
SQIsign2D–West
The Fast, the Small, and the Safer

Andrea Basso1,2[0000−0002−3270−1069], Pierrick Dartois3,4[0009−0008−2808−9867],
Luca De Feo2[0000−0002−9321−0773], Antonin Leroux5,6[0009−0002−3737−0075],

Luciano Maino1[0009−0005−4495−5102], Giacomo Pope1,7, Damien
Robert3,4[0000−0003−4378−4274], and Benjamin Wesolowski8[0000−0003−1249−6077]

1 University of Bristol, Bristol, United Kingdom
2 IBM Research Europe, Zürich, Switzerland

3 Univ. Bordeaux, CNRS, INRIA, IMB, UMR 5251, F-33400 Talence, France
4 INRIA, IMB, UMR 5251, F-33400, Talence, France

5 DGA-MI, Bruz, France
6 IRMAR - UMR 6625, Université de Rennes, France

7 NCC Group, Cheltenham, United Kingdom
8 ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France

Abstract. We introduce SQIsign2D–West, a variant of SQIsign using
two-dimensional isogeny representations.
SQIsignHD introduced four- and eight-dimensional isogeny representa-
tions to improve signing times and provable security of SQIsign, at the
cost of slower verification. It left open the question of leveraging two-
dimensional representations, which we solve here by introducing new
algorithmic tools. These lead to a “best-of-both-worlds” scheme: our
signing times are only 2× to 3× slower than SQIsignHD but 10× to 15×
faster than SQIsign, our security proof rigorously reduces to an assump-
tion similar to the one behind SQIsignHD, and our verification times
are the fastest among all present variants of SQIsign. Additionally, like
SQIsignHD, SQIsign2D–West favourably scales to high levels of security.
Concretely, for NIST level I we achieve signing times of 80 ms and verifying
times of 4.5 ms, using optimised arithmetic for the x86_64 architecture.
For NIST level V, we achieve 470 ms for signing and 31 ms for verifying.

Keywords: Isogenies · Post-quantum · Signatures.

1 Introduction

SQIsign [14,9] is a signature scheme based on the conjectured hardness of com-
puting endomorphism rings of supersingular curves. A candidate in the NIST
post-quantum cryptography standardisation process, it features the smallest
combined size of public key and signature, but it also exhibits one the slowest
performances among all candidates.

The SIDH attacks [8,31,40] shook the foundations of isogeny-based cryp-
tography by showing that any isogeny can be efficiently recovered from its
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Table 1. Parameter sizes and performance of SQIsign2D–West. Average running times
computed using an Intel Xeon Gold 6338 (Ice Lake, 2GHz) using finite field arithmetic
optimised for the x64 architecture, turbo boost disabled. See Section 6 for details.

Sizes (bytes) Timings (ms)

Public key Signature Keygen Sign Verify

NIST I 66 148 30 80 4.5
NIST III 98 222 85 230 14.5
NIST V 130 294 180 470 31.0

evaluation on a sufficiently large torsion subgroup. Although they marked the end
of SIDH/SIKE [25,24] and related schemes, it was not long before the same tech-
nique was put to constructive use, notably in the encryption schemes FESTA [4]
and QFESTA [32], and in the SQIsignHD [11] variant of SQIsign. The key to
all these applications is to embed an isogeny of elliptic curves into an isogeny
between higher-dimensional abelian varieties. The number of dimensions used for
the embedding is a key parameter for efficiency: Robert [39] shows that 8 dimen-
sions are always enough, however the cost of representing the higher-dimensional
objects grows exponentially with the dimension, thus all practical constructions
strive to limit the embedding dimension. For example, FESTA and QFESTA
manage to restrict themselves to two-dimensional isogenies.

In the same vein, SQIsignHD consists of two sub-variants. The first, Rigorous-
SQIsignHD, uses eight-dimensional isogenies and strives for the best possible
provable security but is deemed unpractical. The second, FastSQIsignHD, uses
four-dimensional isogenies and compromises on the security proof to achieve
the best possible efficiency: the result is a signature scheme with smaller signa-
tures than SQIsign, similarly sized public keys, and significantly faster signing
times, but, realistically, slower verification owing to the complexity of the four-
dimensional representation.
Our contributions. The question of whether it is possible to obtain an improve-
ment over SQIsign by using only two-dimensional isogenies was left open in [11],
where a short paragraph commented on the apparent difficulty of this task. We
answer this question in the affirmative by introducing SQIsign2D–West.

To achieve this we introduce new tools for computing higher-dimensional
isogeny representations in the context of supersingular elliptic curves:

– An algorithm, a simple extension of [32, Algorithm 2], to evaluate a random
elliptic isogeny of given degree by embedding it in a two-dimensional isogeny;

– An algorithm, inspired by [35], to translate a quaternion ideal into a two-
dimensional representation of the corresponding elliptic curve isogeny. Com-
bined with an algorithm to sample uniformly random quaternion ideals of
given norm, it lets the signer uniformly generate isogenies to be transmitted
to the verifier.
We give concrete parametrisations of SQIsign2D–West for NIST security levels

I, III and V, and implement them, using both generic and optimised modular



SQIsign2D–West 3

arithmetic. With key and signature sizes as reported in Table 1, it is comparable
to SQIsignHD in terms of bandwidth. Our benchmarks highlight a consistent
improvement over SQIsign across the whole spectrum, slightly slower signing
performance than FastSQIsignHD but much faster than SQIsign, and the fastest
verification among all variants of SQIsign. Because prime characteristics in the
shape required by SQIsign2D–West are abundant, our variant, unlike SQIsign,
does not need a costly search for a “SQIsign-friendly” prime and thus scales
seamlessly to high security levels.

Our security proof shows that the security of SQIsign2D–West reduces to the
problem of computing the endomorphism ring of a random supersingular curve,
in a security model where the attacker is given (classical) access to an oracle
computing (higher-dimensional representations of) uniformly random isogenies
from a given curve. Hence, compared to SQIsignHD, SQIsign2D–West manages
to blend the efficiency gains of FastSQIsignHD with security guarantees similar
to RigorousSQIsignHD.

The algorithmic tools we introduce are very flexible, and we considered several
variants with different trade offs between provable security and speed. In the
main text, we focus on the most secure variant: our security proof follows the
blueprint of RigorousSQIsignHD and achieves a reduction to the endomorphism
ring problem, provided an isogeny-sampling oracle. By contrast the proof of
unforgeability for SQIsign essentially assumes that the signing oracle does not
leak information on the secrets. Nevertheless, if one is ready to accept heuristic
security (roughly similar to the heuristics used in FastSQIsignHD, so still cleaner
than the heuristics of SQIsign), it is possible to modify SQIsign2D–West to obtain
even faster signing. We describe this variant in Appendix B.
Related Work. Besides SQIsignHD, there is a growing interest in finding more
efficient variants of SQIsign. The recent work AprèsSQI [42] achieves promising
savings in verification, while keeping the general structure of SQIsign the same
(in particular, AprèsSQI does not use higher dimensional isogenies). The key idea
is to use larger extensions of the base field to access more small-order points of
the curves, and thus more easy-to-compute isogenies. Nevertheless, because it
does not change the overall structure, AprèsSQI suffers from the same problems
as SQIsign when it comes to scaling: suitable primes are difficult to find and
negatively impact the performance of high security levels.

While preparing this work, we were informed of three concurrent projects
with similar objectives. What they have in common is the use of two-dimensional
isogeny representations and prime characteristics of similar shape. In particular,
they all scale to higher security levels more favourably than SQIsign. We briefly
discuss the differences with our work below.

1. In [33], Nakagawa and Onuki first introduce an algorithm to translate ideals
to isogenies relying on the computation of two-dimensional isogenies. This
algorithm is reminiscent of the techniques used in [19]; in particular, it is
significantly different from the one we introduce in Section 3.2. Then, they
apply the algorithm to SQIsign. Their proof-of concept implementation in
Julia suggests an improvement over SQIsign for key generation and signing,
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especially at higher security levels. The proof of security, however, remains
heuristic.

2. In [34], Nakagawa and Onuki design SQIsign2D-East, a version of SQIsign
where verification requires a computation of a two-dimensional isogeny. This
idea shares many similarities with the heuristic version we describe in Ap-
pendix B. At the time of writing, we were not provided an implementation,
but we expect SQIsign2D-East to have performance similar to our heuristic
version. The main difference between this work and ours is the rigorous
proof of security of SQIsign2D–West, which appears difficult to emulate with
SQIsign2D-East.
Very recent work [7] shows that the version of SQIsign2D-East described
in [34] did not reach the security levels claimed. The authors of [7] also present
a new version of SQIsign2D-East that thwarts their attack. We highlight
that our security proof rules out the existence of a similar attack against
SQIsign2D-West.

3. In [19], Duparc and Fouotsa introduce another version of SQIsign, called
SQIPrime. SQIPrime is the closest to SQIsignHD of all the variants, the
main difference being the type of challenge used in the identification protocol.
The authors describe two versions, one using two-dimensional isogeny repre-
sentations and another using four-dimensional ones. The security of either is
close to FastSQIsignHD, and thus less rigorous than ours. No implementation
of SQIPrime is available at the time, but we expect the four-dimensional
variant to perform similarly to SQIsignHD, and the two-dimensional variant
to perform similarly to SQIsign2D-East/West, albeit with larger keys and
signatures.

For conciseness, from now on we will use SQIsign2D to refer to our protocol,
only using SQIsign2D–West when it is needed to distinguish it from other variants.
Plan. We start by reviewing some mathematical background and the fundamen-
tals of SQIsign and its variants in Section 2. In Section 3 we introduce our new
algorithms to compute two-dimensional representations of isogenies. Building on
these we give in Section 4 a detailed description of the SQIsign2D identification
protocol, and provide a formal proof of its security in Section 5. Finally in
Section 6 we describe our implementation of SQIsign2D–West and of its heuristic
variant, and report on their performance. Additionally in Appendix B we describe
the aforementioned heuristic variant.
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la Recherche under grant ANR-19-CE48-0008 (CIAO), the EPSRC via grant
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2 Preliminaries

In this section, we recall some background knowledge about the Deuring cor-
respondence and isogenies between products of two elliptic curves. We assume
some familiarity with elliptic curves and their isogenies and refer to [43,13] for
more information.

2.1 The Deuring correspondence

We now give a brief summary of the theory of the Deuring correspondence,
following the approach in [29, Chapter 2]. Let p > 3 be a prime ≡ 3 (mod 4) and
let Bp,∞ be the unique quaternion algebra ramified at p and∞, i.e. Bp,∞ = Q⟨i, j⟩,
where i2 = −1 and j2 = −p. Given a fractional ideal I, we define its left order as
OL(I) = {α ∈ Bp,∞ | αI ⊂ I}; similarly, one can define its right order OR(I).

In [17], Deuring showed an equivalence between maximal orders in Bp,∞ and
supersingular elliptic curves defined over Fp2 . From now on, we will refer to this
equivalence as the Deuring correspondence. Under this correspondence, an isogeny
φ : E1 → E2 corresponds to a fractional ideal Iφ, where OL(Iφ) ∼= End(E1) and
OR(Iφ) ∼= End(E2). Moreover, deg(φ) = nrd(Iφ).

Given two isogenies φ1 : E → E1 and φ2 : E → E2 of coprime degrees,
we denote by [φ1]∗φ2 : E1 → E′ the pushforward isogeny of φ2 under φ1, i.e.
ker([φ1]∗φ2) = φ1(ker(φ2)). Equivalently, we define the pushforward of Iφ2 under
Iφ1 as the ideal corresponding to the isogeny [φ1]∗φ2. We give a succinct summary
of the Deuring correspondence in the following table.

Supersingular elliptic curves Quaternions

j(E) or j(E)p supersingular O ∼= End(E) maximal order in Bp,∞
φ : E → E′ left O-ideal and right O′-ideal Iφ
φ,ψ : E → E′ Iφ ∼ Iψ (Iψ = Iφα)
φ̂ : E′ → E Iφ
φ ◦ ψ Iψ · Iφ
θ ∈ End(E) Principal ideal Oθ
deg(φ) nrd(Iφ)

A problem we will face in the following sections is to compute the ideal
associated to a given kernel generator. To be more precise, we are given an
isogeny φ : E0 → E, where we know O0 ∼= End(E0) and its associated ideal
Iφ. We also have a point K ∈ E of smooth order D coprime to deg(φ), which
describes the kernel of an isogeny ψ : E → E′. Our goal is to compute Iψ, the
ideal corresponding to ψ.
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We can accomplish this goal using the algorithm [11, Algorithm 9]. In partic-
ular, we first push O0 under φ via [11, Algorithm 8] and then use [11, Algorithm
9] to retrieve Iψ. In our use case, we want to avoid running [11, Algorithm 8]
and [11, Algorithm 9] on the fly but rather allow some precomputations. Let
(P,Q) be a basis E[D] and write K as [a]P + [b]Q. In [11, Algorithm 9, Line 1],
we have to evaluate a basis (β1, β2, β3, β4) of the right order of Iφ at K. This is
equivalent to evaluating (β1, β2, β3, β4) at the basis (P,Q) and then retrieving
βi(K) as [a]βi(P ) + [b]βi(Q).

In what follows, we use the notation {βi(P ), βi(Q)}i=1,...,4 to mean that we
have evaluated a basis (β1, β2, β3, β4) of the right order of Iφ at (P,Q) via [11,
Algorithm 9]. Additionally, we say that we use the datum {βi(P ), βi(Q)}i=1,...,4 to
compute Iψ when we evaluate (β1, β2, β3, β4) at K as ([a]βi(P ) + [b]βi(Q))i=1,...,4
and then run the rest of [11, Algorithm 9] to obtain Iψ.

2.2 Kani’s Lemma
Throughout this document we will encounter several different ways to represent
isogenies of elliptic curves. We abstract the details into the concept of isogeny
representation, which essentially says that representing an isogeny is having an
efficient algorithm to evaluate it.
Definition 1. Let Fq be a finite field. An isogeny evaluator E is a pair of
polynomial-time algorithms:

– E .valid(D) taking as input a string D ∈ {0, 1}∗ and outputting either a
symbol ⊥ or a triple (E,E′, d); in the latter case, E and E′ are elliptic curves
defined over Fq and there exists an isogeny φ : E → E′ of degree d.

– E .eval(D,P ) taking as input a string D ∈ {0, 1}∗ and a point P ∈ E(Fqk );
if E .valid(D) = (E,E′, d) it outputs the image point φ(P ) ∈ E′(Fqk ),
otherwise the output is undefined.

In the case that D is of size polynomial in log(q) and log(d) and that E .valid(D)
does not output ⊥, the string D is called an efficient representation of φ (for the
evaluator E ).

