
zkSNARKs in the ROM with Unconditional UC-Security

Alessandro Chiesa
alessandro.chiesa@epfl.ch

EPFL

Giacomo Fenzi
giacomo.fenzi@epfl.ch

EPFL

September 4, 2024

Abstract

The universal composability (UC) framework is a “gold standard” for security in cryptography. UC-
secure protocols achieve strong security guarantees against powerful adaptive adversaries, and retain these
guarantees when used as part of larger protocols. Zero knowledge succinct non-interactive arguments of
knowledge (zkSNARKs) are a popular cryptographic primitive that are often used within larger protocols
deployed in dynamic environments, and so UC-security is a highly desirable, if not necessary, goal.

In this paper we prove that there exist zkSNARKs in the random oracle model (ROM) that uncondi-
tionally achieve UC-security. Here, “unconditionally” means that security holds against adversaries that
make a bounded number of queries to the random oracle, but are otherwise computationally unbounded.

Prior work studying UC-security for zkSNARKs obtains transformations that rely on computational
assumptions and, in many cases, lose most of the succinctness property of the zkSNARK. Moreover, these
transformations make the resulting zkSNARK more expensive and complicated.

In contrast, we prove that widely used zkSNARKs in the ROM are UC-secure without modifications.
We prove that the Micali construction, which is the canonical construction of a zkSNARK, is UC-secure.
Moreover, we prove that the BCS construction, which many zkSNARKs deployed in practice are based on,
is UC-secure. Our results confirm the intuition that these natural zkSNARKs do not need to be augmented
to achieve UC-security, and give confidence that their use in larger real-world systems is secure.

Keywords: succinct arguments; random oracle model; universal composability

1

Contents
1 Introduction 3

1.1 Our results . 4
1.2 Related work . 5

2 Techniques 7
2.1 Unconditional UC-security . 7
2.2 UC-friendly properties . 8
2.3 The Merkle commitment scheme is UC-friendly . 12
2.4 The Micali construction is UC-secure . 13
2.5 The BCS construction is UC-secure . 15
2.6 Adaptive corruptions and strong UC-friendly properties . 16

3 Preliminaries 20
3.1 Notation . 20
3.2 UC-security with unbounded adversaries . 21
3.3 Global random oracle . 24

4 UC-security for non-interactive arguments in the ROM 26
4.1 Ideal functionality . 26
4.2 Protocol . 28

5 UC-friendly security notions for non-interactive arguments 29
5.1 UC-friendly completeness . 29
5.2 UC-friendly zero knowledge . 32
5.3 UC-friendly knowledge soundness . 36

6 UC-secure zkSNARKs from UC-friendly security notions 40
6.1 Proof of Theorem 6.1 . 41
6.2 Definitions 5.3, 5.10 and 5.16 are necessary . 43

7 Merkle commitments and UC-security 46
7.1 Merkle commitment schemes . 46
7.2 UC-friendly completeness . 47
7.3 UC-friendly hiding . 47
7.4 UC-friendly extraction . 53

8 The Micali construction is UC-secure 58
8.1 Probabilistically checkable proofs . 58
8.2 The Micali construction . 59
8.3 UC-friendly completeness . 60
8.4 UC-friendly zero knowledge . 61
8.5 UC-friendly knowledge soundness . 63
8.6 UC-secure zkSNARKs from Micali . 70

9 The BCS construction is UC-secure 71
9.1 Interactive oracle proofs . 71
9.2 The BCS construction . 73
9.3 UC-friendly completeness . 73
9.4 UC-friendly zero knowledge . 74
9.5 UC-friendly knowledge soundness . 76
9.6 UC-secure zkSNARKs from BCS . 85

A An analysis of [IW14] 86

Acknowledgments 90

References 90

2

1 Introduction

The universal composability (UC) framework [Can01] is a “gold standard” for security in cryptography.
UC-secure protocols achieve strong security guarantees in the presence of powerful adaptive adversaries, and
retain their security when used as part of larger protocols, thereby enabling a modular analysis of these larger
protocols. Informally, security in the UC framework is shown by arguing that an adversary (the environment)
cannot distinguish between a real execution of the protocol and an “ideal” execution, where the protocol
is replaced by an ideal functionality. In a larger protocol then one can argue, via a result known as the
composition theorem, that instances of the former protocol can be replaced by this ideal functionality.

Zero knowledge succinct non-interactive arguments of knowledge (zkSNARKs) are a powerful cryp-
tographic primitive that has seen widespread adoption. zkSNARKs are often used within larger protocols
deployed in dynamic environments, and so UC-security is a highly desirable (if not necessary) goal.

Achieving UC-security for a zkSNARK is challenging. Security of a zkSNARK is often established via
techniques that are problematic, and at times impossible, to use in the UC framework. These techniques
include non-black-box extraction and black-box rewinding extraction. In contrast, UC-security prescribes a
black-box security proof in a game consisting of polynomially-many interactions with the adversary, and such
security proofs are almost exclusively achieved through the use of straightline (non-rewinding) extractors.

UC-security has been studied in the zkSNARK literature, via transformations that “lift” a given zkSNARK
into a UC-secure non-interactive argument. In most cases the transformation increases the argument size to
linear in the witness (of the proved nondeterministic computation) [KZM+15; ARS20; BS21; AGRS24];
the result is a non-interactive argument that is not succinct in the usual desirable sense (the argument size
is succinct in the circuit size but not the witness size). One exception is [GKOPTT23], which achieves
UC-secure zkSNARKs by combining a simulation-extractable zkSNARK and a straightline-extractable
polynomial commitment scheme. A downside is that this transformation incurs computational overheads,
and the resulting zkSNARKs do not reflect ones used in practice. We elaborate further on prior work in
Section 1.2. Overall, the takeaway is that the desirable goal of UC-secure zkSNARKs has been notably
elusive and the known results come with considerable limitations or caveats.

UC-security with random oracles. The focus of this paper is zkSNARKs constructed in the “pure” random
oracle model (ROM), where (honest and malicious) parties have query access to a random function and where
security holds unconditionally against adversaries that query the random function a bounded number of times.

The ROM is notable for multiple reasons. The elegant Micali construction [Mic00], the “canonical”
construction of a zkSNARK, is realized in the ROM. Moreover, many zkSNARKs used in practice follow
the BCS construction [BCS16], which is also realized in the ROM.1 Both constructions are secure in the
quantum ROM [CMS19]; in fact, the ROM supports the most efficient post-quantum zkSNARKs to date. Yet,
the UC-security of these seminal zkSNARK constructions has, surprisingly, not been investigated so far.

In the context of UC-security, several basic questions arise.

Do zkSNARKs that are (unconditionally) UC-secure in the ROM exist?
Is the Micali construction UC-secure? What about the BCS construction?

More generally, when does a given zkSNARK in the ROM achieve UC-security?

In this paper we investigate these questions. This requires specifying what is meant by “UC-secure in
the ROM”. Briefly, this involves specifying an ideal functionality GRO that models a global random
oracle model (GROM). There are several flavors of GROM [CDGLN18]; the most relevant to our setting

1In practice the random oracle is heuristically instantiated via a suitable cryptographic hash function. This leads to zkSNARKs
that are lightweight (no public-key cryptography is used) and easy to deploy (users only need to agree on which hash function to use).

3

is the GROM that is observable and (restricted) programmable. Establishing UC-security then demands
arguing, in a hybrid model in which every party has access to GRO, that an adversary cannot distinguish
between two cases: (i) a real execution of the given zkSNARK protocol; and (ii) an ideal functionality
FARG for zero knowledge non-interactive arguments of knowledge (which equals the ideal functionality in
[LR22b], therein called NIZKPoK ideal functionality). Using techniques from UC with Global Subroutines
(UCGS) [BCHTZ20] we then lift the hybrid-model analysis to achieve security in the plain UC framework.

1.1 Our results

We prove that there exist zkSNARKs that unconditionally achieve UC-security in the GROM, positively
answering a basic question about the feasibility of UC-secure zkSNARKs in the information-theoretic setting
of random oracles. In fact, we prove something stronger (and far more useful), namely, we prove that two
seminal constructions of zkSNARKs with random oracles are UC-secure: the Micali construction and the
BCS construction. (In particular, we do not construct new zkSNARKs or modify existing ones.) This provides
formal evidence that supports the intuition that these seminal constructions of zkSNARKs satisfy far stronger
security properties than previously shown, and are suitable for secure use within larger protocols.

Definition 1.1 (informal). Let FARG be the non-interactive argument ideal functionality in [LR22b] (therein
called NIZKPoK ideal functionality), and let GRO be the ideal functionality for the (observable and restricted
programmable) GROM in [CDGLN18]. A zkSNARK unconditionally achieves UC-security in the GROM
if the zkSNARK unconditionally UC-realizes FARG in the GRO-hybrid model. (“Unconditionally” means that
security holds against adversaries that are computationally unbounded and that make a bounded number of
queries to the ideal functionality GRO.)

Theorem 1.2 (informal). There exists a zkSNARK that unconditionally achieves UC-security in the GROM.

The above result follows from the following theorem. Recall that the Micali construction compiles a given
PCP (probabilistically checkable proof) with suitable properties into a zkSNARK, and the BCS construction
compiles a given public-coin IOP (interactive oracle proof) with suitable properties into a zkSNARK.

Theorem 1.3 (informal).

• The Micali construction unconditionally achieves UC-security in the GROM, provided that the underlying
PCP is honest-verifier zero knowledge and knowledge sound.

• The BCS construction unconditionally achieves UC-security in the GROM, provided that the underlying
IOP is honest-verifier zero knowledge and (state-restoration) knowledge sound with a straightline extractor.

The properties required of the underlying PCP and IOP for UC-security in Theorem 1.3 are essentially
the same as those typically used in the Micali and BCS constructions.2 We only additionally require the
extractor of the IOP to be straightline, a property satisfied by most IOPs in the literature.

As we elaborate further in Section 2, our results are achieved by showing that the given non-interactive
argument satisfies certain “UC-friendly” notions of completeness, zero knowledge, and knowledge soundness
in the ROM, which in turn we show imply UC-security in the GROM.

Achieving UC-security is a notoriously challenging goal, even for simple cryptographic protocols. As we
outline in Section 2, establishing UC-security of the Micali construction is distinctly more involved compared

2State-restoration knowledge soundness is a natural strengthening of knowledge soundness that is required for the security of the
BCS transformation. See [BCS16; CY24] for more details.

4

to merely establishing its standalone knowledge soundness or zero knowledge (as done in prior work). Even
more involved is establishing the UC-security of the BCS construction, which is used in practice.

Adaptive security. Our results also cover the adaptive flavor of UC-security, where the adversary can
corrupt parties in the protocol at any time (rather than only at the start of the protocol). This stronger, and
more realistic, flavor of UC-security demands additional work both in terms of definitions and analyses.

Concrete security bounds. Throughout our work we provide concrete security bounds, parametrized on
security parameters and the capabilities of the adversary (e.g., queries to the global random oracle). This
ultimately leads to explicit expressions for the UC-security error of the zkSNARKs that we study. Similarly
to the ROM, the GROM can be (heuristically) instantiated via a suitable cryptographic hash function, and
these expressions enable practitioners to set parameters for the desired security level for UC-security.

1.2 Related work

We provide references for the model of global random oracle that we use. Then we summarize prior work
studying UC-security for non-interactive arguments that are not succinct and for those that are succinct.

Global random oracle. The random oracle model is widely used to analyze the security of cryptographic
protocols. The generalized UC (GUC) framework in [CDPW07] extends the basic UC framework in [Can01]
to allow for globally shared ideal functionalities, such as a global random oracle. Subsequently, [BCHTZ20]
identifies a subtle inconsistency in the GUC formulation, and shows a mechanism to model and prove the
security of protocols interacting with shared functionalities in the plain UC model; this is the framework of
UC with Global Subroutines (UCGS) that we use to accommodate for a random oracle functionality. There
are multiple flavors of a global random oracle model (GROM) in the UC framework: [CJS14] propose a
GROM where queries can be observed, but not programmed, by the adversary; and [CDGLN18] introduce
a GROM where queries can be observed as well as programmed by the adversary (with some restrictions).
We use the latter flavor in this paper (see Section 3.3), since it is usually appropriate for constructions in the
“pure” ROM (with no cryptography). For example, the simple commitment scheme f((m, r)), where m is a
message and r a random salt, can be shown to be UC-secure in the latter GROM flavor, but not in the former.

Non-Succinct zkNARKs. Several works study UC-security for zero knowledge non-interactive arguments
of knowledge (zkNARKs) that are not succinct (the size of the argument string is at least the size of the
witness for the proved nondeterministic computation).

• From game-based simulation-secure knowledge soundness. [Gro06] achieves UC-secure zero-knowledge
proofs in the CRS model (assuming cryptographic hardness assumptions), using the observation that
straightline knowledge extraction that is secure in the presence of a simulation oracle is crucial for UC-
security. The proof size in [Gro06] is linear in the circuit size. In this work we also rely on game-based
notions of simulation-secure straightline knowledge soundness (in the ROM setting).

• Encrypt the witness. A standard approach to achieve UC-security is to have the argument string include
an encryption of the witness and a zero knowledge proof that the encrypted message is a valid witness
[DDOPS01]. This approach is adopted in various works studying UC-security in the zkSNARK community,
including the C∅C∅ framework [KZM+15], LAMASSU [ARS20], TIRAMISU [BS21], and [AGRS24].
All non-interactive arguments following this approach are not succinct since the argument string contains
the encryption of a witness. (The argument size can be smaller than the proved circuit but not the witness.)

• Compile a Σ-protocol. Other works study UC-security for non-interactive arguments obtained from
Σ-protocols: [LR22b] shows that a randomized variant of the Fischlin construction [Fis05; Ks22] applied

5

to a Σ-protocol yields a zkNARK that achieves UC-security in the observable programmable GROM, and
with a global reference string the construction can be modified to rely only on an observable GROM; then
[LR22a] shows how to extend these results to achieve security against adaptive corruptions, assuming a
minor property of the Σ-protocol.

While the constructions studied in [LR22b; LR22a] and in this paper are different (non-interactive arguments
obtained from Σ-protocols versus from probabilistic proofs), our work is inspired by the ideas in [LR22b;
LR22a]. Specifically, we use “UC-friendly” definitions of completeness, zero knowledge, and knowledge
soundness in the ROM that suffice (and are necessary) for UC-security in the GROM, which reduces the goal
of UC-security to proving that the relevant zkSNARK constructions satisfy these simpler properties. The
definitions that we use (which can be found in Section 5) are variants of those in [LR22b; LR22a], adapted to
our pure ROM setting and to facilitate concrete security bounds.

Succinct zkNARKs. [GKOPTT23] construct zkSNARKs that are computationally UC-secure in a model that
provides a global reference string and a global random oracle (that is observable but not programmable). Their
approach is a compiler that combines any simulation-extractable zkSNARK and a polynomial commitment
scheme with certain properties (each comes with its own reference string), leveraging the random oracle to
achieve straightline extraction via proof-of-work ideas inspired by [Fis05].3 Our work is complementary
in that we study a setting without any computational assumptions: we achieve unconditional UC-security
for well-known zkSNARKs (without modifications) via a global random oracle (that is observable and
programmable). Moreover, the zkSNARKs that we consider are not susceptible to quantum attacks whereas
the compiler in [GKOPTT23] uses a polynomial commitment scheme that is insecure against quantum attacks
(and whether there is a suitable post-quantum replacement is an open question).

3Informally, the argument prover, instead of providing an encryption of the witness as in [DDOPS01] (which makes argument
strings non-succinct), uses a polynomial commitment scheme to commit to a polynomial whose coefficients are the witness; to
achieve straightline extraction, the argument prover also provides a Fischlin-style proof-of-work that requires querying the random
oracle on many evaluations of the committed polynomial. The extractor can then use polynomial interpolation to reconstruct the
witness from the query-answer trace of a malicious argument prover.

6

2 Techniques

We outline the main ideas behind our results.

• In Section 2.1 we describe how to adapt the UC-security framework to our setting of unconditional security
in the ROM (and with the additional goal of achieving concrete security bounds).

• In Section 2.2 we describe how we reduce UC-security in the GROM to three simpler properties in the
ROM: UC-friendly completeness; UC-friendly zero knowledge; and UC-friendly knowledge soundness.

• In Section 2.3 we discuss the Merkle commitment scheme in the ROM (a component of the zkSNARKs
that we study), for which we prove several “UC-friendly” properties that we introduce and rely on.

• In Section 2.4 we discuss UC-security of the Micali construction, and then in Section 2.5 we discuss
UC-security of the BCS construction. In both cases we do so by showing the above UC-friendly properties.

• In Section 2.6 we discuss how we achieve UC-security against adaptive corruptions.

2.1 Unconditional UC-security

We consider UC-security for protocols in the “pure” ROM, where parties have query access to a random
function and where security holds unconditionally against adversaries that query the random function a
bounded number of times. This setting is not considered in prior work studying UC-security for zkSNARKs
and, more generally, there is no off-the-shelf model of UC-security for this setting. Below we explain how we
adapt the UC framework [Can01; Can20] to our needs, and how our goals can be expressed in this adaptation.

UC-security against unbounded adversaries. We consider adversaries that are computationally unbounded,
and are limited only in their access to certain resources, such as queries to a random oracle, queries to a prover
oracle, and others. As discussed in detail in Section 3.2, we model this setting by modifying the mechanism
of import and time budget described in [Can20, Sec 3.2] to work with a generalized notion of budget. We
endow the environment (and the protocol) with a budget represented as a numeric vector. Each message sent
specifies how much budget is deducted from the sender budget and added to the receiver budget, and the
budget can be spent on a certain set of actions. With this, we can define the notion of budget-emulation.

Definition 2.1 (informal). Let B be a tuple of non-negative integers. An environment is B-budget if its
starting budget is B. A protocol π B-emulates a protocol φ with simulation error σ if π UC-emulates φ with
simulation error σ in the presence of any environment that is B-budget.

GROM and shared functionalities. The analogue of the ROM in our setting is a shared global subroutine:
the observable and (restricted) programmable GROM introduced in [CDGLN18]. The GROM interface
allows four types of queries: (i) random oracle; (ii) programming; (iii) observation; (iv) and is-programmed.
The random oracle query interface is familiar: each query is consistently answered with a random answer.
The programming interface enables setting the answer to arbitrary queries, while the is-programmed interface
enables parties in the session to detect whether a point has been programmed.4 Finally, the observation
interface allows queriers to receive a list of illegitimate queries made to the oracle thus far (queries with prefix
sid made by the adversary or parties outside the session sid). The programming interface is used to argue
zero knowledge, while the observable and is-programmed interfaces are used to argue knowledge soundness.

We use the approach of UC with Global Subroutines [BCHTZ20] to argue that UC-security in the presence
of a global shared functionality implies standard UC-security. Informally, if the shared functionality and the

4Here “in the session” refers to the fact that the environment cannot directly ask is-programmed queries to the GROM, but only
through the adversary or a corrupted party. This enables the UC simulator to intercept these queries and choose their answers.

7

protocols satisfy some mild requirements, then showing UC-emulation in the hybrid model suffices to show
(standard) UC-security. See Section 3.2 for more details.
The ARG functionality. We study UC-security for (succinct) non-interactive arguments. The ideal
functionality that we use is the ARG ideal functionality FARG from [LR22b] (therein called NIZKPoK ideal
functionality), given in Section 4.1.5 Briefly, FARG has a proving interface that produces simulated proofs (to
capture zero knowledge) and a verification interface that extracts a witness (to capture knowledge soundness).

Any non-interactive argument ARG in the ROM directly induces a corresponding protocol Π[ARG] in
the GROM that matches the proving and verification interface of FARG. The protocol Π[ARG], which is
described in Section 4.2, consists of two parties, a prover party MP and a verifier party MV .

• The prover party MP , on input an instance-witness pair, runs Π[ARG]’s proving interface, which runs
ARG’s prover using the GROM, and outputs the resulting argument string.

• The verifier party MV , on input an instance-proof pair, runs Π[ARG]’s verification interface, which runs
ARG’s verifier using the GROM and checks that none of the verifier queries involves programmed points,
and outputs the resulting decision bit (or simply rejects if one of the verifier queries was programmed).6

We use the generalized budget mechanism to keep track of the resources used by the environment. Since
we consider non-interactive arguments in the ROM, security will depend on the number of queries that the
environment makes to the GROM; in our setting, these queries include both random oracle queries and
programming queries.7 Moreover, the environment may query the proving and verification interfaces, which
can aid an attack; hence we keep track of such queries as well. Overall, a (tq, tp, ℓp, ℓv)-budget environment is
an environment that can make: (1) tq random oracle queries to the GROM; (2) tp programming queries to the
GROM; (3) ℓp prover queries; and (4) ℓv verifier queries.

The above enables us to state our first result in slightly more detail.

Theorem 2.2 (restatement of Theorem 1.2). There exists a non-interactive argument ARG in the ROM for
which the protocol Π[ARG] (tq, tp, ℓp, ℓv)-emulates the ideal functionality FARG with simulation error

σ(λ, tq, tp, ℓp, ℓv) =
poly(tq, tp, ℓp, ℓv)

2λ
.

We show that natural constructions of zkSNARKs in the ROM suffice for the above theorem: ARG
can be the Micali construction or the BCS construction (instantiated over appropriate probabilistic proofs).
Moreover, for these constructions we derive explicit expressions for the simulation error σ(λ, tq, tp, ℓp, ℓv),
which in particular enables setting parameters to achieve concrete UC-security bounds.

Next we describe how we prove such results.

2.2 UC-friendly properties

We informally describe three properties about a non-interactive argument ARG that are sufficient and necessary
for (unconditional) UC-security in the GROM:

5One could extend the ideal functionality FARG to one that models preprocessing non-interactive arguments. Our belief is that all
results in this paper straightforwardly extend to this case (we believe that the preprocessing variants of the Micali construction and
BCS construction, when based on suitable holographic probabilistic proofs, are unconditionally UC-secure in the GROM).

6An honest party does not program the GROM. In contrast, an adversary might instead attempt to produce an argument string
accepted by the verification interface by running the zero knowledge simulator of the non-interactive argument (and programming
the GROM accordingly). Rejecting argument strings whose verification involves programmed points disallows this.

7Observation and is-programmed queries do not affect security bounds. The environment knows its own queries to the random
oracle and the points that it has programmed, so it does not need to obtain this information from the GROM. Moreover, observation
and is-programmed queries do not change the state of the GROM, and thus do not affect other parties in the execution.

8

• UC-friendly completeness (sketched in Section 2.2.1);
• UC-friendly zero knowledge (sketched in Section 2.2.2); and
• UC-friendly knowledge soundness (sketched in Section 2.2.3).
These properties are described in detail in Section 5. Intuitively, each property protects against a natural class
of attacks against the UC-security of the protocol Π[ARG], which we outline in the corresponding section.

This approach is analogous to the approach taken in [LR22b; LR22a], where the authors rely on somewhat
dissimilar security definitions that are sufficient and necessary for UC-security in their setting (NIZKPoKs
obtained from Σ-protocols).8 In particular, the above properties can be viewed as adaptations of their three
properties: overwhelming completeness; non-interactive multiple special honest-verifier zero knowledge; and
non-interactive special simulation soundness. The main differences in our definitions include: (a) we target
unconditional security, while the previous definitions target computational security; and (b) we allow the
adversary to additionally program the random oracle (which is necessary in our “pure” ROM setting). The
second difference has important ramifications that we discuss further below.

2.2.1 UC-friendly completeness

The ideal functionality FARG that we consider has a verification interface that, to model completeness, accepts
any proof that was generated by its proving interface. This might not be the case for the protocol Π[ARG]: one
attack against UC-security is, for the environment, to invoke the proving interface on inputs that maximize the
probability that the resulting proofs are not accepted by the verification interface, which would distinguish the
real-world and the ideal-world. UC-friendly completeness bounds the success probability of such an attack.

Definition 2.3 (informal). ARG has UC-friendly completeness with error ϵARG if every adversary that
• queries the random oracle tq times,
• programs the random oracle tp times,
• requests ℓp proofs for instances of length at most n, and
• requests ℓv verifications for instance-proof pairs with instances of length at most n
causes the verification interface to reject a instance-proof pair generated by the honest prover with probability
at most ϵARG(λ, n, tq, tp, ℓp, ℓv).

One may guess that perfect completeness of the given non-interactive argument ARG implies UC-friendly
completeness with zero error. However this is not the case because the verification interface rejects proofs
whose verification causes the argument verifier to query points programmed by the adversary. Hence if
there are queries by the argument verifier that the adversary can predict (and program in advance) then the
adversary can induce a rejection despite the perfect completeness of ARG.

Nevertheless we show that the two natural notions below suffice, together with perfect completeness of
the non-interactive argument, to achieve UC-friendly completeness with small error.

Definition 2.4 (informal). ARG has:
• monotone proofs if the argument verifier, on input an honestly produced proof, queries the random oracle

only at points that have been queried by the honest argument prover that produced that proof; and
• unpredictable queries with error ϵP if every adversary that queries the random oracle tq times and

programs the random oracle tp times cannot produce an instance-witness pair (with instance length at
most n) that causes the honest argument prover to query one of the points previously programmed by the
adversary with probability more than ϵP(λ, n, tq, tp).

8More precisely, [LR22b; LR22a] discuss properties of a compiler for Σ-protocols, but those properties can be straightforwardly
defined for the non-interactive argument output by the compiler.

9

Lemma 2.5 (informal). A non-interactive argument with perfect completeness, monotone proofs, and
unpredictable queries with error ϵP has UC-friendly completeness with error (roughly) ϵARG = ℓp · ϵP.

2.2.2 UC-friendly zero knowledge

Definition 2.6 (informal). ARG has UC-friendly zero knowledge with error ζARG if every adversary that
• queries the random oracle tq times,
• programs the random oracle tp times, and
• requests ℓp proofs for instances of length at most n
• requests ℓv verifications for instance-proof pairs with instances of length at most n
cannot distinguish between the game in which the returned proofs are generated by the honest argument
prover and the game in which they are generated by the zero knowledge simulator (which can also program
the random oracle) with an advantage better than ζARG(λ, n, tq, tp, ℓp, ℓv).

Informally, UC-friendly zero knowledge is a version of adaptive multi-instance zero knowledge wherein
the adversary can adaptively program the random oracle.9 Indeed, every party can program the GROM, so
we need a zero knowledge property that accounts for this capability. In the real-world the protocol generates
proofs using the honest argument prover and in the ideal-world the ideal functionality generates proofs using
a simulator, so UC-friendly zero knowledge bounds the probability that an adversary distinguishes between
these two worlds based on this difference.

First, since the adversary can query the random oracle, we show that queries to the verifier do not help
the adversary, and thus show that UC-friendly zero knowledge is implied by a simplified notion where this
oracle is not present. Next, since the adversary can generate simulated proofs (and thus simulate the proof
oracle), we can use a hybrid argument to reduce the case of multiple simulated proofs to the case of a single
simulated proof. We rely on these simplifications to more conveniently establish UC-friendly zero knowledge
for the Micali construction and the BCS construction.

Lemma 2.7 (informal). If ARG has UC-friendly zero knowledge with error ζARG against adversaries that
request a single proof and no verifications, then ARG has UC-friendly zero knowledge with error (roughly)
ℓp · ζARG against adversaries that request ℓp proofs and make ℓv verifier queries.

2.2.3 UC-friendly knowledge soundness

Definition 2.8 (informal). ARG has UC-friendly knowledge soundness with error κARG if there exists a
deterministic polynomial-time straightline extractor such that every adversary that
• queries the random oracle tq times,
• programs the random oracle tp times,
• requests ℓp simulated proofs for instances of length at most n, and
• outputs ℓv instance-proofs pairs with instances of length at most n
wins with probability at most κARG(λ, n, tq, tp, ℓp, ℓv). Here “winning” means that one of the instance-proof
pairs that the adversary output (a) was for an instance not queried to the simulation oracle, (b) convinces
the argument verifier (without querying programmed points), and (c) causes the extractor to fail to extract a
valid witness for the instance.

9As shown in Section 5.2, UC-friendly zero knowledge is strictly stronger: there are non-interactive arguments that are adaptive
multi-instance zero knowledge but not UC-friendly zero knowledge.

10

UC-friendly knowledge soundness can be viewed as a variant of simulation extractability wherein the
adversary can adaptively program the random oracle, as allowed by the GROM. Since the difference between
the ideal-world verification interface and the real-world counterpart is the additional attempt at extraction
on proofs that successfully verify, UC-friendly knowledge soundness upper bounds the probability that
an adversary is able to distinguish between the two worlds by outputting proofs on which extraction fails.
The protocol (and ideal functionality) rejects proofs whose verification involves points programmed by the
environment. This is to disallow the environment from submitting proofs generated using the zero knowledge
simulator (and programming accordingly), from which it would be (likely) impossible to extract.

Moreover, while not shown in the above informal definition, UC-friendly knowledge soundness mandates
that the extractor be straightline: the extractor receives as input the instance, argument string, query-answer
trace of the adversary with the oracle (as well as the query-answer trace of the simulator with the oracle),10

but not the adversary itself; in particular, the extractor cannot rewind the adversary. Straightline extraction is
required by the UC-security experiment (in which the ideal functionality also performs straightline extraction).

Similarly to the case of UC-friendly zero knowledge, we generically reduce UC-friendly knowledge
soundness to a simpler property, in which the adversary outputs only a single instance-proof pair.

2.2.4 UC-secure zkSNARKs from UC-friendly properties

Lemma 2.9 (informal). If a non-interactive argument ARG satisfies
• UC-friendly completeness with error ϵARG,
• UC-friendly zero knowledge with error ζARG, and
• UC-friendly knowledge soundness with error κARG

then the protocol Π[ARG] (tq, tp, ℓp, ℓv)-emulates the ideal functionality FARG with simulation error (roughly)

ϵARG + ζARG + κARG .

The proof of Lemma 2.9 is given in Section 6, and follows a game-hopping approach in a GRO-hybrid
model. We rely on an observation of [CDGLN18] that, in the setting of the restricted programmable GROM,
the simulator can program points undetectably. We can then perform three game hops, one for each of our
UC-friendly notions. Finally, we lift the result in the GRO-hybrid model to full UC-security by using the UC
with Global Subroutines theorem [BCHTZ20].
UC-friendliness is necessary. We show that the UC-friendly properties that we describe are necessary for a
non-interactive argument ARG in the ROM to unconditionally achieve UC-security. This gives confidence
that the UC-friendly properties that we describe are the “right ones” for UC-security in our setting. Moreover,
we learn that the upper bound in Lemma 2.9 is almost tight. Specifically, while the upper bound can
plausibly be improved in certain cases (e.g., in the Micali and BCS constructions, establishing UC-friendly
completeness and UC-friendly zero knowledge involves separately upper bounding overlapping “bad events”),
the improvement is limited. Indeed, the necessity of the UC-friendly properties implies that the simulation
error of a non-interactive argument ARG is at least max{ϵARG, ζARG, κARG} ≥ 1

3 · (ϵARG + ζARG + κARG), at
most a factor of 3 (i.e., less than 2 bits of security) away from the upper bound in Lemma 2.9.
On tightness. We make an effort, throughout this paper, to obtain concrete security bounds that are relatively
tight (e.g., as noted for Lemma 2.9 in the paragraph above). Nevertheless, modest improvements are possible.
For example, Lemma 2.7 reduces UC-friendly zero knowledge to a simpler property (where the adversary
requests a single proof and no verifications) at a minor but noticeable cost; this cost can be reduced by

10More accurately, matching the ideal functionality, the extractor receives a query-answer trace that includes queries performed by
the adversary and the simulator but not including queries whose answer was previously programmed by the adversary.

11

directly establishing UC-friendly zero knowledge for the Micali and BCS constructions, avoiding the use
of Lemma 2.7. Similarly for UC-friendly knowledge soundness. These choices reflect striking a balance
between aiming for good concrete security bounds, and a modular presentation.

2.3 The Merkle commitment scheme is UC-friendly

The Merkle commitment scheme is a key ingredient in the Micali and BCS constructions (the zkSNARKs
that we study), where it acts as unconditionally secure vector commitment scheme. In order to show that said
constructions satisfy the UC-friendly security notions sketched in Section 2.2, we establish corresponding
properties for Merkle commitments. Below we denote by MT := MT[λ, l, rMT] the Merkle commitment
scheme for messages of length l (a power of 2) with salt size rMT, for a random oracle with output size λ.

2.3.1 Completeness

We formulate notions of monotone proofs and unpredictable queries for vector commitments schemes (in
analogy to the notions in Definition 2.4 for ARG), and show that the Merkle commitment scheme satisfies
them. This facilitates proving that the Micali and BCS constructions satisfy UC-friendly completeness.

Lemma 2.10. MT has monotone proofs, and unpredictable queries with error ϵMT = tp · l ·
(

1
2rMT + 1

2λ

)
.

2.3.2 Hiding

We formulate a notion of UC-friendly hiding for vector commitment schemes, and show that the Merkle
commitment scheme satisfies this property. This contributes towards proving UC-friendly zero knowledge
for the Micali and BCS constructions.

