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Abstract. Designing light clients to securely and efficiently read Proof-
of-Work blockchains has been a foundational problem since the inception
of blockchains. Nakamoto themselves, in the original Bitcoin paper, pre-
sented the first client protocol, i.e., the Simplified Payment Verification,
which consumes an amount of bandwidth, computational, and storage
resources that grows linearly in the system’s lifetime C.
Today, the blockchain ecosystem is more mature and presents a variety
of applications and protocols deployed on-chain and, often, cross-chain.
In this landscape, light clients have become the cornerstone of decen-
tralized bridges, playing a pivotal role in the security and efficiency of
cross-chain operations. These new use cases, combined with the growth
of blockchains over time, raise the need for more minimalist clients, which
further reduce the resource requirements and, when applicable, on-chain
costs. Over the years, the light client resource consumption has been
reduced from O(C) to O(polylog(C)), and then down to O(1) with zero-
knowledge techniques at the cost of often assuming a trusted setup.
In this paper, we present Blink, the first interactive provably secure O(1)
PoW light client without trusted setup. Blink can be used for a variety
of applications ranging from payment verification and bootstrapping, to
bridges. We prove Blink secure in the Bitcoin Backbone model, and we
evaluate its proof size demonstrating that, at the moment of writing,
Blink obtains a commitment to the current state of Bitcoin by down-
loading only 1.6KB, instead of 67.3MB and 197KB for SPV and zk-based
clients, respectively.

1 Introduction

Blockchain systems run consensus protocols among a large and varying set of
mutually distrusting participants, favoring decentralized trust over efficiency. To
engage with blockchains, users need to read the latest state of the chain to find
out, e.g., how many coins they own, if they got paid by another user, or, in more
modern chains, which is the current state of a contract. To do so, they can use
different techniques with different trade-offs. One approach is to run a full node,
which downloads, re-executes, and stores the entire history of the ledger. This
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is the most secure way but, obviously, also the most inefficient. It is like reading
a whole long book from the beginning just to know if the protagonist defeats
the villain at the end. An alternative way for a user to read the blockchain is to
run a light node, which only downloads and validates block headers, trading off
some security to gain efficiency. In our analogy, it is like skimming through the
book, finding the page of interest, and only reading the sentence “Voldemort was
dead, killed by his own rebounding curse” [1]. In the real world, users often have
few resources and cannot read an entire (however good) book when checking
a payment or trading assets. Users cannot be asked to run full nodes on their
resource-constrained phones to use their wallet.

In the seminal Bitcoin white paper [2], Satoshi Nakamoto already predicted
the need for efficiency and designed a light client called the Simplified Payment
Verification (SPV) protocol, which decouples the download of the execution layer
data (transactions) from the consensus layer data (block headers). An SPV client
retrieves all block headers and verifies them according to the longest chain con-
sensus rule, consuming an amount of resources that grows linearly with the
system’s lifetime. Several subsequent works optimized this concept, introducing
superlight clients whose resource requirements are only polylogarithmic in the
lifetime of the system [3,4,5,6]. Nevertheless, these protocols are not out-of-the-
box compatible with Bitcoin and require a consensus fork. The increased perfor-
mances of zero-knowledge techniques have also lead to ultralight clients [7,8,9]
which, however, often rely on a trusted setup, trading off trust to gain efficiency.

As blockchains grow, and with them also the number of on-chain and cross-
chain applications, the need for more efficient clients has become more pressing.
Indeed, in today’s more mature ecosystem, light clients are not only used by wal-
lets, but they have become a pivotal component of many bridge protocols, whose
operating costs are often dominated by the (inefficient) reads and verifications
of blockchain data. Designing a client that only requires constant communica-
tion, computation, and storage resources has unfortunately remained an elusive
goal over the past dozen years. This paper fills this gap, enabling critical re-
source optimizations for blockchain clients as well as reduced on-chain costs for
cross-chain applications.

