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Abstract. In this paper, we introduce Learning With Quantization
(LWQ), a new problem related to the Learning With Errors (LWE) and
Learning With Rounding (LWR) problems. LWQ provides a tight secu-
rity reduction from LWE while enabling efficient ciphertext compression
comparable to that of LWR. We adopt polar lattices to instantiate the
quantizer of LWQ. Polar lattices are a specific instance of the classical
Construction D, which utilizes a set of nested polar codes as component
codes. Due to the polarization phenomenon of polar codes, the distribu-
tion of the quantization error converges to a discrete Gaussian. Moreover,
the quantization algorithm can be executed in polynomial time. Our
main result establishes a security reduction from LWE to LWQ, ensur-
ing that the LWQ distribution remains computationally indistinguishable
from the uniform distribution. The technical novelty lies in bypassing the
noise merging principle often seen in the security reduction of LWR, in-
stead employing a more efficient noise matching principle. We show that
the compression rate is ultimately determined by the capacity of the
“LWE channel”, which can be adjusted flexibly. Additionally, we propose
a high-information-rate encryption framework based on LWQ, demon-
strating its advantage over constructions based on LWE and quantized
LWE.

Keywords: Lattice-Based Cryptography · Learning With Quantization
· Polar Lattice · Ciphertext Compression · Source Coding.

1 Introduction

Regev’s Learning with Errors (LWE) problem [Reg05] is fundamental to mod-
ern cryptography, offering both versatility and robust security guarantees. The
LWE assumption states that the decision LWE problem is hard to solve: With
proper parameters n,m, q ∈ N and a small error distribution χe over Zm, for
uniformly random matrices A← Zm×n, vectors s← Zn

q , u← Zm
q , and an error
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vector e ← χe, the pair (A,As + e) is computationally indistinguishable from
(A,u). It is known that when the modulus q is sufficiently large compared to
n, certain error distributions make solving LWE as hard as tackling worst-case
computational problems on lattices [Reg05,Pei09,BLP+13]. These problems are
conjectured to remain difficult even for quantum computers. Beyond its strong
hardness guarantees, LWE has proven extremely useful in cryptographic appli-
cations. Since its introduction, a significant amount of research has focused on
LWE-based constructions for a wide array of known cryptographic primitives
(e.g., [GPV08,MP12,GSW13,CKKS17,PS19], among many others).

However, the inherent randomness in the LWE problem—specifically, the
randomness involved in generating the error vector e—prevents straightforward
constructions of certain cryptographic primitives that require determinism. To
address the issue, the Learning With Rounding (LWR) problem was introduced
by Banerjee, Peikert, and Rosen [BPR12] as a derandomized version of the LWE
problem. Instead of adding an error vector e to As to hide its exact values,
LWR releases a deterministically rounded version of As. In particular, for some
p < q, an element-wise rounding function ⌊·⌉p : Zm

q → Zm
p is applied. The LWR

assumption is expressed as follows: (A, ⌊As⌉p) is computationally indistinguish-
able from (A, ⌊u⌉p). We can also write ⌊As⌉p = As + eQ with the rounding
error eQ, but the storage size for the term ⌊As⌉p is smaller than that of LWE.
The applications of LWR span various areas, including pseudorandom functions
[BPR12], reusable randomness extractors [AKPW13], and public key encryption
schemes such as Saber [DKRV18] and Lizard [CKLS18].

The hardness of LWR is mostly established through a reduction from the
quantized LWE problem. The reduction of Banerjee, Peikert, and Rosen re-
quires the the modulus q has to be super-polynomial, which makes all of the
computations less efficient. Moreover, the ratio of the input-to-output modulus
q/p is super-polynomial, meaning that we must throw away a lot of informa-
tion when rounding and therefore get fewer bits of output per LWR sample. In
practical applications, it is advantageous to use a smaller modulus q to enable
more efficient implementations. However, establishing the hardness of LWR with
polynomial modulus q is a significant open question as noted in [BPR12].

Subsequent research [AKPW13,BGM+16,NR23] has further examined this
area. The size of q was reduced to a polynomial by assuming it is a prime in
[AKPW13,NR23], but their results do not address cases where q is a power
of two, where the rounding function becomes particularly straightforward. Re-
stricting on the number of query samples, [BGM+16] also showed that q can be
polynomial. From the terminology of this paper, a principle called noise merging
is frequently involved in the hardness proof of LWR. For instance, the security
reduction of [BPR12] is

(A, ⌊As+ e⌉p) ≈c (A, ⌊u⌉p)→ (A, ⌊As⌉p) ≈c (A, ⌊u⌉p). (1)

Its noise merging principle is that a large uniform noise eQ can merge a small
noise e to itself:

eQ + e ≈s eQ. (2)
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Additionally, noise merging is utilized in the lossy code-based security reduction
in [AKPW13] and is applied using the Rényi divergence metric in [BGM+16].

Informally, we can think of the width of a Gaussian e as σ, and the element-
wise width of eQ as σQ = q/(2p). We have to choose σQ ≫ σ to enable the noise
merging technique. This situation is not ideal as a smaller modulo-to-noise ratio
q/σ implies more secure LWE [Reg05]. Moreover, the noise merging technique
does not ensure that a larger compression ratio for quantized LWE samples (and
therefore a large σQ) corresponds to a more difficult LWE problem; it only says
that a large σQ makes LWR as hard as LWE of noise width σ. The above analysis
leads us to the following question: can we design a variant with tighter security
reduction from LWE?

1.1 Our Contribution

Our primary contribution is the introduction of a variant termed Learning With
Quantization (LWQ), along with a reduction from LWE. This approach utilizes
a lattice to quantize the vector As in a vector-wise manner, resulting in an
observation term represented as As+eQ, where eQ denotes the error introduced
by quantization. This method offers several advantages: first, it eliminates the
error vector e of LWE and reduces the size of As similar to LWR; second,
it achieves greater quantization efficiency compared to LWR due to the more
flexible choice of Λ, where LWR is only a special case of LWQ with Λ = q

pZ
m;

and third, it provides a tight security reduction from LWE, where a higher degree
of quantization corresponding to an increased level of security. The main result of
this paper is the following theorem (corresponding to Corollary 1 in Section 3.2):

Theorem 1 (Informal). There exist a sequence of efficient lattice quantizers
such that the LWQ distribution is computationally indistinguishable from the
uniform distribution.

In a sense, LWQ can be seen as an advanced method for approximating
the LWE distribution while simultaneously compressing ciphertexts. The proof
techniques and results are new and flexible. Specifically, we build reduction from
LWE to LWQ, rather than from quantized LWE.

Intuitively, it is impossible to prove indistinguishability between naive LWQ
and LWE, as the support set is different: the quantization ∈ Zm

q ∩ Λ, while
As+ e ∈ Zm

q . To do so, we resort to an adapted form of dithering, which is the
process of adding a small amount of artificial noise to the data/signal to prevent
patterns in quantization errors. In general, dithering leads to QΛ(As− d) using
a uniform d. Our adapted form is to transmit QΛ(As− d) + d = As + eQ ∈
Zm
q , where the quantization error eQ becomes independent of the input and is

uniformly distributed over the Voronoi region of the quantization lattice. Then
we can focus on proving

(A,As+ eQ) ≈s (A,As+ e). (3)

The consequence of this technique is that the parameters can be chosen based
on noise matching : eQ ≈s e, rather than noise merging. This allows for more
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flexible parameter choices for LWQ, including polynomial and power-of-2 moduli,
among others. Up to this point, (A,As+eQ) appears to be merely an alternative
implementation of LWE. We further produce the dither from a pseudorandom
generator, thus compressing the ciphertext while still maintaining computational
security.

Our second contribution, as detailed in Section 4, is the introduction of polar-
lattice-aided quantization to prove eQ ≈s e. We can consider eQ as being uni-
formly distributed over the Voronoi region of Λ: eQ ∼ U(VΛ ∩ Zm). A powerful
theory of lattices states that if the normalized second moment (NSM) of a lattice
G(Λ) converges to 1

2πe ≈ 0.0585, then the Voronoi region takes the shape of a
sphere, and the uniform distribution over this sphere is equivalent to a Gaussian
distribution. For example, the NSMs for the integer lattice Z, checker-board lat-
tice D4, and Gosset lattice E8 are: 0.08333, 0.07660, 0.07168 [CS99]. We identify
two technical hurdles in adopting this theory. First, a randomized construction
of Λ becomes hard to decode as the problem dimension increases. Second, the
convergence speed of G(Λ)→ 1

2πe is important. Fortunately, polar lattices have
efficient polynomial-time decoding, and the distribution of its quantization error
eQ can be analyzed via either the statistical distance or the Kullback-Leibler di-
vergence. The takeaway of this contribution is that, the quantization error eQ of
polar-lattice-aided LWQ is close to a discrete Gaussian distribution, while that
of LWR is close to a uniform distribution over a hypercube. Since LWQ permits
a tight security reduction based on noise matching rather than noise merging, it
offers stronger hardness guarantees than LWR.

Lastly, we highlight the advantages of LWQ by illustrating its benefits via
an encryption framework based on it. There is growing interest in enhancing
the information rate—the size ratio of plaintext to ciphertext—in lattice-based
homomorphic encryption schemes, which has led to the development of construc-
tions achieving rates asymptotically close to 1 [BDGM19]. Recently, Micciancio
and Schultz [MS23] introduced a (quantized) LWE-based encryption framework
to analyze the information rate of lattice-based encryption. In particular, their
work [MS23, Bound 2] demonstrates that, under a heuristic assumption, if σQ
(the width of the quantization noise) and σ (the width of the LWE noise) satisfy
σQ ≤ O(σ), it becomes impossible for a perfectly-correct quantized LWE-based
framework to achieve an asymptotic rate of 1− o

(
1

log(q)

)
. This scenario can be

interpreted as the failure of noise merging, where eQ + e ≈s eQ. LWQ offers a
straightforward solution to overcome this limitation by excluding the error term
e, enabling it to achieve a rate of 1 with polynomial modulus.

