
Weak Consistency mode in Key Transparency: OPTIKS
A Short Note

Esha Ghosh∗ Melissa Chase†

Microsoft Research

Abstract

The need for third-party auditors in privacy-preserving Key Transparency (KT) systems presents a
deployment challenge. In this short note, we take a simple privacy-preserving KT system that provides
strong security guarantees in the presence of an honest auditor (OPTIKS) and show how to add a auditor-
free mode to it. The auditor-free mode offers slightly weaker security. We formalize this security property
and prove that our proposed protocol satisfies our security definition.

1 Introduction

As Key Transparency (KT) is seeing more deployments [13, 2, 1] and standardization efforts [10], questions
around having a third party auditor in the system is evolving as a major discussion point. On the upside,
having a third party auditor to check some global consistency (such as, append-onlyness [3, 7, 5, 6] or version
invariant [12, 11]) among the KT datastructures helps achieve strong consistency guarantees in a scalable
way: if a malicious server ever distributes a fake key on behalf of a user when the user was offline, the user
will detect this as soon as she comes online next. However, finding an auditing service is more challenging
in practice: if the server pays a third party to be their auditor, clearly there is an incentive mismatch. The
server could also serve the audit proofs to any anonymous request. But this becomes expensive for the server
as it can be bombarded with anonymous audit requests. One potential solution to this problem would be to
compress the audit proofs while retaining the efficiency of lookup, so that, the clients can cheaply verify the
proofs themselves without the need for a dedicated auditor. While SNARKs can help achieve this, in theory,
they are not yet suitable for a large KT scale deployment. So, this remains an open problem.

A second approach that is being proposed is the idea of getting rid of global consistency proofs altogether
at the cost of achieving a slightly weaker notion of consistency [11, 4, 8]. Informally, weak consistency
means the following: if a fake key is distributed on behalf of a user while she was online, either she or the
recipient will detect it after the next time she and the recipient comes online. Whether this weaker notion of
consistency is viable for companies, remains to be seen.

However, it would be interesting to see if any of the KT systems that typically operate with the third
party auditor assumption, can be made to work in the auditor-less mode without any significant changes
in the server’s data structures. This will have the advantage of being able operate in both modes: if an
auditor is available, the system can provide strong consistency. If not, or if the users do not want to rely on
external auditors, the system can provide weak consistency for them. Moreover, many of these KT systems
(e.g. [3, 7, 5, 6]) provide both content privacy and metadata privacy. It will be interesting if the transformation
required for the auditor-less mode does not significantly weaken the privacy guarantees provided by these
KT systems.

In this work, we take a simple KT system that operates in the strong consistency mode: OPTIKS. We show
how OPTIKS can operate in the auditor-free weak consistency mode without changing the server’s publish
algorithm (i.e., the server’s data structures). While we do not rigorously prove it, we believe this auditor-
free mode does not introduce any significant leakage. Formalizing the privacy guarantee and enhancing the
efficiency of the auditor-free mode is left as future work.

∗esha.ghosh@microsoft.com
†melissac@microsoft.com

1

2 Preliminaries

In this section, we recall some of the cryptographic and combinatorial building blocks that we will be using
for instantiating a privacy-preserving KT system (OPTIKS) in the auditor-free weak consistency mode.

The cryptographic primitive underlying OPTIKS is Privacy-Preserving Authenticated History Dictionary
or PAHD. Here, we recall PAHD instantiation as in OPTIKS almost verbatim. The PAHD construction uses
a cryptographic primitive called Ordered Zero Knowledge Sets or oZKS underneath. We recall oZKS first,
and then describe the PAHD construction. The oZKS definition is also quoted from [6] verbatim.

I Ordered Zero Knowledge Set

• oZKS.Init: The initialization algorithm outputs an initial commitment to the empty datastore.
• oZKS.Update / oZKS.VerifyUpd: The update algorithm adds a set of new label-value pairs to the datastore,
outputting the new commitment to the data and an update proof. The update verification algorithm then
verifies the update proof between consecutive commitments.

• oZKS.Query / oZKS.Verify: The query algorithm returns the value associated to the queried label, along
with the query proof and the epoch that the label was added (or ⊥ and a non-membership proof if the
label is not a member). The query verification algorithm verifies the value returned by a query using the
proof.