Contributions. In this work, we present Blink, a novel interactive PoW light
client with constant communication, computational, and storage complexity. In
a nutshell, the Blink client connects to multiple full nodes, so that at least one
of them can be assumed honest. The client locally samples a random value η, in-
cludes it in a transaction Txη, and sends it to the full nodes. For instance, η could
be a new, fresh address sampled with high entropy and Txη can be a payment to
the vendor that owns this fresh address. Then, Blink waits for Txη to be included
on-chain in a block and confirmed. The full nodes respond to the client with a
proof π consisting of only 2k+1 consecutive block headers, with the header of the
block including Txη sitting in the middle (see Figure 1); k is the common prefix
security parameter [10], e.g., the conventional 6 confirmation blocks in Bitcoin.
The constant-sized proof π ensures that the first block in the proof is stable and,
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therefore, it can be considered as a checkpoint or as a new genesis. Contrary to
the O(1) zero-knowledge based clients, Blink does not require any trusted setup.

η

k blocks k blocks

G′

Fig. 1. Structure of the Blink’s proof π. The proof π consists of 2k + 1 consecutive
block headers, with the one of the block including the entropy η in the middle, and
k block headers before and after it. The block G′ identified by the first header of the
proof is stable in the chain and can act as a new genesis block.

Blink is proven secure in the static population, i.e., static difficulty, Bitcoin
Backbone model [10] against an adaptive minority adversary. In this paper, we
refine the problem of Proofs of Proofs-of-Work [3], i.e., techniques often used by
light clients to prove on-chain inclusion by succinctly verifying the amount of
Proof-of-Work done. We prove that Blink has a constant-sized proof verifiable in
constant time, and constitutes therefore the first provably secure Optimal Proof
of Proof-of-Work (OPoPoW) without trusted setup.

Furthermore, we showcase how Blink can be leveraged to develop a plethora
of applications with enhanced efficiency compared to state-of-the-art protocols.
For instance, it allows, for the first time, to securely and efficiently bootstrap
light miners and full nodes, by providing a commitment to the state of the ledger
with a short, constant-sized proof, bringing down the synchronization time from
several days to a few hours. Furthermore, with Blink users can trustlessly verify
their payments in a resource-constrained environment such as their phone with
only a O(1) overhead, instead of O(C). Finally, Blink can replace SPV clients as
a key component for bridges, further reducing the verification and storage costs
incurred by contracts, while retaining the same security.

We provide a Proof-of-Concept implementation of Blink for Bitcoin, and eval-
uate its communication cost for the conventional k = 6 blocks. We underscore
that Blink improves on all previous light client solutions in terms of proof size
(and computational resources to verify it); at the time of writing, an SPV client
has a proof size of 67MB, superlight clients [3,6] of 5-10KB, zk clients [9] of
197KB, and Blink of only 1.6KB.

In Section 7, we discuss practicality, limitations, and extensions of Blink to
the variable difficulty setting.

Related Work. The description of Nakamoto’s SPV client appears already in
the Bitcoin whitepaper [2]. A series of optimizations followed. The first suc-
cinct construction was the interactive Proofs of Proof-of-Work protocol [5] with
polylogarithmic costs. Later work removed this interactivity and achieved se-
curity against 1/2 adversaries but succinctness only in the optimistic setting
(against no adversaries) [3]. This construction was subsequently optimized [4],
made practical [11], and redesigned with backwards compatibility in mind [12].
The optimistic setting limitation was alleviated in a follow-up work, achieving
succinctness against all adversaries up to a 1/3 threshold [13]. An alternative
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construction was also proposed, enabling security and succinctness against a
1/2 adversary, and adding support for variable difficulty [6]. All these solutions
require polylogarithmic costs, whereas Blink requires only constant.