Definition 2.11 (informal). MT has UC-friendly hiding with error ζMT if every adversary that
• queries the random oracle tq times,
• programs the random oracle tp times, and
• requests ℓp commitments for messages of size at most l and corresponding openings for sets of size at most q
cannot distinguish between the game in which the returned commitments and openings are real and the game
in which they are generated by a simulator (that can also program the random oracle) with an advantage
better than ζMT(λ, l, q, tq, tp, ℓp).

Lemma 2.12 (informal). MT has UC-friendly hiding with error (roughly) ζMT = ℓp · q · l · tq+tp
2rMT .

The proof of Lemma 2.12 is similar to the hiding proof for the Merkle commitment scheme in the ROM,
but adapted to reflect the additional programming capabilities of the adversary.

2.3.3 Extraction

The Merkle commitment scheme in the ROM is known to satisfy strong notions of extraction [BCS16; CY24].
Any adversary that outputs a Merkle commitment and subsequently outputs a valid opening proof must have
“known” the opening at commitment time; moreover, this holds even when the adversary outputs multiple
commitments and openings at different times. In the definition below we extend extraction to be UC-friendly,
considering adversaries that can program the random oracle. We prove that the Merkle commitment scheme
satisfies this stronger property.

Definition 2.13 (informal). MT has UC-friendly extraction with error κMT if every adversary that

12

• queries the random oracle tq times,
• programs the random oracle tp times,
• requests ℓp simulated commitments for messages of size at most l and corresponding simulated openings

for sets of size at most q,
• submits n commitments, and
• finally outputs k opening proofs for submitted commitments.
wins with probability at most κMT(λ, l, q, tq, tp, ℓp, n, k). Here “winning” means to: (i) submit a list of
commitments such that the extractor outputs different messages for duplicate elements in the list; or (ii) output
opening proofs that verify successfully on whose commitment the extractor outputs inconsistent messages.

Lemma 2.14. MT has UC-friendly extraction with error (roughly) κMT = 3
2 ·

(tq+2ℓpl)2

2λ
+

2k(d+1)·(tq+2ℓpl)
2λ

.

We do not prove Lemma 2.14; it straightforwardly follows from the extraction property shown in [CY24].
Instead, we prove that the Merkle commitment scheme satisfies an even stronger extraction property (i.e.,
which implies Lemma 2.14) that we use to achieve adaptive security and we discuss later in Section 2.6.3.

Definition 2.13 already incorporates some notions on non-malleability that will be crucial for establishing
UC-friendly knowledge soundness of the Micali and BCS constructions. UC-friendly extraction allows the
adversary to submit simulated commitments (as those obtained from the simulation oracle), and guarantees
that the Merkle commitment scheme extractor outputs consistent messages on those simulated commitments.

2.4 The Micali construction is UC-secure

We show that the Micali construction unconditionally achieves UC-security in the GROM, when instantiated
with suitable ingredients. By Lemma 2.9, it suffices to show that the Micali construction satisfies UC-friendly
completeness, zero knowledge, and knowledge soundness, which we now discuss in turn. After that, we
explain how this leads to a proof of Theorem 1.2.

Review of the Micali construction. A probabilistically checkable proof (PCP) is a proof system in which
the prover sends a (long) proof string, which the verifier checks by probabilistically reading a few locations
of it. The Micali construction compiles a (suitable) PCP into a zkSNARK, by using the Merkle commitment
scheme in the ROM and the Fiat–Shamir transformation with salt size r. We denote this construction as
Micali[PCP, r], and sketch it next.

• The argument prover runs the PCP prover, and commits to the resulting PCP string using the Merkle
commitment scheme. Then the argument prover queries the random oracle with the instance, the Merkle
commitment, and a random r-bit salt, to obtain PCP randomness. Finally, the argument prover emulates the
PCP verifier on the obtained PCP randomness, which induces queries to the PCP string. The argument
string output by the argument prover consists of the Merkle commitment, the salt, the queries, their answers,
and an opening proof for the queries and answers.

• The argument verifier checks the opening proof, derives PCP randomness like the argument prover did, and
checks that the PCP verifier accepts when run with that randomness on the given queries and answers.

2.4.1 UC-friendly completeness

We use Lemma 2.10 to show that the Micali construction has monotone proofs and unpredictable queries.
Then by Lemma 2.5 we deduce that the Micali construction satisfies UC-friendly completeness.

13

Lemma 2.15 (informal). Micali[PCP, r] has monotone proofs and unpredictable queries with error ϵMT +
tp
2r

(ϵMT is from Lemma 2.10). By Lemma 2.5, Micali[PCP, r] has UC-friendly completeness with error (roughly)
ϵARG = ℓp · (ϵMT +

tp
2r).

2.4.2 UC-friendly zero knowledge

We show that the Micali construction satisfies UC-friendly zero knowledge.

Lemma 2.16 (informal). Let PCP be an honest-verifier zero knowledge PCP with error ζPCP. Let ζMT be the
UC-friendly hiding error in Lemma 2.12. Then Micali[PCP, r] has UC-friendly zero knowledge with error
(roughly) ζARG = ℓp · (tq+tp

2r + ζPCP + ζMT).

The proof of this statement uses Lemma 2.7 to reduce UC-friendly zero knowledge to a game in which
the adversary makes only a single query to the prover oracle. Then we use a sequence of game hops, relying
among other things on the UC-friendly hiding property of the Merkle commitment scheme (Lemma 2.12).

2.4.3 UC-friendly knowledge soundness

We show that the Micali construction satisfies UC-friendly knowledge soundness.

Lemma 2.17 (informal). Let PCP be a knowledge sound PCP with error κPCP. Let κMT be the UC-friendly
extraction error in Lemma 2.14. Then Micali[PCP, r] has UC-friendly knowledge soundness with error
(roughly) κARG = ℓv · ((tq + 1) · κPCP + κMT).

Note that Lemma 2.17 imposes no additional requirements on the PCP compared to what is usually
required for regular knowledge soundness of Micali[PCP, r]. Yet we achieve the UC-friendly strengthening.

The proof of Lemma 2.17 informally works as follows. We reduce to the state-restoration knowledge
soundness of the PCP (a notion implied by the PCP’s knowledge soundness) and to the UC-friendly extraction
property of the Merkle commitment scheme. This is similar to prior work [BCS16; CY24] except that in our
setting the adversary has access to a simulation oracle, so part of the work in our analysis is showing that
simulated proofs do not help the adversary.

In the reduction to the PCP’s state-restoration knowledge soundness, the adversary’s queries to the
Fiat–Shamir oracle are translated to moves in the state-restoration game. The simulator has an advantage
over the adversary in its ability to undetectably program the Fiat–Shamir query (the point used to derive the
PCP randomness used for PCP verification). In order for the reduction to succeed, we must argue that this
additional capability does not help the adversary. This is because points programmed by the simulator are
domain-separated by instance, and the adversary wins the UC-friendly knowledge soundness game only by
outputting “fresh” instance-proof pairs (the instance was not previously submitted to the simulator oracle).
Thus, the instance-proof pair that the adversary outputs must not have been produced by the simulator oracle.

Having made this observation, the state-restoration knowledge soundness adversary runs the UC-friendly
knowledge soundness adversary, simulating the simulator oracle and extracting (in a straightline fashion)
PCP strings from instance-root-salt triples submitted to the Fiat–Shamir oracle using the Merkle commitment
extractor guaranteed by UC-friendly extraction (Definition 2.13). The analysis of the reduction follows then
similarly to that of state-restoration knowledge soundness in the ROM.

14

2.4.4 Conclusion

Lemma 2.15, Lemma 2.16, and Lemma 2.17 together show that the Micali construction satisfies UC-friendly
completeness, UC-friendly zero knowledge, and UC-friendly knowledge soundness, provided that the
underlying PCP is honest-verifier zero knowledge and knowledge sound. In turn, Lemma 2.9 implies that,
under these conditions, the Micali construction is unconditionally UC-secure. Both steps provide concrete
security bounds, leading to an overall concrete security bound for the UC-security of the Micali construction.

2.5 The BCS construction is UC-secure

We follow a similar approach to show that the BCS construction is unconditionally UC-secure: we prove that
the BCS construction satisfies UC-friendly completeness, zero knowledge, and knowledge soundness. Recall
that the BCS construction underlies many zkSNARKs that are concretely efficient (and widely deployed).
We achieve concrete UC-security bounds for this notable class of zkSNARKs.

Review of the BCS construction. The BCS construction extends the Micali construction to work with
interactive oracle proofs (IOPs), a multi-round generalization of PCPs. It compiles a (suitable) public-coin
IOP into a zkSNARK, by using Merkle commitment schemes in the ROM, and the (multi-round) Fiat–Shamir
transformation with salt size r. We denote this construction as BCS[IOP, r], and sketch it next.

• The argument prover runs the IOP prover, using the random oracle to simulate an interaction with the
(public-coin) IOP verifier. For each round, the argument prover computes the round’s IOP string, commits
to it using the Merkle commitment scheme, and derives the next IOP verifier message using the random
oracle (in a certain way that depends on the Merkle commitment and a salt, and either the instance or
the previous Merkle commitment). Once the interaction is complete, the argument prover deduces the
queries to the IOP strings and corresponding answers, and outputs an argument string containing the Merkle
commitments, the salts, the query-answer pairs, and opening proofs of the commitments for those queries.

• The argument verifier checks the opening proofs, re-derives the IOP verifier randomness, and checks that
the IOP verifier accepts when run with that randomness on the given queries and answers.

Remark 2.18 (BCS variant). We consider a minor simplification of the BCS construction where the IOP
verifier messages are derived by querying the random oracle at a point consisting of the instance and all
Merkle commitment and salts so far. This simplifies the knowledge soundness analysis compared to the more
common approach of querying at a point consisting of the last computed IOP verifier message, and the current
Merkle commitment and salt. All results that we present directly extend to this more common approach.

2.5.1 UC-friendly completeness

We show that the BCS construction has monotone proofs and unpredictable queries, by building on
Lemma 2.10 (which states that the Merkle commitment scheme has monotone proofs and unpredictable
queries). Then by Lemma 2.5 we conclude that the BCS construction satisfies UC-friendly completeness.

Lemma 2.19 (informal). BCS[IOP, r] has monotone proofs and unpredictable queries with error k ·(ϵMT+
tp
2r)

(ϵMT is from Lemma 2.10). By Lemma 2.5, BCS[IOP, r] has UC-friendly completeness with error (roughly)
ϵARG = ℓp · k · (ϵMT +

tp
2r).

15

2.5.2 UC-friendly zero knowledge

We prove that the BCS construction satisfies UC-friendly zero knowledge, using a strategy similar to the case
of the Micali construction (which is captured in Lemma 2.16). The proof of the lemma is similar, with the
main difference being that we need the UC-friendly hiding property of the Merkle commitment scheme to
hold for k commitment-openings pairs rather than a single one.

Lemma 2.20 (informal). Let IOP be a k-round public-coin IOP that has honest-verifier zero knowledge with
error ζIOP. Let ζMT be the UC-friendly hiding error in Lemma 2.12. Then BCS[IOP, r] has UC-friendly zero
knowledge with error (roughly) ζARG := ℓp · (tq+tp

2r + ζIOP + ζMT).

2.5.3 UC-friendly knowledge soundness

The BCS construction, when instantiated with an IOP that is state-restoration knowledge sound (with a
straightline extractor), satisfies straightline knowledge soundness in the ROM [BCS16; CY24]. We prove a
much stronger statement: the BCS construction satisfies UC-friendly knowledge soundness.

Lemma 2.21 (informal). Let IOP be an IOP with straightline state-restoration knowledge soundness with
error κsr. Let κMT be the UC-friendly extraction error in Lemma 2.14. Then BCS[IOP, r] has UC-friendly
knowledge soundness with error (roughly) κARG = ℓv · (κsr + κMT).

We prove Lemma 2.21 similarly to Lemma 2.17, making use of the fact that in that analysis we can reduce
to the state-restoration knowledge soundness of the underlying PCP. In the case of the BCS construction,
we reduce to the IOP version of state-restoration knowledge soundness. We again have to ensure that the
adversary cannot use the simulation oracle in order to obtain an advantage, and an argument similar to that in
Lemma 2.17 readily establishes that.

2.5.4 Conclusion

Lemma 2.19, Lemma 2.20, and Lemma 2.21 together show that the BCS construction satisfies UC-friendly
completeness, UC-friendly zero knowledge, and UC-friendly knowledge soundness, provided that the
underlying IOP is honest-verifier zero knowledge and (straightline) state-restoration knowledge sound. In
turn, Lemma 2.9 implies that, under these conditions, the BCS construction is unconditionally UC-secure.
Both steps provide concrete security bounds, leading to an overall concrete security bound for the UC-security
of the BCS construction. This directly shows that existing zkSNARKs constructed from (state-restoration)
knowledge sound and honest-verifier zero knowledge IOPs (e.g. [BCRSVW19; BBHR19] and similar
constructions) are unconditionally UC-secure.

2.6 Adaptive corruptions and strong UC-friendly properties

The previous sections consider UC-security against non-adaptive corruptions. Here we outline how we
additionally achieve UC-security against adaptive corruptions.

In the setting of UC-security against adaptive corruptions, the environment (through the adversary)
may corrupt parties at any time during the protocol execution. When a party becomes corrupted, it reveals
to the environment its private randomness (i.e., its private state). In the real-world the corrupted party
directly reveals its own private randomness, while in the ideal-world the UC simulator must somehow sample
randomness that “explains” a posteriori the past behavior of the party (possibly up to some error). Specifically,

16

the challenge is that this randomness must be consistent with the input-output behavior of the party until this
point of the execution. (The environment can send inputs to any party and receive corresponding outputs.)

Depending on the role of the corrupted party, simulating such randomness presents different challenges.
If the corrupted party is the verifier, simulating its private randomness is easy, since it is the same in both
the real-world and ideal-world. In contrast, if the corrupted party is the prover party then simulating its
private randomness is more challenging. Indeed, the prover party invokes the proving interface, which is
different in the two worlds: (i) in the real-world the proving interface runs the honest argument prover; and
(ii) in the ideal-world the proving interface forwards its input to the ideal functionality, which in turn runs the
zero knowledge simulator. In the ideal-world then, if the prover party is corrupted, the UC simulator must
be able to produce, a posteriori, argument prover randomness that is consistent with all argument strings
produced by the proving interface so far. More explicitly, the UC simulator must output randomness that the
honest argument prover would have used to produce the argument strings that were output by the prover party
thus far, despite those argument strings being sampled by the zero knowledge simulator. These additional
capabilities must be explicitly accounted for in the UC-friendly properties.

Therefore, inspired by [LR22a], we consider “strong” variants of the UC-friendly properties in Section 2.2,
which we obtain by adding a corruption oracle that returns the (possibly reconstructed) prover randomness
used by the proving oracle of the game. Once the corruption oracle has been queried, we forbid further
queries to the corruption oracle (and to the proving oracle), modeling how in the UC-security experiment
control of a newly corrupted party (in this case the prover party) is relinquished to the environment.

By using these strong properties, Lemma 2.9 can be extended to provide emulation in the setting of
adaptive corruptions.

Lemma 2.22 (informal). If the non-interactive argument ARG in Lemma 2.9 satisfies strong UC-friendly com-
pleteness, strong UC-friendly zero knowledge, and strong UC-friendly knowledge soundness, the conclusion
of Lemma 2.9 holds even in the setting of adaptive corruptions (with the same error bound).

The challenge is to show that the additional capability conferred to the adversary (by the new corruption
oracles) in these strong UC-friendly experiments is not a problem. We focus on the steps required to satisfy
these properties for the Micali construction; the strategy for the BCS construction is similar.

2.6.1 Strong UC-friendly completeness

Strong UC-friendly completeness is, conveniently, already implied by the three properties of perfect com-
pleteness, monotone proofs, and unpredictable queries, with the same error bounds. In other words, the
Micali construction has strong UC-friendly completeness for free.

Lemma 2.23 (informal). Micali[PCP, r] has strong UC-friendly completeness with the same error as in
Lemma 2.15.

2.6.2 Strong UC-friendly zero knowledge

Establishing strong UC-friendly zero knowledge for the Micali construction is more involved. We show that
if the PCP underlying the Micali construction satisfies a natural notion that we call strong honest-verifier zero
knowledge, the Micali construction satisfies strong UC-friendly zero knowledge.

Lemma 2.24 (informal). Let PCP be a strong honest-verifier zero knowledge PCP with error ζPCP. Then
Micali[PCP, r] has strong UC-friendly zero knowledge with the same error as in Lemma 2.16.

17

The strong UC-friendly zero knowledge simulator is required to sample randomness that “explains” a
simulated Micali argument string. This randomness has three components: (i) the PCP prover randomness;
(ii) the Merkle commitment randomness; and (iii) the Fiat–Shamir randomness.

The strong honest-verifier zero knowledge property of the PCP is used to reconstruct the first piece of
randomness. Roughly, strong honest-verifier zero knowledge PCPs are honest-verifier zero knowledge PCPs
where the simulator additionally can, a posteriori, sample randomness that “explains” the sampled PCP local
view. (Later, in Section 2.6.4, we show PCPs that satisfy this notion.) In order to reconstruct the Merkle
commitment randomness, we show that Merkle commitment schemes satisfy a notion of strong UC-friendly
hiding (briefly, this property extends Definition 2.11 with a corruption oracle). Finally, the Fiat–Shamir
randomness is included in the Micali argument string, and thus the simulator has no need to reconstruct it.
The combination of these three observations yields Lemma 2.24.

2.6.3 Strong UC-friendly knowledge soundness

Showing strong UC-friendly knowledge soundness for the Micali construction also requires some additional
work. We strengthen the UC-friendly extraction property for the Merkle commitment scheme by adding a
corruption oracle, and prove that the Merkle commitment scheme satisfies this stronger property.

Lemma 2.25. MT has strong UC-friendly extraction with error (roughly) κMT = 3
2 ·

(tq+2ℓpl)2

2λ
+

2k(d+1)·(tq+2ℓpl)
2λ

.

Lemma 2.25 directly implies Lemma 2.14. Our proof of Lemma 2.25 closely follows the proof of multi-
extraction for the Merkle commitment scheme in [CY24], adapted to reflect the additional programming
capabilities of the adversary and the presence of simulation and corruption oracles.

We adapt the proof of Lemma 2.17 to rely on strong UC-friendly extraction, and directly show that the
Micali construction satisfies strong UC-friendly knowledge soundness. (Without any additional requirements
on the underlying PCP.)

Lemma 2.26 (informal). Let PCP be a knowledge sound PCP with error κPCP. Then Micali[PCP, r] has
strong UC-friendly knowledge sound with the same error as in Lemma 2.17.

2.6.4 Conclusion

UC-secure zkSNARKs from PCPs. The properties required of the underlying PCP are the ones that one
would naturally expect to need for the adaptive UC-security of the Micali construction. Yet to our knowledge
the PCP literature does not explicitly provide an off-the-shelf PCP with these properties.

We address this gap, by revisiting a transformation in [IW14] that combines a PCP and a zero knowledge
PCP of proximity (PCPP) to obtain a zero knowledge PCP. We show that: (a) if the given PCP is knowledge
sound then the resulting PCP is also knowledge sound; and (b) if the PCPP is strong honest-verifier zero
knowledge then the resulting PCP is also strong honest-verifier zero knowledge. Then we construct a strong
honest-verifier zero knowledge PCPP, and apply the transformation to any knowledge sound PCP (e.g.,
[BFLS91]) and this PCPP, concluding the proof of Theorem 1.2.

UC-secure zkSNARKs from IOPs. As mentioned before, we can prove analogues of Lemmas 2.24 and 2.26
for the BCS construction.

Lemma 2.27 (informal). Let IOP be an IOP.
• If IOP is strong honest-verifier zero knowledge IOP with error ζIOP, then BCS[IOP, r] is strong UC-friendly

zero knowledge with the same error as in Lemma 2.20.

18

• If IOP is a state-restoration knowledge sound IOP with error κIOP, then BCS[IOP, r] is strong UC-friendly
knowledge sound with the same error as in Lemma 2.21.

By inspection, we see that many IOPs used in practice satisfy these properties, and thus lead to UC-secure
zkSNARKs. We sketch how the masked univariate sumcheck protocol [BCRSVW19; BCFGRS17], a core
building block of many honest-verifier zero knowledge IOPs is strong honest-verifier zero knowledge. Let p̂
be a polynomial, which the verifier has oracle access to, and H ⊆ F be a domain. The unmasked univariate
sumcheck protocol allows the verifier to check that

∑
h∈H p̂(h) = β for some claimed value β. In the

masked version, to achieve zero knowledge, the prover sends (as an oracle) a masking polynomial q̂ and the
value β′ =

∑
h∈H q̂(h), the verifier samples a challenge c and then both parties run a unmasked univariate

sumcheck to check the claim
∑

h∈H(c · p̂ + q̂)(h) = c · β + β′, which ultimately requires the verifier to
query p̂, q̂ at a single location. The strong honest verifier zero knowledge simulator can reconstruct the prover
randomness by sampling q̂ uniformly at random, conditioned on the sum equaling β′ and on the value of
the query to q̂ as determined during the honest verifier zero knowledge simulation phase. (The conditioning
consists of linear constraints on the coefficients, so this sampling can be done efficiently.)

19

3 Preliminaries

3.1 Notation

List operations. For i ∈ [n] and a list x ∈ Σn, we denote by x[i] the i-th entry of x. For a set S ⊆ [n],
x[S] : S → Σ is the function that maps i ∈ S to x[i]. We write x ◦ y for the concatenation of two lists, and
(slightly abusing notation) x ∩ y for their intersection as sets.
Sampling. We write x ← D to denote that x is sampled from the distribution D. For a set S, we write
x← S to denote that x is sampled from the uniform distribution on S.
Oracles. We denote by x← Af1,...,fk the execution of an (oracle) algorithm A, with a uniformly sampled
random tape, and access to oracles f1, . . . , fk. We denote by U(λ) the set of functions f : {0, 1}∗ → {0, 1}λ.
A function f ← U(λ) is called a random oracle. We can derive from a random oracle f ← U(λ)
another random oracle with smaller output size by truncation. An oracle can be domain-separated into
independent oracles, by prefixing queries to the original oracle with a unique string for each (new) oracle. For
ℓ1, . . . , ℓk ≤ λ, we write f1, . . . , fk ← U(ℓ1, . . . , ℓk) for the oracles obtained from f ← U(λ) by domain
separating and modifying the output size so that fi : {0, 1}∗ → {0, 1}ℓi .

Next, we introduce notions and notation for programming random oracles. A query-answer trace is a
list tr = ((qidi, xi, yi))i∈[t], where qidi ∈ {query, prog} specifies if the query obtains an answer or programs
an answer, xi is the query, yi is the answer. We say that tr is invalid if there exists i, j ∈ [t] such that xi = xj
and yi ̸= yj . For a function f ∈ U(λ), the function f [tr] is defined as follows:

f [tr](x) :=

⊥ if tr is invalid
yi else if ∃ i s.t. xi = x

f(x) otherwise

.

For f ∈ U(λ) and a trace tr′ we define the (stateful) programmable oracle Jf, tr′K as follows.

Jf, tr′K:
1. Initialize a list tr := tr′.
2. On a random oracle query x, set y := f [tr](x), append (query, x, y) to tr, and return y.
3. On a programming query traceprog:

(a) If there exist (x, y) ∈ traceprog and (qidi, xi, yi) ∈ tr with xi = x, return 0.
(b) Else append ((prog, x, y))(x,y)∈traceprog to tr and return 1.

We write JfK := Jf, ∅K, and write y
tr←− AJf,tr′K for the output y of A when running with oracle Jf, tr′K and

with final trace tr (note that in this case tr denotes the list maintained by the oracle, so it does not include
failed programming queries). If tr′ is invalid, so is tr; conversely, if tr′ is valid so is tr. We denote by
ro(tr) := ((qid, x, y) ∈ tr : qid = query) and prog(tr) := ((qid, x, y) ∈ tr : qid = prog) the (deduplicated,
ordered) lists of query-answer pairs made, respectively, to the random and programming oracle. We also
write y

tr←− Af to denote that running A with the (non-programmable) random oracle f has output y and
query-answer trace tr (and, in this case, qidi = query for i ∈ [t]). We naturally extend the notions above for
multiple random oracle, in which case the query-answer trace is augmented with an entry oid specifying to
which oracle the query in question was made.

An adversary A that has access to a programmable random oracle is (tq, tp)-query if it makes at most
tq random oracle queries and tp programming queries (where a programming query with input traceprog is
counted as |traceprog| queries). For any algorithm A,

20

• qA(x1, . . . , xk) is an upper bound on the number of random oracle queries made by A(x1, . . . , xk);
• pA(x1, . . . , xk) is an upper bound on the number of programming queries made by A(x1, . . . , xk).
We also define qA(n1, . . . , nk) := max|xi|≤ni

qA(x1, . . . , xk) and pA(n1, . . . , nk) := max|xi|≤ni
pA(x1, . . . , xk).

Relation. A relation R is a set of tuples (x,w), where x is an instance and w is a witness. We associate a
language L(R), which is the set of instances x such that there exists a witness w such that (x,w) ∈ R.

Statistical distance. Let G0, G1 be two algorithms with outputs in D. The statistical distance (i.e., total
variation distance) between G0, G1 on input x is defined as

∆x(G0, G1) :=
1

2

∑
α∈D
|Pr [G0(x) = α]− Pr [G1(x) = α]| .

If D = {0, 1} then ∆x(G0, G1) = |Pr [G0(x) = 1]− Pr [G1(x) = 1]|. We write G0 ≡ G1 if, for every x,
∆x(G0, G1) = 0.

3.2 UC-security with unbounded adversaries

Universally composable (UC) security [Can01; Can20] provides a general framework for establishing the
security of cryptographic protocols. The security guarantees hold under a general composition operation,
which enables modular analysis. In this work, we use a global random oracle [CJS14; CDGLN18], which is a
shared global entity every party in the security experiment can access. The plain UC model does not provide
a composability theorem for protocols interacting with such a shared global functionality, which was later
rectified by the generalized universally composable (GUC) framework [CDPW07]. However, [BCHTZ20,
Appendix A] noted that the GUC framework is subtly inconsistent, and provide a blueprint for proving
security of protocols with global setup in the plain UC model, which we sketch next, and follow in this work.

In this section, we provide an informal description of the model for UC-security, and refer the reader
to [Can20] for more details. Furthermore, we describe the (minor) modifications to said model that we
undertake in order to capture security against computationally unbounded adversaries.

The model of computation in the UC model is interactive Turing machines (ITMs [Can20, Sec 3.1.1,
Def 4]), a generalization of Turing machines that can communicate with each other. An ITM is uniquely
identified by its identity tape, which contains an identity (consisting of a party-id and a session-id) and a
description of the code of the ITM. This information, together with the content of its tapes, is referred to
as an ITM instance ([Can20, Sec 3.1.1, Def 5]). Execution of a system of ITMs is defined in [Can20, Sec
3.1.2]. A system of ITMs is specified by an initial ITM I and a control function C. The execution starts by
running the initial ITM, and terminates when that same ITM halts, outputting the content of its tape. ITMs in
the system can run external-write instructions, which can be used to send messages, spawn new ITMs, and
more. Once an external-write instruction is issued, the control function decides whether it is allowed, and
possibly modifies the instruction written.11 A parametrized system of ITMs is a list of systems of ITMs
((Iλ, Cλ))λ parametrized by a security parameter λ ∈ N, which, abusing notation, we write (I, C) leaving λ
implicit. A protocol is an ITM, which in this work we assume to be subroutine exposing [Can20, Def. 21].

Definition 3.1 ([Can20, Sec 3.1.2]). For a system of ITMs (I, C), UCOutI,C(z) is the random variable
denoting the output of the execution under the control function C when the initial ITM I is started with input
z, where the randomness is taken over the random tapes of the ITMs in the system. For a parametrized system
of ITMs (I, C), we define UCOutλ,I,C(z) := UCOutIλ,Cλ

(z).

11More precisely, this is an extended system of ITMs in the terminology of [Can20]; we use the system terminology for simplicity.

21

The control function is parametrized by an adversary A and a protocol π, and determines what is allowed
for the main security experiment. We use a control function Cπ,A

G to model UC-security in the presence of a
global ITM G. Our control function builds upon the standard UC-security control function, which is formally
described in [Can20, Fig 6]. In the control function Cπ,A

G :

• The adversary is not allowed to pass or receive input from ITMs in the executions, it is only allowed to
interact with those machines via designated backdoor tapes.

• The environment can communicate with the adversary, and is only allowed to spawn ITM instances of the
protocol π with the same session-id.

• Additionally we allow the adversary to pass and receive output to and from a single specified ITM G.

By setting G to be a “dummy” ITM, we recover the standard control function.

Unconditional security. Unlike previous works, we consider a setting in which the environment is
computationally unbounded, and whose capabilities are only limited by the number of times it is allowed to
access some shared resources, such as a random oracle. To model this setting, we revisit the mechanism of
import and time budget introduced in [Can20, Sec 3.2], to introduce a generalized budget. First, we review
import and time budget, as a modeling of efficient computation. [Can20] mandates that each external-write
must contain a numeric field called an import. Each ITM has a starting time budget, which is incremented by
the import of received messages, and decremented by the import of sent messages. A protocol is T -bounded
if, at any point in the execution, the number of steps it took is at most T (n), where n is the current time
budget. A protocol is efficient is it is p-bounded for some polynomial p.

We extend this mechanism, and we assume that each ITM has a starting budget vector, containing a
non-negative integer for each resource whose access we wish to limit. We mandate the following requirements.

• Each external-write instruction requires specifying a budget vector.
• At any point in time, the current budget of an ITM is the sum (componentwise) of the starting budget and

the budget of all incoming messages, minus (componentwise) the budget of all outgoing messages.
• If at any point in time the budget vector of an ITM has a negative entry, the execution halts.

For the main security experiment, we assume that the environment starts with some budget vector, and the
adversary starts with the zero budget vector. The protocol has its own budget (separate from the environment)
that it can use, which we leave unspecified (and assume large enough at all times). A protocol is B-budget if
its starting budget is B. We also still use the original import mechanism to ensure that honest protocols are
efficient, and in a parametrized system of ITMs we assume that each protocol does not start execution until it
received import at least λ.

With this new budget mechanism, we can define notation for the main security experiment. The output
of the main security experiment, when started with (i) protocol π; (ii) environment E ; (iii) adversary A;
(iv) global functionality G; (v) security parameter λ; and (vi) input z, is the output of the execution of the
system of ITMs with parameter λ, initial ITM E , and the control function Cπ,A

G , on the input z.

Definition 3.2. Let π, E ,A,G be ITMs. Define EXECGπ,A,E(λ, z) := UCOut
λ,E,Cπ,A

G
(z).

Next, our aim is to give a description of the composition theorem [Can20, Thm. 22] that is amenable to
our unconditional security setting. We start by defining UC-emulation [Can20, Sec 4.2, Def 9]. Informally, a
protocol π UC-emulates a protocol φ if the output of the environment E in the main security experiment,
when run with protocol π and an adversary A, is statistically close to that while running with protocol φ and
some simulator S (which may depend on A but not on E).

22

Definition 3.3. Let G, π, φ be protocols. We say that π B-UC-emulates φ in the G-hybrid model with
simulation error σ and simulation overhead B′ if for every A there exists an efficient B′-budget simulator S
such that for every B-budget E

∆λ(EXEC
G
π,A,E ,EXEC

G
φ,S,E) ≤ σ(λ) .

Remark 3.4. Using [Can20, Sec 4.3.1] we can replace A with a “dummy adversary” AD, which yields an
equivalent definition that is significantly easier to work with.

An ideal-functionality F is an ITM instance, and induces a protocol IDEALF [Can20, Sec 5.3]. In
IDEALF there is a single instance of F , and multiple dummy parties that simply forward their inputs to F
and then return the outputs of F to their callers.

Definition 3.5. Let π a protocol, F an ideal functionality, and G a global functionality. Let IDEALGF ,S,E :=
EXECGIDEALF ,S,E . We say that π B-UC-realizes F in the G-hybrid model if π B-UC-emulates IDEALF in
the G-hybrid model.

Specializing Definitions 3.2, 3.3 and 3.5 to the case where G is a dummy functionality recovers the
standard notion of UC emulation and ideal functionalities.

Definition 3.6. Let D be a dummy ITM, which passes no output to its caller. Let G, π, φ be protocols. We say
that π B-UC-emulates φ if π B-UC-emulates φ in the D-hybrid model. We further say that π B-UC-realizes
F if π B-UC-realizes F in the D-hybrid model.

For protocols ρ, π, φ, the UC operator ρπ→φ := UC(ρ, π, φ) is defined in [Can20, Sec 6.1]. Intuitively, it
replaces invocations of π in ρ with invocations of φ. The composition theorem formalizes the intuitive notion
that if π UC-emulates φ then this transformation yields a protocol that emulates ρ.