The article [39] shows that any isogeny can be efficiently represented as the
datum of its evaluation on a suitably chosen set of points, then gives an efficient
algorithm, akin to an interpolation-evaluation algorithm, which, on input an
arbitrary point x and the evaluation datum, outputs the value of the isogeny at x.
We will only need a special case of this construction, embedding an arbitrary
dimension-one n-isogeny into a two-dimensional 2e-isogeny where 2e > n. Let us
first recall the notion of (d1, d2)-isogeny diamond.
Definition 2. A (d1, d2)-isogeny diamond is a commutative diagram of isogenies:

E2

E0 E1

E12

φ1

φ2

φ′
1

φ′
2⟳
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where φ1 : E0 → E1 and φ′
1 : E2 → E12 are d1-isogenies, φ2 : E0 → E2 and

φ′
2 : E1 → E12 are d2-isogenies.

Remark 3. If d1 is coprime to d2, then an isogeny diamond as above is the same
thing as a pushforward square from φ1, φ2 or a pullback square from φ′

1, φ
′
2.

We can now state Kani’s Lemma, which is contained in [26, Section 2, Proof
of Theorem 2.3].

Theorem 4 (Kani’s Lemma). Let d1 and d2 be two coprime positive integers.
Given a (d1, d2)-isogeny diamond, the isogeny Φ : E0 × E12 → E1 × E2 given
matricially by

Φ =
(
φ1 φ̂′

2
−φ2 φ̂

′
1

)
is a (d1 +d2)-isogeny between these products of elliptic curves with their principal
product polarisation. The kernel of Φ is given by

KerΦ = {(φ̂1(P ), φ′
2(P )) | P ∈ E1[d1 + d2]}.

Proof. We compute Φ̃ ◦ Φ =
(
φ̃1 −φ̃2
φ′

1 φ′
2

)(
φ1 φ̃′

1
−φ2 φ̃′

2

)
=
(
d1 + d2 0

0 d1 + d2

)
which

shows that Φ is a (d1 + d2)-isogeny for the product polarisations.
The kernel of Φ, of cardinality (d1 + d2)2, is given by the image of Φ̃ on

(E1 × E2)[d1 + d2]. If d1 is coprime to d2, the restriction of Φ̃ to E1[d1]× 0E2 is
injective so its image already spans the full kernel: KerΦ = {(φ̃1(P ), φ′

2(P )) |
P ∈ E1[d1 + d2]}. The second equality follows by symmetry, and the third by
plugging P = φ1(P0) with P0 ∈ E0[d1 + d2]. ⊓⊔

If φ1 : E0 → E1 is an isogeny of odd degree d, then if we can construct an
arbitrary isogeny φ′

2 : E1 → E12 of degree 2e − d, then we can apply Theorem 4
to construct a 2e-isogeny Φ : E0 × E12 → E1 × E2, where φ2 : E0 → E2 is given
by the pullback of φ′

2 by φ1.
If our curves have their 2e-torsion rational (since we work on Kummer lines

of supersingular curves over Fp2 this is equivalent to 2e | p ± 1), and we know
how φ′

2 ◦ φ1 acts on the 2e-torsion of E0, we can recover KerΦ efficiently:
KerΦ = {(dP, φ′

2 ◦ φ1(P )) | P ∈ E0[2e]}. We can then use [12] to evaluate Φ
efficiently on an arbitrary point of E0 ×E12, this allows to evaluate φ on a point
P ∈ E0 via Φ((P, 0E12) = (φ1(P ), 0E2)). We remark that we do not need to know
φ2 to be able to evaluate Φ. Thus Φ, or more precisely, given a basis (P2, Q2)
of E2[2e], the two generators (dP2, φ

′
2 ◦ φ1(P2)), (dP2, φ

′
2 ◦ φ1(P2)) of its kernel,

encodes an efficient representation of φ1.
Of course, if we know how φ1 acts on E0[2e], and we also know how φ′

2 acts
on E1[2e], then we recover how φ′

2 ◦ φ1 acts on E0[2e] and evaluate Φ.
More generally, if we know how φ1 acts on E0[2e], it suffices to be able to

construct a isogeny of degree 2e−d starting or ending on E0, or starting or ending
on E1, to be able to embed efficiently φ1 into a 2e-isogeny Φ in dimension 2.



8 The Isogeny Gringos

If φ1 has even degree, we can factorise it as a product of an isogeny of
degree 2t, which can be efficiently evaluated given its kernel, followed by an
isogeny of odd degree d, to which we can apply the strategy above.

Remark 5. Kani’s Lemma extends to abelian varieties [40, Section 3.2], this is the
version used in SQIsignHD to build a response embedded into a dimension four
isogeny.

2.3 The SQIsign family

SQIsign and SQIsignHD. SQIsign is a digital signature scheme obtained via
the Fiat-Shamir transform [21] of an identification protocol. This protocol is
built on the Deuring correspondence between quaternion ideals and isogenies.
SQIsign and SQIsignHD mainly differ in the way of making the Deuring cor-
respondence effective. While SQIsign only works with smooth degree isogenies
between supersingular elliptic curves, SQIsignHD uses four-dimensional isoge-
nies in the verification process. In the following, we present the main building
blocks of SQIsign (and SQIsignHD) identification protocol which will be used in
SQIsign2D.
Public set-up. We choose a prime p and a supersingular elliptic curve E0/Fp2

of known endomorphism ring O0 ∼= End(E0) such that E0 has smooth torsion
defined over a small extension of Fp2 (of degree 1 or 2). In practice, one may use
the curve E0 : y2 = x3 + x (and p ≡ 3 mod 4).
Key generation. The prover generates a random secret isogeny φsk : E0 → Epk
and publishes Epk as its public key.
Commitment. The prover generates a random secret isogeny φcom : E0 → Ecom
and sends Ecom to the verifier as its commitment. For the identification protocol
to be zero-knowledge (and the derived signature scheme to be secure), Ecom has
to be computationally indistinguishable from a uniformly random elliptic curve
in the supersingular isogeny graph.
Challenge. The verifier generates and sends to the prover a random isogeny
φchl : Epk → Echl of smooth degree sufficiently large for φ to have high entropy.
The challenge space should have size Ω(2λ) to ensure λ bits of (soundness)
security.
Response. The prover generates and transmits to the verifier an efficient repre-
sentation (as defined in Definition 1) of an isogeny φrsp : Ecom → Echl which does
not backtrack through φchl (i.e. φ̂rsp ◦ φchl is cyclic).
Verification. The verifier checks that the response returned by the prover correctly
represents an isogeny φrsp : Ecom → Echl and checks that this isogeny does not
backtrack through φchl. The diagram in Fig. 1 illustrates the relationship between
the various isogenies computed by the protocol.

To compute such an efficient representation of φrsp (that will be called φrsp
by abuse of notations), the prover uses the Deuring correspondence. Returning
φrsp = φchl ◦ φsk ◦ φ̂com : Ecom → Echl would make the scheme insecure. However,
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E0 φsk
Epk

φcom

Ecom
φrsp

Echl

φchl
Public
Secret

Fig. 1. The SQIsign/SQIsignHD identification protocol. Dashed red lines represent
secrets.

the prover can translate φchl ◦φsk ◦ φ̂com into an ideal I connecting End(Ecom) and
End(Echl), find a random equivalent ideal Irsp ∼ I and translate Irsp into φrsp.

The ideal Irsp ∼ I is sampled to be relatively easy to translate into an isogeny
and with a distribution that ensures one can simulate the response without secret
knowledge (zero knowledge property). Those two objectives are in tension and lead
to a trade-off between efficiency and rigorous security proofs. In SQIsign, nrd(Irsp)
had to be smooth to make the ideal to isogeny translation possible. The KLPT
algorithm [28] was used to find Irsp, resulting in big norms nrd(Irsp) ≈ p15/4, slow
ideal to isogeny translation and a very heuristic security proof.

In SQIsignHD [11], the smoothness condition on Irsp is relaxed, allowing for
smaller norms, a stronger security proof and a faster response at the expense
of the verification time. The idea is to use the higher-dimensional SIDH attack
techniques [8,31,40] to represent φrsp. The prover uses the secret knowledge of
φchl ◦ φsk ◦ φ̂com to evaluate φrsp on some torsion points. This torsion evaluation
(along with deg(φrsp)) is an efficient representation of φrsp that can be sent to
the verifier. To verify the validity of this representation, the verifier computes a
four-dimensional isogeny that “embeds” φrsp by Kani’s Lemma. The efficiency of
four-dimensional isogeny computation is still an open research question. How-
ever, SQIsignHD verification is expected to be slower than SQIsign verification,
especially after the latest improvements of AprèsSQI [42]. This was the main
motivation for our contribution: accelerate the verification while maintaining a
fast signing procedure and strong security proofs (with two-dimensional isogeny
computations).

What makes SQIsign2D different from SQIsign and SQIsignHD. As a
derivative of SQIsign, SQIsign2D follows the same construction presented above
but uses different techniques involving two-dimensional isogeny computations.
To perform the verification, we “embed” the response φrsp : Ecom → Echl into
a two-dimensional 2r-isogeny. The bottleneck is to find an auxiliary isogeny
φaux : Echl → Eaux of degree 2r − deg(φrsp) to complete the isogeny diamond and
apply Kani’s Lemma. Additionally, the distribution of φaux needs to be uniform
in order to simplify the proof of the zero knowledge property.

We overcome these issues with an algorithm to sample quaternion ideals
of fixed norm with a uniform distribution (called RandomFixedNormIdeal) and
another algorithm (called IdealToIsogeny) to translate any left ideal of the order
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O0 ∼= End(E0) (with j(E0) = 1728) into an isogeny. IdealToIsogeny uses two-
dimensional isogenies and is inspired from the Clapoti algorithm introduced
in [35] and RandIsogImages introduced in QFESTA [32, Algorithm 2]. Both
RandomFixedNormIdeal and IdealToIsogeny are also used in the key generation
and commitment steps to obtain statistically uniform distributions of Epk and
Ecom, with a clear security benefit.

3 Algorithmic building blocks

In this section, we present the main algorithmic building blocks of SQIsign-
2D to make the Deuring correspondence effective. We assume we are given
a cryptographic size prime p = c · 2e − 1 with e ∈ N and c ∈ N as small
as possible. We can find such p with c = O(log(p)) by Dirichlet’s arithmetic
progression theorem [18]. We denote by E0 the supersingular elliptic curve given
by y2 = x3 + x over Fp and by O0 a maximal quaternion order isomorphic to
End(E0).

First, we briefly introduce FixedDegreeIsogeny, an algorithm to compute the
kernel ideal and to evaluate an isogeny of fixed odd degree defined over E0, which
is almost identical to RandIsogImages introduced in QFESTA [32, Algorithm 2].
Then, we present an algorithm IdealToIsogeny to translate any left ideal of O0
into an efficient representation of isogeny defined over E0. We finally present an
algorithm RandomFixedNormIdeal to sample left ideals of a given maximal order
O ⊆ Bp,∞ of fixed norm with a uniform distribution.

3.1 Generating an arbitrary odd-degree isogeny from E0

In QFESTA [32], Nakagawa and Onuki introduce an algorithm RandIsogImages
to compute non-smooth isogenies originating from E0. For SQIsign2D, we use
their idea and tweak it to construct the FixedDegreeIsogeny algorithm which:

– Takes as input an odd positive integer u < 2e and a basis (P0, Q0) of E0[2e].
– Returns the torsion image points φ|2e = (φ(P0), φ(Q0)) and the codomain
E, where φ : E0 → E is a u-isogeny (as in RandIsogImages), along with its
corresponding ideal I (not returned by RandIsogImages).

In the rest of the paper, we will use the notation φ|N to refer to the action of φ
on E0[N ]. In practice, when we write φ|N , we mean φ(P ) and φ(Q), for some
basis ⟨P,Q⟩ = E0[N ] (as above). A detailed description of FixedDegreeIsogeny
(Algorithm 8) is provided in Appendix A.1. It involves Kani’s Lemma and the
computation of a 2e-isogeny.

3.2 Translating a left ideal into an efficient isogeny representation

The state of the art techniques to translate ideals into isogenies impose conditions
on the input norm. In SQIsign, the norm had to be smooth and in SQIsignHD,
the norm nrd(I) had to be such that 2e − nrd(I) can be easily decomposed into
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a sum of two squares. We now propose an algorithm IdealToIsogeny to translate
a left O0-ideal I of any norm into an isogeny starting from E0. It is inspired
by Page and Robert’s work in the context of the Clapoti group action [35]. In
Clapoti, the ideal considered is an ideal of a quadratic imaginary order but we
can adapt their ideas to quaternion orders.

Let I be a left O0-ideal. We want to compute the torsion image φI |2e . The
general outline is as follows:

1. Find I1, I2 ∼ I of coprime norms d1, d2 ≈
√
p, and u, v ∈ N∗ such that

d1u+ d2v = 2f with f ≤ e and d1u is prime to d2v.
2. Evaluate isogenies φu, φv : E0 → Eu, Ev of degrees u and v on E0[2e].
3. Use Kani’s Lemma on φu ◦ φ̂1 : EI → Eu and φv ◦ φ̂2 : EI → Ev, where
φ1, φ2 : E0 → EI are the isogenies corresponding to I1 and I2 respectively,
to compute Φ : Eu × Ev → EI × E′ that embeds the isogenies φ1 ◦ φ̂u and
φ2 ◦ φ̂v.

4. Use Φ to compute φ1 ◦ φ̂u|2e and then φu|2e to obtain φ1|2e and finally
obtain φI |2e .

Step 1. We sample ideals I1, I2 ∼ I of odd coprime norms d1 and d2 until we find
positive integers u, v such that d1u+ d2v = 2e. A sufficient (but not necessary)
condition for a solution (u, v) to exist is d1d2 < 2e. Hence, the norms d1 and
d2 should be as small as possible. To find equivalent ideals of such norms, we
sample βi ∈ I with sufficiently small reduced norm and choose Ii := Iβi/ nrd(I),
so that nrd(Ii) = nrd(βi)/ nrd(I). Minkowski’s theorem and [28, Section 3.1] (see
also [11, Lemma 12]) ensure that the shortest vector in I has norm O(nrd(I)√p)
so we should expect to find d1, d2 ≈

√
p so that d1d2 ≈ p ≈ 2e in general. This is

not enough to rigorously ensure the existence of u and v.
However, we can provide heuristic arguments to justify that we expect to find

I1, I2, u, v after O(log(p)2) attempts. Given coprime positive integers d1, d2 ≤
2e−1, we can find u, v ∈ N∗ as follows. We select an integer 1 ≤ u < 2e/d1−1 until
d2|2e − ud1, so that we can define v := (2e − ud1)/d2. Heuristically, conditional
to d1 and d2, the probability that d2|2e − ud1 is ≈ 1/d2 when u is random so the
probability to find such an integer u is ≈ 2e/d1 · 1/d2 = 2e/(d1d2). Hence, we can
make the following heuristic assumption: for any 1 ≤ d ≤ 2e−1, the probability
that a couple (d1, d2) selected uniformly at random among couples of coprime
integers such that d1, d2 ≤ d satisfies ud1 + vd2 = 2e with u, v ∈ N∗ is larger
than 2e/d2.