1.2 Technical Overview

We show that the LWQ and LWE distributions are statistically indistinguishable
(corresponding to Theorem 4 in Section 3.2):

Theorem 2 (Informal). There exist a sequence of efficient lattice quantizers
QΛ+d with random dither d such that the LWQ distribution is statistically in-
distinguishable from the LWE distribution.
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In this work, we will adopt polar lattices to instantiate LWQ. The technical
novelty is to prove the quantization noise eQ of dithered quantization converges
to a discrete Gaussian distribution. This is key to prove the closeness of the
LWQ and LWE distributions, therefore justifying the hardness of LWQ. Readers
unfamiliar with coding theory may treat polar lattices as a black box. Next we
briefly explain how our method works (see Section 4 for technical details).

The central idea is to use polar lattice quantization to simulate the “LWE
channel.” Recall that the LWE problem involves an additive noise channel model,
represented by b = As+ e, where the received signal b is the sum of the trans-
mitted data As and a noise component e added during transmission. In lattice
quantization-based data compression, a test channel serves as a hypothetical
model of the quantization process, analogous to the additive noise channel, aim-
ing to describe the statistic relationship between the input and output for a
target distortion; see [Cov99, Chapter 10].

Definition 1 (Test channel). The statistic of the test channel for polar quan-
tization is described by the relationship

Y = X + E mod q, (4)

where E is an additive discrete Gaussian noise.

In Section 4, we construct a polar lattice over this test channel. Due to the
polarization phenomenon, we obtain two types of bits: “frozen bits,” which are
nearly independent of the input, and “information bits,” which can be determined
from other bits. In a polar code, frozen bits are replaced with random bits, which
essentially form the random dither of a polar lattice. We prove that the polar
lattice approximates the test channel very well (see Theorem 7 in Section 4.2 for
details):

Theorem 3 (Informal). The statistical distance between the joint distribution
QX[m],Y [m] induced by the polar lattice and PX[m],Y [m] induced by the above test
channel is negligible.

Remark 1. LWQ is dithered, meaning the so-called frozen bits in polar codes are
assumed to be uniformly random. This is not merely a technical aspect of the
proof but is also crucial for achieving statistical indistinguishability between the
LWE and LWQ distributions.

Remark 2. For simplicity, we will assume the modulus size q is a prime power
in the proofs of the above theorems. However, it is possible to remove this small
restriction by using polar codes of arbitrary alphabet size [STA09,Sas12].

1.3 Related Work

Quantization in lattice-based cryptography Nowadays, lattice-based cryptogra-
phy can operate as quickly as conventional public-key cryptosystems such as
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RSA. However, their ciphertexts are significantly larger, necessitating the use of
compression algorithms to save bandwidth. A prevalent compression technique
is scalar quantization, also known as modulus switching/modulus reduction. For
instance, CKKS homomorphic encryption [CKKS17] employs simple modulus
reduction to a smaller modulus before computation on ciphertexts at different
levels.

Another variant of LWE, known as LWER, was introduced in CRYSTALS-
Kyber [SAB+22]. This variant essentially combines LWE and LWR. In LWER,
LWE ciphertexts are compressed using scalar quantization, resulting in two main
advantages: bandwidth savings due to compression and an increased noise level
resulting from quantization error. Additionally, the noise analysis presented in
[SAB+22] is heuristic, as it assumes the Gaussianity of the quantization error
and its independence from the LWE noise.

Ciphertext compression in lattice based cryptography is closely tied to lattice-
aided quantization. Unlike computationally-hard random lattices for security,
here the quantization lattice should be fast-decodable. By increasing the dimen-
sion of quantization, vector quantization can be expected to outperform scalar
quantization [Zam14]. Certain performance benefits of vector quantization have
been justified in the secret-key encryption framework [MS23], and to reduce the
ciphertext rate of CRYSTALS-Kyber [LS24].

The inquiry into optimal lattices for quantization, aiming for the smallest
average distortion, is different from sphere packing [Via17,CKM+17]. The the-
oretical proof of optimal lattice quantizers has been limited to dimensions up
to 3 (i.e., Z, A2, A∗

3) [BS83], although efforts to identify good lattice quantizers
have resulted in periodic updates of tables for small-dimensional lattices n ≤ 24
[AA23]. Closely related research focuses on the pursuit of optimal quantization
lattices in the information theory community. In this context, dithered quantiza-
tion has been under development for decades [ZF96b], where a (pseudo-)random
signal, known as a dither, is introduced to the input signal before quantization.
This regulated perturbation has the potential to enhance the statistical char-
acteristics of the quantization error. While obtaining the rate-distortion bound
with random lattices seems feasible [Zam14], decoding a high-dimensional ran-
dom lattice poses challenges. For a continuous Gaussian source, an explicit con-
struction of polar lattices to achieve the rate-distortion bound has been presented
in [LSL21], where the computational complexity of the quantizer is O(m logm).

Polar codes and polar lattices The polar lattices investigated in this work origi-
nate from polar codes [Arı09]. Polar codes represent a significant breakthrough
in coding theory, as they are the first class of codes that are efficiently encod-
able and decodable while achieving both channel capacity and Shannon’s data
compression limit [Arı09]. The effectiveness of polar codes lies in the polariza-
tion phenomenon: through Arıkan’s polar transform, the information measures
of synthesized sources or channels converge to either 0 or 1, simplifying the cod-
ing process. Additionally, the state-of-the-art decoding algorithm operates with
O(m log logm) complexity for blocklength m [WD21]. Due to their outstand-
ing performance, polar codes have been widely adopted in various practical
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applications, including fifth-generation (5G) wireless communication networks
[EXMH19]. To help readers understand polar quantizers, an overview of polar
codes is provided in Appendix A.

Polar lattices are an instance of the well-known “Construction D” [CS99,
p.232] which uses a set of nested polar codes as component codes. Thanks to the
nice structure of “Construction D”, both the encoding and decoding complexity
of polar lattices are quasilinear in the block length (i.e., dimension of the lattice).
A construction of polar lattices achieving the Shannon capacity of the Gaussian
noise channel was presented in [LYLW19]. A follow-up work [LSL21] gave a con-
struction of polar lattices to achieve the rate-distortion bound of source coding
for Gaussian sources. Note that the two types of polar lattices constructed in
[LYLW19,LSL21] are related but not the same (i.e., one for channel coding and
the other for source coding). The multilevel structure of polar lattices enables
not only efficient encoding and decoding algorithms, but also a layer-by-layer
implementation.

2 Preliminaries

Table 1 summarizes a few important notations in this paper for easy reference.
We follow the standard asymptotic notations O(·), o(·), Ω(·), ω(·) etc. We let λ
denote the security parameter throughout the paper. All known valid attacks
against the cryptographic scheme under consideration should take Ω(2λ) bit op-
erations. A function negl : N→ R+ is negligible if for every positive polynomial
p(λ), there exists λ0 ∈ N such that negl(λ) < 1

p(λ) for all λ > λ0. The notation
X ≈s Y (resp. X ≈c Y ) means that the random variables X and Y are statisti-
cally indistinguishable (resp. computationally indistinguishable) throughout the
paper.

Symbol Definition
x a boldface lower case for vectors
X a boldface capital for matrices

x ∼ U (random variable) x admits a uniform distribution on U

x← χ (sample) x is drawn according to distribution χ

Zq set {0, 1, ..., q − 1}
Zn∗
q set of integer vectors (s1, ..., sn) ∈ Zn

q with gcd(s1, ..., sn, q) = 1

Xℓ binary representation random variable of X at level ℓ
xi
ℓ i-th realization of Xℓ

xi:j
ℓ shorthand for (xi

ℓ, ..., x
j
ℓ)

xi
ℓ:ȷ realization of i-th random variable from level ℓ to level ȷ

[m] set of all integers from 1 to m

XI subvector of X [m] with indices limited in I ⊆ [m]
Table 1. Notations
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2.1 Lattices and Quantization

A lattice Λ is a discrete additive subgroup of Rn. The rank of a lattice is the
dimension of the subspace of Rn that it spans. A lattice is called full-rank if its
rank equals its dimension. A basis B of a full-rank lattice Λ ⊂ Rn is a set of
linearly independent vectors {b1,b2, . . . ,bn} in Rn such that every vector in the
lattice Λ can be written as an integer linear combination of the basis vectors.
The dual of a lattice Λ in Rn, denoted Λ̃, is the lattice given by the set of all
vectors y ∈ Rn such that ⟨x,y⟩ ∈ Z for all vectors x ∈ Λ.

For v ∈ Rn and Λ ⊂ Rn, a lattice coset v + Λ is defined as:

v + Λ = {v +w | w ∈ Λ}.

A coset representative is a specific vector chosen from each coset to uniquely
represent that coset. The notation Λ/Λ′ denotes the set of all distinct cosets of
Λ′ in Λ. The coset representatives of Λ/Λ′ can be described as a set of vectors
vi ∈ Λ such that:

Λ =
⋃
i

(vi + Λ′).

Definition 2 (Fundamental Region). A fundamental region of the lattice Λ
is a bounded set PΛ that satisfies the following properties:

1. Covering Property: The union of translates of PΛ by lattice points covers the
entire space Rn, i.e., ∪v∈Λ(v + PΛ) = Rn.

2. Partitioning Property: For any pair of distinct lattice points v and w in Λ,
if their corresponding translated fundamental regions intersect, then v must
equal w.

The half-open Voronoi region VΛ is a fundamental region which encompasses the
set of points in Rn that are closer to the origin than to any other lattice point.