Theorem 3.7 ([Can20, Thm. 22]). Let ρ, π, φ be protocols, and let tπ(ρ, λ) be a bound on the number of
instances of π that ρ spawns when started with parameter λ. Suppose that:
• ρ is (π, φ)-compliant [Can20, Sec 6.1];
• π, φ are subroutine respecting [Can20, Def 19]; and
• π B-UC-emulates φ with simulation error σ and simulation overhead B′.
Then ρπ→φ B-UC-emulates ρ with simulation error tπ(ρ, λ) · σ and simulation overhead tπ(ρ, λ) · B′.

The UC theorem has some technical preconditions. Compliance is a requirement on the calling protocol,
and thus it is out of scope for this work. Subroutine respecting protocols are protocols whose subprotocols
(and subprotocols of those protocols) communicate only with parties outside their session through the main
protocol. This precondition is what prevents the UC theorem from being applied in presence of a global
functionality, as said functionality is outside the main session and will be queried by the emulator and the
emulated protocol. In order to allow global shared functionalities G, [BCHTZ20, Def 3.2] introduce G-
subroutine respecting protocols, which informally are subroutine respecting protocols whose subprotocols
(including themeselves) are allowed to pass and receive output from G. They also introduce a new “manager”
transformation M [BCHTZ20, Appendix B] that can be used to formulate a composition theorem for UC with
global subroutines. Roughly, for “nice” protocols π, φ and a global protocol G, the UCGS theorem shows
that if M[π,G] UC-emulates M[φ,G] then the composition theorem can be applied. For the UC with Global
Subroutines theorem, we require G to be π-regular, which disallows G from spawning new ITMs and from
using π as a subroutine.

23

Theorem 3.8 ([BCHTZ20, Thm. 3.5]). Let ρ, π, φ,G be protocols. Suppose that:
• ρ is (π, φ)-compliant and (π,M[ζ,G])-compliant for ζ ∈ {π, φ };
• G is subroutine respecting and π-regular [BCHTZ20, Def 3.3];
• π, φ are G-subroutine respecting [BCHTZ20, Def 3.2];
• M[π,G] B-UC-emulates M[φ,G] with simulation error σ and simulation overhead B′.
Then ρπ→φ B-UC-emulates ρ with simulation error tπ(ρ, λ) · σ and simulation overhead tπ(ρ, λ) · B′.

Modeling corruptions. Corruptions are not explicitly modeled in the UC framework, but instead are
modeled as additional interfaces exposed by protocols. The corruption models that we study in this work are
static corruptions and adaptive corruptions. In the case of static corruptions, the adversary can corrupt a
party at the start of the execution, and assumes complete control of it for the rest of the execution. In the
case of adaptive corruptions, the adversary can dynamically assume control of a party, and when it does so it
forces said party to reveal the randomness used thus far. Our result will hold in both settings, and we will use
blue to detail the modifications required for the case of adaptive corruptions. In accordance to the budget
mechanism that we introduced, we additionally extend the traditional corruption mechanism to set the budget
of corrupted parties to 0. This ensures that the environment/adversary cannot access additional resources
using corruptions.

Remark 3.9. The mechanism of budget that we have introduced to model unconditional security is not a
standard UC notion, and is not considered in previous works. In principle, it could invalidate some of the
results that we later rely on such as Theorem 3.7 and Theorem 3.8. We have verified that the proofs of these
results can be adapted, with minor bookkeeping modifications, to hold in our model. We suggest that future
work that aims for UC-results in this unconditional setting employs the mechanism we introduced. We also
considered alternative mechanisms to give unconditional security bounds, which we briefly mention.

• Modifying the global functionalities to stop answering queries after a certain number of queries have been
made. While this is a conceptually simple modification to make, it enables a simple distinguishing attack.
Consider for example a global random oracle that only allows tq queries, and suppose that the real and
ideal protocol make a distinct and known number of queries to the GROM. Then, an environment could run
the protocol, and query the GROM until it stops answering to deduce the number of queries the protocol
made, and, consequently, deduce if it is run in the real-world or ideal-world. While we could still achieve
UC-security in this context with tweaks to the UC-simulator, this adds additional complexity to disallow an
attack that anyways does not reflect real-world attacks.

• Giving theorems for quantified environments. This would imply giving results of the form “for every
environment E that makes at most tq oracle queries...”. In fact, the environment can make queries to
restricted functionalities through the adversary and corrupted parties, which would make the quantification
even more unwieldy than in this example. We prefer to introduce budgets within the UC-framework, in
order to give more compact and precise theorems.

3.3 Global random oracle

Our results hold in the global restricted programmable observable random oracle [CDGLN18]. In this
model all parties have access to an oracle that can be queried and programmed. Every party can also check
whether a point has been programmed. The simulator has an advantage over the environment in that it can
program points undetectably. This model was designed to prove the security of particularly efficient protocols,
such as the folklore commitment scheme cm := f((m, r)) (where m is a message and r a random salt).

24

We refer the reader to [CDGLN18] for a discussion of the features of this model, compared to other global
random oracle models. Our definition slightly differs from prior ones, as we allow parties to atomically
program many query-answer pairs at once (if any of the pairs was previously programmed the entire request
fails and the oracle’s state remains unchanged). An atomic programming request requires the calling party to
expend budget equivalent to repeatedly calling the programming functionality for each query-answer pair.
In the language of Section 3.2, in this paper we establish that certain GRO-subroutine-respecting protocols
UC-realize a desired ideal functionality, where the global functionality GRO is defined next.

Functionality 3.1. The GRO functionality [CDGLN18] is defined as follows:
Parameters: security parameter λ
State: underlying random oracle f ← U(λ), initially empty lists tr, {IllegitimateTracesid}sid
Functionality:
• GRO.Query(x) from M = (pidM , sidM) or the adversary:

1. Set y := f [tr](x) and append (query, x, y) to tr.
2. Parse x as (sid, x′) for sid a session ID.
3. If the query came from the adversary or sid ̸= sidM , append (x′, y) to IllegitimateTracesid.
4. Output (Query, y) to the caller.

• GRO.Observe(sid) from M = (pidM , sidM) or the adversary:
1. Output (Observe, IllegitimateTracesid).

• GRO.Program(traceprog) from M = (pidM , sidM) or the adversary:
1. If there exist (x, y) ∈ traceprog and (query, xi, yi) ∈ tr with xi = x, output (Program, 0).
2. Else append ((prog, x, y))(x,y)∈traceprog to tr.
3. Output (Program, 1).

• GRO.IsProgrammed(x) from M = (pidM , sidM) or the adversary:
1. Parse x as (sid, x′) for sid a session ID.
2. If the query was made by the adversary or sid ̸= sidM , return ⊥.
3. If there exists y such that (prog, x, y) ∈ tr, return (IsProgrammed, 1); else return (IsProgrammed, 0).

We introduce notation for less verbose queries to the global random oracle.

Definition 3.10. We write GROsid for the domain separated oracle GROsid(x) := GRO.Query((sid, x)).

Note that GRO is π-regular for every protocol π, as it does not invoke subprotocols nor passes output
to any ITM that did not query it. Moreover, GRO is subroutine respecting. Hence GRO satisfies the
preconditions of Theorem 3.8.

25

4 UC-security for non-interactive arguments in the ROM

We describe the notion of security that we establish for non-interactive arguments in the ROM. First we
recall the relevant syntax. Let f be sampled from U(λ). A non-interactive argument in the ROM is a tuple
ARG = (P,V) that works as follows.

• The argument prover P, given query access to f , receives as input an instance x and a witness w, and
outputs an argument string π.

• The argument verifier V, given query access to f , receives as input an instance x and an argument string π,
and outputs a decision bit.

In this work we study UC-security for non-interactive arguments, so we do not state the usual notions of
completeness and soundness. Instead, in Section 4.1 we provide an ideal functionality FaARG that captures
these notions, as well as zero knowledge and knowledge soundness. Then in Section 4.2 we construct, starting
from a non-interactive argument ARG in the ROM, a protocol Πa[ARG] in the GROM. In later sections
we show that if ARG satisfies certain “UC-friendly” properties then Πa[ARG] UC-emulates FaARG in the
GRO-hybrid model. (Recall that these UC-friendly properties and the UC-emulation are unconditional.)

4.1 Ideal functionality

In Functionality 4.1 we provide the ARG ideal functionality FaARG introduced in [LR22b] (called NIZKPoK
functionality there), and later extended in [LR22a] to include adaptive corruptions. We outline how FaARG

captures the usual desiderata of a non-interactive argument.

• Syntax. The ideal functionality has a prover interface FaARG.Prove and a verifier interface FaARG.Verify,
matching the prover and verifier of a non-interactive argument. Additionally, the ideal functionality exposes
the interface FaARG.Setup and the interface FaARG.Corrupt. The simulator uses FaARG.Setup to pass to
the functionality the tuple of algorithms to be used for proving and verification. FaARG.Corrupt is called by
the simulator in the event of a corruption, and returns information used to simulate the random tape of the
party being corrupted. If the party is the verifier, this is the randomness used thus far in the verification; if
the corrupted party is the prover, this information is the randomness simulated in the proving.

• Non interactivity. The ideal functionality interacts with the simulator only in FaARG.Setup. This implies
that only non-interactive argument systems can realize the functionality.

• Completeness. FaARG.Verify accepts all argument strings generated by FaARG.Prove.
• Knowledge soundness. FaARG.Verify attempts to extract a witness for instances not previously queried to

the proving oracle accompanied by valid proofs, and outputs an error if extraction fails.
• Zero knowledge. FaARG.Prove outputs simulated proofs generated without the witness.

For simplicity, we give the definition of FaARG for a specific session id sid.

Functionality 4.1. The FaARG functionality for a session sid is defined as follows.
Parameters: A relation R, an instance bound n.
Participants: A (dummy) prover party MP and a (dummy) verifier party MV .
State: A tuple of algorithms algTuple, initially equal to ⊥. Several lists (initially empty):
• InstanceList, list of proved instances;
• Proved, list of proved statements;
• hProgrammed, list of (honestly) programmed points;
• extTrace, list of queries of the adversary and the simulator to the GROM;

26

• RandomP, list of prover randomness strings;
• RandomV, list of verifier randomness strings;
• Corrupted, list of corrupted parties.
Functionality:
• FaARG.Setup() from M = (pidM , sidM):

1. If this interface was previously called, sid ̸= sidM , or or M ∈ Corrupted, return ⊥.
2. Pass (Setup, sid) to the simulator S and receive a tuple of algorithms (V,S,E).
3. Set algTuple := (V,S,E).

• FaARG.Prove(x,w) from M = (pidM , sidM):
1. If sid ̸= sidM or algTuple = ⊥ or |x| > n or M ∈ Corrupted, return ⊥.
2. If (x,w) /∈ R, return ⊥.
3. Obtain IllegitimateTracesid from GRO.Observe(sid).
4. Append to extTrace the query-answer pairs in IllegitimateTracesid not already present.
5. Compute (π, tr, zπ)

trS←−− SGROsid(x).

6. Compute (ρP, tr
′)

tr′S←−− SGROsid(w, zπ).
7. Set extTrace := extTrace ◦ trS◦tr′S.
8. Call GRO.Program(((sid, x), y)(x,y)∈tr◦tr′), outputting Fail if the call returns (Program, 0).
9. Set hProgrammed := hProgrammed ◦ tr◦tr′.

10. Append x to InstanceList.
11. Append (x, π) to Proved.
12. Append ρP to RandomP.
13. Return (Proof, sid,x, π).

• FaARG.Verify(x, π) from M = (pidM , sidM):
1. If sid ̸= sidM or algTuple = ⊥ or |x| > n or M ∈ Corrupted, return ⊥.
2. Sample ρV ← {0, 1}rV and append it to RandomV.
3. Compute b

trV←−− VGROsid(x, π; ρV).
4. If (x, π) ∈ Proved, return (Verification, sid,x, π, 1).
5. If b = 0 return (Verification, sid,x, π, 0).
6. If there exists (x, y) ∈ trV \hProgrammed such that GRO.IsProgrammed((sid, x)) = (IsProgrammed, 1),

return (Verification, sid,x, π, 0).
7. If x /∈ InstanceList:

(a) Obtain IllegitimateTracesid from GRO.Observe(sid).
(b) Append to extTrace the query-answer pairs in IllegitimateTracesid not already present.
(c) Set extTrace′ := ((x, y) ∈ extTrace : GRO.IsProgrammed((sid, x)) = (IsProgrammed, 0)).
(d) Compute w← E(x, π, extTrace′).
(e) If (x,w) /∈ R, return Fail.

8. Return (Verification, sid,x, π, 1).
• FaARG.Corrupt(P) from S:

1. Append P to Corrupted.
2. If P = MP , return RandomP.
3. If P = MV , return RandomV.

The ideal functionality FaARG has an instance bound n as one of its parameters, which later on will
facilitate giving concrete security bounds. Moreover, FaARG is GRO-subroutine respecting, as it only interacts
with GRO and with parties in the same session. Finally, in the verification procedure, FaARG invokes a
straightline extractor E that receives as input a query-answer trace consisting of the ordered query-answer
pairs resulting from queries to the GROM by the environment and the simulator, filtered to exclude queries
whose answers were previously programmed by the environment. (In particular, the extractor E may receive
queries to the random oracle that were previously programmed by the simulator.)

27

4.2 Protocol

A non-interactive argument ARG = (P,V) in the ROM implies a corresponding protocol Πa[ARG] in the
GRO-hybrid UC framework, described below. Πa[ARG] is a thin wrapper around ARG that uses the global
random oracle with domain separation (using the GROsid notation from Definition 3.10) to run the argument
prover P and the argument verifier V of ARG. To disallow trivial breaks of knowledge soundness (such as
those that the simulator for zero knowledge would allow), the verification algorithm checks whether any of
the points queried are programmed.

Protocol 4.1. The protocol Πa[ARG] for a session sid is defined as follows.
Parameters: A non-interactive argument ARG = (P,V), an instance bound n.
Participants: A designated prover MP and a designated verifier MV .
• Πa[ARG].Setup() from M = (pidM , sidM): Do nothing.
• Πa[ARG].Prove(x,w) from M = (pidM , sidM):

1. Prover MP

(a) If sid ̸= sidM or |x| > n, return ⊥.
(b) If (x,w) /∈ R, return ⊥.
(c) Compute π ← PGROsid(x,w).
(d) Return (Proof, sid,x, π).

• Πa[ARG].Verify(x, π) from M = (pidM , sidM):
1. Verifier MV

(a) If sid ̸= sidM or |x| > n, return ⊥.

(b) Get b trV←−− VGROsid(x, π).
(c) If for some (x, y) ∈ trV GRO.IsProgrammed((sid, x)) = (IsProgrammed, 1), then set b := 0.
(d) Return (Verification, sid,x, π, b).

• Πa[ARG].Corrupt(M) from the adversary A:
1. If M /∈ {MP ,MV } return ⊥.
2. Return all the randomness of M , and relinquish control to the adversary.

Πa[ARG] is GRO-subroutine respecting, because it interacts only with protocols in the same session and
with GRO.

28

5 UC-friendly security notions for non-interactive arguments

We describe three security notions for a non-interactive argument ARG := (P,V): a “UC-friendly” notion of
completeness in Section 5.1; a “UC-friendly” notion of zero knowledge in Section 5.2; and a “UC-friendly”
notion of knowledge soundness in Section 5.3. Later on in Section 6 we show that if a non-interactive
argument ARG satisfies each of these security notions then Πa[ARG] (Protocol 4.1) UC-realizes FaARG

(Functionality 4.1) in the GRO-hybrid model; in fact, we show that these notions are necessary to achieve
such goal. The latter two security notions are variants of those in [LR22b; LR22a], adapted to provide
concrete security bounds and simplified when allowed by our setting.

Below we consider adversaries that can make multiple types of oracle queries: (1) random oracle queries;
(2) programming queries; (3) prover queries; (4) verifier queries; and (5) corruption queries.

Definition 5.1. An adversary is (tq, tp, ℓp)-query if it makes at most tq random oracle queries, tp programming
queries, ℓp prover queries, a single prover corruption query, and a single verifier corruption query. An
adversary is (tq, tp, ℓp, ℓv)-query if it makes at most tq random oracle queries, tp programming queries, ℓp
prover queries, ℓv verifier queries, a single prover corruption query, and a single verifier corruption query.

Remark 5.2. As for the GRO, here and throughout the paper we allow the adversary to program the random
oracle in “batches”. Accordingly, we count a single query with batch tr as |tr| individual queries.

5.1 UC-friendly completeness

We introduce the notion of UC-friendly completeness. It models the capability of the adversary to induce the
proving interface to generate proofs that do not verify successfully.

Definition 5.3. For ARG = (P,V), we define the UC-friendly completeness experiment as follows:

sUCCompletenessf (n,A):
1. Initialize empty lists tr,ProofList,RandomP,RandomV.
2. Set advWin := 0.
3. Run A answering its queries as follows:

– On a random oracle query x, set y := f [tr](x), append (query, x, y) to tr, and return y.
– On a programming query traceprog:

(a) If there exists (x, y) ∈ traceprog and (qidi, xi, yi) ∈ tr with xi = x, return 0.
(b) Else append ((prog, x, y))(x,y)∈traceprog to tr and return 1.

– On a prover query (x,w) ∈ R with |x| ≤ n:
(a) Sample argument prover randomness ρP ← {0, 1}rP and append it to RandomP.

(b) Compute the argument string π
trP←−− Pf [tr](x,w; ρP).

(c) Set tr := tr ◦ trP.
(d) Append (x, π) to ProofList.
(e) Return π.

– On a verifier query (x, π):
(a) Sample argument verifier randomness ρV ← {0, 1}rV and append it to RandomV.

(b) Compute the decision bit b
trV←−− Vf [tr](x, π; ρV).

(c) Set b̃ := b ∧ (trV ∩ prog(tr) = ∅).
(d) If (x, π) ∈ ProofList ∧ b̃ = 0, set advWin := 1.
(e) Set tr := tr ◦ trV.

29

(f) Return b̃.
– On a prover corruption query, return RandomP (and do not answer further prover corruption and

prover queries).
– On a verifier corruption query, return RandomV (and do not answer further verifier corruption and

verifier queries).
4. Return advWin.

ARG has weak (resp. strong) UC-friendly completeness with error ϵARG if, for every (tq, tp, ℓp, ℓv)-query
adversary A, instance bound n, security parameter λ,

Pr

[
advWin = 1

∣∣∣∣ f ← U(λ)
advWin← sUCCompletenessf (n,A)

]
≤ ϵARG(λ, n, tq, tp, ℓp, ℓv) .

We show that strong UC-friendly completeness is implied by natural notions that are typically satisfied
by non-interactive arguments. We begin by recalling the definition of perfect completeness.

Definition 5.4. ARG = (P,V) has perfect completeness if, for every instance-witness pair (x,w) ∈ R,

Pr

[
Vf (x, π) = 1

∣∣∣∣ f ← U(λ)
π ← Pf (x,w)

]
= 1 .

A counterexample shows that perfect completeness is insufficient to achieve UC-friendly completeness.

Lemma 5.5. Let n, λ ∈ N. There exists a non-interactive argument ARG = (P,V) with perfect completeness
and UC-friendly completeness error ϵARG(λ, n, 0, 1, 1, 1) = 1.

Proof. Let R be a relation and consider the non-interactive argument ARG = (P,V) for R defined as
follows:

• Pf (x,w): return 0.
• Vf (x, π): query f(0), return 1.

ARG clearly satisfies perfect completeness. Next, consider the adversary against UC-friendly completeness
that requests a proof from the prover oracle, programs the oracle f at 0, and request verification of the
received proof. This adversary wins the UC-friendly completeness game with probability 1, using only one
query to the programming oracle, one to the proving oracle, and one to the verification oracle.

The previous counterexample is rather artificial, as typically non-interactive arguments do not have
verifiers that perform spurious queries to the random oracle. In fact, non-interactive arguments typically satisfy
the property of monotone proofs, which we define next, and which disallows the previous counterexample.
Informally, the property states that while verifying a proof the verifier queries the random oracle only at
points that were previously queried by the prover.

Definition 5.6. ARG = (P,V) has monotone proofs if, for every (x,w) ∈ R and adversary A,

Pr

trV ⊆ trP

∣∣∣∣∣∣∣∣∣
f ← U(λ)
π

trP←−− Pf (x,w)

⊥ tr←− AJf,trPK

b
trV←−− Vf [tr](x, π)

 = 1 ,

where the inclusion trV ⊆ trP interprets the lists as sets.

30

Perfect completeness and monotone proofs are still not sufficient, as the following counterexample shows.

Lemma 5.7. Let n, λ ∈ N. There exists a non-interactive argument ARG = (P,V) with perfect completeness,
monotone proofs, and UC-friendly completeness error ϵARG(λ, n, 0, 1, 1, 1) = 1.

Proof. Let R be a relation and consider the non-interactive argument ARG = (P,V) for R defined as
follows:

• Pf (x,w): query f(0), return 0.
• Vf (x, π): query f(0), return 1.

ARG clearly satisfies perfect completeness, and has monotone proofs. Next, consider the adversary against
UC-friendly completeness that programs the oracle f at 0, requests a proof from the prover oracle, and
request verification of the received proof. Again, this adversary wins the UC-friendly completeness game with
probability 1, using only one query to the programming oracle, one to the prover, and one to the verifier.

The above counterexample shows that if the adversary can predict which points the prover will query
when generating a proof then there is an attack on UC-friendly completeness. This in particular shows that
any (non-trivial) non-interactive argument with a deterministic prover is not UC-friendly complete. However,
typical (zero knowledge) non-interactive arguments can be shown to satisfy a property that disallows such
attacks. We dub this property unpredictable queries, defined next.

Definition 5.8. ARG = (P,V) has unpredictable queries with error ϵP if, and every (tq, tp)-query
adversary A, security parameter λ, and instance bound n:

Pr

 |x| ≤ n
∧ (x,w) ∈ R
∧ prog(tr) ∩ trP ̸= ∅

∣∣∣∣∣∣∣
f ← U(λ)
(x,w)

tr←− AJfK

π
trP←−− Pf [tr](x,w)

 ≤ ϵP(λ, n, tq, tp) .

Perfect completeness, monotone proofs, and unpredictable queries all imply UC-friendly completeness.

Lemma 5.9. If ARG = (P,V) has perfect completeness (Definition 5.4), monotone proofs (Definition 5.6),
and unpredictable queries with error ϵP (Definition 5.8), then ARG has strong UC-friendly completeness
(Definition 5.3) with error

ϵARG(λ, n, tq, tp, ℓp, ℓv) := ℓp · ϵP(λ, n, tq + ℓp · qP(n) + ℓv · qV(n), tp) .

Proof. Let A be an adversary against the strong UC-friendly completeness security game. We construct an
adversary against the unpredictable queries game.

BJfK(A):
1. Initialize empty lists advProg, RandomP, RandomV.
2. Sample ĩ← [ℓp].
3. Run A, answering its queries as follows:

– Forward random oracle queries to the random oracle.
– Forward programming queries to the programming oracle, appending the queries to advProg if the

programming succeeds.
– On the i-th prover query (xi,wi) ∈ R with |xi| ≤ n:

(a) If i = ĩ: output (xi,wi) and terminate.

31

(b) Sample ρP ← {0, 1}rP and add it to RandomP.
(c) Compute πi ← Pf (xi,wi; ρP).
(d) Return πi.

– On a verifier query (x, π) with |x| ≤ n:
(a) Sample ρV ← {0, 1}rV and append it to RandomV.
(b) Run b

tr←− Vf (x, π; ρV). If any of the points queried by V are in advProg, return 0 to A, else
return b.

– On a prover corruption query, return RandomP and stop answering further prover or prover corruption
queries.

– On a verifier corruption query, return RandomV and stop answering further verifier or verifier
corruption queries.

Whenever A wins the UC-friendly completeness game, advWin is set. This implies that there is at least
a proof (xi, πi) ∈ ProofList did not verify successfully. This can happen if either the argument verifier
rejects (which cannot occur by perfect completeness) or if the verification interface queries a point that was
previously programmed. Since ARG has monotone proofs, this implies that the proving algorithm must
have queried some programmed points. By a standard hybrid argument, we learn that ϵARG ≤ ℓp · ϵP. The
adversary B performs the same number of queries to the random oracle asA, if not for the costs of simulating
the proof and verification oracle, which are ℓp · qP and ℓv · qV queries respectively.

5.2 UC-friendly zero knowledge

We describe a “UC-friendly” notion of zero knowledge for a non-interactive argument. The definition is a
natural extension of adaptive zero knowledge in the ROM, in which the adversary can additionally program
the oracle. We additionally consider a stronger version, in which the adversary can ask (once only) for the
randomness that the argument prover used to construct argument strings so far.

Definition 5.10. Let ARG = (P,V) be a non-interactive argument, and let S be an (oracle) algorithm. We
define two security games sUCZeroKnowledge0 and sUCZeroKnowledgeS1 .

sUCZeroKnowledge0(λ, n,A):
1. Sample f ← U(λ).
2. Initialize empty lists tr,ProofList, RandomP,RandomV.
3. Run A, answering each query as follows.

– On a random oracle query x, set y := f [tr](x), append (query, x, y) to tr, and return y.
– On a programming query traceprog:

(a) If there exists (x, y) ∈ traceprog and (qidi, xi, yi) ∈ tr with xi = x, return 0.
(b) Else append ((prog, x, y))(x,y)∈traceprog to tr and return 1.

– On a prover query (x,w) ∈ R with |x| ≤ n:
(a) Sample argument prover randomness ρP ← {0, 1}rP and append it to RandomP.

(b) Compute the argument string π
trP←−− Pf [tr](x,w; ρP).

(c) Set tr := tr ◦ trP.
(d) Append (x, π) to ProofList.
(e) Return π.

– On a verifier query (x, π) ∈ R with |x| ≤ n:
(a) Sample argument verifier randomness ρV ← {0, 1}rV and append it to RandomV.

(b) Compute the decision bit b
trV←−− Vf [tr](x, π; ρV).

32

(c) Set tr := tr ◦ trV.
(d) If (x, π) ∈ ProofList, return 1.
(e) Return b ∧ (trV ∩ prog(tr) = ∅).

– On a prover corruption query, return RandomP. (Refuse further prover or prover corruption queries.)
– On a verifier corruption query, return RandomV. (Refuse further verifier or verifier corruption

queries.)
4. Output A’s output.

sUCZeroKnowledgeS1 (λ, n,A):
1. Sample f ← U(λ).
2. Initialize empty lists tr, advProg,RandomP,RandomV.
3. Run A, answering each query as follows:

– On a random oracle query x, set y := f [tr](x), append (query, x, y) to tr, and return y.
– On a programming query traceprog:

(a) If there exists (x, y) ∈ traceprog and (qidi, xi, yi) ∈ tr with xi = x, return 0.
(b) Else append ((prog, x, y))(x,y)∈traceprog to tr and advProg and return 1.

– On a prover query (x,w) ∈ R with |x| ≤ n:

(a) Compute (π, tr′, zπ)
trS←−− Sf [tr](x).

(b) Compute (ρP, tr
′′)

tr′S←−− Sf [tr◦trS](w, zπ).
(c) If tr ◦ trS◦tr′S ◦ tr′◦tr′′ is invalid, return ⊥.
(d) Set tr := tr ◦ trS◦tr′S ◦ tr′◦tr′′.
(e) Append ρP to RandomP.
(f) Return π.

– On a verifier query (x, π) ∈ R with |x| ≤ n:
(a) Sample argument verifier randomness ρV ← {0, 1}rV and append it to RandomV.

(b) Compute the decision bit b
trV←−− Vf [tr](x, π; ρV).

(c) Set tr := tr ◦ trV.
(d) If (x, π) ∈ ProofList, return 1.
(e) Return b ∧ (trV ∩ advProg = ∅).

– On a prover corruption query, return RandomP. (Do not answer further prover or prover corruption
queries.)

– On a verifier corruption query, return RandomV. (Do not answer further verifier or verifier corruption
queries.)

4. Output A’s output.

ARG has weak (resp. strong) UC-friendly zero knowledge with error ζARG if there exists a proba-
bilistic polynomial-time algorithm S such that for every security parameter λ, instance bound n, and every
(tq, tp, ℓp, ℓv)-query adversary A

∆(λ,n,A)
(
sUCZeroKnowledge0, sUCZeroKnowledge

S
1

)
≤ ζARG(λ, n, tq, tp, ℓp, ℓv) .

We define a simplified notion of zero knowledge, which suffices to imply UC-friendly zero knowledge.

Definition 5.11. Let sUCZeroKnowledgeSimple0, sUCZeroKnowledgeSimple1 be identical to sUCZeroKnowledge0,
sUCZeroKnowledge1, with the verification and verification corruption oracle removed. ARG has weak (resp.
strong) simplified UC-friendly zero knowledge with error ζsimple if there exists a probabilistic polynomial-
time algorithm S such that for every security parameter λ, instance bound n and every (tq, tp, ℓp)-query

33

adversary A

∆(λ,n,A)(sUCZeroKnowledgeSimple0, sUCZeroKnowledgeSimpleS1) ≤ ζsimple(λ, n, tq, tp, ℓp) .

Lemma 5.12. Suppose that ARG has weak (resp. strong) simplified UC-friendly zero knowledge with error
ζsimple. Then ARG has weak (resp. strong) UC-friendly zero knowledge with error

ζARG(λ, n, tq, tp, ℓp, ℓv) := ζsimple(λ, n, tq + ℓv · qV(n), tp, ℓp) .

Proof. Let A be an adversary against simple UC-friendly zero knowledge. We construct an adversary against
UC-friendly zero-knowledge.

B(A):
1. Initialize empty lists advProg,ProofList and RandomV.
2. Run A, answering queries as follows:

– Forward random oracle and prover corruption queries to the corresponding oracles.
– Forward prover queries to the corresponding oracle, appending the resulting instance-proof pair to
ProofList.

– Forward programming queries to the corresponding oracle, and, if the programming succeeds, add
the queries to advProg.

– On a verifier query (x, π) with |x| ≤ n:
(a) Sample ρV ← {0, 1}rV and append it to RandomV.
(b) Compute b

trV←−− V(x, π; ρV).
(c) If (x, π) ∈ ProofList, answer 1.
(d) Return b ∧ (trV ∩ advProg = ∅).

3. Output whatever A outputs.

Note that B perfectly simulates the view of A in the UC-friendly zero knowledge game, and only performs
an additional ℓv · qV queries.

We reduce simple UC-friendly zero knowledge to a definition in which the adversary makes a single
prover query.

Lemma 5.13. Suppose that ARG satisfies a version of Definition 5.11 in which the adversary is allowed only
a single query to the prover, with error ζ(1)simple(λ, n, tq, tp, ℓp).

Then ARG satisfies Definition 5.11 against ℓp prover queries, with error

ζsimple(λ, n, tq, tp, ℓp) := ℓp · ζ(1)simple(λ, n, tq + so(1)q (n, ℓp), tp + so(1)p (n, ℓp)) .

Above, so(1)q (n, ℓp) := ℓp ·max (qP(n), 2qS(n)) and so(1)p (n, ℓp) := 2ℓp · pS(n).

Proof. Consider a sequence of hybrid games G0, . . . ,Gℓp . In game Gi, the first i oracle calls to the
prover are answered with the oracle of sUCZeroKnowledgeSimpleS1 while the remaining calls are an-
swered with the oracle of sUCZeroKnowledgeSimple0. Note that G0 ≡ sUCZeroKnowledgeSimple0 and
Gℓp ≡ sUCZeroKnowledgeSimpleS1 . We show that

∆A(Gi,Gi+1) ≤ ζ
(1)
simple(λ, n, tq + so(1)q (n, ℓp), tp + so(1)p (n, ℓp)) .

The lemma readily follows since ∆A(G0,Gℓp) ≤
∑ℓp−1

i=0 ∆A(Gi,Gi+1).
Let A be an adversary that aims to distinguish between Gi and Gi+1.
We construct an adversary B against the single prover query game as follows.

34

B(A):
1. Run the adversary A, answering oracle queries as follows.

– Forward queries to the random and programming oracles to the corresponding oracles provided by
the game.

– For prover queries:
* For the first i− 1 queries, simulate the oracle as in sUCZeroKnowledgeSimpleS1 using the random

and programming oracle of the game.
* For the i-th query, use the prover oracle of the game.
* For the remaining queries, simulate the oracle as in sUCZeroKnowledgeSimple0 using the random

oracle of the game.
– For the corruption oracle query:

* For the first i− 1 queries, output the simulated randomness as in sUCZeroKnowledgeSimpleS1 .
* For the i-th query, use the randomness oracle of the challenger.
* For the remaining queries, simulate the oracle as in sUCZeroKnowledgeSimple0 (which just

involves revealing the randomness used).
2. Output A’s output.

