
Multi-Client Functional Encryption
with Public Inputs and Strong Security

Ky Nguyen1 , Duong Hieu Phan2 , and David Pointcheval1
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Abstract. Recent years have witnessed a significant development for functional encryption (FE) in
the multi-user setting, particularly with multi-client functional encryption (MCFE). The challenge
becomes more important when combined with access control, such as attribute-based encryption
(ABE), which was actually not covered syntactically by the public-key FE nor semantically by the
secret-key MCFE frameworks. On the other hand, as for complex primitives, many works have
studied the admissibility of adversaries to ensure that the security model encompasses all real
threats of attacks.
• At a conceptual level, by adding a public input to FE/MCFE, we cover many previous primitives,

notably attribute-based function classes. Furthermore, with the strongest admissibility for
inner-product functionality, our framework is quite versatile, as it encrypts multiple sub-vectors,
allows repetitions and corruptions, and eventually also encompasses public-key FE and classical
ABE, bridging the private setting of MCFE with the public setting of FE and ABE.

• Finally, we propose an MCFE with public inputs with the class of functions that combines
inner-products (on private inputs) and attribute-based access-control (on public inputs) for
LSSS policies. We achieve the first AB-MCFE for inner products with strong admissibility
(from Nguyen et al., ACNS’23) and with adaptive security.

In the end, our concrete MCFE leads to MIFE for inner products, public-key single-input inner-
product FE with LSSS key-policy, and KP-ABE for LSSS, with adaptive security. Previous AB-MCFE
constructions is either restricted in terms of weaker admissibility (Nguyen et al., ASIACRYPT’22)
or considers a slightly larger functionality of attribute-weighted sum but with only selective security
(Agrawal et al., CRYPTO’23).

1 Introduction and Motivation

Functional Encryption (FE). To overcome the all-or-nothing limitation of traditional
encryption, Functional Encryption [16] has been introduced to allow the sender to control
access to their encrypted data in a fine-grained manner through functional decryption keys. It
was considered as a generalization of Attribute-Based Encryption (ABE) and Identity-Based
Encryption (IBE), when the evaluated function is the identity function under some conditions.
But as the inputs are all encrypted in the ciphertext (e.g. in [16, Definition 2]), this does not
really cover ABE and IBE syntactically. We discuss more on this point in a subsequent paragraph
Final Syntactical Point: Public Inputs in this section.

Multi-User Settings for FE. In practice, the number of useful functions may not be so
large, and they can even be known in advance: Public Key Encryption (PKE) can then be
transformed into FE by encrypting the evaluations of each function under different keys. But this
covers the so-called single-input setting where one player knows the whole input at encryption
time. Functional Encryption becomes more interesting in multi-user/input settings. Multi-Input
Functional Encryption (MIFE) and Multi-Client Functional Encryption (MCFE) have thus been
introduced in [25, 26], where the function evaluates on a list of inputs. In the former setting, a
single user encrypts the various inputs at different times, while in the latter setting, multiple
users (called clients) independently encrypt their inputs. Evaluation of the function performed
on the joint-inputs, using a functional decryption key generated by a trusted authority. Another
remark is that the public-key setting only makes sense for single-input FE. When considering
multi-client or multi-input settings, because of possible combinations of the inputs, security
requires secret-key encryption.
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Since the introduction of MCFE/MIFE in [25, 26] and later in [18], growing interests can be
found in recent studies on enriching the concrete function class that can be realized MCFE/MIFE
or their generalizations, including inner products (over one inner produc of scalars, or sum of
inner products of vectors at each ciphertext) [19, 2, 1, 29, 20, 40, 32, 34], quadratic functions [6, 9],
or attribute-weighted sums [11, 30], and more. Along the way, other works also investigate the
questions of security notions for MCFE/MIFE, such as looking into function privacy [7, 40, 30, 34]
or the admissibility of the adversary [32].

A Reminder on Admissibility. To begin with, one important difference between MCFE and
MIFE [25, 26, 18] concerns the entity who encrypts the data. In MIFE the encryptor is unique,
and the adversary cannot corrupt the encryptor. This unique encryptor is free to repeatedly
encrypt new messages at the same slot i and combine the resultant ciphertexts with other
ciphertexts. This repeated encryption is called repetitions in the literature and the general
combination of ciphertexts in MIFE clearly demonstrates a mix-and-match nature among these
ciphertext repetitions, thus leaking a large amount of information on the plaintexts. Meanwhile,
in MCFE, the encryptors consist of multiple clients, and the adversary can corrupt some of them
to get the clients’ secret encryption keys. This ensues the introduction of tags at the time of
encyrption in MCFE, which is defined in [18], so that a decryption key dkF can decrypt jointly
ciphertexts cti← Enc(eki, xi, tag) if the same tag are used for all clients i. The usage of tags
provide a finer mecanism to control the combination of ciphertexts, as only ciphertexts with the
same tag can be combined in the function evaluation. The problem of repetitions is, however,
not addressed in the original definition of MCFE [18], whose underlying reason is that it is up
to the resposibility of client i to avoid encrypting repeatedly their data under the same i, tag.
In practice, there is potentially scenario where repetitions under the same (i, tag) happen due
to the client’s misbehavior or the adversary’s corruption. Therefore, recent works [11, 32] have
considered the repetitions in the MCFE setting, in the security model as well as resolutions
towards concrete constructions.

Similar to the quest of defining security for public-key advanced encryption notions such
as IBE/ABE/FE, the central principle that should be captured by a security definition for
MCFE/MIFE is that no (feasible) adversary can learn more that what is allowed by the function
evaluation, even with the corruption of some clients inMCFE, and even with ciphertext repetitions
at some slot/client i. Putting it differently, it is necessary to include in the security definition some
constraints that exclude trivial attacks, e.g. by requiring that the adversary cannot choose the
challenge ciphertexts x(0),x(1) in such a way that they can trivially win the game by evaluating the
function F (x(0)) ̸= F (x(1)) on chosen messages. For example, back to the simpler identity function
of IBE as a special case of FE, the decryption key should not allow to decrypt the challenge
identity-based ciphertext. The constraints that exclude trivial attacks are usually referred to as
admissibility conditions. With respect to the function class to compute inner products, where
the function evaluation computes the inner products, the seminal work of [18] put forth an
admissiblity condition that then becomes widely used in other works on MCFE [2, 1, 29, 20, 7].
Until very recently, this first-generation admissibility condition was revisited in [32] that proposes
a stronger and optimal notion of admissibility for MCFE, still within the class to compute inner
products. We review the progress below.

From Secret-key MCFE to Public-key FE. We now focus on a viewpoint that is more on the
multi-client setting. Following the first formalization in [18], many follow-up studies on MCFE, for
instance [2, 1, 29, 20, 7], set down an admissibility condition in order to exclude trivial attacks: for
any corrupted client i and challenge message-pair (x(0)

i , x
(1)

i ) for i, it requires that x(0)

i = x(1)

i . This
is indeed the right condition if the secret-key encryption is deterministic, which was considered
on the first period of development of MCFE, as with the corruption of the encryption key eki,
the adversary could re-encrypt x(0)

i and compare with the challenge ciphertext. However, if
the encryption is probabilistic, this condition is not well justified and appears too restrictive.

2



Indeed, we observe that it is this condition where for all i ∈ C all challenge pairs x(0)

i = x(1)

i that
prevents to go from the secret-key MCFE to the public-key FE. To obtain a public-key FE from
a secret-key MCFE, the natural approach is to instantiate the MCFE with n = 1 client, then
to publish the only client’s encryption key ek as the public key. Under the early admissibility
condition as per [18] of the underlying MCFE, in order to base the security of the public-key
FE on the security of the MCFE, the only queries that the reduction can forward to its MCFE
challenger are the trivial one from the FE adversary where x(0) = x(1), and this is far weaker
than the standard CPA-security of public-key FE. It is now clear that a less restrictive notion
of admissibility, equivalently a stronger notion of security, is needed to capture the security of
public-key FE from the security of MCFE. The ensued question is then: how strong should the
admissibility of secret-key MCFE be to capture the security of public-key FE?

Our first contribution is to show that MCFE with the strong admissibility notion [32] also
covers public-key single-input FE. Secondly, defining FE and MCFE with public inputs, we
additionally cover ABE and IBE, where the attributes and identities can be public. Last but far
from the least, adding public inputs to MCFE is complementary to their existing advantages,
notably towards the conversion from MCFE to MIFE: guaranteeing security against repetitions
on private inputs is sufficient for our notion of MCFE to imply MIFE. The following paragraph
elaborates more about this relationship.

On the reconciliation between MCFE and MIFE. At first glance, MIFE appears to be just MCFE
with a constant label. However, the distinction is more significant because in MIFE, there is
only one encryptor, while in MCFE, there are multiple encryptors (clients). Therefore, whereas
there is no corruption of users in MIFE, dealing with corruptions in MCFE is a main concern. In
summary, recent works [31, 32, 9, 11] agree on two principal advantages of MCFE over MIFE:

• with a label associated to each encrypted input, one can limit the combinations of the inputs
for each evaluation

• as inputs can be encrypted by different clients, multiple independent secrets are involved, for
each client, then one can deal with corruption of individual keys in MCFE, whereas in MIFE
there is a unique encryptor and no corruption can be allowed.

At this point, it seems that MCFE is strictly stronger than MIFE. However, again, the situation is
more complicated because, as pointed out by [19], in the original definition of MCFE [25, 18], the
clients were assumed not to encrypt two messages under the same label (namely [25, 18] do not
allow repetitions). Under this restriction, one cannot turn a MCFE to a MIFE. In short, MIFE,
when augmented with labels, can be seen as an MCFE with repetitions but without corruption.
This connection is studied in preceding works [2, 1] and recently confirmed in [11].

But the story is not at the end yet, especially when one wants to combine MCFE and MIFE
with other functionalities, such as attribute-based access-control [31, 11], where the conversion
MCFE to MIFE is highly non-trivial as mentioned in [11]. As a final remark, our context of
multi-client/multi-input setting for FE with access control is different from the setting of multi-
authority ABE, e.g. as studied in [22], where in our case there is always only one authority
generating the functional decryption keys.

Final Syntactical Point: Public Inputs. When reviewing the existing initial definitions of FE [16],
MCFE [18], andMIFE [25], we observe that the syntax of encryption in these definitions themselves
a priori does not allow parts of the plaintext to be public. When denoting encryption keys eki
(in the secret-key MCFE/MIFE setting) or public key pk (in the public-key single-client FE),
specifically the MIFE syntax in [25, Section 2.1] is written c←Enc(eki, x) given the i-th plaintext
x, the MCFE syntax in [18, Definition 1] is written c←Enc(eki, x, tag) given the i-th plaintext
x and the tag tag, and the FE syntax in [16, Definition 2] is written c←Enc(pk, x) given the
plaintext x.
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First of all, having the encryption as they are listed above, the IND-CPA security alone implies
that no partial information about the plaintext is leaked. This applies to the case x = (m, S) where
m is the contents of the message and S is some attribute/index in the context of KP-ABE or IBE.
As such, without further specifications, how to derive non-attribute/index-hiding KP-ABE/IBE
from the existing definitions of FE, MCFE, and MIFE is not clear. It then necessarily requires
more properties on the function class so as to capture the non-attribute-hiding property. We
emphasize that this is also the approach that was taken in [16], where the authors introduced the
notion of empty key that defines a function such that “anyone can [...] obtain all the information
about x that intentionally leaks from c”, cf. [16, Page 3]. A similar notion to this empty-key
function is indeed what we need to capture the non-attribute-hiding property when expressing
KP-ABE/IBE in the syntax of FE. With respect to [16], when describing how to capture KP-ABE
or Ciphertext-Policy ABE [16, Page 5], the empty-key function however is not made clear in the
key space of all poly-sized boolean formula in the former, nor in the key space of all poly-long
bitstrings of variables in the latter. In the multi-user setting of MCFE/MIFE, no such property
of empty-key function is mentioned in the introduced definitions [25, 18].

1.1 This Paper

A Simple Extension of MCFE to also Cover MIFE, public-key FE and ABE. From the
above discussion, a crucial question arises:

How can we extend MCFE, syntactically and security-wise via admissibility, in a minimal
way to encompass all the settings, from MIFE to public-key FE and ABE?

Thus appears the motivation behind proposing MCFE with public inputs, wherein we simply
augment the ciphertexts of the MCFE with a public inputs. This part of public inputs is taken
care by the function evaluation. However, in order to cover public-key FE, we need to consider
the stronger notion of admissibility with the possibility to handle sub-vectors.

Conceptual Contribution. In a nutshell, we propose a simple extension of MCFE with
not only private but also public data to be input to the function evaluation. Combining with
the consideration of a stronger admissibility for adversary and sub-vectors in encryption, we
cover previous primitives such as MCFE, MIFE, public-key single-input FE and ABE. When
only private inputs are considered, if the function involves attributes for access-control, this is
necessarily with the attribute-hiding property, while this is not always required. Hence, we will
show this is quite relevant for MCFE and MIFE with attribute-based access-control. We also
describe, and achieve, a very high security notion that, while considering the multi-client setting
with secret-key encryption, also covers public-key attribute-based encryption.

Strong Admissibility and Public-Key Setting. Recently, a stronger and optimal notion of the
admissibility of an attack was introduced [32]. Intuitively, to recall, when there is a unique
client, with the initial admissibility from [18, 2, 1, 29, 20, 7], when the encryption key of this
single user is corrupted, the only queries that the reduction can forward are the trivial one
from the FE adversary where x(0) = x(1), hence it is not sufficient to capture the reduction from
MCFE to FE with meaningful CPA-security. With strong admissibility from [32], i.e. without
the requirement that x(0)

i = x(1)

i for corrupted i ∈ C, we show that the reduction can capture the
security of the public-key FE by making public the encryption key. In particular, within the
function class to compute inner products, addressing strong admissibility also necessitates the
ability to manage sub-vectors in encryption. That is, each client i encrypts a vector xi, and the
function evaluation returns the sum of inner products

∑n
i=1⟨xi,yi⟩ with respect to a function

associated to (yi)i. This is a technically relevant issue because under this stronger admissibility,
moving to public-key FE gives the usual functionality of inner products, when n = 1, and not
just scalar products.
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Our work extends the work from [32], and we will develop more the conceptual implications
in the next paragraph, as well as the concrete case in Constructive Contributions below. A
discussion on our strong admissiblity is given in paragraph Discussion on admissibility after
the formal definition in Definition 5. The aforementioned implications can be summarized with
the following simplified diagram (more details are given in Theorem 8), where

MCFErep-priv MIFE

FEw-pub KP-ABE

• MCFErep-priv is our new notion of MCFE, with strong admissibility and public inputs, but
repetitions are only allowed on the private inputs (multiple encryption queries with the same
tag must be with the same public input);

• MIFE is the usual definition, with private inputs only, with repetitions, without tags nor
corruptions. The implication comes from the allowed repetitions on private inputs in our
MCFE;

• FEw-pub is the classical public-key single-input FE definition enhanced with public inputs.
Implication comes from the strong-admissibility that allows to deal with public-key encryption
when there is a unique client;

• KP-ABE denotes the usual definition of key-policy ABE. The implication comes from the
public inputs in FEw-pub, that can be used to encode the attributes in a non-hiding way.

It is very interesting that MCFE with the strong admissibility from [32] leads to public-key
single-input FE, when there is a unique client, and even to Key-Policy ABE when allowing public
inputs (to provide the attributes in the ciphertext).

Constructive Contributions. These implications depend on the actual classes of functions.
As a constructive result, we propose an MCFE with the class of functions that combines inner-
products (on private inputs) and attribute-based access control (on public inputs) for LSSS
policies. It achieves the strong admissibility notion, in the adaptive setting (whereas [11] only
provides selective security), with repetitions on the private inputs and static corruptions. It
also deals with sub-vectors (whereas [31, 32] only consider scalars). As a consequence, removing
the tags, the corruptions and the public inputs, we obtain an MIFE for inner products, with
strong admissibility and adaptive security; limiting to one client, one gets public-key single-input
inner-product FE and KP-ABE for LSSS, with adaptive security. Our construction uses pairings
in the ROM, and we note that there exists other approaches to tackle IPFE with access control
using lattices, e.g. [27, 38], though they are only single-client to our knowledge.

We would like to emphasize that strong admissibility is not only theoretical (as it allows us
to cover public-key single-input inner-product FE) but also more intuitive: the only restriction
we impose on the adversary is to prevent them from choosing challenge messages in such a
way that, with their corrupted keys and the function evaluation, they cannot trivially win the
game by evaluating the function on chosen messages. Requiring the adversary to use the same
message for corrupted users as in the previous admissibility now seems somewhat artificial to
us. Achieving strong admissibility is also more challenging as it requires the encryption to be
probabilistic and any deterministic encryption cannot meet strong admissibity as we already
explained. Consequently, the only two existing AB-IP-MCFE schemes [31, 11] are not secure when
considering strong admissibility as the encryptions in these schemes are deterministic. Of course,
we do not claim to break the schemes [31, 11], because we consider a stronger security level. We
would propose that strong admissibility should be considered in the multi-user setting of FE.

In summary, we propose the first AB-IP-MCFE with strong admissibility and with adaptive
security for inner-product functionality while [11] considers a slightly larger functionality of
average weighted sum but with selective security on the challenge messages. In term of efficiency,
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Scheme F (priv,pub)-inp Eval Security

[11, Sect. 5] FABP
n,(Ni)i

(
(zi,j)j , (xi,j)j

) ∑
i∈[n]

∑
j∈[Ni]

⟨fi(xi,j), zi,j⟩ sel,w-rep, stat,wk-adm

[31, Sect. 5.4] F IP,B
n,q × LSSS (x[i], Si)

(∧
i LSSS(Si)

)
· ⟨x,y⟩ ad, no-rep, dyn,wk-adm

[32, Sect. 6] F IP,B
n,q (x[i],⊥) ⟨x,y⟩ ad,w-rep, stat, s-adm

Corol. 13 F IP,B
subvec × LSSS (xi, Si)

(∧
i LSSS(Si)

)
·
∑n
i=1⟨xi,yi⟩ ad, rep-priv‡, stat, s-adm

‡ This intermediate notion only provides security against repetitions on private inputs, and not on public
inputs.

Table 1: We compare our MCFE with existing MCFE, casting the function class into the syntax with public inputs. The
MCFE in [11, Sect. 5] is defined for the function class of attribute-weighted sums FABP

n,(Ni)i
containing (fi)i∈[n] of arithmetic

branching programs. that evaluates on public inputs (xi,j)j ∈ (ZN0
q )Ni and private inputs (zi,j)j ∈ (ZN1

q )Ni , where Ni is
some parameter for slot i, and N0, N1 ∈ N. The MCFE schemes in [31, Sect. 5.4] are defined for the functionality class

F IP,B
n,q ×LSSS, that evaluates on public attributes Si and private inputs x[i] ∈ Zq , where n, q ∈ N, q is prime, maxi(|x[i]|) < B,

and B = poly(λ) ∈ N is a polynomial; Meanwhile MCFE from [32, Sect. 6] is implied by the DMCFE therein and is for F IP,B
n,q

without access control. Sect. 4.2 extends MCFE to the class F IP,B
subvec × LSSS and F IP,B

subvec that evaluates on public attributes Si
and private inputs xi ∈ (Zq)Ni where for all i, max(∥xi∥∞, ∥yi∥∞) < B, where B = poly(λ) ∈ N is a polynomial. We also
use the shorthand (no-rep,w-rep) to indicate whether repetitions at positions under a challenge tag are allowed, and (sel, ad)
to indicate whether adaptive challenge ciphertext are allowed. The shorthand (stat, dyn) indicates whether the corruption is
static or dynamic. Finally, (wk-adm, s-adm) indicates whether the weak [18] or strong admissibility [32] is considered. The
preferred properties are underlined.

we have the same asymptotic efficiency as [11]: each client sends a ciphertext of linear size in the
size of its subvector message, independent of the total number of clients. In Table 1, we compare
our construction with existing works.

Relation with Multi-Party Functional Encryption. Our MCFE with Public Input can be seen as
a special case of Multi-Party Functional Encryption (MPFE) [7]. However, our goal is not to
define yet another new and more general primitive, but only to add the minimal extension to an
existing well-studied primitive to reconcile with other primitives. By simply considering public
inputs for MCFE with a stronger admissibility notion, we cover not only attribute-based access
control, but also public-key single-input FE. While MPFE is very general, it only considers the
secret-key encryption setting and does not cover public-key single-input FE. Up to the notions
of MCFE, our results complete the picture of unifying MCFE/MIFE/FE/ABE, by considering the
public inputs and the strong admissibility notion. The strong admissibility is necessary following
our discussion in the paragraph From Secret-key MCFE to Public-key FE above, in order to
capture the security of public-key FE from the security of MCFE, and is then proven sufficient in
our Theorem 8. The public inputs are necessary to capture the non-attribute-hiding property of
KP-ABE/IBE in the syntax of FE, as discussed in the paragraph Final Syntactical Point: Public
Inputs on page 3 above, inherits the same spirit of empty-key function in [16], and is cleanly
demonstrated in our Theorem 8. Finally, our concret final AB-IP-MCFE in Corollary 13 is the
first to achieve adaptive security for inner-product functionality in the multi-client setting, with
public inputs, and with strong admissibility.

1.2 Technical Overview

Given the above conceptual overview, we now highlight the technical points for our concrete
construction of MCFE to compute inner products under access control in Section 4.2. All relevant
points that relate to the security proof are given by a dedicated overview in paragraph Proof
Strategy before the proof of Theorem 12. The functionality of interests is F IP,B

subvec × LSSS

and F IP,B
subvec contains Fy1,...,yn :

∏
i∈[n]

(
ZNiq

)
→ Zq that is defined as Fy1,...,yn(x1, . . . ,xn) :=∑n

i=1⟨xi,yi⟩, where for all i, max(∥xi∥∞, ∥yi∥∞) < B, where B = poly(λ) ∈ N is a polynomial.
For the ease of notation, we can assume the subvectors are of length N = maxi(Ni). The access
control is given by Rel : LSSS×

(∏n
i=1 2

Att
)
→ {0, 1}, where Rel(A, (Si)i) =

∏
iA(Si), the class

LSSS contains Linear Secret Sharing Schemes over Att, and 2Att denotes the superset of an
attribute space Att ⊆ Zq.
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First Technical Obstacle: Admissibility with vectors and probabilistic encryption.
Our goal is to handle the less restrictive admissibility condition w.r.t the function calculating
Fy1,...,yn(x1, . . . ,xn) :=

∑n
i=1⟨xi,yi⟩, under access control from Rel. Each of the n clients in our

MCFE scheme are encrypting a vector xi, together with a tag tag and their set of attributes Si.
The fact that we are working with vectors is generalizing first and foremost the construction by
Nguyen et al. [31] that only supports scalar inputs xi ∈ Zq. Moreover, under the new admissibility
that is studied in [32], conditions for the challenge ciphertexts in terms of corrupted clients
i become less restrictive. To recall, the admissibility in [31] is inherited from the orginal one
introduced in [18] and will require that for any corrupted i ∈ C, it holds that x(0)

i = x(1)

i . Following
the motivation that is put forth in [32] so as to relax the foregoing condition, in the case of scalars
where inputs to clients i have dimension 1, the stronger admissibility condition is that for any
corrupted i ∈ C, for any key queries with yi as the i-th parameter for inner products, it must hold
(x(0)

i −x
(1)

i ) ·yi = 0. In our case, having the goal of generalizing [31] to encrypt vectors xi by client
i under the stronger admissibility, the condition becomes: for any corrupted i ∈ C, for any key
queries with yi as the i-th parameter for inner products, it must hold ⟨x(0)

i − x(1)

i ,yi⟩ = 0. This
opens up much more liberty to the adversary in terms of what they can challenge. That is, as
soon as the dimension of the vectors (x(0)

i ,x
(1)

i ,yi) is at least 2, the adversary can choose (x(0)

i ,x
(1)

i )
such that x(0)

i − x(1)

i is orthogonal to yi, where both x(0)

i − x(1)

i ̸= 0,yi ̸= 0. In retrospective, the
scalar version of [32] implies already that either (x(0)

i − x
(1)

i ) = 0 or yi = 0, which is a special
case of the vector version. Last but not least, regarding honest clients i ∈ H where H := [n] \ C,
it must hold that for all key queries with (yi)i∈H as the parameters corresponding to honest
slots,

∑
i∈H⟨x

(0)

i − x(1)

i ,yi⟩ = 0. Particularly, the condition ⟨x(0)

i − x(1)

i ,yi⟩ = 0 for any i ∈ C and
any (i,x(0)

i ,x
(1)

i , tag) to LoR already implies that encryption of our MCFE must be necessarily
probabilistic, because the adversary is allowed to makes challenge queries x(0)

i − x(1)

i ̸= 0. This
is highlighted in paragraph Strong Admissibility and Public-Key Setting (on page 4) of our
introduction.