Soundness of oZKS without auditor. Here we note that, the soundness property of oZKS is defined in the
presence of an honest auditor (i.e., without a party to run a oZKS.VerifyUpd for each update) in [6]. However,
in our construction, we will not use the oZKS.VerifyUpd. So, we will use a weaker soundness guarantee
compared to the oZKS in [6]. Informally, we will use the property that, for a given oZKS commitment for
an epoch, for any label-value pair, proofs cannot be constructed for different values for the same label, or for
different epochs for the label-value pair. In other words, an adversary A∗ wins the soundness game if it can
either produce com, label, val1, val2, t1, t2, π1, π2 such that both proofs verify for val1 ̸= val2 or t1 ̸= t2. Notice
that this is only the first winning condition in the soundness definition of [6].

II OPTIKS’s Privacy-Preserving Authenticated History Dictionary (PAHD)

▷ PAHD.Init(r): The server chooses a random seed and initializes an empty oZKS via oZKS.Init by giving r
as input. The oZKS commitment is returned as the initial commitment and the oZKS initial state is stored
in the server’s state. The server also initializes the epoch to 0 and stores this in its state.

▷ PAHD.Upd(stt−1, [kj , vj]j): The server adds the key-value pairs that are input to the oZKS to create a
new commitment to the dictionary. It first checks that all the keys to be updated are unique; if not, it
returns ⊥. In order to differentiate between versions for a key, the server uses the key concatenated with
its version number as the oZKS label. We assume that the server keeps track of the version number for
each key in its state. Thus, for each key-value pair (k, v), the server first checks if the key already exists in
the oZKS. If it does not, the server uses (k | 1) as the label. Otherwise, if the key is already at version n,
then the server uses (k | n+ 1). Once all the label-value pairs have been formed, the server adds them to
the oZKS via oZKS.Update. The server increments the epoch t− 1 in its state to t, and the resulting oZKS
commitment comt serves as the PAHD commitment for epoch t. The oZKS update proof πupd serves as
the PAHD update proof ΠUpd

t for epoch t and is stored in the server’s state. The server also stores in its
state the new oZKS datastore and state.

▷ PAHD.Lkup(stt, k): For a lookup request for key k, the server retrieves from its state the latest oZKS
commitment comt and the latest version number α for k (where α = 0 if k is not in the PAHD). If k is
in the PAHD, then the server forms labels (k | 1), . . . , (k | α) and calls oZKS.Query for each label to get
back [(πi, vi, ti)]

α
i . To retrieve the non-membership proof πα+1 for the next version of the key (or to prove

that k is not in the dictionary when α = 0), the server calls oZKS.Query for label (k | α + 1). The server
returns either vα as the value for k if α > 0 or ⊥ otherwise.

The server returns as its lookup proof:

– Correct version i is set at epoch ti: For each i ∈ [1, α], πi serves as the membership proof for
(k | i) with value vi and associated epoch ti in oZKS w.r.t. comt. This means the server must return
[(πi, vi, ti)]

α
i as part of the proof.

2

– Server could not have shown version α + 1: Proof πα+1 serves as the non-membership proof for
(k | α+ 1) in oZKS w.r.t. comt.

▷ PAHD.VerLkup(comt, k, v, π): The client verifies each membership proof for labels (k | i) for i ∈ [1, α] and
non-membership proof for (k | α+ 1) w.r.t. comt via oZKS.Verify. The client also checks that version α is
less than the current epoch t, since otherwise this would imply multiple versions were added in the same
epoch 1. We want to preserve a total ordering of key versions and so wish to prevent this from happening.
Lastly, the client verifies that the update epochs t1, . . . , tα are monotonically increasing.

▷ PAHD.Hist(stt, k): This algorithm proceeds the same as Lkup, except that in its syntax it explicitly returns
all key versions rather than including them in the proof.

▷ PAHD.VerHist(comt, k, [(vi, ti)]
n
i ,Π

Ver): This algorithm proceeds identically to that of VerLkup.