We tally the simulation costs that B incurs. Each of A’s queries to the random and programming
oracles translates to a single query to the corresponding game oracles, resulting in at most tq random and tp
programming queries. In each of the first (i− 1) queries of A to the prover, B has to simulate the oracle in
sUCZeroKnowledgeSimpleS1 , which involves 2qS random oracle queries and 2pS queries to the programming
oracle. The i-th query is answered using a single query to the prover of the game. Each of the remaining
ℓp− i+1 prover queries instead involve simulating the oracle in sUCZeroKnowledgeSimple0, which requires
qP random oracle queries. Finally, simulating the corruption oracle requires no further oracle queries.

Therefore B perfectly simulates the view of A, making at most tq + 2(i − 1) · qS + (ℓp − i + 1) · qP

queries to the random oracle, tp + 2(i− 1) · pS queries to the programming oracle, 1 query to the prover, and
querying only instances of size at most n. Hence,

∆A(Gi,Gi+1) ≤ ζ
(1)
simple

 λ, n,
tq + 2(i− 1) · qS + (ℓp − i+ 1) · qP,
tp + 2(i− 1) · pS

 .

Noting that 2(i− 1) · qS + (ℓp − i+ 1) · qP ≤ ℓp ·max (qP, 2qS) and 2(i− 1) · pS ≤ 2ℓp · pS concludes the
proof.

Comparison with adaptive ZK. By considering weak UC-friendly zero knowledge, and restricting the
adversary to not make any programming queries, we recover the standard notion of multi-instance adaptive
zero knowledge in the (explicitly programmable) ROM. Below we show that UC-friendly zero knowledge is,
in fact, strictly stronger.

Lemma 5.14. Let k ∈ N. There exist a relation Rk and a non-interactive argument for Rk that:
• has multi-instance adaptive zero knowledge with error ζARG(λ, n, tq, ℓp) =

1
2λ

.
• has UC-friendly zero knowledge error ζARG(λ, 1, 0, 1, 1, 0) ≥ 1− 1

2k
.

Proof. Consider the (rather uninteresting) relation

Rk :=

{
(x,w) :

x = 0
w ∈ {0, 1}k

}
.

Here is an adaptive zero knowledge proof system for Rk with perfect completeness and perfect soundness:

35

Pf (x,w): if f(0) = 0λ, output w; else output 0.
Vf (x, π): check if x = 0.

Perfect completeness and soundness are clear. It is straightforward to see that (P,V) is also adaptive
zero knowledge: consider the simulator that outputs 0; conditioned on f(0) ̸= 0λ, this simulator perfectly
simulates proofs, thus (P,V) has adaptive zero knowledge with error ζARG(λ, n, tq, ℓp) :=

1
2λ

. Next, consider
the following adversary A against UC-friendly zero knowledge:

A:
1. Sample w← {0, 1}k.
2. Query the programming oracle with traceprog := ((0, 0λ)).
3. Query the prover with (0,w) to obtain π.
4. Output 1 if w = π, 0 otherwise.

For every simulator S,

∆(λ,n,A)
(
sUCZeroKnowledge0, sUCZeroKnowledge

S
1

)
=

∣∣Pr[sUCZeroKnowledge0(A) = 1]− Pr[sUCZeroKnowledgeS1 (A) = 1]
∣∣

= 1− Pr

π = w

∣∣∣∣∣∣∣∣
f ← U(λ)
w← {0, 1}k
tr := (prog, 0, 0λ)

π, tr′ ← Sf [tr](0)

≥ 1− 1

2k
.

The last line follows from the fact thatw is hidden from S. Thus, for every λ, the UC-friendly zero knowledge
error is ζARG(λ, 1, 0, 1, 1, 0) ≥ 1− 1

2k
.

Remark 5.15. Lemma 5.14 uses a trivial relation, without relying on any computational assumptions. The
ideas in the proof can be modified to show that adaptive zero knowledge is strictly weaker than UC-friendly
zero knowledge for any hard relation, yielding a separation for “interesting” relations as well.

5.3 UC-friendly knowledge soundness

We introduce a notion of UC-friendly straightline knowledge soundness, which is a strengthening of simulation
knowledge soundness (extraction in the presence of a simulation oracle) where the adversary can additionally
program the random oracle.

Definition 5.16. Let ARG = (P,V) be a non-interactive argument. We define the UC-friendly knowledge
soundness game with respect to a simulator S and an extractor E as follows.

sUCKnowledgeSoundnessfS,E(n,A) :
1. Initialize empty lists InstanceList,ProofList, tr, extTrace, advProg,RandomP,RandomV.
2. Set advWin := 0.
3. Run A, answering its queries as follows:

– On a random oracle query x, set y := f [tr](x), append (query, x, y) to tr, extTrace, and return y.
– On a programming query traceprog:

(a) If there exists (x, y) ∈ traceprog and (qidi, xi, yi) ∈ tr with xi = x, return 0.

36

(b) Else append ((prog, x, y))(x,y)∈traceprog to tr and advProg and return 1.
– On a prover query (x,w) ∈ R with |x| ≤ n:

(a) Compute (π, tr′, zπ)
trS←−− Sf [tr](x).

(b) Compute (ρP, tr
′′)

tr′S←−− Sf [tr◦trS](w, zπ).
(c) If tr ◦ trS◦tr′S ◦ tr′◦tr′′ is invalid, return ⊥.
(d) Set tr := tr ◦ trS◦tr′S ◦ tr′◦tr′′.
(e) Set extTrace := extTrace ◦ trS◦tr′S.
(f) Append x to InstanceList.
(g) Append (x, π) to ProofList.
(h) Append ρP to RandomP.
(i) Return π.

– On a verifier query (x, π) with |x| ≤ n:
(a) Sample argument verifier randomness ρV ← {0, 1}rV and append it to RandomV.

(b) Compute the decision bit b
trV←−− Vf [tr](x, π; ρV).

(c) Set tr := tr ◦ trV.
(d) If (x, π) ∈ ProofList return 1.
(e) Set b̃ := b ∧ (trV ∩ prog(advProg) = ∅).
(f) Compute w← E(x, π, extTrace \ advProg).
(g) If b̃ = 1 ∧ x /∈ InstanceList ∧ (x,w) /∈ R, set advWin = 1.
(h) Return b̃.

– On a prover corruption query, return RandomP. (Do not answer further prover or prover corruption
queries.)

– On a verifier corruption query, return RandomV. (Do not answer further verifier or verifier corruption
queries.)

4. Return advWin.

ARG has weak (resp. strong) UC-friendly knowledge soundness with respect to a simulator S with
error κARG if there exists a probabilistic polynomial-time extractor E such that, for every (tq, tp, ℓp, ℓv)-query
adversary A,

Pr

[
advWin = 1

∣∣∣∣∣ f ← U(λ)
advWin← sUCKnowledgeSoundnessfS,E(n,A)

]
≤ κARG(λ, n, tq, tp, ℓp, ℓv) .

We define a single-instance version of the above game, with slightly different notation for convenience.
In particular, we allow the adversary a single query to the verification oracle, and additionally refactor the
conditions for the adversary’s win to be outside of the game’s main body.

Definition 5.17. Let ARG = (P,V) be a non-interactive argument. We define the single-instance UC-
friendly knowledge soundness game with respect to a simulator S as follows.

sUCKnowledgeSoundness1fS(n,A):
1. Initialize empty lists InstanceList, tr, extTrace, advProg,RandomP.
2. Set advWin = 0.
3. Run A, answering its queries as follows:

– On a random oracle query x, set y := f [tr](x), append (query, x, y) to tr, extTrace, and return y.
– On a programming query traceprog:

37

(a) If there exists (x, y) ∈ traceprog and (qidi, xi, yi) ∈ tr with xi = x, return 0.
(b) Else append ((prog, x, y))(x,y)∈traceprog to tr and advProg and return 1.

– On a prover query (x,w) ∈ R with |x| ≤ n:

(a) Compute (π, tr′, zπ)
trS←−− Sf [tr](x).

(b) Compute (ρP, tr
′′)

tr′S←−− Sf [tr◦trS](w, zπ).
(c) If tr ◦ trS◦tr′S ◦ tr′◦tr′′ is invalid, return ⊥.
(d) Set tr := tr ◦ trS◦tr′S ◦ tr′◦tr′′.
(e) Set extTrace := extTrace ◦ trS◦tr′S.
(f) Append x to InstanceList.
(g) Append ρP to RandomP.
(h) Return π.

– On a corruption query, return RandomP. (Do not answer further prover or corruption queries.)
4. A outputs (x, π).
5. Return (x, π, InstanceList, extTrace, advProg).

ARG has weak (resp. strong) single-instance UC-friendly knowledge soundness with respect to a simulator
S with error κ(1)ARG if there exists a probabilistic polynomial-time extractor E such that, for every (tq, tp, ℓp)-
query adversary A,

Pr

(x,w) /∈ R
∧ b = 1
∧ trV ∩ advProg = ∅
∧ x /∈ InstanceList

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
x, π,

InstanceList,
extTrace,
advProg

 tr←− sUCKnowledgeSoundness1fS(n,A)

b
trV←−− Vf [tr](x, π)

w← E(x, π, extTrace \ advProg)

≤ κ

(1)
ARG(λ, n, tq, tp, ℓp) .

A hybrid argument shows that UC-friendly knowledge soundness is implied by this weaker notion with
the error growing by a multiplicative factor of ℓv.

Lemma 5.18. If ARG = (P,V) has weak (resp. strong) single-instance UC-friendly knowledge soundness
(Definition 5.17) with error κ

(1)
ARG, then ARG has weak (resp. strong) UC-friendly knowledge soundness

(Definition 5.16) with error

κARG(λ, n, tq, tp, ℓp, ℓv) ≤ ℓv · κ(1)ARG(λ, n, tq + ℓv · qV(n), tp, ℓp) .

Proof. Let A be an adversary against “multi” UC-friendly knowledge soundness. We construct a new
adversary B against (single) UC-friendly knowledge soundness.

B(A):
1. Initialize empty lists ProofList, advProg,RandomV.
2. Sample ĩ← [ℓv].
3. On a random oracle query, use the random oracle of the game.
4. On a programming query, use the programming oracle of the game, appending the query to advProg if

it succeeds.
5. On a prover query, use the challenger’s prover oracle, appending the resulting instance-proof pair to

ProofList.

38

6. On a verifier query (x, π) with |x| ≤ n:
(a) If this is the ĩ-th query to the verification oracle, output (x, π) and terminate.
(b) Sample ρV ← {0, 1}rV and append it to RandomV.
(c) Compute b

trV←−− Vf [tr](x, π; ρV) (using the random oracle of the game).
(d) If (x, π) ∈ ProofList answer 1.
(e) Return b ∧ (trV ∩ advProg = ∅).

7. On a prover corruption query, use the challenger’s corruption oracle.
8. On a verifier corruption query return RandomV. (Do not answer further verifier or verifier corruption

queries.)

The new adversary B makes a single query to the verifier oracle, tq + ℓv · qV random oracle queries, tp
programming queries, and ℓp prover queries. The view ofA, until the ĩ verifier query is performed, is as in the
multi-instance version of the game. To see this, note that the random, programming, prover, prover corruption
queries are directly forwarded to the single-instance game oracles, and are identical to the multi-instance
game. For the first ĩ verifier queries, the reduction faithfully simulates the verifier and verifier corruption
oracle. Furthermore, whenever A wins, there exists at least one index i where the advWin flag is set. Since ĩ
is chosen uniformly at random, the results follows.

39

6 UC-secure zkSNARKs from UC-friendly security notions

We prove that if a non-interactive argument ARG satisfies the UC-friendly security notions of Section 5 then
the corresponding protocol Πa[ARG] (Protocol 4.1) UC-realizes the ideal functionality FaARG (Functional-
ity 4.1) in the GRO-hybrid model.

As discussed in Section 3.2, we use budgets to account for the capabilities of the environment. We keep
track of a budget tuple (tq, tp, ℓp, ℓv) representing respectively:
• tq: query budget that can be spent on GRO.Query queries;
• tp: programming budget that can be spent on GRO.Program queries;
• ℓp: prover budget that can be spent on Πa[ARG].Prove (resp. FaARG.Prove) queries;
• ℓv: verifier budget that can be spent on Πa[ARG].Verify (resp. FaARG.Verify) queries.

Theorem 6.1. Let ARG = (P,V) be a non-interactive argument with the following properties:

• weak (resp. strong) UC-friendly completeness (Definition 5.3) with error ϵARG;
• weak (resp. strong) UC-friendly zero knowledge (Definition 5.10) with error ζARG and simulator S;
• weak (resp. strong) UC-friendly knowledge soundness (Definition 5.16) with respect to S with error κARG.

Then (when all protocols are instantiated with security parameter λ and instance size n) Πa[ARG] (tq, tp, ℓp, ℓv)-
UC-realizes FaARG in the GRO-hybrid model with no simulation overhead and error

zUC(ϵARG, ζARG, κARG, λ, n, tq, tp, ℓp, ℓv)

where

zUC(ϵARG, ζARG, κARG, λ, n, tq, tp, ℓp, ℓv) :=
ϵARG(λ, n, tq, tp, ℓp, ℓv)

+ ζARG(λ, n, tq, tp, ℓp, ℓv)
+ κARG(λ, n, tq, tp, ℓp, ℓv)

.

As mentioned in the relevant sections, GRO is subroutine respecting and Πa[ARG]-regular, and Πa[ARG]
is GRO-subroutine respecting. Thus, we can apply [BCHTZ20, Prop 3.4] to conclude that the transcript estab-
lished by the ITM instances in the execution of M[Πa[ARG],GRO] is identical to that in an execution in the
GRO-hybrid model. Thus, Theorem 6.1 implies that M[Πa[ARG],GRO] UC-emulates M[IDEALFaARG

,GRO]
(with the same simulation error and overhead). Therefore, all preconditions of Theorem 3.8 are satisfied, and
Corollary 6.2 readily follows.

Corollary 6.2. Let:

• M be the manager protocol introduced in Theorem 3.8;
• ARG be a non-interactive argument as in Theorem 6.1;
• ρ be (Πa[ARG], P)-compliant protocol for P ∈ {IDEALFaARG

,M[Πa[ARG],GRO],M[IDEALFaARG
,GRO]};

• ρ̃ := UC(ρ,Πa[ARG], IDEALFaARG
) where UC is the UC operator.

Then, ρ̃ (tq, tp, ℓp, ℓv)-UC-emulates ρ with no simulation overhead and simulation error

tπ(ρ, λ) · zUC(ϵARG, ζARG, κARG, λ, n, tq, tp, ℓp, ℓv) .

In the above:
• zUC, ϵARG, ζARG, κARG are defined as in Theorem 6.1; and
• tπ(ρ, λ) bounds the number of instances of Πa[ARG] that ρ spawns when parametrized with security

parameter λ.

40

6.1 Proof of Theorem 6.1

Let E be the extractor guaranteed by Definition 5.16, and let MP ,MV denote, respectively, the prover and
verifier party in the UC-security experiment. The UC simulator S is defined as follows.

S:
1. Initialize an empty list advProg.
2. When FaARG.Setup asks for a tuple of algorithms by sending (Setup, sid), send algTuple := (V,S,E).
3. When any corrupted party issues a GRO.Program query, forward the query to GRO, and, if successful,

append the list of programmed query-answer pairs to advProg.
4. When any corrupted party issues a GRO.IsProgrammed query, if the point is in advProg, answer

(IsProgrammed, 1), otherwise answer with (IsProgrammed, 0).
5. When the adversary asks to corrupt MP :

(a) Call FaARG.Corrupt(MP) which returns a list of randomness RandomP.
(b) Return RandomP to the adversary, and relinquish control of MP .

6. When the adversary asks to corrupt MV :
(a) Call FaARG.Corrupt(MV) which returns a list of randomnesses RandomV.
(b) Return RandomV to the adversary, and relinquish control of MV .

The simulator S can be implemented efficiently, and does not use any budget. We show security via a
sequence of games (listed below); each game is played against an environment E . We recall that in each game
the environment has access to (i) a prover interface that outputs an argument string; (ii) a verifier interface
that verifies arguments; (iii) two corruption interfaces (one for the prover party and one for the verifier party);
and (iv) the global random oracle .

• EXPA(E) ≡ EXECGRO
Πa[ARG],AD,E(λ): The “real-world” security game in the GRO-hybrid model as in

Definition 3.2.
• EXPB(E): Same as previous but answer false to GRO.IsProgrammed queries on any point not programmed

by corrupted parties.
• EXPC(E): Modify the proving interface to maintain a list Proved of instance-proof pairs that it generated.

Modify the verifier interface to accept proofs in that list by default. This is a relaxation of the verifier
interface, as in the previous game honestly generated proofs can be rejected.

• EXPD(E):
1. Modify the prover interface to match that of the ideal functionality.

(a) Instead of generating proofs using P, simulate proofs using S, programming the GROM accordingly
(outputting Fail if any such programming attempt fails). Further, use S to reconstruct prover
randomness as in the ideal functionality.

(b) Keep track of the points programmed by S in hProgrammed.
2. Relax the check in Item 1c of the verifier interface to match that of the ideal functionality in Item 6 (if a

proof verifies successfully and the only programmed points it queries are in hProgrammed, accept).
• EXPE(E): Modify the verifier interface by appending the extraction procedure of the ideal functionality.

1. After Item 6, if the check passes, obtain the list of illegitimate queries IllegitimateTracesid.
2. Run E to obtain a witness w, and output Fail if the witness is not valid for the instance.

• EXPF(E) ≡ IDEALGROFARG,S,E(λ): The “ideal-world” security game in the GRO-hybrid model as in Defini-
tion 3.5.

We study each game hop separately. In each game hop (apart from the first), we define an adversary B(E)

41

against some UC-friendly property described in Section 5. The adversary will be the same in each hop, so we
describe it here to avoid duplication.

B(E):
1. Run the environment E , answering its requests as follows.

– For GRO queries (random oracle or programming) that do not have prefix sid, B (lazily) simulates a
random oracle. In the rest of the description we assume that queries have prefix sid.

– On a GRO query (sid, x), query x to the random oracle of the game to obtain y, then return (Query, y)
to the environment.

– On a GRO programming traceprog, set trace′prog := ((x, y))((sid,x),y)∈traceprog and query trace′prog to the
programming oracle of the game to obtain a bit b. Return (IsProgrammed, b) to the environment.

– When the environment queries the prover interface with (x,w) ∈ R, forward the query to the prover
of the game to obtain a proof π or a failure symbol ⊥. If the result is ⊥, return Fail, else return
(Proof, sid,x, π) to the environment.

– When the environment queries the verifier interface with (x, π), forward the query to the verifier of
the game to obtain a bit b. Return (Verification, sid,x, π, b) to the environment.

– When the environment asks to corrupt the prover, query the prover corruption oracle of the game and
forward the result to the environment.

– When the environment asks to corrupt the verifier, query the verifier corruption oracle of the game
and forward the result to the environment.

2. Output whatever E outputs.

Note that B has the same query complexity of E .

REAL is EXPB. We show that:

EXECGRO
Πa[ARG],AD,E(λ) ≡ EXPA ≡ EXPB .

The argument is as in [CDGLN18]. Only parties in the session can ask GRO.IsProgrammed queries, and in the
“real-world” experiment no honest party makes programming queries. Thus, in both games, no programming
(other than that the corrupted parties engage on) will occur, and all the queries to GRO.IsProgrammed on
those points would return false. Therefore, modifying the experiment to answer false to GRO.IsProgrammed
queries on any point not programmed by corrupted parties does not change the view of the environment.

EXPB is close to EXPC. We rely on UC-friendly completeness (Definition 5.3) to argue that:

∆E(EXPB,EXPC) ≤ ϵARG(λ, n, tq, tp, ℓp, ℓv) .

The two games are identical, if not for the fact that in EXPC all (honestly) generated proofs are accepted,
while in EXPB they might not be. B simulates perfectly the view of E in EXPB (as long as the advWin flag
is not set) and in EXPC. Hence any distinguishing advantage of E translates directly into B winning the
UC-friendly completeness game.

EXPC is close to EXPD. We rely on UC-friendly zero knowledge (Definition 5.10) to argue that:

∆E(EXPC,EXPD) ≤ ζARG(λ, n, tq, tp, ℓp, ℓv) .

When B is in sUCZeroKnowledge0 the view of E is as in EXPB. Instead, when B is in sUCZeroKnowledgeS1
the view of E is as in EXPC. Hence whenever E distinguishes between EXPB and EXPC, B distinguishes
between the real-world and ideal-world in the UC-friendly zero knowledge experiment.

42

EXPD is close to EXPE. We rely on UC-friendly knowledge soundness (Definition 5.16) to argue that:

∆E(EXPD,EXPE) ≤ κARG(λ, n, tq, tp, ℓp, ℓv) .

The only (detectable) difference between the two experiments is that in EXPE the verifier interface can
output Fail if extraction fails, while this does not happen in EXPD. This is because in EXPE the verification
interface attempts to extract a valid witness, and outputs Fail if this extraction fails, and apart from this
difference the two games are identical. In light of the above, the experiments are identical until Fail is output,
and since Fail is output exactly when advWin = 1 in the UC-friendly knowledge soundness game, any
distinguishing advantage of E directly translates to B winning the UC-friendly knowledge soundness game.
Note in particular that in both the verification interface of the ideal functionality and the verifier oracle of the
UC-friendly knowledge soundness game, the extractor has access to a trace consisting of both the adversary
random oracle query and the queries the proving interface made to the random oracle, both filtered to exclude
adversarially programmed queries.

EXPE is IDEAL. Since the two games are syntactically equal, we have that:

EXPE ≡ EXPF ≡ IDEALGROFARG,S,E(λ)

6.2 Definitions 5.3, 5.10 and 5.16 are necessary

We show that the UC-friendly security notions in Section 5 are necessary for the UC-security of Πa[ARG] in
the GROM. In Lemmas 6.3 to 6.5 below, we lift an adversary A against the UC-friendly security notion to an
environment E(A) against the UC-security of Πa[ARG] in the GROM. The environment for each lemma can
be described starting from the same basic template, which we present next.

E0(A):
1. Spawn a single instance of the protocol (say with session ID sid).
2. Run A, answering queries as follows.

– On a random oracle query x, query GRO.Query((sid, x)) to obtain (Query, y) and return the answer
y to A.

– On a programming query traceprog, set trace′prog := (((sid, x), y))(x,y)∈traceprog , query GRO.Program(trace′prog)
obtaining (IsProgrammed, b). Return b to A.

– On a prover query (x,w) ∈ R, make a query to the prover interface of the protocol. If the result is
Fail, return ⊥ to A. If instead it is a message (Proof, sid,x, π), return π to A.

– On a verifier query (x, π), make a query to the verifier interface. If the result is a message
(Verification, sid,x, π, b), return b to A. If instead it is Fail, return 1 to A.

– On a prover corruption query, corrupt the prover party in the session, and return the received
randomness to A.

– On a verifier corruption query, corrupt the verifier party in the session, and return the received
randomness to A.

Note that the environment E0, on a verifier query, returns 1 to the adversary if the verifier returns Fail. This
is because the only instance in which this occurs is when (in the ideal UC-security experiment) the ideal
functionality successfully verifies a proof from which it is unable to extract a valid witness. In both the
UC-friendly completeness and UC-friendly zero knowledge game this extraction is not part of the security
experiment, while the successful verification is, so returning 1 is the intended behavior.

Further, E0 inherits the query complexity of A.

43

Lemma 6.3. 1If ARG does not satisfy Definition 5.3 with error ϵARG, for every simulator S there exists a
(tq, tp, ℓp, ℓv)-budget environment E such that

∆λ

(
EXECGRO

Πa[ARG],AD,E , IDEAL
GRO
FaARG,S,E

)
> ϵARG(λ, n, tq, tp, ℓp, ℓv) .

Proof. For every adversary A against the weak (resp. strong) UC-friendly completeness game, we construct
an environment E by modifying the template environment E0 as follows.

E(A):
1. Initialize an empty list Proved.
2. Run E0(A), additionally performing the following:

– On a prover query, append the returned (x, π) pair to Proved.
– On a verifier query, check if (x, π) ∈ Proved and verification does not succeed. In that case, output 0

and terminate.
3. When E0 halts, output 1.

By definition of the ideal functionality, in the ideal-world proofs that are returned by the prover interface are
always accepted, so E always outputs 1.

In the real-world, A wins the UC-friendly completeness experiment exactly when it manages to set the
advWin flag, which implies that it submitted an instance-proof pair (x,w) ∈ ProofList to the verification
oracle, but verification of said proof did not succeed. When this occurs, E will output 0.

Thus, if we assume thatA has advantage > ϵARG(λ, n, tq, tp, ℓp, ℓv) against the UC-friendly completeness
game, the statistical distance of the two games is at least ϵARG.

Lemma 6.4. If ARG does not satisfy Definition 5.10 with error ζARG, for every simulator S there exists a
(tq, tp, ℓp, ℓv)-budget environment E such that

∆λ

(
EXECGRO

Πa[ARG],AD,E , IDEAL
GRO
FaARG,S,E

)
> ζARG(λ, n, tq, tp, ℓp, ℓv) .

Proof. For every adversaryA against the weak (resp. strong) UC-friendly zero knowledge game, we construct
an environment E by modifying the template environment E0 as follows.

E(A): Simulate E0(A) outputting whatever A outputs when it halts.

Let S be any simulator for the UC-security experiment, and let S be the simulator that it passes toFaARG.Setup.
By assumption, for this simulator S, there exist an adversary A that makes at most tq queries to its random
oracle, tp queries to the programming oracle, ℓp queries to its prover oracle, ℓv to its verifier oracle, a single
query to either corruption oracle, and queries instances of size at most n such that

∆(λ,n,A)
(
sUCZeroKnowledge0, sUCZeroKnowledge

S
1

)
> ζARG(λ, n, tq, tp, ℓp, ℓv) .

In the “real-world” security experiment the view of theAwhen simulated by E(A) is that in sUCZeroKnowledge0,
while in the “ideal-world” game it is as in sUCZeroKnowledgeS1 . The resulting environment inherits the
number of queries of the adversary.

Lemma 6.5. Let S be an algorithm. If ARG does not satisfy Definition 5.16 with respect to S with error
κARG, for every simulator S (that chooses S as simulation algorithm) there exists a (tq, tp, ℓp, ℓv)-budget
environment E such that

∆λ

(
EXECGRO

Πa[ARG],AD,E , IDEAL
GRO
FaARG,S,E

)
> κARG(λ, n, tq, tp, ℓp, ℓv) .

44

Proof. For every adversary A against the weak (resp. strong) UC-friendly knowledge soundness game, we
construct an environment E by modifying the template environment E0 as follows.

E(A):
1. Run E0(A), additionally performing the following:

– On a verifier query (x, π), if the verifier interface returns Fail output 1 and terminate.
2. When A halts, output 0.

By definition of the protocol, in the real-world proofs Fail is never returned, and so in that experiment E
always outputs 1.

In the ideal-world, A wins the UC-friendly knowledge soundness experiment exactly when it manages to
set the advWin flag, which implies that it submitted an instance-proof pair (x,w) to the verification oracle
on which (i) verification succeeds; (ii) extraction fails; and (iii) which is fresh in the sense that the instance
was not previously queried to the proving interface. In this case, the verification interface will return Fail,
and E will output 0.

Thus, if we assume that A has advantage > κARG(λ, n, tq, tp, ℓp, ℓv) against the UC-friendly knowledge
soundness game, the statistical distance of the two games is at least κARG.

45

7 Merkle commitments and UC-security

The constructions of zkSNARKs that we study in this paper rely on Merkle commitment schemes [Mer89]
in the ROM. We describe Merkle commitment schemes in Section 7.1 and then prove several UC-friendly
properties that we rely on: in Section 7.2 we prove UC-friendly completeness; in Section 7.3 we prove
UC-friendly hiding; and in Section 7.4 we prove UC-friendly extraction.

7.1 Merkle commitment schemes

We introduce some notation for binary trees with l leaves (assumed to be a power of 2).

• The depth of the tree is d := log l.
• Vertices are identified with pairs (j, i) ∈ [d]× [2j]. Odd nodes have i odd and even ones have i even.
• The root of the tree is (0, 1).
• The path from a node (d, i) to the root is denoted as path(i) and we let p(j, i) ∈ {j} × [2j] be the node in

the j-th layer of path(i).
• The copath from a node (d, i) to the root is denoted as copath(i), and we let p̄(j, i) ∈ {j} × [2j] be the

node in the j-th layer of copath(i).
• The span of a node (j, i) is denoted as span(j, i) and is the list of leaves at the subtree rooted at (j, i).

The Merkle commitment scheme MT := MT[λ,Σ, l, rMT] over an alphabet Σ ⊆ {0, 1}∗ is defined as
follows. Let rMT.Commit := l · rMT.

MT.Commitf (m ∈ Σl; ρMT ∈ {0, 1}rMT.Commit)
1. Parse ρMT as (ρ1, . . . , ρl) with ρi ∈ {0, 1}rMT .
2. For i ∈ [l], set c(d,i) := f(mi, ρi).
3. For j = d− 1, . . . , 0 (in this order) and i ∈ [2j]: set c(j,i) := f(c(j+1,2i−1), c(j+1,2i)).
4. Set rt := c(0,1).
5. Set td := (m, (ρi)i∈[l], (c(j,i))j∈[0,d],i∈[2j]).
6. Output (rt, td).

MT.Open(td, I ⊆ [l])
1. For i ∈ I , set authi := (ρi, (cp̄(j,i))j∈[d]).
2. Output pf := (authi)i∈I .

MT.Checkf (rt, I ⊆ [l],a ∈ ΣI , pf)
1. For i ∈ I:

(a) Set c(d,i) := f(a[i], ρi).
(b) For j = d− 1, . . . , 0:

i. If p(j + 1, i) is odd, set cL := p(j + 1, i) and cR := p̄(j + 1, i)
ii. If p(j + 1, i) is even, set cR := p(j + 1, i) and cL := p̄(j + 1, i)

iii. Set cp(j,i) := f((cL, cR)).
(c) Check that c(0,1) = rt.

We obtain the following query complexity bounds:
• The MT.Commit algorithm performs qMT.Commit(l) = 2l queries,
• The MT.Open algorithm performs 0 queries,
• The MT.Check algorithm performs qMT.Check(l, q) ≤ q · log l queries.

46

7.2 UC-friendly completeness

We show that the Merkle commitment scheme satisfies notions of completeness that makes it compatible
with UC-friendly completeness for non-interactive arguments (Definition 5.3).

First, the Merkle commitment scheme is well known to have perfect completeness.

Lemma 7.1. Let MT := MT[λ,Σ, l, rMT]. For every message m ∈ Σl and query set I ⊆ [l]

Pr

MT.Checkf (rt, I,m[I], pf) = 1

∣∣∣∣∣∣
f ← U(λ)
(rt, td)← MT.Commitf (m)
pf := MT.Open(td, I)

 = 1 .

Second, the checking algorithm of the Merkle commitment scheme is compatible with our notion of
monotone proofs (Definition 5.6).

Lemma 7.2. Let MT := MT[λ,Σ, l, rMT]. For every message m ∈ Σl and query set I ⊆ [l],

Pr

trcheck ⊆ trcommit

∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(rt, td)

trcommit←−−−− MT.Commitf (m)
pf := MT.Open(td, I)

⊥ tr←− AJf,trcommitK

b
trcheck←−−− MT.Checkf [tr](rt, I,m[I], pf)

 = 1 .

Finally, the Merkle commitment scheme also satisfies a notion of unpredictable queries, making it
compatible with Definition 5.8.

Lemma 7.3. Let MT := MT[λ,Σ, l, rMT]. For every (tq, tp)-query adversary A and security parameter λ:

Pr

 m ∈ Σl

∧ prog(tr) ∩ trcommit ̸= ∅

∣∣∣∣∣∣∣
f ← U(λ)
m

tr←− AJfK

(rt, td)
trcommit←−−−− MT.Commitf [tr](m)

 ≤ ϵMT(λ, l, tq, tp) .

In the above, ϵMT(λ, l, tq, tp) := l · (tq + tp) ·
(

1
2rMT + 1

2λ

)
.

Sketch. The proof is very similar to that in Lemma 7.6. The adversary wins exactly if it it is able to program
a point before it is queried. Since leaf queries contain a uniformly random string sampled from {0, 1}rMT , the
probability that any of them is predicted is at most tq+tp

2rMT . Conditioned on these points not being queried, their
answers are strings sampled uniformly at random from {0, 1}λ, so each one of them can be predicted with
probability at most tq+tp

2λ
. Continuing layer-by-layer yields the claimed bound. (We remark that the above

bound is most likely not tight, and we suspect a tighter bound would not depend on tq. We leave tightening
the bound for future work.)

7.3 UC-friendly hiding

We describe a notion of UC-friendly hiding, and prove that Merkle commitment scheme satisfy it.

Definition 7.4. Let MT := MT[λ,Σ, l, rMT]. We define two security experiments sUCMerkleHiding0 and
sUCMerkleHiding1.