Solution to the First Obstacle: Probabilistic Vectorization of the Scheme of [31]-
Overview of Our Scheme. Our starting point is the scalar construction of [31], in the
bilinear setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written additively. The crux of
our vectorization is to use the dual pairing vector spaces (DPVSes) to encode the vectors xi and
yi. In particular, each client encrypt their vector xi by c-vectors in G1, and the functional key
for yi is encoded in k∗-vectors in G2. The importance is fresh randomness must be added to the
c-vectors independently by each i, which cannot be founded on RO or pseudorandom functions
as in previous works [31, 11]. To implement such randomness and ensure that correctness is
preserved, we make use of the concrete fact of DPVS that it provides linear combinations of
vectors in G1 and G2. This can be verified when viewing a DPVS as a Zq-algebra, sastisfying
Zq-linearity and being equipped with an product operation that is provided by the bilinear map
e(·, ·). Principal ideas are given below:

1. In order to deal with the fact that we need to embed fresh randomness into each i-th
component of the ciphertext, while maintaining the correctness in regards to the access
control, our main idea is to distribute a random mask J(

∑
i νi) · (

∑
i ai,0)Kt, where νi is the

randomness for the i-th client, and ai,0 is the i-th secret to be shared in the key component
by the LSSS.
• Each νi is embedded into attribute-indexed ciphertext components (see t̃i,j in the below),
each ai,0 is shared at the time of key extraction into the key components (see m̃i,j in the
below).

• Firstly, Zq-linearity of the DPVS allows regrouping the randomness νi into
∑

i νi in
aggregated attribute-indexed ciphertext components (see t̃0,j in the below), then LSSS-
reconstruction allows obtaining J(

∑
i νi) · ai,0Kt for each i.

• Relying on Zq-linearity again, while noting that
∑

i νi is independent from i, permits
obtaining the mask J(

∑
i νi) · (

∑
i ai,0)Kt by summing over i the terms J(

∑
i νi) · ai,0Kt.
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• Because the subvectors xi is of some length N ∈ N, the functional parts ci,ipfe in i-th
ciphertext components as well as the key components ki,ipfe contain another layer of
masking over coordinates of the subvector. Thanks to the fact the key extraction in MCFE
is centralized, this layer of masking is done by secret coefficients (θi,k)k∈[N ] that are given

in encryption key eki, and fresh random shares dA,i,k such that
∑n

i=1

∑N
k=1 θi,kdA,i,k = 0

is generated at the time of key extraction.

We now describe the form of our ciphertexts and key components in items 2 and 3. The
complexity of the decryption algorithm is explained in item 4.

2. The encryption by each client i is defined by Enc(eki,xi ∈ ZNq , zi := (tag,Si)) where Si ⊆
Att ⊆ Zq is the set of attributes to be used. The tags is treated by hashing H(tag) →
(JωK1 , Jω′K1) ∈ G2

1. For the access control part, each attribute j ∈ Si gives rise to components

ci,j as follows, where ψi, νi, σ̃i,j , σi,j
$← Zq are randomness

ci,j = (σi,j · (1,−j), ψi, 0N , 0, 0N , 0, 0)F .

For the inner product computation, ci,ipfe serves as parts for unmasking later on:

ci,ipfe = ( ωpi, ω
′pi︸ ︷︷ ︸

functional coord.’s

, ψi, 0N , (θi,k)
N
k=1︸ ︷︷ ︸

masks for subvectors of i (length N)

, 0)Hi

where θi,k
$← Zq. The main masking components for xi are ti:

ti = (ω · si + ω′ · ui + xi,

specific randomness for each i︷︸︸︷
νi , 0, ρi)Bi

;

The new probabilisitic vectorization is implemented via

t̃i,j = (

index by j︷ ︸︸ ︷
σ̃i,j · (1,−j), νi︸︷︷︸

specific randomness for i

, 0N , 0, 0N , 0, 0)G

The ciphertext of client i contains cttag,i :=

((
ci,j , t̃i,j

)
j
, ti, ci,ipfe

)
.

3. The key extraction of the MCFE is defined to be Extract(msk, (yi)i∈[n] ∈
∏n
i=1 ZNq , ac-k := A)

where A is an LSSS-realizable monotone access structure over a set of attributes Att ⊆ Zq.
We denote by List-Att(A) the list of attributes appearing in A, with possible repetitions. The
function is specified by n vectors y1, . . . ,yn in ZNq . First of all, regarding the access control,
we generate a random secret ai,0 and share it into the labels (ai,j)j where j runs over the
attributes in Att (see Definition 8).

The shares (ai,j)j as well as the secret ai,0 are embedded into, where z, πi,j , rndi, rndi,ipfe
$← Zq,

ki,j :=

index vectors by j︷ ︸︸ ︷
πi,j · (j, 1) , ai,j · z, 0N , 0, 0N , 0, 0


F∗

for j ∈ List-Att(A)

ki,ipfe :=


n∑
i=1

⟨si,yi⟩,
n∑
i=1

⟨ui,yi⟩︸ ︷︷ ︸
functional coord’s

, ai,0 · z, 0N , (dA,i,k)
N
k=1︸ ︷︷ ︸

masks for subvectors of i (length N)

,

randomness specific to i︷ ︸︸ ︷
rndi,ipfe


H∗

i

.

It is important to note that different client i will correspond to a different ensemble of
ki,ipfe, (ki,j)j . The “functional coord.’s” are sums of inner products

∑n
i=1⟨si,yi⟩,

∑n
i=1⟨ui,yi⟩

of the yi’s with the master secret keys si,ui that will later intervenes when decrypting the
ciphertexts (following the same blueprint by Agrawal-Libert-Stehlé [10] for adaptive secure
IPFE). Last but not least, for each i ∈ [n], each k ∈ [N ], the masking at level of each client’s

subvector (length N) is done by dA,i,k
$← Zq such that

∑n
i=1

∑N
k=1 θi,kdA,i,k = 0. Finally, the
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new technical idea that differs from [31] reflected in the key extraction by For each i ∈ [n],
compute

mi :=

(
yi,

n∑
i=1

ai,0, rndi, 0, 0

)
B∗

i

; m̃i,j := (π̃i,j · (j, 1), ai,j , 0N , 0, 0N , 0, 0)G∗ for j ∈ List-Att(A)

where π̃i,j , rndi
$← Zq. Then dkA,y :=

(
(ki,j , m̃i,j)i,j , (mi,ki,ipfe)i∈[n]

)
is output as the

functional key.
4. For correctness, Algorithm 2 shows how the decryption is done. In the follwing we suppose

an LSSS-reconstruction set Ai is used that gives coefficients (ci,j)j for each i.
• (See step 1 in Algorithm 2) More specficically, the treat of probabilisitic vectorization
starts by regrouping the t̃i,j ’s into t̃0,j that homomorphically groups specific randomness
over i into

∑
i σ̃i,j for each attribute j. At the same time, t̃0,j also holds

∑
i νi that groups

fresh random values νi that is particular for each i.
• (See step 2 in Algorithm 2) Next, LSSS-reconstruction is carried out using the coefficients
(ci,j)j . The aforementioned t̃0,j ’s, over attribute j with approriate coefficients and products
over DPVS with key components (m̃i,j)j , gives J(

∑
i νi) · ai,0Kt at each i. It is important

to notice that summing over all i will recover J(
∑

i νi) · (
∑

i ai,0)Kt, which is needed for
unmasking the function evaluation below. Meanwhile the access control part of the
ciphertext (ci,j)j together with the key components (ki,j)j also reconstructs Jψiai,0zKt.

• (See step 3 in Algorithm 2) The subsequent step consists of performing DPVS products over
the functional components (ti,mi)i of the ciphertext and the key, so as to obtain the evalu-
ation J

∑
i⟨xi,yi⟩Kt that is masked by J(

∑
i νi) · (

∑
i ai,0)Kt+

∑
i Jω · ⟨si,yi⟩+ ω′ · ⟨ui,yi⟩Kt.

We recall that ω, ω′ come form the hashing of tags, and si,ui are the master secret keys.
• (See step 4 in Algorithm 2) Finally, the auxiliary functional components ci,ipfe,ki,ipfe are
used, in conjonction with the reconstructed Jψiai,0zKt from above, in order to remove∑

i Jω · ⟨si,yi⟩+ ω′ · ⟨ui,yi⟩Kt. The aggregated J(
∑

i νi) · (
∑

i ai,0)Kt from step 2 is used

to recover in the end J
∑

i⟨xi,yi⟩Kt. Thanks to the polynomially large ranges of F IP,B
subvec,

one can then recover the inner product
∑

i⟨xi,yi⟩ via discrete logarithm computations.

We refer to Section 4.2 for formal details and Algorithm 2 to see how the decryption is
done. The underlying idea with probabilisitic vectorization is to distribute the masking term
J(
∑

i νi) · (
∑

i ai,0)Kt over attribute-indexed components of the ciphertext (for the fresh νi’s)
and the key components (for the secret ai,0’s). Then, Zq-linearity and products over the DPVS
vectors are heavily employed. The fresh νi’s that appear at each encryption of xi by client i is
also used to handle the repetitions of challenge ciphertexts, as we will see in the below paragraph.
We remark that the below obstacles and their solutions are relating to the proof of security,
whose main lines of arguments and ideas are complemented by the paragraph Proof Strategy
from page 21.

Second Technical Obstacle: Repetitions and Access Control. We have mentioned in the
introduction that tolerating repetitions of challenge messages x(0)

i ,x
(1)

i is a crucial requirement for
MCFE, in order for MCFE to imply MIFE in terms of provably secure cryptographic primitives. In
our setting with both private and public inputs, the challenge ciphertexts given private (x(0)

i ,x
(1)

i )
are encrypted with public parts comprising of a tag and the set of attributes Si. This means that
repetitions are now must be vis-à-vis the public parts, in particular Si. The latter complicates
significantly the situation, which is already observed in a very recent work by Agrawal et al. [11].
Indeed on one hand, for a specific slot i ∈ [n] and tag, full repetitions of (x

(0,ji)

i ,x
(1,ji)

i ) and S
(ji)

i

mean that the MCFE should be resilient against attacks that try combining different attribute
set S

(ji)

i ̸= S
(̃ji)

i at slot i, where A(S(ji)

i ) ̸= A(S(̃ji)

i ). On the other hand, in terms of the inner
product calculation, allowing repetitions on the private inputs x(0)

i ,x
(1)

i for a fixed (i, tag) needs
being taken into account by the admissibility: for all repetitions ji∑

i∈H
⟨x(0,ji)

i − x
(1,ji)

i ,yi⟩ = 0 (1)
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This implies for each i ∈ H, over all repetitions ji, the term ⟨x(0,ji)

i − x
(1,ji)

i ,yi⟩ is constant. At
the same time, for all i ∈ C that are corrupted, under repetitions ji, it must be

⟨x(0,ji)

i − x
(1,ji)

i ,yi⟩ = 0 (2)

This makes sense even in the case of static corruption, since we do not prohibit such queries
even after the set C is fixed. Finally, condition (2) does not need to cover private inputs of
corrupted i ∈ C that are not queried to the oracle LoR because there exists no challenge bit b
in those self-crafted ciphertexts using (i ∈ C, eki, tag) on some zi, and decrypting jointly with
others challenge ciphertexts under some key dkA,(yi)i∈[n] always gives the same i-th component

⟨zi,yi⟩ regardless of b. Formally, the concrete detailed admissibility for inner products is given
on page 20.

Solution to the Second Obstacle: Masking with (Private-only) Repetitions. In this
work we restrain our focus to the case where the repetitions are only allowed for the private
inputs (x(0)

i ,x
(1)

i ). That is, the adversary is allowed to query multiple (x
(0,ji)

i ,x
(1,ji)

i ), indexed by ji,
for a fixed (i, tag, Si). Dealing with private-input repetitions is handled by our generalization of
the masking lemma from [31]. The formal statement of the lemma can be found in Lemma 1. At
a high level, the setting of Lemma 1 contains a set of c-vectors in which attributes j are encoded,
and a set of k∗-vectors that encode a policy A by secret shares (aj)j∈List-Att(A) w.r.t the policy
A. The lemma proves that for any given repetitive x(rep) and y ∈ Zq, where rep ∈ [J ], we can

randomize the c-vectors by random zj
$← Z∗q , at the same time encoding (a′j/zj)j∈List-Att(A) in

the k-vectors. Particularly (a′j/zj)j∈List-Att(A) is a decorrelated set of shares (a′j)j∈List-Att(A) w.r.t

the policy A to share a′0
$← Zq. In the proof of the MCFE, we alllow repetitions of the challenge

ciphertexts while fixing (i, tag,Si). After applying Lemma 13, as soon as A(Si) = 0, there is an

attribute j whose zj
$← Z∗q never appears in the c-vectors returned to the adversary, thanks to

the fact that (i, tag,Si) is fixed once for all repetitions of private inputs at i. That implies the
decorrelated (a′j/zj)j∈List-Att(A) cannot be related together, in an information theoretical sense,
to recover (a′j)j∈List-Att(A) and reconstruct the shared value. We are then allowed to switch a′0
into a uniformly random value for further steps in the MCFE proof. Finally, as demonstrated in
Theorem 8, even in this setting of private-only repetitions, our MCFE with public inputs still
cover MIFE, and the concrete scheme for inner products with access control in Section 4.2 gives
MIFE for inner products.

Third Technical Obstacle: Adaptive Security. Another technical hurdle with which
we successfully deal in our MCFE is the adaptive security of the challenge queries x

(0,ji)

i ,x
(1,ji)

i

indexed by repetitions ji along with public inputs (i, tag, Si). Existing comparable schemes either
achieves selective security [11], or considers the simpler scalar case [31].

Solution to the Third Obstacle: Adaptive Security via Perfect Indistinguishability
and Complexity Leveraging. Aiming at adaptive security w.r.t (x

(0,ji)

i ,x
(1,ji)

i ) with public
inputs (i, tag,Si), we employ a complexity leveraging technique that is based on formal basis
changes in the dual pairing vector spaces. More specifically, in order to prove two hybrids
Gi,Gi+K for some fixed K, are indistinguishable in the adaptive security proof, we define an
event E that happens with fixed probability and whose probability space depends on the data
that can be adaptively chosen by the adversary. Then, condition on E we move to the selective
version G∗i ,G

∗
i+1, . . . ,G

∗
i+K . If we can prove the sequence of perfect indistinguishability involving

{G∗i | E} ≡ {G∗i+1 | E} ≡ · · · ≡ {G∗i+K | E}

where E happens with fixed probability and is independent of the view of the adversary during
the reductions {G∗i+t | E} ≡ {G∗i+t+1 | E} in the sequence, for all t ∈ [K− 1], then a probabilistic

3 The randomness that is needed for the masking also comes from our above probabilistic vectorization, wherever
we need individual randomness.
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argument concludes that {Gi} ≡ {Gi+1} ≡ · · · ≡ {Gi+K}. The formal basis changes are used to
achieve perfect indistinguishability between these selective versions {G∗i+t | E} of the game. In the

MCFE adaptive proof, the adaptive data include (x
(0,ji)

i ,x
(1,ji)

i ) indexed by multiple repetitions
ji. We extensively use admissibility conditions (1) as well as (2) to define the basis changes.
Details can be found in the proof of Theorem 12, the final probabilistic calculation for complexity
leveraging can be examined in (16), for instance. As a reminder, an integral overview that puts
together all above solutions, and more, is given in the paragraph Proof Strategy (on page 21)
before the proof of Theorem 12.

2 Preliminaries

We write [n] to denote the set {1, 2, . . . , n} for an integer n. For any q ≥ 2, we let Zq denote
the ring of integers with addition and multiplication modulo q. For a prime q and an integer
N , we denote by GLN (Zq) the general linear group of of degree N over Zq. We write vectors as
row-vectors, unless stated otherwise. For a vector x of dimension n, the notation x[i] indicates
the i-th coordinate of x, for i ∈ [n], and we write 1x ∈ {0, 1}n to denote the indicator vector of
x. For two vectors x,y of the same length, we write the Hadamard product x ◦ y := (x[i]y[i])i
to denote the component-wise product of x and y. We will follow the implicit notation in [24]
and use JaK to denote ga in a cyclic group G of prime order q generated by g, given a ∈ Zq. This
implicit notation extends to matrices and vectors having entries in Zq. We use the shorthand
ppt for “probabilistic polynomial time”.

Hardness Assumptions. We need some the Decisional Diffie-Hellman (DDH) assumption
in a cyclic group G of prime order q. In a cyclic group G of prime order q, the (DDH) assumption
in G assumes that no ppt adversary can distinguish the distributions {(J1K , JaK , JbK , JabK)}
and {(J1K , JaK , JbK , JcK)} for a, b, c $← Zq. In the bilinear setting (G1,G2,Gt, g1, g2, gt, e, q), the
Symmetric eXternal Diffie-Hellman (SXDH) assumption makes the DDH assumption in
both G1 and G2.

Dual Pairing Vector Spaces. Formal definitions can be found in Appendix A.2. Details
of basis changes are recalled in the appendix A.5. We use prime-order bilinear group setting
(G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written additively. Let us fix N ∈ N and
consider GN

1 having N copies of G1. Any x = J(x1, . . . , xN )K1 ∈ GN
1 is identified as the vector

(x1, . . . , xN ) ∈ ZNq . The 0-vector is 0 = J(0, . . . , 0)K1. The addition of two vectors, and Zq-scalar
multiplication, in GN

1 are defined by coordinate-wise addition. Viewing ZNq as a vector space of
dimension N over Zq with the notions of bases, we can obtain naturally a similar notion of bases
for GN

1 . More specifically, any invertible matrix B ∈ GLN (Zq) identifies a basis B of GN
1 , whose

i-th row bi is
q
B(i)

y
1
, where B(i) is the i-th row of B. Naturally we can extend basis changes in

GLN (Zq) to changes of bases of GN
1 by the fact that G1 is cyclic. Treating GN

2 similarly, we can
furthermore define a product of two vectors x = J(x1, . . . , xN )K1 ∈ GN

1 ,y = J(y1, . . . , yN )K2 ∈ GN
2

by x × y :=
∏N
i=1 e(x[i],y[i]) = J⟨(x1, . . . , xN ), (y1, . . . , yN )⟩Kt. Given a basis B = (bi)i∈[N ] of

GN
1 , we define B∗ to be a basis of GN

2 by first defining B′ := (B-1)⊤ and the i-th row b∗i
of B∗ is

q
B′(i)

y
2
. It holds that B(B′)⊤ = IN the identity matrix and bi × b∗j = Jδi,jKt for

every i, j ∈ [N ], where δi,j = 1 if and only if i = j. We call the pair (B,B∗) a pair of dual

orthogonal bases of (GN
1 ,GN

2 ). If B is constructed by a random invertible matrix B
$← GLN (Zq),

we call the resulting (B,B∗) a pair of random dual bases. A DPVS is a bilinear group setting
(G1,G2,Gt, g1, g2, gt, e, q,N) with dual orthogonal bases.

Access Structure and Linear Secret Sharing Schemes. We recall the definitions of access
structures and linear secret sharing schemes in Appendix A.3. In short, an access structure
A ⊆ 2Att \ {∅} over an attribute space Att is a family of sets S of attributes. A secret sharing
scheme for an access structure A over the attributes Att = {att1, att2, . . . , attm} allows sharing a
secret s among the m attributes attj for 1 ≤ j ≤ m, such that: (1) Any authorized set S in A
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can be used to reconstruct s from the shares of its elements; (2) Given any unauthorized set
and its shares, the secret s is statistically identical to a uniform random value. A linear secret
sharing scheme (LSSS) is a way to linearly share a secret. More specifically, let K be a field,
d, f ∈ N, and Att be a finite universe of attributes. A Linear Secret Sharing Scheme LSSS over
K for an access structure A over Att is specified by a share-generating matrix A ∈ Kd×f such
that for any I ⊂ [d], there exists a vector c ∈ Kd with support I and c ·A = (1, 0, . . . , 0) if and
only if {atti | i ∈ I} ∈ A. Finally, let y ∈ Zq where q is prime and for the sake of simplicity, let
Att ⊂ Zq be a set of attributes. Let A be a monotone access structure over Att realizable by an
LSSS over Zq. A random labeling procedure Λy(A) is a secret sharing of y using LSSS:

Λy(A) := (y, v2, v3, . . . , vf ) ·A⊤ ∈ Zdq (3)

where A ∈ Zd×fq is the share-generating matrix and v2, v3, . . . , vf
$← Zq.

The Masking Lemma with Repetitions. We state a technical lemma that is employed
throughout our proofs. This is a generalized version of [31, Lemma 4], where the masks can be
introduced even when repetitions of c-vectors over j and root are allowed. A detailed proof can
be found in Appendix B.

Lemma 1. Let A be an LSSS-realizable over a set of attributes Att ⊆ Zq. We denote by
List-Att(A) the list of attributes appearing in A and by P the cardinality of List-Att(A). Let
S ⊆ Att be a set of attributes. Let (H,H∗) and (F,F∗) be two random dual bases of (G2

1,G2
2)

and (G8
1,G8

2), respectively. The vectors (h1, f1, f2, f3) are public, while all other vectors are
secret. Suppose we have two random labelings (aj)j∈List-Att(A) ← Λa0(A) and (a′j)j ← Λa′0(A)
for a0, a

′
0

$← Zq. Let J denote the maximum number of repetitions at each j ∈ S for cj or
for croot. Then, under the SXDH assumption in (G1,G2), the following two distributions are
computationally indistinguishable:


(x(rep)), y

c
(rep)

j∈S = (σ
(rep)

j (1,−j), ψ(rep), 05)F
k∗
j∈List-Att(A) = (πj · (j, 1), ajz, 05)F∗

c
(rep)
root = (ψ(rep), 0)H

k∗root = (a0z, 0)H∗

 ;



(x(rep)), y

c
(rep)

j∈S = (σ
(rep)

j (1,−j), ψ(rep), 02, τzjx
(rep) , 02)F

k∗
j∈List-Att(A) = (πj(j, 1), ajz, 02, a′jy/zj , 02)F∗

c
(rep)
root = (ψ(rep), τx(rep) )H

k∗root = (a0z, a′0y )H∗


for any x(rep), y ∈ Zq, where rep ∈ [J ], and zj , σj , πj , ψ, τ, z, r

′
0

$← Zq.

Below is the main function class for inner products with access control that is studied in this
paper.

Definition 2 (Inner Products with LSSS). We consider the functionality F IP,B
subvec × LSSS

and F IP
subvec that contains Fy1,...,yn :

∏
i∈[n]

(
ZNiq

)
→ Zq defined as Fy1,...,yn(x1, . . . ,xn) :=∑n

i=1⟨xi,yi⟩, which receives as inputs and parameters where for all i, max(∥xi∥∞, ∥yi∥∞) < B,
with B = poly(λ) ∈ N being a polynomial. The access control is given by Rel : LSSS ×(∏n

i=1 2
Att
)
→ {0, 1} as Rel(A, (Si)i) =

∏
iA(Si). The class LSSS contains Linear Secret Sharing

Schemes over Att, and 2Att denotes the superset of an attribute space Att ⊆ Zq.

3 Multi-Client Functional Encryption with Public Inputs

In this section we refine the definition of multi-client functional encryption in which at the time
of encryption, each client can specify their own public data, while the function class contains
functions that evaluate both the combined private and public data of clients. In Section 3.2 we
prove that this general notion covers the original MCFE notion with and without fine-grained
access control, and even more, e.g. the notion of public-attributes ABE. Interestingly, the syntax
of previous formal definitions of FE, either in single-client [16] or multi-client [25, 18], allows
no public data and let public-attributes ABE escape their scope, or has to include an artificial
function in the class. More specifically, we discuss in Theorem 8 how our formal definition of
MCFE with public inputs can be related to other existing primitives.
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3.1 Definitions

Definition 3 (Functions with public inputs). Let λ, n ∈ N and let Dλ,i and Rλ be domains
and ranges indexed by λ in some ensembles {Dλ,i}λ where i ∈ [n], {Rλ}λ, respectively. A function
class F = {Fλ,n}λ,n with public inputs (Zλ,i)i∈[n], where Zλ,i := {0, 1}poly(λ), is defined to contain
Fλ,n :

∏n
i=1 (Dλ,i ×Zλ,i)→ Rλ.

In the following the index n is a function in λ and we omit it for clarity.

