is under adver-
sarial control up to a known upper bound δ. Furthermore,
the adversary AB of the underlying blockchains can delay
or reorder the delivery of messages (transactions) within δ
rounds, but cannot modify or drop them. We take the under-
lying blockchains B (i.e., blockchains B0 and B1) involved
in the cross-chain swaps as a global ledger functionality FB
with maximum confirmation delay time ϕ, which records
the balance pk.bal of each address pk (i.e., the ledger L)
and maintains a trusted append-only bulletin board T . The
functionality FB offers interface Valid(tx) to determine the
validity of a transaction (e.g., checking whether inputs ∈ L
have sufficient balance and are signed correctly), uses interface
Publish(tx, t) to add a valid transaction tx to bulletin board
T at time t′ ≤ t + δ, where time t′ is determined by the
ideal adversary SB. We emphasize that the bulletin board T
always gives priority to accepting the transaction that arrives
first. For example, when receiving messages Publish(tx0, t0)
and Publish(tx1, t1) for respectively publishing the conflicting
transactions tx0 and tx1, the bulletin board T will accept tx0

if t′0 < t′1, or randomly select one from {tx0, tx1} if t′0 = t′1.
The functionality FB confirms a transaction tx via interface
Confirm(tx) (e.g., if the transaction tx has been recorded in
bulletin board T for time ϕ, the functionality FB updates
ledger L via transferring coins from input address pkin to
output address pkop). Please refer to Fig.7 for more details.
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The blockchain functionality FB interacts with users P0 and P1,
ideal adversary SB and environment Z . It is parameterized by a
digital signature scheme SIG = (KGen, Sig,Vf).

Interface Initiate(pk, v), called by Z:
01 Set ledger L := {(pk1, v1), · · · , (pk`, v`)} ∈ R2`

≥0.
02 Store and send L to every entity.

Interface Publish(tx, t), called by Pi:
01 If Valid(tx) = 1, send (publish, tx, t) ↪→ SB.
02 Upon receiving (publish, tx, t′) ←↩ SB, if t′ − t ≤ δ, set

t := t′; otherwise, set t := t + δ. Update list list :=
list ∪ (tx, t).

03 For the conflicting transactions (tx0, t0), (tx1, t1) ∈ list,
if t0 < t1, remove (tx1, t1) from list; else, if t0 = t1,
randomly select b ∈ {0, 1} and remove (txb, tb) from list;
otherwise, remove (tx0, t0) from list.

04 For (tx, t) ∈ list, update T := T ∪ (tx, t) at time t.
Interface Confirm(tx), called by Pi at time t′′:

01 If ∃(tx, t) ∈ T and t′′−t ≥ ϕ, update L as tx.pkin.bal :=
tx.pkin.bal− v and tx.pkop.bal := tx.pkop.bal + v.

02 Otherwise, abort.

Fig. 7: Global ideal functionality FB that models the
blockchain

B. Ideal Functionality of Cross-Chain Swaps

We formalize the security properties of a cross-chain swaps
protocol as an ideal functionality F . Informally, the function-
ality F (Fig.8 and Fig.9) interacts with users P0 and P1, envi-
ronment Z , ideal adversary S, and the underlying blockchain
functionalities FB0 and FB1 . It consists of three procedures,
each triggered by a message sent by user Pi (i ∈ {0, 1})
including the respective request and session identifier id.
(A) Swap Setup Phase-Freezing Coins: Users P0 and P1 initi-
ate an α-to-β swap with their respective freeze messages, de-
noted as (frz, id,pk(0), sk(0), α) and (frz, id,pk(1), sk(1), β).
These messages specify that the coins α in addresses pk(0)

(owned by user P0 and can be spent with secret key sk(0))
and the coins β in address pk(1) (owned by user P1 and can be
spent with secret key sk(1)) are to be exchanged. The function-
ality F calls subroutine Freeze(id,pk(i), sk(i), α/β, pk

(i)
F , Ti)

to transfer coins α/β from address pk(i) to a specific address
pk

(i)
F controlled by F for a specified period of time Ti, where

T0 = T1 + ∆.
(B) Swap Complete Phase: User P0 sends the swap message
(swp, id,pk

(0)
swp) at time t′. If t′ < T1, the functionality

F transfers coins β from address pk
(1)
F to pk(0)

swp and sets
b(0) = 0 to indicate that user P0 has successfully completed
the swap operation. Otherwise, user P0 fails in the swap phase
(i.e., b(0) =⊥). Meanwhile, upon receiving swap message
(swp, id,pk

(1)
swp) from user P1, the functionality F transfers

coins α from address pk
(0)
F to pk(1)

swp and sets b(1) = 1 if
b(0) = 0; otherwise, sets b(1) =⊥.
(C) Swap Timeout Phase: After timeout Ti, if the coins are
still stored in address pk

(i)
F , the functionality F transfers these

coins to their original owner Pi.

(A) Swap Setup Phase - Freezing Coins

01 Upon receiving (frz, id, pk(0), sk(0), α)
t←↩ P0, invoke sub-

routine Freeze(id, pk(0), sk(0), α,pk
(0)
F , T0); upon receiving

(Confirmed, id, ok)
t1≤t+δ+ϕ←↩ FB0 , send (frz, id, ok)

t1
↪→ P0.

02 Upon receiving (frz, id,pk(1), sk(1), β)
t←↩ P1, invoke sub-

routine Freeze(id, pk(1), sk(1), β, pk
(1)
F , T1); upon receiving

(Confirmed, id, ok)
t1≤t+δ+ϕ←↩ FB1 , send (frz, id, ok)

t1
↪→ P1.