A nearest neighbor quantizer refers to a function that maps a vector y ∈ Rn

to the closest lattice point in Λ via the following rule:

QΛ(y) = argmin
λ∈Λ

∥y − λ∥ (5)

where tiers are broken in a systematic manner (such that y−QΛ(y) ∈ VΛ). The
quantization can be implemented with polynomial-time algorithm by selecting
fast-decodable lattices as Λ (e.g., Zm, the tensor product of Gosset lattice Zn/8⊗
E8 and polar lattices).

In lossy source coding, the dithering technique is widely used along with
nearest neighbor quantization:

Definition 3 (Dithered quantizer). A dithered quantizer over lattice Λ is
defined by sampling d← PΛ and outputting QΛ(y − d).
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To compensate for the subtractive dither, the reconstructed vector is given
by QΛ(y−d) +d. This amounts to quantizing an input vector to a coset Λ+d
of Λ:

QΛ+d(y) = argmin
λ∈Λ+d

∥y − λ∥. (6)

It can be verified that

QΛ+d(y) = argmin
λ∈Λ

∥y − (λ+ d)∥+ d

= argmin
λ∈Λ

∥(y − d)− λ∥+ d

= QΛ(y − d) + d.

For convenience, we will use the quantizer QΛ+d(y) in this paper. The quanti-
zation error is given by

eQ = QΛ(y − d) + d− y. (7)

Definition 4 (Second moment [Zam14]). The second moment of a lattice
is defined as the second moment per dimension of a random variable u which is
uniformly distributed over the Voronoi region VΛ:

γ2(Λ) =
1

n
E∥u∥2 =

1

n

1

det(Λ)

∫
VΛ

∥x∥2 dx

where E denotes expectation, and det(Λ) is the volume of the Voronoi region.

For the nearest neighbor dithered quantizer, eQ is uniformly distributed over
VΛ, so the averaged quantization error of the dithered quantizer can be quantified
by γ2(Λ): for any distribution of y, with d ∼ U(PΛ), then

1

n
E ∥eQ∥2 = γ2(Λ). (8)

The figure of merit for a lattice quantizer is the normalized second moment
(NSM), i.e., the second-moment to volume ratio, defined as

G(Λ) =
γ2(Λ)

det2/n(Λ)
. (9)

Given a fixed dimension, a lattice with a smaller NSM is considered better. The
minimum possible value of G(Λ) over all lattices in Rn is denoted by Gn.

Definition 5 (Quantization-good [Zam14]). A sequence of lattices Λ(n) with
growing dimension is called good for mean squared error quantization if

lim
n→∞

G(Λ(n)) =
1

2πe
. (10)
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For any r > 0, define the Gaussian function on Rn with width parameter r:

∀x ∈ Rn, ρr(x) = e−π∥x∥2/r2 .

Note that although we refer to r as the width of ρr, the actual standard deviation
of ρr is r√

2π
. A discrete Gaussian distribution is defined as follows: For any

c ∈ Rn, r > 0,

DΛ,r,c(x) =
ρr(x− c)

ρr(Λ− c)
, ∀x ∈ Λ (11)

Sampling from DΛ,r,c yields a distribution centered at c. We abbreviate DΛ,r,0

as DΛ,r.

2.2 Statistics

To demonstrate that the distribution of the quantization errors closely resembles
discrete Gaussians, we introduce the following statistical measures.

Definition 6 (Statistical Distance). The statistical distance between two prob-
ability distributions P and Q over the same sample space X is defined as:

∆(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|.

Definition 7 (KL Divergence). The Kullback-Leibler (KL) divergence be-
tween two probability distributions P and Q over the same sample space X is
defined as:

DKL(P∥Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
.

We analyze adversaries interacting within probabilistic experiments known
as games. For an adversary A and two games G0 and G1 with which it can engage,
the distinguishing advantage of A is given by

AdvG0,G1
(A) = |Pr[A accepts in G0]− Pr[A accepts in G1]| .

Definition 8 (Computational Indistinguishability). Two games G0 and
G1 are said to be computationally indistinguishable if, for every probabilistic
polynomial-time distinguisher A, there exists a negligible function negl such that
AdvG0,G1

(A) ≤ negl(n).

Similarly, we say that two probability distributions P and Q are statistically
indistinguishable if their statistical distance ∆(P,Q) is negligible. By Pinsker’s
inequality, if the KL divergence DKL(P∥Q) is negligible, then P and Q are
statistically indistinguishable.
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3 Hardness Results of LWQ

3.1 Definition

In the following, we review the definitions of LWE and LWR, and present our
generalization called LWQ.

Definition 9 (LWE/LWR/LWQ distributions). Let n,m, p, q be positive
integers with q > p > 1, and Λ be an m-dimensional integer lattice satisfying
qm > det(Λ) > 1. For a “secret” s ∈ Zn

q , and an error distribution χe over Zm,
samples for the LWE/LWR/LWQ distributions are respectively generated by

– LWEχe
: A← Zm×n

q , e← χe, and output (A,b = As+ e) ∈ Zm×n
q × Zm

q .
– LWRp: A← Zm×n

q , and output (A,b = ⌊As⌉p) ∈ Zm×n
q × Zm

p .
– LWQΛ: A ← Zm×n

q , d ← Zm/Λ and output (A,b = QΛ+d(As)) ∈ Zm×n
q ×

Zm
q .

Definition 10 (LWE/LWR/LWQ problems). Decision problem: It chal-
lenges an adversary to distinguish between LWE/LWR/LWQ distributions and
the respective uniform distributions. Search problem: Given arbitrarily many
samples from the LWE/LWR/LWQ distribution, where s is sampled from some
distribution χs (fixed for all samples), the search problem asks to recover s.

Note that, in LWQ, we quantize to a coset Λ+ d of the lattice for a random
dither d. For convenience, this paper considers q such that qZm ⊂ Λ. LWQ
generalizes LWR in two ways: i) it employs vector quantization instead of scalar
quantization, thereby the quantization error admits a distribution that more
closely resembles a Gaussian, and ii) it introduces dithering, ensuring that the
quantization error is independent of the input. This approach enables LWQ
to benefit from a tight security reduction from LWE. When instantiated with
Λ = q

pZ
m where p divides q, LWQ amounts to (dithered) LWR.

Remark 3. The primary advantage of LWQ over LWE is the reduced size of the
samples, as the dithering vector d is public. Given an LWQ sample (A,b =
QΛ+d(As) = QΛ(As − d) + d), we can identify the coset representative d in
polynomial time (e.g., using Babai’s rounding off procedure [Bab86]) and rewrite
it as

(A, QΛ(As− d),d).

Note that a uniform distribution over (Zm
q ∩Λ)× (Zm/Λ) is the same as that

over Zm
q . Thus, QΛ(As− d) is pseudorandom, while the matrix A and dither d

can be transmitted as seeds of a pseudorandom number generator. These seeds,
which do not need to remain secret, can effectively serve as the public information
in practice.

Let G : {0, 1}k → Zm×n
q ×(Zm/Λ) be a pseudorandom number generator, and

(A,d) = G(seed). Then storing an LWQ sample in the form of (A, QΛ(As−d),d)
requires k+log2

(
qm

det(Λ)

)
bits. On the contrary, LWE requires k+log2 (q

m) bits.
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From the results of Regev [Reg05] and Peikert[Pei09], for any m = nO(1), any
modulus q ≤ 2n

O(1)

, and for a (discrete) Gaussian distribution χe with parameter
σ ≥ 2

√
n, solving decision LWE is at least as hard as solving GapSVPγ and

SIVPγ on arbitrary n-dimensional lattices, where γ = Õ
(
nq
σ

)
. Moreover, for

moduli q of a certain form, the (average-case decision) LWE problem is equivalent
to the (worst-case search) LWE problem, up to a poly(n) factor in the number
of samples used. Although the primary hardness justification of LWE [Reg05] is
based on continuous Gaussian errors, it also holds when the error distribution
is a discrete Gaussian, χe = DZm,σ. This reduction can be proved by applying
a randomized rounding algorithm to the b samples of LWEχe=ρσ/σm (cf. [Pei10,
Theorem 3.1]). Throughout this paper, we refer to the hardness of the LWE
assumption as

LWEχe=DZm,σ
≈c U(Zm×n

q × Zm
q ). (12)

3.2 Asymptotic Results of Hardness

We prove the asymptotic hardness of LWQ by showing the distributions of LWQ
and LWE are statistically indistinguishable, for carefully designed polar lattice
quantizers. The polar lattice presented in Section 4 is inherently dithered (cf.
Section 1.2), and the quantizer can be described by QΛ+d for a random dither d.
Nevertheless, we will show later in this subsection that dithering can be generated
by a pseudorandom generator as far as the computational indistinguishability of
LWQ is concerned.

We will establish the following bound on the statistical distance between the
LWQ and LWE distributions. The proof is essentially a translation of Theorem 7
in Section 4.2 from the language of coding theory into that of cryptography. We
assume s ∈ Zn∗

q such that As admits a uniform distribution on Zm
q . This is a

minor condition as the probability s ∈ Zn∗
q is at least 1−O(1/2n) for s ∈ Zn

q .
We rewrite the following distributions given earlier to serve our purpose.

– Consider the LWE distribution LWEχe=DZm,σ
: PA,b where b = X [m] =

Y [m] + e mod qZ where Y [m] = As and ei ∼ DZ,σ.
– Consider the LWQ distribution LWQΛ: QA,b where b = X [m] = QΛ+d(Y

[m])
where Y [m] = As and d← Zm/Λ, produced by a polar lattice quantizer.

Theorem 4 (LWQ ≈s LWE). Let m = m(λ), n = n(λ), q = p(λ)r where
λ is the security parameter, p(λ) is a prime number and r ∈ N. Let s ∈ Zn∗

q .
There exist a sequence of efficient lattice quantizers QΛ+d, indexed by dimension
m, such that the statistical distance between the LWE distribution PA,b and the
LWQ distribution QA,b satisfy:

∆ (PA,b,QA,b) = 2−ω(λβ), ∀ 0 < β < 1. (13)

Proof. Given the secret s, the LWE distribution satisfies

PA,b =
∑
As

PA,As,b =
∑
As

PA · PAs|A · Pb|As,
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which is due to the Markov chain4 A → As → b. Notice that for given s and
samples Y [m], PAs|A is indeed an indicator function 1{As = Y [m]}. Therefore,
recalling that b = X [m], we have

PA,b = PAPX[m]|Y [m] .