Definition 4 (Multi-client functional encryption with public inputs). A multi-client
functional encryption (MCFE) scheme with public inputs, for the class F with public inputs
(Zλ,i)i∈[n] where Zλ,i := Tag × Z̃λ,i for some set Tag = {0, 1}poly(λ), consists of four algorithms
(Setup,Extract,Enc,Dec):

Setup(1λ, 1n): Given as inputs 1λ for a security parameter λ, and a number of clients n, output
a master secret key msk and n encryption keys (eki)i∈[n].

Extract(msk, Fλ): Given a function description Fλ :
∏n
i=1 (Dλ,i ×Zλ,i) → Rλ in F , and the

master secret key msk, output a decryption key dkFλ.
Enc(eki, xi, zi): Given as inputs public data zi = (tag, z̃i) ∈ Zλ,i that contains some tag, an

encryption key eki, a message xi ∈ Dλ,i, output a ciphertext (cttag,i, zi). For a specific client
i, the sets Dλ,i and Zλ,i are indexed by λ in some ensembles {Dλ,i}λ, {Zλ,i}λ.

Dec(dkFλ , c): Given the decryption key dkFλ and a vector of ciphertexts c := (cttag,i, zi)i of length
n, output an element in Rλ.

Our syntax can be seen as a particular case of the general primitive Multi-Party Functional
Encryption (MPFE) [8] in which we consider the particular case of multi-client while the key
generation stays centralized. The main difference is in terms of security where ours is less
restrictive (see Definition 5), which is sufficient for establishing connection to other primitives as
we will see in Section 3.2. Regarding the concrete class calculating inner products with access
control, we will revisit the connection from MIFE to MCFE in Section 4.

Correctness. For sufficiently large λ ∈ N, for all (msk, (eki)i∈[n])←Setup(1λ), all functions
Fλ,n :

∏
i (Dλ,i ×Zλ,i) → Rλ and dkFλ,n← Extract(msk, Fλ,n), for all tag ∈ Tag and (zi)

n
i=1 ∈

Zλ,1×· · ·×Zλ,n, for all (xi)i∈[n] ∈ Dλ,1×· · ·×Dλ,n, if Fλ((xi, zi)i) ̸= ⊥ and zi = (tag, z̃i) ∈ Zi for
all i, the following holds with overwhelming probability, over the random coins of the algorithms:

Dec
(
dkFλ , (Enc(eki, xi, zi))i∈[n]

)
= Fλ,n((xi, zi)i) .

Security. First of all we define admissible adversaries A against an MCFE E . We use the recent
formulation of admissibility in [32].

Definition 5 (Admissible adversaries with public inputs). Let A be a ppt adversary
and let E = (Setup,Extract,Enc,Dec) be an MCFE scheme with public inputs for the function
class F with public inputs Zλ,i := Tag × Z̃λ,i. In the security game given in Figure 1 for A
considering E, let the sets (C,Q,H) be the sets of corrupted clients, functional key queries, and
honest clients, in that order. We say that A is NOT admissible w.r.t (C,Q,H) if the following
condition holds:

There exist tag ∈ Tag, a function F ∈ F is queried to Extract, challenges (x(0)

i , x
(1)

i ,

(tag, z̃(chal)

i ))i∈[n] is queried to LoR, with public inputs z̃(chal)

i ∈ Z̃λ,i, and there exist

vectors (t(0), t(1),v(chal)) so that ∀ i ∈ H : t(b)[i] = x(b)

i and v(chal)[i] = z̃(chal)

ekey [i] satisfying

F ((t(0)[i], (tag,v[i]))i∈[n]) ̸= F ((t(1)[i], (tag,v[i]))i∈[n]) . (4)

Otherwise, we say that A is admissible w.r.t (C,Q,H).
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Discussion on admissibility. We develop below some discussion on the admissibility notion
in Definition 5:

• (Repetitions) In comparison to the original security of MCFE in [18], an adversary is still
admissible if they query multiple times to the challenge oracle for a fixed (i, tag), whereas
an admissible adversary as per [18] is allowed to query at most once for each (i, tag). This
aspect of repetitions in the admissibility was first studied in [19] and later generalized in [20].
It is important that when repetitions are allowed for ciphertexts, the security model of
MCFE automatically encompasses that of MIFE by replacing tags with a constant value, as
confirmed in recent works [12]. Lastly, in our notion of MCFE with public inputs, we can
also consider restricted repetitions only on the private parts (x(0)

i , x
(1)

i ) (see the weaker notion
rep-priv in the following) and not on the public parts z(chall)

i to the challenge oracle. This
form of restricted repetitions gives a weaker notion of security, but it still covers the security
of classical MIFE without public inputs, as studied in [25, 13, 5, 21, 3, 41, 6, 9].

• (Weaker constraints) Regarding the corrupted i ∈ C in general, the admissibility check is
done in Finalise at the end of the security experiment, and Definition 5 per se allows the
adversary to query the challenge oracle LoR, whether the corruption is static or not, on

i, x(0)

i , x
(1)

i , (tag
∗, z̃(chal)

i )

where x(0)

i ̸= x(1)

i . The adversary stays admissible as long as the condition (4) is not satisfied,
i.e. the foregoing x(0)

i ̸= x(1)

i of corrupted i ∈ C does not make F differ with respect to

the challenge bit b
$← {0, 1}. The original security of MCFE in [18] does not allow attacks

where there exists i ∈ C such that x(0)

i ̸= x(1)

i . By allowing a such query, we apparently allow
more attacks than the original security model of MCFE in [18]. The work [32] examines the
legitimacy of this condition in the plain (Decentralized) MCFE (DMCFE) setting and proposes
a stronger security model that does allow x(0)

i ̸= x(1)

i of corrupted i ∈ C (thus considers more
attacks admissible).

• (Corrupted ciphertexts) In terms of usage of the corrupted eki, for the admissible conditions 4
we do not put any quantifier on the ciphertexts that can be crafted by the adversary using a
corrutped eki for i ∈ C. Because when decrypting jointly a such ciphertext c̄ti←Enc(eki, x̄i, z̄i)
with other challenge ciphertext components (up to repetitions) vis-à-vis a function F , the
evaluation will provide

F ((t(b)[j], (tag,v[j]))j ̸=i, (x̄i, z̄i), (t
(b)[j′], (tag,v[j′]))j′ ̸=i)

that always has the same i-th argument and cannot change the output of F . The same
reasoning applies when the adversary crafts themselves multiple corrupted ciphertexts.

• (Checking admissibility) The admissiblity in Definition 5 for general function class may not
be efficiently decidable. As we will see later in Section 4.2, within the scope of this paper,
the class of functions is restricted to computing inner products with access control by LSSS,
and the admissibility can be decided efficiently using concrete conditions 1 and 2 prior to
the proof of Theorem 12.

In Theorem 8 we discuss how an MCFE that is provably secure under the admissibility in
Definition 5 will imply a provably secure MIFE, and more. For the concrete class of computing
inner products with access control which is the main subject of Section 4, we refer to Remark 14.

Definition 6 (IND-security with repetitions for MCFE with public inputs). An
MCFE scheme with public inputs E = (Setup,Extract,Enc,Dec) for the function class F with
public inputs is IND-secure if for all ppt adversaries A, and for all sufficiently large λ ∈ N, the
following probability is negligible

Advmc-w-rep
E,F ,A (1λ) :=

∣∣∣∣Pr[Exprmc-ind-cpa
E,F ,A (1λ) = 1]− 1

2

∣∣∣∣ .
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Initialise(1λ) Initialise(1λ, (x
(0)
i , x

(1)
i )i∈[n])

b
$← {0, 1}

(msk, (eki)i∈[n])←Setup(1λ)

Q := ∅, C := ∅, H := [n]

LoR(i, x
(0)
i , x

(1)
i , (tag∗, z̃(chal)

i )) LoR(i, (tag∗, z̃(chal)
i ))

Enc(eki, x
(b)
i , (tag∗, z̃(chal)

i ))→ ct
(b)
tag∗,i

Return ct
(b)
tag∗,i

Enc(i, xi, (tag, z̃i))

Return Enc(eki, xi, (tag, z̃i))

Corrupt(i)

C := C ∪ {i}
H := H \ {i}
Return eki

Finalise(b′)

If A is NOT admissible w.r.t (C,Q,H):
return 0

Else return

(
b′

?
= b

)
Extract(F )

Q := Q ∪ {F}
dkF ←Extract(msk, F )
Return dkF

Fig. 1: The security game Exprmc-ind-cpa
E,F,A (1λ), Exprmc-sel-ind-cpa

E,F,A (1λ) for Definition 6

The security game Exprmc-ind-cpa
E,F ,A (1λ) is depicted in Figure 1. The probability is taken over the

random coins of A and the algorithms.

In a more relaxed notion, the scheme E is selectively IND-secure with the security game
Exprmc-sel-ind-cpa

E,F ,A (1λ), where the challenges are chosen before the setup.

Weaker notions. We can relax the admissibility notion from Definition 5, with more exclusions,
to obtain weaker security notions considered in literature. They are simpler to achieve, and some
generic conversions allow to lift from a weaker to a stronger scheme. One can consider a weaker
notion of security for MCFE in which either all or none of honest components in the challenge
are queried., the MCFE scheme said to be secure against complete queries only and add the
following exclusion to the admissibility: “There exist a tag tag and i, j ∈ H such that i ̸= j, there
exists a query (i, x(0)

i , x
(1)

i , (tag, ∗)) to LoR but there exist no query (j, x(0)

j , x
(1)

j , (tag, ∗)) to LoR”;
The flag pos in the name of the experiment denotes this weaker notion in admissibility. We
also define a notion of security where only one challenge tag tag∗ is allowed, with the following
exclusion to the admissibility: “There exist two tags tag ̸= tag′ and queries (∗, ∗, ∗, (tag, ∗)),
(∗, ∗, ∗, (tag′, ∗)) to LoR” ; The scheme E is one-time IND-secure, with the flag 1chal in the
name of the experiment. Finally, if we allow only repetitions on the private parts (x(0)

i , x
(1)

i ) and
not on the public parts z(chal)

i to LoR (or xi and not on zi to Enc), we denote the corresponding
experiment with this weaker notion with the flag rep-priv, with the additional exclusion: “There
exist a tag tag, an index i and two public values z ≠ z′, with queries (i, ∗, ∗, (tag, z)) to LoR or
(i, ∗, (tag, z)) to Enc, and (i, ∗, ∗, (tag, z′)) to LoR or (i, ∗, (tag, z′)) to Enc”.

All these flags pos, 1chal, rep-priv can be combined and added to the experiments presented
in Figure 1.

Lemma 7 allows us to concentrate on the notion of one-time IND-security for our construction.
The proof is a standard hybrid argument, thanks to the Enc-oracle access (in the case of secret-key
encryption), in addition to LoR.

Lemma 7. Let E = (Setup,Extract,Enc,Dec) for the function class F be an MCFE scheme with
public inputs. If E is one-time IND-secure, then E is IND-secure.

3.2 Implications between Notions: MCFE, MIFE, and more

Since its introduction in [25], a long line of works [13, 5, 21, 3, 41, 6, 9] considers MIFE having only
one encryptor who can use a master secret key to encrypt independent components of a message.
Our definition of MCFE from Definition 4 can capture this widely studied (one-encryptor) notion
of MIFE, with and without access control, and in the latter case with public attributes. Generally,
Theorem 8 demonstrates that given a secure MCFE as per Definition 6 for a strong enough
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function class with public inputs, we can obtain secure instantiations of standard existing
MIFE/MCFE notions in the secret-key setting as well as (single-client) FE/KP-ABE notions in
the public-key setting. Relevant notions are recalled in Appendix A.4.

Theorem 8. Let F be a function class with public inputs (Zλ,i)i∈[n] where Zλ,i := Tag × Z̃λ,i
for some tag space Tag = {0, 1}poly(λ). The elements of F are Fλ,n :

∏n
i=1 (Dλ,i ×Zλ,i)→ Rλ.

Suppose that F contains the identity function F id
λ,n where for all (xi, zi)i, F

id
λ,n((xi, zi)i) = (xi, zi)i.

We suppose further that Fλ,n can encode a policy class Pol whose attributes are contained in

Att ⊆ Z̃λ,i for all i ∈ [n]. We have the following commutative diagram:

MCFE xxx-rep-priv[F , (Zλ,i)i∈[n]] MIFE xxx[F ]

FE xxx[F , (Zλ,i)i∈[n]] KP-ABE xxx
pub[Pol,Att]

rep-priv

adm (Def. 5)

pub. input

Att⊆Z̃λ,i

where

• Each arrow “→” preserves the IND-CPA security level xxx ∈ {sel, adp} × {dyn, stat} of
(challenge-selective, challenge-adaptive) combining with (dynamic, static) corruption security
respectively. The label of the arrow indicates the necessary property for it to hold, detailed in
the proof.

• MIFE xxx[F ] denotes an MIFE following Definition 23, that can be adapted to capture MIFE
for calculations in F without access control as defined in [13, 5, 21, 3, 41, 6, 9].

• FE xxx[F , (Zλ,i)i∈[n]] following Definition 21, that can be adapted to capture FE with access
control as in [4, 31, 11], or without access control [16].

• KP-ABE xxx
pub[Pol,Att] denotes a KP-ABE for the policy class Pol with public attributes. The

notion follows Definition 19.

Proof (Of Implication MCFE to (single-client, public-key) FE.). We perform the reduction
going from MCFE to (single-client, public-key) FE below. For completeness, other reductions are
given in formal details in Appendix C. Let MCFE xxx[F , (Zλ,i)i∈[n]] be a secure MCFE following
Definition 6. We denote by (Setupmc,Extractmc,Encmc,Decmc) the algorithms of the MCFE.

The function class is F containing Fλ : Dλ×Zλ → Rλ. Following Definition 20, the obtained
FE is defined by algorithms:

Setuppk(1λ): Run Setupmc(1λ, 11)→ (mskmc, ekmc). Output msk := mskmc, pk := (ekmc).
Extractpk(msk, Fλ): Run Extractmc(mskmc, Fλ)→ dkFλ and output dkFλ .
Encpk(pk, x, z): Parse pk := (ekmc) and z := (ϵ, z̃) as there is no tag in single client and public

key FE. Sample tag
$← Tag and run Encmc(ekmc, x, (tag, z̃))→ ct. Finally output ct.

Decpk(dkFλ , ct): Run and output Decmc(dkFλ , ct).

Correctness follows from the correctness of the MCFE. If the function class captures access
control, then the FE is for the same class having access control as well. In terms of security, let
A be an adversary against the FE as per Definition 21. We construct an adversary B breaking
MCFE xxx-rep-priv[F , (Zλ,i)i∈[n]], with static corruptions, using A. The adversary B simulates the

FE game by (i) first querying its MCFE challenger on (1λ, 1) to obtain the public parameters
pp (if any) then queries Corrupt(1), gets ek, and forwards pk := ek together with pp to A. We
note that the corrupted client is known from the beginning; (ii) simulating the FE’s challenge

queries by forwarding the challenge queries (i.e. sample tag
$← Tag and define the challenge to be

(1, x(0), x(1), (tag, z̃(chal)))) to its MCFE challenger given

((
x(0), (ϵ, z̃(chal))

)
,
(
x(1), (ϵ, z̃(chal))

))
by A

; (iii) the key extraction queries are forwarded to the MCFE challenger in a straightforward man-
ner. If the FE adversary A is admissible, i.e. x(0) ̸= x(1) but F (x(0), (ϵ, z̃(chal))) = F (x(1), (ϵ, z̃(chal)))
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for all F queried to Extract, then the challenge query (1, x(0), x(1), (tag, z̃(chal))) is on a pair of
inputs (x(0), (tag, z̃(chal))) ̸= (x(1), (tag, z̃(chal))) conforming to the admissibility. This implies that
B is also admissible following Definition 5. Moreover, the fact that every encryption query is
defined on a freshly sampled tag implies that there is no repetitions for any pair (1, tag) registered
to the MCFE challenger. This allows us to allow encrypting different public inputs even though
the MCFE is for private inputs repetitions only. Therefore, if A wins the FE game, then B wins
the MCFE game. ⊓⊔

Remark 9. (From secret key to public key) We emphasize that the crucial point allowing
us to go from the secret key setting of MCFE to the public key setting of FE is the admissibility
in Definition 5 under corruption. More specifically, Definition 5 allows the reduction to forward
the challenge queries of its (public key) FE to the MCFE challenger, for the only client as n = 1,

(x(0), (tag, z̃(chal))) ̸= (x(1), (tag, z̃(chal)))

as long as F (x(0), (ϵ, z̃(chal))) = F (x(1), (ϵ, z̃(chal))) for all F queried to Extract. The only secret
encryption key ek is corrupted up front and known to the FE adversary as a public key pk.
Comparing to existing admissibility notions in [18], which excludes attacks where there exists
i ∈ C such that x(0)

i ≠ x(1)

i , the only queries that the reduction can forward are the trivial
one from the FE adversary where x(0) = x(1). Hence, existing admissibility notions in [18] and
subsequent works are not sufficient to capture the reduction from MCFE to FE with meaningful
CPA-security. Furthermore KP-ABE is made possible (without attribute-hiding) thanks to the
public inputs.

Remark 10. (Concrete instantiations) Another key observation of Theorem 8 is that starting
from any provably MCFE, we obtain an MIFE for the same function class by fixing one public
tag for all ciphertexts. The security of the resulted MIFE comes from the fact that the security
of the underlying MCFE allows repetitions at each position i, under the fixed tag, thanks to the
admissibility in Definition 5. In this paper, our final construction for MCFE with access-control
(see Corollary 13) satisfies this security with repetitions along with other favorable properties to

be lifted to an MIFE with access-control. We consider the function class F IP,B
subvec×LSSS as defined

in definition 2. Applying Theorem 8 to our MCFE in Section 4.2 gives concrete instantiations of
the corresponding primitives.

4 MCFE for Inner Products with Access Control: Encrypting Vectors with
Security against Repetitions

First of all, we specialize the general notion of MCFE with public inputs so as to define and give
the model of security for multi-client functional encryption with fine-grained access control in
Section 4.1. Our main goal is to improve the MCFE construction in [31, Section 5], which supports
only encrypting scalars and does not tolerate repetitions of challenge ciphertexts. Section 4.2
gives an extension to encrypt subvectors, in a security model where the admissibility allows
repetitions at positions under a challenge tag. Towards Corollary 13, we remove all one-challenge
and complete challenge queries, and the resulted MCFE can be made MIFE by fixing a public
tag. This clarifies the conversion from MCFE to MIFE in [31, Remark 16]. A subtlety is that the
fixed public tag is processed by hashing, leading to a MIFE that inherits all security properties
of the MCFE but without tags and without corruption. Hence, putting forward the fact that our
MCFE does not allow repetitions on the attributes per client but only repetitions their private
inputs, the obtained MIFE is secure only against repetitions on private inputs, i.e. potentially
repetitive private xi and no repetitions on the attributes Si of each i. We discuss further our
construction and revisit the MIFE regime for comparison with [4, 31] in Remark 14.
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4.1 Definitions

We specialize the notion of MCFE with public inputs in Definition 4 to define the notion of
multi-client functional encryption with fine-grained access control, key-policy and with public
attributes.

Specialized function class with access control. Let λ ∈ N be a security parameter and
we denote by n the number of clients in the system, which is fixed at set up time. We describe
the function class F × AC-K for the multi-client functional encryption with fine-grained access
control below:

• The public attributes of each client i come from Zλ,i := Tag × AC-Cti for some set AC-Cti
and a tag space Tag = {0, 1}poly(λ).

• The access control is defined via a relation Rel : AC-K× AC-Ct1 × · · · × AC-Ctn → {0, 1}, for
some set AC-K.

• The function class F × AC-K contains (Fλ, ac-k) having public inputs (Zλ,i)i∈[n].

A plaintext for client i consists of xi ∈ Dλ,i, where Dλ,i denotes the domain from which each
client i gets their inputs. The corresponding ciphertext can be decrypted to Fλ(x) using the
functional key skFλ,ac-k for ac-k ∈ AC-K if and only if Rel(ac-k, (ac-cti)i) = 1. Given the above
specialization, the syntax of MCFE with access control can be derived from the general syntax of
MCFE with public inputs in Definition 4. For the sake of analysis of our scheme later on, we give
below only the correctness and security definitions for the specialized function class F × AC-K.

Correctness. For sufficiently large λ ∈ N, for all (msk, (eki)i∈[n])← Setup(1λ), (Fλ, ac-k) ∈
F × AC-K and dkFλ,ac-k ← Extract(msk, Fλ, ac-k), for all tag and (ac-cti)i, for all (xi)i∈[n] ∈
Dλ,1 × · · · × Dλ,n, the following holds with overwhelming probability: if Rel(ac-k, (ac-cti)i) = 1
and Fλ(x1, . . . , xn) ̸= ⊥

Dec
(
dkFλ,ac-k, (Enc(eki, xi, zi := (tag, ac-cti)))i∈[n]

)
= Fλ(x1, . . . , xn)

where Fλ : Dλ,1 × · · · × Dλ,n → Rλ and the probability is taken over the coins of algorithm.

Security. The security game is depicted in Figure 1, where the functionality class is F ×AC-K,
the set of public data for each client i is Zλ,i := Tag × AC-Cti. We recall that our general
admissibility in Definition 11 allows an adversary to query multiple times to the challenge oracle
for a fixed (i, tag). In particular, we consider also attacks where multiple x(rep)

i are queried for
the same (i, tag) to the oracle LoR, namely with repetitions at position i under the challenge
tag tag. The formal definition, which is concretely interpreted for the class F × AC-K based on
the general Definition 11 of MCFE with public inputs, is given below.

Definition 11 (Admissible adversaries with fine-grained access control). Let A be
a ppt adversary and let E = (Setup,Extract,Enc,Dec) be an MCFE scheme with fine-grained
access control for the functionality class F × AC-K. In the security game given in Figure 1 for
A considering E, let the sets (C,Q,H) be the sets of corrupted clients, functional key queries,
and honest clients, in that order. We say that A is NOT admissible w.r.t (C,Q,H) if any of the
following conditions holds:

There exist tag ∈ Tag, a function (F, ac-k) ∈ Q is queried to Extract, two challenges
(x(0)

i , x
(1)

i , (tag, ac-cti))i∈[n] are queried to LoR, with public inputs ac-cti ∈ AC-Ctλ,i, a

pair (t(0), t(1),v(chal)) so that for b ∈ {0, 1}, ∀ i ∈ H : t(b)[i] = x(b)

i and v(chal)[i] = ac-cti,
and
• The policy passesa: Rel(ac-k,v(chal)) = 1.
• The function evaluation differs:

F
(
t(0)
)
̸= F

(
t(1)
)
. (5)

18



a This is up to attributes replacement in the corrupted slots i ∈ C, therefore we only required v(chal) to
coincide with only with the honest attributes (ac-cti)i∈H and leave free the corrupted part.

Otherwise, we say that A is admissible w.r.t (C,Q,H).

We recall the weaker notion considering only complete queries, while facing repetitions, for this
concrete F × AC-K.

Weaker notions. We can relax Definition 11 to obtain weaker notions, in a similar manner
which we use to relax Definition 5. The selective, private-input only repetitions, complete, and
one-time security relaxations are straightforward.

4.2 Extension to Sub-vectors

In this section we present an MCFE scheme with fine-graine access control whose i-th ciphertext
can encrypt subvectors of length Ni. In Remark 14 we discuss how to turn our final MCFE
for inner products with access control, into an MIFE in the standard model, for computing
inner products without access control. The bilinear group is (G1,G2,Gt, g1, g2, gt, e, q). The

function class of interests is F IP,B
subvec × LSSS as defined in definition 2. A high-level overview of

the construction is given in paragraph 7.

Construction. The details are given below:

Setup(1λ): Choose n+ 1 pairs of dual orthogonal bases (Hi,H
∗
i ,Bi,B

∗
i ) for i ∈ [n] and (F,F∗,G,G∗),(Hi,H

∗
i ) is a pair

of dual bases for (G2N+4
1 ,G2N+4

2 ), (Bi,B
∗
i ) is a pair of dual bases for (GN+4

1 ,GN+4
2 ), (F,F∗) is a pair of dual bases

for (G2N+6
1 ,G2N+6

2 ), (G,G∗) is a pair of dual bases for (G2N+6
1 ,G2N+6

2 ) 4. Sample µ
$← Z∗q ,S,U,

$←
∏n
i=1(Z∗q)N and

write S = (s1, . . . , sn), U = (u1, . . . ,un). Perform an n-out-of-n secret sharing on 1, that is, choose pi ∈ Zq such that

1 = p1 + · · ·+ pn. Then, for each i ∈ [n], sample N random values θi,k
$← Zq. Output the master secret key and the

encryption keys as



msk :=
(
S, U, (θi,k)i∈[N ],k∈[N ], (b

∗
i,k)k∈[N+2], f∗1 , f∗2 , f∗3 ,

g∗1 , g∗2 , g∗3 , (h∗i,1,h
∗
i,2,h

∗
i,3, (h

∗
i,N+3+k)

N
k=1)i∈[n]

)
eki :=

(
si, ui, (B

(k)

i )k∈[N+2],bi,N+3, f1, f2, f3,

g1, g2, g3, pi ·H
(1)
i , pi ·H

(2)
i , hi,3, (θi,khi,N+3+k)

N
k=1

)
where H

(k)
i , B

(k)

i denotes the k-th row of Hi, Bi respectively.