▷ PAHD.Audit(comj , comj+1, j, j + 1,ΠUpd
j+1): The auditor verifies the oZKS update proof in ΠUpd

j+1 via
oZKS.VerifyUpd and then checks that j + 1 ≤ t, where t is the current epoch.

III Checkpointing

In this section, we will introduce a deterministic algorithm (ComputeCheckpoints) that does the following:
given an integer interval, it outputs a set O(log l) points within that interval, where k is the size of the integer
interval. More precisely, ComputeCheckpoints is a deterministic algorithm, that, given any interval (L,R),
L,R ∈ N, outputs a set of integers (cj)

l
j=1, where L ≤ c1 < c2 < . . . < cl ≤ R and l = O(log |R − L|).

We give an algorithm for ComputeCheckpoints below. Note that, [11] also proposes a similar algorithm for
ComputeCheckpoints. Compared to [11], our checkpoints algorithm produces 2 times as many checkpoints
but is easier to analyze.

ComputeCheckpoints(L,R)

• Require that L ≤ R,L,R ∈ N

• A compact range, [(Li, Ri)]
m
i=1 ← Compact(L,R) is the minimum set of m subranges that covers

(L,R). It is computed by computing canonical coverings of the range (L,R) as described in [9].

• Output (c1 = L1, c2 = R1, c3 = L2, c4 = R2, . . . , c2m−1 = Lm, c2m = Rm) as the checkpoints.

For our purpose, we will consider the intervals to be over the epochs of a KT system (as in [9, 11]). We
will first provide some observations and then prove an important lemma about intersection of checkpoints of
two overlapping intervals.

Observation 1. Consider the binary tree imposed over all epochs of the KT system. Let us call it the
Chronological Tree (ChronTree). Notice that the points in a given compact range, (Li, Ri) are exactly the set
of all leaves of a full binary subtree within ChronTree of height log(|Ri − Li|). Therefore, by construction, the
checkpoints of a compact range (Li, Ri) are either the leftmost or the rightmost leaves of induced subtrees
of ChronTree.

Observation 2. For any two full binary induced subtrees T1, T2 for ChronTree, either T1 ⊆ T2 or T2 ⊆ T1

or T1 ∩ T2 = ⊥.

Lemma 1. For any two intervals Int1 = (L1, R1), Int2 = (L2, R2) such that, L1 ≤ L2 ≤ R1 ≤ R2, let
(ci)

n
i=1 ← ComputeCheckpoints(Int1) and (cj)

m
j=1 ← ComputeCheckpoints(Int2). Then, there exists i ∈ [n], j ∈

[m] such that ci = cj.

Proof. Notice that, if either of the endpoints are equal (L1 = L2, L2 = R1, R1 = R2), then, by our
construction the intervals will share a checkpoint. The non-trivial case is when L1 < L2 < R1 < R2. We will
focus on this case for the rest of the proof.

In this case, the intervals intersect at more than one point. Let is denote the intersecting interval as:
Int3 = [L2, R1]. There are two possible cases:

1. There exists a c ∈ Int3 such that c ∈ ComputeCheckpoints(Int1) ∩ ComputeCheckpoints(Int2).

1Since we have very short epochs, this is not a limitation

3

2. Suppose there is no such c. We will prove, by contradiction, that this case cannot happen.

Since L2 > L1 , this means, there exists some (Lx, Rx) ∈ Compact(L1, R1) such that Lx ≤ L2 ≤ Rx.
Note that if either of these constraints is an inequality, then we have an intersecting checkpoint c,
since by construction Lx, Rx ∈ ComputeCheckpoints(Int1) and L2 ∈ ComputeCheckpoints(Int2). Thus
by assumption we must have Lx < L2 < Rx. Let us denote the induced subtree corresponding to
(Lx, Rx) as T1.

Let cy be the largest checkpoint in ComputeCheckpoints(Int2) such that cy < Rx. Note that some
compact range of Int2 has to cover the points on (cy, Rx); it must be a single range because several
ranges would imply another checkpoint between cy and Rx. Let the corresponding induced subtree be
denoted as T2. This means cy is has to be the leftmost leaf of T2, and that the rightmost leaf must be
≥ Rx. In fact if the rightmost leaf of T2 was equal to Rx, then that would again give a checkpoint in
common, so we conclude that the rightmost leaf must be strictly greater than Rx.