03 After the above steps are successful, send (Setup, id, ok) ↪→
Pi (i ∈ {0, 1}) and proceed to procedure (B); otherwise,
proceed to procedure (C).

(B) Swap Complete Phase

01 Upon receiving (swp, id, pk(0)
swp)

t′←↩ P0, do the following:

– If t′ < T1, set b(0) = 0 and invoke subrou-
tine Transfer(id, pk

(1)
F , sk

(1)
F , β, pk(0)

swp, t
′); upon receiving

(Publish, id, ok)
t′1≤t

′+δ
←↩ FB1 , send (swp, id, ok)

t′1
↪→ P0.

– Otherwise, set b(0) =⊥ and abort.

02 Upon receiving (swp, id, pk(1)
swp)

t′←↩ P1, do the following:

– If b(0) = 0, set b(1) = 1 and invoke subroutine
Transfer(id, pk

(0)
F , sk

(0)
F , α,pk(1)

swp, t
′); upon receiving

(Publish, id, ok)
t′1≤t

′+δ
←↩ FB0 , send (swp, id, ok)

t′1
↪→ P1.

– Otherwise, set b(1) =⊥ and abort.

(C) Swap Timeout Phase

01 Upon receiving (rfd, id, pk
(i)
rfd)

t′′←↩ Pi, do the following:

– If (t′′ > Ti) ∧ (b(1−i) =⊥), invoke subroutine
Unfreeze(id, pk

(i)
F , sk

(i)
F , α/β, pk

(i)
rfd, t

′′); upon receiving

(Publish, id, ok)
t′′1≤t

′′+δ
←↩ FBi , send (rfd, id, ok)

t′′1
↪→ Pi.

– Otherwise, abort.

Fig. 8: Ideal functionality F that models the cross-chain swaps

Remark 1: Careful readers may notice that the functionality
F completes the Swap Setup Phase only when the freeze
transactions have been finally confirmed by the underlying
blockchains. In contrast, during the Swap Complete Phase and
Swap Timeout Phase, the functionality F responds with ok
when the corresponding swap transaction and refund trans-
action have been added to their respective bulletin boards.
The correctness lies in the facts that only a finally confirmed
transaction can be further spent by a new transaction (wherein
the freeze transaction will be spent by a swap or refund
transaction), and as defined in blockchain functionality FB
(Fig.7), transactions in the bulletin board can indeed be finally
confirmed within time ϕ.
Security analysis. We now analyze that the ideal functionality
F satisfies atomicity:
Successful Swap: If user P0 initiates the swap operation
honestly before timeout T1, the functionality F will enable
both users P0 and P1 to complete the swap via transferring
the frozen coins (controlled by F) to their respective addresses
pk(0)

swp and pk(1)
swp (i.e., b(0) = 0 and b(1) = 1).

Failed Swap: After the timeout Ti (i ∈ {0, 1}), if b(1−i) =⊥,
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//Subroutine Freeze
Freeze(id, pk, sk, v, pkF , T ): set timeout T and transfer coins v
from address pk to pkF (controlled by F) via generating a freeze
transaction txfrz := (pk, pkF , v, σ) with secret key sk and
invoking interface Confirm(txfrz) of blockchain functionality
FB. If transaction txfrz has been finally confirmed by FB (i.e.,
txfrz ∈ L), then respond (frz, id, ok).
//Subroutine Transfer
Transfer(id, pkF , skF , v, pkswp, t): transfer frozen coins v from
address pkF to pkswp via generating a swap transaction
txswp := (pkF , pkswp, v, σ) with secret key skF and invoking
interface Publish(txswp, t) of blockchain functionality FB. If
transaction txswp has been added to bulletin board T (i.e.,
txswp ∈ T ), then respond (swp, id, ok).
//Subroutine Unfreeze
Unfreeze(id,pkF , skF , v, pkrfd, t): transfer frozen coins v from
address pkF to pkrfd via generating a refund transaction
txrfd := (pkF ,pkrfd, v, σ) with secret key skF . If transaction
txrfd has been added to bulletin board T (i.e., txrfd ∈ T ), then
respond (rfd, id, ok).

Fig. 9: The subroutines of ideal functionality F

the functionality F will enable user Pi to refund his frozen
coins.

VI. PIPESWAP: PROTOCOL DESCRIPTION

A. Cryptographic Building Blocks

To guarantee universality, we insist on the fundamental
building blocks from [13], namely, the adaptor signature
scheme [14] and verifiable timed discrete logarithm (VTD)
scheme [15].
Adaptor signatures. The adaptor signature scheme (cf. Def.1
in Appendix B) is defined w.r.t. a digital signature scheme
SIG = (KGen,Sig,Vf) (cf. Def.2 in Appendix B) and a hard
relation R (cf. Def.3 in Appendix B). It allows users to insert
a puzzle Y (e.g., statement-witness pair (Y, y) ∈ R) into the
generation of a signature on message m ∈ {0, 1}λ. The users
with secret key first compute a pre-signature σ̃ of message
m which by itself is not a valid digital signature but can
later be adapted into a valid signature σ with witness y (i.e.,
SIG.Vf(pk,m, σ) = 1). Additionally, witness y can be further
extracted by σ̃ and σ.