Extract(msk, (yi)i∈[n] ∈
∏n
i=1 ZNq , ac-k := A): Let A be an LSSS-realizable monotone access structure over a set of attributes

Att ⊆ Zq. First, sample ai,0
$← Zq and run the labeling algorithm Λai,0(A) (see Definition 8) to obtain the labels

(ai,j)j where j runs over the attributes in Att. In the end, it holds that ai,0 =
∑
j∈A ci,j · ai,j where j runs over some

authorized set Ai ∈ A and ci = (ci,j)j is the reconstruction vector from LSSS w.r.t Ai. We denote by List-Att(A) the

list of attributes appearing in A, with possible repetitions. For each i ∈ [n], each k ∈ [N ], sample dA,i,k
$← Zq such that∑n

i=1

∑N
k=1 θi,kdA,i,k = 0. For each i ∈ [n], compute

mi :=

(
yi,

n∑
i=1

ai,0, rndi, 0, 0

)
B∗

i

; m̃i,j := (π̃i,j · (j, 1), ai,j , 0N , 0, 0N , 0, 0)G∗ for j ∈ List-Att(A)

ki,j := (πi,j · (j, 1), ai,j · z, 0N , 0, 0N , 0, 0)F∗ for j ∈ List-Att(A)

ki,ipfe :=

(
n∑
i=1

⟨si,yi⟩,
n∑
i=1

⟨ui,yi⟩, ai,0 · z, 0N , (dA,i,k)
N
k=1, rndi,ipfe

)
H∗

i

where z, πi,j , rndi, rndi,ipfe
$← Zq . Output dkA,y :=

(
(ki,j , m̃i,j)i,j , (mi,ki,ipfe)i∈[n]

)
.

4 We denote the basis changing matrices for (F,F∗), (Bi,B
∗
i ), (Hi,H

∗
i ) as (F, F ′ := (F−1)⊤), (Bi, B

′
i :=

(B−1
i )⊤), (Hi, H

′
i := (H−1

i )⊤) respectively (see the appendix A.5 for basis changes in DPVS).
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Enc(eki,xi ∈ ZNq , zi := (tag, Si)): Parse

eki :=
(
si, ui, (B

(k)

i )k∈[N+2],bi,N+3, f1, f2, f3,g1,g2,g3, pi ·H
(1)
i , pi ·H

(2)
i , hi,3, (θi,khi,N+3+k)

N
k=1

)
and Si ⊆ Att ⊆ Zq as the set of attributes, compute H(tag)→ (JωK1 , Jω′K1) ∈ G2

1 . Use piH
(1)
i and piH

(2)
i to compute

piH
(1)
i · JωK1 + piH

(2)

i ·
q
ω′

y
1
= pi ·

(
ωH

(1)
i · g1 + ω′H

(2)
i · g1

)
= pi · (ωhi,1 + ω′hi,2) .

For each j ∈ Si, sample ψi, νi
$← Zq and compute

t̃i,j = (σ̃i,j · (1,−j), νi, 0N , 0, 0N , 0, 0)G

ci,j = σi,j · f1 − j · σi,j · f2 + ψi · f3 = (σi,j · (1,−j), ψi, 0N , 0, 0N , 0, 0)F

where σ̃i,j , σi,j
$← Zq . Finally, compute

ti :=
∑
k∈[N ]

(
JωK1 · si[k] ·B

(k)

i +
q
ω′

y
1
· ui[k] ·B(k)

i + Jxi[k]K1
)
+ νi · bi,N+1 + ρi · bi,N+3

= (ω · si + ω′ · ui + xi, νi, 0, ρi)Bi

ci,ipfe := pi · (ω · hi,1 + ω′ · hi,2) + ψi · hi,3 +

N∑
k=1

θi,khi,N+3+k = (ωpi, ω
′pi, ψi, 0N , (θi,k)

N
k=1, 0)Hi

and output cttag,i :=

((
ci,j , t̃i,j

)
j
, ti, ci,ipfe

)
.

Dec(dkA,y, c := (cttag,i), aux-d := tag): Parse

cttag,i =

((
ci,j , t̃i,j

)
j
, ti, ci,ipfe

)
and dkA,y :=

(
(ki,j , m̃i,j)i,j , (mi,ki,ipfe)i∈[n]

)
.

For each i ∈ [n], if there exists Ai ⊆ Si and Ai ∈ A, then compute the reconstruction vector (ci,j)j of for Ai and
perform Algorithm 2. Finally, compute the discrete logarithm and output the small value out ∈ [−nNB2, nNB2] ⊊ Zq
5.

We now state the security theorem. For simplicity, this theorem proves a weaker notion
following Definition 11. In the subsequent lemmas we will show how to remove most of the above
constraints.

Theorem 12. Let E be a MCFE scheme with fine-grained access control for the function class
F IP,B
subvec × LSSS, given in Section 4.2 in a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q). Then,

in the random oracle model, E is one-time statically IND-secure against complete challenge
queries with private-inputs only repetitions (as per Definition 11), under the SXDH in G1 and
G2.

Concrete Interpretation of Admissibility. Before going into the proof, we present specific
conditions for admissible attacks in the case of one-challenge, complete, with repetitions on
private inputs with repect to Definition 5:

1. For all vectors (x
(0,ji)

i ,x
(1,ji)

i , (tag,Si)) that is queried to LoR, for all ((yi)i∈[n],A) ∈ Q, let
H be the set of honest clients and b

$← {0, 1} be the challenge bit. Then fof any ji ∈ [Ji], if∏
iA(Si) = 1 then:

∑
i∈H⟨x

(b,ji)

i − x
(1,ji)

i ,yi⟩ = 0. This implies ⟨x(b,ji)

i − x
(1,ji)

i ,yi⟩ is constant
for any ji ∈ [Ji]. We recall that we are in the private-inputs only repetitions and therefore
there are no repetitions over (tag,Si).

2. For all vectors (x
(0,ji)

i ,x
(1,ji)

i , (tag,Si)) that is queried to LoR, for all ((yi)i∈[n],A) ∈ Q. Let
C := [n]\H be the set of corrupted clients. Then, for all i ∈ C, all ji ∈ [J ]: ⟨x(b,ji)

i −x
(1,ji)

i ,yi⟩ =
0.

5 we represent Zq as the ring of integers with addition and multiplication modulo q, containing the representatives
in the interval (−q/2, q/2).
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Input: cttag,i =

((
ci,j , t̃i,j

)
j
, ti, ci,ipfe

)
and dkA,y :=

((
ki,j , m̃i,j

)
i,j

, (mi,ki,ipfe)i∈[n]

)
, as well as the reconstruction vector (ci,j)j

of the LSSS for a reconstruction set Ai for each i

1. For each j in the reconstruction set A, compute

t̃0,j =
∑
i

t̃i,j = (σ̃0,j · (1,−j),
∑
i

νi, 0
N
, 0, 0

N
, 0, 0)G

where σ̃0,j =
∑

i σ̃i,j being a uniformly random value as σ̃i,j
$← Zq .

2. For each i compute

Xi =
∑

j∈Ai

t̃0,j × (ci,j · m̃i,j) =

u

v(
∑
i

νi) ·

 ∑
j∈Ai

ci,j · ai,j

}

~

t

=

t

(
∑
i

νi) · ai,0

|

t

Yi =
∑

j∈Ai

ci,j × (ci,j · ki,j) =
q
ψi · ai,0 · z

y
t

and in the end summing all Xi to obtain mask =
∑

iXi =
q
(
∑

i νi) · (
∑

i ai,0)
y
t

3. Compute

W =
∑
i

ti ×mi =

t∑
i

(
ω · ⟨si,yi⟩ + ω

′ · ⟨ui,yi⟩ + ⟨xi,yi⟩
)
+ (

∑
i

νi) · (
∑
i

ai,0)

|

t

as well as Z =
∑

i

(
ci,ipfe×ki,ipfe−Yi

)
=

q
ω ·

∑
i⟨si,yi⟩ + ω′ ·

∑
i⟨ui,yi⟩

y
t
thanks to

∑n
i=1

∑N
k=1 θi,kdA,i,k = 0 and

∑
i pi = 1.

4. Finally, compute out = W − Z − mask =
q∑

i⟨xi,yi⟩
y
t
and then a discrete log of out in base gt to obtain

∑
i⟨xi,yi⟩.

Fig. 2: The final computation of decryption for the MCFE in Section 4.2, whose correctness can be verified according to
construction. We note that because of all the probabilistic vectorization duringe encryption (cf. Solution to the First
Obstacle starting from page 7 in Section 1.2), the decryption algorithm is much more complex than the one in [31] and [32].

We recall that these conditions are for the one-challenge, complete, with repetitions on private
inputs case and are checked in Finalise procedure at the end of the security experiment.
Particularly, condition 2 is checked for all corrupted clients i ∈ C and all ji ∈ [J ], given any
queries that are made to the oracle LoR for i ∈ C by the adversary. This makes sense even
in the case of static corruption, since we do not prohibit such queries even after the set C is
fixed. Finally, condition 2 does not need to cover private inputs of corrupted i ∈ C that are not
queried to the oracle LoR because there exists no challenge bit b in those self-crafted ciphertexts
cttag,i←Enc(eki, zi, (tag, Si)). Decrypting cttag,i jointly with others challenge ciphertexts ct(b)tag,j ̸=i
under some key dkA,(yi)i∈[n] always gives the same i-th component ⟨zi,yi⟩ regardless of b.
Proof Strategy. Before presenting the details of the proof, we give an overview of the strategy.
The sequence of games is given in Figure 6, 7, and 8 in Appendix D. The high level objective of
each step is described below:

G0: We start from the first game G0 which is the security experiment for one-time statically
IND-security against complete challenge queries with private-inputs only repetitions. For
simplicity, we add a constraint that the challenge tag tag is not queried to Enc. This incurs
a multiplicative loss factor in advantage up to an inverse of polynomial in λ, where we can
reduce to the normal 1chal by guessing the challenge tag among the tags for encryption, and
responding all of its Enc queries (i,xi, (tag, ac-cti)) by LoR(i,xi,xi, (tag, ac-cti)).

G0 → G1: To go to G1, we perform a sequence of hybrids over the key queries, which are indexed
by ℓ ∈ [K]. The main goal is to introduce ∆xi ← x

(b,ji)

i − x
(1,ji)

i for each client i ∈ H (known
in advance by static corruption) and repetition ji ∈ [Ji] in one (block of) coordinates of the
challenge components c

(ji)

i,j . The corresponding (block of) coordinates in the key component

k(ℓ)

i,j will be modified accordingly to contain a random copy of R ·yi for some random R
$← Zq.

The details of the reductions are given in the full proof in appendix D, we highlight here the
fact that the correctness is necessarily preserved thanks to the admissiblity. When the key
allows decryption, summing up over all honest clients i ∈ H contains

R ·
∑
i∈H
⟨∆xi,yi⟩ = R ·

∑
i∈H
⟨x(b,ji)

i − x
(1,ji)

i ,yi⟩ = 0 . (6)
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Condition 1 ensures first that x
(b,ji)

i − x
(1,ji)

i is constant for all ji ∈ [Ji]
6 and the sum over

index i ∈ H is well defined. Finally this sum leads to (6) which is 0 and does not intervene the
correct decryption7. As a final remark, this step exploits the probabilistic vectorization and
its randomness (see overview in section 1.2): first to apply Lemma 1 and then follow-ups with
the complexity leveraging argument, while taking into accounts the private-input repetitions
(Solution to the First/Second Obstacle in section 1.2, pages 7 and 10).

G1 → G2: After the hybrids G0 → G1, we proceeed to G2 to rewrite the adversary’s view of the
challenge ciphertext component on the aggregation of the honest i for t̃

(ji)

i,j : t̃
(ji)

0,j =
∑

i∈H t̃
(ji)

i,j .

Thanks to static corruption, the set H is known in advance and t̃
(ji)

0,j is well defined. This is a
completely formal rewriting that conforms to the calculations in the decryption algorithm
(Algorithm 2) and hence preserves correctness.

G2 → G3: In the next step, we proceed to G3 by applying the masking lemma (Lemma 1), over

the each key

((
k(ℓ)

i,j , m̃
(ℓ)

i,j

)
i,j
, (m(ℓ)

i ,k
(ℓ)

i,ipfe)i∈[n]

)
that is indexed by ℓ ∈ [K]. This masking

application introduces ∆xi ← x
(b,ji)

i − x
(1,ji)

i for each client i ∈ H (known in advance by
static corruption) and repetition ji ∈ [Ji] in one (block of) coordinates of the challenge
components t

(ji)

i , while the corresponding (block of) coordinates in the key component m(ℓ)

i

will be modified accordingly to contain R · yi. We remark that this pair of masks are the
same as what are introduce in the step G0 → G1, which is feasible under Lemma 1, and are
needed for later steps in the proof. The correctness is preserved thanks to a similar argument
as in the previous step.

G3 → G4: We move to the complexity leveraging argument. As already briefly introduced in
paragraph Solution to the Third Obstacle of Section 1, the complexity leveraging
argument is a technique that unfolds as follows:

1. We define an event E that happens with fixed probability and whose probability space
depends on the data that can be adaptively chosen by the adversary. Then, condition on
E we move to the selective version G∗i ,G

∗
i+1, . . . ,G

∗
i+K .

2. Next, we want to prove the sequence of perfect indistinguishability involving

{G∗i | E} ≡ {G∗i+1|E} ≡ · · · ≡ {G∗i+K | E} (7)

where E happens with fixed probability and is independent of the view of the adversary
during the reductions {G∗i+t | E} ≡ {G∗i+t+1|E} in the sequence, for all t ∈ [K − 1].

3. We go back to the orginal adaptive games, without resorting to event E, a proba-
bilistic argument concludes that {Gi} ≡ {Gi+1} ≡ · · · ≡ {Gi+K}. The main idea is
given any ppt adaptive adversary, we can construct a simulator of the adaptive games
{Gi,Gi+1, . . . ,Gi+K} can (i) first guess the adaptively chosen data for event E, (ii) in-
teract with its selective challenger, while (iii) using the afterwards selective challenger’s
responses to interact with the adaptive adversary, and (iv) in the end, only when E holds,
forward the adaptive adversary’s final result to the selective challenger.

In the reduction of step 3, the guess at (i) is done by the simulator and following the check
at (iv), it incurs the simulator’s advantage against the selective games being equal to a fixed
loss factor Pr[E] mutiplied to the advantage of the adaptive adversary. However, thanks
to the perfect indistinguishability (7), between the selective games for all simulators the
advantage is 0. Therefore, for the particular above simulator the advantage is also 0 and
that implies the arbitrary adaptive adversary’s advantage is 0. It remains constructing the
selective games {G∗i ,G∗i+1, . . . ,G

∗
i+K} and proving the perfect indistinguishability (7). To this

end, we exploit formal basis changes in DPVS (cf. examples 1, 2, 3 in appendix A.5). In a

6 This term ∆xi = 0 the vector of all 0 when b = 1 and can be non-zero when b = 0.
7 There is a step in this transition we already use complexity leveraging, for a common explanation we refer to
G3 → G4 below.
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simplified notation the (block of) coordinares in ciphertexts and keys are changed as follows:

(Formal quotient)

c
(ji)

i,ipfe = (· · · , r · 1∆xi
, r′ · 1 , · · · )Hi

;

k
(ℓ)

i,ipfe = (· · · , R · (∆xi ◦ y(ℓ)

i ) , (θi,k · d(ℓ)A,i,k)
N
k=1 , · · · )H∗

i
;

(Formal switch, b to 1) ≡



t
(ji)

i = (ω · si + ω′ · ui + x
(1,ji)

i , · · · ,∆xi, · · · )Bi

m
(ℓ)

i = (y
(ℓ)

i , · · · , R′ · y(ℓ)

i , · · · )B∗
i

c
(ji)

i,ipfe = (· · · , r · 1∆xi
, (r′ + r) 1, · · · )Hi

k
(ℓ)

i,ipfe = (· · · , R′ ·
(
∆xi ◦ y(ℓ)

i

)
, (θi,k · d(ℓ)A,i,k)

N
k=1 , · · · )H∗

i

(Redo formal quotient) ≡

c
(ji)

i,ipfe = (· · · , ∆xi , (θi,k)
N
k=1 , 0)Hi

k
(ℓ)

i,ipfe = (· · · , R′ · y(ℓ)

i , (d
(ℓ)

A,i,k)
N
k=1 , rnd

(ℓ)

i,ipfe)H∗
i

where R,R′
$← Zq, ∆xi ← x

(b,ji)

i − x
(1,ji)

i is constant for i ∈ H over repetitions. We refer to
the definition of the event for guesses in Equation (17) of the main proof, which ensures
that under those formal basis changes correctness is preserved necessarily and we obtain the
desired effects on vectors.

G4 → G5: The remaining step is to clean auxiliary coordinates we have modified in the previous
steps.

The full proof that develops all details of the above steps is given in Appendix D. An application
of technical lemmas to enhance security is given in Appendix D.1. We have the following Corollary
in the end:

Corollary 13. We consider the bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and the func-

tionality is F IP,B
subvec × LSSS. Then, there exists a multi-client IPFE scheme with fine-grained

access control via LSSS that is statically IND-secure in the ROM, against multiple incomplete
challenge queries with repetitions on private inputs, under the SXDH assumption in G1 and G2.

Remark 14. (Towards MIFE for inner products) Corollary 13 presents an MCFE for sub-
vectors with fine-grained access control so that its security adapted to the case of subvectors
(see Definition 6), with multiple (with possible repetitions on private inputs) , under a given
challenge tag and against incomplete queries. We can obtain an MIFE for inner products in the
standard model by fixing one tag for every ciphertext, i.e. the random oracle can be removed
by publishing a random fixed value corresponding to H(tag) for encryption. The security of the
resulted MIFE is implied from the security of our MCFE in Corollary 13 thanks to the fact that
the adversary can make multiple challenge queries to LoR for each slot i ∈ [n], following the
admissiblity in Definition 11. In particular, security with possible repetitions on private inputs of
the MCFE implies security of the obtained MIFE when repetitive private xi are used for the same
i. In particular, we obtain an MIFE for inner-products with adaptive security in the standard
model, whose keys can be control by LSSS restraining no repetitions on attributes per client.

Allowing Repetitions on Attributes. As mentioned at the beginning of this section, the
above Lemma 27 deals with incomplete challenge queries, but only with respect to the private
input xi of each client i. It cannot lift our restriction that we do not allow repetitions on the public
attributes Si. This explains why this constraint persists in our final MCFE from Corollary 13.
The fact that AoNE cannot deal with repetitions on public attributes is also mentioned in recent
works [11] and we leave it as potential extension to remove this constraint.
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A Additional Definitions

A.1 Hardness Assumptions

We state the assumptions needed for our constructions.

Definition 15. In a cyclic group G of prime order q, the Decisional Diffie-Hellman (DDH)
problem is to distinguish the distributions

D0 = {(J1K , JaK , JbK , JabK)} D1 = {(J1K , JaK , JbK , JcK)}.

for a, b, c
$← Zq. The DDH assumption in G assumes that no ppt adversary can solve the DDH

problem with non-negligible probability.

Definition 16. In the bilinear setting (G1,G2,Gt, g1, g2, gt, e, q), the Symmetric eXternal
Diffie-Hellman (SXDH) assumption makes the DDH assumption in both G1 and G2.

Definition 17. In a cyclic group G of prime order q, the Decisional Separation Diffie-
Hellman (DSDH) problem is to distinguish the distributions

D0 = {(x, y, J1K , JaK , JbK , Jab+ xK)} D1 = {x, y, (J1K , JaK , JbK , Jab+ yK)}

for any x, y ∈ Zq, and a, b
$← Zq. The DSDH assumption in G assumes that no ppt adversary

can solve the DSDH problem with non-negligible probability.

A.2 Dual Pairing Vector Spaces

Our constructions rely on the Dual Pairing Vector Spaces (DPVS) framework in prime-order
bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written additively. The
DPVS technique dates back to the seminal work by Okamoto-Takashima [35, 36, 37] aiming
at adaptive security for ABE as well as IBE, together with the dual system methodology
introduced by Waters [42]. In [28], the setting for dual systems is composite-order bilinear
groups. Continuing on this line of works, Chen et al. [17] used prime-order bilinear groups
under the SXDH assumption. Let us fix N ∈ N and consider GN

1 having N copies of G1. Any
x = J(x1, . . . , xN )K1 ∈ GN

1 is identified as the vector (x1, . . . , xN ) ∈ ZNq . There is no ambiguity
because G1 is a cyclic group of order q prime. The 0-vector is 0 = J(0, . . . , 0)K1. The addition of
two vectors in GN

1 is defined by coordinate-wise addition. The scalar multiplication of a vector
is defined by t · x := Jt · (x1, . . . , xN )K1, where t ∈ Zq and x = J(x1, . . . , xN )K1. The additive
inverse of x ∈ GN

1 is defined to be −x := J(−x1, . . . ,−xN )K1. Viewing ZNq as a vector space of
dimension N over Zq with the notions of bases, we can obtain naturally a similar notion of bases
for GN

1 . More specifically, any invertible matrix B ∈ GLN (Zq) identifies a basis B of GN
1 , whose

i-th row bi is
q
B(i)

y
1
, where B(i) is the i-th row of B. The canonical basis A of GN

1 consists
of a1 := J(1, 0 . . . , 0)K1 ,a2 := J(0, 1, 0 . . . , 0)K1 , . . . ,aN := J(0, . . . , 0, 1)K1. It is straightforward
that we can write B = B · A for any basis B of GN

1 corresponding to an invertible matrix
B ∈ GLN (Zq). We write x = (x1, . . . , xN )B to indicate the representation of x in the basis B,

i.e. x =
∑N

i=1 xi · bi. By convention the writing x = (x1, . . . , xN ) concerns the canonical basis A.
Treating GN

2 similarly, we can furthermore define a product of x = J(x1, . . . , xN )K1 ∈ GN
1 ,y =

J(y1, . . . , yN )K2 ∈ GN
2 by x × y :=

∏N
i=1 e(x[i],y[i]) = J⟨(x1, . . . , xN ), (y1, . . . , yN )⟩Kt. Given a

basis B = (bi)i∈[N ] of GN
1 , we define B∗ to be a basis of GN

2 by first defining B′ := (B-1)⊤

and the i-th row b∗i of B∗ is
q
B′(i)

y
2
. It holds that B · (B′)⊤ = IN the identity matrix and

bi × b∗j = Jδi,jKt for every i, j ∈ [N ], where δi,j = 1 if and only if i = j. We call the pair (B,B∗)

a pair of dual orthogonal bases of (GN
1 ,GN

2 ). If B is constructed by a random invertible matrix

B
$← GLN (Zq), we call the resulting (B,B∗) a pair of random dual bases. A DPVS is a bilinear

group setting (G1,G2,Gt, g1, g2, gt, e, q,N) with dual orthogonal bases. In this work, we also use
extensively basis changes over dual orthogonal bases of a DPVS to argue the steps of switching
key as well as ciphertext vectors to semi-functional mode in our proofs. The details of such basis
changes are recalled in the appendix A.5.
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A.3 Access Structure and Linear Secret Sharing Schemes

We recall below the vocabularies of access structures and linear secret sharing schemes that will
be used in this work. Let Att = {att1, att2, . . . , attm} be a finite universe of attributes. An access
structure over Att is a family A ⊆ 2Att \ {∅}. A set in A is said to be authorized ; otherwise it
is unauthorized. An access structure A is monotone if S1 ⊆ S2 ⊆ Att and S1 ∈ A imply S2 ∈ A.
Given a set of attributes S ⊆ Att, we write A(S) = 1 if and only if there exists A ⊆ S such
that A is authorized. A secret sharing scheme for an access structure A over the attributes
Att = {att1, att2, . . . , attm} allows sharing a secret s among the m attributes attj for 1 ≤ j ≤ m,
such that: (1) Any authorized set in A can be used to reconstruct s from the shares of its
elements; (2) Given any unauthorized set and its shares, the secret s is statistically identical to
a uniform random value. We will use linear secret sharing schemes (LSSS), which is recalled
below:

Definition 18 (LSSS [14]). Let K be a field, d, f ∈ N, and Att be a finite universe of attributes.
A Linear Secret Sharing Scheme LSSS over K for an access structure A over Att is specified by
a share-generating matrix A ∈ Kd×f such that for any I ⊂ [d], there exists a vector c ∈ Kd with
support I and c ·A = (1, 0, . . . , 0) if and only if {atti | i ∈ I} ∈ A.