47

sUCMerkleHiding0(A):
1. Sample f ← U(λ).
2. Initialize empty lists tr, RandomMT.
3. Run the adversary A, answering each query as follows:

(a) On a random oracle query x, set y := f [tr](x), append (query, x, y) to tr, and return y.
(b) On a programming query traceprog:

i. If there exists (x, y) ∈ traceprog and (qidi, xi, yi) ∈ tr with xi = x, return 0.
ii. Else append ((prog, x, y))(x,y)∈traceprog to tr and return 1.

(c) On a prover query (m, I) with |m| ≤ l and |I| ≤ q:
i. Sample ρMT ← {0, 1}rMT.Commit .

ii. Compute (rt, td)
trcommit←−−−− MT.Commitf [tr](m; ρMT).

iii. Compute pf := MT.Open(td, I).
iv. Set tr := tr ◦ trcommit.
v. Append ρMT to RandomMT.

vi. Answer (rt, pf) .
(d) On a corruption query, return RandomMT. (Refuse further prover or corruption queries.)

4. Output A’s output.

sUCMerkleHidingMT.Sim
1 (A):

1. Sample f ← U(λ).
2. Initialize empty lists tr, RandomMT.
3. Run the adversary A, answering each query as follows:

(a) On a random oracle query x, set y := f [tr](x), append (query, x, y) to tr, and return y.
(b) On a programming query traceprog:

i. If there exists (x, y) ∈ traceprog and (qidi, xi, yi) ∈ tr with xi = x, return 0.
ii. Else append ((prog, x, y))(x,y)∈traceprog to tr and return 1.

(c) On a prover query (m, I) with |m| ≤ l and |I| ≤ q:

i. Compute (rt, pf, zπ)
trsim←−− MT.Simf [tr](m[I], I).

ii. Compute (ρMT, tr
′)

tr′sim←−− MT.Simf [tr◦trsim](m, zπ).
iii. If tr ◦ trsim ◦ tr′sim ◦ tr′ is invalid, return ⊥.
iv. Set tr := tr ◦ trsim◦tr′sim ◦ tr′.
v. Append ρMT to RandomMT.

vi. Answer with (rt, pf).
(d) On a corruption query, return RandomMT. (Refuse further prover or corruption queries.)

4. Output A’s output.

MT has weak (resp. strong) UC-friendly hiding with error ζMT if there exists a probabilistic polynomial
time (oracle) algorithm MT.Sim such that for every (tq, tp, ℓp)-adversary A, security parameter λ, message
length bound l, opening size bound q,

∆A

(
sUCMerkleHiding0, sUCMerkleHidingMT.Sim

1

)
≤ ζMT(λ, l, q, tq, tp, ℓp) .

Similarly to UC-friendly zero knowledge for non-interactive arguments in Section 5.2, Definition 7.4
reduces to a simpler definition in which the adversary is only allowed a single prover query.

48

Lemma 7.5. Suppose that MT := MT[λ,Σ, l, rMT] satisfies a version of Definition 7.4 in which the adversary
is allowed only a single query to the prover oracle, with error ζ(1)MT .

Then MT satisfies Definition 7.4 against ℓp prover queries, with error

ζMT(λ, l, q, tq, tp, ℓp) = ℓp · ζ(1)MT (λ, l, q, tq + so(1)q (l, q, ℓp), tp + so(1)p (l, q, ℓp)) .

In the above:
• so(1)q (l, q, ℓp) := ℓp ·max {qMT.Commit(l), 2qMT.Sim(l, q)},
• so(1)p (l, q, ℓp) := ℓp · pMT.Sim(l, q).

Proof. The proof is identical to that of Lemma 5.13, and leads to slightly different costs of simulating the
oracles.

We show that Merkle commitment schemes satisfy this strong one-shot version of Definition 7.4 in the
sequel.

Lemma 7.6. MT := MT[λ,Σ, l, rMT] has (one-shot) strong UC-friendly hiding with error

ζ
(1)
MT (λ, l, q, rMT, tq, tp)

where the error bound ζ
(1)
MT is given in Lemma 7.12. In particular, for the simulator therein qMT.Sim(l, q) ≤ 2l

and pMT.Sim(l, q) ≤ 2q · l.

Proof. Let A be an arbitrary (tq, tp)-adversary against the strong one-shot version of sUCMerkleHiding. We
assume, without loss of generality, that the adversary makes exactly one query to the prover oracle and one
to the corruption oracle. Further, again without loss of generality, we assume that the call to the corruption
oracle occurs immediately after the call to prover oracle. For a given simulator MT.Sim, the simulation error
then corresponds exactly to the statistical distance of following two distributions:

D1(A) :=

AJf,tr(1)◦trcommitK(rt, pf, ρMT)

∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)(
m ∈ Σl, I ∈

(
[l]
q

)) tr(1)←−−− AJfK

ρMT ← {0, 1}rMT.Commit

(rt, td)
trcommit←−−−− MT.Commitf [tr

(1)](m; ρMT)
pf := MT.Open(td, I)

and

D2(A) :=

AJf,tr(1)◦trsim◦tr′sim◦trK(rt, pf, ρMT)

∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)(
m ∈ Σl, I ∈

(
[l]
q

)) tr(1)←−−− AJfK

(rt, pf, zMT)
trsim←−− MT.Simf [tr(1)](I,m[I])

(ρMT, tr)
tr′sim←−− MT.Simf [tr(1)◦trsim](m, zMT)

.

In Construction 7.11 we construct a simulator MT.Sim, and in Lemma 7.12 we show that, for that simulator,
∆A(D1, D2) ≤ ζ

(1)
MT , which implies the lemma statement.

To prove Lemma 7.12, we proceed in three steps: (i) in Section 7.3.1 we prove a UC-friendly hiding
property of the basic commitment scheme (a building block); (ii) in Section 7.3.2 we prove a UC-friendly
hiding property of a Merkle commitment (the root hash); and (iii) in Section 7.3.3 we prove the UC-friendly
hiding property of Merkle commitment schemes described above.

49

7.3.1 UC-friendly hiding of the basic commitment scheme

The basic commitment scheme CM is defined as follows.

CM.Commitf (m ∈ Σ; ρ ∈ {0, 1}r): Output cm := f((m, ρ)).

In Construction 7.7 we give a simulator CM.Sim for CM and then in Lemma 7.8 we prove that CM satisfies a
notion of UC-friendly hiding.

Construction 7.7. Let CM.Sim be the following (pair of) algorithms.

CM.Sim: Sample and output cm← {0, 1}λ.

CM.Sim(m, cm):
1. Sample ρ← {0, 1}r.
2. Set tr := ((prog, (m, ρ), cm)).
3. Output (ρ, tr).

Lemma 7.8. Consider the two distributions

D1(A) :=

A
Jf,tr(1)◦trCMK(cm, ρ)

∣∣∣∣∣∣∣∣∣
f ← U(λ)

m
tr(1)←−−− AJfK

ρ← {0, 1}r

cm
trCM←−−− CM.Commitf [tr

(1)](m; ρ)

and

D2(A) :=

A
Jf,tr(1)◦trK(cm, ρ)

∣∣∣∣∣∣∣∣∣
f ← U(λ)

m
tr(1)←−−− AJfK

cm← CM.Sim

(ρ, tr)← CM.SimJf,tr(1)K(m, cm)

 .

For every (tq, tp)-query adversary A,

∆A(D1, D2) ≤ ζCM(λ, r, tq, tp) :=
tq + tp
2r

.

Proof. Define the event E that (m, ρ) ∈ tr(1). Since ρ is chosen uniformly at random in {0, 1}r, and
|tr(1)| ≤ tq + tp we have that Pr [E1] ≤ tq+tp

2r . Conditioned on E not occurring, cm is a uniformly random
string in {0, 1}λ in both games, ρ is uniformly distributed in both games and f is valid. Thus, the distributions
are identical, and we are done.

7.3.2 UC-friendly hiding of the root of Merkle commitment schemes

We show that a Merkle commitment (the root hash) satisfies a UC-friendly hiding property: in Construction 7.9
we give a simulator MT.RootSim and then in Lemma 7.10 we prove the property. This builds on the basic
commitment scheme CM in Section 7.3.1.

Construction 7.9. Let MT.RootSim be the following (pair of) algorithms.

MT.RootSimf :

50

1. For every i ∈ [l], sample cmi ← CM.Sim.
2. Compute rt by constructing the (unsalted) Merkle commitment with leaves cm1, . . . , cml.
3. Set zrt := (cm1, . . . , cml).
4. Output (rt, zrt).

MT.RootSimf (m, zrt):
1. For every i ∈ [l], sample (ρi, tri)← CM.Sim(mi, cmi).
2. Set ρ := (ρ1, . . . , ρl) and tr := ◦itri.
3. Return (ρ, tr).

Lemma 7.10. Consider the two distributions

D1(A) :=

A
Jf,tr(1)◦trcommitK(rt, ρMT)

∣∣∣∣∣∣∣∣∣
f ← U(λ)

m
tr(1)←−−− AJfK

ρMT ← {0, 1}rMT.Commit

(rt, td)
trcommit←−−−− MT.Commitf [tr

(1)](m; ρMT)

and

D2(A) :=

A
Jf,tr(1)◦trsim◦tr′sim◦trK(rt, ρMT)

∣∣∣∣∣∣∣∣∣∣
f ← U(λ)

m
tr(1)←−−− AJfK

(rt, zrt)
trsim←−− MT.RootSimf [tr(1)]

(ρMT, tr)
tr′sim←−− MT.RootSimf [tr(1)◦trsim](m, zrt)

 .

For every (tq, tp)-query adversary A,

∆A(D1, D2) ≤ ζrt(λ, l, rMT, tq, tp) := l · tq + tp + 2l− 1

2rMT
.

Proof. We proceed via a sequence of hybrid games. For i ∈ [l], in the i-th game the first i leaves are simulated
using CM.Sim, while the remaining l− i leaves are computed using CM.Commit. Let Gi be the i-th such
game, so that D1 ≡ G0 and D2 ≡ Gl. The i-th reduction adversary Bi that argues closeness between Gi and
Gi−1 makes l oracle queries to compute the Merkle commitment over the leaves, l− i queries to compute the
leaves that are not simulated, and i− 1 programming queries to compute the randomness of the simulated
leaves. Hence, ∆A(Gi,Gi+1) ≤ ζCM(λ, rMT, tq + 2l− i, tp + i− 1). We deduce that

∆A(D1, D2) ≤
∑

i∈[0,l−1]

ζCM(λ, rMT, tq + 2l− i, tp + i− 1)

=
∑

i∈[0,l−1]

tq + tp + 2l− 1

2rMT

= l · tq + tp + 2l− 1

2rMT
.

7.3.3 UC-friendly hiding of Merkle commitment schemes

Finally, we show that authentication paths as well do not leak any information about the (other) leaves of the
Merkle commitment scheme.

51

Construction 7.11. Let MT.Sim be the following (pair of) algorithms:

MT.Simf (I, (mi)i∈I):
1. For i ∈ I , sample a random ρi ← {0, 1}rMT , set c(d,i) := f(mi, ρi).
2. For i /∈ I , set c(d,i) := ⊥.
3. For j = d− 1, . . . , 0 and i ∈ [2j]

(a) If c(j+1,2i−1) = c(j+1,2i−1) = ⊥, set c(j,i) := ⊥.
(b) Otherwise:

i. If c(j+1,2i−1) = ⊥, set c(j+1,2i−1), zrt) := MT.RootSimf .
ii. If c(j+1,2i) = ⊥, set (c(j+1,2i), zrt) := MT.RootSimf .

iii. Set c(j,i) := f(c(j+1,2i−1), c(j+1,2i)), z
(j,i)
rt := zrt.

4. Set rt := c(0,1).
5. For i ∈ I , set authi := (ρi, (cp̄(i,j))j∈[d]) and pf := (authi)i∈I .

6. Set zMT := {I, rt, pf, (ρi)i∈I , (z(j,i)rt)j,i, }
7. Return (rt, pf).

MT.Sim(m, zMT):
1. For i ∈ I , set c(d,i) := ⊤.
2. For i /∈ I , set c(d,i) := ⊥.
3. For j = d− 1, . . . , 0 and i ∈ [2j]

(a) If c(j+1,2i−1) = c(j+1,2i−1) = ⊥, set c(j,i) := ⊥.
(b) Otherwise:

i. If c(j+1,2i−1) = ⊥, compute ρspan(j+1,2i−1), tr
(j,i) ← MT.Simf (m[span(j+1, 2i−1)], z(j,i)rt).

ii. If c(j+1,2i) = ⊥, compute ρspan(j+1,2i), tr
(j,i) ← MT.Simf (m[span(j + 1, 2i)], z

(j,i)
rt).

iii. Set c(j,i) := ⊤.
4. Return ρ := (ρi)i∈[l], tr := ◦(j,i):c(j,i)=⊤tr

(j,i).

Lemma 7.12. Consider the two distributions

D1(A) :=

AJf,tr(1)◦trcommitK(rt, pf, ρMT)

∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)(
m ∈ Σl, I ∈

(
[l]
q

)) tr(1)←−−− AJfK

ρMT ← {0, 1}rMT.Commit

(rt, td)
trcommit←−−−− MT.Commitf [tr

(1)](m; ρMT)
pf := MT.Open(td, I)

and

D2(A) :=

AJf,tr(1)◦trsim◦tr′sim◦trK(rt, pf, ρMT)

∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)(
m ∈ Σl, I ∈

(
[l]
q

)) tr(1)←−−− AJfK

(rt, pf, zMT)
trsim←−− MT.Simf [tr(1)](I,m[I])

(ρMT, tr)
tr′sim←−− MT.Simf [tr(1)◦trsim](m, zMT)

.

For every (tq, tp)-query adversary A,

∆A(D1, D2) ≤ ζMT(λ, l, rMT, tq, tp) := q ·
∑
j∈[d]

ζrt(λ, 2
d−j , rMT, tq + 2l, tp + l) .

52

Proof. We again proceed by a sequence of hybrid games. At each of the d layers, at most q roots will be
simulated. At level j ∈ [d], each of these simulated roots will be of a tree of size 2d−j , thus the overall error
will grow as q ·

∑
j∈[d] ζrt(λ, 2

d−j , rMT, . . .). As before, we will incur in a simulation overhead which will be
at most of 2l queries and l programming queries. This leads to the bound we stated.

Remark 7.13. In Section 7.4, to prove UC-friendly extraction, we require that the simulator MT.Sim in
Construction 7.11 re-queries points that it has programmed, to ensure that the extractor receives as input
these query-answer pairs. (Recall that the query-answer trace given as input to the extractor consists only of
points queried by the adversary and simulator to the random oracle, and does not include points programmed
by the adversary or points programmed by the simulator that were not later queried by either the adversary or
the simulator.) With this change, the query complexity of an invocation of MT.Sim is exactly 2l.

7.4 UC-friendly extraction

Merkle commitment schemes in the ROM have strong extraction properties. We show that corresponding
properties hold in our model, even in the face of an adversary who can program the random oracle.

We define the notion of UC-friendly extraction for the Merkle commitment scheme.

Definition 7.14. We define the Merkle extraction game with respect to a simulator MT.Sim and a stateful
extractor MT.MultiExtract as follows.

sUCMerkleExtractionf (A, l, q, n, k):
1. Initialize empty lists tr, advProg, extTrace,RandomMT.
2. Run A, answering queries as follows:

– On a random oracle query x, set y := f [tr](x), append (query, x, y) to tr, extTrace, and return y.
– On a programming query traceprog:

(a) If there exist (x, y) ∈ traceprog and (qidi, xi, yi) ∈ tr with xi = x, return 0.
(b) Else append ((prog, x, y))(x,y)∈traceprog to tr and advProg and return 1.

– On a simulator query (m ∈ Σl, I ⊆ [l]):

(a) Compute (rt, pf, zMT)
trS←−− MT.Simf [tr](I,m[I]).

(b) Compute (ρMT, tr
′)

tr′S←−− MT.Simf [tr](m, zMT).
(c) If tr ◦ trS◦tr′S ◦ tr′ is invalid, return ⊥.
(d) Set tr := tr ◦ trS◦tr′S ◦ tr′.
(e) Set extTrace := extTrace ◦ trS◦tr′S.
(f) Append ρMT to RandomMT.
(g) Return (rt, pf).

– On the j-th root query rtj (for j ∈ [n]):
(a) Let extTracej be the query-answer pairs added to extTrace since the last invocation of MT.MultiExtract,

excluding query-answers pairs in advProg.
(b) Compute (mj , tdj) := MT.MultiExtract(rtj , extTracej).
(c) Return mj .

– On a corruption query, return RandomMT (and stop answering further simulator queries).
3. A eventually outputs ((ij , Iij ,aij , pfij))j∈[k].
4. Let extTrace∗ be the query-answer pairs added to extTrace since the last invocation of MT.MultiExtract,

excluding query-answer pairs in advProg.
5. For j = 1, . . . , k:

53

(a) bj
trjcheck←−−− MT.Checkf [tr](rtij , Iij ,aij , pfij).

(b) pf ′j := MT.Open(tdij , Iij).
6. Output advWin := 1 if any of the following conditions are satisfied.

(a) ∃ i, i′ ∈ [n] : rti = rti′ ∧mi ̸= mi′ .
(b) ∃ j ∈ [k]: bj = 1, trjcheck ∩ advProgj = ∅, and mij [Iij] ̸= aij ∨ pfij ̸= pf ′j .

7. Else output advWin := 0.

MT has weak (resp. strong) UC-friendly extraction with respect to MT.Sim with error κMT if there
exists a (stateful) extractor MT.MultiExtract such that for every (tq, tp, ℓp)-query adversary A:

Pr

[
advWin = 1

∣∣∣∣ f ← U(λ)
advWin← sUCMerkleExtractionf (A, l, q, n, k)

]
≤ κMT(λ, tq, tp, ℓp, l, q, n, k) .

We directly show that the Merkle commitment scheme in the ROM satisfies strong UC-friendly extraction,
which also implies that it satisfies weak UC-friendly extraction with the same bound.

Lemma 7.15. Let MT := MT[λ,Σ, l, rMT] and MT.Sim be the simulator in Construction 7.11. Then, MT
has strong UC-friendly extraction with respect to MT.Sim with the following error:

κMT(λ, tq, tp, ℓp, l, q, n, k) :=
3

2
· (tq + 2ℓpl)

2

2λ
+ 3k(log l+ 1) · tq + 2ℓpl

2λ
.

Our proof is an extension of the proof of multi-extraction for the Merkle commitment scheme in [CY24,
Lemma 18.5.6]. We highlight the parts in which the two proofs differ; throughout, the citation [CY24] is
understood to refer to the proof of that lemma. The extractor MT.MultiExtract, whose description we include
for completeness below, is identical to the one in [CY24].

Construction 7.16. The multi-extractor MT.MultiExtract is defined based on a single-extraction subroutine
MT.Extract. MT.Extract receives as input a Merkle commitment rt ∈ {0, 1}λ and a query-answer trace
extTrace, and works as follows.

MT.Extract(rt, extTrace):
1. If rt is not the answer of any query in extTrace, return (m, td) := (⊥,⊥).
2. Partition extTrace into three sets:

– trleaf contains all query-answer pairs (x, y) with x = (m, ρ) ∈ Σ× {0, 1}rMT .
– trinner contains all query-answer pairs (x, y) with x ∈ {0, 1}2λ.
– trother contains all other query-answer pairs.

3. Label a binary tree T of depth d as follows.
(a) The root of the tree is labeled with rt.
(b) While there is (x, y) ∈ trinner where y is a label of a inner node of T , write x = (xL, xR) ∈

({0, 1}λ)2, and label the left child of that vertex with xL, and the right with xR. Then, remove
(x, y) from trinner.

(c) For every (x, y) = ((m, ρ), y) ∈ trleaf , if y is the label of the i-th leaf of T , set mi := m, ρi := ρ.
Remove (x, y) from trleaf .

(d) Label every remaining vertex of T with ⊥.
4. For every i ∈ [l], if (mi, ρi) are not yet defined, set them to be (⊥,⊥).
5. Let c(j,i) be the label of the i-th inner node in the j-th level of T .
6. Set m := (mi)i∈[l] and td := (m, (ρi)i, (c(j,i))j,i).

54

7. Return (m, td).

The multi-extractor MT.MultiExtract maintains an internal query-answer trace extTrace. On the i-th
invocation, MT.MultiExtract is defined as follows.

MT.MultiExtract(rt, extTracei):
1. Set extTrace := extTrace ◦ extTracei.
2. Return MT.Extract(rt, extTrace).

Proof. [CY24] defines several query-answer traces. We also define several traces accordingly:

• tr := extTrace1 ◦ · · · ◦ extTracen.
• tr′ := extTrace∗.
• For every j ∈ [k], trjcheck, is the trace of the computation bj ← MT.Checkf (rtij , Iij ,aij , pfij).

Define t1 := |tr| and t2 := |tr′|, and t := t1 + t2. In our setting, t ≤ tq + 2ℓpl because, unlike [CY24], the
query-answer traces also contain queries performed by the simulator to the random oracle. (There is no
simulator in [CY24]; it corresponds to the setting of ℓp = 0 calls to the simulator.)

Similarly to [CY24], we define several events:

• E is the event advWin = 1.
• Ecol is the event that tr contains a collision.
• Etree,1 is the event that there exists j ∈ [k] with Tij ̸= T̂ij where:

– Tij is the binary tree reconstructed during the extraction of MT.Extract(rtij , extTrace1◦· · ·◦extTraceij).
– T̂ij is the binary tree reconstructed during the extraction of MT.Extract(rtij , tr ◦ tr′).

• Etree,2 is the event that there exist i, i′ ∈ [n] with rti = rti′ and Ti ̸= Ti′ where:
– Ti is the binary tree reconstructed during the extraction of MT.Extract(rti, extTrace1 ◦ · · · ◦ extTracei).
– Ti′ is the binary tree reconstructed during the extraction of MT.Extract(rti′ , extTrace1 ◦· · ·◦extTracei′).

• Etree is Etree,1 ∨ Etree,2.
• Echeck is the event that there exists j ∈ [k] with trjcheck ̸⊆ tr, bj = 1, and trjcheck ∩ advProg = ∅.

The events are as in [CY24], with the only difference being in Echeck, which adds the condition that trjcheck ∩
advProg = ∅ (in our our setting the adversary can program the random oracle).

The main difference between the two proofs is that the query-answer traces tr, tr′ in our setting not only
contain queries made by the adversary, but also queries made by the simulator (excluding queries programmed
by the adversary). The traces may contain points programmed by the simulator (and later queried by either
the simulator or adversary). Since the simulator in Construction 7.11 only programs query-answer pairs with
answers selected uniformly at random from {0, 1}λ, in both our setting and [CY24] the query-answer trace
have answers distributed uniformly at random.

Both proofs proceed by bounding the probability of some combination of the above events.
Bounding Ecol.

Pr [Ecol] ≤
1

2
· (t1 − 1) · t1

2λ
.

This bound follows in [CY24] by a standard collision analysis, which only relies on the answers in tr being
distributed uniformly at random.
Bounding Etree,1 given ¬Ecol.

Pr [Etree,1|¬Ecol] ≤ t2 ·
min{3t1, k · 2l}

2λ
.

55

The analysis is analogous to [CY24]. The only case in which Etree,1 holds is if one of the non-dummy labels
in Tij appears as an answer in the trace used to construct T̂ij . Since no collision occurs and by Remark 7.13
each point programmed by the simulator is re-queried, the offending query-answer pair must appear in tr′.
The number of non-dummy labels is upperbounded by min{3t1, k · 2l}, and since each answer in tr′leaf is a
string chosen uniformly at random from {0, 1}λ, the result follows.
Bounding Etree,2 given ¬Ecol.

Pr [Etree,2|¬Ecol] ≤
(t1 − 1) · t1

2λ
.

The analysis is analogous to [CY24]. Since no collision occurs, for every i ∈ [n], each vertex of the tree Ti is
labeled exactly once. Then, if for some i, i′ ∈ [n] with i < i′, rti = rti′ and Ti ̸= Ti′ , there must be a query
in extTrace1 ◦ · · · ◦ extTracei′ that is not in extTrace1 ◦ · · · ◦ extTracei with answer equaling a non-dummy
label in Ti. For every j ∈ [t1], there are at most 2(j − 1) non-dummy labels in the binary trees constructed
thus far (since any query-answer pairs leads to at most two new labels inside a binary tree). So the probability
that the j-th query (whose answer is distributed uniformly at random in {0, 1}λ) matches one of these labels
is at most 2(j−1)

2λ
. The bound above then follows via a union bound.

Bounding Echeck given ¬Ecol ∧ ¬Etree.

Pr [Echeck|¬Ecol ∧ ¬Etree] ≤ k · (d+ 1) · min{3t1, k · 2l}
2λ

.

The analysis is analogous to [CY24], with the only difference that the condition trjcheck∩advProg = ∅ in Echeck

guarantees that the query-answer trace of the execution of MT.Check only contains uniformly distributed
query-answer pairs.

If Echeck holds for some j ∈ [k] there exists a query in trjcheck that is not in tr with an answer equaling some
non-dummy label in Tij . The query-answer trace trjcheck contains queries that were previously in tr, or in tr′,
or in neither. Queries in tr do not count towards the event, and since ¬Etree holds (and thus ¬Etree,1) we have
that Tij = T̂ij and thus queries in tr′ cannot equal non-dummy labels in Tij . Since trjcheck contains no points
programmed by the adversary (by the verification check), each remaining query is uniformly distributed, and
has thus a probability at most min{3t1, k · 2l} of matching a non-dummy label. Taking a union bound over
the number of queries in an authentication path and the number of openings the result follows.
Bounding E given ¬Ecol ∧ ¬Etree ∧ ¬Echeck.

Pr [E|¬Ecol ∧ ¬Etree ∧ ¬Echeck] = 0

As in [CY24], ¬Etree implies that, for every i, i′ ∈ [n] with rti = rti′ , Ti = Ti′ , so the extracted messages
must also be the same.

We are left to show that, for every j ∈ [k], it cannot simultaneously hold that (i) bj = 1; (ii) trjcheck ∩
advProg = ∅; and (iii) mij [Iij] ̸= aij or pfij ̸= pf ′ij . Fix j, and assume the first two conditions hold.

Then, by Echeck, tr
j
check ⊆ tr. Suppose first that mij [Iij] ̸= aij . Then, there is an index q ∈ Iij such that

mij [q] ̸= aij [q]. Since the verification check of Merkle commitments verifies each authentication path
individually, and the extractor (by virtue of its definition) reconstructs messages and opening that will
successfully verifies, this leads to two authentication paths that successfully verify. This must lead to a
collision in tr by [CY24, Lemma 18.3.2], a contradiction since ¬Ecol holds. Likewise, if the above does
not hold and pfij ̸= pf ′ij then there will be two distinct authentication paths for the same opening, and
again by [CY24, Lemma 18.3.1] a collision will occur. Again the above argument is as in [CY24], with the
only additional condition that trjcheck ∩ advProg = ∅ carried over from the definition of Echeck, and with the

56

observation that these checks (and the fact the extractor does not receive programmed points) make [CY24,
Lemma 18.3.1, Lemma 18.3.2] hold unchanged.

Bounding E. We bound the probability of E based on the bounds discussed above.

Pr [E] ≤ Pr [Ecol] + Pr [Etree,1|¬Ecol] + Pr [Etree,2|¬Ecol] + Pr [Echeck|¬Ecol ∧ ¬Etree] + Pr [E|¬Ecol ∧ ¬Etree¬Echeck]

≤ 1

2
· (t1 − 1) · t1

2λ
+ t2 ·

min{3t1, k · 2l}
2λ

+
(t1 − 1) · t1

2λ
+ k · (d+ 1) · min{3t1, k · 2l}

2λ
+ 0

≤ 3

2
· t

2
1

2λ
+ (t− t1 + k(d+ 1)) · 3t1

2λ

The above is maximized when t1 = t, and thus

Pr [E] ≤ 3

2
· (tq + 2ℓpl)

2

2λ
+ 3k(log l+ 1) · tq + 2ℓpl

2λ

57

8 The Micali construction is UC-secure

We prove that the Micali construction [Mic00], when instantiated with a suitable PCP, yields a zkSNARK that
is UC-secure. In Section 8.1 we recall the definition of a PCP. In Section 8.2 we recall the Micali construction.
In Section 8.3 we prove that the Micali construction satisfies UC-friendly completeness. In Section 8.4 we
prove that the Micali construction satisfies UC-friendly zero knowledge. In Section 8.5 we prove that the
Micali construction satisfies UC-friendly knowledge soundness. Finally, in Section 8.6 we combine these
results to deduce UC-security of the Micali construction.

8.1 Probabilistically checkable proofs

A probabilistically checkable proof is a tuple PCP = (PPCP,VPCP) with the following syntax.

• PPCP(x,w)→ Π: PPCP receives as input an instance-witness pair (x,w) and outputs a PCP string Π.
• VΠ

PCP(x)→ b: receives as input an instance x and oracle access to a PCP string Π, and outputs a bit.

We consider the following efficiency measures (which can be functions of |x|).
• Σ is the alphabet used to write symbols of the PCP string.
• l is the number of symbols in the PCP string.
• q is the number of queries that VPCP makes to the PCP string.
• rP is the number of random bits that PPCP uses.
• rV is the number of random bits that VPCP uses.
For Q ⊆ [l] and a ∈ ΣQ we denote by V

[Q,a]
PCP the algorithm that runs VPCP, answering queries to i ∈ Q with

a[i] (and immediately rejecting if any query is not in Q or if any query in Q is not made).
The PCPs that we consider satisfy perfect completeness, knowledge soundness, and honest-verifier zero

knowledge (defined below). Note that we consider a strengthening of honest-verifier zero knowledge wherein
we require the simulator to (a posteriori) reconstruct randomness used to simulate a PCP local view.

Definition 8.1. PCP = (PPCP,VPCP) has perfect completeness for a relation R if, for every (x,w) ∈ R,

Pr
[
VΠ

PCP(x) = 1
∣∣Π← PPCP(x,w)

]
= 1 .

Definition 8.2. PCP = (PPCP,VPCP) for a relation R has knowledge soundness with error κPCP if there
exists a polynomial-time algorithm EPCP such that, for every instance x and PCP string Π̃,

Pr

[
VΠ̃

PCP(x) = 1
∧ (x,w) /∈ R

∣∣∣∣∣w← EPCP(x, Π̃)

]
≤ κPCP(|x|) .

Definition 8.3. Let PCP = (PPCP,VPCP) be a probabilistically checkable proof for R. The joint PCP
verifier view on the instance-witness pair (x,w), denoted as jViewPCP(PPCP,VPCP,x,w), is the random
variable (x,w, ρP, ρ,Q,a) where:
• ρP ∈ {0, 1}rP is a choice of randomness for PPCP;
• ρ ∈ {0, 1}rV is a choice of randomness for VPCP;
• Q ⊆ [l] and a ∈ ΣQ are the queries and answers of the verifier when running VΠ

PCP(x; ρ) with Π ←
PPCP(x,w; ρP).

The verifier view is similarly denoted as ViewPCP(PPCP,VPCP,x,w), and is obtained by dropping w and
ρP from jViewPCP.

58

PCP has honest-verifier zero knowledge with error ζPCP if there exists a probabilistic polynomial time
algorithm SPCP such that, for every (x,w) ∈ R, ζPCP(|x|) is an upper bound on the statistical distance of
the two random variables

ViewPCP(PPCP,VPCP,x,w) and SPCP(x) .

PCP has strong honest-verifier zero knowledge with error ζPCP if there exists a (pair of) polynomial-
time probabilistic algorithm SPCP such that, for every (x,w) ∈ R, ζPCP(|x|) is an upper bound on the
statistical distance of the two random variables

jViewPCP(PPCP,VPCP,x,w) and
{
(x,w, ρP, ρ,Q,a)

∣∣∣∣ (ρ,Q,a, zSIM)← SPCP(x)
ρP ← SPCP(w, zSIM)

}
.

Below we recall the notion of state-restoration knowledge soundness, which we use as a technical stepping
stone in the proof of UC-friendly knowledge soundness of the Micali construction. Then we recall the fact
that knowledge soundness implies state-restoration knowledge soundness with a multiplicative loss.

Definition 8.4. The state-restoration game is defined as follows.

Gamesr(A, rnd, s)
1. Repeat until A decides to exit the loop.

(a) Get (x,Π, σ) from A.
(b) Compute ρ := rnd(x,Π, σ)
(c) Send ρ to A

2. Get (x,Π, σ) from A.
3. Compute ρ := rnd(x,Π, σ)
4. Output (x,Π, σ, ρ).

The adversary A is tsr-move if it enters the loop at most tsr times.
PCP = (PPCP,VPCP) for a relation R has state-restoration knowledge soundness with error κsr

if there exists a polynomial-time algorithm EPCP such that, for every tsr-move A, instance bound n, and
salt-size s,

Pr

 |x| ≤ n
∧ VΠ

PCP(x; ρ) = 1
∧ (x,w) /∈ R

∣∣∣∣∣∣
rnd← U(rV)
(x,Π, σ, ρ)← Gamesr(A, rnd, s)
w← EPCP(x,Π)

 ≤ κsr(n, tsr, s) .