So now, we have two overlapping induced subtrees of ChronTree, T1 and T2 where T1 ̸⊆ T2 and vice
versa. This contradicts Observation 2. Thus we arrive at a contradiction.

This concludes the proof. □

Lemma 2. For any interval (L,R), let (li, ri)ti=1 be arbitrary intervals of (L,R) such that L = l1, R =
rt, l2 = r1, l3 = r2, . . . , lt = rt−1. Let S ← ComputeCheckpoints(L,R), Si ← ComputeCheckpoints(li, ri).
Then we have, S ⊆ T where T = ∪ti=1S

i.

Proof. For the sake of contradiction, suppose not. Then there exists at least one checkpoint c ∈ S \ T . By
our construction, c denotes one endpoint of a compact range in (L,R). Let w be the other endpoint of that
range and let Tcw denote the corresponding induced subtree of ChronTree.

c has to be covered by some compact range belonging to one of the intervals. Let us denote this interval
as (l∗, r∗). Let (a, b) be the compact range of (l∗, r∗) that covers c. Since c is not a checkpoint in (l∗, r∗),
this means, a < c < b. Let Tab be the induced subtree of ChronTree for this compact range.

Clearly Tcw and Tab have an non-empty intersection, so by Observation 2, it must be the case that either
Tcw ⊆ Tab or vice versa. If the two are equal, then by construction c would be included in T , and a < c < b
means that Tab ̸⊆ Tcw. Thus we conclude that Tcw ⊆ Tab. However, note that the entire range (a, b) ∈ (L,R),
so by the construction of Compact, this would imply that Tcw should not be included in Compact(L,R), and
instead Tab or one of it’s parent trees should be included. This contradicts our assumption that c ∈ S. □

3 A Weakly Consistent Privacy-Preserving Authenticated History
Dictionary Construction (wPAHD)

We call the cryptographic primitive that achieves a weakly consistent, auditor-free mode in a KT system
a weakly consistent privacy-preserving authenticated dictionary (wPAHD). In this section, we give both the
API and the instantiation of a wPAHD. Our instantiation uses the Checkpointing algorithm from Section III
and the OPTIKS construction that we recalled in Section 2. The main differences between a wPAHD and a
PAHD are that: 1) In wPAHD the clients are stateful whereas in PAHD, clients are stateless. 2) wPAHD does
not have any global Audit algorithm as opposed to PAHD.

The system is designed to be used as follows. In each epoch, first the users will perform local UpdateClient
operations, and the server will combine all those updates and run Upd to update its state and publish an
updated commitment. Each user is allowed to update their key at most once per epoch. The users will perform
lookup queries, receive results form the server, and record those results in their states via ProcessLkup. At the
end of the epoch any user can request to monitor their results. In this case the server will run GetMonitorProof
using the set K including all of the users that this user has ever queried, and the user will verify the resulting
proof via Monitor. We do not require that every user perform all of these operations every epoch, however
we do require that every user who performed an UpdateClient and/or one or more ProcessLkup operations in
a given epoch will perform a Monitor operation at the end of that epoch.

• wPAHD.Init(r) This is the server initialization. This remains the same as PAHD.Init(r) in OPTIKS.

• wPAHD.Upd(stt−1, [kj , vj]j): This remains the same as PAHD.InitUpd(stt−1, [kj , vj]j) in OPTIKS.

4

• wPAHD.InitClient(u): Initializes client state for a username u as follows. This initializes a table T
indexed by usernames. Corresponding to each username (that is not u), there is a list lookuplist that
records the values (and potentially some additional information such as epoch number) corresponding
to all the lookup queries the user has made for that username. Table T is initialized with the row
(u, vallist = ⊥) which will store the values that the user sets in UpdateClient. T and u are stored in
the state stu. In addition, the following variables are initialized and stored in stu: lastMonitored :=
−1, lastModified := −1, tcurr = 0. lastMonitored will be used to track the last epoch in which the user
ran Monitor, lastModified will track whether the user performed an UpdateClient or a ProcessLkup and
therefor needs to monitor, and tcurr tracks the user’s view of the current time.