In order to share s using an LSSS over K, one first picks uniformly random values v2, v3, . . . , vf
$←

K and the share for an attribute atti is the i-th coordinate s[i] of the share vector s :=
(s, v2, v3, . . . , vf ) ·A⊤. Then, only an authorized set {atti | i ∈ I} ∈ A for some I ⊆ [d] can
recover c to reconstruct s from the shares by: c · s⊤ = c · (A · (s, v2, v3, . . . , vf )⊤) = s. Some
canonical examples of LSSS include Shamir’s secret sharing scheme for any f -out-of-d threshold
gate [39] or Benaloh and Leichter’s scheme for any monotone formula [15]. An access structure
A is said to be LSSS-realizable if there exists a linear secret sharing scheme implementing A.

Let y ∈ Zq where q is prime and for the sake of simplicity, let Att ⊂ Zq be a set of attributes.
Let A be a monotone access structure over Att realizable by an LSSS over Zq. A random labeling
procedure Λy(A) is a secret sharing of y using LSSS:

Λy(A) := (y, v2, v3, . . . , vf ) ·A⊤ ∈ Zdq (8)

where A ∈ Zd×fq is the share-generating matrix and v2, v3, . . . , vf
$← Zq.

A.4 More Cryptographic Primitives

We recall necessary cryptographic primitives used in this work.

Key-policy Attribute-Based Encryption (KP-ABE). A key-policy attribute-based encryp-
tion scheme is defined by a tuple of algorithms (Setup,KeyGen,Enc,Dec). The Setup algorithm
takes as input a security parameter 1λ and outputs a public key pk and a master secret key
msk. The KeyGen algorithm takes as input a master secret key msk, a policy A, and outputs
a secret key skA. The Enc algorithm takes as input a public key pk, a message m in some
message spaceM, and a set of attributes S, and outputs a ciphertext ctS. The Dec algorithm
takes as input a secret key skA and a ciphertext ctS, and outputs a message m. A KP-ABE is
correct if for all λ ∈ N, all (pk,msk)←Setup(1λ), all A ∈ Pol, all S ⊆ Att, all m ∈ M, and all
skA←Keygen(msk,A), if Pol accepts S, it holds that Dec(skA,Enc(pk,m,S)) = m.

The security of a KP-ABE is defined below.

Definition 19. A KP-ABE scheme E with respect to a class of policies Pol having attribute
space Att is CPA-secure if for every ppt adversary A, the following probability is negligible in λ:

AdvkpabePol,Att,A(1
λ) :=

∣∣∣∣Pr[ExprkpabePol,Att,A(1
λ) = 1]− 1

2

∣∣∣∣
where the experiment ExprkpabePol,Att,A(1

λ) is defined as follows:
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1. The challenger runs Setup(1λ) to obtain (pk,msk) and outputs pk to A. In the following the
adversary A can make queries adaptively in any order before Finalize.

2. (Key queries) The adversary A adaptively outputs a policy A. The challenger runs skA←
Keygen(msk,A) and returns skA to A.

3. (Challenge) The adversary A outputs a pair of messages (m0,m1) and a set of attributes S∗.
The challenger chooses a bit b ∈ {0, 1} and runs ctS∗←Enc(pk,mb,S

∗).

4. (Finalize) The adversary A outputs a guess b̂. If there exists a policy A such that S∗ satisfies

A, then the expriment outputs 0. Otherwise, the experiment outputs b̂
?
= b.

We can define similar weaker notions of selective challenge message and/or selective challenges
attributes.

Functional Encryption (FE). Below is a recall of the syntax and security of (public key)
single client FE.

Definition 20. A functional encryption scheme for a class F is defined by a tuple of algorithms
(Setup,Extract,Enc,Dec). The Setup algorithm takes as input a security parameter 1λ and outputs
a public key pk and a master secret key msk. The Extract algorithm takes as input a master
secret key msk and a function description Fλ :Mλ → Rλ, and outputs a secret key skF . The
Enc algorithm takes as input a public key pk, a message m in some message spaceM, outputs a
ciphertext ct. The Dec algorithm takes as input a secret key skF and a ciphertext ct, and outputs
an element in R. An FE for a class F is correct if for all λ ∈ N, all (pk,msk)←Setup(1λ), all
Fλ ∈ F , all m ∈M, and all skF←Keygen(Fλ,msk), it holds that Dec(skF ,Enc(pk,m)) = Fλ(m).

The security of an FE scheme is defined below.

Definition 21. A FE scheme E with respect to a class of functions F is CPA-secure if for every
ppt adversary A, the following probability is negligible in λ:

AdvfeE,F ,A(1
λ) :=

∣∣∣∣Pr[ExprfeE,F ,A(1λ) = 1]− 1

2

∣∣∣∣
where the experiment ExprfeE,F ,A(1

λ) is defined as follows:

1. The challenger runs Setup(1λ) to obtain (pk,msk) and outputs pk to A. In the following the
adversary A can make queries adaptively in any order before Finalize.

2. (Key queries) The adversary A adaptively outputs a function description Fλ. The challenger
runs skF←Extract(Fλ,msk) and returns skF to A.

3. (Challenge) The adversary A outputs a pair of messages (m0,m1). The challenger chooses a
bit b ∈ {0, 1} and runs ct∗←Enc(pk,mb).

4. (Finalize) The adversary A outputs a guess b̂. If there exists a function description Fλ such

that F (m0) ̸= F (m1), then the expriment outputs 0. Otherwise, the experiment outputs b̂
?
= b.

We can define similar weaker notions of selective challenge message and/or selective functional
decryptionkey queries. The notion of FE with access control can be captured by considering the
class F that does not only include the calulating function Fλ, but also the access control policies
A given any member (Fλ,A) in F (see Section 4.1 for a formal treatment in the case of MCFE).
The correctness is adapted that the decryption key skF,A can only decrypt the ciphertexts ct to
F (m) if the access control policy A accepts the attributes S of the ciphertext ct←Enc(pk,m, S).
The notion of security is defined similarly as Definition 21, except that the syntax is adapted to
the FE with access control.
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Multi-Input Functional Encryption (MIFE). We recall in the following the syntax and
security of multi-input functional encryption, following [25].

Definition 22. A multi-input functional encryption scheme is defined by a tuple of algorithms
(Setup,Extract,Enc,Dec). The Setup algorithm takes as input a security parameter 1λ and a
number of slots n, and outputs a public parameter pp, a master secret key msk, and n encryption
keys eki. The Extract algorithm takes as input a function description Fλ :

∏n
i=1Dλ,i → Rλ and

the master secret key msk, and outputs a decryption key dkF . The Enc algorithm takes as input
an encryption key eki and a message mi in some message space Dλ,i, and outputs a ciphertext cti.
The Dec algorithm takes as input a decryption key dkF and a vector of ciphertexts cti of length
n, and outputs an element in Rλ or ⊥. An MIFE for a class F is correct if for all λ ∈ N, all
(pp,msk, (eki)i∈[n])←Setup(1λ, 1n), all Fλ ∈ F , all mi ∈ Dλ,i, and all dkF←Extract(Fλ,msk), it
holds that Dec(dkFλ , (Enc(eki,mi))i∈[n]) = Fλ(mi)i∈[n].

The security of an MIFE is defined below.

Definition 23. An MIFE scheme E with respect to a class of functions F is secure if for every
ppt adversary A, the following probability is negligible in λ:

Advmife
F ,A(1

λ) :=

∣∣∣∣Pr[Exprmife
F ,A(1

λ) = 1]− 1

2

∣∣∣∣
where the experiment Exprmife

F ,A(1
λ) is defined as follows:

1. The challenger runs Setup(1λ, 1n) to obtain (pp,msk, (eki)i∈[n]) and outputs pp to A. In the
following the adversary A can make queries adaptively in any order before Finalize.

2. (Corruption) In the works of [4, 9], the adversary against the MIFE is futhermore allowed
to corrupt eki for some i ∈ [n]. This notion of security for MIFE with corruption allows one
more oracle for the adversary to corrupt eki for any slot i ∈ [n] of their choices.

3. (Key queries) The adversary A adaptively outputs a function description Fλ. The challenger
runs dkF←Extract(Fλ,msk) and returns dkF to A.

4. (Challenge) The adversary A outputs a query (i,m(0)

i ,m
(1)

i ) for some i ∈ [n]. The challenger
chooses a bit b ∈ {0, 1} and encrypts m(b)

i to obtain cti←Enc(eki,m
(b)

i ). The ciphertext cti is
returned to A.

5. (Encryption) The adversary A outputs a query (i,mi) for some i ∈ [n]. The challenger
encrypts mi to obtain cti←Enc(eki,mi). The ciphertext cti is returned to A.

6. (Finalize) The adversary A outputs a guess b̂. If the following condition is satisfied, the

experiment outputs b̂
?
= b: let I ⊂ [n] be the set of corrupted indices, for b ∈ {0, 1} we define

X(b) := {x(b)

1,j , . . . ,n,j }
q
j=1 to be the queried challenges

(a) The pair X(0),X(1) satisfies that for all F queried by A, all I ′ = {i1, . . . , it} ⊆ I ∪∅, all
{x′i1 , . . . , x

′
it
}, all j1, . . . , jn−t ∈ [q] we have

F
(
order

(
x(0)

i1,j1
, . . . , x(0)

in−t,jn−t
, x′i1 , . . . , x

′
it

))
= F

(
order

(
x(1)

i1,j1
, . . . , x(1)

in−t,jn−t
, x′i1 , . . . , x

′
it

))
(b) The set {F} queried by A satisfies that for all X(0),X(1) challenges, all I ′ = {i1, . . . , it} ⊆

I ∪∅, all {x′i1 , . . . , x
′
it
}, all j1, . . . , jn−t ∈ [q] we have

F
(
order

(
x(0)

i1,j1
, . . . , x(0)

in−t,jn−t
, x′i1 , . . . , x

′
it

))
= F

(
order

(
x(1)

i1,j1
, . . . , x(1)

in−t,jn−t
, x′i1 , . . . , x

′
it

))
such that the ℓ-input receives its correspond value by the permutation order(·). Otherwise, the
experiment outputs 0.
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We can define similar weaker notions of selective challenge message and/or selective functional
decryption key queries. The notion of MIFE with access control can be done in the same manner
as we do for FE with access control in the previous paragraph. The correctness is adapted that
the decryption key skF,A can only decrypt the ciphertexts (cti)i to F ((mi)i) if the access control
policy A accepts the attributes Si of the ciphertext cti←Enc(pk,mi, Si) for all slots i ∈ [n].

A.5 Dual Pairing Vector Spaces - Basis Changes

Basis Changes. In this work, we use extensively basis changes over dual orthogonal bases of
a DPVS. We again use GN

1 as a running example. Let (A,A∗) be the dual canonical bases of
(GN

1 ,GN
2 ). Let (U = (ui)i,U

∗ = (u∗i )i) be a pair of dual bases of (GN
1 ,GN

2 ), corresponding to an
invertible matrix U ∈ ZN×Nq . Given an invertible matrix B ∈ ZN×Nq , the basis change from U
w.r.t B is defined to be B := B ·U, which means:

(x1, . . . , xN )B =
N∑
i=1

xibi = (x1, . . . , xN ) ·B = (x1, . . . , xN ) ·B ·U

= (y1, . . . , yN )U where (y1, . . . , yN ) := (x1, . . . , xN ) ·B .

Under a basis change B = B ·U, we have

(x1, . . . , xN )B = ((x1, . . . , xN ) ·B)U ; (y1, . . . , yN )U =
(
(y1, . . . , yN ) ·B-1

)
B

. (9)

The computation is extended to the dual basis change B∗ = B′ ·U∗, where B′ =
(
B-1
)⊤

:

(x1, . . . , xN )B∗ =
(
(x1, . . . , xN ) ·B′

)
U∗

; (y1, . . . , yN )U∗ =
(
(y1, . . . , yN ) ·B⊤

)
B∗

. (10)

It can be checked that (B,B∗) remains a pair of dual orthogonal bases. When we consider a basis
change B = B ·U, if B = (bi,j)i,j affects only a subset J ⊆ [N ] of indices in the representation
w.r.t basis U, we will write B as the square block containing (bi,j)i,j for i, j ∈ J and implicitly
the entries of B outside this block are taken from the identity matrix IN .

The basis changes are particularly useful in our security proofs. Intuitively these changes
constitute a transition from a hybrid G having vectors expressed in (U,U∗) to the next hybrid
Gnext having vectors expressed in (B,B∗). We focus on two types of basis changes, which are
elaborated below. For simplicity, we consider dimension N = 2:

Formal Basis Changes: We change (U,U∗) into (B,B∗) using

B :=

[
1 0
1 1

]
1,2

B′ :=
(
B−1

)⊤
=

[
1 −1
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

We use this type in situations such as: in G we have vectors all of the form (x1, 0)U, (y1, 0)U∗ ,
and we want to go to Gnext having vectors all of the form (x1, 0)B, (y1, y1 )B∗ . The simulator
writes all vectors (x1, 0)U, (y1, 0)U∗ in (U,U∗) and under this basis change they are written
into

(x1, 0)U = (x1 − 0, 0)B = (x1, 0)B; (y1, 0)U∗ = (y1, 0 + y1)B∗ = (y1, y1)B∗

following the calculations in (9) and (10). The products between two dual vectors are invariant,
all vectors are formally written from (U,U∗) (corresponding to G) to (B,B∗) (corresponding
to Gnext), the adversary’s view over the vectors is thus identical from G to Gnext. In particular,
this is a kind of information-theoretic property of DPVS by basis changing that we exploit to
have identical hybrids’ hop in the security proof. We list some formal basis changes that are
extensively used in this work:
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1. (Duplication) This is the above example, vectors b2,b
∗
1 are secret:

B :=

[
1 0
1 1

]
1,2

B′ :=
(
B−1

)⊤
=

[
1 −1
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

and {(x1, 0)U, (y1, 0)U∗} ≡
{
(x1, 0)B, (y1, y1 )B∗

}
.

2. (Quotient, by randomness r
$← Z∗q) The matrices, vector b1 is secret, are:

B :=

[
r 0
0 1

]
1,2

B′ :=
(
B−1

)⊤
=

[
1/r 0
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

and {(x1, 0)U, (y1, 0)U∗} ≡
{
( x1 · r , 0)B, ( y1 · 1/r , 0)B∗

}
.

3. (Formal Switch) this is the same as (Duplication), but the starting coordinates are not 0:

B :=

[
1 0
1 1

]
1,2

B′ :=
(
B−1

)⊤
=

[
1 −1
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

and {(x1, x2)U, (y1, y2)U∗} ≡
{
( x1 − x2 , x2)B, (y1, y2 + y1 )B∗

}
.

Computational Basis Change: Given an instance of a computational problem, e.g. J(a, b, c)K1 of

DDH in G1 where c− ab = 0 or δ
$← Zq, we change (U,U∗) into (B,B∗) using

B :=

[
1 0
a 1

]
1,2

B′ :=
(
B−1

)⊤
=

[
1 −a
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

One situation where this type of basis change can be useful is: in G we have some target
vectors of the form (0, rnd)U, where rnd

$← Zq is a random scalar, together with other (z1, z2)U,

and all the dual is of the form (0, y2)U∗ . We want to go to Gnext having ( r̃nd , rnd)B masked

by some randomness r̃nd
$← Zq, while keeping (0, y2)B∗ . Because JaK1 is given, the simulator

can simulate vectors (z1, z2)U directly in B using JaK1 as well as the known coordinates z1, z2.
The basis change will be employed for the simulation of target vectors:

(c, b)U + (0, rnd)B = (c− a · b, rnd+ b)B;

(0, y2)U∗ = (0, y2 + a · 0)B∗ = (0, y2)B∗

where all vectors in B∗ must be written first in U∗, since we do not have JaK2, to see how
the basis change affects them. Using the basis change we simulate those target vectors by
(c−a · b, rnd+ b)B with rnd implicitly being updated to rnd+ b, the uninterested (z1, z2)B are
simulated correctly in B, meanwhile the dual vectors (0, y2)B∗ stays the same. Depending on
the DDH instance, if c−ab = 0 the target vectors are in fact (0, rnd)B and we are simulating

G, else c− ab = δ
$← Zq the target vectors are simulated for Gnext and r̃nd := δ. Hence, under

the hardness of DDH in G1, a computationally bounded adversary cannot distinguish its
views in the hybrids’ hop from G to Gnext. Under the SXDH assumption in the DPVS setting,
we list some computational basis changes that are extensively used in this work:
1. (Subspace) Given the DDH instance J(a, b, c)K in the group w.r.t B, this is the above

example, the matrices, vectors b2,b
∗
1 are secret, are:

B :=

[
1 0
a 1

]
1,2

B′ :=
(
B−1

)⊤
=

[
1 −a
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .
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and {(z1, z2)B, (0, rnd)U, (0, y2)B∗} ≈c
{
(z1, z2)B, ( r̃nd , rnd)B, (0, y2)B∗

}
.

2. (Swap) Given the DDH instance J(a, b, c)K in the group w.r.t B, the matrices, vectors
b3,b

∗
1,b
∗
2 are secret, are:

B :=

 1 0 0
0 1 0
−a a 1


1,2,3

B′ :=
(
B−1

)⊤
=

1 0 a
0 1 −a
0 0 1


1,2,3

B = B ·U B∗ = B′ ·U∗ .

and {(z1, z2, z3)B, (x, 0, y)U, (r, r, r′)U∗} ≈c
{
(z1, z2, z3)B, ( 0, x , y)B, (r, r, r

′)B∗
}
.

We remark that the basis changes will modify basis vectors and for the indistinguishability to
hold, perfectly in formal change and computationally in computational changes, all impacted
basis vectors must not be revealed to the adversary.

Additional Notations. Any x = J(m1, . . . ,mN )K1 ∈ GN
1 is identified as (m1, . . . ,mN ) ∈ ZNq .

There is no ambiguity because G1 is a cyclic group of order q prime. The 0-vector is 0 =
J(0, . . . , 0)K1. The addition of two vectors in GN

1 is defined by coordinate-wise addition. The
scalar multiplication of a vector is defined by t · x := Jt · (m1, . . . ,mN )K1, where t ∈ Zq and
x = J(m1, . . . ,mN )K1. The additive inverse of x ∈ GN

1 is defined to be −x := J(−m1, . . . ,−mN )K1.
The canonical basis A of GN

1 consists of a1 := J(1, 0 . . . , 0)K1 ,a2 := J(0, 1, 0 . . . , 0)K1 , . . . ,aN :=
J(0, . . . , 0, 1)K1. By convention the writing x = (m1, . . . ,mN ) concerns the canonical basis A.

B Deferred Proofs - Proof of Lemma 1

Lemma 1. Let A be an LSSS-realizable over a set of attributes Att ⊆ Zq. We denote by
List-Att(A) the list of attributes appearing in A and by P the cardinality of List-Att(A). Let
S ⊆ Att be a set of attributes. Let (H,H∗) and (F,F∗) be two random dual bases of (G2

1,G2
2)

and (G8
1,G8

2), respectively. The vectors (h1, f1, f2, f3) are public, while all other vectors are
secret. Suppose we have two random labelings (aj)j∈List-Att(A) ← Λa0(A) and (a′j)j ← Λa′0(A)
for a0, a

′
0

$← Zq. Let J denote the maximum number of repetitions at each j ∈ S for cj or
for croot. Then, under the SXDH assumption in (G1,G2), the following two distributions are
computationally indistinguishable:


(x(rep)), y

c
(rep)

j∈S = (σ
(rep)

j (1,−j), ψ(rep), 05)F
k∗
j∈List-Att(A) = (πj · (j, 1), ajz, 05)F∗

c
(rep)
root = (ψ(rep), 0)H

k∗root = (a0z, 0)H∗

 ;



(x(rep)), y

c
(rep)

j∈S = (σ
(rep)

j (1,−j), ψ(rep), 02, τzjx
(rep) , 02)F

k∗
j∈List-Att(A) = (πj(j, 1), ajz, 02, a′jy/zj , 02)F∗

c
(rep)
root = (ψ(rep), τx(rep) )H

k∗root = (a0z, a′0y )H∗


for any x(rep), y ∈ Zq, where rep ∈ [J ], and zj , σj , πj , ψ, τ, z, r

′
0

$← Zq.

Proof (Of Lemma 1). The proof is done through a sequence of games, starting from G0 where
the adversary receives D1 and ending in G4 where the adversary receives D2. The games are
depicted in Figure 3.

The changes that make the transitions between games are highlighted in gray . The advantage
of an adversary A in a game Gi is denoted by

Adv(Gi) := Pr[Gi = 1] .

Game G0: The vectors cj , croot and k∗j ,k
∗
root are taken from D1:

∀ j ∈ S : c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), 0, 0, 0, 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗
c(rep)

root = (ψ(rep), 0)H

k∗root = (a0 · z, 0)H∗
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Game G0 :

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) 0 0 0 0 0 )F
k∗j ( πj · (j, 1) aj · z 0 0 0 0 0 )F∗

croot ( ψ(rep) 0 )H
k∗root ( a0z 0 )H∗

Game G1 : τ
$← Zq

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τ · x(rep) 0 0 0 0 )F
k∗j ( πj · (j, 1) aj · z 0 0 0 0 0 )F∗

c(rep)
root ( ψ(rep) τ · x(rep) )H

k∗root ( a0z 0 )H∗

Game G2 : τ, zj
$← Zq

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) 0 τzj · x(rep) 0 0 )F

k∗j ( πj · (j, 1) aj · z 0 0 0 0 0 )F∗

c(rep)
root ( ψ(rep) τ · x(rep) )H

k∗root ( a0z 0 )H∗

Game G3 : τ, zj
$← Zq, a′0

$← Zq, (a′j)j∈J←Λa′0(A)

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τ · x(rep) 0 τzj · x(rep) 0 0 )F

k∗j ( πj · (j, 1) aj · z a′j · y 0 0 0 0 )F∗

c(rep)
root ( ψ(rep) τ · x(rep) )H

k∗root ( a0z a′0 · y )H∗

Game G4 : τ, zj
$← Zq, a′0

$← Zq, (a′j)j∈J←Λa′0(A)

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τ · x(rep) 0 τzj · x(rep) 0 0 )F

k∗j ( πj · (j, 1) aj · z 0 0 a′j · y/zj 0 0 )F∗

c(rep)
root ( ψ(rep) τ · x(rep) )H

k∗root ( a0z a′0 · y )H∗

Fig. 3: Games G1,G2,G3,G4 for the proof of Lemma 1. The index j runs over the list List-Att(A) for the k-vectors and runs
over the attributes in S for the c-vectors.
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Game G1: We introduce a mask τ
$← Zq in the vectors c(rep)

j and c(rep)

root

∀ j ∈ S : c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), τ · x(rep) , 0, 0, 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗

c(rep)

root = (ψ, τ · x(rep) )H

k∗root = (a0 · z, 0)H∗

Initially, let (T,T∗), (W,W∗) be pairs of random dual bases. In the reduction from a DDH

instance (JaK1 , JbK1 , JcK1) where c = ab+ τ with τ = 0 or τ
$← Zq, the bases will be changed

as follows:

F :=

[
1 a
0 1

]
3,4

F ′ :=
(
F -1
)⊤

=

[
1 0
−a 1

]
3,4

F = F ·W; F∗ = F ′ ·W∗

H :=

[
1 a
0 1

]
1,2

H ′ :=
(
H -1

)⊤
=

[
1 0
−a 1

]
1,2

H = H ·T; H∗ = H ′ ·T∗

Note that we can compute all the basis vectors except h∗2 and f∗4 but currently they are not
needed because their coordinates are 0 in all the keys. The simulator can virtually set

c(rep)

root = (b · x(rep), c · x(rep))T

= (b · x(rep), τ · x)H
c(rep)

j = (σ(rep)

j · (1,−j), b · x(rep), c · x(rep), 0, 0)W for j ∈ S

= (σ(rep)

j · (1,−j), b · x(rep), τ · x(rep), 0, 0)F for j ∈ S

and ψ := b · x. If τ = 0 then above vectors are computed as in G0, otherwise we are in
G1. Therefore the difference in advantage is |Adv(G1) − Adv(G0)| ≤ AdvDDH

G1
(1λ), where

AdvDDH
G1

(1λ) denotes the advantage against the DDH problem in G1 set up with parameter λ.