Recently, generic (recursive) zero-knowledge (ZK) techniques were utilized to
build O(1) light clients [14,8,7]. However, these approaches incur prohibitively
high computational costs (or necessitate specialized blockchain deployments [8,7]
utilizing ZK-friendly cryptographic primitives [15]) and additionally require a
trusted setup to generate and prove verification keys (which can only be removed
if polylogarithmic communication is acceptable). Blink removes the trusted setup
assumption.

Towards a O(1) light client without a trusted setup, the idea of using only
a small segment of the chain near the tip was proposed [16]. However, the pro-
posed construction was shown to be susceptible to pre-mining attacks and thus
insecure [17]. Recently, Glimpse [17] has combined the idea of [16] with the
injection of a high-entropy transaction Txη to prove the provided segment of the
chain is “fresh” and not pre-mined. Nevertheless, we show that Glimpse suffers
from safety and liveness attacks. In Blink we leverage and extend these ideas,
proposing the first provably secure light client that consumes only a constant
amount of resources and that does not require a trusted setup.

Finally, a similar quest for proof of stake light clients has achieved poly-
logarithmic complexity in an interactive setting [18]. For a review of the long-
standing light client problem, see [19]. Light clients are also a cornerstone for
building trustless bridges between chains, a question that has been explored in
a multitude of works [20,21,22,23]. In this work, we demonstrate how Blink can
serve as a building block for efficient optimistic bridges.

Comparison. In Table 1, we compare Blink with existing light client proto-
cols. We denote by C the lifetime of the system (informally, the length of the
blockchain) and by k the security parameter. According to the Bitcoin Backbone
model, k is constant in the lifetime of the system, albeit with the trade-off of
logarithmically increasing the probability of failure.

We first observe that Glimpse [17] consumes O(k) resources, but it is not
secure (see Section 3); its exact resilience, if any, remains unknown. ZK clients,
unlike Blink, rely on the trusted setup assumption. Blink consumes O(k) re-
sources, it is finally provable secure, but requires one round of interaction.

Finally, contrary to other clients, Blink requires to publish on-chain the trans-
action Txη and wait for it to be k confirmed; despite this, in most real-world
applications, all clients have the same latency as any payment or cross-chain
request is considered final only after having k confirmation blocks. In Section 7,
we propose practical solutions to reduce the costs of publishing Txη.

2 Preliminaries and Model

Notation. The bracket notation [n] refers to the set {1, . . . , n} for a natural
number n. A[i] denotes the i-th element (starting from 0) of a sequence A, while
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SPV[2] KLS[5], NIPoPoW [3,13] Plumo[7], Mina[8], ZeroSync[9] Glimpse [17] Blink
FlyClient[6] Coda[14]

Resources O(C) O(k polylog(C)) O(1) O(1) O(k) O(k)
No Trusted Setup ✓ ✓ ✗ ✓ ✓ ✓

Adv. Resilience 1/2 1/2 1/2 1/2 ✗(?) 1/2

Rounds of Interactivity 0 0 0 0 1 1

On-Chain Transactions None None None None 1 1

Proof size 67 MB 5-10 MB 22 KB 197 KB 1.2 KB 1.6KB

Table 1. Comparison of light client solutions.

negative indices like A[−i] refer to the i-th element from the end. A[i : j] repre-
sents the subsequence of A from index i (inclusive) to j (exclusive), while A[i :]
and A[: j] represent the subsequences from i onwards and up to j, respectively.
The notation |A| denotes the size of the sequence A. The symbols A ⪯ B and
A ≺ Y indicate that A is a prefix or a strict prefix of B or Y , respectively. We

denote with C
⋂
r [: −k] the intersection of the view of the blockchain of all honest

parties at round r, pruned of the last k blocks; likewise, C
⋃
r [: −k] is the union of

the view of the blockchain of all honest parties at r, pruned of the last k blocks.

Ledger Model. We assume a synchronous network, i.e., all honest parties are
guaranteed to receive messages sent by honest parties within a known delay. We
consider the protocol execution to proceed in discrete rounds.

Definition 1 (Ledger). A ledger is a sequence of transactions.