Analogously, the LWQ distribution satisfies

QA,b = PAQX[m]|Y [m]

because A and Y [m] are the same as those in the LWE distribution.
Now we have

∆ (PA,b,QA,b)

=
1

2

∑
A

PA(·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

=
1

2

∑
As

PAs|A(·)
∑
A

PA(·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

=
1

2

∑
As

∑
A

PAs,A(·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

=
1

2

∑
Y [m]

PY [m](·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

= ∆
(
PX[m],Y [m] ,QX[m],Y [m]

)

(14)

where the second equality of (14) holds since PAs|A is an indicator function when
s is given. Proof is completed by using Theorem 7 and Remark 6 in Section 4.2,
with an appropriate dimension m set according to λ. ⊓⊔

This theorem states that the LWE noise can be substituted with the quanti-
zation noise of LWQ while preserving security.

Remark 4. Theorem 4 holds under KL divergence too, by applying Lemma 7 in
Appendix C.

Corollary 1 (LWQ ≈c Uniform). Let m = m(λ), n = n(λ), q = p(λ)r where
λ is the security parameter, p(λ) is a prime number and r ∈ N. Let s ∈ Zn∗

q .
There exist a sequence of efficient derandomized quantization lattices QΛ+d, in-
dexed by dimension m, such that the LWQ distribution is computationally indis-
tinguishable from a uniform distribution over Zm×n

q × Zm
q .

Proof. We consider adversaries interacting as part of probabilistic experiments
called games in the following.
4 In information theory, random variables X, Y , Z are said to form a Markov chain
X → Y → Z if their joint probability distribution function satisfy P (x, y, z) =
P (x)P (y|x)P (z|y) [Cov99].
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– G0: This is the real attack game against the LWQ distribution. That is,
we choose s and upon request generate and give the attacker independent
samples c← LWQΛ(d pseudorandom).

– G1: The attacker is against LWQ based on random quantization: c← LWQΛ(d random).
– G2: In this game, we give the attacker samples from LWE: c← LWEχe=DZm,σ

.
– G3: In this game, uniform samples are given: c← Zm×n

q × Zm
q .

G1 and G2 are statistically indistinguishable as LWQΛ(d random) and LWEχe=DZm,σ

are statistically indistinguishable, thus

AdvG1,G2
(A) =

∣∣Pr(A(LWQΛ(d random) = 1)− Pr(A(LWEχe=DZm,σ
) = 1

∣∣ (15)

≤ ∆(LΛ, LDm
Z,σ

) (16)

= 2−ω(λβ), ∀ 0 < β < 1 (17)

where the inequality is due to the data processing inequality of distributions,
and the last equality is due to Theorem 4.

Since G0 and G1 are computationally indistinguishable, together with the
hardness of LWE, we have

AdvG0,G3
(A) ≤ AdvG0,G1

(A) + AdvG1,G2
(A) + AdvG2,G3

(A) = negl(λ). (18)

⊓⊔

Compression rate In essence, we simulate the LWE channel using a polar
lattice (which may also be viewed as a q-ary polar code) so that LWEχe=DZm,σ

≈s

LWQΛ. This is illustrated in Fig. 1 5. The bits of UI are determined by the LWE
channel, while those of UF serve as the random dither. Basically, the bits of UI

are compressed LWE samples, and the LWE assumption implies that they are
pseudorandom.

The LWE channel (4) is a so-called Z/qZ channel with well-defined capac-
ity C(Z/qZ, σ2) [FTC00]. Define the rate of the compressed ciphertext Rc ≜
1
m log2

(
qm

det(Λ)

)
bits per sample. The theory of polar lattices shows that any rate

Rc above channel capacity C(Z/qZ, σ2) is achievable for source coding [LSL21].
In fact, as m→∞,

Rc → C(Z/qZ, σ2).

Thus, the compression rate Rc is ultimately determined by the capacity of the
LWE channel. For the parameters q = poly(n) and σ = Ω(

√
n) in LWE, the

capacity can be made explicit: it is possible to show C(Z/qZ, σ2) ≈ log2

(
q√

2πe·σ

)
[FTC00]. Intuitively, log2

(√
2πe · σ

)
of the log2 (q) bits are buried under noise.

5 Note that we write As = b + e mod qZ in the figure, which is statistically equiv-
alent to b = As + e mod qZ due to the symmetry of χe = DZm,σ. Reversing the
input/output is a common practice for the test channel in source coding theory
[Cov99].
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Fig. 1. Simulating the LWE channel using a polar lattice (which may be viewed as a
q-ary polar code).

If the noise variance σ2 increases, the channel capacity C(Z/qZ, σ2) decreases,
and does the rate R. Conversely, if σ2 decreases, channel capacity C(Z/qZ, σ2)
increases, as does R. However, it is important to note that the “LWE channel” is
virtual, meaning σ2 is a free parameter that can be adjusted. Consequently, any
rate 0 < Rc < log2 (q) can be achieved by appropriately tuning σ2. Remarkably,
efficiency and security (Rc vs. σ2) align: higher compression is accompanied by
increased security. The trade-off, however, is that greater compression results in
fewer pseudorandom numbers being generated.

3.3 Hardness of LWQ for an arbitrary quantization lattice

The asymptotic approach given above requires the lattice dimension m to grow,
thus cannot be applied to quantization lattices of concatenated small dimensional
lattices. In this case, we derive the following result for a given quantization
dimension.

Lemma 1 (Dither lemma, adapted from [Zam14]). If the dither U is uni-
formly distributed over the fundamental cell PΛ, i.e., with probability density
function

fU (u) =

{
1

|PΛ| , u ∈ PΛ,

0, u /∈ PΛ,

then eQ = QΛ(y − U) + U − y is uniformly distributed over the Voronoi region
VΛ, independent of y. And similarly, if U is uniformly distributed over Zm/Λ,
eQ is uniformly distributed over VΛ ∩ Zm.

Theorem 5. Let d ← Zm/Λ. Then the LWQ distribution is equivalent to the
LWE distribution with uniform noise eQ ∼ U(VΛ ∩ Zm).

Proof. By applying the dither lemma, given d← Zm/Λ, we have

QΛ+d(As) = As+ eQ, (19)

where eQ ∼ U(VΛ∩Zm) is independent of As. Thus, the LWQ distribution takes
the form (A,As+ eQ), which corresponds to LWE with noise term eQ. ⊓⊔
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We recall the definition of the smoothing parameter and a useful lemma.

Definition 11 (Smoothing parameter [MR04]). For any lattice Λ and pos-
itive real ε > 0, the smoothing parameter ηε(Λ) is the smallest real r > 0 such
that ρ1/r(Λ̃ \ {0}) ≤ ε where Λ̃ is the dual lattice.

Lemma 2 ([MR04]). For any lattice Λ and c ∈ Rn, ε > 0, and r ≥ ηε(Λ),

ρr(Λ+ c) ∈ rn det(Λ̃)(1± ε). (20)

The discrete NSM is defined as: Ḡ(Λ) = γ̄2(Λ)/ det2/m(Λ), where γ̄2(Λ) =
1
m

∑
x∈VΛ∩Zm det(Λ)−1 ∥x∥2. From the high-resolution assumption [Zam14], we

have G(Λ) ≈ Ḡ(Λ), and the approximation error can be arbitrarily small by
increasing |VΛ ∩ Zm|.

Theorem 6. Define r =
√

2πḠ(Λ) det1/m(Λ). If r ≥ ηε(Zm), the KL diver-
gence between LWQ and LWE satisfies:

DKL((A,As+ eQ)∥(A,As+ e)) ∈ m

2
ln(2πeḠ(Λ)) + ln(1± ε). (21)

where the quantization noise eQ ∼ U(VΛ ∩Zm) and the discrete Gaussian noise
e ∼ DZm,r.

Proof. From Lemma 2, we have

ρr(Zm) ∈ rm(1± ε). (22)

Then we have
1

m
DKL(eQ∥e) =

1

m

∑
x∈VΛ∩Zm

det(Λ)−1 ln
ρr(Zm)

det(Λ)ρr(x)
(23)

∈ 1

m
ln
rm(1± ε)
det(Λ)

+
π

r2
· 1
m

∑
x∈VΛ∩Zm

det(Λ)−1 ∥x∥2 (24)

=
1

2
ln

r2

det(Λ)2/m
+
π

r2
· 1
m

∑
x∈VΛ∩Zm

det(Λ)−1 ∥x∥2 + 1

m
ln(1± ε).

(25)

By setting the discrete un-normalized second moment as the Gaussian variance:

r2 = 2πγ̄2(Λ) = 2π · 1
m

∑
x∈VΛ∩Zm

det(Λ)−1 ∥x∥2 , (26)

where γ̄2(Λ) = Ḡ(Λ) det2/m(Λ), we obtain

DKL(eQ∥e) ∈
m

2
ln(2πeḠ(Λ)) + ln(1± ε). (27)

Therefore, we can bound the divergence of LWQ and LWE by using

DKL((A,As+ eQ)∥(A,As+ e)) = DKL(eQ∥e). (28)

⊓⊔
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4 Polar Lattice for Quantization

The idea of polar quantizer is to use multilevel error correction codes to decode
(quantize) inputs at each level. Throughout this section, we assume s ∈ Zn∗

q such
that As admits a uniform distribution on Zm

q . We often assume q = 2r for r ∈ N
and it is straightforward to extend to the case q = pr for prime p.