Game G2: In this game we introduce further a mask τzj where zj
$← Zq into each vector c(rep)

j :

∀ j ∈ S : c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), τ · x(rep), 0, τzj · x(rep) , 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗
c(rep)

root = (ψ(rep), τ · x(rep))H

k∗root = (a0 · z, 0)H∗

Given a DDH instance (JaK1 , JbK1 , JcK1) where c = ab+ ζ with ζ = 0 or ζ
$← Zq, the bases

(F,F∗) will be changed as follows:

F :=

1 0 a
0 1 −a
0 0 1


1,2,6

F ′ :=
(
F -1
)⊤

=

 1 0 0
0 1 0
−a a 1


1,2,6

F = F ·W; F∗ = F ′ ·W∗

Under this basis change, we can compute all basis vectors except f∗6 , which is not a problem
because the coordinate of f∗6 in the keys are 0 (and thus their representations do not alter
under this basis change).
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For j ∈ S, the simulator can sample αj , βj
$← Zq, compute (in the exponent) bj = αj · b+ βj

and cj = αj · c+ βj · a. We use the random self-reducibility of DDH, then virtually set

c(rep)

j = (bj · x(rep) · (1,−j), ψ(rep), τ, 0, cj · (1 + j) · x(rep), 0, 0)W

= (bjx
(rep) · (1,−j), ψ(rep), τ, 0, (cj · (1 + j)− a · bj − a · bj · j) · x(rep), 0, 0)F

= (bjx
(rep) · (1,−j), ψ(rep), τ, 0, (cj − a · bj) · (1 + j) · x(rep), 0, 0)F

= (bjx
(rep) · (1,−j), ψ(rep), τ, 0, (αj · c− αj · ab) · (1 + j) · x(rep), 0, 0)F

= (bjx
(rep) · (1,−j), ψ(rep), τ, 0, τzj · x(rep), 0, 0)F

where zj = αj(1 + j)ζ/τ . The repetition-related randomness σ(rep)

j := bj · x(rep) is under affect
of x(rep) as expected. If ζ = 0 then cj is computed as in G1, else we are in the current game.
Consequently, the difference in advantages of an adversary against G0 and G1 is bounded by

|Adv(G2)− Adv(G1)| ≤ AdvDDH
G1

(1λ) .

Game G3: In this game, we start to change the vectors k∗j and k∗root. We sample a′0
$← Zq and

perform a random labeling of a′0 to obtain (a′j)j←Λa′0(A). The vectors are masked as follows:

∀ j ∈ S : c(rep)

j = (σ(rep)

j · (1,−j), ψ, τ · x(rep), 0, τzj · x(rep), 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, a′j · y , 0, 0, 0, 0)F∗

c(rep)

root = (ψ(rep), τ · x(rep))H

k∗root = (a0 · z, a′0 · y )H∗

Given a DDH instance (JaK2 , JbK2 , JcK2) where c = ab+ ρ with ρ = 0 or ρ
$← Zq, the bases

(F,F∗), (H,H∗) will be changed by matrices:

F :=

[
1 0
−a 1

]
3,4

F ′ :=
(
F -1
)⊤

=

[
1 a
0 1

]
3,4

H :=

[
1 0
−a 1

]
1,2

H ′ :=
(
H -1

)⊤
=

[
1 a
0 1

]
1,2

From the basis changes w.r.t F and H, we can compute all vectors in those two bases except
h2 and f3, but we can express those c-vectors in T and W. More precisely, the simulator can
virtually set:

c(rep)

root = (ψ(rep), τ · x(rep))T

= (ψ(rep) + aτ · x(rep), τ · x(rep))H

c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), τ · x(rep), 0, τzj · x(rep), 0, 0)W for j ∈ S

= (σ(rep)

j · (1,−j), ψ(rep) + aτ · x(rep), τ · x(rep), 0, τzj · x(rep), 0, 0)F for j ∈ S .

More generally, if we treat a vector x(rep) that is stored in multiple coordinates of the c-vectors,
the above basis change can be generalized so that the repetition-related randomness is instead
updated to ψ(rep) +aτ ·

∑
k x

(rep)[k], individually by each coordinate of x(rep). Let (d′j)j∈List-Att(A)
be a random labeling obtained from Λ1(A), i.e. we perform a secret sharing of 1 using the
LSSS realizing A. We simulate the vectors

k∗root = (a0z, 0)H∗ + (b · y, c · y)T∗
= (a0z + b · y, ρ · y)H∗

k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗
+ (0, 0, bd′j · y, cd′j · y, 0, 0, 0, 0)W∗

= (πj · (j, 1), aj · z + b · y · d′j , ρ · d′j · y, 0, 0, 0, 0)F∗∀ j ∈ List-Att(A) .
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When ρ = 0 we are in the previous game, where ψ(rep) + aτ · x(rep) is used instead of ψ(rep) and
the labeling is updated to:

a0 + b · y/z
For each j ∈ List-Att(A) aj + b · y · d′j/z .

Otherwise, we are in the current game having additionally

a′0 = ρ

that corresponds to the labels a′j = ρ · d′j for j ∈ List-Att(A). The difference in advantages is

|Adv(G3)− Adv(G2)| ≤ AdvDDH
G2

(1λ).

Game G4: In this game, we swap a′j · y from the 4-th coordinate to the 6-th coordinate, while
multiplying it with 1/zj :

∀ j ∈ S : c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), τ · x(rep), 0, τzj · x(rep), 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0 , 0, a′j · y/zj , 0, 0)F∗

c(rep)

root = (ψ(rep), τ · x(rep))H

k∗root = (a0 · z, a′0 · y)H∗

This transition is discussed separately in Lemma 24, which show the indistinguishability.

The proof is concluded. ⊓⊔

Lemma 24. Assuming the SXDH assumption for G1 and G2, the difference between advantages
|Adv(G4)− Adv(G3)| in the proof of Lemma 1 is negligible.

Proof. The idea is that we consider the swapping of a′jy to a′jy/zj by each component in the list
List-Att(A) of the attributes in A and analyse a sequence of games indexed by those attributes.
The goal is to randomized, for each j ∈ List-Att(A), the label a′j into a

′
j/zj that is i.i.d uniformly

random among j, not being a set of shares from labeling of a′0 anymore. More precisely, the game
G3.m is indexed by m ∈ {0, . . . , P}, where P is the number of attributes in List-Att(A) and :

For j ≤ m k∗j = (πj · (j, 1), aj · z, 0, 0, a′j · y/zj , 0, 0)F∗
For j > m k∗j = (πj · (j, 1), aj · z, a′j · y, 0, 0, 0, 0)F∗ .

This leads to G3.0 = G3 and G3.P = G4. The current form of other vectors, where S is the set of
attributes associated to the c-vectors, is:

∀ j ∈ S : c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), τ · x(rep), 0, τzj · x(rep), 0, 0)F

∀ j ̸= m ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, a′j · y, 0, 0, 0, 0)F∗
c(rep)

root = (ψ(rep), τ · x(rep))H

k∗root = (a0 · z, a′0 · y)H∗

where τ, zj
$← Zq are chosen uniformly at random. The labels a0, a

′
0, (aj)j∈List-Att(A) and (a′j)j∈List-Att(A)

satisfy (aj)j←Λa0(A) and (a′j)j←Λa′0(A).
We first observe that the family of labelings, when viewed as a vector space over Zq, is

closed under linear operations. In other words, a linear combination of vectors of labels gives a
vector of labels. Hence, following the idea from [23], we can “factor out” the current attribute-
related parts of a′j in k-vectors, then manipulate the remaining appropriate random linear factor
for obtaining the desired new labels (multiplicatively). This requires some rewriting. For two
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labelings ã := (ã0, (ãj)j∈List-Att(A))←Λã0(A) and (a′′0, (a
′′
j )j∈List-Att(A))←Λa′′0 (A), together with

uniformly random scalars ρ, δ
$← Z∗q we rewrite the vectors as follows

k∗root = (ã0z, 0)H∗ + a′′0 · (δ · z, ρy)H∗
k∗j = (Πj · (j, 1), ãj · z, 0, 0, 0, 0, 0)F∗

+ a′′j · (π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

and thus we have

a′0 = ρ · a′′0; a0 = ã0 + δ · a′′0
a′j = ρ · a′′j ; aj = ãj + δ · a′′j
πj = Πj + a′′j · π̃j . (11)

We can concentrate solely on the changes of the vectors k∗j . We can define

h∗j := (π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

and as a result we concentrate on the changes of the vectors h∗j . We note that changing
multiplicatively the vectors h∗j means changing multiplicatively the factor ρ. Thanks to the
relations in (11), this means we are changing multiplicatively a′0 and (a′j)j∈List-Att(A) as required
for introducing 1/zj in a

′
j .

First, we fix an ordering of the attributes in the list List-Att(A), which is of size P . Given
m ∈ {1, . . . , P}, we write j = m if h∗j is the m-th vector component among h∗j and the notation
extends to j < m and j > m. We now give a sequence of games for the transition from G3.m−1
to G3.m. This sequence of games can be found in Figure 4. We start from G3.m−1.0 = G3.m−1:

Game G3.m−1.0: The vectors are specified as follows:

c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), τx(rep), 0, τzjx
(rep), 0, 0)F

h∗j =

{
(π̃j · (j, 1), δ · z, 0, 0, ρy/zj , 0, 0)F∗ if j < m

(π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ if j ≥ m

Game G3.m−1.1: In this game we do a formal basis change to duplicate the 5-th component
into the 6-th one of the c-vectors:

c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), τx(rep), τx(rep) , τx(rep)zj , 0, 0)F

The basis change is done following these matrices:

F :=

[
1 −1
0 1

]
4,5

F ′ :=
(
F -1
)⊤

=

[
1 0
1 1

]
4,5

F = F ·W; F∗ = F ′ ·W∗

and the simulator can set

c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), τx(rep), 0, τx(rep)zj , 0, 0)W

= (σ(rep)

j · (1,−j), ψ(rep), τx(rep), τx(rep), τx(rep)zj , 0, 0)F .

We note that this affect all c-vectors, for all j ∈ S, accross all repetitions w.r.t x(rep).
This changes the vectors f4 and f∗5 but since they are all hidden from the adversary and
the facing coordinates in k-vectors are 0, the transition is perfectly indistinguishable and
Adv(G3.m−1.1) = Adv(G3.m−1.0).
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Game G3.m−1.0 : zj
$← Zq

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) 0 τzjx
(rep) 0 0 )F

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.1 : zj
$← Zq (Formal Duplication)

c(rep)

j ( σ(rep)

j · (1,−j) ψ τx(rep) τx(rep) τzjx
(rep) 0 0 )F

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.2 : zj
$← Zq (Computational Swapping)

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep) τzjx
(rep) 0 0 )F

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z 0 ρy 0 0 0 )F∗ if j = m

h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.3 : zj
$← Zq

cj ( σj · (1,−j) ψ τx τxzj/zm τzjx 0 0 )F

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z 0 ρy 0 0 0 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.4 : zj
$← Zq

cj ( σj · (1,−j) ψ τx 0 τzjx 0 0 )F
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m

h∗j ( π̃j · (j, 1) δ · z 0 αy ρy/zm 0 0 )F∗ if j = m

h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.5 : zj
$← Zq

cj ( σj · (1,−j) ψ τx 0 τzjx 0 0 )F
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zm 0 0 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Fig. 4: Games for Lemma 24. The changes are made for the m-th key component h∗m (with an ordering on j ∈ List-Att(A)).
See (11) for the rewriting of k∗j into h∗j . The hybrids to go from G3.m−1.2 to G3.m−1.3 can be found in Figure 5.
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Game G3.m−1.2: We do a swap between 4-th and 5-th components w.r.t the m-th attribute-wise
key components:

h∗j =


(π̃j · (j, 1), δ · z, 0, 0, ρy/zj , 0, 0)F∗ if j < m

(π̃j · (j, 1), δ · z, 0 , ρy , 0, 0, 0)F∗ if j = m

(π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ if j > m

Given a DSDH instance (JaK2 , JbK2 , JcK2), where c = ab + θ for θ = 0 or θ = ρ, the basis
change is performed following the matrices:

F :=

 1 0 0
a 1 0
−a 0 1


2,4,5

F ′ :=
(
F -1
)⊤

=

1 −a a0 1 0
0 0 1


2,4,5

F = F ·W; F∗ = F ′ ·W∗

The c-vectors can be expressed in the bases (W,W∗):

c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), τx(rep), τx(rep), τx(rep)zj , 0, 0)W

= (σ(rep)

j ,−j · σ(rep)

j − ax(rep)τ + ax(rep)τ, ψ(rep), τx(rep), τx(rep), τx(rep)zj , 0, 0)F

= (σ(rep)

j ,−j · σ(rep)

j , ψ, τx(rep), τx(rep), τx(rep)zj , 0, 0)F .

On the other hand, the simulator can set the k-vectors as below: if j = m

h∗j = (π̃′j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗
+ (by · (j, 1), 0, −cy, cy, 0)W∗

= (π̃′j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗
+ (by · (j, 1), 0, −(c− ab)y, (c− ab)y, 0)F∗

= ((π̃′j + by) · (j, 1), δ · z, ρy − θy, θy, 0, 0, 0)F∗ .

The other vector components stay as in the previous game. More generally, if we treat a vector
x(rep) instead of scalars, the above basis change can be adapted with more coordinates in the c-
vectors and h∗-vectors. When θ = 0, we are in G3.m−1.1, otherwise we are in the current game
and the difference between advantages is |Adv(G3.m−1.2)− Adv(G3.m−1.1)| ≤ 2 · AdvDDH

G2
(1λ).

Game G3.m−1.3: We now change the c-vector component such that for every j ̸= m, the 5-th
coordinate, which is τx from the duplication in G3.m−1.1, will be changed to τxzj/zm:

c(rep)

j =

{
(σ(rep)

j · (1,−j), ψ(rep), τx(rep), τx(rep)zj/zm , τx(rep)zj , 0, 0)F if j ̸= m

(σ(rep)

j · (1,−j), ψ(rep), τx(rep), τx(rep), τx(rep)zj , 0, 0)F if j = m

We apply Lemma 25 to consider the transition from G3.m−1.2 to G3.m−1.3. We do a sequence
of hybrids indexed by m′ ∈ List-Att(A) \ {m}. The coordinates affected are (1, 2, 5, 7, 8) of
(F,F∗). We note that during each application of the lemma for an index m′, only the vectors
cm′ and k∗m are taken into account and affected by the basis changes (w.r.t the gray boxes ).
The main reason that we have to do index by index, for m′ ∈ List-Att(A)\{m}, to change cm′

is the fact that we use formal basis changes to randomize the (7, 8) coordinates, which in turn
provide randomness to change the 5-th coordinate of cm′ . Indeed, if we change more than 2
vectors cm′ at the same time, there will be more than 2 linear relations in a linear system
binding the (7, 8) coordinates. The solution of this system uses the fact that m′ −m ̸= 0
and 1/(m′ −m) is well-defined, see the arithmetics (12). The more relations it has, the more
restrictive it becomes and in the end our formal basis change cannot be well-defined, i.e. we
cannot obtain an invertible matrix. The setting with repetitions also put more constraints on
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the formal basis change, see (13) that is needed to be satisfied for the formal basis change to
be well-defined. Thus, we can only deal with 1 vector cm′ , where m

′ ∈ List-Att(A) \ {m}. For
other vectors, the concerning coordinates can be written directly in the target bases because
they are all 0. We proceed by a sequence of games depicted in Figure 5. The changes that
make the transitions between games are highlighted in gray .

Game G3.m−1.4: The goal of this game is to introduce ρ/zm in the 6-th coordinate of the m-th
h-vector component, and at the same time to clean the τ in the 6-th coordinate of the
c-vector components. After G3.m−1.3, the vectors are of the form:

c(rep)

j =

{
(σ(rep)

j · (1,−j), ψ(rep), τx(rep), τzjx
(rep)/zm, τx

(rep)zj , 0, 0)F if j ̸= m

(σ(rep)

j · (1,−j), ψ(rep), τx(rep), τx(rep), τx(rep)zj , 0, 0)F if j = m

h∗j =


(π̃j · (j, 1), δ · z, 0, 0, ρy/zj , 0, 0)F∗ if j < m

(π̃j · (j, 1), δ · z, 0, ρy, 0, 0, 0)F∗ if j = m

(π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ if j > m

We now change the basis w.r.t (F,F∗) using the following matrices:

F :=

[
α/ρ 0
1/zm 1

]
5,6

F ′ :=
(
F -1
)⊤

=

[
ρ/α −ρ/(zmα)
0 1

]
5,6

F = F ·W; F∗ = F ′ ·W∗ .

Note that this basis change will affect only the h-vector of attribute m ∈ List-Att(A), because
by construction the other components have coordinate 0 for f∗5 and have the same writing
before and after the basis change. Moreover, the basis change can be applied before the
simulator sees the vectors along with A and S, by first sampling a value z

$← Zq and use z in
the basis change. Afterwards, when all attributes are declared, z would be the mask at the
attribute m corresponding to the current hybrid. Last but not least, we target specifically
the h-vector of attribute m and the matrix is well-defined without relating to repetitions.
We have

c(rep)

j =

{
(σ(rep)

j · (1,−j), ψ(rep), τx(rep), τzjx
(rep)/zm, τx

(rep)zj , 0, 0)W if j ̸= m

(σ(rep)

j · (1,−j), ψ(rep), τx(rep), τx(rep), τx(rep)zj , 0, 0)W if j = m

= (σj · (1,−j), ψ, τx, 0, τxzj , 0, 0)F for all j

h∗j = (π̃j · (j, 1), δ · z, 0, ρy, 0, 0, 0)W∗ if j = m

= (π̃m · (m, 1), δ · z, 0, αy, ρy/zm, 0, 0)F∗

and because f5, f6, f
∗
5 , f
∗
6 are hidden from the adversary, this change is a formal basis change.

For other j ̸= m, h∗j does not use f∗5 , which is affected, then we can write directly:

h∗j = (π̃j · (j, 1), δ · z, ∗, 0, ∗, 0, 0)F∗ if j ̸= m .

The transition is perfectly indistinguishable. In the end, the difference in advantage is
Adv(G3.m−1.3) = Adv(G3.m−1.4).

Game G3.m−1.5: The goal of this game is to put the m-th attribute-wise h-vector component
in to the form required by G3.m, i.e. remove the random value αy in the 5-th coordinate.
After G3.m−1.4, the vectors are of the form:

c(rep)

j = (σ(rep)

j · (1,−j), ψ(rep), τx(rep), 0, τx(rep)zj , 0, 0)F for all j

h∗j =


(π̃j · (j, 1), δ · z, 0, 0, ρy/zj , 0, 0)F∗ if j < m

(π̃j · (j, 1), δ · z, 0, αy, ρy/zj , 0, 0)F∗ if j = m

(π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ if j > m
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Game G3.m−1.2.m′−1.0 : zj
$← Zq

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep)zj/zm τzjx
(rep) 0 0 )F if m ̸= j < m′

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep) τzjx
(rep) 0 0 )F if m ̸= j ≥ m′

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗m ( π̃m · (m, 1) δ · z 0 ρy 0 0 0 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j > m

Game G3.m−1.2.m′−1.1 : zj
$← Zq (Application Lemma 25 - first game hop)

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep)zj/zm τzjx
(rep) 0 0 )F if m ̸= j < m′

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep) τzjx
(rep) 0 0 )F if m ̸= j ≥ m′

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m

h∗m ( π̃m · (m, 1) δ · z 0 ρy 0 jθj θj )F∗ if j = m

h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j > m

Game G3.m−1.2.m′−1.2 : zj
$← Zq (Application Lemma 25 - second game hop, masking with µ(rep)

j )

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep)zj/zm τzjx
(rep) 0 0 )F if m ̸= j < m′

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep) τzjx
(rep) µ(rep)

j −jµ(rep)

j )F if m ̸= j = m′

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep) τzjx
(rep) 0 0 )F if m ̸= j > m′

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗m ( π̃m · (m, 1) δ · z 0 ρy 0 mθm θm )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j > m

Game G3.m−1.2.m′−1.3 : zj
$← Zq (Application Lemma 25 2nd to 3rd game - formal basis change, generalizing

example 2 of randomized quotient technique, w.r.t conditions (13))

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep)zj/zm τzjx
(rep) 0 0 )F if m ̸= j < m′

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep) τzjx
(rep) µ(rep)

1 µ(rep)

2 )F if m ̸= j = m′

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep) τzjx
(rep) 0 0 )F if m ̸= j > m′

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m

h∗m ( π̃m · (m, 1) δ · z 0 ρy 0 θ1 θ2 )F∗ if j = m

h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j > m

Game G3.m−1.2.m′−1.4 : zj
$← Zq (Application Lemma 25 - use the previously randomized coordinates µ(rep)

1 , µ(rep)

2 )

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep)zj/zm τzjx
(rep) 0 0 )F if m ̸= j < m′

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep)zj/zm τzjx
(rep) µ(rep)

1 µ(rep)

2 )F if m ̸= j = m′

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep) τzjx
(rep) 0 0 )F if m ̸= j > m′

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗m ( π̃m · (m, 1) δ · z 0 ρy 0 θ1 θ2 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j > m

Game G3.m−1.2.m′−1.5 = G3.m−1.2.m′ : zj
$← Zq (Cleaning)

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx(rep) τx(rep)zj/zm τzjx
(rep) 0 0 )F if m ̸= j ≤ m′

c(rep)

j ( σ(rep)

j · (1,−j) ψ(rep) τx τx(rep) τzjx
(rep) 0 0 )F if m ̸= j > m′

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗m ( π̃m · (m, 1) δ · z 0 ρy 0 0 0 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j > m

Fig. 5: The hybrids to go from G3.m−1.2.m′−1.0 to G3.m−1.2.m′−1.5=3.m−1.2.m′ is coming from Lemma 25, on coordinates
(1, 2, 5, 7, 8), while taking h∗m as the k-vector and changing cm′ where m′ ̸= m in the application of the lemma. The changes
are made for the m-th key component h∗m (with an ordering on j ∈ List-Att(A)). See (11) for the rewriting of k∗j into h∗j .

41



where α
$← Zq. Given an instance (JaK2 , JbK2 , JcK2) where c = ab + α and either α = 0 or

α
$← Zq, the simulator performs a basis change following the matrices:

F :=

[
1 0
−a 1

]
2,5

F ′ :=
(
F -1
)⊤

=

[
1 a
0 1

]
2,5

F = F ·W; F∗ = F ′ ·W∗ .

We cannot compute f5 but this is not problematic because all the 5-th coordinates of the
c-vector components are 0. In addition, the vectors h∗j for j ̸= m can be written directly in
(F,F∗) thanks to the fact that their coordinates in f∗5 are 0. The simulator can then virtually
set for j = m,

h∗j = (by · (j, 1), δ · z, 0, cy, ρy/zm, 0, 0)W∗

= (by · (j, 1), δ · z, 0, αy, ρy/zm, 0, 0)F∗

and when α
$← Zq, we are in the previous game, otherwise we are in the current game that is

identical to Adv(G3.m).

The proof is concluded. ⊓⊔

Lemma 25. Let (F,F∗) be the dual bases of G5
1 and G5

2 respectively. Suppose that the vectors
(f1, f2, f3) are public, while all others are kept secret. Let j ̸= m and β, α(rep), γ(rep) ∈ Zq are
chosen constants, where rep are index for repetitions of the c-vectors. Then, under the SXDH
assumption, the following two distributions are computationally indistinguishable, where c-vectors
are repetitive over the same j with independent randomness:

D1 :=

{
c(rep) = (σ(rep) · (1,−j), γ(rep), 0, 0)F
k∗ = (π · (m, 1), β, 0, 0)F∗

}
and

D2 :=

{
c(rep) = (σ(rep) · (1,−j), α(rep), 0, 0)F
k∗ = (π · (m, 1), β, 0, 0)F∗

}
where σ(rep), π

$← Zq are unknown and random, and σ(rep) are independent among different rep.

Proof. The advantage of an adversary A in a game Gi is denoted by

Adv(Gi) := Pr[Gi = 1]

where the probability is taken over the random choices of A and coins of Gi.

Game G0: In this game, the adversary receives from the distribution D1:

c(rep) = (σ(rep) · (1,−j), γ(rep), 0, 0)F

k∗ = (π · (m, 1), β, 0, 0)F∗ .