The digital signature scheme satisfies the standard notion of
unforgeability [35]. To showcase the universality of our con-
struction, we assume SIG ∈ {Schnorr,ECDSA} to encom-
pass most existing cryptocurrencies such as Bitcoin, Ethereum
and Ripple. Adaptor signature scheme is required to satisfy
security properties of unforgeability, witness extractability and
pre-signature adaptability (cf. [13] for detailed definitions).
Verifiable timed dlog (VTD). The VTD enables the commit-
ter to generate a timed commitment C of value x with timing
hardness T , which can be verified publicly and forcibly opened
in time T (cf. Def.4 in Appendix B). The VTD is required to
satisfy security properties of soundness and privacy (cf. [13]
for detailed definitions).

In this work, we also use adaptor signature scheme and
VTD in a black-box manner, and direct readers to efficient

constructions in [13–15, 36]. To elaborate further, following
the approach presented in [13], we adopt the construction of
adaptor signature in [14] with the underlying signature scheme
being Schnorr or ECDSA, and the hard relation R being
the discrete log (dlog) relation (i.e., the language is defined
as LRdlog

:= {Y|∃y ∈ Z∗q , s.t. Y = gy ∈ G} ). For the
construction of VTD, the committer embeds the dlog.value
y inside a time-lock puzzle Y, uses a non-interactive zero-
knowledge proof (NIZK) to prove that Y can be solved
in time T and the value y satisfies equation Y = gy . An
efficient construction of the NIZK [15] can be derived from
the cut-and-choose techniques, Shamir secret sharing [37] and
homomorphic time-lock puzzles [38].

Additionally, as the frozen address pk is under joint control
of users P0 and P1 (i.e., the corresponding secret key sk is
shared between them), it is inevitable that we also rely on inter-
active protocols (represented as ΓSIG

AdpSig and ΓSIG
Sig ) to realize

jointly (pre-)signing a message m under public key pk. This
can be efficiently instantiated w.r.t. SIG ∈ {Shnorr,ECDSA}
utilizing protocols in [18].

B. Procedures of PipeSwap

In the general setting, users P0 (who owns coins α on
blockchain B0) and P1 (who owns coins β on blockchain B1)
aim to complete the α-to-β cross-chain swaps. As mentioned
previously (cf. Section IV), pipelined coins flow of the frozen
coins guarantees atomicity. The crux of securing PipeSwap
lies in ensuring the timely release of witness y, which is
achieved by three critical ingredients: splitting frozen coins
β into (ε, β − ε), a two-hop swap and a two-hop refund.
Protocol details. For ease of understanding, we depict the
coins flow of PipeSwap in Fig.10 and provide a description
of PipeSwap in Fig.11, including the key points of each phase
presented below:

Fig. 10: The pipelined coins flow of PipeSwap

(A) Swap Setup Phase-Freezing Coins: In this phase, users
P0 and P1 transfer their swapped coins to the corresponding
frozen addresses, which are under joint control of both users.
To be better prepared for the two-hop swap and two-hop
refund, we let user P1 split coins β into two frozen addresses
pk

(10)
and pk(10) with respective values ε and β − ε. Impor-

tantly, to guarantee that the frozen coins β are refunded as ex-

pected, the pre-refund transaction tx
(1)
rfd := (pk

(10)
, p̂k

(1)

rfd, ε)

is locked until time T 1 := T1 − 2δ − ϕ (meaning user
P0 makes a timed commitment of secret key share sk

(10)

0

with timing hardness T 1). Meanwhile, the refund transaction
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tx
(1)
rfd := ((pk(10), p̂k

(1)

rfd),pk
(1)
rfd, β) is jointly signed with

secret keys sk(10) (held by users P0 and P1) and ŝk
(1)

rfd

(held by user P1), and will become valid when the pre-
refund transaction tx

(1)
rfd has been confirmed. Additionally,

user P1 commits to a timed refunding of frozen coins α by
providing the secret key share sk

(01)
1 with timing hardness

T0, which allows user P0 to generate a refund transaction
tx

(0)
rfd := (pk(01),pk

(0)
rfd, α) after timeout T0.

(B1) Swap Lock Phase: This phase is the preparation for
atomic swaps. Both users jointly pre-sign swap transactions

tx
(1)
swp := (pk(01),pk(1)

swp, α) and tx
(0)
swp := (pk

(10)
, p̂k

(0)

swp, ε)
in sequence, where the statement-witness pair (Y, y) ∈ Rdlog

is selected by user P0. Similarly, to guarantee that the
frozen coins β are swapped as expected, the swap transaction

tx
(0)
swp := ((pk(10), p̂k

(0)

swp),pk(0)
swp, β) is jointly signed with

secret keys sk(10) (held by users P0 and P1) and ŝk
(0)

swp (held
by user P0), and the final confirmation of pre-swap transaction
tx

(0)
swp is an essential prerequisite for generating a valid swap

transaction tx
(0)
swp. Therefore, in order to generate a valid swap

transaction, user P0 is forced to timely release witness y at
least ϕ time before (i.e., by posting the pre-swap transaction
tx

(0)
swp).

(B2) Swap Complete Phase: User P0 posts a pre-swap trans-

action tx
(0)
swp before time T 1 − δ, and its final confirmation

ensures user P0 to generate a valid swap transaction tx
(0)
swp

before timeout T1. Additionally, the posted pre-swap transac-
tion tx

(0)
swp enables user P1 to generate a valid swap transaction

tx
(1)
swp with the release of witness y.

(C) Swap Timeout Phase: After timeout T1, if user P0 fails
to unfreeze the frozen coins β (i.e., the pre-swap transaction
tx

(0)
swp is not finally confirmed), user P1, who has the finally

confirmed pre-refund transaction tx
(1)
rfd, posts a refund transac-

tion tx
(1)
rfd. Similarly, after timeout T0, if user P1 fails to post

a swap transaction tx
(1)
swp, user P0 posts a refund transaction

tx
(0)
rfd.