• wPAHD.UpdateClient(stu, v, t) This algorithm captures when a client updates its own state with a new
value, In particular, this algorithm retrieved the row corresponding to u from its table T and receives
the current epoch from the server t. It checks that lastModified = −1 and that the tcurr ≤ t. if not, it
stops and returns. Otherwise, it does the following.

This algorithm appends vallist← vallist||(v, tcurr) and sets lastModified← tcurr and tcurr = t.

• wPAHD.Lkup(stt, k): For a lookup request for key k the server retrieves from its state the latest epoch
tcurr and the latest version number α for k (where α = 0 if k is absent). The server returns vα, tcurr.
The server returns vα = −1 if α is 0.

• wPAHD.ProcessLkup(stu, k, v, t) This algorithm does the following:

– Require k ̸= u.

– Require lastModified ∈ {−1, t} and t ≥ tcurr.

– If lastModified = −1, set it to lastModified← t.

– Set tcurr = t

– Update the entry corresponding to k in stu to: (k, lookuplist← lookuplist||(v, t)).

• wPAHD.GetMonitorProof(stt, u,K, t, tcurr) The server runs this algorithm to generate the monitoring
proofs for user u. K is the list of all the other users that user u has performed a Lkup for. It does the
following:

1. Require t ≤ tcurr and tcurr is the latest epoch.

2. (cj)
m
j=1 ← ComputeCheckpoints(t, tcurr).

3. Retrieve the the commitments comcj for each of the checkpoints.

4. For all users k, u ∈ K:
(a) Retrieve the latest version number αcj for epoch cj for k (where αcj = 0 if k is absent). If

αcj ̸= 0, then the server forms labels (k | 1), . . . , (k | αcj) and calls oZKS.Query for each label

to get back [(πi, vi, ti)]
αcj

i=1. To retrieve the non-membership proof παcj
+1 for the next version

of the key (or to prove that k is not in the dictionary), the server calls oZKS.Query for label
(k | αcj + 1).

(b) Let πk = [(πi, vi, ti)]
αcj

i=1 for (cj)
m
j=1 and tcurr.

5. Return π = πu,K, {πk}k∈K

• wPAHD.Monitor(stu, π, lastMonitored, t) The client does the following:

1. Require that lastMonitored ≤ t.

2. Require that lastModified ∈ {−1, t}
3. Require that tcurr ≤ t

4. (cj)
m
j=1 ← ComputeCheckpoints(lastMonitored, t).

5. Parse π = πu,K, {πk}k∈K

6. For each username k ∈ T ∪ {u} (where T is the table in stu), do the following

(a) Let the row corresponding to k in T be lookuplist = [(vs, ts)]
β
s=1.

5

(b) Let πk = ([(πi,j , vi,j , ti,j)]
αcj

i=1)
m
j=1 be the part of the proof corresponding to user k. If no such

proof exists, set succ = 0 and return.

(c) Check that the values and times corresponding to each checkpoint are consistent, i.e. for each

j ∈ [m− 1], [(vi,j , ti,j)]
αcj

i=1 is a prefix of [(vi,j+1, ti,j+1)]
αcj+1

i=1 .

(d) Check that the times in the final checkpoint list are sorted, i.e. for all i ∈ [αcm − 1], 0 < ti <
ti+1.

(e) For each j ∈ [m] (i.e., for each checkpoint):

– Check that tαcj
,m ≤ cj and that either αcj = αcm(i.e. all versions were present in epoch

cj) or tαcj
+1,m > cj (i.e. the next version wasn’t added until after cj).

– Check each membership proof for labels (k | i) for i ∈ [1, αcj] and non-membership proof
for (k | αcj + 1) w.r.t. comcj via oZKS.Verify.

(f) if k ̸= u Check that the values in lookuplist are consistent with the final checkpoint list. I.e.
for each s ∈ [β]:

– If ts < t1,m, check that vs = −1.
– If ts ≥ tαcm ,m, check that vs = vαcm ,m.

– Otherwise, let ℓ be the value such that tℓ,m ≤ ts < tℓ+1,m. Check that vs = vℓ,m.

(g) If k = u, check that the values in vallist match those in the final checkpoint list, i.e. vallist =
{(vi,m, ti,m}

αcm
i=1 .