This heuristic assumption is still not sufficient because qI(β) := nrd(β)/nrd(I)
has not the same distribution as a uniformly random integer when we sample
β ∈ I such that qI(β) ≤ d. We now give more detail on how we sample β ∈ I.
First, we find a Minkowski reduced basis B := (α1, · · · , α4) of I. Then we
sample xj ∈ J−Bj ;BjK uniformly at random with Bj := ⌊1/4

√
d/qI(αj)⌋ for all

j ∈ J1; 4K and we set β :=
∑4
j=1 xjαi. By the triangular inequality (which is
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valid since qI is a positive definite quadratic form), we have,

qI(β) ≤

 4∑
j=1
|xj |
√
qI(αj)

2

≤ d.

Hence, we want that qI(β1) and qI(β2) satisfy the above integer heuristic as-
sumption when β1 and β2 are sampled uniformly at random in the set:

Pd(B) :=


4∑
j=1

xjαi

∣∣∣∣∣∣ ∀j ∈ J1; 4K , xj ∈ J−Bj ;BjK

 .

Namely, we make the following assumption:

Heuristic 1 For 1 ≤ d ≤ 2e−1, consider:

Sd,e(B) := {(β1, β2) ∈ Pd(B)2 | gcd(qI(β1), qI(β2)) = 1 and
∃u, v ∈ N∗, uqI(β1) + vqI(β2) = 2e}.

Then, there exist constants C ′, C > 0 independent from I,B and the parameters
p and e such that for all 1 ≤ d ≤ 2e−1,

1. #Sd,e(B) ≥ C#Pd(B)22e/d2 − 1.
2. When β1, β2 are independent and uniformly distributed in Pd(B),

P((β1, β2) ∈ Sd,e(B)) ≥ C ′ #Sd,e(B)
#Pd(B)2 .

Note that we need d1u and d2v to be coprime. Since d1u+ d2v = 2e and d1
and d2 are odd and coprime, this condition is not satisfied only when u and v
are even. Hence, we may divide u and v by 2e′ and replace e by f := e− e′ with
e′ = min(v2(u), v2(v)), so that d1u+ d2v = 2f and d1u and d2v are coprime. We
summarise step 1 in Algorithm 1.

Proposition 6. Assuming Heuristic 1, there exists a bound d = Θ̃(√p) such
that Algorithm 1 terminates after O(log(p)2) iterations on average.

Proof. Let 1 ≤ d ≤ 2e−1. Then we have:

#Pd(B) =
4∏
j=1

(2Bj + 1) ≥
4∏
j=1

1
2

√
d

qI(αj)
= d2

16
√∏4

j=1 qI(αj)
.

Besides, B = (α1, · · · , α4) being Minkowski reduced, qI(α1), · · · , qI(α4) are the
successive minima of the lattice I and we obtain by Minkowski’s second theorem
(see the proof of [11, Lemma 48]) that

∏4
j=1 qI(αj) ≤ 64p2/π4, so that:

#Pd(B) ≥ Dd2

p
,
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Algorithm 1 Step 1: Finding suitable ideals I1, I2 ∼ I.
Input: An ideal I ⊆ O0 ∼= End(E0), a bound d = Θ(√p).
Output: β1, β2 ∈ I and u, v ∈ N∗ and f ≤ e such that gcd(uqI(β1), vqI(β2)) = 1 and

uqI(β1) + vqI(β2) = 2f .
1: Compute a Minkowski reduced basis (α1, · · · , α4) of I
2: Bj ← ⌊1/4

√
d/qI(αj)⌋ for j ∈ J1; 4K

3: Sample xj ∈ J−Bj ;BjK4 for j ∈ J1; 4K and initialise L← [(x1, · · · , x4)]
4: for (y1, · · · , y4) ∈ J−B1;B1K× · · · × J−B4;B4K do
5: for (x1, · · · , x4) ∈ L do
6: β1 ←

∑4
j=1 xjαj and β2 ←

∑4
j=1 yjαj

7: d1 ← qI(β1), d2 ← qI(β2)
8: if d1 ≡ 1 mod 2 and d2 ≡ 1 mod 2 and gcd(d1, d2) = 1 then
9: u← 2ed−1

1 mod d2
10: v ← (2e − ud1)/d2
11: if v > 0 then
12: e′ ← min(v2(u), v2(v)), u← u/2e

′
, v ← v/2e

′
and f ← e− e′

13: return β1, β2, u, v, f
14: else
15: Append (y1, · · · , y4) to L

with D := π2/128. By Heuristic 1, there exists C,C ′ > 0 such that:

P((β1, β2) ∈ Sd,e(B)) ≥ C ′
(
C2e

d2 −
1

#Pd(B)2

)
≥ C ′

(
C2e

d2 −
p2

D2d4

)
,

where β1, β2 are independent and uniformly distributed in Pd(B). The lower
bound on the right is maximised by the value d := p/(D

√
C2e−1) and for this

value of d, we obtain:

P((β1, β2) ∈ Sd,e(B)) ≥ C ′C2D222(e−1)

p2 = Ω(1/ log(p)2), (1)

since p = O(log(p)2e) by Dirichlet’s arithmetic progression theorem [18]. Algo-
rithm 1 enumerates β1, β2 independent and uniformly distributed in Pd(B) and
terminates when (β1, β2) ∈ Sd,e(B). Hence Eq. (1) completes the proof. ⊓⊔

Remark 7. In most cases, the successive minima qI(αj) are close to each other
and close to √p so the Bj are very close. For that reason, in the implemented
version of Algorithm 1 we fix a bound B ∈ N∗ and sample all of the xj and yj
in J−B;BK; and we never saw a failure case. Heuristic 1 is only needed to get
an heuristic bound on the running time of IdealToIsogeny. Indeed, if we ever
stumble upon an ideal I where it fails, we could instead search for u, v such
that d1u+ d2v = 2f

∏
ℓei
i for small primes ℓi. This solution involve small field

extensions and add a significant cost to the signature, so can only be used as a
fail-safe...

Step 2. We can use FixedDegreeIsogeny (Algorithm 8) to evaluate isogenies
φu, φv : E0 → Eu, Ev of degrees u and v on E0[2e]. Since u, v ≈ √p, we do not
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need to compute two-dimensional 2-isogeny chains of full length e in this step,
but of half length e/2 instead (see Remark 26).

Remark 8. Alternatively, we may save some time on step 2 at the expense of step 1.
Assuming u = a2+b2, with a, b ∈ Z, then we can choose φu := [a]+[b]ι ∈ End(E0),
with ι : (x, y) ∈ E0 7→ (−x,

√
−1y) ∈ E0 and similarly for v. Finding u, v in step

1 that can be written easily as a sum of to squares is more costly. There is also
a hybrid approach where we only require u (or v) to be a sum of two squares.
Experimentally, both of these approaches were on the whole more costly than
the proposed method as soon as the ideal given in input is a bit unbalanced (and
the smallest possible d2 is a bit bigger than the expected ≈ √p). However, we
believe that there is room for improvement in our implementation of this search
for d1, d2, u and v, and this could lead to a different conclusion regarding which
variant is the most efficient. Answering this interrogation is left as an interesting
open question for future work.

Step 3. We now give more details on steps 3 and 4 inspired by [35]. Consider
the following (d1u, d2v)-isogeny diamond:

Eu

E′ Ev

EI
φ1 ◦ φ̂u

φv ◦ φ̂2φ′
u

φ̂′
v

⟳

where φ′
u := [φu ◦ φ̂1]∗(φv ◦ φ̂2) and φ′

v := [φv ◦ φ̂2]∗(φu ◦ φ̂1) (pushforward
isogenies). By Kani’s Lemma, we have a 2f -isogeny:

Φ :=
(
φ1 ◦ φ̂u φ2 ◦ φ̂v
−φ′

u φ′
v

)
: Eu × Ev → EI × E′,

with kernel:

ker(Φ) = {([d1]φu(P ), φv ◦ φ̂2 ◦ φ1(P )) | P ∈ E0[2f ]}.

Let θ := φ̂2 ◦ φ1 ∈ End(E0). By Lemma 9, given I1 and I2, if we write I1 :=
Iβ1/ nrd(I) and I2 := Iβ2/ nrd(I) with β1, β2 ∈ I, then we can compute θ =
β2β1/ nrd(I) so we can evaluate it easily. By step 2, we also know φv|2e and
φu|2e . Hence, we can compute ker(Φ) (and evaluate Φ) efficiently. This completes
step 3.
Step 4. We first notice that we can evaluate φ1 ◦ φ̂u from the two-dimensional
isogeny Φ. This implies we can evaluate φ1 on E0[2e] as follows: Φ(φu(P0), 0) =
([u]φ1(P0), ∗) and Φ(φu(Q0), 0) = ([u]φ1(Q0), ∗) and we can invert u modulo 2e
since u is odd to get φ1|2e = (φ1(P0), φ1(Q0)). To obtain φI |2e , we rely on the
following lemma.
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Lemma 9. For i ∈ {1, 2}, if we write Ii := Iβi/nrd(I) with βi ∈ I, then
φ̂i ◦ φI = βi.

Proof. Let i ∈ {1, 2}. We should expect that φ̂i ◦ φI corresponds to the ideal
I · Ii, however OR(I) ̸= OL(Ii) so the product I · Ii is not well defined. It is
defined up to conjugation of Ii. We have OL(Ii) = OR(Ii) = βi

−1OR(I)βi. It
follows that OL(βi · Ii ·βi

−1) = OR(I) and the ideal corresponding to the isogeny
φ̂i ◦ φI via the Deuring correspondence is:

Iβi · Ii · βi
−1 = I

βiβi
nrd(I)I · βi

−1 = II
nrd(βi)
nrd(I)

βi
nrd(βi)

= O0βi.

The result follows. ⊓⊔

Following Lemma 9, we have that [d1]φI = φ1 ◦ β1. Since we can evaluate
β1 and φ1 on E0[2e] and d1 can be inverted modulo 2e, we can evaluate φI on
E0[2e], completing step 4. Algorithm 2 summarises all these steps.

Algorithm 2 IdealToIsogeny
Input: An ideal I ⊆ O0 ∼= End(E0) and a basis (P0, Q0) of E0[2e].
Output: The image φI |2e = (φI(P0), φI(Q0)) of the isogeny φI : E0 → EI associated

to I.
1: Use Algorithm 1 to obtain β1, β2 ∈ I and u, v ∈ N∗ and f ≤ e such that

gcd(uqI(β1), vqI(β2)) = 1 and uqI(β1) + vqI(β2) = 2f
2: Ii ← Iβi/ nrd(I) for i ∈ {1, 2}
3: θ ← β2β1/ nrd(I) ∈ End(E0) (▷) θ := φ̂2 ◦ φ1
4: Compute φu|2e for a u-isogeny φu : E0 → Eu (▷) FixedDegreeIsogeny(u, P0, Q0)
5: Compute φv|2e for a v-isogeny φv : E0 → Ev (▷) FixedDegreeIsogeny(v, P0, Q0)
6: Set KP ← [2e−f ]([d1]φu(P0), φv ◦ θ(P0))
7: Set KQ ← [2e−f ]([d1]φu(Q0), φv ◦ θ(Q0))
8: Compute Φ : Eu × Ev → EI × E′ of kernel ⟨KP ,KQ⟩
9: Evaluate Φ(φu(P0), 0) = ([u]φ1(P0), ∗) and Φ(φu(Q0), 0) = ([u]φ1(Q0), ∗) to obtain

φ1|2e

10: Use φ1|2e to evaluate φI = [1/d1]φ1 ◦ β1 on (P0, Q0) and obtain φI |2e

11: return φI |2e

3.3 Sampling uniformly at random an ideal of fixed norm

In the protocol, we shall need to uniformly sample at random cyclic isogenies
φ : E → E′ of fixed degree N several times. When O ∼= End(E) is known,
by the Deuring correspondence this reduces to sampling a left ideal I ⊆ O of
norm N uniformly at random. I is then translated into an isogeny φ (e.g. using
Algorithm 2 if O = O0). For φ to be cyclic, I has to be primitive, that is to say
that I ̸⊆ nO for any integer n > 1.
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Given a maximal quaternion order O ⊆ Bp,∞ and an integer N coprime with
p, we explain how to sample primitive left ideals I ⊆ O of norm N . It has been
proved that such ideals are in bijection with primitive left ideals of O/NO via
the reduction modulo N which are themselves in bijection with:

P1(Z/NZ) = {(x, y) ∈ (Z/NZ)2 | gcd(x, y,N) = 1}/(Z/NZ)∗.

N being coprime with p, Bp,∞ splits at N and we have an isomorphism O⊗ZN ∼=
M2(ZN ), where ZN is the completion of the localisation of Z at N . Via the
reduction modulo N , we obtain an isomorphism φN : O/NO ∼→M2(Z/NZ).

Lemma 10 ([27, Lemma 7.2]). All primitive left ideals of M2(Z/NZ) are
principal and generated by a matrix

Mx,y =
(
x y
0 0

)
with (x : y) ∈ P1(Z/NZ). Hence, we have the following bijection:

P1(Z/NZ) −→ {primitive left ideals I ⊆ O of norm N}
(x : y) 7−→ Oφ−1

N (Mx,y) +ON

As a direct consequence of the above lemma, we obtain:

Lemma 11. The set of elements α ∈ O invertible modulo N acts transitively
(by multiplication on the right) on the set of primitive left O-ideals of norm N .
Those elements α ∈ O invertible modulo N are those of norm coprime with N .

Proof. Let I be a primitive left O-ideal of norm N . Then, the ideal I corresponds
to (x : y) ∈ P1(Z/NZ) via the bijection of Lemma 10 and is isomorphic to
M2(Z/NZ) ·Mx,y via the composition of the reduction modulo N and φN . For
any representative (x, y) ∈ Z2 of (x : y) ∈ P1(Z/NZ), we have gcd(x, y,N) = 1
so we may find u, v ∈ Z such that xu+ yv ≡ 1 mod N , so that:

Mx,y

(
u −y
v x

)
≡M1,0 mod N and det

(
u −y
v x

)
≡ 1 mod N

Hence, the ideal M2(Z/NZ) ·Mx,y is in the orbit of M2(Z/NZ) ·M1,0 under the
right action of GL2(Z/NZ), and as a consequence, I/NO is in the orbit of the
ideal I0/NO := Oφ−1

N (M1,0)/NO under the right action of (O/NO)∗.
To conclude, it suffices to prove that the invertible elements of O modulo N

are those of norm coprime with N . If α ∈ O is invertible modulo N , there exists
β, γ ∈ O such that αβ = 1 +Nγ, so that

nrd(α) nrd(β) = nrd(1 +Nγ) = 1 +N Tr(γ) +N2 nrd(γ) ≡ 1 mod N,

so nrd(α) is invertible modulo N . Conversely, if nrd(α) is prime to N , there exists
λ ∈ Z such that nrd(α)λ ≡ 1 mod N . Then, it follows that ααλ ≡ 1 mod N ,
so α is invertible modulo N . This completes the proof. ⊓⊔
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Lemma 11 ensures that (O/NO)∗ acts transitively on primitive left ideals of
norm N by multiplication on the right. Hence, given a primitive left O-ideal I0
of norm N , if we sample [α] ∈ (O/NO)∗ uniformly at random, then I0α+NO
is uniformly random among primitive left O-ideals of norm N .