Definition 2 (Distributed Ledger Protocol). A distributed ledger protocol
is an Interactive Turing Machine exposing to all parties the following methods:

– execute: Executes 1 round of the protocol, during which the machine can
communicate with other parties.

– write(Tx): Takes transaction Tx as input.
– read(): Outputs a ledger.

For all correct nodes, a distributed ledger protocol that returns a total order
of the transactions on input satisfies two security properties: safety and liveness.
The notation LP

r denotes the output of the read() method invoked on party P
at the end of round r.

Definition 3 (Safety). A distributed ledger protocol is safe if it fulfills the
following properties:

Self-consistency For any correct party P and any rounds r1 ≤ r2, it holds that
LP
r1 ⪯ L

P
r2 .

View-consistency For any correct parties P1, P2 and any round r, it holds that
either LP1

r ⪯ LP2
r or LP2

r ⪯ LP1
r .

Definition 4 (Liveness). A distributed ledger protocol is live with liveness
parameter u if all transactions written by any correct party at round r, appear
in the ledgers of all correct parties by round r + u.
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The ledger uniquely defines the current state of the system. Consider an empty
ledger L0 with genesis state S0. To ascertain the i-th state Si of a ledger Li,
with i > 0, transactions [Tx1, . . . ,Txi] are applied as follows:

Si := δ(. . . δ(δ(S0,Tx1),Tx2) . . . ,Txi).

As shorthand notation, we use Si := δ∗(S0,Li) to denote successive application
of all transactions Tx ∈ Li to S0.

We consider PoW ledgers whose block headers include state commitment,
i.e., a succinct, constant size representation of the state of the ledger. We stress
that state commitments are necessary for Blink only to extract the ledger’s state
and not to create a secure proof.

Prover-Verifier Model. A client protocol is an interactive protocol between
the client, acting as verifier V , and a set P of full nodes, acting as provers. We
focus on a client V that, when it bootstraps on the network for the first time,
it is only aware of the genesis state. We assume that the client is honest, and in
the set P there is at least one honest prover (existential honesty assumption).
The client does not know which prover is honest. While honest parties adhere
to the correct protocol execution, the adversary can execute any probabilistic
polynomial-time algorithm.

Ledger Client Security. We now define what it means for a client of a ledger

L to be secure. Among all the honest parties’ ledgers, let L
⋃
r be the longest and

L
⋂
r be the shortest at the end of round r.

Definition 5 (Ledger Client Security [24]). An interactive Prover-Verifier
protocol Π(P, V ) is secure with safety parameter v if, when the protocol termi-
nates ar r, V outputs a commitment to a state of the ledger L that, ∀r′ ≥ r+ v,
satisfies the following properties:

Safety: L is a prefix of L
⋃
r′ .

Liveness: L
⋂
r is a prefix of L.

When a protocol Π(P, V ) correctly executes by downloading and verifying
asymptotically less data in L, it is a light client protocol. We measure the per-
formance of a client protocol by defining the communication cost for the verifier;
the computational and storage costs of a client are linear in the amount of data
downloaded during the protocol.6

Definition 6 (Client Communication Cost). We define cost(E , V ) to be
the communication cost in bits of an execution E of a protocol Π(P, V ) for V .

A client protocol has optimal communication cost if cost(E , V ) = O(1), i.e., if V
only receives a constant amount of data per protocol execution.

6For full nodes, assume transaction execution has a constant upper bound on the
computation.
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Definition 7 (Optimal Proof of Proof-of-Work (OPoPoW)). A light
client protocol is an Optimal Proof of Proof-of-Work when it is secure (Defini-
tion 5) and has optimal communication cost (Definition 6).

Chain Client Security. To model the Proof-of-Work setting we closely fol-
low [10]. Importantly, we operate in the static model, where the number of
consensus nodes remains fixed throughout the protocol execution. Furthermore,
each of them is assumed to have an equal computational power (flat model).
The static model implies static difficulty. For a more complete description of the
PoW blockchain model, see Appendix B.1. Throughout this work, we will use
the term block to mean a block header. Towards defining the security of a client
for blockchain protocols, we first define the notion of admissible block.