7. If all the checks pass, set lastModified ← −1, lastMonitored ← t, tcurr = t and set succ − 1. Else,
set succ = 0.

4 Security properties of wPAHD

In this section we give a formal definition for soundness for wPAHD.

Soundness. We define the soundness of a wPAHD using a game. We say a wPAHD is sound if for any
PPT adversary, the probability of the adversary winning the game is negligibly small. Informally, the game
captures the following. Consider Alice with username u0 and Bob with username u1. The adversary can
cause Alice and Bob to update their own values and to query for each other’s values and the values of other
users. The adversary can also have the user perform monitoring. We require that in any epoch that Alice
perform an update and/or at least one query she must also perform a monitoring, and similarly for Bob.
The adversary wins if there is an epoch i where Bob’s query for Alice’s value is inconsistent with the update
operation Alice has performed, with the additional restriction that each of Alice and Bob must perform at
least one monitoring operation after epoch i.2

1. Initialize the following variables:

(a) tcurr = 0

(b) lastMonitored0 = lastMonitored1 = lastModified0 = lastModified1 = −1
(c) vcurr0 = vcurr1 = −1 (neither user has set their public key yet)

(d) vnew0 = vnew1 = ⊥
(e) monitoringTimes0 = monitoringTimes1 = ⊥
(f) StoredV0 = StoredV1 = LookUpV0 = LookUpV1 = ⊥
(g) Digests = ⊥

2. k0, k1, stA ← A

3. st0 ← InitClient(k0), st1 ← InitClient(k1)

4. i, i0, i1 ← AOMonitor,OLookUp,OStore,OPublish(stA)

2This requirement is actually slightly more stringent - we require that Alice monitors at least one epoch i0 and Bob monitors
in at least one epoch i1 such that i < i0 ≤ i1.

6

5. A wins if all of the following are true:

• i < i0 < i1

• LookUpV0[i] ̸= StoredV0[i] and LookUpV0 ̸= ⊥ (i.e. u1 did a lookup for u0 and the result was
inconsistent with u0’s ClientUpdate operations)

• i0 ∈ monitoringTimes0, i, i1 ∈ monitoringTimes1.

The oracles are defined as follows:

OMonitor(t, π, b)

• Require t /∈ monitoringTimesb

• Require lastModifiedb ∈ {−1, t} to ensure that either there have been no lookups/updates since the
last monitoring, or that the only looksups/updates were for the same epoch as this monitoring.

• Require lastMonitoredb ≤ t ≤ tcurr

• st′b, succ← Monitor(Digests[t], stb, lastMonitoredb, t)

• if succ = 0, abort and A loses the game

• if vcurrb ̸= ⊥, then ∀t′ ∈ {lastMonitoredb + 1, . . . , t} set StoredVb[t
′] = vcurrb

• if vnewb ̸= ⊥, set StoredVb[t] = vnewb

• Set

– stb = st′b

– lastMonitoredb = t

– lastModifiedb = −1
– monitoringTimesb ← monitoringTimesb||t
– if vnew ̸= ⊥, set vcurrb ← vnewb and vnewb ← ⊥

OLookUp(t, b, k, v) i.e. user kb performs a lookup for user k

• Require t /∈ monitoringTimesb

• Require lastMonitoredb < t ≤ tcurr

• If lastModifiedb = −1, set lastModifiedb = t.

• Require lastModifiedb = t

• Require (k ̸= k1−b OR LookUpV1−b[t] = ⊥) to ensure that user b does at most one lookup for k1−b

in each epoch.

• st′b ← ProcessLkup(t, v, stb, k1−b)

• Set stb = st′b

• If k = k1−b, set LookUpV1−b[t] = v

7

OStore(t, b, v) i.e. user kb updates their public key to v

• Require t /∈ monitoringTimesb

• Require vnewb = ⊥

• Require lastModifiedb = −1

• Require lastMonitoredb < t ≤ tcurr

• Set lastModifiedb = t.