To obtain such an ideal I0, we compute γ ∈ O of norm NM with gcd(N,M) =
1 and without integral factor. This can be done with the algorithms of [29, Section
3.3]. We then consider I0 := Oγ + ON and sample [α] ∈ O/NO uniformly at
random until it is invertible modulo N (which can be checked by computing
nrd(α)). The probability of finding such an α is (by the Chinese remainder
theorem):

|GL2(Z/NZ)|
|M2(Z/NZ)| =

∏
ℓe||N

|GL2(Z/ℓeZ)|
|M2(Z/ℓeZ)| =

∏
ℓ|N

(
1− 1

ℓ

)(
1− 1

ℓ2

)
.

This quantity is an Ω(1/ log log(N)) by [23, Theorem 328] so we can find α after
O(log log(N)) tries. These operations are summarised in Algorithm 3.

Algorithm 3 RandomFixedNormIdeal
Input: A maximal order O ⊆ Bp,∞ and an integer N such that p ∤ N .
Output: A primitive left O-ideal I of norm N sampled uniformly at random.
1: Find γ ∈ O primitive of norm NM with gcd(N,M) = 1 (▷) Using [29, Section 3.3]
2: repeat
3: Sample u1, · · · , u4 ∈ J0;N − 1K uniformly at random
4: α←

∑4
i=1 uiαi, where (α1, · · · , α4) is a basis of O

5: until gcd(nrd(α), N) = 1
6: Return I := Oγα+NO

4 Detailed description of SQIsign2D

We now present a full description of the SQIsign2D protocol. We start by
describing the Σ-protocol underlying SQIsign2D, and then we present the variant
of the Fiat-Shamir transform [21] that we rely on to obtain a digital signature
protocol.

The protocol uses a field characteristic of the form p = c · 2e − 1, where c is
a small cofactor and log p ≈ 2λ. This is already an improvement over existing
SQIsign protocols: since such primes are abundant, it is significantly easier to find
parameters, especially at higher security levels, for SQIsign2D than for SQIsign.
Compared to SQIsignHD, which uses Montgomery-friendly primes p = c·2e ·3f−1,
SQIsign2D primes offer even better opportunities for low-level optimisations, as
discussed in Section 6.
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4.1 The Σ-protocol

Key generation. During key generation, we sample a random left ideal Isk
of O0 of norm Nsk via RandomFixedNormIdeal (Algorithm 3), where Nsk is an
odd integer of size 4λ. The ideal Isk corresponds to the isogeny φsk : E0 → Epk
connecting E0 to the public key Epk. To be more precise, we compute Epk via
IdealToIsogeny.

From a mathematical perspective, the ideal Isk provides enough information
to describe the secret isogeny φsk. However, in order to speed up the response
algorithm, we perform additional computations that are stored as internal opti-
misations – we colour these lines to describe such computations. These internal
optimisations are required to obtain a faster translation from the challenge to
its corresponding ideal; we will formalise what we mean with “its corresponding
ideal” in the paragraph “Response” below.

The gist of these optimisations is to evaluate a basis {β1, β2, β3, β4} of the
right order Opk of Isk at the 2e-torsion of Epk. This is achieved via [11, Algorithm
9]. The key-generation procedure is formalised in Algorithm 4.

Algorithm 4 Key Generation
Output: The public key pk = Epk and the secret key sk = Isk.
1: Isk ← RandomFixedNormIdeal(Nsk)
2: φsk|2e , Epk ← IdealToIsogeny(Isk, P0, Q0).
3: Compute a deterministic basis (Ppk, Qpk) of Epk[2e].
4: Compute a basis B = (β1, β2, β3, β4) of the right order Opk of Ipk.
5: Compute the basis (β̃1, β̃2, β̃3, β̃4) of End(Epk) corresponding to B.

(▷) [11, Algorithm 9]
6: Compute B =

{
β̃i(Ppk), β̃i(Qpk)

}
i=1,...,4

.
7: return pk := Epk and sk := (Isk,B)

Commitment. The commitment phase is similar to the key-generation com-
putations: as explained above, we first sample a random left ideal Icom of O0
of norm Ncom = ℓncom, for some n > 0. In particular, we require ℓcom > 2ersp ,
where 2ersp denotes the largest possible degree of the response isogeny. This
condition implies that we can compute the pushforward of any left ideal I of O0
of norm < 2ersp under Icom, which is a necessary step in the response computation
(see Algorithm 6, Line 9).

One of the outputs of the Commitment algorithm is the curve Ecom obtained
by applying IdealToIsogeny on Icom. Additionally, the algorithm outputs the
internal state Icom. Similarly to what has been said above, the ideal Icom provides
enough information to compute the corresponding isogeny φcom : E0 → Ecom.
However, as an internal optimisation, we also extract and store the isogeny
representation φcom|2e . We summarise everything in Algorithm 5.
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Algorithm 5 Commitment
Output: The commitment curve Ecom and the corresponding state Icom
1: Icom ← RandomFixedNormIdeal(Ncom).
2: φcom|2e , Ecom ← IdealToIsogeny(Icom, P0, Q0).
3: return com := Ecom and st := (Icom, φcom|2e ).

Challenge. The challenge consists of a positive integer chl < 2echl , where echl is
a parameter denoting the size of the challenge space. This integer describes the
kernel of the challenge isogeny φchl : Epk → Echl:, i.e. ker(φchl) = ⟨Ppk + [chl]Qpk⟩.

It is worth noting that, although deg(φchl) = 2e, the challenge space contains
only 2echl ≪ 2e possible challenges, i.e. we only allow 2echl possible kernels.
Intuitively, the extra length of φchl is needed to deal with the fact that response
isogenies may backtrack with φchl. This concept is formalised in Theorem 17.
Response. The diagram to keep in mind as we explain the response algorithm
is the following one (see Fig. 2), where

– φchl : Epk → Echl is the isogeny described by the challenge chl;
– φ′

chl : Epk → E0
chl is the portion of φchl that does not backtrack with the

response isogeny;
– φ

(1)
rsp : Ecom → E′

chl is the odd part of the response isogeny;
– φ

(0)
rsp : E′

chl → E0
chl is the even, non-backtracking part of the response isogeny;

– φaux : Ecom → Eaux is the auxiliary isogeny needed to embed the isogeny φ(1)
rsp

into a two-dimensional isogeny;
– φ′

aux : E′
chl → E′

aux is the pushforward of φaux under φ(1)
rsp .

E0 Epk

Ecom E0
chl

Echl

E′
chl

E′
auxEaux

φsk

φcom φ′
chl φchl

φ
(1)
rsp φ

(0)
rsp

φaux φ′
aux⟳

Fig. 2. Response diagram.

The first step is to compute the ideal Ichl corresponding to the isogeny
φchl : Epk → Echl with kernel ⟨Ppk + [chl]Qpk⟩. This is done via [11, Algorithm 9]
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using the datum B =
{
β̃i(Ppk), β̃i(Qpk)

}
i=1,...,4 computed during Key Generation

(see Algorithm 4).

The ideal Ichl is then employed to compute an isogeny φrsp : Ecom → Echl. To be
more precise, the prover first computes an ideal Irsp, equivalent to Icom · Isk · Ichl,
which is uniformly distributed among the equivalent ideals of norm < 2ersp . The
protocol parameter ersp is chosen such that the existence of Irsp (or equivalently
a connecting isogeny of degree < 2ersp between Ecom and Echl) is guaranteed,
which means that 2ersp must be larger than 2

√
2p/π. The norm of Irsp must be

bounded by 2ersp so that we can represent φrsp : Ecom → Echl via a two-dimensional
2ersp-isogeny. In particular, following Kani’s Lemma (Theorem 4), the degree of
the one-dimensional isogenies represented by such a two-dimensional isogeny
must be odd, but this might not be the case for φrsp. We now explain how to
deal with the case of even-degree.

Let us write the norm of Irsp as nrd(Irsp) = q = 2nq′ < 2ersp for an odd q′. We
can think of φrsp as φrsp = ψ ◦ φ(1)

rsp : Ecom → E′
chl → Echl, where deg(φ(1)

rsp ) = q′

and deg(ψ) = 2n. It may happen that ker(ψ̂)∩ ker(φ̂chl) is not trivial. Let nbt be
the positive integer such that 2nbt = # ker(ψ̂) ∩ ker(φ̂chl). Equivalently, nbt is the
largest integer such that Ichl · Irsp ∈ 2nbtOpk.

Let r′ := n− nbt and define φ(0)
rsp : E′

chl → E0
chl to be the isogeny with kernel

ker(ψ)[2r′ ] – the isogeny φ(0)
rsp coincides with the non-backtrack portion of φrsp.

Now, let us factor Irsp as I1
rsp · I0

rsp · I ′, where nrd(I(1)
rsp ) = q′ and nrd(I(0)

rsp ) = 2r′ .
The isogenies φ(1)

rsp and φ
(0)
rsp correspond to I(1)

rsp and I
(0)
rsp , respectively.

Since φ
(1)
rsp has odd degree, it can be represented via a 2ersp−n-isogeny in

dimension 2 by Kani’s Lemma. This requires computing an auxiliary isogeny
φ′

aux : E′
chl → E′

aux of degree 2ersp−n − q′.

As required in Theorem 22, we need the isogeny φ′
aux : E′

chl → E′
aux to be

uniformly sampled among all the isogenies of degree 2ersp−n−q′. Hence, the prover
samples a random left ideal I ′′

aux of O0 of norm 2ersp−n−q′ and then computes I ′
aux

as the pushforward I ′
aux of I ′′

aux through Icom · I(1)
rsp . The prover can then evaluate

φ′
aux ◦φ

(1)
rsp ◦φcom at the 2e-torsion running IdealToIsogeny on input Icom ·I(1)

rsp ·I ′
aux.

Using the datum φcom|2e , the prover has actually access to φ′
aux ◦ φ

(1)
rsp

∣∣∣
2e

.

While a representation of φ′
aux ◦ φ

(1)
rsp could act as a valid response, we want

the Σ-protocol to be commitment recoverable, i.e. it is possible to recompute
the commitment curve from a the challenge and corresponding response. This
eventually leads to a more compact signature. To achieve such a property, we
want the isogeny connecting Eaux and E′

chl, passing through Ecom. Thus, the
prover has to compute the isogeny φaux : E0 → Eaux of degree 2ersp−n − q′ fitting
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in the following commutative diagram:

Ecom E′
chl

E′
auxEaux

φ
(1)
rsp

φaux φ′
aux

φ

⟳

Such an isogeny can be obtained as one of the components of the two-
dimensional 2ersp−n-isogeny Φ with kernel {([q]′P,φ′

aux◦φ
(1)
rsp (P )) | P ∈ Ecom[2ersp−n]}:

Φ =
(
φ

(1)
rsp −φ̂′

aux
φaux φ̂

)
: Ecom × E′

aux → E′
chl × Eaux.

To complete the response algorithm, we still need to compute the non-
backtracking part of the response isogeny. Let φ(0)

rsp : E′
chl → E0

chl be such an
isogeny, which indeed corresponds to the ideal I0

rsp.
Let φ′

chl : Epk → E0
chl be the isogeny with kernel ⟨[2nbt ](Ppk + [chl]Qpk)⟩. In

other words, φ′
chl is the portion of φchl that does not backtrack with the response

isogeny. Even though φ′
chl and φ

(0)
rsp map onto the same elliptic curve, the curves

obtained after an explicit computation of the two isogenies will only be equal
up to isomorphism. Thus, the prover additionally has to compute an explicit
isomorphism to let the two curves agree.

The explicit computation of the isomorphism between the codomains of φ′
chl

and φ
(0)
rsp is required to facilitate the verification. During the verification, the

verifier will not compute φchl but rather compute its non-backtrack portion, i.e.
the verifier will only compute the isogeny with kernel ⟨[2nbt ](Ppk + [chl]Qpk)⟩.

Let (Paux, Qaux) be a deterministic basis of Eaux[2ersp−nbt ] and define

Pchl := [2ersp−n− q′]−1φ(0)
rsp ◦φ(1)

rsp (Paux), Qchl := [2ersp−n− q′]−1φ(0)
rsp ◦φ(1)

rsp (Qaux).

The output of the response algorithm consists in (Eaux, Pchl, Qchl, r
′, nbt). We

collect what has been explained in this paragraph in Algorithm 6.
Verification. On input (Eaux, Pchl, Qchl, r

′, nbt), the verifier first computes the
isogeny φchl : E0 → Echl with kernel ⟨[2nbt ](Ppk + [chl]Qpk)⟩ – this corresponds to
the non-backtrack portion of the challenge isogeny as in the previous paragraph.
Additionally, they compute (Paux, Qaux), a deterministic basis of Eaux[2ersp−nbt ]

If r′ > 0, it means that the prover has chosen a response isogeny having an
even, non-backtrack component. In this case, [2ersp−r′−nbt ]Pchl and [2ersp−r′−nbt ]Qchl
are linearly dependent, and ⟨[2ersp−r′−nbt ]Pchl, [2ersp−r′−nbt ]Qchl⟩ is the kernel of
the dual of the isogeny φ

(0)
rsp (Cfr. Fig. 2). The verifier then computes the

isogeny φ : Echl → E′
chl with kernel ⟨[2ersp−r′−nbt ]Pchl, [2ersp−r′−nbt ]Qchl⟩ and up-

dates Echl ← E′
chl, Pchl ← φ(Pchl) and Qchl ← φ(Qchl).
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Algorithm 6 Response
Input: The public key Epk, the secret key Isk,B, the commitment (Ecom, com), the

commitment state Icom, φcom(P0), φcom(Q0), and the challenge chl < 2echl .
Output: Eaux, Paux, Qaux, r

′, nbt
1: Compute a deterministic basis (Ppk, Qpk) of Epk[2e].
2: Compute the ideal Ichl from chl and using B. (▷) [11, Algorithm 9]
φchl : Epk → Echl is the isogeny with kernel ⟨Ppk + [chl]Qpk⟩.

3: Set J = Icom · Isk · Ichl.
4: Compute a uniformly distributed ideal Irsp equivalent to J of norm q < 2ersp .
5: Compute n such that q = q′ · 2n, where q′ is odd and nbt < n as the largest integer

such that Ichl · Irsp ∈ 2nbtOpk.
// nbt is the length of the part of the response that backtracks along the challenge isogeny

6: r′ ← n− nbt.
7: Factor Irsp as I1

rsp · I0
rsp · I ′ where nrd(I(1)

rsp ) = q′ and nrd(I(0)
rsp ) = 2r

′
.