4.1 Polar Quantizer: Construction

In this subsection, we present an explicit construction of polar lattices [LYLW19,LSL21]
for the dithered quantization of random integers, which produces Gaussian-like
quantization errors. In a nutshell, the quantizer consists of a series of decoders for
polar codes according to the multilevel structure of “Construction D” [FTC00].
For convenience, we present Construction D using binary polar codes, whereas
the extension to nonbinary codes is straightforward [CS99].

For those unfamiliar with polar codes or polar lattices, it could be useful to
treat the polar lattice quantizer as a black box, as shown in the dashed box in Fig.
2, whose task is to mimic a reversed version of the test channel between X and
Y in Fig. 3. From the perspective of lossy compression, the test channel for the
source Y ∼ PY is defined by the transition probability PY |X , where X is referred
to as the reconstruction of the source. As can be seen in Fig. 3, the statistic of
the test channel is described by the relationship Y = X +E mod qZ, where E
is an additive discrete Gaussian noise. Note that for this test channel, defined
from the information theory, is purely based on the statistic of E, which is not
necessarily generated by the lattice quantization operation. However, Theorem 7
illustrates that the difference between these two test channels can be negligible,
which confirms the motivation of introducing lattice quantization in our LWQ
scheme. Moreover, the relationship between the lattice quantization from Y [m]

to X [m] and the lattice construction based on the test channel from X [m] to Y [m]

will be explained in Remark 8.

Definition 12 (Partition Chain). A sublattice Λ′ ⊂ Λ induces a partition
(denoted by Λ/Λ′) of Λ into equivalence groups modulo Λ′. The order of the
partition is denoted by |Λ/Λ′|, which is equal to the number of cosets. If |Λ/Λ′| =
2, this is called a binary partition. A lattice partition chain, which is denoted by
Λ(Λ0)/Λ1/ · · · /Λr−1/Λ

′(Λr) for r ≥ 1, is an n-dimensional sequence of nested
lattices.

If only one level is used (r = 1), the construction is called Construction A. If
multiple levels are used, it is called Construction D. For each partition Λℓ−1/Λℓ

(1 ≤ ℓ ≤ r), a code Cℓ over Λℓ−1/Λℓ selects a sequence of coset representatives
aℓ in a set Aℓ of representatives for the cosets of Λℓ. This construction requires
a set of nested linear binary codes Cℓ with block length m and dimension kℓ,
represented as [m, kℓ] codes for 1 ≤ ℓ ≤ r, with C1 ⊆ C2 ⊆ · · · ⊆ Cr.

Definition 13 (Construction D). Let ψ be the natural embedding of Fm
2 into

Zm, where F2 is the binary field. Consider d1,d2, · · · ,dm as a basis of Fm
2 such
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𝑌[𝑚] Polar Decoder 𝑋1
[𝑚]

1

+

−

mod 2

⋯

Polar Decoder 𝑋𝑟
[𝑚]mod 2𝑟−1

2𝑟−2

1

⋯

2𝑟−1

mod 2𝑟 𝑋[𝑚]

−

+
Polar Decoder 𝑋𝑟−1

[𝑚]mod 2𝑟−2

⋯

2𝑟−2

⋯
Fig. 2. The internal structure of a polar lattice quantizer.

that d1, · · · ,dkℓ
span Cℓ. With n = 1, the binary lattice L of Construction D

consists of all vectors of the form

r∑
ℓ=1

2ℓ−1
kℓ∑
j=1

ujℓψ(dj) + 2rz, (29)

where ujℓ ∈ {0, 1}, z ∈ Zm, and ψ denotes the embedding into Rm.

The quality of a subchannel is generally identified based on its associated
Bhattacharyya parameter.

Definition 14. Given a binary-input memoryless symmetric channel (BMSC)
W with transition probability PY |X , the Bhattacharyya parameter Z ∈ [0, 1] is
defined as

Z(W ) = Z(X|Y ) ≜
∑
y

√
PY |X(y|0)PY |X(y|1). (30)

E.g., in [AT09], the rate of channel polarization is characterized in terms of the
Bhattacharyya parameter as

lim
m→∞

Pr
(
Z(W (i)

m ) < 2−mβ
)
= C, for any 0 < β < 0.5.

This means that as the block length m becomes very large, the probability that
the Bhattacharyya parameter Z(W (i)

m ) of a subchannel W (i)
m is less than 2−mβ

approaches the channel capacity C. For efficient construction of polar codes,
Z(W

(i)
m ) can be evaluated using the methods introduced in [TV13,PHTT11].

In the context of lossy compression, polar codes can achieve the rate-distortion
bound for binary symmetric sources [KU10]. To achieve a target distortion:
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Algorithm 1 Polar Lattice Quantization Algorithm
Require: Source Y uniformly random on [−2r−1, 2r−1)
Ensure: Quantized output X [m]

1: Build test channel Y = X + E mod qZ, where q = 2r and E ∼ DZ,σ
2: Assume X uniformly random on [−2r−1, 2r−1)
3: Construct polar lattice quantizer on test channel using binary partition chain

Z/2Z/ · · · /2rZ
4: Assume r is large enough such that the modulo 2rZ operation is insignificant on E
5: Represent X as bit sequence X1, X2, . . . , Xr, where Xℓ specifies coset 2ℓ−1Z/2ℓZ
6: X1, . . . , Xr uniquely describe cosets of Z/2rZ
7: for ℓ = 1 to r do
8: if ℓ = 1 then
9: Execute SC decoding to obtain X

[m]
1 from Y [m] using statistic of partition

channel PY |X1

10: else
11: Decode X

[m]
ℓ from Y [m] and X

[m]
1 , . . . , X

[m]
ℓ−1 using PY,X1,...,Xℓ−1|Xℓ

12: end if
13: end for
14: Return X [m] = X

[m]
1 + 2X

[m]
2 + · · ·+ 2r−1X

[m]
r mod 2rZ

– A test channel W : X → Y is constructed for the source Y and the recon-
struction X.

– Polar codes for compression are constructed according to the test channel
W , with the information set defined as I ≜ {i ∈ [m] : Z(W

(i)
m ) < 1− 2−mβ}.

By the duality between channel coding and source coding, the SC decoding
algorithm for polar channel coding transforms into the SC encoding algorithm
for polar source coding. Given m i.i.d. sources Y [m]:

– The polarized bits UF are almost independent of Y [m] since Z(W
(i)
m ) ≥

1− 2−mβ

by definition.
– Compression of Y [m] is achieved by replacing UF with random bits and

saving the relevant bits UI , which are determined from Y [m] and UF using
the SC encoder.

The channel splitting process also leads to a simple decoding algorithm called
Successive Cancellation (SC) decoding [Arı09], which executes maximum a pos-
teriori (MAP) decoding for each subchannel sequentially from i = 1 to m. By the
union bound, the block error probability of SC decoding can be upper-bounded
by ∑

i∈I
Z(W (i)

m ).

Pseudo-codes of the polar lattice quantization algorithm are given in Algo-
rithm 1 where q is a power of 2. For the samples Y [m], the decoder at each level
tries to find the best binary representative of the lattice point X [m] close to Y [m],
using the results of all previous levels. The multilevel structure of polar lattices
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not only provides us a feasible complexity of the quantization operation for high
dimensional lattices, but also paves for us a path to the rich theory of binary
polar codes.

The next subsection will show that the distribution of Y [m]−X [m] is close to
that of m i.i.d. discrete Gaussian random variables. Fig. 3 shows a comparison
between the distribution of quantization noise Y −X achieved by the polar lattice
quantizer and the genuine discrete Gaussian distribution DZ,σ with parameters
σ = 3, r = 8 and m = 220.
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achieved quantization noise

-10 0 10
0
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Fig. 3. A comparison between the distribution of quantization noise Y −X and DZ,σ=3.

Dithered quantization with polar lattices In the literature on traditional
lattice quantization [ZF96a], the source vector is shifted by dithering d while
the quantization lattice remains fixed (the output is QΛ(As − d)). In contrast,
our dithered quantization compensates the dither vector and output: QΛ(As−
d) + d. This type of quantization can be easily implemented via a polar lattice.
Specifically, when the frozen bits are chosen randomly, the output of a polar
lattice quantizer QΛ+d belongs to a random coset Λ+d, where the randomness
d is determined by the frozen bits. This can be understood as follows. Let UFΛ =
{UF1

1 , . . . , UFr
r } denote the collection of all frozen bits across the r levels. For a

specific choice uFΛ = {uF1
1 , . . . , uFr

r }, the resulting offset from Λ can be expressed
as

d =

r∑
ℓ=1

2ℓ−1
N∑

j=kℓ+1

ujℓψ(gj), (31)
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where ujℓ ∈ {0, 1} and gkℓ+1, . . . ,gN are the remaining base vectors in the vector
space spanned by GN after selecting g1, . . . ,gkℓ

for the binary code at level ℓ.
Clearly, Λ corresponds to the all-zero configuration of UFΛ , and Λ + d forms a
valid partition of Zm as UFΛ traverses all possible choices.

Remark 5. The dither d of LWQ is public, thus a pseudorandom number gener-
ator can be used to produce the dither, with only the generator’s seed needing
to be shared as part of the public key. This approach allows LWQ to achieve
computational indistinguishability from LWE while also reducing bandwidth.

4.2 Polar Quantizer: Performance Analysis

We now analyze the distribution of quantization noise. Let Y [m] denote m sam-
ples drawn from As. The quantization result or the so-called reconstruction of
Y [m] is denoted by X [m], which is also in Zm

q .

– Consider the first case in which the correlation between Y [m] and X [m] is
due to an i.i.d. discrete Gaussian random vector E[m], i.e., Y i = Xi + Ei

mod qZ for each i ∈ [m], and Ei ∼ DZ,σ. The joint distribution between
X [m] and Y [m] in this case is denoted by PX[m],Y [m] .

– Consider the second case in which the correlation between Y [m] and X [m]

is generated by the polar lattice quantizer, i.e., X [m] = QΛ(Y
[m]). The joint

distribution between X [m] and Y [m] in this case is denoted by QX[m],Y [m] .