• st′b ← UpdateClient(v, stb, t)

• Set stb ← st′b

• Set vnewb ← v

OPublish(d)

• Set tcurr = tcurr + 1

• Set Digests[tcurr] = d

5 Security Proof for our wPAHD construction

In this section, we prove that our construction satisfies the soundness definition.
If the Adv wins the game, it means:

• LookUpV0[i] ̸= StoredV0[i] and LookUpV0 ̸= ⊥.

• Let StoredV0[i] = v. Let y ≤ i be the epoch at which v is set, i.e, StoredV0[y] = v. We have two cases:

– y < i:

∗ Let x be the largest entry in monitoringTimes0 such that x < i. Since y < i, x exists.

∗ Consider all the monitoring intervals between x and i0 for user u0. Let S′ be the col-
lection of all the checkpoints of all the monitoring intervals between x and i0. Let S ←
ComputeCheckpoints(x, i0). By Lemma 2, S ⊆ S′.

∗ We already have that i, i1 ∈ monitoringTimes1. There could be multiple entries between i, i1.
Let T ′ be the collection of all the checkpoints for all the intervals on monitoringTimes1 such
that the intervals exactly cover the interval (i, i1).

∗ Let T ← ComputeCheckpoints(i, i1). By Lemma 2, T ⊆ T ′.

∗ Now we have two overlapping intervals, (x, i0) and (i, i1) (since x ≤ i ≤ i′ ≤ i1. Therefore, by
Lemma 1, S ∩ T ̸= ⊥. Let cintersection be a checkpoint in the intersection. Note that, since the
checkpoints are completely contained within the intervals, we have, cintersection ≥ i. Moreover,
cintersection must be a member of S′ and T ′ since they are supersets of S and T respectively.

– y = i: In this case, we have i ∈ monitoringTimes0. Thus, we have two intersecting intervals (i, i0)
(for u0) and (i, i1) (for u1). Notice that these intervals might have sub intervals, but, since by
Lemma 2 the checkpoints of the larger intervals will be subset of the checkpoints of the smaller
sub-intervals, we only consider the larger intervals (as in the previous case). Since our checkpoining
algorithm always includes the endpoints of the intervals as checkpoints, we can guarantee that the
two intersections have at least one shared checkpoint cintersection = i.

• Observe that since LookUpV0[i] = v∗ ̸= ⊥, OLookUp(i, 1, k0, v∗) was called, which in turn means in
epoch i, user u1 ran ProcessLkup(st1, k1, v

∗, i) and added (v∗, i) to its table entry for u0.

8

• Case 1: when StoredV0[i] = v ̸= −1. This implies that there was at least one OStore operation at or
before epoch i. Let iStoredV be the lastest epoch at or before i where an OStore(iStoredV, 0, v

′) was called
for some v′, and note that by the definition of OStore and OMonitor, it must be the case that v′ = v. By
our construction, this means that (v, iStoredV) was added to user u0’s vallist in epoch iStoredV. Moreover,
since this was the latest such epoch, this means that there is never any epoch t in any entry in the
vallist with iStoredV < t ≤ i.

Now, consider the intersection checkpoint cintersection discussed above; for each of u0, u1 there will be
some monitoring at or after epoch i which will include cintersection as one of the checkpoint epochs.
Moreover, by the logic above, this means that when those monitoring events occur, u0’s vallist will
contain (v, iStoredV), and no other entry with iStoredV < t ≤ i, while u1’s table will contain an entry
(v∗, i) for u0 where v∗ ̸= v.

Assuming the monitor succeeds, the former means that user u0’s monitoring proof will include a mem-
bership proof for (k0||α, v, iStoredV) with respect to comcintersection for some version α. Since the monitor
algorithm verifies that the insertion-epochs are increasing, this also implies that u0’s monitoring proof
includes membership proofs for (k0||a) with epoch < iStoredV for all a ∈ [α − 1] and either a non-
membership proof for (k0||α+ 1) or a proof for (k0||α+ 1) with insertion epoch > i.

Assuming the monitoring succeeds, the latter means that u1’s monitoring proof will include a mem-
bership proof with respect to comcintersection for (k0||α∗, v∗, i∗) for some version α∗ and i∗ ≤ i. Since the
monitor algorithm verifies that the insertion-epochs are increasing, this also implies that u1’s moni-
toring proof includes membership proofs for (k0||a) with epoch < i∗ for all a ∈ [α∗ − 1] and either a
non-membership proof for (k0||α∗+1) or a membership proof for (k0||α∗+1) with insertion epoch > i.