// I(1)
rsp is the ideal corresponding to the odd part of the response isogeny φ

(1)
rsp : Ecom → E′

chl,
and I

(0)
rsp is the ideal corresponding to the even part of the response isogeny φ(0)

rsp : E′
chl → Echl.

8: I ′′
aux ← RandomFixedNormIdeal(2ersp−n − q′).

9: Compute I ′
aux as the pushforward of I ′′

aux through Icom · I(1)
rsp .

// I′
aux is the ideal corresponding to an auxiliary isogeny φ′

aux : E′
chl → Eaux.

10: φ′
aux ◦ φ

(1)
rsp ◦ φcom

∣∣∣
2e
, E′

aux ← IdealToIsogeny(Icom · I(1)
rsp · I ′

aux).

11: P 0
com, Q

0
com ← [2e−(ersp−n)]φcom(P0), [2e−(ersp−n)]φcom(Q0).

12: P 0
aux, Q

0
aux ← [2e−(ersp−n)]φ′

aux ◦ φ
(1)
rsp ◦ φcom(P0), [2e−(ersp−n)]φ′

aux ◦ φ
(1)
rsp ◦ φcom(Q0).

13: Compute Φ′ : Ecom×E′
aux → E′

chl×Eaux with kernel ⟨
(
[q′]P 0

com, P
0
aux
)
,
(
[q′]Q0

com, Q
0
aux
)
⟩

14: (P̃chl, P̃aux)← Φ′(φcom(P0), 0).
15: (Q̃chl, Q̃aux)← Φ′(φcom(Q0), 0).
16: E0

chl ← E′
chl.

17: if r′ > 0 then
18: Compute the isogeny φ0

rsp : E′
chl → E0

chl corresponding to I0
rsp.

19: P̃chl, Q̃chl ← φ0
rsp(P̃chl), φ0

rsp(Q̃chl).
20: Compute φ′

chl : Epk → (E0
chl)′ of kernel ⟨[2nbt ](Ppk + [chl]Qpk)⟩.

21: Compute the isomorphism ιchl : E0
chl → (E0

chl)′.
22: P̃chl, Q̃chl ← ιchl(P̃chl), ιchl(Q̃chl).
23: Compute a deterministic basis (Paux, Qaux) of Eaux[2ersp−nbt ].
24: Compute a, b, c, d ∈ Z/2ersp−nbtZ such that

Paux = [2e−ersp+nbt ]([a]P̃aux + [b]Q̃aux) and Qaux = [2e−ersp+nbt ]([c]P̃aux + [d]Q̃aux).
25: Pchl, Qchl ← [2e−ersp+nbt ]([a]P̃chl + [b]Q̃chl), [2e−ersp+nbt ]([c]P̃chl + [d]Q̃chl)
26: return Eaux, Pchl, Qchl, r

′, nbt.

From Kani’s Lemma, it follows that the isogeny Φ with kernel〈(
Pchl, [2r

′
]Paux

)
,
(
Qchl, [2r

′
]Qaux

)〉
maps E′

chl × Eaux onto Eaux × Ecom. This proves the existence of an isogeny
connecting Ecom and E′

chl. We summarise these steps in Algorithm 7.

Remark 12 (Technical Remark). In the concrete instantiation, when computing
the isogeny Φ with kernel K =

〈(
Pchl, [2r

′ ]Paux
)
,
(
Qchl, [2r

′ ]Qaux
)〉

, we use the
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formulae in [12]. In particular, in order to avoid the computation of extra square
roots in the codomain computation, we use the four torsion above K. As explained
in [11, Theorem 56], this also fixes a symplectic four-torsion basis on the codomain,
which in turns defines a theta structure.

In the implementation, we always pick the four-torsion above K such that the
codomain is of the form E′

aux ×Ecom. Therefore, in Algorithm 7, Line 15, we can
restrict ourselves to checking that F2 is isomorphic to Ecom.

Algorithm 7 Verify
Input: The public key Epk, the commitment Ecom, the challenge chl, the response

Eaux, Pchl, Qchl, r
′, nbt.

Output: true or false.
1: Compute a deterministic basis (Ppk, Qpk) of Epk[2e].
2: Compute φchl : E0 → Echl with kernel ⟨[2nbt ](Ppk + [chl]Qpk)⟩.
3: Compute a deterministic basis (Paux, Qaux) of Eaux[2ersp−nbt ].
4: if r′ > 0 then
5: if [2ersp−nbt−1]Qchl ̸= 0 then
6: R← [2ersp−nbt−r′

]Qchl
7: else
8: R← [2ersp−nbt−r′

]Pchl

9: Compute φ : Echl → E′
chl of kernel ⟨R⟩.

10: Echl ← E′
chl.

11: Pchl, Qchl ← φ(Pchl), φ(Qchl).
12: Compute Φ : Echl × Eaux → F1 × F2 with kernel

〈(
Pchl, [2r

′
]Paux

)
,
(
Qchl, [2r

′
]Qaux

)〉
.

13: if the computation of Φ fails then
14: return false
15: return F2 ∼= Ecom

4.2 The signature protocol

To transform the Σ-protocol in a digital signature, we rely on the Fiat-Shamir
transform [21], where the interactive challenge generation is replaced by hashing
the commitment, together with the message, to obtain a challenge. However,
our protocol differs from a straightforward application of the transform: we
rely on the commitment-recoverability property of the underlying Σ-protocol to
obtain a smaller signature. Namely, a signature of SQIsign2D consists only of
a challenge and the corresponding response. To verify a signature, the verifier
recovers the challenge from the signature, checks that the commitment, challenge,
and response form a valid transcript for the Σ-protocol, and ensures that the
challenge was honestly generated.

For this approach to work, it is necessary that the verifier can extract the
commitment from the response. During verification, the verifier first computes the
challenge isogeny codomain, and then they obtain the two-dimensional isogeny Φ
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(see Line 12 of Algorithm 7). The codomain of Φ is either the product E′
aux×Ecom

or Ecom × E′
aux. While a priori it is not possible to distinguish between the two

cases, we rely on a specific method to compute Φ, as explained in Remark 12,
that guarantees that the codomain is E′

aux×Ecom. Hence, the verifier can extract
the commitment curve Ecom from the codomain of Φ and check the challenge
has been honestly generated, i.e. as the output of the hashing of Ecom and the
message to be signed.

5 Security analysis

In this section, we prove that the identification protocol (and thereby the signature
scheme obtained by the Fiat–Shamir transform) is secure: it is knowledge-sound
and honest-verifier zero-knowledge.

First, note that the key recovery problem for our construction is simply the
standard Supersingular Endomorphism Ring problem, a foundational problem of
isogeny-based cryptography.
Problem 13 (Supersingular Endomorphism Ring problem). Given a supersingular
elliptic curve E/Fp2 , find four endomorphisms (in efficient representation) which
generate the ring End(E).
The fastest known algorithms for this problem have classical complexity in
Õ(p1/2) [16] (see also [36, Theorem 8.8]). The only known quantum speed-up is
using Grover’s algorithm [22,6], for a quantum complexity in Õ(p1/4).

We prove in Theorem 17 that if echl + ersp ≤ e, the protocol has the 2-special
soundness property for the language

{(Epk, α) | α ∈ End(Epk) \ Z in efficient representation}.

This language corresponds to the Supersingular One Endomorphism problem.

Problem 14 (Supersingular One Endomorphism problem). Given a supersingular
elliptic curve E/Fp2 , find a non-scalar endomorphism α ∈ End(E)\Z (in efficient
representation).
This One Endomorphism problem is equivalent to the Endomorphism Ring
problem [36], i.e., to the key recovery problem for our construction.

Then, we prove in Theorem 22 that if Ncom ≥ 24λ and 2ersp ≥ 2
√

2p/π, then
the protocol is statistically honest-verifier zero-knowledge, in a model where the
simulator can sample random large-degree isogenies from a given curve (in the
classical model, this can only be done efficiently for smooth degree). This model,
discussed in Section 5.2, is similar to the security model of SQIsignHD [11].
Impact on parameter selection. In summary, for a security level ensuring
λ bits of classical security, one needs to choose a prime p = Θ(22λ). To ensure
soundness, one needs echl + ersp ≤ e (recall that p ≈ 2e, so e ≈ 2λ). To ensure
the statistical honest-verifier zero-knowledge property, one needs Ncom ≥ 24λ and
2ersp ≥ 2

√
2p/π.
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5.1 Knowledge soundness

Lemma 15. Given a commitment Ecom, a challenge chl < 2echl (generating
the challenge isogeny φchl : Epk → Echl), and a response (Eaux, Pchl, Qchl, r

′, nbt)
passing verification, one can extract in polynomial time an efficient representation
of an isogeny σ̃ : Ecom → Echl of degree at most 2ersp .

Proof. Write ψ : E0
chl → Echl for the last nbt steps of the challenge isogeny. Let

n = r′ + nbt. A successful verification ensures that one can extract a 2r′ -isogeny

φ̃(0) : Ẽ′
chl → E0

chl,

(for some curve Ẽ′
chl) and an 2ersp−n-isogeny

Φ : Ẽ′
chl × Eaux → Ecom × Ẽ′

aux,

(for some curve Ẽ′
aux), in efficient representation. Composing Φ with the inclusion

E′
chl → E′

chl × Eaux and the projection Ecom × E′
aux → Ecom, and taking the

dual, we obtain an isogeny φ̃(1) : Ecom → E′
chl of degree at most 2ersp−r′ . Let

σ̃ = ψ ◦ φ̃(0) ◦ φ̃(1) : Ecom → Echl. It has degree at most

deg(ψ) deg(φ̃(0)) deg(φ̃(1)) ≤ 2nbt · 2ersp−n · 2r
′

= 2ersp ,

which proves the lemma. ⊓⊔

Lemma 16. Let φchl : Epk → Echl and φ′
chl : Epk → E′

chl be two distinct
challenges from the same public curve Epk. Then, the largest integer dividing
φ′

chl ◦ φ̂chl ∈ Hom(Echl, E
′
chl) is smaller than 2echl .

Proof. Recall that the challenge isogeny φchl is defined by the kernel ⟨K(chl)⟩
with

K(chl) = Ppk + [chl]Qpk

where 0 ≤ chl < 2echl , and ⟨Ppk, Qpk⟩ = Epk[2e]. The second challenge isogeny
φ′

chl is defined similarly by its kernel generator K(chl′) = Ppk + [chl′]Qpk, for
some chl ̸= chl′. Since φchl and φ′

chl are cyclic, by [11, Lemma 37] there exists
three cyclic isogenies φ0 : Epk → E, φ1 : E → Echl and φ′

1 : E → E′
chl such

that φchl = φ1 ◦ φ0, φ′
chl = φ′

1 ◦ φ0 and φ′
1 ◦ φ̂1 is cyclic. We call φ0 the greatest

cyclic factor of φchl and φ′
chl. It has kernel ker(φ0) = ker(φchl) ∩ ker(φ′

chl). Since
φ′

chl ◦ φ̂chl = [deg(φ0)]φ′
1 ◦ φ̂1, we see that deg(φ0) is the largest integer dividing

φ′
chl ◦ φ̂chl in Hom(Echl, E

′
chl), so we only have to prove that deg(φ0) < 2echl .

Let R ∈ Epk be a generator of ker(φ0). Then, R = [a]K(chl) = [b]K(chl′) for
some a, b ∈ J0; 2e − 1K, i.e.,

[a− b]Ppk + [a · chl− b · chl′]Qpk = 0.

Since (Ppk, Qpk) is a basis of Epk[2e], it follows that a−b ≡ 0 mod 2e so a = b and
a(chl− chl′) ≡ 0 mod 2e. Since 0 ≤ chl ̸= chl′ < 2echl , it follows that 2e−echl+1|a,
so that R ∈ Epk[2echl−1] and deg(φ0) ≤ 2echl−1. This completes the proof. ⊓⊔
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Theorem 17. If echl + ersp ≤ e, then the identification protocol has 2-special
soundness for the language

{(Epk, α) | α ∈ End(Epk) \ Z in efficient representation}.

Proof. Consider two accepting transcripts with the same commitment curve
Ecom but challenge isogenies φchl : Epk → Echl and φ′

chl : Epk → E′
chl with

distinct kernels. From Lemma 15, we can extract an efficient representation of
isogenies σ : Ecom → Echl and σ′ : Ecom → E′

chl, each of degree at most 2ersp . Let
α = φ̂′

chl ◦ σ′ ◦ σ̂ ◦ φchl ∈ End(Epk).
Suppose by contradiction that α = [m] for some m ∈ Z. We deduce

[m] ◦ φ′
chl ◦ φ̂chl = [deg(φchl) deg(φ′

chl)] ◦ σ′ ◦ σ̂. (2)

Write φ′
chl ◦ φ̂chl = [2a] ◦ ψ and σ′ ◦ σ̂ = [d] ◦ ν where ψ and ν have cyclic kernel.

We deduce from Eq. (2) that 2am = ddeg(φchl) deg(φ′
chl) is the largest integer

dividing either side of the equality, and ψ = ν is the cyclic part of either side.
On one hand, we have deg(ν) ≤ deg(σ) deg(σ′) ≤ 22ersp . On the other

hand, Lemma 16 implies

deg(ψ) = φ′
chl ◦ φ̂chl

22a > 22(e−echl) ≥ 22ersp .

This contradicts the equality ψ = ν. ⊓⊔

5.2 Zero-knowledge property

In this section, we prove that the identification protocol is honest-verifier zero-
knowledge. Let us first prove that the commitment curve is indistinguishable
from a uniformly random curve.

Lemma 18. If Ncom ≥ 24λ, then an honestly generated commitment curve Ecom
is at statistical distance Õ(2−λ) from a uniformly random supersingular elliptic
curve.

Proof. It follows from [11, Proposition 29] with ε = 1 and p = Θ(22λ). ⊓⊔

To prove that the protocol has the zero-knowledge property, we prove that
there exists a simulator producing transcripts indistinguishable from an honest
run of the protocol. Like in SQIsignHD [11], the simulator runs in polynomial
time if it has access to an oracle producing random isogenies. This “random
isogeny” oracle comes in two variants: the UTO and the FIDIO.

Definition 19. A uniform target oracle (UTO) is an oracle taking as input a
supersingular elliptic curve E defined over Fp2 and an integer N ≥ 2

√
2p/π, and

outputs a random isogeny φ : E → E′ (in efficient representation) such that:

1. The distribution of E′ is uniform among all the supersingular elliptic curves.
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2. The conditional distribution of φ given E′ is uniform among isogenies E → E′

of degree smaller or equal to N .

Remark 20. The condition N ≥ 2
√

2p/π ensures such an oracle exists: for any
pair (E1, E2), the collection of isogenies E1 → E2 of degree smaller than N is
non-empty (Minkowski’s bound for the lattice Hom(E1, E2)).