Security intuitions. With the rigorous construction,
PipeSwap achieves the same level of security as HTLC. We
now provide brief security intuitions below and defer the
detailed proofs to Appendix C.
Successful Swap. Before timeout T1, if user P0 can generate
a valid swap transaction tx

(0)
swp (i.e., the pre-swap transaction

tx
(0)
swp has been finally confirmed), user P1 can post a swap

transaction tx
(1)
swp with witness y extracted from the signature

of tx
(0)
swp. Therefore, both swap transactions tx

(0)
swp and tx

(1)
swp

must be finally confirmed.
Failed Swap. We consider the following possible cases:
• User P0 does not initiate his swap operation before timeout
T1 (i.e., the pre-swap transaction tx

(0)
swp is not confirmed before

timeout T1), then both users can successfully refund their
frozen coins.
• Due to delay of posting the pre-swap transaction tx

(0)
swp,

malicious user P0 fails to generate a valid swap transaction
tx

(0)
swp before timeout T1 (i.e., the pre-refund transaction tx

(1)
rfd

is finally confirmed). As a result, user P1 can successfully
refund the frozen coins β after timeout T1.
• The malicious P0 never can generate a valid swap transaction
tx

(0)
swp, unless the pre-swap transaction tx

(0)
swp has been finally

confirmed before timeout T1, which further enables user P1

to complete his swap operation by generating a valid swap
transaction tx

(1)
swp before timeout T1. Otherwise, after timeout

T1, user P1 can generate a valid refund transaction tx
(1)
rfd

with the finally confirmed pre-refund transaction tx
(1)
rfd to

successfully refund the frozen coins β.

C. Evaluation and Comparison

Implementation details. We develop a prototypical C im-
plementation to demonstrate the feasibility of our construction
and evaluate its performance. We conduct experiments on a
PC with the following configuration: CPU(Intel(R) Core(TM)
i5-10210U CPU @ 1.60GHz with 4 cores), RAM(16.0 GB)
and OS(x64-based Windows). Basically, we instantiate the
signatures of Schnorr and ECDSA over the secp256k1 curve,
and set the transaction size to 250 bytes to approximate a basic
Bitcoin transaction. We implement the two-party computation
protocol for digital signature ΓSIG

Sig , and use the implementa-
tions of adaptor signature ΓSIG

AdpSig and VTD respectively in
[25] and [15]. The source code is available on Github [39].

Computation time. We first measure the time of basic
operations required in PipeSwap, and the results are shown
in TABLE II. Subsequently, the computation time required
by both users together is recorded in TABLE III. It is ob-
served that (1) each instance of PipeSwap requires only 1.605
seconds for Schnorr and 1.624 seconds for ECDSA; (2) the
computation time of Swap Setup-Freezing Phase accounts for
more than 99%, as both users jointly complete two VTD
computations.

Communication overhead. We measure the communica-
tion overhead as the amount of exchanged messages between
users during the execution of interactive algorithms in the
Swap Setup Phase and Swap Lock Phase (cf. TABLE IV).
Specifically, PipeSwap requires 6.4 kb for Schnorr and 7
kb for ECDSA, which is dominated by that of respectively
exchanging the VTD.Commit-proof pair of secret key share.

TABLE III: The computation time (ms)∗

Setup Phase Lock Phase Complete Phase

Schnorr
PipeSwap 1593.752 9.508 1.353

UAS 1590.05 8.786 0.706

ECDSA
PipeSwap 1594.513 27.431 2.09

UAS 1590.384 26.05 1.044

∗UAS (Universal Atomic Swaps) [13].

Efficiency comparison. To compare PipeSwap (Fig.11)
and Universal Atomic Swaps (its Fig.5 in [13]) w.r.t. the
operations required by both users together, we conduct an
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Assume the swapped coins α and β are respectively stored in addresses pk(0) and pk(1) on blockchains B0 and B1. Global
parameters are (G, q, g), δ, ϕ, T1 := T 1 +2δ+ϕ and T0 := T1 +∆; ⊕ := + if SIG = Schnorr and ⊕ := ∗ if SIG = ECDSA.

(A) Swap Setup Phase - Freezing Coins

01 Users P0 and P1 respectively complete Setups:

1) P0 runs Setup process (Fig.12) and sends (pk
(01)
0 ,pk

(10)

0 ,pk
(10)
0 , (C(1), π(1))) ↪→ P1.

2) P1 runs Setup process (Fig.12) and sends (pk
(01)
1 ,pk

(10)

1 ,pk
(10)
1 , (C(0), π(0))) ↪→ P0.

02 Users P0 and P1 generate their frozen addresses:

1) P0 checks if VTD.Vf(pk
(01)
1 ,C(0), π(0)) = 1 and generates frozen address pk(01) = (pk

(01)
1 )⊕sk

(01)
0 ; otherwise, stops.

2) P1 checks if VTD.Vf(pk
(10)

0 ,C(1), π(1)) = 1, and generates frozen addresses pk
(10)

= (pk
(10)

0 )⊕sk
(10)
1 and pk(10) =

(pk
(10)
0 )⊕sk

(10)
1 ; otherwise, stops.

03 Users P0 and P1 transfer the swapped coins to the corresponding frozen addresses.
1) P0 generates the freeze transaction tx

(0)
frz := (pk(0),pk(01), α) and signature σ(0)

frz ← ΣSIG.Sig(sk(0), tx
(0)
frz), and then

posts (tx
(0)
frz, σ

(0)
frz) on blockchain B0 and starts solving VTD.ForceOp(C(0)).