If α = α∗, this clearly breaks oZKS soundness.

If α < α∗, then as described above, u0’s monitoring proof must contain either a non-membership proof
for (k0||α + 1) or a proof for (k0||α + 1, vi′ , i

′) with i′ > i, where α + 1 ≤ α∗. However, by the logic
above u1’s monitoring proof must contain a membership proof for (k0||α + 1) with an insertion epoch
< i∗ ≤ i. This this breaks oZKS soundness.

The case where α > α∗ follows similarly.

• Case 2: If StoredV0[i] = −1, this implies that the first OStore operation occurs after epoch i. This means
that user u0’s vallist does not ever contain any epoch t ≤ i. Then, when u0 later performs monitoring
w.r.t. checkpoint cintersection, if monitoring succeeds, the proof must contain either a non-membership
proof for (k0||1) or a membership for (k0||1) with insertion epoch > i. However, by the logic above, u1’s
monitoring proof must include a membership proof for (k0||1) with insertion epoch ≤ i. This breaks
soundness of the oZKS.

6 Acknowledgements

The authors would like to thank Kevin Lewi, Brendan McMillion and Kim Laine for their valuable feedback
and suggestions.

References

[1] Advancing iMessage security: iMessage contact key verification.
https://security.apple.com/blog/imessage-contact-key-verification/ (accessed: 2024-01-08).

[2] What is key transparency? https://proton.me/support/key-transparency (accessed: 2024-01-08).

[3] M. Chase, A. Deshpande, E. Ghosh, and H. Malvai. Seemless: Secure end-to-end encrypted messaging
with less trust. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security CCS. ACM, 2019.

[4] Google. Google key transparency. https://github.com/google/keytransparency/blob/master/docs/meet-
in-the-middle.md (accessed: 2024-05-17), 2020.

9

[5] J. Len, M. Chase, E. Ghosh, D. Jost, B. Kesavan, and A. Marcedone. ELEKTRA: efficient lightweight
multi-device key transparency. In W. Meng, C. D. Jensen, C. Cremers, and E. Kirda, editors, Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, CCS 2023,
Copenhagen, Denmark, November 26-30, 2023, pages 2915–2929. ACM, 2023.

[6] J. Len, M. Chase, E. Ghosh, K. Laine, and R. C. Moreno. OPTIKS: An optimized key transparency
system. Cryptology ePrint Archive, Paper 2023/1515. http://eprint.iacr.org/2023/1515, 2023.

[7] H. Malvai, L. Kokoris-Kogias, A. Sonnino, E. Ghosh, E. Oztürk, K. Lewi, and S. F. Lawlor. Parakeet:
Practical key transparency for end-to-end encrypted messaging. In 30th Annual Network and Distributed
System Security Symposium, NDSS 2023, San Diego, California, USA, February 27 - March 3, 2023.
The Internet Society, 2023.

[8] B. McMillion. Key transparency. https://bren2010.github.io/draft-key-transparency/draft-mcmillion-
key-transparency.html (accessed: 2024-05-17), 2023.

[9] S. Meiklejohn, P. Kalinnikov, C. S. Lin, M. Hutchinson, G. Belvin, M. Raykova, and A. Cutter. Think
global, act local: Gossip and client audits in verifiable data structures, 2020.

[10] A. Melnikov and R. Mahy. IETF Key Transparency (draft charter).
https://datatracker.ietf.org/doc/charter-ietf-keytrans/ (accessed: 2023-06-02).

[11] N. Tyagi, B. Fisch, A. Zitek, J. Bonneau, and S. Tessaro. Versa: Verifiable registries with efficient client
audits from rsa authenticated dictionaries. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 2793–2807, 2022.

[12] I. Tzialla, A. Kothapalli, B. Parno, and S. Setty. Transparency dictionaries with succinct proofs of
correct operation. In Proceedings of the ISOC Network and Distributed System Security Symposium
(NDSS), February 2022.

[13] Whatsapp.com. Whatsapp encryption overview. White Paper –
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf (accessed: 2022-08-03),
2021.

10