Definition 21. A fixed degree isogeny oracle (FIDIO) is an oracle taking as
input a supersingular elliptic curve E defined over Fp2 and an integer N , and
outputs a uniformly random isogeny φ : E → E′ (in efficient representation) with
domain E and degree N .

Theorem 22. If 2ersp ≥ 2
√

2p/π and Ncom ≥ 24λ, then the identification protocol
is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In
other words, there exists a polynomial time simulator S with access to a UTO and
a FIDIO that produces random transcripts which are statistically indistinguishable
from honest transcripts.

Proof. The simulator proceeds as follows:

1. Generate an isogeny φchl : Epk → Echl according to the honest challenge
distribution.

2. Call the UTO on input (Echl, 2ersp), resulting in the isogeny φ̂rsp : Echl → Ecom.
3. Decompose φrsp = ψ ◦φ(1)

rsp with q′ = deg(φ(1)
rsp ) odd and deg(ψ) = 2n a power

of two. Let 2nbt = #(ker(ψ̂) ∩ ker(φ̂chl)). Let r′ = n− nbt.
4. Call the FIDIO on input (Ecom, 2ersp−r′ − q′), resulting in the isogeny φaux :
Ecom → Eaux.

From the properties of the UTO and FIDIO, the above procedure is equivalent
to the following one:

1. Generate a uniformly random supersingular curve Ecom
2. Generate an isogeny φchl : Epk → Echl according to the honest challenge

distribution.
3. Generate a uniformly random isogeny φrsp from Ecom to Echl, of degree at

most 2ersp .
4. Decompose φrsp = ψ ◦φ(1)

rsp with q′ = deg(φ(1)
rsp ) odd and deg(ψ) = 2n a power

of two. Let 2nbt = #(ker(ψ̂) ∩ ker(φ̂chl)). Let r′ = n− nbt.
5. Generate a uniformly random isogeny β from Ecom and of degree 2ersp−r′ − q′.

This is precisely the order in which an honest run of the protocol proceeds.
The distribution for the first step matches the honest run by Lemma 18. The
distributions of following steps match the honest ones by construction. ⊓⊔

On the UTO and FIDIO oracles. Let us first argue that the UTO is essentially
redundant: given a FIDIO, one can implement an oracle that is computationally
indistinguishable from a UTO, at least when the bound N is sufficiently large.
We proceed in two steps:
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1. First, we use the FIDIO to build an oracle which outputs a uniform isogeny
σ from E with deg(σ) ≤ N . In other words, one can turn a FIDIO into a
RADIO, following the terminology of [11].

2. Second, we argue that this distribution (the output of a RADIO) is indistin-
guishable from the output of a UTO.

Recall the definition of a RADIO.

Definition 23 ([11, Definition 41]). A random any-degree isogeny oracle
(RADIO) is an oracle taking as input a supersingular elliptic curve E defined
over Fp2 and an integer N , and outputs a uniformly random isogeny φ : E → E′

(in efficient representation) with domain E and degree at most N .

Let us first explain how one can turn a FIDIO into a RADIO. Let fN be the
probability distribution of the degree of the output of a RADIO: for any integer
q, let fN (q) be the probability that the degree of the output of a RADIO on
input (E,N) is equal to q. Note that conditional on the degree of the output
begin q, the FIDIO and the RADIO follow the same distribution: uniform among
isogenies with domain E and degree q. Therefore, to simulate a RADIO, we can
proceed as follows: on input (E,N),

1. sample an integer q following the distribution fN ;
2. call the FIDIO on input (E, q), and return the output.

To sample from the distribution fN , observe that the value fN (q) = Θ̃(q/N2)
can be computed efficiently if the factorisation of q is known. Therefore, we can
do rejection sampling by sampling uniformly random integers in [1, N ] together
with their factorisation (see [1]).

We proceed as follows: sample a random degree q ≤ N , then call the FIDIO
to sample a uniform isogeny of degree q from E. The only difficulty is to sample
q ≤ N with the same distribution as the degree of a UTO-output (it is not the
uniform distribution). Given the prime factorisation q =

∏
i ℓ
ei
i , there are

∏
i ℓ
ei
i .

Now that we can turn a FIDIO into a RADIO, it remains to argue that
a RADIO is indistinguishable from a UTO. For N large enough, it is indeed
statistically indistinguishable: conditionally on the target curve, the two distribu-
tions are identical, and it is proven in [11, Theorem 42] that when N = Θ(p1+ε)
for ε ∈ (0, 2], the distribution on the target curves are at statistical distance
O(p−ε/2). Therefore, when N = Θ(p1+ε), the RADIO and the UTO are at sta-
tistical distance O(p−ε/2). The bound N = O(p1/2) used in the protocol is not
large enough for this theorem to apply, but we expect the distributions to remain
computationally indistinguishable.

The conclusion of the above discussion is that in Theorem 22, the UTO is
heuristically redundant. In other words, there is a (heuristic) simulator in the
FIDIO model. It remains to argue that this FIDIO does not hurt the security
assumption: access to a FIDIO does not help with solving the endomorphism ring
problem. We refer to the analogous discussion about the security of SQIsignHD
in [11, Section 5.3]. In essence, all a FIDIO does is compute a random walk
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from a source curve. We already know how to compute random walks of smooth
degree (by taking a sequence of random isogeny steps of small prime degree), and
a FIDIO extends this capability to random walks with potentially large prime
steps.

5.3 Security of the signature protocol

In the previous sections, we have shown that the SQIsign2D Σ-protocol is 2-
special sound, under the assumed hardness of Problem 13, and zero-knowledge
in the UTO and FIDIO model. Hence, a direct application of the Fiat–Shamir
transform [21] yields a digital signature that is EUF-CMA secure in the random
oracle model (ROM) [37], under the hardness of Problem 13 when the attacker
has access to the UTO and FIDIO.

However, the signature protocol whose security is proved in [37] includes
commitments in the signature. As explained in Section 4.2, we replace the
commitment in the signature with the challenge (by relying on the commitment-
recoverability property of the Σ-protocol) to reduce the signature size. To show
the security equivalence of the two approaches, we rely on [2, Theorem 2],
which requires the commitment-recovering algorithm to be correct and sound.
Given a transcript (com, chl, rsp), correctness requires the commitment-recovering
algorithm to always produce com given chl and rsp, and it follows from Remark 12.
Soundness, in this context, means that it is computationally hard to find a
pair of challenge and response (chl, rsp) for which the commitment-recovering
algorithm produces a commitment com such that (com, chl, rsp) is not a valid
transcript. In our case, the commitment-recovering algorithm is perfectly sound
(i.e. soundness holds even against unbounded adversaries): the curve produced
by the commitment-recovering algorithm introduced in Section 4.2 is always the
codomain of an isogeny, efficiently represented in the response, starting from Echl,
and the curve Ecom does not need to satisfy any additional requirement to be a
valid commitment; thus, the resulting transcript is always valid.

This shows that the SQIsign2D signature protocol is EUF-CMA secure in the
ROM, assuming the hardness of Problem 13 when the attacker has also access to
the UTO and FIDIO.

6 Instantiation and experimental results

We selected parameters for the scheme described in Section 4 matching NIST post-
quantum security levels I, III and V, and implemented them in C building upon
the SQIsign reference implementation. We now give details on our implementation
and compare its performance to the other variants of SQIsign.

6.1 Parameter choices and and signature size

Choice of the primes. As mentioned in Section 5, the best attacks against the
Supersingular Endomorphism Ring problem have classical complexity Õ(p1/2)

https://github.com/SQISign/the-sqisign


30 The Isogeny Gringos

and quantum complexity Õ(p1/4), where p is the characteristic of the base field.
These are also the best known attacks against SQIsign (see [9, Chapter 9]) and
SQIsign2D. Our security reduction, although not tight and formulated in the
UTO/FIDIO model, further justifies using these complexities to set parameters.

To reach NIST’s security levels I, III and V, we thus look for primes of
roughly 256, 384 and 512 bits respectively. For maximum efficiency, we selected
primes such that 2p fits in 4, 6 and 8 64-bits words. The final requirement is
that p+ 1 = c · 2e with c as small as possible; it is also desirable that c has small
Hamming weight. Our final choices are listed in Table 2.

Table 2. Chosen parameters for SQIsign2D. Sizes in bytes.

NIST I NIST III NIST V

Prime 5 · 2248 − 1 65 · 2376 − 1 27 · 2500 − 1
Public-key size 66 98 130
Signature size 148 222 294

Signature encoding and sizes. The resulting public key and signature sizes are
reported in Table 2. We detail below how these numbers are computed.

As for other SQIsign variants, there are various possibilities to decrease
the signature size at the expense of slower verification and signing. For our
implementation, we prioritised verification speed over signature size, and thus
chose to not use the most advanced compression tricks. As we mentioned already
(see Section 4.2), our scheme is commitment recoverable which means that we do
not need to include the commitment curve in the signature. This requires a little
more work for the signer, but it makes close to no difference for the verification.

Outside of this, the only other real compression we use is to represent the
basis Pchl, Qchl as four elements in [0, 2ersp ] (that are the coefficients of Pchl, Qchl
in a canonical basis of Echl). For a given level security of λ, we have log p ≈ 2λ
and ersp ≈ λ, so this compression allows us to decrease the size of the basis
representation from 8λ (since each point is represented as one element in Fp2)
to 4λ. This requires the additional computation a canonical basis of Echl. In
general, this is not cheap to compute, but we can abuse tricks specialised for
the generation of bases of E[2k] such as the entangled torsion basis from [45,
Algorithm 3.1] or the modification described in [42, Section 5.1].

We can further reduce the cost of the basis generation for the verifier by
including hints at the very reasonable cost of increasing the signature size by
two bytes. The idea of hints to speed-up basis generation was first introduced
as part of the compression procedure in the original SQIsign paper. Using the
specialised algorithms [45,42] boils down to selecting x-coordinates with chosen
Legendre symbols and checking whether the chosen x is a valid x-coordinate for
a point on the curve.

In this context, the hints can be either indices of tables of “good” x-coordinates,
or some integer h such that x = i+ h ∈ Fp2 are values with the correct Legendre
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symbol properties and points on the curve.9 Moreover, it does not cost anything
to the signer to include these hints. In our experiments, the value of the hints
never went over 50, thus we conjecture that for the sizes considered for our
scheme, the hints for a basis can fit in two bytes with overwhelming probability.

In our scheme, we use hints for the deterministic basis generation required by
the verification: one for Epk and one for Echl. Thus, this increases the size of the
public key by two bytes and the size of the signature by two bytes.

In the end, the size of the public key is 4λ + 16 bits, and the size of the
signature is 9λ+ 16 + 2 log2(2λ) bits (λ for the scalar chl ,4λ for Eaux, 4λ+ 16
for Pchl, Qchl and 2 log(2λ) for r′ and nbt).

Remark 24. The representation of Pchl, Qchl could be further reduced to 3λ, but
would require the verifier to compute a pairing to recover the last coefficient.
Since pairing are quite costly, we decided not too include this optimisation, but
it could be part of the signature in cases where size of the signature is critical.
Experimentally, for NIST level 1, this would gain 16B on the signature size, at
the cost of an increase on the verification time by 5 to 10 percent.

6.2 Implementation choices and optimisations

We implemented SQIsign2D in C by modifying SQIsign’s reference code.10

Multi-precision integers and quaternion algebras are built on top of the GMP
library.11 The only significant difference with SQIsign is the use of floating point
numbers in the LLL algorithm instead of exact rationals.
Arithmetic modulo p has two implementations: one based on the Fiat-Crypto
code generator [20] and one optimised implementation using the special form of
the primes used, allowing for efficient Montgomery reduction. We give a detail of
the design choices of this implementation and future work in Appendix C.
Elliptic curves, pairings, and isogenies. Following standard practice, we represent
elliptic curves in Montgomery form and use the formulas in [10,38] to evaluate
2-isogenies and 4-isogenies. Compared to SQIsign, we do not use formulas for
isogenies of odd degrees, and in particular we do not need the costly

√
élu

algorithm [5].
For pairings, we use the biextension/cubical formulas from [41], because these

are currently, to the best of our knowledge, the fastest available to compute
pairings on Montgomery curves. We note that since we only need to compute
pairings between points of order 2e, we only need to use biextension doublings.
9 In our implementation, we begin sampling coordinates from two tables with twenty

values. This gives a 2−20 chance of failure, which we recover from by then sampling
coordinates of the form x = i + h as above. Regardless of whether the basis is
generated from a look-up or sampling, the cost for verification is the same thanks to
the supplied hint.

10 Our code will be available at https://github.com/SQISign/sqisign2d-west-ac24.
11 https://gmplib.org/.

https://github.com/SQISign/the-sqisign
https://github.com/SQISign/sqisign2d-west-ac24
https://gmplib.org/
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Two-dimensional abelian varieties are represented in theta coordinates and their
two-dimensional 2-isogenies are evaluated using the formulas in [12]. We use the
projective version of their formulas to remove almost all inversions along the
isogeny chain.

All other algorithms are either taken from the implementation of SQIsignHD
or have been written from scratch according to the description in Section 3, with
minor deviations to allow for several small optimizations, such as commitment
recoverability, bases compression, and hints.

Table 3. Performance of SQIsign2D on Intel Xeon Gold 6338 (Ice Lake, 2GHz), using
generic finite field arithmetic (Fiat-Crypto), GMP 6.2.1. Turbo-boost disabled. Timings
in 106 cycles.

Level SQIsign SQIsignHD SQIsign2D

I 2,800 190 120
Keygen III 21,300 — 440

V 91,600 — 1,070

I 4,600 115 290
Sign III 39,300 — 1,040

V 165,000 — 2,490

I 93 — 25
Verify III 641 — 98

V 2,080 — 247

6.3 Performance

We ran benchmarks to compare our implementations to the state of the art. All
code was compiled on Ubuntu using clang 14, with flags -march=native -O3,
dynamically linking to the system GMP library (version 6.2.1). Benchmarks were
run on an Intel Xeon Gold 6338 (Ice Lake) CPU clocked at 2 GHz with turbo
boost disabled. In Table 3 we compare our pure-C implementation to:

– The reference implementation of SQIsign at https://github.com/SQISign/
the-sqisign. Because this uses the same modular arithmetic based on Fiat-
Crypto, it is a fair comparison for showcasing the higher-level algorithmic
improvements of SQIsign2D.

– The implementation of SQIsignHD at https://github.com/Pierrick-Dartois/
SQISignHD-lib. This codebase is momentarily lacking a C implementation
of the verification, thus we only benchmark key generation and signatures.

For the optimised pure-C implementation we additionally compare to the im-
plementation of SQIsign [15] at https://github.com/SQISign/sqisign-ec23.
This has much better assembly optimisations for finite fields and is generally

https://github.com/Pierrick-Dartois/SQISignHD-lib
https://github.com/SQISign/the-sqisign
https://github.com/SQISign/the-sqisign
https://github.com/Pierrick-Dartois/SQISignHD-lib
https://github.com/Pierrick-Dartois/SQISignHD-lib
https://github.com/SQISign/sqisign-ec23
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faster than the reference implementation. However, our implementation is the
only one to implement all three NIST levels. We additionally implemented the
heuristic variant of SQIsign2D described in Appendix B and included these results
under the label SQIsign2D-H. The results are reported in Table 4.