2) Users P0 and P1 jointly do the following:

• P1 generates the freeze transaction tx
(1)
frz := (pk(1), (pk

(10)
,pk(10)), (ε, β − ε)), pre-refund transaction tx

(1)
rfd :=

(pk
(10)

, p̂k
(1)

rfd, ε), refund transaction tx
(1)
rfd := ((pk(10), p̂k

(1)

rfd),pk
(1)
rfd, β), and sends (tx

(1)
frz, tx

(1)
rfd, tx

(1)
rfd) ↪→ P0;

• P0 checks if tx
(1)
frz, tx

(1)
rfd, tx

(1)
rfd are well formed (i.e., satisfying two-hop refund framework), and stops otherwise;

• P0 and P1 run protocol ΓSIG
Sig with input (sk

(10)
0 , sk

(10)
1 , tx

(1)
rfd) (Fig.12) and obtain signature σ̌(1)

rfd;
• P1 computes signature σ(1)

frz ← ΣSIG.Sig(sk(1), tx
(1)
frz) and posts (tx

(1)
frz, σ

(1)
frz) on blockchain B1, and then starts solving

VTD.ForceOp(C(1)).

(B1) Swap Lock Phase

01 User P0 runs (Y, y)← RGen(1λ) and sends Y ↪→ P1.
02 Users P0 and P1 generates their swap transactions:

1) P0 generates pre-swap transaction tx
(0)
swp := (pk

(10)
, p̂k

(0)

swp, ε) and swap transaction tx
(0)
swp := ((pk(10), p̂k

(0)

swp),pk(0)
swp, β),

and sends (tx
(0)
swp, tx

(0)
swp) ↪→ P1.

2) P1 checks if tx
(0)
swp, tx

(0)
swp are well formed (i.e., satisfying two-hop swap framework), and generates swap transaction

tx
(1)
swp := (pk(01),pk(1)

swp, α) and sends tx
(1)
swp ↪→ P0; otherwise, stops.

03 Users P0 and P1 run protocol ΓSIG
AdpSig with input (sk

(01)
0 , sk

(01)
1 ,Y, tx

(1)
swp) (Fig.12), and obtain pre-signature σ̃(1)

swp.
04 After step 03 is successful, P0 and P1 run protocol ΓSIG

Sig with input (sk
(10)
0 , sk

(10)
1 , tx

(0)
swp) (Fig.12) and obtain signature

σ̌
(0)
swp, and then run protocol ΓSIG

AdpSig with input (sk
(10)

0 , sk
(10)

1 ,Y, tx
(0)
swp) (Fig.12) and obtain pre-signature σ̃

(0)

swp.

(B2) Swap Complete Phase

05 User P0 computes σ(0)
swp ← ΣSIG

AS .Adapt(σ̃
(0)

swp, y) and posts (tx
(0)
swp, σ

(0)
swp) on blockchain B1 before time T 1 − δ. If tx

(0)
swp

has been confirmed, he computes σ̂(0)
swp ← ΣSIG.Sig(ŝk

(0)

swp, tx
(0)
swp) and posts (tx

(0)
swp, (σ̌

(0)
swp, σ̂

(0)
swp)) on blockchain B1.

06 If user P0 fails to post (tx
(0)
swp, σ

(0)
swp) before time T 1, P1 finishes computing sk

(10)

0 ← VTD.ForceOp(C(1)) and computes

sk
(10)

:= sk
(10)

0 ⊕ sk
(10)

1 . He then computes σ(1)
rfd ← ΣSIG.Sig(sk

(10)
, tx

(1)
rfd) and posts (tx

(1)
rfd, σ

(1)
rfd) on blockchain B1.

07 If tx
(0)
swp has been finally confirmed, user P1 computes y ← ΣSIG

AS .Ext(σ
(0)
swp, σ̃

(0)

swp,Y) and σ
(1)
swp ← ΣSIG

AS .Adap(σ̃
(1)
swp, y),

and posts (tx
(1)
swp, σ

(1)
swp) on blockchain B0.

(C) Swap Refund Phase

01 After timeout T1, if tx
(1)
rfd has been confirmed, user P1 computes σ̂

(1)
rfd ← ΣSIG.Sig(ŝk

(1)

rfd, tx
(1)
rfd) and posts

(tx
(1)
rfd, (σ̌

(1)
rfd, σ̂

(1)
rfd)) on blockchain B1.

02 Similarly, after timeout T0, if user P1 fails to post (tx
(1)
swp, σ

(1)
swp), P0 finishes computing sk

(01)
1 ← VTD.ForceOp(C(0)) and

computes sk(01) := sk
(01)
0 ⊕sk

(01)
1 . He then computes σ(0)

rfd ← ΣSIG.Sig(sk(01), tx
(0)
rfd) and posts (tx

(0)
rfd, σ

(0)
rfd) on blockchain

B0.

Fig. 11: PipeSwap: a secure cross-chain swaps protocol between users P0 and P1
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//The Setup process
User P0 does the following:

(1) Run ΣSIG.KGen(1λ)→ {(sk(01)
0 , pk

(01)
0 ), (sk

(10)
0 ,pk

(10)

0 ), (sk
(10)
0 ,pk

(10)
0 ), (sk

(0)
rfd,pk

(0)
rfd), (ŝk

(0)

swp, p̂k
(0)

swp), (sk
(0)
swp, pk(0)

swp)}.
(2) Compute commitment VTD.Commit(sk

(10)
0 , T 1)→ (C(1), π(1)).