Game G1: In this game, we duplicate the first two coordinates of k∗ into the 4-th and 5-th
coordinates:

c(rep) = (σ(rep) · (1,−j), γ(rep), 0, 0)F

k∗ = (π · (m, 1), β, ρm , ρ )F∗ .
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Let (W,W∗) be the canonical bases of G5
1 and G5

2. Given a DDH instance (JaK2 , JbK2 , JcK2)
where ρ := c − ab is either 0 or uniformly random, we use the following basis changing
matrices (F, F ′):

F :=


1 0 0 0
0 1 0 0
−a 0 1 0
0 −a 0 1


1,2,4,5

F ′ :=
(
F -1
)⊤

=


1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1


1,2,4,5

F = F ·W; F∗ = F ′ ·W∗

We cannot compute the basis vectors f4 and f5 but they are not used in c. The vector k∗ can
be simulated as follows:

k∗ = (b · (m, 1), β, c ·m, c)W∗

= (b · (m, 1), β, c ·m− ab ·m, c− ab)F∗
= (b · (m, 1), β, ρ ·m, ρ)F∗

If ρ = 0 we are in G0, otherwise we are in G1. The difference in advantages is |Adv(G1) −
Adv(G0)| ≤ AdvDDH

G2
(1λ).

Game G2:In this game, we duplicate the first two coordinates of c into the 4-th and 5-th
coordinates:

c(rep) = (σ(rep) · (1,−j), γ(rep), τ (rep) , −jτ (rep) )F

k∗ = (π · (m, 1), β, ρm, ρ)F∗ .

The masks τ (rep) are depending on the repetitions index rep, for which we use the random
self-reducibility of the DDH assumption. Let (W,W∗) be the canonical bases of G5

1 and G5
2.

Given a DDH instance (JaK1 , JbK1 , JcK1) where c− ab is either 0 or uniformly random, we use
the following basis changing matrices (F, F ′):

F :=


1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1


1,2,4,5

F ′ :=
(
F -1
)⊤

=


1 0 0 0
0 1 0 0
−a 0 1 0
0 −a 0 1


1,2,4,5

F = F ·W; F∗ = F ′ ·W∗

The vector c(rep) can be simulated as follows. First, we randomize independently (JaK1 , JbK1 , JcK1)
into (JaK1 , Jb

(rep)K1 , Jc
(rep)K1) so that c(rep) − ab(rep) is uniformly random or 0 following c − ab.

We then compute

c(rep) = (b(rep) · (1,−j), γ(rep), c(rep),−j · c(rep))W
= (b(rep) · (1,−j), γ(rep), c(rep) − ab(rep),−j · c(rep) − j · ab(rep))F
= (b(rep) · (1,−j), γ(rep), τ (rep),−jτ (rep))F ,

simulating σ(rep) := b(rep), while τ (rep) := c(rep) − ab(rep). We cannot compute the basis F∗ but
the vector k∗ can be written in W∗ and then we observe how it is affected under this basis
change:

k∗ = (π · (m, 1), β, ρ ·m, ρ)W∗

= ((π + aρ) · (m, 1), β, ρ ·m, ρ)F∗

and π is updated to π + aρ. The important point is that our basis changing matrix depends
only on a, that is not randomized in the randomly self-reduced DDH instances and thus
independent from rep.
If c(rep) − ab(rep) = 0 we are in G1, otherwise we are in G2. The difference in advantages is
|Adv(G2)− Adv(G1)| ≤ AdvDDH

G1
(1λ).

43



Game G3: We randomise the last two coordinates in c and k∗, which were changed from the
previous games:

c(rep) = (σ(rep) · (1,−j), γ(rep), µ(rep)

1 , µ(rep)

2 )F

k∗ = (π · (m, 1), β, θ1 , θ2 )F∗

where θ1, θ2
$← Zq are chosen uniformly at random.

We consider the basis changing matrices (F, F ′):

F :=

[
z1 z2
z3 z4

]
4,5

F ′ :=
(
F -1
)⊤

=

[
z4 −z3
−z2 z1

]
4,5

F = F ·W; F∗ = F ′ ·W∗

where z1, z2, z3, z4 ∈ Zq are chosen such that z1z4 − z2z3 = 1. The basis change affects the
hidden vectors (f4, f5, f

∗
4 , f
∗
5 ).

The two vectors c and k∗ can be written directly in W and W∗ respectively:

c(rep) = (σ(rep) · (1,−j), γ(rep), τ (rep),−jτ (rep))W

= (σ(rep) · (1,−j), γ(rep), τ (rep)z4 + τ (rep)jz3,−τ (rep)z2 − τ (rep)jz1)F

k∗ = (π · (m, 1), β, ρm, ρ)W∗

= (π · (m, 1), β, ρmz1 + z2ρ, ρmz3 + z4ρ)F∗ .

Let µ(rep)

1 , µ(rep)

2 , θ1, θ2
$← Zq and we consider the following system to solve for (z1, z2, z3, z4):

τ (rep)(z4 + jz3) = µ(rep)

1

−τ (rep)(z2 + jz1) = µ(rep)

2

ρ(mz1 + z2) = θ1

ρ(mz3 + z4) = θ2

⇔


z4 + jz3 = µ(rep)

1 /τ (rep)

mz3 + z4 = θ2/ρ

z2 + jz1 = −µ(rep)

2 /τ (rep)

mz1 + z2 = θ1/ρ

⇔


(j −m)z3 = µ(rep)

1 /τ (rep) − θ2/ρ
mz3 + z4 = θ2/ρ

(j −m)z1 = −µ(rep)

2 /τ (rep) − θ1/ρ
mz1 + z2 = θ1/ρ

. (12)

The system has a solution if and only if j ̸= m, which is already our hypothesis. We
note that since µ(rep)

1 , µ(rep)

2 , θ1, θ2 are uniformly random chosen values and fixed to determine
(z1, z2, z3, z4), we can always perform normalization using µ(rep)

1 , µ(rep)

2 , θ1, θ2 to ensure z1z4 −
z2z3 = 1 for the basis change. Moreover, it is important that in the current setting of
repetitions, (µ(rep)

1 , µ(rep)

2 , θ1, θ2) are chosen such that

µ(rep)

1

τ (rep)
= const1 and

µ(rep)

2

τ (rep)
= const2 (13)

are constants const1, const2 ∈ Zq over different rep. Otherwise the basis change matrix is not
well defined because its entries (z1, z2, z3, z4) expresed by (µ1, µ2, θ1, θ2) depend on rep. In
other words, at the time of defining the basis change matrix, const1, const2 are fixed and
independent of rep, then (µ(rep)

1 , µ(rep)

2 , τ (rep)) are chosen during simulation of c(rep) following (13).
The basis change defined by (z1, z2, z3, z4) is totally formal and the difference in advantages
is Adv(G3) = Adv(G2).

44



Game G4: In this game, we change the constant γ(rep) in c to another constant α(rep):

c(rep) = (σ(rep) · (1,−j), α(rep) , µ(rep)

1 , µ(rep)

2 )F

k∗ = (π · (m, 1), β, θ1, θ2)F∗ .

Let (W,W∗) be the canonical bases of G5
1 and G5

2. The security loss of this game hop
depends on the maximum number of repetitions over c-vectors that the adversary can query.
Given a DSDH instance (JaK1 , JbK1 , JcK1) where c− ab is either 1 or the constant 0, we use
the following basis changing matrices (F, F ′):

F :=

[
1 0
a 1

]
3,4

F ′ :=
(
F -1
)⊤

=

[
1 −a
0 1

]
3,4

F = F ·W; F∗ = F ′ ·W∗ .

This basis change affects the vector f4 and f∗3 , which are both kept secret from the adversary.
The vector c can be simulated as follows:

c(rep) = (σ(rep) · (1,−j), γ(rep), µ(rep)

1 , µ(rep)

2 )F

+ (0, 0, c · (γ(rep) − α(rep)), b · (α(rep) − γ(rep)), 0)W

= (σ(rep) · (1,−j), γ(rep) + (c− ab) · (α(rep) − γ(rep)), b · (α(rep) − γ(rep)), µ(rep)

2 )F .

Even though we cannot compute the basis vector f∗3 , the vector k∗ can be written directly in
W∗ to see how it will change:

k∗ = (π · (m, 1), β, θ1, θ2)W∗

= (π · (m, 1), β, θ1 + aβ, θ2)F∗

and θ1 is updated to θ1+aβ. It follows form previous game that the last two coordinates of the
k-vectors do not depend on repetitions of c, which is impossible anyway, and th basis changing
uses only a from the DDH instance. If c−ab = 0 we are in the previous game, otherwise we are
in the current game. The difference in advantages is |Adv(G4)− Adv(G3)| ≤ 2 · AdvDDH

G1
(1λ).

Game G5: In this game we clean the masks µ(rep)

1 , µ(rep)

2 , θ1, θ2 by doing the reverse transition
from G3 back to G0.

The proof of the lemma is concluded. ⊓⊔

C Deferred Proofs - Proof of Theorem 8

Proof (Of Theorem 8). Let MCFE xxx[F , (Zλ,i)i∈[n]] be a secure MCFE following Definition 6.
We denote by (Setupmc,Extractmc,Encmc,Decmc) the algorithms of the MCFE.

From MCFE to MIFE. Following Definition 22, we consider the notion of MIFE having only one
encryptor who can use a master secret key to encrypt independent components of a message.
The function class is F containing Fλ,n :

∏n
i=1 (Dλ,i ×Zλ,i) → Rλ. There is no public inputs

as we are concentrating on the classic MIFE as per [25]. The obtained MIFE is defined by the
algorithms:

Setupmi(1λ, 1n): Run Setupmc(1λ, 1n)→ (mskmc, (ekmc
i )i). Sample a tag tag

$← Tag and output
msk := mskmc, (eki := (ekmc

i , tag))i.
Extractmi(msk, Fλ): Run Extractmc(mskmc, Fλ)→ dkFλ and output dkFλ .
Encmi(eki, xi): Parse eki := (ekmc

i , tag). Run Encmc(ekmc
i , xi, (tag, ϵ))→ cti as there is no public

inputs in classical MIFE, then output cti.
Decmi(dkFλ , (cti)i): Run and output Decmc(dkFλ , (cti)i).
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Correctness follows from the correctness of the MCFE. In terms of security, let A be an
adversary against the MIFE as per Definition 23. We construct an adversary B breaking
MCFE xxx-rep-priv[F , (Zλ,i)i∈[n]] using A.

The adversary B simulates the MIFE game by (i) first querying its MCFE challenger on
(1λ, 1n) to obtain the public parameters (if any) then forwards to A ; (ii) simulating the MIFE’s
encryption/challenge queries by fixing a tag tag for all encryption (respectively challenge)
ciphertexts and forwarding the encryption (that is, (i, xi, (tag, ϵ))) (respectively challenge (that
is, (i, x(0)

i , x
(1)

i , (tag, ϵ)))) queries given (i, xi) or (i, x(0)

i , x
(1)

i ) by A against the MIFE; (iii) the
key-extraction queries are forwarded to the MCFE challenger in a straightforward manner. In the
end B outputs the same as A. If A wins the MIFE game, then B wins the MCFE game. We remark
that when A makes repetitions over the encryption queries (i.e. same i but different messages),
the forwarded queries to the MCFE challenger are repetitions over the private inputs as well,
while the public inputs stay (tag, ϵ) for both Enc and LoR). In particular if A is admissible
following Definition 23, all queries by B to its challenger are admissible as per Definition 5, in
the private-only repetitions, because the conditions of MIFE security imposes more restricting
conditions, due to the fact that there are more possibilities to combine ciphertexts8.

From MCFE to (single-client, public-key) FE. The function class is F containing Fλ : Dλ×Zλ →
Rλ. Following Definition 20, the obtained FE is defined by algorithms:

Setuppk(1λ): Run Setupmc(1λ, 11)→ (mskmc, ekmc). Output msk := mskmc, pk := (ekmc).

Extractpk(msk, Fλ): Run Extractmc(mskmc, Fλ)→ dkFλ and output dkFλ .

Encpk(pk, x, z): Parse pk := (ekmc) and z := (ϵ, z̃) as there is no tag in single client and public

key FE. Sample tag
$← Tag and run Encmc(ekmc, x, (tag, z̃))→ ct. Finally output ct.

Decpk(dkFλ , ct): Run and output Decmc(dkFλ , ct).

Correctness follows from the correctness of the MCFE. If the function class captures access
control, then the FE is for the same class having access control as well. In terms of security, let
A be an adversary against the FE as per Definition 21. We construct an adversary B breaking
MCFE xxx-rep-priv[F , (Zλ,i)i∈[n]], with static corruptions, using A. The adversary B simulates the

FE game by (i) first querying its MCFE challenger on (1λ, 1) to obtain the public parameters
pp (if any) then queries Corrupt(1), gets ek, and forwards pk := ek together with pp to A. We
note that the corrupted client is known from the beginning; (ii) simulating the FE’s challenge

queries by forwarding the challenge queries (i.e. sample tag
$← Tag and define the challenge to be

(1, x(0), x(1), (tag, z̃(chal)))) to its MCFE challenger given

((
x(0), (ϵ, z̃(chal))

)
,
(
x(1), (ϵ, z̃(chal))

))
by A

; (iii) the key extraction queries are forwarded to the MCFE challenger in a straightforward man-
ner. If the FE adversary A is admissible, i.e. x(0) ̸= x(1) but F (x(0), (ϵ, z̃(chal))) = F (x(1), (ϵ, z̃(chal)))
for all F queried to Extract, then the challenge query (1, x(0), x(1), (tag, z̃(chal))) is on a pair of
inputs (x(0), (tag, z̃(chal))) ̸= (x(1), (tag, z̃(chal))) conforming to the admissibility. This implies that
B is also admissible following Definition 5. Moreover, the fact that every encryption query is
defined on a freshly sampled tag implies that there is no repetitions for any pair (1, tag) registered
to the MCFE challenger. This allows us to allow encrypting different public inputs even though
the MCFE is for private inputs repetitions only. Therefore, if A wins the FE game, then B wins
the MCFE game.

Implication to KP-ABE. The implication to KP-ABE follows from the (single-client, public-key)
FE case for F containing Fλ : Dλ × Zλ → Rλ. Moreover, the identity function is in F and
allows the all-or-nothing decryption of KP-ABE, without any evaluation on the plaintext. In
particular, thanks to the hypothesis that the function class F can encode a policy class Pol. The

8 In the one-encryptor setting there is no corruption oracle in the MIFE game, e.g. see the original in [25].
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attribute space Att is contained in Zλ, as public inputs, or in the secret inputs Dλ in case of
attribute-hiding. A reduction from FE to KP-ABE can be obtained with ease. ⊓⊔

Remark 26. (On the encoding of attributes in the proof of Theorem 8) In the reduction
to KP-ABE, implicitly the security comes from what is the hypothesis of the MCFE: even though
the MCFE is set up for one slot, each time an encryption is created, a fresh tag is sampled
therefore not leading to a fully repetitive on both private and public inputs. This thus allows
encrypting on different attribute sets while there is no full repetitions for any pair (1, tag)
registered to the MCFE challenger. Finally, an adversary breaking the KP-ABE allows breaking
the MCFE.

D Deferred Proofs - Proof of Theorem 12

Theorem 12. Let E be a MCFE scheme with fine-grained access control for the function class
F IP,B
subvec × LSSS, given in Section 4.2 in a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q). Then,

in the random oracle model, E is one-time statically IND-secure against complete challenge
queries with private-inputs only repetitions (as per Definition 11), under the SXDH in G1 and
G2.

Proof (Of Theorem 12). The sequence of games can be found in Figure 6, 7, and 8. The
full-domain hash function H : Tag × 2Att → G2

1 is modeled as a random oracle and we denote by
Q the number of random oracle queries by the adversary. The changes that make the transitions
between games are highlighted in boxed . The advantage of an adversary A in a game Gi is
denoted by Adv(Gi) := |Pr[Gi = 1]− 1/2| where the probability is taken over the random choices
of A and coins of Gi.

Game G0: This is the adaptive security game, where the private-input repetitions at each
position i ∈ [n] are indexed by rep ∈ [Ji] where Ji is the maximum repetitions queried for
position i. We note that for different i, the bound Ji can be different. The challenge ciphertext
encrypts subvectors x(b,rep)

i ∈ ZNq . For simplicity, we add a constraint that the challenge tag
tag is not queried to Enc. This incurs a multiplicative loss factor in advantage up to an
inverse of polynomial in λ, where we can reduce to the normal 1chal by guessing the challenge
tag among the tags for encryption, and responding all of its Enc queries (i,xi, (tag, ac-cti))
by LoR(i,xi,xi, (tag, ac-cti)).

Game G1: We perform a sequence of hybrids over the key queries (y(ℓ)

i )i for ℓ ∈ [K]. We denote
G0.ℓ the hybrid where all the ≤ (ℓ− 1)-th key is programmed

LoR t
(ji)

i ( ω · si + ω′ · ui + x
(b,ji)

i ν
(ji)

i 0 0 ρ
(ji)

i )Bi

m
(≤ℓ−1)

i ( y
(≤ℓ−1)

i

∑n
i=1 a

(≤ℓ−1)

i,0 0 rnd(≤ℓ−1)

i 0 )B∗
i

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi (θi,k)
N
k=1 0 )Hi

k
(≤ℓ−1)

i,ipfe (
∑
i⟨si,y

(≤ℓ−1)

i ⟩
∑
i⟨ui,y

(≤ℓ−1)

i ⟩ a
(≤ℓ−1)

i,0 z(≤ℓ−1) R · y(≤ℓ−1)

i (d
(≤ℓ−1)

A,i,k )Nk=1 rnd(≤ℓ−1)

i,ipfe )H∗
i

while other ciphertext components from Enc are kept in normal form. It holds that G0 = G0.0.
For ℓ ∈ [K], the transition from G0.ℓ−1 to G0.ℓ is as follows: G0.ℓ.0 is the same as G0.ℓ−1 .

G0.ℓ.1 is the same as G0.ℓ.0 except that we apply Lemma 1 to introduce a set of masks in

the ciphertexts : ∆xi ← x
(b,ji)

i − x
(1,ji)

i . The proof of Lemma 1 can be found in Appendix B.
We remark that ∆xi is a vector of differences of the challenge ciphertexts at position i,
being constants at each i over all repetitions ji, under the admissibility. Moreover, the strong
admissibility also ensures that: { ∑

i∈H⟨∆xi,y
(ℓ)

i ⟩ = 0

⟨∆xi,y
(ℓ)

i ⟩ = 0 ∀ i ∈ C
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Game G0 : H(tag)→ (JωtagK1 ,
q
ω′tag

y
1
), H(tag′)→ (Jχtag′K1 ,

q
χ′tag′

y
1
), (for Enc queries H on tag′ are noted by χ

and χ′) ; ℓ ∈ [K] indexes key queries

a(ℓ)

i,0

$← Zq, (a(ℓ)

i,j)j∈List-Att(A)←Λ
a
(ℓ)
i,0

(A),
∑n
i=1

∑N
k=1 d

(ℓ)

A,i,kθi,k = 0

LoR c
(ji)

i,j ( σ
(ji)

i,j · (1,−j) ψ
(ji)

i 0 0 0 0 0 )F
LoR t̃

(ji)

i,j ( σ
(ji)

i,j · (1,−j) ν
(ji)

i 0 0 0 0 0 )G

Enc c
(ji)

i,j ( σ′i,j · (1,−j) ψ
(ji)

i 0 0 0 0 0 )F
k(ℓ)

i,j ( π(ℓ)

i,j · (j, 1) a(ℓ)

i,j · z
(ℓ) 0 0 0 0 0 )F∗

m̃(ℓ)

i,j ( π(ℓ)

i,j · (j, 1) a(ℓ)

i,j 0 0 0 0 0 )G∗

LoR t
(ji)

i ( ω · si + ω′ · ui + x
(b,ji)

i ν
(ji)

i 0 0 ρ
(ji)

i )Bi

Enc t
(ji)

i ( χ · si + χ′ · ui + x
(ji)

i ν
(ji)

i 0 0 ρ
(ji)

i )Bi

m(ℓ)

i ( y(ℓ)

i

∑n
i=1 a

(ℓ)

i,0 0 rnd(ℓ)

i 0 )B∗
i

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i 0 (θi,k)
N
k=1 0 )Hi

Enc c
(ji)

i,ipfe ( piχtag′ piχ
′
tag′ ψ

(ji)

i 0 (θi,k)
N
k=1 rnd(ℓ)

i,ipfe )Hi

k(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a(ℓ)

i,0z
(ℓ) 0 (d(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

Game G1 : zj
$← Z∗q , ∆xi ← x

(b,ji)

i − x
(1,ji)

i (Masking Application - Lemma 1, hybrids over each key query (y(ℓ)

i )i,
using the DPVS basis changes from Appendix A.5, i.e. formal ones (1, 2, 3) and computational ones (1, 2))

G0.ℓ.1 where ℓ ∈ [K] and K is the maximum number of key queries. We are in the setting of private-input only

repetitions a′i,0
$← Zq , (a′i,j)j∈List-Att(A)←Λa′i,0

(A)

LoR c
(ji)

i,j ( σ
(ji)

i,j · (1,−j) ψ
(ji)

i 0 0 zj ·∆xi 0 0 )F

k
(ℓ)

i,j ( π
(ℓ)

i,j · (j, 1) a
(ℓ)

i,j · z
(ℓ) 0 0 (a′i,j/zj) · y

(ℓ)

i 0 0 )F∗

LoR t
(ji)

i ( ω · si + ω′ · ui + x
(b,ji)

i ν
(ji)

i 0 0 ρ
(ji)

i )Bi

m
(ℓ)

i ( y
(ℓ)

i

∑n
i=1 a

(ℓ)

i,0 0 rnd(ℓ)

i 0 )B∗
i

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi (θi,k)
N
k=1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a
(ℓ)

i,0z
(ℓ) a′i,0 · y

(ℓ)

i (d
(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

G0.ℓ.2 : R
$← Zq, ∆xi ← x

(b,ji)

i − x
(1,ji)

i (Randomization, the honest H and corrupted C are known due to static
corruption, use formal basis changes)

LoR c
(ji)

i,j ( σ
(ji)

i,j · (1,−j) ψ
(ji)

i 0 0 zj ·∆xi 0 0 )F

k
(ℓ)

i,j ( π
(ℓ)

i,j · (j, 1) a
(ℓ)

i,j · z
(ℓ) 0 0 (a′i,j/zj) · y

(ℓ)

i 0 0 )F∗

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi (θi,k)
N
k=1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a
(ℓ)

i,0z
(ℓ) (a′i,0 +R) · y(ℓ)

i (d
(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

G0.ℓ.3 : R
$← Zq , ∆xi ← x

(b,ji)

i −x
(1,ji)

i (Reverse Masking Application - Lemma 1, only mask R ·y(ℓ)

i remains in k
(ℓ)

i,ipfe

for i ∈ H)

LoR c
(ji)

i,j ( σ
(ji)

i,j · (1,−j) ψ
(ji)

i 0 0 0 0 0 )F

LoR t̃
(ji)

i,j ( σ
(ji)

i,j · (1,−j) ν
(ji)

i 0 0 0 0 0 )G

k
(ℓ)

i,j ( π
(ℓ)

i,j · (j, 1) a
(ℓ)

i,j · z
(ℓ) 0 0 0 0 0 )F∗

m̃
(ℓ)

i,j ( π
(ℓ)

i,j · (j, 1) a
(ℓ)

i,j 0 0 0 0 0 )G∗

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi (θi,k)
N
k=1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a
(ℓ)

i,0z
(ℓ) R · y(ℓ)

i (d
(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

G1 := G0.K.3, where ℓ ∈ [K] and K is the maximum number of key queries.