Claim 8.5. If PCP has knowledge soundness with error κPCP, then PCP has state-restoration knowledge
soundness with error κsr where κsr(n, tsr, s) := (tsr + 1) · κPCP(n).

8.2 The Micali construction

We describe the Micali construction of a SNARG, starting from two ingredients: (a) a PCP := (PPCP,VPCP);
and (b) a Merkle commitment scheme MT := MT[λ,Σ, l, rMT] in the ROM. Throughout we assume that
rV ≤ λ.12 Let fMT : {0, 1}∗ → {0, 1}λ and fFS : {0, 1} → {0, 1}rV be two domain-separated random oracles
obtained as detailed in Section 3. We define Micali := Micali[PCP, r] := (P,V) to be the non-interactive
argument constructed as follows.

• PfMT,fFS(x,w):

12The analysis can be straightforwardly adapted otherwise, with only slightly increased simulation overheads.

59

1. Compute the PCP: Π← PPCP(x,w)
2. Compute the Merkle commitment: (rt, td)← MT.CommitfMT(Π).
3. Sample a salt σ ← {0, 1}r.
4. Compute PCP randomness: ρ := fFS((x, rt, σ)).
5. Run the PCP verifier VΠ

PCP(x; ρ) to deduce the query set Q ⊆ [l].
6. Set the PCP answers: a := Π[Q]
7. Compute the opening proof: pf := MT.Open(td, Q).
8. Output the argument string π := (rt, σ,Q,a, pf).

• VfMT,fFS(x, π):

1. Check that MT.CheckfMT(rt, Q,a, pf) = 1.
2. Compute PCP randomness: ρ := fFS((x, rt, σ)).
3. Check that V[Q,a]

PCP (x; ρ) = 1.

The argument prover and argument verifier have the following query complexities:
• qP(n) = qMT.Commit(l(n)), q(n)) + 1,
• qV(n) = qMT.Check(l(n), q(n)) + 1.

8.3 UC-friendly completeness

We prove that the Micali construction is UC-friendly complete.

Lemma 8.6. Micali satisfies UC-friendly completeness with error

ϵARG(λ, n, tq, ℓp, ℓv) := ℓp · ϵP(λ, n, tq + ℓp · qP(n), tp) .

In the above, ϵP is defined as in Claim 8.9.

Proof. We argue that the Micali construction satisfies perfect completeness, has monotone proofs, and has
unpredictable queries in Claims 8.7 to 8.9. The lemma then directly follows from Lemma 5.9 (which shows
that UC-friendly completeness follows from these properties).

Claim 8.7. Micali satisfies perfect completeness (Definition 5.4).

Proof. This follows from the completeness of Merkle commitment schemes (Lemma 7.1) and the complete-
ness of the PCP (Definition 8.1).

Claim 8.8. Micali has monotone proofs (Definition 5.6).

Proof. The argument verifier in the Micali construction queries only one additional point compared to
MT.Check, and this point us previously queried when deriving the PCP verifier’s randomness. Combining
this with the monotonicity of Merkle commitment schemes (Lemma 7.2) concludes the proof.

Claim 8.9. Micali has unpredictable queries (Definition 5.8) with error

ϵP(λ, n, tq, tp) := ϵMT(λ, l(n), tq, tp) +
tp
2r

.

In the above, ϵMT is defined as in Lemma 7.3.

Proof. The Merkle commitment scheme has unpredictable queries (Lemma 7.3) and σ is random in {0, 1}r.

60

8.4 UC-friendly zero knowledge

We prove that the Micali construction satisfies UC-friendly zero knowledge.

Lemma 8.10. Let PCP be (resp. strong) honest-verifier zero knowledge (Definition 8.3) with error ζPCP.
Then Micali satisfies weak (resp. strong) UC-friendly zero knowledge (Definition 5.10) with error

ζARG(λ, n, tq, tp, ℓp, ℓv) = ℓp · ζ(1)simple(λ, n, tq + so(1)q (n, ℓp) + ℓv · qV(n), tp + so(1)p (n, ℓp)) .

Above:
• ζ

(1)
simple(λ, n, tq, tp, ℓp) :=

tq+tp
2r + ζPCP(n) + ζMT(λ, l(n), q(n), tq, tp, 1);

• ζMT is as in Lemma 7.12;
• so(1)q (n, ℓp) := ℓp ·max {qMT.Commit(l(n)) + 1, 2qMT.Sim(l(n), q(n))};
• so(1)p (n, ℓp) := 2ℓp · (pMT.Sim(l(n), q(n)) + 1).

Construction 8.11. Let SPCP be the simulator for the PCP (Definition 8.3), and MT.Sim be the simulator for
the Merkle commitment scheme (Lemma 7.6). We construct a simulator S for UC-friendly zero knowledge.

SfMT(x):
1. Sample a PCP view: (ρ,Q,a, zSIM)← SPCP(x).
2. Sample simulated root and opening proof: (rt, pf, zπ)← MT.SimfMT(Q,a).
3. Sample a salt: σ ← {0, 1}r.
4. Program the random oracle: trFS := ((x, rt, σ), ρ).
5. Set π := (rt, σ,Q,a, pf)
6. Return (π, trFS, (σ, zSIM, zπ)).

S(w, (σ, zSIM, zπ)):
1. Reconstruct PCP prover randomness: ρP ← SPCP(w, zSIM).
2. Rederive the PCP string: Π← PPCP(x,w; ρP).
3. Reconstruct Merkle commitment randomness: (ρMT, trMT)← MT.Sim(Π, zπ).
4. Return ((ρP, ρMT, σ), trMT).

The simulator S makes qS(n) = 2qMT.Sim(l(n), q(n)) queries to the random oracle, and programs pS(n) =
pMT.Sim(l(n), q(n)) + 1 locations.

Proof. We argue that S yields the simulation error in the lemma statement.
To do so, we show the following claim.

Claim 8.12. Micali has weak (resp. strong) simplified UC-friendly zero knowledge (Definition 5.11) against
adversaries which make a single prover oracle query, with simulator S (Construction 8.11) and error:

ζ
(1)
simple(λ, n, tq, tp) =

tq + tp
2r

+ ζMT(λ, l, q, tq, tp, 1) + ζPCP(n) .

The claim suffices to show our main result, as argued next. By applying Lemma 5.13 we obtain then
that Micali satisfies Definition 5.11 against adversaries which make ℓp prover oracle queries, with the same
simulator S and the following error:

ζsimple(λ, n, tq, tp, ℓp) = ℓp · ζ(1)simple(λ, n, tq + so(1)q (n, ℓp), tp + so(1)p (n, ℓp)) ,

61

where so(1)q , so(1)p are as in the lemma statement. Finally, by applying Lemma 5.12 we obtain the Micali
satisfies Definition 5.10, with again the same simulator and error as in the lemma statement, namely:

ζARG(λ, n, tq, tp, ℓp, ℓv) = ζsimple(λ, n, tq + ℓv · qV(n), tp, ℓp) .

We are left argue Claim 8.12 holds, which we do via a sequence of games (defined next).
• sUCZeroKnowledge0: The “real-world” security game in Definition 5.11. (Recall, this is defined as in

Definition 5.10 while limiting the adversary to a single prover query and no verifier or verifier corruption
queries)

• EXPA: Modify the prover oracle as follows:
1. Run Π← PPCP(x,w), then sample ρ and deduce query-answer sets Q,a from VΠ

PCP(x; ρ).
2. Compute the root and the opening as before.
3. Program the random oracle so that fFS(x, rt, σ) = ρ.

• EXPB
– Modify the prover oracle as follows:

1. Use MT.Sim to obtain (rt, pf, zπ) from the query-answer pair induced by VPCP instead of using
MT.Commit and MT.Open.

2. Additionally use MT.Sim to obtain Merkle randomness ρMT using Π as the message, programming
the random oracle according to the returned programming list tr.

– Modify the corruption oracle to return the (simulated) Merkle randomness ρMT used while generating the
proof.

• EXPC
– Modify the prover oracle to, instead of using the Q,a from the verifier, use ones obtained from SPCP.
– Modify the corruption oracle to use the simulator SPCP to obtain simulated prover randomness ρP.

• sUCZeroKnowledgeS1 : The “ideal-world” security game of Definition 5.11. (Recall, this is defined as in
Definition 5.10 while limiting the adversary to a single prover query and no verifier or verifier corruption
queries).

REAL is close to EXPA.

∆A(sUCZeroKnowledge0,EXPA) ≤
tq + tp
2r

.

The difference between the two games is that the random oracle in EXPA is programmed on (x, rt, σ). Since
the adversary has tq + tp possible queries and σ is uniformly distributed over {0, 1}r, the probability that the
adversary queries or programs (x, rt, σ) before such point is programmed is at most tq+tp

2r .

EXPA is close to EXPB.
∆A(EXPA,EXPB) ≤ ζMT(λ, l, q, tq, tp, 1) .

Let A be an adversary that aims to distinguish between the two games. We construct a new adversary B
against the UC-friendly hiding property of the Merkle commitment scheme (Definition 7.4).
1. Answer A’s random oracle queries to fMT with the random oracle of the experiment, and those to fFS via

lazy random oracle simulation.
2. Answer A’s programming oracle queries to fMT with the programming oracle of the experiment, and those

to fFS via lazy random oracle simulation (with programming).
3. On a prover oracle query (x,w) ∈ R:

(a) Sample prover randomness ρP

(b) Compute Π← PPCP(x,w; ρP).

62

(c) Sample ρ and run VΠ
PCP(x; ρ) to obtain Q.

(d) Call the prover oracle of the experiment with (Π, Q) to obtain (rt, pf).
(e) Program fFS((x, rt, σ)) = ρ.
(f) Reply with π := (rt, σ,Q,a, pf) where a := Π[Q].

4. On a prover corruption query, call the corruption oracle of the experiment to obtain the Merkle randomness
ρMT. Parse the string of Merkle randomness as a list, and concatenate each of these random strings with
the sampled PCP prover randomness ρP.

Note that B makes the same number of random oracle queries as A adversary, and a single prover query. If
B is in the “real-world” security experiment, the view of A is exactly as in EXPA, otherwise it will be as
in EXPB. Thus, any advantage in distinguishing between the two experiments is an advantage against the
hiding security game.

EXPB is close to EXPC.
∆A(EXPB,EXPC) ≤ ζPCP(n) .

In this game hop we replace the PCP query/answer sets with those sampled by the simulator. The statistical
distance of the two distributions is bound by ζPCP. Thus, since the view of the adversary is otherwise identical,
the statistical distance of its output in the two games can be at most ζPCP.

EXPC is IDEAL.
EXPC ≡ sUCZeroKnowledgeS1 .

The two games are syntactically equal.

8.5 UC-friendly knowledge soundness

We show that the Micali construction satisfies UC-friendly knowledge soundness with respect to the simulator
for UC-friendly zero knowledge described in Section 8.4.

Lemma 8.13. Suppose that:
• PCP satisfies knowledge soundness with error κPCP (Definition 8.2);
• MT has weak (resp. strong) UC-friendly extraction with error κMT with respect to MT.Sim (Definition 7.14).
Then Micali satisfies weak (resp. strong) UC-friendly knowledge soundness (Definition 5.16) with respect to
the simulator S in Construction 8.11 with error

κARG(λ, n, tq, tp, ℓp, ℓv) ≤ ℓv · κ(1)ARG(λ, n, tq + ℓv · qV(n), tp, ℓp) .

where κ
(1)
ARG(λ, n, tq, tp, ℓp) ≤ (tq + 1) · κPCP(n) + κMT(λ, tq, tp, ℓp, l, q, tq + 1, 1).

Construction 8.14. Let MT.Extract be the Merkle extractor in Definition 7.14 and EPCP be the PCP extractor
in Definition 8.2. We describe an extractor E for Micali.

E(x, π, extTrace):
1. Parse π as (rt, σ,Q,a, pf).
2. Denote by extTraceMT the queries made to fMT in extTrace.
3. Compute (Π, td) := MT.Extract(rt, extTraceMT).
4. Compute w← EPCP(x,Π).
5. Output w.

63

Proof. We show that the extractor E in Construction 8.14 has the claimed error.
Recall that Lemma 5.18 reduces UC-friendly knowledge soundness (Definition 5.16) to single-instance

UC-friendly knowledge soundness (Definition 5.17), a simpler property where the adversary makes a single
verifier query. Specifically, if the non-interactive argument satisfies single-instance UC-friendly knowledge
soundness with error κ(1)ARG then the non-interactive argument satisfies UC-friendly knowledge soundness
with error κARG(λ, n, tq, tp, ℓp, ℓv) ≤ ℓv · κ(1)ARG(λ, n, tq + ℓv · qV(n), tp, ℓp).

We are left to prove the upper bound on κ
(1)
ARG. Let A be a (tq, tp, ℓp)-query adversary against single-

instance UC-friendly knowledge soundness. We upper bound the following probability:

Pr

(x,w) /∈ R
∧ b = 1
∧ trV ∩ advProg = ∅
∧ x /∈ InstanceList

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
x, π,

InstanceList,
extTrace,
advProg

 tr←− sUCKnowledgeSoundness1fS(n,A)

b
trV←−− Vf [tr](x, π)

w← E(x, π, extTrace \ advProg)

.

Massaging the probability statement. We introduce some notation to simplify later reduction steps. Let
ProofList = ((x(s)

j , π(s)

j))j denote the instances queried by A to the simulator oracle and their corresponding
proofs (for those cases when the simulator oracle does not return ⊥). Define RootList := ((x(s)

j , rt(s)j , σ(s)

j))j ,
where rt(s)j and σ(s)

j are the Merkle commitment and salt in π(s)

j . Letting (x, π = (rt, σ,Q,a, pf)) denote the
final instance-proof pair output by A, note that (x, rt, σ) ∈ RootList implies that x ∈ InstanceList. Hence,
the previous probability statement is upper bounded by:

Pr

(x,w) /∈ R
∧ b = 1
∧ trV ∩ advProg = ∅
∧ (x, rt, σ) /∈ RootList

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
x,

π = (rt, σ,Q,a, pf),
RootList,
extTrace,
advProg

 tr←− sUCKnowledgeSoundness1fS(n,A)

b
trV←−− Vf [tr](x, π)

w← E(x, π, extTrace \ advProg)

.

To simplify probability statements, we slightly abuse notation in that the game sUCKnowledgeSoundness1
now returns RootList instead of InstanceList.

Next, for notational convenience, we define an algorithm Check that captures the winning conditions
other than the PCP verifier accepting.

CheckfMT(x, π = (rt, σ,Q,a, pf), advProg,RootList):
1. Denote by advProgFS, advProgMT the queries to fFS, fMT in advProg.
2. Compute bMT

trcheck←−−− MT.CheckfMT(rt, Q,a, pf).
3. Check that:

– bMT = 1;
– trcheck ∩ advProgMT = ∅;
– (x, rt, σ) ̸∈ advProgFS;
– (x, rt, σ) ̸∈ RootList.

64

The Micali verifier V queries the Fiat–Shamir oracle at (x, rt, σ) and the Merkle commitment oracle, so
trV ∩ advProg = ∅ can be rewritten as trcheck ∩ advProgMT = ∅ and (x, rt, σ) ̸∈ advProgFS.

Thus, we can rewrite the previous probability statement as:

Pr

(x,w) /∈ R
∧ b = 1

∧ V
[Q,a]
PCP (x; ρ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f = (fMT, fFS)← U(λ)
x,

π := (rt, σ,Q,a, pf),
RootList,
extTrace,
advProg

 trMT,trFS←−−−−− sUCKnowledgeSoundnessfS(n,A)

b := CheckfMT[trMT](x, π, advProg,RootList)
ρ := fFS[trFS](x, rt, σ)
w← E(x, π, extTrace \ advProg)

.

Reducing to state-restoration knowledge soundness. We use A to construct an adversary B against the

state-restoration game of PCP. We denote in red steps not used in the reduction but used in the analysis.

BfMT(A):
1. Initialize empty trMT, trFS, advProg, extTrace,ProofList,RandomP.
2. Run A, answering queries as follows:

– When A performs a query to fMT, record the query and answer in trMT, extTrace.
– When A performs the j-th query qj to fFS:

(a) If ∃ qid, y such that (qid, qj , y) ∈ trFS then return y.
(b) Parse qj as (xj , rtj , σj). (If this fails, answer the query with a lazily sampled random oracle.)
(c) Denote by extTracej the queries in extTrace added since the last execution of MT.MultiExtract.
(d) Compute (Πj , tdj) := MT.MultiExtract(rtj , extTracej \ advProg).
(e) Submit (xj ,Πj , (rtj , σj)) to the state-restoration game, obtaining randomness ρj .
(f) Append (query, (xj , rt, σj), ρj) to trFS.
(g) Return ρj .

– When A makes a programming query traceprog to fFS or fMT:
(a) Partition traceprog into traceMT

prog and traceFSprog depending on the queried oracle.
(b) If there exist (x, y) ∈ traceFSprog and (qidi, xi, yi) ∈ trFS with xi = x, return 0.
(c) If there exist (x, y) ∈ traceMT

prog and (qidi, xi, yi) ∈ trMT with xi = x, return 0.
(d) Else append ((prog, x, y))(x,y)∈traceFSprog to trFS, ((prog, x, y))(x,y)∈traceMT

prog
to trMT (and add both

to advProg) and return 1.
– When A requests the j-th proof for (x(s)

j ,w(s)

j) ∈ R:

(a) Compute (π(s)

j , tr, zπ)
trS←−− SfMT(xj

(s)).

(b) Compute (ρP, tr
′)

tr′S←−− S(w, zπ).
(c) Program the oracles fFS, fMT according to tr, tr′, outputting ⊥ if the programming fails.
(d) Set extTrace := extTrace ◦ trS◦tr′S.
(e) Append (x(s)

j , π(s)

j) to ProofList.
(f) Append ρP to RandomP.

– When A makes a corruption query, return RandomP (and stop answering further simulator or
corruption queries).

3. The adversary A produces its final output (x, π = (rt, σ,Q,a, pf)).

65

4. Denote by extTrace′ the queries in extTrace added since the last execution of MT.MultiExtract.
5. Compute (Π, td) := MT.MultiExtract(rt, extTrace′ \ advProg).
6. Derive RootList from ProofList.
7. Set b := CheckfMT[trMT](x, π, advProg,RootList).
8. Return (x,Π, (rt, σ)).

We argue that the view of A when run within B in the state-restoration game Gamesr(BfMT(A), rnd, s) is
identical to the view ofA in the single-instance UC-friendly knowledge soundness game sUCKnowledgeSoundness1fS(n,A).
We consider each type of query that A makes.

• Queries to fMT. The reduction adversary B answers queries to fMT faithfully, so the distribution of answers
to queries to fMT is the same as in the (single-instance) UC-friendly knowledge soundness game.

• Programming queries to fFS, fMT. Programming is perfectly simulated by B. In the case of fMT, B
implements the programming logic. In the case of fFS, B stores the move-answer pairs in the state-
restoration game thus far, which also allows it to faithfully answer programming queries.

• Queries to fFS. Queries to fFS that are not successfully parsed are answered by a (lazily sampled) random
oracle, so those queries have identically distributed answers in both games. Queries that are successfully
parsed (and have not been previously queried) are forwarded to the state-restoration game, which returns
uniformly distributed randomness. Duplicate queries are also handled consistently by B. Thus, all these
queries are answered as in the single-instance UC-friendly knowledge soundness game.

• Simulator queries and prover corruption queries. These are answered identically in both games, as the
reduction adversary faithfully simulates the oracle.

We define the event Eextr as follows: b = 1 ∧Π[Q] ̸= a
or
∃ j s.t. rt = rtj ∧Π ̸= Πj

∣∣∣∣∣∣∣
f = (fMT, fFS)← U(λ)
(x, π,RootList, trS)← sUCKnowledgeSoundnessfS(n,A)

(x,Π, (rt, σ), ρ)
b,(rtj ,Πj)j←−−−−−− Gamesr(BfMT(A), fFS, λ+ r)

 . (1)

We will soon argue that overloaded variables in the above experiment are identical so we do not disambiguate
them in the notation.

We argue that the following two distributions are identical:

(x,Π, ρ, bf , trMT)

conditioned on:
(x, rt, σ) /∈ RootList
∧ (x, rt, σ) /∈ advProg
∧ ¬Eextr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f = (fMT, fFS)← U(λ)
x,

π := (rt, σ,Q,a, pf),
RootList,
extTrace,
advProg

 trMT,trFS←−−−−− sUCKnowledgeSoundnessfS(n,A)

b := CheckfMT[trMT](x, π, advProg,RootList)
ρ := fFS[trFS](x, rt, σ)

bf := b ∧V
[Q,a]
PCP (x; ρ)

Π := MT.Extract(rt, extTraceMT \ advProg)

66

and (using the← notation to bring into scope internal variable of B)
(x,Π, ρ, bf , trMT)

conditioned on:
(x, rt, σ) /∈ RootList
∧ (x, rt, σ) /∈ advProg
∧ ¬Eextr

∣∣∣∣∣∣∣∣∣∣
f = (fMT, fFS)← U(λ)
(x,Π, (rt, σ), ρ)

b,trMT,advProg,RootList←−−−−−−−−−−−−−− Gamesr(BfMT(A), fFS, λ+ r)
bf := b ∧VΠ

PCP(x; ρ)

 .

We discuss each random variable in turn.

• x, trMT. The instance x and the Merkle trace trMT are determined by the output and trace of the adversary
A. We have argued that the view of A is identical in both experiments, so the distribution of these random
variables is also identical.

• Π. In both experiments, Π := MT.Extract(rt, advTraceMT, simTraceMT). As in the previous point, rt,
advTraceMT are directly determined by the adversaryA output and trace, and thus are identically distributed
in both games. simTraceMT is also identically distributed, since, as argued before, B faithfully simulates
the simulator oracle, and A makes identically distributed queries in both games. Thus, Π has the same
distribution in both games.

• ρ. The distribution of (x, rt, σ) is identical in both experiments. Note that, since S in Construction 8.11 only
programs fFS on (x, rt, σ), the Fiat–Shamir oracle is only programmed on points in advProg or in RootList.
So, since (x, rt, σ) /∈ RootList ∪ advProg, in the first experiment ρ = fFS[trFS](x, rt, σ) = fFS(x, rt, σ).
We distinguish two cases:
– (x, rt, σ) was previously queried to fFS by A. Let j ∈ [tq] denote the index of the first such query. In

the first experiment, ρ is a uniformly sampled string, consistent to the j-th query to fFS. In the second
experiment, ρ is obtained by querying (x,Π, (rt, σ)) to fFS. Letting Πj denote the PCP string extracted
in the j-th query, since ¬Eextr holds and rtj = rt, we deduce that Πj = Π. Thus, both queries map to the
same state-restoration move (x,Π, (rt, σ)). ρ is also uniformly distributed as desired.

– (x, rt, σ) was not previously queried to fFS by A. In the first experiment ρ is a string sampled uniformly
at random. In the second experiment, ρ is obtained by querying fFS at (x,Π, (rt, σ)) which is also a
fresh new state-restoration move. Thus, ρ is also a uniformly random string.

• bf . In both experiments, b is computed by running Check with inputs that are identically distributed,
so the distribution of b is identical. If b = 0, bf = 0 in both experiments. Consider then the case
when b = 1. In the bottom experiment, since b = 1 and ¬Eextr holds, it must be that Π[Q] = a and so
VΠ

PCP(x; ρ) = V
[Q,a]
PCP (x; ρ). Since x,Π, ρ are identically distributed in both experiment, bf has the same

distribution in both experiments.

Since the two distributions are identical, we obtain:

Pr

(x,w) /∈ R
∧ b = 1

∧ V
[Q,a]
PCP (x; ρ) = 1

∧ (x, rt, σ) /∈ RootList

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f = (fMT, fFS)← U(λ)
x,

π := (rt, σ,Q,a, pf),
RootList,
extTrace,
advProg

 trMT,trFS←−−−−− sUCKnowledgeSoundnessfS(n,A)

b := CheckfMT[trMT](x, π, advProg,RootList)
ρ := fFS[trFS](x, rt, σ)
w← E(x, π, extTrace \ advProg)

67

≤ Pr

(x,w) /∈ R
∧ b = 1
∧ VΠ

PCP(x; ρ) = 1
∧ (x, rt, σ) /∈ RootList
∧ ¬Eextr

∣∣∣∣∣∣∣∣∣∣
f = (fMT, fFS)← U(λ)
(x,Π, (rt, σ), ρ)

b,RootList←−−−−−− Gamesr(BfMT(A), fFS, λ+ r)
w← EPCP(x,Π)

+ Pr [Eextr]

≤ Pr

 (x,w) /∈ R
∧ VΠ

PCP(x; ρ) = 1

∣∣∣∣∣∣
f = (fMT, fFS)← U(λ)
(x,Π, (rt, σ), ρ)← Gamesr(BfMT(A), fFS, λ+ r)
w← EPCP(x,Π)

+ Pr [Eextr] .

The first term is bounded above by the PCP state restoration error κsr(n, tq, λ+r), which, in turn, by Claim 8.5
is at most (tq + 1) · κPCP(n).
Bounding Merkle extraction error. We are left to upper bound Pr [Eextr]. We use A to construct an
adversary BMT against the UC-friendly extraction property of Merkle commitment schemes (Definition 7.14),
as follows. We highlight differences from the adversary B against the PCP state-restoration game in red.

BfFSMT(A):
1. Initialize empty trFS, advProg,ProofList, , aux.
2. Run A, answering queries as follows:

– When A performs a query to fMT, forward the query to the random oracle of the game.
– When A performs the j-th query qj to fFS:

(a) If ∃ qid, y such that (qid, qj , y) ∈ trFS then return y.
(b) Parse qj as (xj , rtj , σj). (If this fails, answer the query with a lazily sampled random oracle.)
(c) Submit rtj as a root query to the game, obtaining Πj .
(d) Let ρj := fFS(xj ,Πj , (rtj , σj)).
(e) Append (query, (xj , rt, σj), ρj) to trFS.
(f) Return ρj .

– When A makes a programming query traceprog to fFS or fMT:
(a) Partition traceprog into traceMT

prog and traceFSprog depending on which oracle was queried.
(b) If there exist (x, y) ∈ traceFSprog and (qidi, xi, yi) ∈ trFS with xi = x, return 0.
(c) Make a programming query to the programming oracle of the game with traceMT

prog, if this returns
0, return 0.

(d) Else append ((prog, x, y))(x,y)∈traceFSprog to trFS.
(e) Append traceMT

prog, trace
FS
prog to advProg, and return 1.

– When A requests a proof for (x,w) ∈ R:
(a) Sample a PCP view (ρ,Q,a, zSIM)← SPCP(x).
(b) Set Π so that Π[q] = a[q] for every q ∈ Q and Π[q] = ⊥ otherwise.
(c) Reconstruct PCP prover randomness ρP ← SPCP(w, zSIM).
(d) Rederive the PCP string Π← PPCP(x,w; ρP).
(e) Submit (Π, Q) to the simulator oracle of the game, obtaining (rt, pf). (If instead the oracle

returns ⊥, return ⊥.)
(f) Sample a salt string σ ← {0, 1}r.
(g) If (x, rt, σ) ∈ trFS, return ⊥.
(h) Append (x, rt, σ) to trFS.
(i) Set π := (rt, σ,Q,a, pf).
(j) Append (x, π) to ProofList.
(k) Append ρP to aux.

68

(l) Return π.
– When A makes a corruption query, query the corruption oracle of the game, which returns a list of

randomnesses, concatenate them with the PCP prover randomness in aux, return the concatenated list
RandomP (and stop answering further simulator or corruption queries).

3. Derive RootList from ProofList.
4. Set b := CheckfMT[trMT](x, π, advProg,RootList).
5. The adversary A produces its final output (x, π = (rt, σ,Q,a, pf)).
6. Make a root query rt.
7. Return (i, Q,a, pf), where i is the number of root queries performed during the execution.

We use BMT to bound the probability of Eextr. We define the event E′extr to be the following one: b = 1 ∧Π[Q] ̸= a
or
∃ j s.t. rt = rtj ∧Π ̸= Πj

∣∣∣∣∣∣∣
f = (fMT, fFS)← U(λ)
(x,Π, (rt, σ), ρ)← Gamesr(BfMT(A), fFS, λ+ r)

advWin
b,Q,a,Π,(rtj ,Πj)j←−−−−−−−−−− sUCMerkleExtractionfMT(BfFSMT(A), l, q, tq + 1, 1)

 .

(2)
As before, we will soon argue that overloaded variables are identical, so we do not disambiguate.

First note that the distribution of the answer of queries of A in BMT is the same as when run within B in
the state-restoration game.
• Queries fMT are forwarded to the random oracle of the game.
• Queries to fFS are answered by extracting a PCP proof (by making a root query, which runs MT.MultiExtract)

and then querying the oracle fFS.
• Programming queries are answered by first checking if the Fiat–Shamir programming requests have been

previously determined, if not, the Merkle programming requests are forwarded to the programming oracle
of the game, and only then the Fiat–Shamir oracle is programmed. This ensure they are handled as in the
state-restoration game (maintaining atomicity).

• Simulator queries are identically distributed to those in a execution of B within the state-restoration game.
In the weak UC-friendly extraction game, this is because the reduction faithfully simulates the simulator
oracle (replacing the execution of MT.Sim with a query to the simulator oracle of the game). In the strong
UC-friendly extraction game, the order in which the PCP strong simulator and the Merkle simulator are
run is changed, but this is immaterial since the PCP strong simulator does not query/program the random
oracle and Merkle strong simulator only program fMT.

Write rt1, . . . , rti = rt for the list of roots queried by BMT, and Π1, . . . ,Πi for the corresponding
extracted strings (note that i ∈ [tq + 1]). We argue that, in the experiments of Equations (1) and (2),
the distribution of b,Q,a, rt1, . . . , rti,Π1, . . . ,Πi are identically distributed. Since Q,a, rt1, . . . , rti are
directly determined by the output of A, they are identically distributed in both experiments. Further, in
both experiments, the traces advTrace, simTrace are identically distributed (and also are their restrictions
advTracej , simTracej). Thus, since Πj := MT.MultiExtract(rtj , advTracej , simTracej), the PCP strings
are also identically distributed. Finally, b in both experiments is a deterministic function of the variables
mentioned above, and thus also has the correct distribution in both experiments.

Since the conditions for which Eextr, E
′
extr hold are identical, it must be that Pr [Eextr] = Pr [E′extr].

The proof concludes by noting that E′extr is a relaxation of the conditions required for advWin = 1 in the
UC-friendly extraction game. Indeed, E′extr holds if: (i) b = 1 and Πi[Qi] ̸= ai; or (ii) ∃ j such that rti = rtj
and Πi ̸= Πj .

If the first item holds, we have that bMT = 1, advProg ∩ trcheck = ∅, and Πi[Qi] ̸= ai, and thus Item 6b in
Definition 7.14 holds, and thus advWin = 1. If the second item holds then advWin = 1, because if ∃ j s.t.

69

rti = rtj such that Πi ̸= Πj it must hold that ∃ i′, j s.t. rti′ = rtj and Πi′ ̸= Πj (namely by having i = i′).
We conclude that

Pr [Eextr] = Pr
[
E′extr

]
≤ Pr

[
advWin = 1

∣∣∣∣ f = (fMT, fFS)← U(λ)
advWin← sUCMerkleExtractionfMT(BfFSMT(A), l, q, tq + 1, 1)

]
≤ κMT(λ, tq, tp, ℓp, l, q, tq + 1, 1) ,

where the last inequality follows since BMT makes at most tq random oracle queries13 and tp programming
queries to fMT, submits at most tq + 1 roots, makes at most ℓp simulator queries, and outputs a single opening.
By UC-friendly extraction, the probability that the advWin flag (as defined in that game) is set is at most
κMT(λ, tq, tp, ℓp, l, q, tq + 1, 1).

8.6 UC-secure zkSNARKs from Micali

We combine the results in Sections 8.3 to 8.5 to show that, when instantiated with a suitable PCP, the Micali
construction yields a UC-secure zkSNARK.

Theorem 8.15. Let PCP be a probabilistically checkable proof with:

• (resp. strong) honest-verifier zero knowledge (Definition 8.3) with error ζPCP.

• knowledge soundness (Definition 8.2) with error κPCP.

Set MT := MT[λ,Σ, l, rMT] and ARG := Micali[PCP, r]. Then Πa[ARG] (tq, tp, ℓp, ℓv)-UC-realizes FaARG in
the GRO-hybrid model with no simulation overhead and error

zUC(ϵARG, ζARG, κARG, λ, n, tq, tp, ℓp, ℓv)

In the above we let:

• zUC(ϵARG, ζARG, κARG, λ, n, tq, tp, ℓp, ℓv) := ϵARG(λ, n, tq, tp, ℓp, ℓv)+ζARG(λ, n, tq, tp, ℓp)+κARG(λ, n, tq, tp, ℓp, ℓv)
as in Theorem 6.1,

• ϵARG(λ, n, tq, tp, ℓp, ℓv) as in Lemma 8.6.