User P1 does the following:
(1) Run ΣSIG.KGen(1λ)→ {(sk(01)

1 , pk
(01)
1 ), (sk

(10)
1 ,pk

(10)

1 ), (sk
(10)
1 ,pk

(10)
1 ), (ŝk

(1)

rfd, p̂k
(1)

rfd), (sk
(1)
rfd, pk

(1)
rfd), (sk

(1)
swp, pk(1)

swp)}.
(2) Compute commitment VTD.Commit(sk

(01)
1 , T0)→ (C(0), π(0)).

//The 2PC protocol ΓSIG
Sig

It takes private inputs sk0 and sk1 held by users P0 and P1 respectively, and public message m:
(1) Set secret key as sk := sk0 ⊕ sk1.
(2) Compute signature σ̌ ← ΣSIG.Sig(sk,m) and sends σ̌ to both users P0 and P1.
(3) Users P0 and P1 respectively check if ΣSIG.Vf(pk,m, σ̌) = 1, and stop otherwise.

//The 2PC protocol ΓSIG
AdpSig

It takes private inputs sk0 and sk1 held by users P0 and P1 respectively, and public messages (m,Y):
(1) Set secret key as sk := sk0 ⊕ sk1.
(2) Compute pre-signature σ̃ ← ΣSIG

AS .pSig(sk,m,Y) and sends σ̃ to both users P0 and P1.
(3) Users P0 and P1 respectively check if ΣSIG

AS .pVf(pk,m,Y, σ̃) = 1, and stop otherwise.

Fig. 12: The subroutines of protocol PipeSwap

TABLE II: The computation time of basic operations (ms)

ΣSIG ΓSIG
Sig ΓSIG

AdpSig VTD (n=64)
KGen Sig Vf Sig Vf pSig pVf Ext Adapt Commit Vf

Schnorr 0.745 0.647 1.142 0.722 1.332 4.393 2.837 0.7 0.003 413.057 378.341
ECDSA 0.687 1.046 1.461 1.381 1.479 13.025 7.156 0.936 0.054

TABLE IV: The communication overheads (bytes)∗

Setup Phase Lock Phase

Schnorr
PipeSwap 5060 1518

UAS 4240 1012

ECDSA
PipeSwap 5220 1998

UAS 4240 1332

∗UAS (Universal Atomic Swaps) [13].

evaluation of PipeSwap and Universal Atomic Swaps using
the same settings, libraries, and security parameters for all
cryptographic implementations. Before delving into details,
let us clarify that Universal Atomic Swaps repeat the same
operations for each swapped coin. Therefore, we only consider
the one-to-one atomic swap in [13]. The completion time
for Universal Atomic Swaps is 1.6 seconds for Schnorr and
1.617 seconds for ECDSA, and the communication overhead
is 5.1 kb for Schnorr and 5.4 kb for ECDSA. Based on
this comparison, we find that PipeSwap is only ≤ 7 ms
slower and incurs extra ≤ 1.6 kb communication overhead for
preparing and signing two extra transactions (i.e., the pre-swap
and pre-refund transactions), which remains within acceptable
limits. Additionally, we stress that PipeSwap sets the same
timeout parameters T0 and T1 as Universal Atomic Swaps,
while the actual hardness parameter for user P1 is lower
than T1, represented by T 1 < T1, resulting in the reduced
computational costs incurred by PipeSwap.

Therefore, PipeSwap not only achieves atomicity and uni-
versality, but is also efficient with low overhead.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we identify a new form of attack known as
double-claiming attack, which specifically targets the script-
less realization of atomic cross-chain swaps such as Uni-
versal Atomic Swaps [IEEE S&P’22] and Sweep-UC [IEEE
S&P’24]. This attack can lead to honest user losing coins
with overwhelming probability and the atomicity property is
directly broken. We introduce a novel approach to secure coins
flow by utilizing two-hop swap and two-hop refund techniques,
and design PipeSwap, a universal atomic cross-chain swaps
protocol that satisfies the atomicity property.

Several thought-provoking questions can be considered in
future work. The instantiation of PipeSwap with standard
signatures Schnorr and ECDSA is efficient, but further
caution may be required when extending to other signature
schemes. An interesting area for exploration is the extension
to more complex but practical scenarios, e.g., multi-hop swaps
P1 → P2 → · · · → Pn → P1, where each intermediate user
only holds the desired coins of its right neighbor. Also, we
leave to further work how to apply the pipelined coins flow
paradigm to scriptless payment channel networks protocols
providing stronger security.
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APPENDIX

A. Other related works

Tier Nolan first introduced the concept of “atomic swap”
[5]. Its fundamental security atomicity states that the swap
protocol either ends with success (i.e., the involved coins are
exchanged) or failure (i.e., the involved coins are refunded to
their original owners) [40, 41].

Essentially, a secure cross-chain swaps protocol between
users P0 and P1 should fulfill two fundamental functionalities
to guarantee the honest user P0 cannot lose coins (1) if user
P1 has claimed the frozen coins of P0, P0 is able to claim
the frozen coins of P1 before P1 can refund them; and (2) if
user P1 is malicious, P0 can definitely refund his frozen coins.
While atomicity is easily realized by the trusted third party, the
blockchain community has made significant efforts to achieve
the (fully) decentralized cross-chain swaps [41–43]. HTLC-
based protocols use the rich scripting languages supported
by the underlying blockchains to describe when and how the
frozen coins can be unlocked [44, 45]. Subsequently, these
protocols have been widely applied and deployed in practice
[6–8]. However, they are far from the universal solution and
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suffer from the inherent drawbacks of HTLC, including the
high execution costs and large transaction sizes. Additionally,
since these transactions are easier to distinguish from the
standard one that does not include any custom scripts, thus
these protocols are in conflict with the blockchains that have
already achieved privacy [12].