Fig. 6: Games G0,G1 for Theorem 12.

corresponding to any inner product function of (yi)i (together with an LSSS). The ℓ-th

key components are programmed to also accomodate newly independent values: a′i,0
$← Zq,

(a′i,j)j∈List-Att(A)←Λa′i,0(A), zj
$← Z∗q . We emphasize that the random values introduced in

key components are randomized secret shares (a′i,j/zj) · yi in which a′i,j are shares of a′i,0 by
the attributes in List-Att(A). Thus, over all honest i ∈ H, due to the simulated vectors at
decryption will cancel the masks, while for corrupted i ∈ C, the masks are already 0 after
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Game G2 : R
$← Zq, ∆xi ← x

(b,ji)

i − x
(1,ji)

i (Rewriting game’s description, summing of t̃
(ji)

i,j over i ∈ H known
statically, not affecting correctness)

LoR c
(ji)

i,j ( σ
(ji)

i,j · (1,−j) ψ
(ji)

i 0 0 0 0 0 )F
LoR t̃

(ji)

0,j =
∑
i∈H t̃

(ji)

i,j ( σ
(ji)

i,j · (1,−j)
∑
i∈H ν

(ji)

i 0 0 0 0 0 )G
k(ℓ)

i,j ( π(ℓ)

i,j · (j, 1) a(ℓ)

i,j · z
(ℓ) 0 0 0 0 0 )F∗

m̃(ℓ)

i,j ( π(ℓ)

i,j · (j, 1) a(ℓ)

i,j 0 0 0 0 0 )G∗

LoR t
(ji)

i ( ω · si + ω′ · ui + x
(b,ji)

i ν
(ji)

i 0 0 ρ
(ji)

i )Bi

m(ℓ)

i ( y(ℓ)

i

∑n
i=1 a

(ℓ)

i,0 0 rnd(ℓ)

i 0 )B∗
i

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi (θi,k)
N
k=1 0 )Hi

i ∈ H k(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a(ℓ)

i,0z
(ℓ) R · y(ℓ)

i (d(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

Game G3 : R
$← Zq, ∆xi ← x

(b,ji)

i − x
(1,ji)

i (Masking Application - Lemma 1, hybrids over each key query (y(ℓ)

i )i,
similar to G1 → G2)

LoR t̃
(ji)

0,j =
∑
i∈H t̃

(ji)

i,j ( σ
(ji)

i,j · (1,−j)
∑
i∈H ν

(ji)

i 0 0 0 0 0 )G
m̃(ℓ)

i,j ( π(ℓ)

i,j · (j, 1) a(ℓ)

i,j 0 0 0 0 0 )G∗

LoR t
(ji)

i ( ω · si + ω′ · ui + x
(b,ji)

i ν
(ji)

i ∆xi 0 ρ
(ji)

i )Bi

m(ℓ)

i ( y(ℓ)

i

∑n
i=1 a

(ℓ)

i,0 R · y(ℓ)

i rnd(ℓ)

i 0 )B∗
i

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi (θi,k)
N
k=1 0 )Hi

i ∈ H k(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a(ℓ)

i,0z
(ℓ) R · y(ℓ)

i (d(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

Fig. 7: Games G2,G3 for Theorem 12.

Game G4 : R,R′
$← Zq, ∆xi ← x

(b,ji)

i − x
(1,ji)

i (Switching x
(b,ji)

i to x
(1,ji)

i , using complexity leveraging, the
invariant coordinates are grouped as “· · · ”)

G3.1 (Formal Quotient, using ∆xi is constant for i ∈ H over repetitions, Hadamard product is denoted “◦”, see
example 2 on DPVS basis changes)

LoR t
(ji)

i ( ω · si + ω′ · ui + x
(b,ji)

i ν
(ji)

i ∆xi 0 ρ
(ji)

i )Bi

m
(ℓ)

i ( y
(ℓ)

i

∑n
i=1 a

(ℓ)

i,0 R · y(ℓ)

i rnd(ℓ)

i 0 )B∗
i

LoR c
(ji)

i,ipfe ( · · · r1∆xi
r′1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe ( · · · R · (∆xi ◦ y(ℓ)

i ) (θi,k · d(ℓ)A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

G3.2 (Switching, updating secret shares of 0, Hadamard product is denoted “◦”, see example 3 on DPVS basis
changes)

LoR t
(ji)

i ( ω · si + ω′ · ui + x
(1,ji)

i ν
(ji)

i ∆xi 0 ρ
(ji)

i )Bi

m
(ℓ)

i ( y
(ℓ)

i

∑n
i=1 a

(ℓ)

i,0 R′ · y(ℓ)

i rnd(ℓ)

i 0 )B∗
i

LoR c
(ji)

i,ipfe ( · · · r1∆xi
(r′ − r)1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe ( · · · R′ ·
(
∆xi ◦ y(ℓ)

i

)
(θi,k · d(ℓ)A,i,k)

N
k=1 rnd(ℓ)

i,ipfe )H∗
i

G4 := G3.3 (Formal Quotient, using ∆xi is constant for i ∈ H over repetitions, see example 2 on DPVS basis changes)

LoR t
(ji)

i ( ω · si + ω′ · ui + x
(1,ji)

i ν
(ji)

i ∆xi 0 ρ
(ji)

i )Bi

m
(ℓ)

i ( yi
∑n
i=1 a

(ℓ)

i,0 R′ · y(ℓ)

i rnd(ℓ)

i 0 )B∗
i

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi θi,k 0 )Hi

i ∈ H k
(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a
(ℓ)

i,0z R′ · y(ℓ)

i (d
(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

Game G5 : (Cleaning)

LoR t
(ji)

i ( ω · si + ω′ · ui + x
(1,ji)

i ν
(ji)

i 0 0 ρ
(ji)

i )Bi

m(ℓ)

i ( y(ℓ)

i

∑n
i=1 a

(ℓ)

i,0 0 rnd(ℓ) 0 )B∗
i

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i 0 θ′i,k 0 )Hi

i ∈ H k(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a(ℓ)

i,0z
(ℓ) 0 (d(ℓ)

A,i,k)
N
k=1 rnd(ℓ) )H∗

i

Fig. 8: Games G4,G5 for Theorem 12.

performing the product between the i-th ciphertext component and the i-th key component

⟨zj∆xi, a
′
i,j/zjy

(ℓ)

i ⟩ = ⟨∆xi, a
′
i,jy

(ℓ)

i ⟩ = a′i,j⟨∆xi,y
(ℓ)

i ⟩ = 0 .
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Moreover, because we are dealing with vectors ∆xi,y
(ℓ)

i , the Lemma 1 is applied by compo-
nents, which is possible due to the appropriate dimension of c-components and k-components,
as well as the proof of the Lemma 1 itself (see Appendix B).

G0.ℓ.2 We randomize the values a′i,0 in the key components by adding a independent fixed
random mask R. First of all, we remark that for i ∈ H where A(Si) = 0, where A is the
LSSS associated to the ℓ-th key query, the change is even perfectly indistinguishable. This is
because of the facts that
• the randomized shares a′i,j/zj are uniformly random and independent thanks to zj ,
• even with repetitions at a position i, for a challenge tag tag, the shares zj are independent
for different repetitions given the private-only repetitions.

• more importantly, when A(Si) = 0, it holds that zj never appears in any of the ciphertexts
returned to the adversary

• as a consequence, the shares a′i,j/zj is information theoretically hidden and making a′i,0
information theoretically hidden for the adversary.

In the end, in this case for i ∈ H where A(Si) = 0, what we do is just rewriting an information
theoretically hidden value a′i,0 to another information theoretically hidden value a′i,0 + R,
and this change goes perfectly indistinguishable. However, there can be the case where some
i ∈ H it holds A(Si) = 1. This case can be treated by formal basis changes together with a
complexity leveraging argument. We detail below, the details of calculation for DPVS basis
changes are recalled and can be revised in appendix A.5.

The main idea is to consider the selective version G∗0.ℓ.1.t for t ∈ {1, 2, 3, 4}, where the

values (x
(1,ji)

i ,x
(0,ji)

i ,y(ℓ)

i )
ji∈[Ji]
i∈[n] are guessed in advance. We then use formal argument for the

transitions G∗0.ℓ.1.1 → G∗0.ℓ.1.4 to obtain for j ∈ [3],

Pr[G∗0.ℓ.j = 1] = Pr[G∗0.ℓ.j+1 = 1] . (14)

In the end, we use a complexity leveraging argument to conclude that thanks to (14), we
have Pr[G0.ℓ.1 = G0.ℓ.1.1 = 1] = Pr[G0.ℓ.2 = G0.ℓ.1.4 = 1].

For the sequence G0.ℓ.1.1 → G0.ℓ.1.4, we make a guess for the values (x
(1,ji)

i ,x
(0,ji)

i ,y(ℓ)

i )
ji∈[Ji]
i∈[n] ,

choose R
$← Z∗q , random secret sharings (θi,k · d(ℓ)

A,i,k)
N
k=1 of 0 where θi,k ̸= 0. We define the

event E that the guess is correct on (x
(1,ji)

i ,x
(0,ji)

i ,y(ℓ)

i )
ji∈[Ji]
i∈[n] and for all k ∈ [N ]

θi,k · d(ℓ)

A,i,k = −R ·∆xi[k]y
(ℓ)

i [k] . (15)

We describe the selective games below, starting from G∗0.ℓ.1 = G∗0.ℓ.1.1, where event E is
assumed true:
Game G∗0.ℓ.1 = G∗0.ℓ.1.1: The vectors have form:

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi (θi,k)
N
k=1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a
(ℓ)

i,0z
(ℓ) a′i,0 · y

(ℓ)

i (d
(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

Game G∗0.ℓ.1.2: We perform a formal basis change to the key components, for i ∈ H to change

(Hi,H
∗
i ) following matrices: for r, r′

$← Z∗q ,

Hi[row, col] =



1 if row = col ≤ 3
r

∆xi[z]
if ∃z ∈ [N ] s.t. row = col = 3 + z ∧ ∆xi[z] ̸= 0

1 if ∃z ∈ [N ] s.t. row = col = 3 + z ∧ ∆xi[z] = 0
r′

θi,z
if ∃z ∈ [N ] s.t. row = col = N + 3 + z

0 otherwise

;H ′i :=
(
H -1
i

)⊤
.

We remark that the matrix does not have to check non-zeroness of θi,z, as it is guaranteed
by the event E. The vectors have form: we denote the Hadamard product by “◦”, and 1∆xi
is the vector of 1’s at the positions where ∆xi is non-zero
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LoR c
(ji)

i,ipfe ( · · · r · 1∆xi
r′ · 1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe ( · · · a′i,0 ·
(
∆xi ◦ y(ℓ)

i

)
(θi,k · d(ℓ)A,i,k)

N
k=1 rnd(ℓ)

i,ipfe )H∗
i

Game G∗0.ℓ.1.3: We perform a formal basis change to the key components, for i ∈ H to change

(Hi,H
∗
i ) following matrices: for r, r′

$← Z∗q , (for ease of presenting basis changes we write

the transposed matrix H⊤i )

H⊤i [row, col] =



1 if row = col /∈ {4 +N, . . . , 3 + 2N}
1 if row = col ∈ {4 +N, . . . , 3 + 2N} ∧ ∆xi[row −N − 3] ̸= 0
r′

r′+r if row = col ∈ {4 +N, . . . , 3 + 2N} ∧ ∆xi[row −N − 3] = 0

−1 if ∃z ∈ [N ] s.t. row = 3 +N + z ∧ col = 3 + z

0 otherwise

; H ′i :=
(
H -1
i

)⊤
.

We note that on the diagonal z̃ := row = col ∈ {4 +N, 3 + 2N} ∧ ∆xi[z̃ −N − 3] = 0,

because coordinate c
(ji)

i,ipfe[z̃ −N ] = 0 as ∆xi[z̃ −N − 3] = 0, the moving by H⊤i [3 +N +

z̃ −N − 3, 3 + z̃ −N − 3] has no effect on c
(ji)

i,ipfe[z̃]. Thus H
-1
i [row, col] needs to multiply

a factor (r′ + r)/r′9 to the coordinate c
(ji)

i,ipfe[z̃] to make sure that after the basis change it

becomes r′ + r. Dually the coordinate k(ℓ)

i,ipfe[z̃] = θi,k · d(ℓ)

A,i,k stays correctly thanks to the

relation (15) and we pay attention that ∆xi[z̃ − N − 3] = 0. The vectors have form: we
denote the Hadamard product by “◦”

LoR c
(ji)

i,ipfe ( · · · r · 1∆xi
(r + r′) · 1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe ( · · · (a′i,0 +R) · (∆xi ◦ y(ℓ)

i ) (θi,k · d(ℓ)A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

using the hypothesis that event E happens along with the relation (15) specifically. Conse-
quently, we just update one secret share of 0 by another. The randomness r′ is updated to
r′ + r, indentically distributed.

Game∗ G∗0.ℓ.1.4: We undo the formal basis changes G∗0.ℓ.1.1 → G∗0.ℓ.1.2, where the division by

1/r, 1/(r + r′) can be done with overwhelming probability since r, r′
$← Z∗q at the beginning

of the game to define the matrices. This gives

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi (θi,k)
N
k=1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a
(ℓ)

i,0z
(ℓ) (a′i,0 +R) · y(ℓ)

i (d
(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

The above games demonstrate relation (14). We now employ the complexity leveraging
argument. Let us fix j ∈ {1, 2, 3}. For u ∈ {0.ℓ.1.j, 0.ℓ.1.j + 1} let Advu(A) := |Pr[Gu(A) =
1]− 1/2| denote the advantage of a ppt adversary A in game Gu. We build a ppt adversary
B∗ playing against G∗u such that its advantage Adv∗u(B∗) := |Pr[G∗u(B∗) = 1] − 1/2| equals
γ · Advu(A) for u ∈ {t, t+ 1}, for some constant γ.

The adversary B∗ first guesses the values (x
(1,ji)

i ,x
(0,ji)

i ,y(ℓ)

i )
ji∈[Ji]
i∈[n] , choose R

$← Z∗q , random
secret sharings (θi,k · d(ℓ)

A,i,k)
N
k=1 of 0. Then B∗ defines the event E that:

the guess is correct on (x
(1,ji)

i ,x
(0,ji)

i ,y(ℓ)

i )
ji∈[Ji]
i∈[n] and for all k ∈ [N ], θi,k · d(ℓ)

A,i,k =

−R ·∆xi[k]y
(ℓ)

i [k].

When B∗ guesses successfully and E happens, then the simulation of A’s view in Gt is perfect.
Otherwise, B∗ aborts the simulation and outputs a random bit b′. Since E happens with

9 Therefore the corresponding position on the diagonal of H⊤i [z̃, z̃] = r′

r′+r .
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some fixed probability γ and is independent from the view of A, we have10:

Adv∗u(B∗) =
∣∣∣∣Pr[G∗u(B∗) = 1]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[E] · Pr[G∗u(B∗) = 1 | E] +
Pr[¬E]

2
− 1

2

∣∣∣∣
=

∣∣∣∣γ · Pr[G∗u(B∗) = 1 | E] +
1− γ − 1

2

∣∣∣∣
(∗)
= γ ·

∣∣∣∣Pr[Gu(A) = 1]− 1

2

∣∣∣∣ = γ · Advu(A) (16)

where (∗) comes from the fact that conditioned on E, B simulates perfectly Gu for A, therefore
Pr[Gu(A) = 1 | E] = Pr[G∗u(B∗) = 1 | E], then we apply the independence between E and
Gu(A) = 1. Together with relation (14), this concludes that Pr[G0.ℓ.1.j = 1] = Pr[G0.ℓ.1.j+1 = 1]
for any fixed j ∈ {1, 2, 3}, in particular Pr[G0.ℓ.1 = G0.ℓ.1.1 = 1] = Pr[G0.ℓ.2 = G0.ℓ.1.4 = 1].
Union bounds on A(Si) = 0 (perfect indistinguishability by information-theoretic argument
on zj and a

′
i,j/zj) and A(Si) = 1 (perfect indistinguishability by complexity leveraging) give

the conclusion that the game hop is perfectly indistinguishable.
G0.ℓ.3 Reverse Masking Application - Lemma 1, so that only mask Ryi remains for i ∈ H,
in k(ℓ)

i,ipfe. Once again, the mask R will be canceled by the admissibility condition:∑
i∈H
⟨x(b,ji)

i − x
(1,ji)

i ,y(ℓ)

i ⟩ = 0 .

We arrive at G1 after G0.K.3.
Game G2: We rewrite the game’s description to program the vectors t̃

(ji)

0,j =
∑

i∈H t̃
(ji)

i,j . The goal

is to consider t̃
(ji)

0,j in the subsequent games, i.e. we look at the vectors t̃
(ji)

0,j instead of the

given t̃
(ji)

i,j returned to the adversary. The rewriting is totally formal as it follows exactly what
is described in Figure 2.

Game G3: We apply similarly Lemma 1 as in G1 → G2, by a sequence of hybrids over the ℓ-th
functional key, one after another. We remark that the random factor R

$← Zq is the same as
that one introduced in G1 → G2, this simplifies one guess during the complexity leveraging
argument. The formal basis changes resembles those in G1 → G2 and in the end, the game
hop is perfectly indistinguishable.

Game G4: We use a complexity leveraging argument, that depends only on formal basis changes.
The goal is to switch from x

(b,ji)

i to x
(1,ji)

i for i ∈ H. The details of the selective underlying

games are given in Figure 8. First of all, we make a guess for the values (x
(1,ji)

i ,x
(0,ji)

i ,y(ℓ)

i )
ji∈[Ji]
i∈[n] ,

choose R
$← Z∗q , random secret sharings (θi,k · d(ℓ)

A,i,k)
N
k=1 of 0 where θi,k ̸= 0. We define the

event F that

the guess is correct on (x
(1,ji)

i ,x
(0,ji)

i ,y(ℓ)

i )
ji∈[Ji]
i∈[n] and for all k ∈ [N ]

θi,k · d(ℓ)

A,i,k = −∆xi[k]y
(ℓ)

i [k] , (17)

so as to make sure θi,k · d(ℓ)

A,i,k is a secret sharing of 0 conditioned on F . We give the matrices’
definitions as follows to demonstrate how the calculation is performed:
Game G∗3.1 = G∗3: The vectors have form:

LoR c
(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi (θi,k)
N
k=1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a
(ℓ)

i,0z
(ℓ) R · y(ℓ)

i (d
(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

10 This calculation (16) to relate Adv∗u(B∗) to Advu(A) is the core of our complexity levaraging argument, being
built upon the previous information-theoretic game transtions and the probability of event E.
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Game G∗3.2: We perform a formal basis change to the key components, for i ∈ H to change

(Hi,H
∗
i ) following matrices: for r, r′

$← Z∗q ,

Hi[row, col] =



1 if row = col ≤ 3
r

∆xi[z]
if ∃z ∈ [N ] s.t. row = col = 3 + z ∧ ∆xi[z] ̸= 0

1 if ∃z ∈ [N ] s.t. row = col = 3 + z ∧ ∆xi[z] = 0
r′

θi,z
if ∃z ∈ [N ] s.t. row = col = N + 3 + z

1 if ∃j̃ ∈ [J ], z ∈ [N ] s.t. row = col = N + 3 + z

0 otherwise

;H ′i :=
(
H -1
i

)⊤
.

We remark that the matrix does not have to check non-zeroness of θi,z, as it is guaranteed
by the event F . The vectors have form: we denote the Hadamard product by “◦”, and 1∆xi
is the vector of 1’s at the positions where ∆xi is non-zero

LoR c
(ji)

i,ipfe ( · · · r · 1∆xi
r′ · 1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe ( · · · R ·
(
∆xi ◦ y(ℓ)

i

)
(θi,k · d(ℓ)A,i,k)

N
k=1 rnd(ℓ)

i,ipfe )H∗
i

Game G∗3.3: We perform a formal basis change to the key components, for i ∈ H to change

(Bi,B
∗
i ), (Hi,H

∗
i ) following matrices: for r, r′

$← Z∗q , (for ease of presenting basis changes

we write the transposed matrix H⊤i and B-1
i )

H⊤i [row, col] =



1 if row = col /∈ {4 + n, . . . , 3 + 2N}
1 if row = col ∈ {4 + n, . . . , 3 + 2N} ∧ ∆xi[row −N − 3] ̸= 0
r′

r′+r if row = col ∈ {4 + n, . . . , 3 + 2N} ∧ ∆xi[row −N − 3] = 0

−1 if ∃z ∈ [N ] s.t.

row = 3 + z ∧ col = 3 +N + z

0 otherwise

; H ′i :=
(
H -1
i

)⊤

B-1
i [row, col] =


1 if row = col

−1 if ∃z ∈ [N ] s.t.

row = 1 +N + z ∧ col = z

0 otherwise

; B′i :=
(
B-1
i

)⊤
.

Following the matrices
• The formal changes of (Bi,B

∗
i ) switch x

(b,ji)

i to x
(1,ji)

i for i ∈ H, where for z ∈ [N ] under
B-1
i , the coordinate t

(ji)

i [z] is updated to

t
(ji)

i [z]−∆xi[z] = ω·si[z]+ω′·ui[z]+x
(b,ji)

i [z]+x
(1,ji)

i [z]−x(b,ji)

i [z] = ω·si[z]+ω′·ui[z]+x
(1,ji)

i [z] .

While dually in m(ℓ)

i [1 +N + z] the matrix B⊤i introduces R′y(ℓ) := (R+ 1) · y(ℓ)

i staying
regroupable with the corresponding ∆xi in t

(ji)

i [1 +N + z].
• The changes of (Hi,H

∗
i ) are also to correct R to R′ in the key components, thanks

to (17) of the games that we recall under this selective sequence, so that the decryption’s
correctness is preserved. We note that the diagonal of H⊤i also takes care of the case
where ∆xi[z] = 0 for z ∈ [N ], in the same manner as we have done for G∗0.ℓ.1.2 → G∗0.ℓ.1.3
previously.

The vectors have form: we denote the Hadamard product by “◦”
LoR t

(ji)

i ( ω · si + ω′ · ui + x
(1,ji)

i ν
(ji)

i ∆xi 0 ρ
(ji)

i )Bi

m
(ℓ)

i ( y
(ℓ)

i

∑n
i=1 a

(ℓ)

i,0 R′ · y(ℓ)

i rnd(ℓ)

i 0 )B∗
i

LoR c
(ji)

i,ipfe ( · · · r · 1∆xi
(r′ + r) · 1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe ( · · · R′ ·
(
∆xi ◦ y(ℓ)

i

)
(θi,k · d(ℓ)A,i,k)

N
k=1 rnd(ℓ)

i,ipfe )H∗
i

using the hypothesis that event F happens along with the relation (17) specifically. Conse-
quently, we just update one secret share of 0 by another. The randomness r′ is updated to
r′ + r, indentically distributed.
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Game∗ G∗3.4: We undo the formal basis changes G∗3.1 → G∗3.2 and obtain
LoR c

(ji)

i,ipfe ( piωtag piω
′
tag ψ

(ji)

i ∆xi (θi,k)
N
k=1 0 )Hi

i ∈ H k
(ℓ)

i,ipfe (
∑
i⟨si,y

(ℓ)

i ⟩
∑
i⟨ui,y

(ℓ)

i ⟩ a
(ℓ)

i,0z
(ℓ) R′ · y(ℓ)

i (d
(ℓ)

A,i,k)
N
k=1 rnd(ℓ)

i,ipfe )H∗
i

Game G5: We clean the masks so that the adversary’s view is independent of the challenge b.

The bit b does not appear in the responses to the adversary anymore, completing the proof. ⊓⊔

D.1 Upgrading Security from Theorem 12

Next, we can apply a layer of All-or-Nothing Encapsulation (AoNE) so as to remove the tradeoff
with respect to incomplete challenge ciphertexts (i.e. remove pos-condition in Definition 11,
under the private-input repetitions). That is, the adversary can now omit some honest slot i ∈ H
with respect to (tag, Si) for different Si, up to repetition (x

(0,ji)

i ,x
(1,ji)

i ). More specifically, we apply
the generic transformation from [33, Lemma 16], to treat the case of MCFE with access control
as a special case in the above lemma so as to remove pos-condition, given the private-input
repetitions. The formal statement is stated below.

Lemma 27 (Incomplete Security with Private-Only Repetitions). Assume there exist

(1) a one-challenge MCFE scheme Epos for the function class F IP,B
subvec×LSSS that is secure against

complete queries, i.e. satisfying pos-security and (2) an AoNE scheme Eaone whose message
space contains the ciphertext space of Epos. Then there exists a one-challenge MCFE scheme E
for the same function class F IP,B

subvec × LSSS that is even secure against incomplete queries. More
precisely, for any ppt adversary A, there exist ppt algorithms B1 and B2 such that

Advrep-priv-1chal-xxx
E,F IP,B

subvec×LSSS,A
(1λ) ≤ 12 ·

(
Advrep-priv-pos-1chal-xxx

Epos,F IP,B
subvec×LSSS,B1

(1λ) + Advrep-priv-1chal-xxx
Eaone,F IP,B

subvec×LSSS,B2
(1λ)

)
where xxx ⊆ {stat, sel}.

We refer to the proof of the more general lemma in [33, Lemma 16], with repetitions on the
private inputs xi. Finally, by combining with Lemma 7 to allow multiple challenge tags, where
the only restriction remains: solely for private inputs, and not public attributes per client, will
repetitions be allowed.
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