Definition 8 ((u, k)-Admissible Block at r). Consider u, k ∈ N. Any block
B that, at round r, fulfils the following properties is an admissible block at r:

Safety : B ∈ C
⋃
r+u[: −k]

Liveness : B /∈ C
⋂
r [: −k]

In other words, for r ≤ r∗, a block B is admissible at round r∗ if B is seen as stable
by at least one honest party at round r+u (safety), and B is not yet seen by all
parties at round r (liveness). In the above definition, u and k are free parameters.
From the proofs in Appendix D, it turns out that admissibility holds with u being
the “wait time” parameter of liveness, and k the “depth” parameter of safety [10].

Definition 9 (Chain Client Security). An interactive Prover-Verifier pro-
tocol Π(P, V ) is secure if, when the protocol terminates at r∗, V outputs a block
B that is admissible at r ≤ r∗.

We consider PoW blockchains whose blocks include state commitments. State
commitments are a succinct representation of the state of the ledger, and they
are assumed to be of constant size. In the account model of, e.g., Ethereum,
an example of state commitment is the Merkle root of account balances; in the
UTXO model of, e.g., Bitcoin, an example is the Merkle root of the UTXO
Tree [2,24]. Equipped with state commitments, client protocols satisfying Def-
inition 9 also satisfy Definition 5. We stress, however, that state commitments
are necessary in Blink only for efficiently reading elements of the ledger’s state,
and not for creating a secure proof.

3 Blink

The ultimate goal of an OPoPoW client is to identify a recent, correct block
of the ledger, by only receiving a constant-sized proof. We recall that in PoW
blockchains, blocks are considered final if they have at least k confirmations,
where k is the security parameter - in Bitcoin folklore k = 6.

A Naive Construction. We start considering a simple, naive construction.
The provers give to the client the last k + 1 consecutive blocks in their longest
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chain. The client verifies the validity of these sequences of blocks and, among
the valid ones, takes the sequence whose blocks have the greatest height, and
considers safe and live the first block in the sequence. This construction trivially
breaks safety: an adversarial prover may have pre-mined k + 1 fake blocks and
can therefore trick the client into accepting a block that is not part of the chain.

Preventing Safety Attacks. To prevent this pre-mining attack, the client V
needs to randomize the tip of the chain and to only accept blocks in the random-
ized suffix. In this way, the adversary is not able to predict the random value
and therefore it is required to produce fresh blocks. Therefore, V locally samples

a random string η
$← {0, 1}λ, defines a timeout T after which it stops accepting

incoming proofs, and sends (η, T ) to the provers [17]. The provers embed η into
an entropy transaction Txη, broadcast Txη to the blockchain network, and wait
for Txη to be included in a block Bη and confirmed. As soon as a prover P sees
Bη with k confirmation blocks, if T has not expired, it sends to V a proof π
consisting of Bη with its k confirmation blocks. Finally, V considers Bη safe and
live, and it extracts from it the commitment to the state of the ledger.

Randomizing the proof rules out pre-mining attacks but, unfortunately, it
does not result in a secure client protocol. Consider an adversary that controls
t < n/2 of the n total participants in the PoW game. The adversary has a
probability t/n < 1/2 of being elected as block proposer, which results in a non-
negligible probability of censoring Txη in the next k−1 blocks. If by T the chain
is extended by fewer than 2k consecutive blocks, the adversary can violate the
liveness of the client protocol with probability t/n, as honest parties do not have
time to produce k + 1 blocks by T . Figure 2 shows this attack.

k blocks

r0

η

ηη

T

time

Fig. 2. Consider k = 4. The light client broadcasts η at round r0. With non-negligible
probability, a minority adversary can censor Txη in the next k−1 blocks. Honest parties
do not have time to generate a proof of k + 1 blocks before T expires.