Recently, the effort LightSwap [17], which is dedicated to
introducing a secure atomic swaps protocol that eliminates
the need for timeout functionality by one of the participating
users, has made it possible for users to run a swaps protocol
on a mobile phone. However, it still relies on one of the two
involved blockchains supporting timelock functionality and
therefore falls short of achieving universality. Universal Atom-
ic Swaps [13] use cryptographic building blocks, specifically
the adaptor signature and timed commitment, to present the
first fully universal solution.

Furthermore, some literatures [46, 47] have employed a
third blockchain as the coordinator, but this approach ne-
cessitates that the participating users possess the ability to
transfer coins to and from this blockchain. Additionally, the
functionality of cross-chain swaps is integrated into a trusted
hardware [48], which not only seems unrealistic but also
presents serious vulnerabilities [49, 50].

The studies of payment channel networks (PCNs) enable
any two users to complete payments even if they do not
have a direct payment channel, and have become the most
widely deployed solution for realizing blockchain scalability
(e.g., lightning network [51]). Similarly, most of the existing
PCNs proposals are restricted to the Turing complete scripting
language [52–54] thus suffering from the inherent drawbacks
of HTLC. Anonymous Multi-Hop Locks [18], lockable sig-
natures [19] and A2L [25] are recently proposed to construct
the scriptless PNCs.

B. Definitions of cryptographic building blocks

Definition 1: (Adaptor Signature) [14] An adaptor signature
scheme ΣSIG

AS w.r.t. a hard relation R and a digital signa-
ture scheme ΣSIG := (KGen,Sig,Vf) consists of algorithms
{pSig,Adapt,pVf,Ext} defined as:
1) pSig(sk,m,Y)→ σ̃: The pre-signing algorithm inputs se-
cret key sk, message m ∈ {0, 1}λ and statement Y ∈ LR,
outputs pre-signature σ̃;
2) pVf(pk,m,Y, σ̃)→ b: The pre-verification algorithm in-
puts public key pk, message m ∈ {0, 1}λ, statement Y ∈ LR
and pre-signature σ̃, outputs a bit b ∈ {0, 1};
3) Adapt(σ̃, y)→ σ: The adaptor algorithm inputs pre-
signature σ̃ and witness y, outputs signature σ;
4) Ext(σ, σ̃,Y)→ y: The extraction algorithm inputs signa-
ture σ, pre-signature σ̃ and statement Y ∈ LR, outputs witness
y such that (Y, y) ∈ R.

Definition 2: (Digital Signature) A digital signature scheme
ΣSIG consists of algorithms (KGen,Sig,Vf) defined as:
1) KGen(1λ)→ (pk.sk): The key generation algorithm inputs
security parameter λ and outputs a public-secret key pair
(pk, sk);
2) Sig(sk,m)→ σ: The signing algorithm inputs secret key

sk and a message m ∈ {0, 1}λ, outputs a signature σ;
3) Vf(pk,m, σ)→ b: The verification algorithm inputs the
verification key pk, message m and signature σ, outputs b = 1
if σ is a valid signature of m under public key pk and b = 0
otherwise.

Definition 3: (Hard Relation) A hard relation R is de-
scribed as LR := {Y|∃y, s.t.(Y, y) ∈ R} and satisfies:
1) RGen(1λ)→ (Y, y): The sampling algorithm takes as
input security parameter λ and outputs statement-witness pair
(Y, y) ∈ R;
2) The relation is poly-time decidable;
3) There is no adversary A with statement Y can output
witness y with non-negligible probability.

Definition 4: (Verifiable Timed Dlog) A VTD w.r.t. a group
G with prime order q and generator g consists of four
algorithms (Commit,Vf,Open,ForceOp) defined as:
1) Commit(x, r, T )→ (C, π): The commitment algorithm in-
puts discrete log x ∈ Z∗q , randomness r ∈$ {0, 1}λ and timing
hardness T , outputs commitment C and proof π;
2) Vf(H,C, π)→ b: The verification algorithm inputs group
element H := gx, C and π, outputs b = 1 if C is a valid
commitment of x with hardness T and b = 0 otherwise;
3) Open(C)→ (x, r): The open algorithm inputs commit-
ment C, outputs the committed value x and randomness r;
4) ForceOp(C)→ x: The force open algorithm inputs com-
mitment C and outputs the committed value x.

C. Security analysis

Theorem 1: (Atomicity) Assume ΣSIG
AS is a secure adaptor

signature scheme w.r.t. a secure digital signature scheme ΣSIG

and a hard dlog relation R; protocols ΓSIG
Sig and ΓSIG

AdpSig are
UC-secure 2PC protocols for jointly computing ΣSIG.Sig and
ΣSIG

AS .pSig; VTD is a secure timed commitment of dlog. Then
protocol PipeSwap running in the (FB,Fsmt,Fclock)-hybrid
world UC-realizes ideal functionality F .

Proof: We now prove that protocol PipeSwap (Fig.6) UC-
realizes the cross-chain swaps ideal functionality F (Fig.8).