We will show the statistical distance ∆(PX[m],Y [m] ,QX[m],Y [m]) vanishes sub-
exponentially in m in a layer-by-layer manner, corresponding to the multi-level
quantization process of polar lattices. Notice that each Xi ∈ Zq, i ∈ [m] can be
uniquely represented by a binary sequence Xi

1, ..., X
i
ℓ, ..., X

i
r, and Xi

ℓ determines
the coset of the binary partition 2ℓ−1Z/2ℓZ for 1 ≤ ℓ ≤ r. Given a source vector
Y [m], the (m-dimensional) polar lattice quantizer tries to find the coset leader
X

[m]
1 at the first level; then it decides the coset leader X [m]

2 at the second level
using both X

[m]
1 and Y [m]; the process keeps going at level ℓ, where X [m]

ℓ is
decoded from Y [m] and X

[m]
1:ℓ−1; the process ends at the final r-th level, where

X
[m]
r is decoded from Y [m] and X [m]

1:r−1.
From the perspective of lossy compression in information theory, PY |X is

called the test channel with input (reconstruction) X and output (source) Y . As
can be seen in Fig. 3, since Y = X + E mod qZ, the test channel is a discrete
additive white Gaussian noise channel with a modulo qZ operation at the end.
Following the step of Forney et al. [FTC00], the test channel can be partitioned
into r 2ℓ−1Z/2ℓZ binary-input channels with 1 ≤ ℓ ≤ r, which are called binary
partition channels.

In fact, the polar lattice consists of the component polar codes designed
for these r partition channels. More explicitly, the first level Z/2Z partition
channel completely determines the joint distribution PX1,Y of X1 and Y , and Y
mod 2Z is a sufficient statistic of Y with respect to X1. The polar code C1 at the
first level is constructed according to the Z/2Z channel, which is equivalently
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described by W1 : X1 −→
PY |X1

Y . Let U [m]
1 = X

[m]
1 Gm be the bits after channel

polarization at level 1. The information set of C1 is defined as I1 ≜ {i ∈ [m] :

Z(U i
1|U1:i−1

1 , Y [m]) ≤ 1 − 2−mβ} for any 0 < β < 0.5, and the frozen set of C1

is the complement set F1 ≜ Ic1. By this definition, the correlation between UF1
1

and Y [m] is negligible. The polar quantizer assigns uniformly random bits that
are independent of Y [m] to UF1

1 , and then determines UI1
1 from Y [m] and UF1

1

using the SC encoding algorithm. The reconstruction at level 1 is obtained from
the inverse polarization transform X

[m]
1 = U

[m]
1 G−1

m = U
[m]
1 Gm.

Lemma 3. Let Q
U

[m]
1 ,Y [m] denote the resulted joint distribution of U [m]

1 and Y [m]

according to the encoding rules (32) and (33) at the first partition level.

U i
1 =

0 w. p. PUi
1|U

1:i−1
1 ,Y [m]

(
0|u1:i−1

1 , y[m]
)

1 w. p. PUi
1|U

1:i−1
1 ,Y [m]

(
1|u1:i−1

1 , y[m]
) if i ∈ I1 (32)

U i
1 =


0 w. p.

1

2

1 w. p.
1

2
.

if i ∈ F1 (33)

Let P
U

[m]
1 ,Y [m] denote the joint distribution directly generated from PX1,Y , i.e.,

U i
1 is generated according to the encoding rule (32) for all i ∈ [m]. The statistical

distance between P
U

[m]
1 ,Y [m] and Q

U
[m]
1 ,Y [m] is upper-bounded as follows:

∆
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
≤ m

√
ln 2 · 2−mβ , 0 < β <

1

2
. (34)

Proof. See Appendix B.

After finishing the encoding at level 1, the polar lattice quantizer proceeds to
level 2 in a similar manner. The 2Z/4Z partition channel completely determines
the joint distribution PX2,Y |X1

of X2 and Y given the previous quantization
result X1, and Y −X1 mod 4Z is a sufficient statistic of Y with respect to X2.
The polar code C2 at the second level is constructed according to the 2Z/4Z
channel, which is equivalently described by W2 : X2 −→

PY,X1|X2

(Y,X1). Let U [m]
2 =

X
[m]
2 Gm be the bits after channel polarization at level 2. The information set

of C2 is defined as I2 ≜ {i ∈ [m] : Z(U i
2|U1:i−1

2 , X
[m]
1 , Y [m]) ≤ 1 − 2−mβ} for

0 < β < 1/2, and the frozen set is defined as F2 ≜ Ic2.

Lemma 4. Let Q
U

[m]
1 ,U

[m]
2 ,Y [m] denote the resulted joint distribution of U [m]

1 ,

U
[m]
2 and Y [m] according to the encoding rules (32) and (33) at the first partition
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level, and then rules (35) and (36) at the second partition level.

U i
1 =

0 w. p. P
Ui

2|U
1:i−1
2 ,X

[m]
1 ,Y [m]

(
0|u1:i−1

2 , x
[m]
1 , y[m]

)
1 w. p. P

Ui
2|U

1:i−1
2 ,X

[m]
1 ,Y [m]

(
1|u1:i−1

2 , x
[m]
1 , y[m]

) if i ∈ I2 (35)

U i
2 =


0 w. p.

1

2

1 w. p.
1

2
.

if i ∈ F2 (36)

Let P
U

[m]
1 ,U

[m]
2 ,Y [m] denote the joint distribution directly generated from PX1,X2,Y ,

i.e., U i
1 and U i

2 are generated according to the encoding rule (32) and rule (35)
for all i ∈ [m], respectively. The statistical distance between P

U
[m]
1 ,U

[m]
2 ,Y [m] and

Q
U

[m]
1 ,U

[m]
2 ,Y [m] is upper-bounded as follows:

∆
(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
≤ 2m

√
ln 2 · 2−mβ , 0 < β <

1

2
. (37)

Proof. Assume an auxiliary joint distribution Q′
U

[m]
1 ,U

[m]
2 ,Y [m] resulted from using

the encoding rule (32) for all U i
1 with i ∈ [m] at the first partition level, and

rules (35) and (36) at the second partition. Clearly, Q′
U

[m]
1 ,Y [m] = P

U
[m]
1 ,Y [m] and

Q′
U

[m]
2 |U [m]

1 ,Y [m] = Q
U

[m]
2 |U [m]

1 ,Y [m] . By the triangle inequality,

∆
(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
≤ ∆

(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,Q

′
U

[m]
1 ,U

[m]
2 ,Y [m]

)
+∆

(
Q′

U
[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
,

(38)

where the first term on the right hand side can be upper bounded bym
√
ln 2 · 2−mβ

using the same method as in the proof of Lemma 3, and the second term is equal
to ∆

(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
. ⊓⊔

After the lattice quantization process with r sequential levels, the joint dis-
tribution produced by the lattice quantizer is denoted by Q

U
[m]
1:r ,Y [m] , and the

joint distribution directly generated from m i.i.d. test channels is denoted by
P
U

[m]
1:r ,Y [m] . By induction, we obtain∆

(
P
U

[m]
1:r ,Y [m] ,QU

[m]
1:r ,Y [m]

)
≤ rm

√
ln 2 · 2−mβ .

Combining this result with Lemma ??, we arrive at the following theorem on
the distribution of quantization noise, which shows the quantization noise closely
resemble an i.i.d. discrete Gaussian distribution.

For completeness, we also need the notation X ′, which is a reconstruction
random variable defined over Z for the source Y , with the conditional proba-
bility PX′|Y defined by the relationship X ′ = Y − E, i.e., X ′ − Y is a discrete
Gaussian random variable independent of Y . The comparison between the two
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test channels based on PX,Y and PX′,Y , respectively, is demonstrated in Fig.
4. As will be seen, the difference between the two channels, which is due to the
modulo qZ operation, becomes negligible for large q. We remind the readers that
the design target of our quantization lattice is to realize a quantization noise,
whose distribution is indistinguishable from the lattice Gaussian distribution, as
has been employed in LWE.

 

 

!

"#$%&'

!(

"#$%&'

 !"#)%

Fig. 4. A comparison between the two test channels based on PX,Y and PX′,Y , which
are marked in red and blue, respectively.

Theorem 7. The statistical distance between the joint distribution induced by
the polar lattice and that by an i.i.d. qZ-aliased discrete Gaussian distribution,
i.e., the distribution of a discrete Gaussian after the modulo qZ operation, is
bounded by

∆
(
PX[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ , 0 < β <

1

2
. (39)

Moreover, when compared with the joint distribution induced by an i.i.d. discrete
Gaussian distribution over Z,

∆
(
PX′[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ +M ·m · exp

(
− (2r−1 − 1)2

2σ2

)
, 0 < β <

1

2
.

(40)

Proof. By the inverse polarization transformX
[m]
ℓ = U

[m]
ℓ Gm from ℓ = 1 to r, we

immediately have ∆
(
PX[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ , by induction.

Recall that the test channel X −→
PY |X

Y is given by Y = X + E mod qZ,

where E ∼ DZ,σ. Suppose now PY is fixed, and PX|Y is replaced with PX′|Y by
removing the modulo qZ operation, i.e., X ′ = Y − E. The statistical distance
∆(PX′[m],Y [m] ,PX[m],Y [m]) is equal to ∆(PE′[m] ,PE[m]) as shown in Lemma ??,
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where E′ = E mod qZ. By using the telescoping expansion (43) and the triangle
inequality again, the proof is completed. ⊓⊔

Remark 6. The restriction 0 < β < 1
2 in Theorem 7 is due to the standard 2× 2

kernel [ 1 0
1 1 ] of binary polar codes, which results in sub-exponential decay of the

statistical distance. Nevertheless, it is possible to obtain any value 0 < β < 1 by
using nonbinary polar codes with prime alphabet size p and carefully designed
kernels [MT14]; thus we can obtain almost exponential decay of the statistical
distance. Note that q = pr in this case. Although using nonbinary polar codes in
Construction D will increase the computational complexity, it is still O(m logm).