Table 4. Performance of SQIsign2D on Intel Xeon Gold 6338 (Ice Lake, 2GHz), with
finite field arithmetic optimised using intrinsics for the Ice Lake architecture, GMP
6.2.1. Turbo-boost disabled. Timings in 106 cycles.

Level SQIsign ([9]) SQIsign ([15]) SQIsign2D SQIsign2D-H

I 1,700 400 60 58
Keygen III — — 170 170

V — — 360 350

I 2,400 1880 160 100
Sign III — — 460 280

V — — 940 570

I 39 29 9 9
Verify III — — 29 29

V — — 62 60

References

1. Bach, E.: How to generate factored random numbers. SIAM Journal on Computing
17(2), 179–193 (1988). https://doi.org/10.1137/0217012

2. Backendal, M., Bellare, M., Sorrell, J., Sun, J.: The Fiat-Shamir zoo: Relating the
security of different signature variants. In: Gruschka, N. (ed.) Secure IT Systems
- 23rd Nordic Conference, NordSec 2018, Oslo, Norway, November 28-30, 2018,
Proceedings. Lecture Notes in Computer Science, vol. 11252, pp. 154–170. Springer
(2018). https://doi.org/10.1007/978-3-030-03638-6_10

3. Bajard, J.C., Duquesne, S.: Montgomery-friendly primes and applications to
cryptography. Journal of Cryptographic Engineering 11(4), 399–415 (Nov 2021).
https://doi.org/10.1007/s13389-021-00260-z

4. Basso, A., Maino, L., Pope, G.: FESTA: Fast encryption from supersingular torsion
attacks. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part VII. LNCS, vol.
14444, pp. 98–126. Springer, Singapore (Dec 2023). https://doi.org/10.1007/
978-981-99-8739-9_4

5. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. Open Book Series 4(1), 39–55 (2020). https://doi.org/10.
2140/obs.2020.4.39

6. Biasse, J.F., Jao, D., Sankar, A.: A quantum algorithm for computing isogenies
between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (Dec 2014).
https://doi.org/10.1007/978-3-319-13039-2_25

https://doi.org/10.1137/0217012
https://doi.org/10.1137/0217012
https://doi.org/10.1007/978-3-030-03638-6\_10
https://doi.org/10.1007/978-3-030-03638-6_10
https://doi.org/10.1007/s13389-021-00260-z
https://doi.org/10.1007/s13389-021-00260-z
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-319-13039-2_25


34 The Isogeny Gringos

7. Castryck, W., Chen, M., Invernizzi, R., Lorenzon, G., Vercauteren, F.: Breaking
and repairing SQIsign2D-East. Cryptology ePrint Archive, Paper 2024/1453 (2024),
https://eprint.iacr.org/2024/1453

8. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay,
C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 423–447.
Springer, Cham (Apr 2023). https://doi.org/10.1007/978-3-031-30589-4_15

9. Chavez-Saab, J., Santos, M.C., De Feo, L., Eriksen, J.K., Hess, B., Kohel, D.,
Leroux, A., Longa, P., Meyer, M., Panny, L., Patranabis, S., Petit, C., Rodríguez
Henríquez, F., Schaeffler, S., Wesolowski, B.: SQIsign. Tech. rep., National Insti-
tute of Standards and Technology (2023), available at https://csrc.nist.gov/
Projects/pqc-dig-sig/round-1-additional-signatures

10. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS,
vol. 10625, pp. 303–329. Springer, Cham (Dec 2017). https://doi.org/10.1007/
978-3-319-70697-9_11

11. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQIsignHD: New dimensions
in cryptography. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part I.
LNCS, vol. 14651, pp. 3–32. Springer, Cham (May 2024). https://doi.org/10.
1007/978-3-031-58716-0_1

12. Dartois, P., Maino, L., Pope, G., Robert, D.: An algorithmic approach to (2, 2)-
isogenies in the theta model and applications to isogeny-based cryptography. Cryp-
tology ePrint Archive, Report 2023/1747 (2023), https://eprint.iacr.org/2023/
1747

13. De Feo, L.: Mathematics of isogeny based cryptography (2017), https://arxiv.
org/abs/1711.04062

14. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 64–93. Springer, Cham
(Dec 2020). https://doi.org/10.1007/978-3-030-64837-4_3

15. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New algorithms for the deuring
correspondence - towards practical and secure SQISign signatures. In: Hazay, C.,
Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 659–690.
Springer, Cham (Apr 2023). https://doi.org/10.1007/978-3-031-30589-4_23

16. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular ellip-
tic curves over Fp. DCC 78(2), 425–440 (2016). https://doi.org/10.1007/
s10623-014-0010-1

17. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 14,
197–272 (1941), https://doi.org/10.1007/BF02940746

18. Dirichlet, P.G.L.: Beweis des Satzes, dass jede unbegrenzte arithmetische Pro-
gression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen
Factor sind, unendlich viele Primzahlen enthält. Abhandlungen der Königlichen
Preußischen Akademie der Wissenschaften zu Berlin 48, 45–71 (1837). https:
//doi.org/10.1017/CBO9781139237321.012

19. Duparc, M., Fouotsa, T.B., Vaudenay, S.: SILBE: an updatable public key encryption
scheme from lollipop attacks. Cryptology ePrint Archive, Report 2024/400 (2024),
https://eprint.iacr.org/2024/400

20. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: 2019 IEEE
Symposium on Security and Privacy. pp. 1202–1219. IEEE Computer Society Press
(May 2019). https://doi.org/10.1109/SP.2019.00005

https://eprint.iacr.org/2024/1453
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-031-58716-0_1
https://doi.org/10.1007/978-3-031-58716-0_1
https://doi.org/10.1007/978-3-031-58716-0_1
https://doi.org/10.1007/978-3-031-58716-0_1
https://eprint.iacr.org/2023/1747
https://eprint.iacr.org/2023/1747
https://arxiv.org/abs/1711.04062
https://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/BF02940746
https://doi.org/10.1017/CBO9781139237321.012
https://doi.org/10.1017/CBO9781139237321.012
https://doi.org/10.1017/CBO9781139237321.012
https://doi.org/10.1017/CBO9781139237321.012
https://eprint.iacr.org/2024/400
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1109/SP.2019.00005


SQIsign2D–West 35

21. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263,
pp. 186–194. Springer, Berlin, Heidelberg (Aug 1987). https://doi.org/10.1007/
3-540-47721-7_12

22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
ACM STOC. pp. 212–219. ACM Press (May 1996). https://doi.org/10.1145/
237814.237866

23. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford,
sixth edn. (1975). https://doi.org/10.1093/oso/9780199219858.001.0001

24. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali,
A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J., Soukharev, V.,
Urbanik, D., Pereira, G., Karabina, K., Hutchinson, A.: SIKE. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.
gov/Projects/post-quantum-cryptography/round-4-submissions

25. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography - 4th
International Workshop, PQCrypto 2011. pp. 19–34. Springer, Berlin, Heidelberg
(Nov / Dec 2011). https://doi.org/10.1007/978-3-642-25405-5_2

26. Kani, E.: The number of curves of genus two with elliptic differentials. Journal für
die reine und angewandte Mathematik 485, 93–122 (1997). https://doi.org/10.
1515/crll.1997.485.93

27. Kirschmer, M., Voight, J.: Algorithmic enumeration of ideal classes for quaternion
orders. SIAM Journal on Computing 39(5), 1714–1747 (2010). https://doi.org/
10.1137/080734467

28. Kohel, D., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion-isogeny path
problem. LMS Journal of Computation and Mathematics 17(A), 418–432 (2014).
https://doi.org/10.1112/S1461157014000151

29. Leroux, A.: Quaternion algebras and isogeny-based cryptography. Ph.D. thesis,
École Polytechnique, France (2022), http://www.lix.polytechnique.fr/Labo/
Antonin.LEROUX/manuscrit_these.pdf

30. Longa, P.: Efficient algorithms for large prime characteristic fields and their ap-
plication to bilinear pairings. IACR TCHES 2023(3), 445–472 (2023). https:
//doi.org/10.46586/tches.v2023.i3.445-472

31. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 448–471. Springer, Cham (Apr 2023). https://doi.
org/10.1007/978-3-031-30589-4_16

32. Nakagawa, K., Onuki, H.: QFESTA: Efficient algorithms and parameters for FESTA
using quaternion algebras. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part V.
LNCS, vol. 14924, pp. 75–106. Springer, Cham (Aug 2024). https://doi.org/10.
1007/978-3-031-68388-6_4

33. Nakagawa, K., Onuki, H.: SQIsign2D-east: A new signature scheme using 2-
dimensional isogenies. Cryptology ePrint Archive, Report 2024/771 (2024), https:
//eprint.iacr.org/2024/771

34. Onuki, H., Nakagawa, K.: Ideal-to-isogeny algorithm using 2-dimensional isogenies
and its application to SQIsign. Cryptology ePrint Archive, Report 2024/778 (2024),
https://eprint.iacr.org/2024/778

35. Page, A., Robert, D.: Introducing clapoti(s): Evaluating the isogeny class group
action in polynomial time. Cryptology ePrint Archive, Report 2023/1766 (2023),
https://eprint.iacr.org/2023/1766

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1093/oso/9780199219858.001.0001
https://doi.org/10.1093/oso/9780199219858.001.0001
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1137/080734467
https://doi.org/10.1137/080734467
https://doi.org/10.1137/080734467
https://doi.org/10.1137/080734467
https://doi.org/10.1112/S1461157014000151
https://doi.org/10.1112/S1461157014000151
http://www.lix.polytechnique.fr/Labo/Antonin.LEROUX/manuscrit_these.pdf
http://www.lix.polytechnique.fr/Labo/Antonin.LEROUX/manuscrit_these.pdf
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-68388-6_4
https://doi.org/10.1007/978-3-031-68388-6_4
https://doi.org/10.1007/978-3-031-68388-6_4
https://doi.org/10.1007/978-3-031-68388-6_4
https://eprint.iacr.org/2024/771
https://eprint.iacr.org/2024/771
https://eprint.iacr.org/2024/778
https://eprint.iacr.org/2023/1766


36 The Isogeny Gringos

36. Page, A., Wesolowski, B.: The supersingular endomorphism ring and one en-
domorphism problems are equivalent. In: Joye, M., Leander, G. (eds.) EURO-
CRYPT 2024, Part VI. LNCS, vol. 14656, pp. 388–417. Springer, Cham (May 2024).
https://doi.org/10.1007/978-3-031-58751-1_14

37. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 387–398. Springer, Berlin, Heidelberg
(May 1996). https://doi.org/10.1007/3-540-68339-9_33

38. Renes, J.: Computing isogenies between Montgomery curves using the action of
(0, 0). In: Lange, T., Steinwandt, R. (eds.) Post-Quantum Cryptography - 9th
International Conference, PQCrypto 2018. pp. 229–247. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-79063-3_11

39. Robert, D.: Evaluating isogenies in polylogarithmic time. Cryptology ePrint Archive,
Report 2022/1068 (2022), https://eprint.iacr.org/2022/1068

40. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 472–503. Springer, Cham (Apr
2023). https://doi.org/10.1007/978-3-031-30589-4_17

41. Robert, D.: Fast pairings via biextensions and cubical arithmetic. Cryptology ePrint
Archive, Report 2024/517 (2024), https://eprint.iacr.org/2024/517

42. Santos, M.C.R., Eriksen, J.K., Meyer, M., Reijnders, K.: AprèsSQI: Extra fast
verification for SQIsign using extension-field signing. In: Joye, M., Leander, G. (eds.)
EUROCRYPT 2024, Part I. LNCS, vol. 14651, pp. 63–93. Springer, Cham (May
2024). https://doi.org/10.1007/978-3-031-58716-0_3

43. Silverman, J.H.: The arithmetic of elliptic curves, Graduate texts in mathematics,
vol. 106. Springer (1986). https://doi.org/10.1007/978-0-387-09494-6

44. Solinas, J.A.: Generalized Mersenne numbers. Tech. Rep. CORR 99–39, Centre for
Applied Cryptographic Research, University of Waterloo (1999)

45. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto, P.S.L.M.:
Faster key compression for isogeny-based cryptosystems. IEEE Transactions on
Computers 68(5), 688–701 (2019). https://doi.org/10.1109/TC.2018.2878829

https://doi.org/10.1007/978-3-031-58751-1_14
https://doi.org/10.1007/978-3-031-58751-1_14
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/978-3-319-79063-3_11
https://doi.org/10.1007/978-3-319-79063-3_11
https://eprint.iacr.org/2022/1068
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://eprint.iacr.org/2024/517
https://doi.org/10.1007/978-3-031-58716-0_3
https://doi.org/10.1007/978-3-031-58716-0_3
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1109/TC.2018.2878829
https://doi.org/10.1109/TC.2018.2878829


SQIsign2D–West 37

A Details on the algorithmic building blocks

A.1 The FixedDegreeIsogeny algorithm

In this section, we recall the idea of Nakagawa and Onuki [32] and tweak their
algorithm RandIsogImages which evaluates an isogeny from E0 of given odd degree
u < 2e to additionally output an O0-left ideal corresponding to such an isogeny.
We denote this algorithm by FixedDegreeIsogeny and describe it in Algorithm 8.

Let u < 2e be an odd integer. The goal of FixedDegreeIsogeny is to compute an
isogeny φ : E0 → E of degree u and its kernel ideal I ⊆ O0. First, let us sample
an endomorphism θ ∈ End(E0) of degree u(2e − u) via FullRepresentInteger [15,
Algorithm 1]. This can be done as long as u(2e − u) = Ω(p). The endomorphism
θ can be written as θ = ψ ◦ φ : E0 → E0, where φ : E0 → E is an isogeny of
degree u and ψ : E → E0 is an isogeny of degree 2e − u. Now, consider the
(u, 2e − u)-isogeny diamond in Fig. 3.

E0

E E0

E′

φ

ψ

ψ′

φ′θ
⟳

⟳

Fig. 3. (u, 2e − u)-isogeny diamond.

Applying Kani’s Lemma (Theorem 4), we have that the two-dimensional
isogeny Φ with kernel {([u]P, θ(P )) | P ∈ E0[2e]} can be written as

Φ =
(

φ ψ̂

−ψ′ φ̂′

)
: E0 × E0 → E × E′.

In particular, we can evaluate φ : E0 → E at any point P as (φ(P ),−ψ′(P )) =
Φ(P, 0). In the rest of the paper, we will use the notation φ|N to refer to the
action of φ on E0[N ]. In practice, when we write φ|N , we mean φ(P ) and φ(Q),
for some basis ⟨P,Q⟩ = E0[N ].

As we mentioned above, we also need to compute the ideal corresponding
to φ. The following lemma addresses this task.