To show the indistinguishability between the ideal world
and the real world, we construct a simulator S to simulate
the protocol PipeSwap in the real world while interacting
with the ideal functionality F . At the beginning, S corrupts
one user of {P0,P1} as A does. We begin with the real
world protocol execution, gradually change the simulation
in these hybrids and then we argue about the proximity of
neighbouring experiments.
Hybrid H0: It is the same as the real world protocol execution
(Fig.11);
Hybrid H1: It is the same as the above execution except that
the 2PC protocol ΓSIG

Sig in the Swap Setup Phase and Swap
Lock Phase to generate signatures is simulated using the 2PC
simulators S2pc,1 for the corrupted user (notice that such a
simulator exists for a secure 2PC protocol ΓSIG

Sig );
Hybrid H2: It is the same as the above execution except that
the 2PC protocol ΓSIG

AdpSg in the Swap Lock Phase to generate
pre-signatures is simulated using the 2PC simulators S2pc,2
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for the corrupted user;
Hybrid H3: It is the same as the above execution except
that the adversary corrupts user P1 and outputs a valid swap
transaction (tx

(1)
swp, σ

(1)
swp) before the simulator initiates swap

operation on behalf of P0, the simulator aborts;
Hybrid H4: It is the same as the above execution
except that the adversary corrupts user P0 and
outputs a valid swap transaction (tx

(0)
swp, σ

(0)
swp) before

timeout T1. The simulator outputs (tx
(1)
swp, σ

(1)
swp) and if

ΣSIG.Vf(pk(01), tx
(1)
swp, σ

(1)
swp) 6= 1, the simulator aborts;

Hybrid H5: It is the same as the above execution except that
the adversary corrupts user P0 and initiates the swap operation
(tx

(0)
swp, σ

∗(0)
swp ) after timeout T1. The simulator outputs

(tx
(1)
rfd, (σ̌

(1)
rfd, σ̂

(1)
rfd)) if ΣSIG.Vf(p̂k

(1)

rfd, tx
(1)
rfd, σ̂

(1)
rfd) 6= 1 or

ΣSIG.Vf(pk(10), tx
(1)
rfd, σ̌

(1)
rfd) 6= 1, the simulator aborts;

Hybrid H6: It is the same as the above execution except
that the adversarial P0 outputs a valid refund transaction
(tx

(0)
rfd, σ

(0)
rfd) before timeout T0, the simulator aborts;

Hybrid H7: It is the same as the above execution except
that the adversarial P1 outputs a valid refund transaction
(tx

(1)
rfd, σ

(1)
rfd) before timeout T1, the simulator aborts;

Hybrid H8: It is the same as the above execution
except that the adversary corrupts user P0 and
the simulator obtains (tx

(1)
rfd, σ

(1)
rfd) after timeout

T1, if ΣSIG.Vf(p̂k
(1)

rfd, tx
(1)
rfd, σ̂

(1)
rfd) 6= 1 or

ΣSIG.Vf(pk(10), tx
(1)
rfd, σ̌

(1)
rfd) 6= 1, the simulator aborts;

Hybrid H9: It is the same as the above execution
except that the adversary corrupts user P1 and the
simulator obtains (tx

(0)
rfd, σ

(0)
rfd) after timeout T0, if

ΣSIG.Vf(pk(01), tx
(0)
rfd, σ

(0)
rfd) 6= 1, the simulator aborts.

Simulator S: The simulator S is defined as the execution
in H9 while interacting with the ideal functionality F . It
simulates the view of the adversary and receives messages
from the ideal functionality F .

Below we show the indistinguishability between H0 and
H9. In addition, we use ≈c to denote computational indistin-
guishability for a PPT algorithm.
H0 ≈c H1: The indistinguishability directly follows from the
security of 2PC protocol ΓSIG

Sig . The security of 2PC protocol
ΓSIG

Sig for signature generation guarantees the existence of
S2pc,1;
H1 ≈c H2: The indistinguishability directly follows from
the security of 2PC protocol ΓSIG

AdpSig. The security of 2PC
protocol ΓSIG

AdpSig for pre-signature generation guarantees the
existence of S2pc,2;
H2 ≈c H3: The only difference between the hybrids is that
in H3 the simulator aborts, if the adversary corrupts user P1

and outputs a valid swap transaction (tx
(1)
swp, σ

(1)
swp) before the

simulator initiate a swap on behalf of user P0;
H3 ≈c H4: The only difference between the hybrids is that
in H4 the simulator aborts, if the adversary corrupts user
P0 and outputs a valid swap transaction (tx

(0)
swp, σ

(0)
swp) before

timeout T1, while the simulator cannot obtains its valid swap

transaction. The probability of the event triggered in H4 is
negligible;
H4 ≈c H5: The only difference between the hybrids is that
in H5 the simulator aborts, if the adversary initiates a swap
operation after timeout T1, the simulator cannot post its valid
refund transaction. With the security of underlying blockchain
and VTD, the probability of the event triggered in H5 is
negligible;
H5 ≈c H6: The only difference between the hybrids is that in
H6 the simulator aborts, if the adversary P0 outputs a valid
refund transaction before timeout T0. With the security of
VTD, the probability of the event triggered inH6 is negligible;
H6 ≈c H7: The only difference between the hybrids is that in
H7 the simulator aborts, if the adversary P1 outputs a valid
refund transaction before timeout T1. With the security of
underlying blockchain and VTD, the probability of the event
triggered in H7 is negligible;
H7 ≈c H8: The only difference between the hybrids is that
in H8 the simulator aborts, if it cannot post a valid refund
transaction after timeout T1. With the security of underlying
blockchain and VTD, the probability of the event triggered in
H8 is negligible;
H8 ≈c H9: The only difference between the hybrids is that
in H9 the simulator aborts, if it cannot post a valid refund
transaction after timeout T0. With the security of VTD, the
probability of the event triggered in H9 is negligible.
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