Remark 7. Theorem 7 indicates that the performance of our lattice quantizer
is determined by two parts. First, we need to ensure that q = 2r is large such
that the modulo qZ operation has a little influence on the lattice Gaussian
distribution, which is described by the second term on the right hand side of
(40). Second, the dimension m of the lattice quantizer is required to be large to
guarantee a sufficient polarization effect such that the quantization noise is close
to the qZ-aliased lattice Gaussian distribution, as described by the first term
on the right hand side of (40). For completeness, since the two parts are both
measured in the statistical distance, we also provide the counterparts of Lemma
?? and Lemma 3 with the measurement of the Kullback-Leibler divergence in
Appendix C.

Remark 8. Observant readers may wonder why our polar lattice quantizer is
constructed based on the forward test channel X −→

PY |X
Y , with additive noise E

mod qZ, whereas the quantization performance shown above is analyzed from
the reversed direction Y −→

PX|Y
X. The reason is that when X and Y are both

uniform in Zq, we have PX|Y = PY |X , and the additive noise E is pairwisely
independent of bothX and Y . To see this, letting PX(x) = 1/q, we have PY (y) =∑

x PX,Y (x, y) = 1
q

∑
x PE(y − x) = 1/q. Therefore, PX = PY = 1/q, and

hence PY |X = PX|Y . The symmetry of the test channel, which is termed as the
mod Λ/Λ′ channel, is discussed in more detail by Forney et al. in [FTC00].

Remark 9. We note that the validity of polar lattice structure can be easily
guaranteed. Taking the above simulation as an example, when constructing mul-
tilevel polar codes along the binary partition chain Z/2Z/ · · · /2rZ for the ad-
ditive discrete Gaussian test channel (σ = 3), the capacities of the partition
channels from ℓ = 1 to r are given by 0, 3.2732×10−10, 0.0056, 0.3933, 0.9690,
1.0000 and 1.0000, respectively. The size of the information set is chosen as
|Iℓ| = ⌈m · C(Wℓ)⌉, where C(Wℓ) denotes the capacity of the ℓ-th partition
channel. As a result, the component polar codes are consecutively nested by
ensuring Iℓ ⊆ Iℓ+1 for 1 ≤ ℓ ≤ r − 1, and we have an ascertained polar lat-
tice quantizer. Moreover, the constructed polar lattice is roughly sphere-bound
achieving, by the capacity-achieving property of polar codes for all partition
levels.
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5 Improving Quantized Encryption

This section introduces an LWQ-based encryption framework, denoted as LWQE,Λ,
and contrasts it with LWE and quantized LWE (LWEQ) based frameworks
[MS23], noted as LWEE,χe

and LWEQE,χe,Λ. It is important to note that the
LWER problem in CRYSTALS-Kyber [SAB+22] represents a special case of
LWEQ where the quantization is rounding. In comparison to quantized LWE
[MS23], LWQ streamlines the processes of noise addition and quantization into
a single step, where only quantization noise is present while ensuring security.
This efficiency allows LWQ to replace LWE, LWR, or LWER in various crypto-
graphic scenarios, resulting in higher information rate than LWE/LWER while
providing enhanced security compared to LWR in general settings.

The presented LWE, LWQ, and LWEQ-based encryption schemes, each con-
sists of a triplet (KGen,Encrypt,Decrypt). To enable comparisons, we let the
schemes share a common key generation function (KGen) and nested lattice
structures for error correction.

The key generation function KGen(1λ) along with the standard choice of
parameters from LWE are defined as follows:

– Select m = nO(1), and q ∈ [nO(1), 2O(n)]. Let χe be a discrete Gaussian error
distribution of parameter σ ≥ 2

√
n, and a private key distribution χs over

Zn∗
q with respect to the security parameter λ. Sample s← χs until s ∈ Zn∗

q

(e.g., s← Zn
q , which satisfies s ∈ Zn∗

q with overwhelming probability).
– Targeting specific error correction capacity and quantization noise level,

choose the error correction lattice E and quantization lattice Λ from the
partition chain of polar lattices:

qZm ⊂ E ⊆ Λ ⊂ Zm.

– Specify the lattice encoding function ecE that maps a message µ ∈ {0, 1}log2(q
m/ det(E))

to a lattice point within the error correction lattice E, and the lattice decod-
ing function dcE that recovers the original message by decoding a potentially
noisy lattice point back into the message space.

– Return the private key s.

Scheme Encrypts(µ) Decrypts(A,b)
Ciphertext Ciphertext

Error ẽ Size |ct|

LWEE,χe

A← Zm×n
q , e← χe

b = As+ e+ ecE(µ)
Return (A,b)

Return dcE (b−As) e qm

LWEQE,χe,Λ

A← Zm×n
q , e← χe

b = QΛ(As+ e) + ecE(µ)
Return (A,b)

Return dcE (b−As) e+ eQ
qm

det(Λ)

LWQE,Λ

A← Zm×n
q , d← Zm/Λ

b = QΛ+d(As) + ecE(µ)
Return (A,b)

Return dcE (b−As) eQ
qm

det(Λ)

Table 2. Comparison of encryption frameworks based on LWE, LWEQ, and LWQ.
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The (Encrypt,Decrypt) algorithms for LWQE,Λ, LWEE,χe
, and LWEQE,χe,Λ are

summarized in Table 2. These schemes differ only in the encryption process. Since
E ⊆ Λ, we have QΛ(As+ e+ ecE(µ)) = QΛ(As+ e) + ecE(µ) and QΛ+d(As+
ecE(µ)) = QΛ+d(As) + ecE(µ). Thus, in all these schemes, the message ecE(µ)
is encrypted by masking it with a pseudorandom vector. Define the effective
ciphertext error as

ẽ = b−As− ecE(µ).

Table 2 indicates that the effective ciphertext errors for these schemes are e,
e+eQ, and eQ, respectively. Under the same conditions, LWQ produces smaller
ciphertexts compared to LWE, and its effective ciphertext error is lower than
that of LWEQ.

When measuring the size of the ciphertext, the cost of A and d can be
excluded by using seeds as their generators. The information rate R of an en-
cryption scheme is defined as the log size ratio of plaintext to ciphertext:

R =
log2(q

m/ det(E))

log2(|ct|)
, (41)

where |ct| denotes the size of the ciphertext. A scheme is said to achieve perfect
rate when R = 1.

5.1 Security

In these encryption schemes, the pseudorandomness of the ciphertext, ensuring
RND-CPA security [MS23], is derived from the hardness of the decision LWE
and LWQ assumptions.

Definition 15 (RND-CPA). An encryption scheme (KGen,Encrypt,Decrypt)
is said to be pseudorandom under chosen plaintext attack if any efficient (proba-
bilistic polynomial-time) adversary A can only achieve at most negligible advan-
tage in the following game, parameterized by a bit b ∈ {0, 1}:

1. s← KGen(1λ),
2. b′ ← AOb(·) where Ob(µ) returns either an encryption Encrypts(µ) of the

message µ under the key s if b = 0, or a sample from a uniform distribution
that has support

{
Encrypts(µ) | s ∈ supp(KGen(1λ)),∀µ

}
if b = 1.

The adversary’s advantage is defined as Adv(A) = |Pr(b′ = 1|b = 0) − Pr(b′ =
1|b = 1)|.

Theorem 8. Under the LWE and LWQ indistinguishability assumptions, the
schemes LWEE,χe , LWEQE,χe,Λ, and LWQE,Λ are RND-CPA secure.

Proof. We demonstrate that if an adversary can break the RND-CPA security
of LWEE,χe , LWEQE,χe,Λ, or LWQE,Λ, it implies the ability to distinguish the
LWE/LWEQ/LWQ distributions from uniform distributions. We will focus on
the reduction for LWEQ, as the arguments for the other two cases are analogous.

We construct an oracle O′
b for LWEQE,χe,Λ:
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– Request the pair (A,b) from the LWE oracle Ob.
– Compute QΛ(b).
– Return the output (A, QΛ(b) + ecE(µ)).

SinceO′
b incorporatesOb, breaking LWEQE,χe,Λ would consequently imply break-

ing the LWE assumption, establishing the RND-CPA security of the encryption
scheme.

5.2 Efficiency

The correctness of the schemes are defined as:

Definition 16. (DFR). The decryption failure rate (DFR) of an encryption
scheme (KGen,Encrypt,Decrypt) is defined as

δ = Es max
µ

Pr(Decrypts(Encrypts(µ)) ̸= µ).

The scheme is said to be δ-correct for a neglegible δ, and perfectly correct if
δ = 0.

Lemma 5. There exist a sequence of polar lattices Λ, indexed by dimension m,
such that LWQE=Λ,Λ has perfect correctness, perfect rate, and is as secure as the
LWE assumption with polynomial modulus q = nO(1) if det(Λ)1/m = σ.

Proof. The δ-correctness condition can be evaluated by Pr(ẽ /∈ VE) ≤ δ. Note
that As ∼ U(Zm

q ) since s ∈ Zn∗

q . The effective decoding noise ẽ = b−As−ecE(µ)
of LWQE,Λ can be expressed as:

ẽLWQ = eQ, (42)

where eQ ∼ U(VΛ∩Zm). Thus, perfect correctness is guaranteed since Pr(ẽLWQ /∈
VE) = 0. Lastly, perfect rate is guaranteed by its definition, and the condition
det(Λ)1/m = σ ensures that the underlying LWQ assumption meets the noise
parameter requirement for a secure LWE assumption. ⊓⊔

This lemma breaks the rate-impossibility bound of the quantized LWE based
encryption in [MS23, Bound 2], where R = 1 − o

(
1

log(q)

)
is impossible for the

same level of quantization. The perfect rate of LWQE=Λ,Λ arises from the prin-
ciple of noise matching in LWQ.