Preventing Liveness Attacks. To protect the client from liveness attacks,
one could remove the timeout T and ask V to accept the first incoming proof that
consists of Bη and at least k confirmation blocks. Alternatively, one could ask V
to accept the proof that, by T , has the most confirmation blocks on top of Bη.
While both these attempts safeguard the liveness of the client, the client’s safety
is now broken again, as V might accept a block that is not part of any honest
party’s chain. We describe the safety attack for the case where T is removed,
but a similar logic applies to the other case as well.

After Txη is broadcast, honest parties include it in the next block they create.
The adversary, instead, extends the chain with blocks that censors Txη and it
keeps these blocks private. Being k the security parameter, with non-negligible
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probability the adversary can privately mine k − l blocks, with 0 < l < k − 1.
Meanwhile, honest parties can mine Bη with at most k − l − 2 confirmations.
Then, the adversary broadcasts the private chain, causing all honest parties to
switch to the adversarial chain, as per the longest chain rule. Honest parties
include Txη in the new longest chain and keep mining on top of it. At the same
time, the adversary starts privately mining on top of the chain abandoned by the
honest parties, i.e., the one that included Txη early on. Now, to create a valid
proof, the adversary only needs to mine l + 2 < k + 1 blocks, whereas honest
parties need to mine k+1 blocks. As a result, with non-negligible probability the
adversary can find the first k confirmation blocks on top of (an abandoned) Bη,
and trick the client into considering safe and live a block that will never be part
of the longest chain, thereby breaking security. Figure 3 illustrates this attack.
This attack breaks the security of Glimpse [17].

η

η

k blocks

k blocks< k blocks

r0 rr

time

Fig. 3. Consider k = 4 and l = 1. The client broadcasts η at r0. The adversary privately
mines 3 blocks censoring Txη, while honest parties mine 2 blocks, the first of which
includes Txη. The adversary releases the private chain at rr and honest parties switch
to it. Honest parties need to mine 5 blocks to find a valid proof, while the adversary
only needs to mine 3 blocks. The adversary finds the proof first.

Blink. We recall that our goal is to let the client securely identify a block that
is safe, i.e., already k deep in at least one honest party’s chain [10], and live, i.e.,
sufficiently close to the tip of the chain. In the safety attack we just described,
the adversary delays the inclusion of Txη in the main chain, but this censorship
only succeeds for a limited time, specifically for less than k consecutive blocks:
a private chain longer than k and longer than the honest parties’ chain would
break safety of the ledger [10]. This means that any honest majority will create
k blocks faster than any minority adversary.

Knowing that Txη can only be censored for k − 1 blocks and that it takes k
additional blocks for it to become safe (Figure 3), in our final construction we
modify the proof such that it consists of 2k + 1 blocks, with Bη in the middle,
as depicted in Figure 1. To avoid the safety attack, the client now considers safe
and live the first block of the first valid proof it receives, and not Bη as before;
this is because a proof of 2k+1 blocks must necessarily contain a safe block, i.e.,
a block that is at least k deep in the chain of all honest parties. To be precise,
the first proof that the client gets contains at least one block that was safe even
before Txη was broadcast: the honest abandoned subchain has length at most
k − 2 and at least 1, therefore the first block in the proof was already part of



10 Aumayr, Avarikioti, Maffei, Scaffino, Zindros

the honest parties’ stable chain (Figure 4). Importantly, this is true even if the
proof comes from the adversary. For any proof coming from an honest party, any
block before Bη is already safe. We also note that the first block in the proof is
live, as the block with η comes shortly after, and attached to genesis, otherwise
honest parties would not have extended it.

η

k blocks

k blocks

r0 rr

< k − d blocks

η

d blocks

time

Fig. 4. Consider k = 5. The adversary censors Txη by k − d blocks on the top branch
and by d blocks on the lower branch, with the overall number of adversarial blocks
before Txη being smaller than k (d ≤ k − 1). This shows why taking fewer than k
blocks before Txη is not sufficient.