• ζARG(λ, n, tq, tp, ℓp, ℓv) as in Lemma 8.10,

• κARG(λ, n, tq, tp, ℓp, ℓv) as in Lemma 8.13.

Proof. By Lemma 8.6 we obtain that the Micali construction has strong UC-completeness. By Lemma 8.10,
we show that it is weak (resp. strong) UC-friendly zero knowledge.We apply Claim 8.5 to conclude that PCP
is state-restoration knowledge sound, and then Lemma 8.13 to conclude weak (resp. strong) UC-friendly
knowledge soundness with respect to the simulator from the UC-friendly zero knowledge proof. Applying
then Theorem 6.1 concludes the result.

13Formally, BMT makes tq + qMT.Check random oracle queries, as those are required to compute Check. However, since b is only
used to define E′

extr, we can modify the reduction adversary to avoid performing the extra queries.

70

9 The BCS construction is UC-secure

We prove that the BCS construction [BCS16], when instantiated with a suitable IOP, yields a zkSNARK that
is UC-secure. In Section 9.1 we recall the definition of an IOP. In Section 9.2 we recall the BCS construction.
In Section 9.3 we prove that the BCS construction satisfies UC-friendly completeness. In Section 9.4 we
prove that the BCS construction satisfies UC-friendly zero knowledge. In Section 9.5 we prove that the BCS
construction satisfies UC-friendly knowledge soundness. Finally, in Section 9.6 we combine these results to
deduce UC-security of the BCS construction.

9.1 Interactive oracle proofs

An interactive oracle proof is a tuple IOP = (PIOP,VIOP) with the following syntax.

• PIOP is a next message function. On its first invocation, PIOP(x,w) → (Π1, aux1) receives as input an
instance-witness pair (x,w) and outputs a proof string Π1 and auxiliary state aux1. For i ∈ {2, . . . , k}, on
its i-th invocation, PIOP(auxi−1, ρi−1)→ (Πi, auxi) receives as input auxiliary state auxi−1 and a verifier
message ρi−1 and outputs a proof Πi and auxiliary state auxi.

• VIOP is a next message function. On its first invocation, VΠ1
IOP(x) → (ρ1, aux1) receives as input an

instance x and oracle access to a proof Π1 and outputs a verifier message ρ1 and auxiliary state aux1. On
its i-th invocation for i > 1, VΠ1,...,Πi

IOP (auxi−1) → (ρi, auxi) takes in auxiliary state auxi−1 and oracle
access to Π1, . . . ,Πi and outputs a verifier message ρi and auxiliary state auxi. On its final invocation, the
verifier additionally outputs a decision bit.

We write ⟨PIOP(x,w),VIOP(x)⟩ for the decision bit output by VIOP after the interaction of PIOP on instance-
witness pair (x,w).

We consider the following efficiency measures, which might be (and generally are) functions of |x|.
• k is the number of proof strings sent by PIOP.
• Σ is the alphabet used to write symbols of the IOP strings.
• li is the number of symbols in the i-th IOP string.
• l is the total number of symbols across all IOP strings.
• qi is the number of queries that VIOP makes to the i-th IOP string.
• q is the total number of queries that VIOP makes across all IOP strings.
• rP is the number of random bits that PIOP uses.
• rV is the number of random bits that VIOP uses.

Definition 9.1. IOP = (PIOP,VIOP) has perfect completeness for a relation R if, for every (x,w) ∈ R,

Pr [⟨PIOP(x,w),VIOP(x)⟩ = 1] = 1 .

In this work we consider only public-coin IOPs.

Definition 9.2. IOP = (PIOP,VIOP) is public-coin if every message sent by the verifier is a uniformly
random string ρi of some prescribed length ri for i ∈ [k]. In this case, the decision of an IOP is a function
of the instance x, the verifier randomness (ρ1, . . . , ρk), and answers to queries to the received IOP strings
(Π1, . . . ,Πk), which we denote by writing

VΠ1,...,Πk
IOP (x, ρ1, . . . , ρk) .

71

For a public-coin IOP, we denote by V
[(Q1,a1),...,(Qk,ak)]
IOP (x, ρ1, . . . , ρk) the algorithm that runs the IOP

verifier with randomness (ρ1, . . . , ρk) answering queries q to the i-th proof string with ai[q] if q ∈ Qi and
rejecting otherwise.

A PCP is a 1-round public-coin IOP, thus the results in these sections subsume the ones we saw previously.
Straightline knowledge soundness of the BCS construction (even as a standalone property) requires the

IOP to satisfy a strong security notion: straightline state-restoration knowledge soundness, introduced next.

Definition 9.3. We define the state-restoration game as follows:

Gamesr(A, rnd1, . . . rndk, s):
1. Repeat until A decides to exit the loop.

(a) Compute ρi := rndi(x, (Π1, . . . ,Πi), (σ1, . . . , σi)).
(b) Send ρi to A.

2. Get (x, (Π1, . . . ,Πk), (σ1, . . . , σk)) from A.
3. Set ρi := rndi(x, (Π1, . . . ,Πi), (σ1, . . . , σi)) for i ∈ [k].
4. Output (x, (Π1, . . . ,Πk), (σ1, . . . , σk), (ρ1, . . . , ρk)).

We say A is tsr-move if it enters the loop at most tsr times.
IOP = (PIOP,VIOP) for a relation R has (straightline) state-restoration knowledge soundness with

error κsr if there exists an extractor EIOP such that for every tsr-move A

Pr

 |x| ≤ n
∧ (x,w) /∈ R

∧ VΠ1,...,Πk
IOP (x; ρ1, . . . , ρk) = 1

∣∣∣∣∣∣∣∣
(rnd1, . . . , rndk)← U(r1, . . . , rk)
(x, (Π1, . . . ,Πk), (σ1, . . . , σk), (ρ1, . . . , ρk))
← Gamesr(A, rnd1, . . . , rndk, s)
w← EIOP(x,Π1, . . . ,Πk)

 ≤ κsr(n, tsr, s) .

Definition 9.4. Let IOP = (PIOP,VIOP) be an interactive oracle proof for R. The joint IOP verifier
view on the instance-witness pair (x,w), denoted as jViewIOP(PIOP,VIOP,x,w), is the random variable
(x,w, ρP, (ρ1, . . . , ρk), (Q1, . . . , Qk), (a1, . . . ,ak)) where:
• ρP ∈ {0, 1}rP is a choice of randomness for PIOP;
• ρi ∈ {0, 1}ri is a choice of randomness for VIOP;
• Qi ⊆ [li] and ai ∈ ΣQ

i are the queries and answers of the verifier makes to Πi when running VΠ1,...,Πk
IOP (x; ρ1, . . . , ρk)

where (Π1, aux1)← PIOP(x,w; ρP) and (Πj , auxj) := PIOP(auxj−1, ρj−1) for j > 2.
The verifier view is similarly denoted as ViewIOP(PIOP,VIOP,x,w), and is obtained by dropping w and ρP

from jViewIOP.
IOP has honest-verifier zero knowledge with error ζIOP if there exists a probabilistic polynomial time

algorithm SIOP such that, for every (x,w) ∈ R, ζIOP(|x|) is an upper bound on the statistical distance of the
two random variables

ViewIOP(PIOP,VIOP,x,w) and SIOP(x) .

IOP has strong honest-verifier zero knowledge with error ζIOP if there exists a (pair of) polynomial-
time probabilistic algorithm SIOP such that, for every (x,w) ∈ R, ζIOP(|x|) is an upper bound on the
statistical distance of the two random variables jViewIOP(PIOP,VIOP,x,w) and{
(x,w, ρP, (ρ1, . . . , ρk), (Q1, . . . , Qk), (a1, . . . ,ak))

∣∣∣∣ ((ρ1, . . . , ρk), (Q1, . . . , Qk), (a1, . . . ,ak), zSIM)← SIOP(x)
ρP ← SIOP(w, zSIM)

}
.

72

9.2 The BCS construction

We describe the BCS construction of a SNARG, starting from two ingredients: (a) a public-coin IOP
IOP = (PIOP,VIOP); and (b) the Merkle commitment scheme in the ROM. Using the techniques in
Section 3, we assume that the prover and verifier have access to domain-separated oracles f1, . . . , fk, fMT ←
U(r1, . . . , rk, λ). For simplicity of exposition, we assume that r1 = · · · = rk =: r and let (P,V) :=
BCS[IOP, r] be the non-interactive argument constructed as follows:

• Pf1,...,fk,fMT(x,w):
1. Compute the first IOP string (Π1, aux1)← PIOP(x,w).
2. Commit to it (rt1, td1)← MT.CommitfMT(Π1).
3. Sample salt σ1 ← {0, 1}r.
4. Derive IOP randomness ρ1 := f1(x, rt1, σ1).
5. For every i ∈ {2, . . . , k}:

(a) Compute the IOP string (Πi, auxi)← PIOP(auxi−1, ρi−1).
(b) Commit to it (rti, tdi)← MT.CommitfMT(Πi).
(c) Sample salt σi ← {0, 1}r.
(d) Derive IOP randomness ρi := fi(x, (rt1, . . . , rti), (σ1, . . . , σi)).

6. Run VΠ1,...,Πk
IOP (x, ρ1, . . . , ρk) to deduce query and answer lists (Q1, . . . , Qk), (a1, . . . ,ak).

7. Compute opening proofs pfi := MT.Open(tdi, Qi) for i ∈ [k].
8. Output π := ((rt1, . . . , rtk), (σ1, . . . , σk), (Q1, . . . , Qk), (a1, . . . ,ak), (pf1, . . . , pfk)).

• Vf1,...,fk,fMT(x, π):
1. For every i ∈ [k]:

(a) Rederive IOP randomness ρi := fi(x, (rt1, . . . , rti), (σ1, . . . , σi)).
(b) Check that MT.CheckfMT(rti, Qi,ai, pfi) = 1.

2. Check V
[(Q1,a1),...,(Qk,ak)]
IOP (x, ρ1, . . . , ρk) = 1

The argument prover and argument verifier have the following query complexities:
• qP(n) = k(n) +

∑
i∈[k] qMT.Commit(li(n)), qi(n)),

• qV(n) = k(n) +
∑

i∈[k] qMT.Check(li(n), qi(n)),
Throughout this section, we let l := maxi∈[k] li and q := maxi∈[k] qi.

9.3 UC-friendly completeness

We prove that the BCS construction is UC-friendly complete.

Lemma 9.5. BCS is UC-friendly complete with error

ϵARG(λ, n, tq, ℓp, ℓv) := ℓp · ϵP(λ, n, tq + ℓp · qP(n), tp) .

In the above, ϵP is defined as in Claim 9.8.

Proof. We argue that the BCS construction satisfies perfect completeness, monotone proofs and unpredictable
queries in Claims 9.6 to 9.8. The statement then follows from Lemma 5.9 which shows UC-friendly
completeness follows from those properties.

Claim 9.6. BCS has perfect completeness (Definition 5.4).

Proof. This follows directly from perfect completeness of the Merkle commitment scheme (Lemma 7.1) and
perfect completeness of the IOP (Definition 9.1).

73

Claim 9.7. BCS has monotone proofs (Definition 5.6).

Proof. The verification algorithm of the BCS construction only queries k additional point compared to
MT.Check, and those point were previously queried when deriving the IOP verifier’s randomness. Since
Merkle proofs are monotone (Lemma 7.2) this concludes the proof.

Claim 9.8. BCS has unpredictable queries (Definition 5.8) with error

ϵP(λ, n, tq, tp) := k ·
(
ϵMT(λ, l(n), tq + k · qMT.Commit(l(n)), tp) +

tp
2r

)
.

In the above, ϵMT is defined as in Lemma 7.3.

Proof. This follows directly from a union bound, relying on the high entropy of the Merkle commitment
scheme (Lemma 7.3) and the fact that, for every i ∈ [k], the salt σi is uniformly distributed over {0, 1}ri .

9.4 UC-friendly zero knowledge

We prove that the BCS construction is UC-friendly zero knowledge.

Lemma 9.9. Let IOP be (resp. strong) UC-friendly zero knowledge with error ζIOP. Then BCS[IOP, r] is
weak (resp. strong) UC-friendly zero knowledge with error

ζARG(λ, tq, tp, ℓp) = ℓp · ζ(1)simple(λ, n, tq + so(1)q (n, ℓp), tp + so(1)p (n, ℓp)) .

Above:
• ζ

(1)
simple(λ, n, tq, tp) :=

tq+tp
2r + ζMT(λ, l(n), q(n), tq, tp, k(n)) + ζIOP(n).

• ζMT is as in Lemma 7.12.
• so(1)q (n, ℓp) := ℓp ·max

(
k(n) +

∑
i∈[k(n)] qMT.Commit(li(n)), 2

∑
i∈[k(n)] qMT.Sim(li(n), qi(n))

)
.

• so(1)p (n, ℓp) := 2ℓp ·
(
k(n) +

∑
i∈[k(n)] pMT.Sim(li(n), qi(n))

)
.

Construction 9.10. Let SIOP be the simulator for IOP (Definition 9.4) and MT.Sim be the simulator for the
Merkle commitment scheme (Lemma 7.12). We construct a simulator S for UC-friendly zero knowledge as
follows.

SfMT(x):
1. Compute ((ρ1, . . . , ρk), (Q1, . . . , Qk), (a1, . . . ,ak), zSIM)← SIOP(x).
2. Set (rti, pfi, zi)← MT.SimfMT(Qi,ai) for i ∈ [k].
3. Sample σ1, . . . , σk ← {0, 1}r.
4. Set tr to program fi(x, (rt1, . . . , rti), (σ1, . . . , σi)) = ρi for i ∈ [k].
5. Set π := ((rt1, . . . , rtk), (σ1, . . . , σk), (Q1, . . . , Qk), (a1, . . . ,ak), (pf1, . . . , pfk)).
6. Set zπ := ((ρ1, . . . , ρk), (σ1, . . . , σk), (z1, . . . , zk), zSIM)
7. Return (π, tr, zπ).

S(w, zπ):
1. Let ρP ← SIOP(w, zSIM).
2. Compute Π1, . . . ,Πk by running PIOP on (x,w) with prover randomness ρP and verifier randomness

ρ1, . . . , ρk.

74

3. Compute (ρi,MT, tri)← MT.Sim(Πi, zi) for i ∈ [k].
4. Set ρMT = (ρ1,MT, σ1, . . . , ρk,MT, σk).
5. Output ((ρP, ρMT), tr := ◦itri).

Proof. We argue that S yields the simulation error in the lemma statement. To do so, we prove the following
claim.

Claim 9.11. BCS has weak (resp. strong) simplified UC-friendly zero knowledge (Definition 5.11) against
adversaries that make a single prover oracle query, with simulator S (Construction 9.10) and error:

ζ
(1)
simple(λ, n, tq, tp) =

tq + tp
2r

+ ζMT (λ, l, q, tq, tp, k) + ζIOP(n) .

Then, exactly as in Lemma 8.10, applying Lemma 5.12 and Lemma 5.13 concludes the proof.
We are left to argue Claim 9.11 via a sequence of games (defined next).

• sUCZeroKnowledge0:
– The “real-world” security game of Definition 5.11. (Recall, this is defined as in Definition 5.10 while

limiting the adversary to a single prover query and no verifier or verifier corruption queries).
• EXPA:

– Modify the proof oracle as follows.
1. Sample ρ1, . . . , ρk at the beginning of the proof oracle execution (instead of obtaining them by

querying the random oracle).
2. Compute the first IOP string (Π1, aux1)← PIOP(x,w).
3. For i ∈ [k], compute the remaining IOP strings Πi ← PIOP(auxi−1, ρi−1), by using the randomness

ρi−1 previously sampled.
4. Compute roots and openings as before.
5. Program the random oracle so that, for i ∈ [k], fi(x, (rt1, . . . , rti), (σ1, . . . , σi)) = ρi.

• EXPB:
– Modify the proof oracle as follows:

1. Use MT.Sim to obtain ((rti, pfi))i∈[k] for the query-answer pairs induced by VIOP(x; ρ1, . . . , ρk)instead
of using the values generated by MT.Commit and MT.Open.

2. Additionally, use MT.Sim to obtain Merkle commitment randomness, programming the random
oracle accordingly.

– We modify the corruption oracle to return the simulated merkle randomness ρMT obtained as in the
simulator of Construction 9.10 from the simulated Merkle randomness and the sampled salts.

• EXPC:
– We modify the proof oracle to use query-answer pairs Q1, . . . , Qk,a1, . . . ,ak generated by SIOP rather

than those induced by the verifier.
– The corruption oracle uses the simulator SIOP to obtain the simulated prover randomness.

• sUCZeroKnowledgeS1 :
– The “ideal-world” security game of Definition 5.11. (Recall, this is defined as in Definition 5.10 while

limiting the adversary to a single prover query and no verifier or verifier corruption queries).

REAL is close to EXPA.

∆A(sUCZeroKnowledge0,EXPA) ≤
tq + tp
2r

.

75

The only difference between the two games is that we have programmed a point in k domain-separated
random oracles, each of the form (x, (rt1, . . . , rti), (σ1, . . . , σi)) for σi a uniformly distributed string in
{0, 1}r. Thus, the probability that any of these k points is queried/programmed before they are programmed
by the simulator is bounded above by tq+tp

2r .

EXPA is close to EXPB.
∆A(EXPA,EXPB) ≤ ζMT (λ, l, q, tq, tp, k) .

We construct an adversary B that against the UC-friendly hiding game (Lemma 7.6).

B(A):
1. Run A, answering oracle queries as follows:

– Answer oracle queries to fMT by querying the challenger’s random oracle, and those to f1, . . . , fk by
lazily simulating that oracle.

– On the proof-oracle query (x,w) ∈ R run the following procedure:
(a) Sample ρ1, . . . , ρk.
(b) Compute Π1, . . . ,Πk by running PIOP on (x,w) with verifier randomness ρ1, . . . , ρk.
(c) Run VΠ1,...,Πk

IOP (x, ρ1, . . . , ρk) to deduce query and answer lists (Q1, . . . , Qk), (a1, . . . ,ak).
(d) For i ∈ [k]:

i. Call the proof oracle with input (Πi, Qi) to obtain (rti, pfi).
ii. Program the random oracle fi so that fi(x, (rt1, . . . , rti), (σ1, . . . , σi)) = ρi.

– On a corruption oracle query, call the corruption oracle of the challenger.
2. Return the output of A.

Note that B makes the same number of random oracle and programming queries as A and makes at most k
queries to the proof oracle. If B is in the “real-world” of the security experiment, the view of A is exactly as
in EXPA, otherwise it will be as in EXPB. Thus, any distinguishing advantage ofA translates in an advantage
against the UC-friendly hiding game.

EXPB is close to EXPC.
∆A(EXPB,EXPC) ≤ ζIOP(n) .

In this game hop we replace the IOP query/answer sets with those sampled by the simulator. The statistical
distance of the two distributions is bound by ζIOP. Thus, since the view of the adversary is otherwise identical,
the statistical distance of its output in the two games can be at most ζIOP.

EXPC is IDEAL.
EXPC ≡ sUCZeroKnowledgeS1 .

The games are syntactically equal.

9.5 UC-friendly knowledge soundness

We prove that the BCS construction satisfies UC-friendly knowledge soundness with respect to the simulator
described in Construction 9.10.

Lemma 9.12. Suppose that:

• IOP satisfies (straightline) state-restoration knowledge soundness with error κsr (Definition 9.3);
• MT has weak (resp. strong) UC-friendly extraction for MT.Sim with error κMT.

76

BCS satisfies weak (resp. strong) UC-friendly knowledge soundness (Definition 5.16) with respect to S
(defined in Construction 9.10) with error

κARG(λ, n, tq, tp, ℓp, ℓv) := ℓv · κ(1)ARG(λ, n, tq + ℓv · qV(n), tp, ℓp) .

In the above:

• κ
(1)
ARG(λ, n, tq, tp, ℓp) := κsr(n, tq, λ+ r) + κMT(λ, tq, tp, ℓp, l, q, k · (tq + 1), k).

Construction 9.13. Let MT.Extract be the Merkle extractor in Definition 7.14 and EIOP be the extractor for
the IOP in Definition 9.3. We construct an extractor E for the BCS construction as follows.

E(x, π, extTrace):
1. Parse π as ((rt1, . . . , rtk), (σ1, . . . , σk), (Q1, . . . , Qk), (a1, . . . ,ak), (pf1, . . . , pfk)).
2. Denote by extTraceMT the queries made to fMT in extTrace.
3. For every i ∈ [k], compute (Πi, tdi) := MT.Extract(rti, extTraceMT).
4. Compute w← EIOP(x,Π1, . . . ,Πk).
5. Output w.

Proof. We show that the extractor E in Construction 9.13 yields the error in the lemma statement.
Recall Lemma 5.18, which reduces UC-friendly knowledge soundness (Definition 5.16) to single-instance

UC-friendly knowledge soundness (Definition 5.17), a simpler property in which the adversary is allowed
a single verifier query. Specifically, if the non-interactive argument satisfies single-instance UC-friendly
knowledge soundness with error κ(1)ARG then the non-interactive argument satisfies UC-friendly knowledge
soundness with error κARG(λ, n, tq, tp, ℓp, ℓv) ≤ ℓv ·κ(1)ARG(λ, n, tq + ℓv ·qV(n), tp, ℓp). We are left to show that
the BCS construction satisfies single-instance UC-friendly knowledge soundness with error at most κ(1)ARG.

Let A be a (tq, tp, ℓp)-query adversary against single-instance UC-friendly knowledge soundness. We
upper bound the following probability:

Pr

(x,w) /∈ R
∧ b = 1
∧ trV ∩ advProg = ∅
∧ x /∈ InstanceList

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
x, π,

InstanceList,
extTrace,
advProg

 tr←− sUCKnowledgeSoundness1fS(n,A)

b
trV←−− Vf [tr](x, π)

w← E(x, π, extTrace \ advProg)

Massaging the probability statement. We introduce some notation to simplify later reduction steps.
Let ProofList = ((x(s)

j , π(s)

j))j denote the instances queried to the simulator oracle and their correspond-
ing proof (only when the simulator oracle did not return ⊥). Write RootList for the list of points pro-
grammed by the simulator oracle in f1, . . . , fk when generating ProofList. Letting (x, π) (with π =
((rt1, . . . , rtk), (σ1, . . . , σk), (Q1, . . . , Qk), (a1, . . . ,ak), (pf1, . . . , pfk))) denote the final instance-proof pair
output by the adversary, we note that if for some i we have that (x, (rt1, . . . , rti), (σ1, . . . , σi)) ∈ RootList

77

then x ∈ InstanceList. Thus, we have that the previous probability is upper-bounded by:

≤ Pr

(x,w) /∈ R
∧ b = 1
∧ trV ∩ advProg = ∅

∧ ∀ i

 x,
(rt1, . . . , rti),
(σ1, . . . , σi)

 /∈ RootList

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)

x,

π :=

(rt1, . . . , rtk),
(σ1, . . . , σk),
(Q1, . . . , Qk),
(a1, . . . ,ak),
(pf1, . . . , pfk)

RootList,
extTrace,
advProg

tr←− sUCKnowledgeSoundness1fS(n,A)
b

trV←−− Vf [tr](x, π)
w← E(x, π, extTrace \ advProg)

.

To simplify probability statements, we slightly abuse notation to have the sUCKnowledgeSoundness1 game
return RootList instead of InstanceList.

We define an algorithm Check, which captures the winning conditions of the UC-friendly knowledge
soundness game (other than the IOP verifier accepting).

CheckfMT(x, π, advProg,RootList):
1. Parse π as ((rt1, . . . , rtk), (σ1, . . . , σk), (Q1, . . . , Qk), (a1, . . . ,ak), (pf1, . . . , pfk)).
2. Denote by advProgFS, advProgMT the set of queries to fFS, fMT in advProg.
3. For every i ∈ [k], compute bi := MT.CheckfMT(rti, Qi,ai, pfi), denoting by trcheck the resulting query-

answer trace.
4. Check that:

– trcheck ∩ advProgMT = ∅.
– ∀ i ∈ [k]:

* bi = 1.
* (x, (rt1, . . . , rti), (σ1, . . . , σi)) /∈ advProgFS.
* (x, (rt1, . . . , rti), (σ1, . . . , σi)) /∈ RootList.

The BCS verifier V, for each round i ∈ [k], queries the Fiat–Shamir oracle at (x, (rt1, . . . , rti), (σ1, . . . , σi)),
and the Merkle commitment oracle, so the check trV∩advProg = ∅ can be rewritten as (x, (rt1, . . . , rti), (σ1, . . . , σi)) /∈
advProgFS and trcheck ∩ advProgMT = ∅.

78

The previous probability statement is then equivalent to:

Pr

(x,w) /∈ R
∧ b = 1

∧ V
[(Q1,a1),...,(Qk,ak)]
IOP (x, ρ1, . . . , ρk) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)

x,

π :=

(rt1, . . . , rtk),
(σ1, . . . , σk),
(Q1, . . . , Qk),
(a1, . . . ,ak),
(pf1, . . . , pfk)

 ,

RootList,
extTrace,
advProg

trMT,tr1,...,trk←−−−−−−−− sUCKnowledgeSoundnessfS(n,A)
b := CheckfMT[trMT](x, π, advProg,RootList)
∀ i ∈ [k], ρi := fi[tri](x, (rt1, . . . , rti), (σ1, . . . , σi))
w← E(x, π, extTrace \ advProg)

.

Reducing to (straightline) state-restoration knowledge soundness. We use A to construct an adversary
B against the (straightline) state-restoration game of IOP. We denote in red steps that are not used in the
reduction but will be used in the argument.

B(A):
1. Initialize empty trMT, tr1, . . . , trk, advProg, extTrace,ProofList,RandomP.
2. Run A, answering queries as follows:

– When A performs a query to fMT, record the query and answer in trMT, extTrace.
– WhenA performs the j-th query qj to one of fi (queries that we count cumulatively across f1, . . . , fk):

(a) If ∃ qid, y such that (qid, qj , y) ∈ tri return y.
(b) Parse qj as (xj , (rtj,1, . . . , rtj,i), (σj,1, . . . , σj,i)). (If this fails, answer the query with a lazily

sampled random oracle.)
(c) Denote by extTracej the queries in extTrace added since the last execution of MT.MultiExtract.
(d) Compute (Πj,k, tdj,k) := MT.MultiExtract(rtj,k, extTracej \ advProg) for every k ∈ [i].
(e) Submit (xj , (Πj,1, . . . ,Πj,i), ((rtj,1, σj,1), . . . , (rtj,i, σj,i))) to the state-restoration game, ob-

taining randomness ρj .
(f) Append (query, qj , ρj) to tri.
(g) Return ρj .

– When A makes a programming query traceprog to f1, . . . , fk or fMT:
(a) Partition traceprog into traceMT

prog and traceiprog for every i ∈ [k] depending on which oracle was
queried.

(b) For every i ∈ [k], if there exist (x, y) ∈ traceiprog and (qidj , xj , yj) ∈ tri with xj = x, return 0.
(c) If there exist (x, y) ∈ traceMT

prog and (qidj , xj , yj) ∈ trMT with xj = x, return 0.
(d) Else, for every i ∈ [k] append ((prog, x, y))(x,y)∈traceiprog to tri, ((prog, x, y))(x,y)∈traceMT

prog
to

trMT (and add both to advProg) and return 1.
– When A requests the j-th proof for (x(s)

j ,w(s)

j) ∈ R:

(a) Compute (π(s)

j , tr, zπ)
trS←−− SfMT(xj

(s)).

(b) Compute (ρP, tr
′)

tr′S←−− S(w, zπ).

79

(c) Program the oracles f1, . . . , fk, fMT according to tr, tr′, outputting ⊥ if the programming fails.
(d) Set extTrace := extTrace ◦ trS◦tr′S.
(e) Append (x(s)

j , π(s)

j) to ProofList.
(f) Append ρP to RandomP.

– WhenA asks a corruption query, return RandomP (and stop answering further simulator or corruption
queries).

3. The adversary finally outputs a pair (x, π).
4. Parse π = ((rt1, . . . , rtk), (σ1, . . . , σk), (Q1, . . . , Qk), (a1, . . . ,ak), (pf1, . . . , pfk)).
5. Denote by extTrace′ the queries in extTrace added since the last execution of MT.MultiExtract.
6. For every i ∈ [k], compute (Πi, tdi) := MT.MultiExtract(rti, extTrace \ advProg).
7. Derive RootList from ProofList.
8. Set b = CheckfMT[trMT](x, π, advProg,RootList).
9. Return (x, (Π1, . . . ,Πk), ((rt1, σ1), . . . (rtk, σk))).

We argue that the view of A when run within B during the Gamesr game is identical to the view of
A in the single-instance UC-friendly knowledge soundness game sUCKnowledgeSoundness1fS(n,A). We
consider each type of query that A makes:

• Queries to fMT. The reduction adversary B answer queries to fMT faithfully, so the distribution of answers
is the same as in the (single-instance) UC-friendly knowledge soundness game.

• Programming queries to f1, . . . , fk, fMT. Programming is perfectly simulated by the B. In the case of the
fMT, B implements the programming logic. For every i ∈ [k], in the case of fi, B stores the move-answer
pairs in the state-restoration performed thus far, which also allows it to faithfully answer programming
queries.

• For every i ∈ [k], queries to fi. Queries to fi that are not successfully parsed are answered by a (lazily
sampled) random oracle, and so those queries have identically distributed answers in both games. Queries
that are successfully parsed (and have not been previously queried or programmed) are forwarded to
the state-restoration game, which returns uniformly distributed randomness. Duplicate queries are also
handled consistently by B. Thus, all these queries are answered consistently to the UC-friendly knowledge
soundness game.

• Simulator queries and prover corruption queries. These are answered identically in both games, as the
reduction adversary faithfully simulates the oracle.

Define the event Eextr to hold if: (i) b = 1 and for some i ∈ [k] we have that Πi[Qi] ̸= ai; or (ii) ∃ j, i ∈ [k]
such that rti = rtj,i and Πi ̸= Πj,i.

We define the event Eextr as follows:
(

b = 1∧
∃ i ∈ [k] s.t. Πi[Qi] ̸= ai

)
or
∃ j, i s.t. rti = rtj,i ∧Πi ̸= Πj,i

∣∣∣∣∣∣∣∣∣
f = (f1, . . . , fk, fMT)← U(λ)
(x, π,RootList, trS)← sUCKnowledgeSoundnessfS(n,A)
(x, (Π1, . . . ,Πk), ((rt1, σ1), . . . , (rtk, σk)), ρ1, . . . , ρk)
b,(rtj,i,Πj,i)j,i←−−−−−−−− Gamesr(BfMT(A), f1, . . . , fk, λ+ r)

 . (3)

We will soon argue that overloaded variables in the above experiment are identical so we do not disambiguate
them in the notation.

80

We argue the following distributions are identical:

(x, (Π1, . . . ,Πk), (ρ1, . . . , ρk), bf , trMT)

conditioned on:

∀ i

 x,
(rt1, . . . , rti),
(σ1, . . . , σi)

 /∈ RootList ∪ advProg

∧¬Eextr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)

x,

π :=

(rt1, . . . , rtk),
(σ1, . . . , σk),
(Q1, . . . , Qk),
(a1, . . . ,ak),
(pf1, . . . , pfk)

 ,

RootList,
extTrace,
advProg

trMT,tr1,...,trk←−−−−−−−− sUCKnowledgeSoundnessfS(n,A)
b := CheckfMT[trMT](x, π, advProg,RootList)
∀ i ∈ [k], ρi := fi[tri](x, (rt1, . . . , rti), (σ1, . . . , σi))

bf := b ∧V
[(Q1,a1),...,(Qk,ak)]
IOP (x, ρ1, . . . , ρk)

w← E(x, π, extTrace \ advProg)

and (using the← notation to bring into scope internal variable of B)

(x, (Π1, . . . ,Πk), (ρ1, . . . , ρk), bf , trMT)

conditioned on:

∀ i

 x,
(rt1, . . . , rti),
(σ1, . . . , σi)

 /∈ RootList ∩ advProg

∧ ¬Eextr

∣∣∣∣∣∣∣∣∣∣∣∣

f1, . . . , fk ← U(r1, . . . , rk)
(x, (Π1, . . . ,Πk), ((rt1, σ1), . . . , (rtk, σk)), ρ1, . . . , ρk)
b,trMT,advProg,RootList←−−−−−−−−−−−−−− Gamesr(B(A), f1, . . . , fk, λ+ r)

bf := b ∧VΠ1,...,Πk
IOP (x; ρ1, . . . , ρk)

We discuss each random variable in turn:

• x, trMT. Both the instance x and the Merkle trace trMT are determined by the output and trace of the
adversary A. We have argued that the view of A is identical in both experiments, so the distribution of
these random variables is also identical.