6 Conclusions and Open Questions

The paper has explored a novel hardness assumption termed LWQ, similar to the
LWR assumption, but is parameterized by an arbitrary lattice Λ. By choosing
Λ to be a near optimal lattice quantizer, one obtains a variant of LWR where
the noise is Gaussian-like, rather than bounded over an ℓ∞ ball (which is typical
for LWR). The LWQ assumption, by leveraging the hardness of LWE and the
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efficiency of vector quantization, enables the creation of cryptographic primitives
that are not only secure but also more efficient and practical.

To reduce the bandwidth of LWE-based applications, algebraic variants of
LWE has been developed, including Ring-LWE [LPR10], Module-LWE [LS15],
Middle-Product-LWE [BBD+19], and Cyclic-LWE [GMLV22]. These variants
offer more compact representations and faster arithmetic operations, making
them more suitable for practical implementations. Future research could explore
the extension of LWQ to its algebraic counterparts.

Although our sub-exponential bound for LWQ in Theorem 4 is significantly
tighter than the polynomial bound for LWR (with a polynomial modulus q),
we have not achieved an exponential bound, which would be ideal for prac-
tical cryptographic applications. This appears to be an inherent limitation of
polar codes when analyzed under statistical distance or Kullback-Leibler (KL)
divergence. One potential approach to overcome this limitation is to use the
Rényi divergence, as a small bound on Rényi divergence is sufficient in many
cases [BLL+15]. However, constructing polar codes under Rényi divergence re-
mains an open problem in coding theory, to the best of our knowledge. We
encourage further research efforts to address this challenge.

The random dither d in LWQ is a minor drawback, since it needs to be shared
between encryption and decryption. Would it be possible to derandomize LWQ
for computational security, yielding a variant of LWQ in which the dither is not
needed?

Our analysis of LWQ reveals an interesting phenomenon: in the security anal-
ysis of lattice-based cryptosystems involving LWR or LWER, such as CRYSTALS-
Kyber [SAB+22], quantization noise is often approximated as a discrete Gaussian
with the same variance. Consequently, a quantization lattice with a larger nor-
malized second moment would imply higher security. This, however, contradicts
our proposal of using lattices with a small normalized second moment. This ob-
servation suggests that the existing security analysis, which models quantization
noise as Gaussian in LWR and LWER, may not be tight. We hope our work on
LWQ improves the understanding of LWR and LWER and stimulates interest
in a tighter analysis.
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A Background of Polar Code/Lattice

Polar coding [Arı09] presents arguably the first explicit construction of codes
that are capacity-achieving for any binary-input memoryless symmetric channels
(BMSCs). Let us break down the concept:

– BMSC and Polar Code: A BMSC is a type of communication channel
characterized by binary input and output without memory of previous in-
puts. A polar code is designed specifically for such channels and achieves
their capacity.

– Block Length and Generator Matrix: For a given BMSC, we construct
a polar code with block length m = 2t, where t is a non-negative integer. The
polar code employs a generator matrix Gm, derived by iteratively applying
the Kronecker product to the base matrix [ 1 0

1 1 ].
– Information Set and Frozen Set: Among the rows of the generator matrix
Gm, we select K specific rows to form the information set I. The remaining
rows constitute the frozen set F . The information set comprises positions
used for encoding actual data, whereas the frozen set includes positions pre-
determined to facilitate decoding.

– Channel Combination and Polarization Transform: We consider N
identical copies of the BMSC, denoted Wm, which process input vectors
X [m] to yield output vectors Y [m]. By applying the generator matrix Gm to
the input, we obtain U [m] = X [m]Gm. This transformation decomposes the
channel into m simpler subchannels.

– Subchannels and Polarization: Each subchannel W (i)
m processes part of

the transformed input U i and produces output based on the entire output
vector Y [m] and previous parts of the transformed input U1:i−1. As m (the
block length) increases indefinitely, these subchannels polarize into either
very reliable (almost error-free) or very unreliable (ineffective for communi-
cation).

– Good Subchannels and Capacity: Through channel polarization, we
can identify the good subchannels. The proportion of good subchannels ap-
proaches the channel’s capacity C as the block length m becomes large.
Hence, to achieve capacity, the K rows selected for encoding should corre-
spond to these good subchannels.

Example 1. When m = 2, the generator matrix for binary polar codes is given

by
[
1 0
1 1

]
. One may use one (r = 1) partition level Z/2Z and choose [1, 1] as the
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basis for C1. Therefore, the polar lattice is made by [1, 1] · U1 + 2Z2, where U1

is the information bit of C1. The generator matrix of the 2-dimensional polar

lattice is given by
[
2 0
1 1

]
, which is indeed the famous checkerboard lattice D2.

Example 2. When m = 4, the generator matrix for binary polar codes is given by
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

. One may use two partition levels Z/2Z/4Z and construct two binary

polar codes according to the Construction D method. For the first level, one
may choose [1, 1, 1, 1] as the basis for C1. For the second level, C2 can have bases
[1, 1, 0, 0], [1, 0, 1, 0] and [1, 1, 1, 1]. Clearly, C1 ⊂ C2. Therefore, the polar lattice
is made by [1, 1, 1, 1]·U1+2·[1, 1, 0, 0]·U2+2·[1, 1, 0, 0]·U3+2·[1, 1, 0, 0]·U4+4Z4,
where U1 is the information bit of C1 and U4

2 are the information bits of C2.
Consequently, the generator matrix of the 4-dimensional polar lattice is given

by


4 0 0 0
2 2 0 0
2 0 2 0
1 1 1 1

.

Quantization and error correction are duals in the sense that: i) Error cor-
rection involves finding the closest lattice point to a noisy codeword, leveraging
redundancy to correct errors. ii) Quantization involves mapping the input vector
to the nearest lattice point, effectively reducing data resolution and removing
redundancy. Consider error correction using Λ, generated by a basis matrix B:

Λ = {Bz | z ∈ Zm} .

Error correction consists of two phases:

– Encoding : c = Bm for message m.
– Decoding : Given an additive noise channel r = c + e, find c ∈ Λ such that
∥r− c∥ is minimized.

Quantization also consists of two phases:

– Quantizing : Given x ∈ Rn, find q ∈ Λ such that ∥x− q∥ is minimized.
– Indexing : m = B−1q.

The concept of duality between source coding and channel coding allows us
to interpret quantization polar lattices as analogous to a channel coding lattice
constructed on the test channel [LSL21]. In the scenario of a Gaussian source
with variance σ2

s and an average distortion ∆, the test channel effectively be-
comes an AWGN channel with a noise variance of ∆. Consequently, the SNR
of this test channel equals σ2

s−∆
∆ , while its capacity is 1

2 log
(

σ2
s

∆

)
. This insight

suggests that the rate of the polar lattice quantizer can be finely adjusted to
approach 1

2 log
(

σ2
s

∆

)
. Consequently, polar lattices demonstrate the capability
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to achieve the rate-distortion bound of Gaussian sources by employing discrete
Gaussian distribution instead of continuous, offering a notable advancement in
compression techniques.

B Proof of Lemma 4

Proof. Using the telescoping expansion [KU10, Lemma 4]

B1:n −A1:n =

n∑
i=1

(Bi −Ai)A1:i−1Bi+1:n, (43)

∆
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
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(c)
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where DKL(·||·) is the Kullback-Leibler divergence, and the equalities and the
inequalities follow from

(a) Q
(
ui1|u1:i−1

1 , y[m]
)
= P

(
ui1|u1:i−1

1 , y[m]
)

for i ∈ I1.
(b) Pinsker’s inequality.
(c) Jensen’s inequality.
(d) Q

(
ui1|u1:i−1

1

)
= 1

2 for i ∈ F1.
(e) Z(X|Y )2 ≤ H(X|Y ).
(f) Definition of F1.

⊓⊔

C KL Divergence

Lemma 6. Let E ∼ DZ,σ be a discrete Gaussian random variable, and let
E′ = E mod qZ be the residue in [−2r−1, 2r−1). The Kullback-Leibler diver-
gence DKL(PE′ ||PE) between PE′ and PE is upper-bounded as follows:

DKL(PE′ ||PE) ≜
∑
λ∈Z

PE′(λ) ln
PE′(λ)

PE(λ)
≤ 20√

2πσ2
q · exp

(
− q2

8σ2

)
, (47)

where q = 2r.

Proof. By the definition of DZ,σ2 ,
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where Z+ denotes the set of positive integers.

Observe that e−
(|λ|−(i+1)q)2

2σ2 /e−
(|λ|−iq)2

2σ2 = e
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2

and i ≥ 1. Therefore,
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for large q such that e−
q2

σ2 ≤ 1
2 .

For the Kullback-Leibler divergence DKL(PE′ ||PE),
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∑
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where we use the inequality ln(1 + x) ≤ x and the relationship |λ| ≤ q
2 in the

third and fifth steps, respectively.

Lemma 7. Let Q
U

[m]
1 ,Y [m] denote the resulted joint distribution of U [m]

1 and Y [m]

according to the encoding rules (32) and (33) at the first partition level. Let
P
U

[m]
1 ,Y [m] denote the joint distribution directly generated from PX1,Y , i.e., U i

1 is
generated according to the encoding rule (32) for all i ∈ [m]. The Kullback-Leibler
divergence between P
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1 ,Y [m] is upper-bounded as follows:
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By induction, after the lattice quantization process with r sequential levels,

DKL
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Proof. For the 1st level,
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(63)

where the second equality holds because PY = QY , and the first inequality holds
because Z(X|Y )2 ≤ H(X|Y ). The proof of the first part is completed.

For the second level, by the chain rule of the Kullback-Leibler divergence,
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,

where the first term holds because of the result for the 1st level, and the second
term can be obtained by following the steps in (63) exactly, since it can be
written as
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The proof of the second part of this lemma can be completed by induction.