Lemma 25. I = O0θ + uO0.

Proof. We have E0[O0θ + uO0] = ker(θ) ∩ E0[u]. First, observe that ker(φ) ⊆
ker(θ) ∩ E0[u] since θ factors through φ, which has degree u.

Conversely, if P ∈ ker(θ) ∩ E0[u], then ψ(φ(P )) = 0. As a result, φ(P ) ∈
E[u]∩ ker(ψ) and E[u]∩ ker(ψ) ⊆ E[u]∩E[2e− u] = {0}, since u and 2e− u are
coprime. Thus, P ∈ ker(φ), proving E0[O0θ + uO0] = ker(φ).
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The claim I = O0θ + uO0 follows from the Deuring correspondence. ⊓⊔

We summarise everything in Algorithm 8. The cost of Algorithm 8 is essentially
dominated by the computation of the two-dimensional isogeny in Line 2 and its
evaluation on the 2e-torsion.

Algorithm 8 FixedDegreeIsogeny
Input: An odd positive integer u < 2e such that u(2e− u) = Ω(p) and a basis (P0, Q0)

of E0[2e].
Output: The curve E, φ|2e , where φ : E0 → E is a u-isogeny, and its corresponding

ideal I.
1: Sample θ ∈ End(E0) of degree u(2e − u). (▷) Call [15, Algorithm 1]
2: Evaluate Φ : E0 × E0 → E × E′ of kernel

〈(
[u]P0, θ(P0)

)
,
(
[u]Q0, θ(Q0)

)〉
on the

points (P0, 0) and (Q0, 0)
3: Parse Φ(P0, 0) = (φ(P0), ∗) and Φ(Q0, 0) = (φ(Q0), ∗) to obtain φ|2e =

(φ(P0), φ(Q0))
4: Set I ← O0θ + uO0
5: Return E, φ|2e , I

Remark 26. The use of FullRepresentInteger [15, Algorithm 1] is the reason why
we can only return isogenies starting from E0. Indeed, FullRepresentInteger can
only find solutions in the special extremal order O0.

We can tweak Algorithm 8 to compute a 2-isogeny chain of length f < e
in Line 2. In Line 1, we sample an endomorphism of degree (2f − u)u such
that FullRepresentInteger succeeds with overwhelming probability (requiring
u(2f − u) = O(p log2 p) should be enough for that, see [29, Lemma 3.1.4] for in-
stance). The kernel of the isogeny Φ in Line 2 becomes

〈(
[2e−fu]P0, [2e−f ]θ(P0)

)
,(

[2e−fu]Q0, [2e−f ]θ(Q0)
)〉

.

B A faster variant of SQIsign2D with heuristic security

In this section, we describe a heuristic version of the Σ-protocol described
in Section 4. The gist of this idea is to avoid the additional two-dimensional
isogeny in Algorithm 6, Line 13 and allow only for response isogenies φrsp of
odd degree. The choice made in Section 4 for ersp guarantees the existence of a
response isogeny φrsp of degree q < 2ersp , but such an isogeny needs not be of odd
degree.

Let us recall that we work over Fp2 , where p is a prime of the form c ·2e−1. In
this heuristic version, we additionally require e = ersp + echl. In order to increase
the likelihood of finding an odd-degree response isogeny φrsp of degree < 2ersp ,
the value ersp is chosen to be larger than echl.

The Key Generation algorithm (Cfr. Algorithm 4) is left unchanged with
the only exception that it also stores the points φsk(P0), φsk(Q0) as internal
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optimisations. The Commitment Algorithm is similar to the one in Algorithm 5.
The main difference is that the commitment isogeny φcom : E0 → Epk is not
computed via IdealToIsogeny but using FixedDegreeIsogeny(Ncom). The heuristic
good distribution of the commitment curves is discussed in [32, Remark 4].

The challenge space remains the same, i.e. the challenge chl is a positive
integer < 2echl . However, rather than describing an isogeny φchl of degree 2e,
it will describe an isogeny φchl : Epk → Echl of degree 2echl . To be precise, let
(Ppk, Qpk) be a deterministic basis of Epk[2e], then φchl : Epk → Echl is the isogeny
with kernel ⟨[2ersp ](Ppk + [chl]Qpk)⟩. In the non-heuristic version, the challenge
isogeny φchl has degree 2e to ensure soundness even in the presence of backtracking
response isogenies. This is not the case anymore since the response isogeny φrsp
has odd degree.

As we anticipated above, the main difference between the heuristic response
algorithm and Algorithm 6 is that the response isogeny φrsp has odd degree q; we
give experimental estimates for the failure probability of finding a response isogeny
of odd degree in Appendix B.1. Let Isk, Icom, Ichl and Irsp be the ideal associated
with the isogenies φsk, φcom, φchl and φrsp, respectively. The ideal Isk ·Ichl ·Irsp ·Icom
describes an endomorphism θ on E0, i.e. φ̂com ◦ φ̂rsp ◦φchl ◦φsk = θ. As a result, we
can evaluate φ̂rsp ◦φchl at the 2e-torsion point P as [(NskNcom)−1]φcom ◦θ◦ φ̂sk(P ).

To represent the isogeny φrsp via a two-dimensional isogeny, we still need to
compute an auxiliary isogeny φaux : Ecom → Eaux of degree 2ersp − q. Similarly
to Algorithm 6, we first compute a random left O0-ideal I ′

aux of norm 2ersp − q
and then its pushforward Iaux through Icom. Thus, we can obtain φaux ◦ φcom|2e

via IdealToIsogeny(Icom · Iaux).
Using φaux ◦ φcom|2e , we compute

φaux ◦ φ̂rsp ◦ φchl(Ppk) = [(NskNcom)−1]φaux ◦ φcom ◦ θ ◦ φ̂sk(Ppk)

and

φaux ◦ φ̂rsp ◦ φchl(Qpk) = [(NskNcom)−1]φaux ◦ φcom ◦ θ ◦ φ̂sk(Qpk).

In particular,(
Paux := [q−1]φaux ◦ φ̂rsp ◦ φchl(Ppk+[chl]Qpk),

Qaux := [q−12echl ]φaux ◦ φ̂rsp ◦ φchl(Qpk)
)

is a basis of Echl.
Such a basis can be used to represent the kernel of the two-dimensional isogeny

to use during verification. The output of the response algorithm will then consist
in (Eaux, Paux, Qaux). We summarise the response algorithm in Algorithm 9.

To verify the response, the verifier first recomputes the challenge isogeny
φchl : Epk → Echl with kernel ⟨[2ersp ](Ppk + [chl]Qpk)⟩. Then, defines Pchl, Qchl to
be the points φchl(Ppk + [chl]Qpk) and φchl[2echl ](Qpk). From Kani’s Lemma, the
isogeny Φ : Echl ×Eaux → E′

aux ×Ecom with kernel
〈(
Pchl, Paux

)
,
(
Qchl, Qaux

)〉
has

matrix form
Φ =

(
φ′

aux −φ′
rsp

φ̂rsp φ̂aux

)
,
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Algorithm 9 Heuristic Response
Input: The public key Epk, the secret key Isk,B, φsk(P0), φsk(Q0), the commitment

(Ecom, com), the commitment state Icom, φcom(P0), φcom(Q0), and the challenge
chl < 2echl .

Output: Eaux, Paux, Qaux
1: Compute a deterministic basis (Ppk, Qpk) of Epk[2e].
2: Compute the ideal Ichl from chl and using B. (▷) [11, Algorithm 9]
φchl : E0 → Echl is the isogeny with kernel ⟨[2ersp ](Ppk + [chl]Qpk)⟩.

3: Set J = Icom · Isk · Ichl.
4: Compute a uniformly distributed ideal Irsp to J of odd norm q < 2ersp .
5: Let θ be an endomorphism on E0 such that it generates the ideal Isk · Ichl · Irsp · Icom.
6: I ′

aux ← RandomFixedNormIdeal(2ersp − q).
7: Compute Iaux as the pushforward of I ′

aux through Icom.
8: φaux ◦ φcom|2e , Eaux ← IdealToIsogeny(Icom · Iaux).
9: P,Q← [(NcomNsk)−1]φaux ◦φcom ◦ θ ◦ φ̂sk(Ppk), [(NcomNsk)−1]φaux ◦φcom ◦ θ ◦ φ̂sk(Qpk).

10: Paux, Qaux ← [q−1](P + [chl]Q), [q−12echl ]Q.
11: return Eaux, Paux, Qaux.

where the isogenies φ′
aux and φ′

rsp fit in the (2ersp − q, q)-isogeny diamond Fig. 4.

Eaux

Ecom Echl

E′
aux

φrsp

φ′
auxφaux

φ′
rsp

⟳

Fig. 4. (2ersp − q, q)-isogeny diamond.

The Verification Algorithm is described in Algorithm 10.

B.1 Comparison with SQIsign2D and Failure Probability

Compared to SQIsign2D, this heuristic version is faster with respect to Commit-
ment, Response and Verify.

Commitment: Rather than relying on IdealToIsogeny, the heuristic Commitment employs
FixedDegreeIsogeny. The dominating cost of IdealToIsogeny is the computation
of three two-dimensional isogenies, whereas FixedDegreeIsogeny only requires
one. Note that the same commitment algorithm could be employed in SQIsign-
2D, but in order to have a provable uniform distribution of the commitment
elliptic curves (Cfr. Lemma 18), we preferred IdealToIsogeny.

Response: The main difference with Algorithm 6 is to avoid the two-dimensional isogeny
in Line 13 and allow only for response isogenies φrsp of odd degree.
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Algorithm 10 Heuristic Verify
Input: The public key Epk, the commitment Ecom, the challenge chl, the response

Eaux, Paux, Qaux.
Output: true or false.
1: Compute a deterministic basis (Ppk, Qpk) of Epk[2e].
2: Compute φchl : E0 → Echl with kernel ⟨[2ersp ](Ppk + [chl]Qpk)⟩.
3: Pchl, Qchl ← φchl(Ppk) + [chl]φchl(Qpk), [2echl ]φchl(Qpk)
4: Attempt to compute Φ : Echl×Eaux → F1×F2 with kernel

〈(
Pchl, Paux

)
,
(
Qchl, Qaux

)〉
.

5: if F2 ∼= Ecom then
6: return true
7: else
8: return false

Verify: The challenge isogeny in Algorithm 10 is shorter than the one in Algorithm 7,
hence providing a slightly faster verification.

The main problem we encounter in Algorithm 9 is the generation of an ideal Irsp
of odd norm < 2ersp in Line 4. If after a certain number of attempts we cannot find
any odd-norm ideal connecting Ecom and Echl, we try to connect the curve E(p)

com

and Echl with an ideal of odd norm < 2ersp , where E(p)
com is the Galois conjugate

of Ecom, i.e. Ecom and E
(p)
com are p-isogenous. Let Ocom be the order isomorphic

to the endomorphism ring of Ecom, then the order of E(p)
com can be obtained as

j · Ocom · j−1. This usually allows us to find an ideal connecting E(p)
com and Echl of

odd norm < 2ersp .
If we cannot find a suitable connecting ideal relying on the Galois conjugate,

we then allow the response isogeny φrsp to have even degree but not to backtrack
with φchl – in the language of Algorithm 6, we require nbt = 0. The verification
will then work as in Algorithm 7, with the additional condition of checking that
either F2 is isomorphic to E(p)

com.
Experimental results show that the failure probability for the prime we used

for Level 1 is of around 10−8. While this version is undoubtedly faster with
regard to all possible aspects, taking into account this failure probability makes
its security more difficult to prove. Since the verification times do not differ much
in the two versions, we opted to focus on the more secure version of SQIsign2D.
We leave as future work the task of finding a provable failure probability, hence
enhancing the security arguments underlying this heuristic version of SQIsign2D.

Remark 27 (Using a dimension four response). We remark that in this heuristic
version of SQIsign2D, rather than returning a dimension two representation of
φrsp, we could return a dimension four representation. This would speed up the
signature even more because we would not need to compute the auxiliary isogeny
anymore, and solve the failure cases because for a dimension four response, we
can split the isogeny in two. This allows us to find an ideal response of good odd
degree < 22ersp (in the terminology of [11]) rather than just < 2ersp , leaving ample
room to find a suitable response. Of course, this would come at the cost of a
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worse verification time, owing to the need to computing an isogeny in dimension
four rather than two.

This version would essentially be an adaptation of SQIsignHD to the more
arithmetic friendly SQIsign2D prime, combined with the advantage of being
able to use the statically uniform secret key isogeny and commitment isogeny
of SQIsign2D. We remark that the same public key can be used for SQIsign2D
signatures (the main version or the heuristic version) and this adapted version of
SQIsignHD, allowing the signer to choose the trade-offs between signature and
verification time on the fly.

C Optimized finite field arithmetic

In the implementation of the SQIsign2D we include two implementations of our
finite field arithmetic. One is built from the Fiat-Crypto code generator [20]
and is used to compare performance of our implementations to the reference
implementation of SQIsign at https://github.com/SQISign/the-sqisign —
see Table 3 for these benchmarks. Additionally, we include a hand-written
implementation of the finite field arithmetic, which does not include any assembly
optimisations but does make use of architecture specific intrinsics when available.

Both the Fiat-Crypto and hand-written implementation compute finite field
operations using Montgomery multiplications, however only the hand-written
implementation uses the special forms for the primes we have selected and
offers between a two or three times performance benefit when compared to the
generated Fiat-Crypto code – see Table 4 for the benchmark data collected using
the optimised arithmetic.

Indeed, the special shape of our primes lends itself to several optimisations,
making our implementation much faster than its counterpart in SQIsign. Indeed,
primes of the form c · 2e − 1 are both Montgomery-friendly in the sense of [3]
and, when c has small Hamming weight, generalised Mersenne numbers in the
sense of [44]. The former have very efficient Montgomery reduction and are thus
best represented in Montgomery form, which Fiat-Crypto does automatically,
although without optimisations related to the Montgomery-friendliness. The
latter simply have very efficient modular reduction and can be represented as
integers in the interval [0,m− 1] for some bound m.

Additionally, for the level I and V parameters, for the Montgomery integer
R = 2nw, for characteristics represented with n words of w bits, we use that
(R + 2)2 > 4((R − 1)p + 1) which allows the implementation of Montgomery
multiplication without a final conditional subtraction. This bound is not satisfied
for the level III parameters currently used.

In our optimised implementation we have only explored the Montgomery
representation, but future work would be to also look into generalised Mersenne
reduction which would avoid the need to work in the Montgomery representation.
It would also be of interest to include hand-optimised assembly instructions the
most commonly used Fp operations, such as multiplications and squarings.

https://github.com/SQISign/the-sqisign
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A more thorough optimisation would also need to take into account the
opportunities to simultaneously optimise the arithmetic of Fp and that of Fp2 ,
like in [30], which interleaves sums and products of elements of Fp to gain a
significant performance benefit for multiplications Fp2 .
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