• Π1, . . . ,Πk. In both experiments, Πi := MT.Extract(rti, extTraceMT). As in the previous point, rti,
advTraceMT are directly determined by the adversary A, and thus are identically distributed in both games.
simTraceMT is also identically distributed, since, as argued before, B faithfully simulates the simulator
oracle, and A makes identically distributed queries in both games. Thus, Πi has the same distribution in
both games.

• ρ1, . . . , ρk. Let i ∈ [k]. First, note that the distribution of the query-point p = (x, (rt1, . . . , rti), (σ1, . . . , σi))
is identical in both experiments. Note that, because the simulator only programs the Fiat–Shamir oracle on
points in RootList, the Fiat–Shamir oracle is only programmed on points in advProg or in RootList So,
since p /∈ RootList ∪ advProg, in the first experiment ρi = fi[tri](p) = fi(p). We distinguish two cases:
– p was previously queried to fi by A. Let j ∈ [tq] denote the index of the first such query. In the

first experiment, ρi is a uniformly sampled string, consistent to the j-th query to fi. In the sec-
ond experiment, ρi is obtained by querying (x, (Π1, . . . ,Πi), (rt1, . . . , rti), (σ1, . . . , σi)) to fi. Let-
ting Πj,1, . . . ,Πj,i denote the IOP strings extracted in the j-th query, since ¬Eextr holds and for ev-
ery k ∈ [i], rtj,k = rtk, Πj,k = Πk. Thus, both queries map to the same state-restoration move
(x, (Π1, . . . ,Πi), ((rt1, . . . , rti), (σ1, . . . , σi))). ρi is also uniformly distributed as desired.

81

– p was not previously queried to fi byA. In the first experiment ρi is a string sampled uniformly at random.
In the second experiment, ρi is obtained by querying fi at (x, (Π1, . . . ,Πi), ((rt1, σ1), . . . , (rti, σi)))
which is also a fresh new state-restoration move. Thus, ρi is also a uniformly random string.

• bf . In both experiments, b is computed by running Check with inputs that are identically distributed, so the
distribution of b is identical. If b = 0, bf = 0 in both experiments. Consider then the case when b = 1. In
the bottom experiment, since b = 1 and ¬Eextr holds, it must be that, for every i ∈ [k], Πi[Qi] = ai and
so VΠ1,...,Πk

IOP (x; ρ1, . . . , ρk) = V
[(Q1,a1),...,(Qk,ak)]
IOP (x; ρ1, . . . , ρk). Since x, (Π1, . . . ,Πk), (ρ1, . . . , ρk) are

identically distributed in both experiment, bf has the same distribution in both experiments.

Since the two distributions are identical, we get that

Pr

(x,w) /∈ R
∧ b = 1

∧ V
[(Q1,a1),...,(Qk,ak)]
IOP (x, ρ1, . . . , ρk) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)

x,

π :=

(rt1, . . . , rtk),
(σ1, . . . , σk),
(Q1, . . . , Qk),
(a1, . . . ,ak),
(pf1, . . . , pfk)

 ,

RootList,
extTrace,
advProg

trMT,tr1,...,trk←−−−−−−−− sUCKnowledgeSoundnessfS(n,A)
b := CheckfMT[trMT](x, π, advProg,RootList)
∀ i ∈ [k], ρi := fi[tri](x, (rt1, . . . , rti), (σ1, . . . , σi))
w← E(x, π, extTrace \ advProg)

≤ Pr

(x,w) /∈ R
∧ b = 1

∧ VΠ1,...,Πk
IOP (x; ρ1, . . . , ρk) = 1

∧ ¬Eextr

∣∣∣∣∣∣∣∣∣
(f1, . . . , fk)← U(r1, . . . , rk)
(x, (Π1, . . . ,Πk), ((rt1, σ1), . . . , (rtk, σk)), ρ1, . . . , ρk)
b,RootList←−−−−−− Gamesr(B(A), f1, . . . , fk, λ+ r)
w← EIOP(x,Π1, . . . ,Πk)

+ Pr [Eextr]

≤ Pr

 (x,w) /∈ R

∧ VΠ1,...,Πk
IOP (x; ρ1, . . . , ρk) = 1

∣∣∣∣∣∣∣∣∣
(f1, . . . , fk)← U(r1, . . . , rk)
(x, (Π1, . . . ,Πk), ((rt1, σ1), . . . , (rtk, σk)), ρ1, . . . , ρk)
b,RootList←−−−−−− Gamesr(B(A), f1, . . . , fk, λ+ r)
w← EIOP(x,Π1, . . . ,Πk)

+ Pr [Eextr] .

The first term is bounded above by the IOP state restoration error, so it is bounded above by κsr(n, tq, λ+ r).

Bounding Merkle extraction error. We are left to upper bound Pr [Eextr]. We use A to construct an adver-
sary BMT against the UC-friendly extraction property of the Merkle commitment scheme (Definition 7.14) as
follows. We highlight differences from the adversary B against the IOP (straightline) state-restoration game
in red.

Bf1,...,fkMT (A):
1. Initialize empty tr1, . . . , trk, advProg,ProofList, aux.
2. Run A, answering queries as follows:

– When A performs a query to fMT, forward the query to the random oracle of the game.
– WhenA performs the j-th query qj to one of fi (queries that we count cumulatively across f1, . . . , fk):

82

(a) If ∃ qid, y such that (qid, qj , y) ∈ tri return y.
(b) Parse qj as (xj , (rtj,1, . . . , rtj,i), (σj,1, . . . , σj,i)). (If this fails, answer the query with a lazily

sampled random oracle.)
(c) Submit rtj,1, . . . , rtj,i as root queries to the game, obtaining Πj,1, . . . ,Πj,i.
(d) Set ρj := fi(xj , (Πj,1, . . . ,Πj,i), ((rtj,1, σj,1), . . . , (rtj,i, σj,i))).
(e) Append (query, qj , ρj) to tri.
(f) Return ρj .

– When A makes a programming query traceprog to f1, . . . , fk or fMT:
(a) Partition traceprog into traceMT

prog and traceiprog for every i ∈ [k] depending on which oracle was
queried.

(b) For every i ∈ [k], if there exist (x, y) ∈ traceiprog and (qidj , xj , yj) ∈ tri with xj = x, return 0.
(c) Make a programming query to the programming oracle of the game with traceMT

prog, if this returns
0, return 0.

(d) Else, for every i ∈ [k] append ((prog, x, y))(x,y)∈traceiprog to tri.
(e) Append trace1prog, . . . , trace

k
prog, trace

MT
prog to advProg, and return 1.

– When A requests the j-th proof for (x(s)

j ,w(s)

j) ∈ R:
(a) Sample a IOP view ((ρ1, . . . , ρk), (Q1, . . . , Qk), (a1, . . . ,ak), zSIM)← SIOP(x).
(b) For every i ∈ [k], set Πi so that Πi[q] = a[q] for every q ∈ Qi and Πi[q] = ⊥ otherwise.
(c) Reconstruct IOP prover randomness ρP ← SIOP(w, zSIM).
(d) Rederive IOP strings Π1, . . . ,Πk by running PIOP with prover randomness ρP and verifier

randomness ρ1, . . . , ρk.
(e) For every i ∈ [k], submit (Πi, Qi) to the simulator oracle of the game, obtaining (rti, pfi). (If

instead the oracle returns ⊥, return ⊥.)
(f) Sample salt strings σ1, . . . , σk ← {0, 1}r.
(g) If for any i ∈ [k], (x, (rt1, . . . , rti), (σ1, . . . , σi)) ∈ tri, return ⊥.
(h) For every i ∈ [k], append (x, (rt1, . . . , rti), (σ1, . . . , σi)) to tri.
(i) Set π := ((rt1, . . . , rtk), (σ1, . . . , σk), (Q1, . . . , Qk), (a1, . . . ,ak), (pf1, . . . , pfk)).
(j) Append (x, π) to ProofList.
(k) Append ρP to aux.
(l) Return π.

– When A asks a corruption query, query the corruption oracle of the game, which return a list of
randomnesses, concatenate them with the IOP prover randomness in aux, return the concatenated list
RandomP (and stop answering further simulator or corruption queries).

3. The adversary finally outputs a pair (x, π).
4. Parse π = ((rt1, . . . , rtk), (σ1, . . . , σk), (Q1, . . . , Qk), (a1, . . . ,ak), (pf1, . . . , pfk)).
5. Derive RootList from ProofList.
6. Set b = CheckfMT[trMT](x, π, advProg,RootList).
7. Let ℓ denote the number of root queries performed so far.
8. Make root queries rt1, . . . , rtk.
9. Return ((ℓ+ 1, Q1,a1, pf1), . . . , (ℓ+ k, Qk,ak, pfk)).

83

We use BMT to bound the probability of Eextr. We define the event E′extr to be the following one:
(

b = 1∧
∃i ∈ [k] s.t. Πi[Qi] ̸= ai

)
or
∃ j, i s.t. rti = rtj,i ∧Πi ̸= Πj,i

∣∣∣∣∣∣∣∣∣∣∣

f = (f1, . . . , fk, fMT)← U(λ)
(x, (Π1, . . . ,Πk), ((rt1, σ1), . . . , (rtk, σk)), ρ1, . . . , ρk)
← Gamesr(B(A), f1, . . . , fk, λ+ r)

advWin
b,(Qi)i,(ai)i,(Πi)i,(rtj,i,Πj,i)j,i←−−−−−−−−−−−−−−−−−−−

sUCMerkleExtractionfMT(Bf1,...,fkMT(A), l, q, k · (tq + 1), k)

 .

(4)
As before, we will soon argue that overloaded variables are identical, so we do not disambiguate.

First note that the distribution of the answer of queries of A in BMT is the same as when run within B in
the state-restoration game.
• Queries fMT are forwarded to the random oracle of the game.
• For every i ∈ [k], queries to fi are answered by extracting IOP strings (by making a root query, which runs
MT.MultiExtract) and then querying the oracle fi.

• Programming queries are answered by first checking if the Fiat–Shamir programming requests have been
previously determined, if not, the Merkle programming requests are forwarded to the programming oracle
of the game, and only then the Fiat–Shamir oracle is programmed. This ensure they are handled as in the
state-restoration game (maintaining atomicity).

• Simulator queries are identically distributed to those in a execution of B within the state-restoration game.
In the weak UC-friendly extraction game, this is because the reduction faithfully simulates the simulator
oracle (replacing the execution of MT.Sim with a query to the simulator oracle of the game). In the strong
UC-friendly extraction game, the order in which the IOP strong simulator and the Merkle simulator are run
is changed, but this is immaterial since the IOP strong simulator does not query/program the random oracle
and Merkle strong simulator only program fMT.

Write rt1, . . . , rtℓ, rtℓ+1 = rt1, . . . rtℓ+k = rtk for the list of roots queried by BMT, and Π1, . . . ,Πℓ+k for
the corresponding extracted strings (note that ℓ ∈ [k · tq]). We argue that, in the experiments of Equations (3)
and (4), the distribution of b,Q1, . . . , Qk,a1, . . . ,ak, rt1, . . . , rtℓ+k,Π1, . . . ,Πℓ+k are identically distributed.
Since Q1, . . . , Qk,a1, . . . ,ak, rt1, . . . , rtℓ+k are directly determined by the output of A, they are identical
in both experiments. Further, in both experiments, the traces advTrace, simTrace are identical (and also are
their restrictions advTracej , simTracej). Thus, since Πj,i := MT.MultiExtract(rtj,i, advTracej , simTracej),
the IOP strings are also identically distributed. Finally, b in both experiments is a deterministic function of
the variables mentioned above, and thus also has the correct distribution in both experiments.

Since the conditions for which Eextr, E
′
extr hold are identical, it must be that Pr [Eextr] = Pr [E′extr].

The proof concludes by noticing that E′extr is a relaxation of the conditions required for the advWin
flag to be set in the UC-friendly extraction game. Indeed Eextr holds if: (i) b = 1 and for some i ∈ [k]
Πi[Qi] ̸= ai; or (ii) ∃ j, i such that rti = rtj,i and Πi ̸= Πj,i. If the first item holds, then, for some i ∈ [k],
bi = 1, advProg ∩ trcheck = ∅ and Πi[Q1, . . . , Qki] ̸= ai, and thus Item 6b in Definition 7.14 holds, and thus
advWin = 1. If the second item holds, then advWin = 1, because if ∃ j, i such that rti = rtj,i and Πi ̸= Πj,i

it must hold that ∃ f, g such that rtf = rtg and Πf ̸= Πg (namely, set f = ℓ + i and g = k · j + i). We
conclude that

Pr [Eextr] = Pr
[
E′extr

]
≤ Pr

[
advWin = 1

∣∣∣∣ f = (f1, . . . , fk, fMT)← U(λ)
advWin← sUCMerkleExtractionfMT(Bf1,...,fkMT (A), l, q, k · (tq + 1), k)

]
≤ κMT(λ, tq, tp, ℓp, l, q, k(tq + 1), k) ,

84

where the last inequality follows since BMT makes at most tq random oracle14 and tp programming queries to
fMT, submits at most k · (tq + 1) roots, makes at most ℓp simulator queries and outputs at most k openings.
By UC-friendly extraction, the probability that the advWin flag (as defined in that game) is set is then at most
κMT(λ, tq, tp, ℓp, l, q, k · (tq + 1), k).

9.6 UC-secure zkSNARKs from BCS

We combine the results in Sections 9.3 to 9.5 to show that, when instantiated with a suitable IOP, the BCS
construction yields a UC-secure zkSNARK.

Theorem 9.14. Let IOP be an interactive oracle proof with:

• (resp. strong) honest-verifier zero knowledge (Definition 9.4) with error ζIOP.

• (straightline) state-restoration knowledge soundness (Definition 9.3) with error κIOP.

Set MT := MT[λ,Σ, l, rMT] and ARG := BCS[IOP,MT, r]. Then Πa[ARG] (tq, tp, ℓp, ℓv)-UC-realizes FaARG

in the GRO-hybrid model with no simulation overhead and error

zUC(ϵARG, ζARG, κARG, λ, n, tq, tp, ℓp, ℓv)

In the above we let

• zUC(ϵARG, ζARG, κARG, λ, n, tq, tp, ℓp, ℓv) := ϵARG(λ, n, tq, tp, ℓp, ℓv)+ζARG(λ, n, tq, tp, ℓp)+κARG(λ, n, tq, ℓv)
as in Theorem 6.1,

• ϵARG(λ, n, tq, tp, ℓp, ℓv) as in Lemma 9.5.

• ζARG(λ, n, tq, tp, ℓp, ℓv) as in Lemma 9.9,

• κARG(λ, n, tq, tp, ℓp, ℓv) as in Lemma 9.12.

Proof. By Lemma 9.5 we obtain that the BCS construction has strong UC-completeness. By Lemma 9.9, we
show that it is weak (resp. strong) UC-friendly zero knowledge. By Lemma 9.12 we conclude weak (resp.
strong) UC-friendly knowledge soundness with respect to the simulator from the UC-friendly zero knowledge
proof. Applying then Theorem 6.1 concludes the result.

14Formally, BMT makes tq + k · qMT.Check random oracle queries, as those are required to compute Check. However, since b is only
used to define E′

extr, we can modify the reduction adversary to avoid performing the spurious extra k · qMT.Check queries.

85

A An analysis of [IW14]

We define the Hamming distance of two strings of length n as ∆(f, g) := Pri←[n] [f [i] ̸= g[i]], and extend
the notation to sets to have ∆(f, S) := ming∈S ∆(f, g), with the convention that ∆(f, ∅) := 1. For a relation
R, we let R[x] := {w : (x,w) ∈ R}.

We also recall some notation for non-adaptive PCPs.

Definition A.1. A probabilistically checkable proof PCP = (PPCP,VPCP) is non-adaptive if there exist
deterministic algorithms S,Q,D such that, for every x, ρ,Π

VΠ
PCP(x; ρ) = D(S(x, ρ),Π[Q(x, ρ)]) .

We write thus VPCP = (S,Q,D)

We recall the definition of probabilistically checkable proof of proximity.

Definition A.2. A tuple of algorithms PCPP = (PPCPP,VPCPP) is a probabilistically checkable proof of
proximity for a relation R with proximity parameter δ and proximity soundness error ϵPCPP if it satisfies the
following two properties:

• Completeness For every (x,w) ∈ R,

Pr
[
Vw,Π

PCPP(x) = 1
∣∣∣Π← PPCPP(x,w)

]
= 1 .

• Soundness For every x,w, if ∆(w, R[x]) ≥ δ, for any proof Π̃,

Pr
[
Vw,Π̃

PCPP(x) = 1
]
≤ ϵPCPP(|x|) .

If δ = 0, then we say PCPP is exact.

The notions of zero knowledge and strong zero knowledge for PCPPs are defined analogously to Defini-
tion 8.3 and Definition 8.3 but including queries to the witness in the view as well.

We will need some notation for secret-sharing.

Definition A.3. Let Π ∈ {0, 1} be a bit. A list of bits Π(1), . . . ,Π(d+1) ∈ {0, 1} is a d-secret-share of Π iff
⊕i∈[d+1]Π

(i) = Π. We also write SShare(Π) for the algorithm that samples secret shares of Π uniformly at
random, and extend both the definition and this notation to strings in the obvious way.

For a non-adaptive PCP, with VPCP = (S,Q,D), we define relation of accepting views:

R(VPCP) := {(s,a) : D(s,a) = 1} .

and its d-private equivalent, namely

R(d)(VPCP) :=
{
(s, (a(1), . . . ,a(d+1))) : (s,⊕i∈[d+1]a

(i)) ∈ R(VPCP)
}

.

Construction A.4. Let d ∈ N, and let PCPout = (Pout,Vout) be a non-adaptive PCP for a relation R with
Vout = (S,Q,D). Let PCPPin = (Pin,Vin) be an PCPP for the relation R(d)(Vout). We define a new PCP
IW[PCPout,PCPPin, d] = (PPCP,VPCP) for R as follows.

86

PPCP(x,w):
1. Compute Πout ← Pout(x,w).
2. Set Π(1)

out, . . . ,Π
(d+1)
out ← SShare(Πout).

3. For ρout ∈ {0, 1}rout :
(a) Compute sρout := S(x, ρout), Qρout := Q(x, ρout).
(b) For i ∈ [d+ 1], set a(i) := Π

(i)
out[Qρout].

(c) Compute Π[ρout]← Pin(sρout , (a
(1), . . . ,a(d+1))).

4. Output Π := ((Π
(i)
out)i∈[d+1], (Π[ρout])ρout).

VΠ
PCP(x):

1. Sample ρout ← {0, 1}rout .
2. Compute s := S(x, ρout), Q := Q(x, ρout)

3. Return V
Π

(1)
out[Q],...,Π

(d+1)
out [Q],Π[ρout]

in (s).

We show that, if the outer PCP is knowledge sound, so is the composed one.

Lemma A.5. Suppose PCPout is non-adaptive and has knowledge soundness error κPCP, and PCPPin is exact
and has soundness error ϵPCPP. Then IW[PCPout,PCPPin, d] has knowledge soundness error κPCP + ϵPCPP.

Proof. Letting Eout be the extractor for PCPout, the new extractor EPCP is defined by EPCP(x,Π) :=

Eout(x,⊕i∈[d+1]Π
(i)
out). First, suppose that VPCP is accepting. Thus, unless with probability at most ϵPCPP,

since the inner PCPP is exact, (Π(1)
out[Q], . . . ,Π

(d+1)
out [Q]) ∈ R(d)(Vout)[s] and thus a := ⊕i∈[d+1]Π

(i)
out[Q]

must be in R(Vout)[s].
Letting Π := ⊕i∈[d+1]Π

(i)
out, we see that whenever ρout makes VPCP accept, then (unless with a probability

of at most ϵPCPP), then Vout would have accepted as well, and thus extraction succeeds on Π with probability
at least 1− κPCP.

Remark A.6. Note that Lemma A.5 is already sufficient to conclude that knowledge sound honest-verifier
zero knowledge PCPs exist (and thus UC-secure zkSNARKs via our main results), the further work that we
include simply aims to establish the strong HVZK property.

Next, we show that if the inner PCPP is strong honest-verifier zero knowledge, the resulting PCP also is
(as long as the inner PCPP does not make too many queries).

Lemma A.7. Let q ≤ d. Suppose that PCPout is a non-adaptive PCP, and that PCPPin is strong honest-
verifier zero knowledge whose verifier makes at most q oracle queries. Then IW[PCPout,PCPPin, d] is also
strong honest-verifier zero knowledge.

Proof. Let Sin be the simulator for PCPPin. We build a new simulator as follows.
SPCP(x):
1. Sample ρout ← {0, 1}rout .
2. Compute s := S(x, ρout).
3. Compute (ρin, Q,a, z′SIM)← Sin(s) answering witness oracle queries with uniformly random bits.
4. Return (ρ := (ρout, ρin), Q,a, zSIM := (x, ρout, Q,a, z′SIM)).
SPCP(w, zSIM):
1. Sample ρPout ← {0, 1}rPout

2. Compute Πout ← Pout(x,w; ρPout).

87

3. Parse Q := (Q(1), . . . , Q(d+1), Qin) and a := (a(1), . . . ,a(d+1),ain) dividing the queries-answers by
the oracle queried.

4. Sample Π(1)
out, . . . ,Π

(d+1)
out uniformly at random conditioned on ⊕i∈[d]Π

(1)
out = Πout and Π

(i)
out[Q

(i)] = a(i).
5. Compute ρPin

[ρout]← Sin(a
(1), . . . ,a(d+1), z′SIM)

6. For ρ ∈ {0, 1}rPout \ {ρout}, set ρPin
[ρ]← {0, 1}rPin

7. Return ρP := (ρPout , (Π
(i)
out)i∈[d+1], (ρPin

[ρ])ρ).
The distinguishing advantage on adversary is bound by the statistical distance of the following variables

in the real and simulated games.

((ρout, ρin), Q,a, (ρPout , (ρPin
[ρ])ρ))

Note that, by completeness of PCPout, the answers a(1), . . . ,a(d+1) ∈ R(d)(Vout)[s], and thus by the strong
honest-verifier zero knowledge properties the distance of the variables is at most the simulation error (since
all the other variables are identically distributed in both games).

We turn our attention to designing the inner PCPP for our construction.

Lemma A.8. Let 3COL denote the graph 3 coloring NP-complete problem. There exists an exact proof of
proximity for R with:
• Perfect completeness.
• Soundness error ϵPCPP =

(
1− Ω(1

n2)
)

• Constant queries (in fact at most 3).
• Perfectly strong honest-verifier zero knowledge.

Sketch. The prover first samples φ ← S3. It then computes θ := φ ◦ σ, and outputs the proof Π :=
(φ, θ(v)v∈V). The verifier samples a random coin, and does one of the following things:
1. Samples e ∈ E and checks θ(u) ̸= θ(v).
2. Samples v ∈ V and checks φ(σ(v)) = θ(v).
Perfect completeness is easy to see.

For soundness, assume that σ /∈ 3COL[G], there are two cases to consider. Suppose first that the malicious
prover sends θ ̸≡ φ ◦ σ. Then, there exists at least one vertex at which the two disagree, and thus the verifier
will reject with probability at least≥ 1

2 ·
1
n . In the other case, the prover sent a θ ≡ φ◦σ, and thus θ cannot be

a coloring of G (or else σ would also be one) and thus there must be at least one edge at which θ(u) = θ(v),
which makes the verifier reject with probability at least 1

2 ·
1
|E| ≥

1
2(n2)

. Finally, for strong honest-verifier zero

knowledge, the simulator (which has oracle access to σ) behaves as following.
1. Sample b← {0, 1}.

(a) If b = 0, sample e = (u, v)← E, and two random distinct colors cu ̸= cv, outputs those.
(b) If b = 1, sample v ← V and queries σ(v). It then samples φ← S3 and answer the query to φ with

φ and that to θ with φ(σ(v)).
When asked to come up with prover randomness the simulator looks at the bit that it previously sampled, and
acts as follows:
1. If b = 0, query σ(u), σ(v), and compute a random permutation with φ(σ(u)) = cu and φ(σ(v)) = cv.
2. If b = 1, return φ.
Note that the resulting view is identically distributed to that in an honest execution, and thus this simulator
gives perfect strong honest-verifier zero knowledge.

88

This inner PCP of course has very small soundness, but this can be amplified using the same techniques
as in [IW14] (sequential repetition) while preserving strong zero knowledge.

Next, we require a straightline extractable outer PCP, and to achieve it we turn to [BFLS91].

Lemma A.9 ([BFLS91]). Let R be an NP-relation. There exists a PCP for R with (i) perfect completeness;
(ii) constant knowledge soundness error; (iii) polynomial proof length; and (iv) polylogarithmic query
complexity.

We wrap things here with details of the construction.

Construction A.10. Let PCPout := (Pout,Vout) be the PCP guaranteed by Lemma A.9 for the relation R,
with soundness amplified to 1

ω(n2)
by sequential repetition applied logarithmically many times. Instead, for

PCPPin use the PCPP from Lemma A.8 (adapted to the relation R(3)(Vout)). The final PCP PCP is obtained
from IW[PCPPin,PCPout, 3] by doing sequential repetition logarithmically many times to obtain soundness
2−λ (which is constant in n). From Lemma A.5 and Lemma A.7 it is easy to see that the resulting PCP is
knowledge sound and perfectly strong honest-verifier zero knowledge.

89

Acknowledgments

We thank Ran Canetti, Megan Chen, Anna Lysyanskaya and Leah Namisa Rosenbloom for insightful
discussions on the UCGS framework, the ARG (i.e., NIZKPoK) ideal functionality, and global random
oracles. We also thank Francesco Intoci, Giorgio Seguini, Kien Tuong Truong, Eylon Yogev for valuable
feedback and suggestions on earlier drafts of this paper. The authors are partially supported by the Ethereum
Foundation.

References
[AGRS24] Behzad Abdolmaleki, Noemi Glaeser, Sebastian Ramacher, and Daniel Slamanig. “Circuit-Succinct

Universally Composable NIZKs with Updatable CRS”. In: Proceedings of the 37th IEEE Computer
Security Foundations Symposium. CSF ’24. 2024.

[ARS20] Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. “Lift-and-Shift: Obtaining Simula-
tion Extractable Subversion and Updatable SNARKs Generically”. In: Proceedings of the 27th ACM
Conference on Computer and Communications Security. CCS ’20. 2020, pp. 1987–2005.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero Knowledge
with No Trusted Setup”. In: Proceedings of the 39th Annual International Cryptology Conference.
CRYPTO ’19. 2019, pp. 733–764.

[BCFGRS17] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. “Zero Knowledge Protocols from Succinct Constraint Detection”. In: Proceedings of the
15th Theory of Cryptography Conference. TCC ’17. 2017, pp. 172–206.

[BCHTZ20] Christian Badertscher, Ran Canetti, Julia Hesse, Björn Tackmann, and Vassilis Zikas. “Universal
Composition with Global Subroutines: Capturing Global Setup Within Plain UC”. In: Proceedings of
the 18th Theory of Cryptography Conference. TCC 20. 2020, pp. 1–30.

[BCRSVW19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: Proceedings of the 38th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’19.
2019, pp. 103–128.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In: Proceed-
ings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computations in
polylogarithmic time”. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing.
STOC ’91. 1991, pp. 21–32.

[BS21] Karim Baghery and Mahdi Sedaghat. “TIRAMISU: Black-Box Simulation Extractable NIZKs in the
Updatable CRS Model”. In: Proceedings of the 20th International Conference on Cryptology and
Network Security. CANS ’21. 2021, pp. 531–551.

[CDGLN18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven. “The
Wonderful World of Global Random Oracles”. In: Proceedings of the 37th Annual International
Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT ’18. 2018,
pp. 280–312.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. “Universally Composable Security
with Global Setup”. In: Proceedings of the 4th Theory of Cryptography Conference. TCC ’07. 2007,
pp. 61–85.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. “Practical UC security with a Global Random
Oracle”. In: Proceedings of the 21st ACM Conference on Computer and Communications Security.
CCS ’14. 2014, pp. 597–608.

90

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. “Succinct Arguments in the Quantum
Random Oracle Model”. In: Proceedings of the 17th Theory of Cryptography Conference. TCC ’19.
2019, pp. 1–29.

[CY24] Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash Functions. 2024.
URL: https://github.com/hash-based-snargs-book.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryptographic Protocols”. In:
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science. FOCS ’01.
2001, pp. 136–145.

[Can20] Ran Canetti. “Universally Composable Security”. In: Journal of the ACM 67 (2020), pp. 1–94.

[DDOPS01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. “Ro-
bust Non-interactive Zero Knowledge”. In: Proceedings of the 21st Annual International Cryptology
Conference. CRYPTO ’01. 2001, pp. 556–598.

[Fis05] Marc Fischlin. “Communication-Efficient Non-interactive Proofs of Knowledge with Online Extrac-
tors”. In: Proceedings of the 25th Annual International Cryptology Conference. CRYPTO ’05. 2005,
pp. 152–168.

[GKOPTT23] Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel
Tschudi. “Witness-Succinct Universally-Composable SNARKs”. In: Proceedings of the 42nd Annual
International Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT ’23.
2023, pp. 315–346.

[Gro06] Jens Groth. “Simulation-sound NIZK proofs for a practical language and constant size group signa-
tures”. In: Proceedings of the 12th International Conference on Theory and Application of Cryptology
and Information Security. ASIACRYPT ’06. 2006, pp. 444–459. URL: http://www0.cs.ucl.
ac.uk/staff/J.Groth/NIZKGroupSignFull.pdf.

[IW14] Yuval Ishai and Mor Weiss. “Probabilistically Checkable Proofs of Proximity with Zero-Knowledge”.
In: Proceedings of the 11th Theory of Cryptography Conference. TCC ’14. 2014, pp. 121–145.

[KZM+15] Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Charalampos Papamanthou,
Rafael Pass, abhi shelat, and Elaine Shi. C∅C∅: A Framework for Building Composable Zero-
Knowledge Proofs. Cryptology ePrint Archive, Paper 2015/1093. 2015.

[Ks22] Yashvanth Kondi and abhi shelat. “Improved Straight-Line Extraction in the Random Oracle Model
with Applications to Signature Aggregation”. In: Proceedings of the 28th International Conference
on the Theory and Application of Cryptology and Information Security. ASIACRYPT ’22. 2022,
pp. 279–309.

[LR22a] Anna Lysyanskaya and Leah Namisa Rosenbloom. Efficient and Universally Composable Non-
Interactive Zero-Knowledge Proofs of Knowledge with Security Against Adaptive Corruptions. Cryp-
tology ePrint Archive, Paper 2022/1484. 2022.

[LR22b] Anna Lysyanskaya and Leah Namisa Rosenbloom. “Universally Composable Σ-protocols in the Global
Random-Oracle Model”. In: Proceedings of the 20th Theory of Cryptography Conference. TCC ’22.
2022, pp. 203–233.

[Mer89] Ralph C. Merkle. “A certified digital signature”. In: Proceedings of the 9th Annual International
Cryptology Conference. CRYPTO ’89. 1989, pp. 218–238.

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4 (2000). Prelim-
inary version appeared in FOCS ’94., pp. 1253–1298.

91

https://github.com/hash-based-snargs-book
http://www0.cs.ucl.ac.uk/staff/J.Groth/NIZKGroupSignFull.pdf
http://www0.cs.ucl.ac.uk/staff/J.Groth/NIZKGroupSignFull.pdf

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Techniques
	2.1 Unconditional UC-security
	2.2 UC-friendly properties
	2.3 The Merkle commitment scheme is UC-friendly
	2.4 The Micali construction is UC-secure
	2.5 The BCS construction is UC-secure
	2.6 Adaptive corruptions and strong UC-friendly properties

	3 Preliminaries
	3.1 Notation
	3.2 UC-security with unbounded adversaries
	3.3 Global random oracle

	4 UC-security for non-interactive arguments in the ROM
	4.1 Ideal functionality
	4.2 Protocol

	5 UC-friendly security notions for non-interactive arguments
	5.1 UC-friendly completeness
	5.2 UC-friendly zero knowledge
	5.3 UC-friendly knowledge soundness

	6 UC-secure zkSNARKs from UC-friendly security notions
	6.1 Proof of thm:maintheorem
	6.2 def:argCompleteness,def:argAdaptiveZeroKnowledgeWithProgramming,def:mUCExtraction are necessary

	7 Merkle commitments and UC-security
	7.1 Merkle commitment schemes
	7.2 UC-friendly completeness
	7.3 UC-friendly hiding
	7.4 UC-friendly extraction

	8 The Micali construction is UC-secure
	8.1 Probabilistically checkable proofs
	8.2 The Micali construction
	8.3 UC-friendly completeness
	8.4 UC-friendly zero knowledge
	8.5 UC-friendly knowledge soundness
	8.6 UC-secure zkSNARKs from Micali

	9 The BCS construction is UC-secure
	9.1 Interactive oracle proofs
	9.2 The BCS construction
	9.3 UC-friendly completeness
	9.4 UC-friendly zero knowledge
	9.5 UC-friendly knowledge soundness
	9.6 UC-secure zkSNARKs from BCS

	A An analysis of IshaiW14
	Acknowledgments
	References