To conclude, the first block of the first valid proof seen by the client is always
safe, i.e., it has at least k confirmations in the view of an honest party, and live,
i.e., it is at most k blocks far back from Bη.

We observe that the client receives a proof that consists of 2k+1 blocks, with
the number of blocks remaining constant in the system’s lifetime (optimal proof
size). After broadcasting η, the clients needs to wait for k blocks to be mined, but
this waiting time is standard to all clients that want to have finality guarantees
for a transaction. Finally, Blink can extract the state commitment from the first
block of the proof. In Figure 5 we present the pseudocode of the Blink protocol.
In Appendix A we show the algorithms run by the client and provers of Blink.

Proof Construction

1. V samples η
$← {0, 1}λ.

2. V broadcasts η to P.
3. P creates a transaction Txη that includes η and broadcast it to the network.
4. When a party P ∈ P sees a block Bη including Txη and having k confirmations,

P sends to V a proof consisting of Bη and the k blocks before and after it.

State Commitment Extraction

5. V accepts the first incoming proof π that consists of 2k + 1 consecutive
well-formed blocks, with the block in the middle containing η, i.e., π[k] = Bη.

6. V extracts the state commitment from B := π[0] and terminates.

Fig. 5. The Blink protocol.
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4 Applications

In this section, we describe how to use Blink for different applications.

Payment Verification. Consider a vendor that wants to check if its customer
(the buyer) has paid for the purchase of a good, and that will ship the good only
after the client’s payment has been verified and finalized. The vendor gives the
buyer a new, fresh address η sampled with high entropy, and uses Blink to effi-
ciently read the chain and verify the payment. Blink only guarantees safety for
the first block of the first proof it receives, and not for the block including Txη.
Fortunately, the safety guarantees of Blink are strong and they help our vendor
nonetheless: the first block in the Blink proof behaves as a secure checkpoint or
as a new genesis: this means that it will never be reverted and the consensus
rules applied to genesis are consistent with the consensus rules applied to the
new genesis (we prove this in Appendix D.1).

Therefore, upon accepting a proof and identifying the new genesis G′, the
Blink client can broadcast G′ to the provers, and provers start sending to the
client the blocks descending from G′. The client now maintains the longest chain
descending from G′, temporarily running an SPV client on top of G′, boot-
strapped in O(1). When Txη is in a block k-deep in the longest chain, the client
considers the payment final and terminates. This protocol retains the proof op-
timality of Blink (Txη is final at most 3k consecutive blocks after G′), albeit
with one more round of communication. Blink has the same latency of an SPV:
k blocks during normal operation, and 2k in case of adversarial attack.

This construction can be used out-of-the-box in the Bitcoin Backbone pro-
tocol in the static difficulty setting, without assuming block headers include a
commitment to the state of the ledger. We refer to Section 7 for the variable
difficulty setting and practical deployments.

Bootstrapping via Blink. In blockchains, there is interplay between different
types of parties: consensus nodes, full nodes, and light nodes. Consensus nodes,
also called miners, receive transactions from the network (environment) and ex-
ecute a distributed ledger protocol that outputs a ledger. Full nodes do not
participate in the distributed ledger protocol but receive the ledger from consen-
sus nodes. They re-execute transactions to verify validity, keep audit proofs, and
serve reads. Finally, light nodes connect to full nodes to verify inclusion of specific
transactions or of specific state elements, e.g., an account balance. Bootstrapping
these nodes usually requires a lot of time, e.g., several days for consensus and full
nodes. It also requires a lot of bandwidth, compute, and disk space: starting from
genesis, consensus and full nodes need to download and execute the entire ledger,
while SPV light nodes need to download and verify the entire header chain.

We have already seen that Blink can be used for bootstrapping nodes: by
identifying a recent block that behaves as a new genesis, SPV nodes can pin-
point the tip of the chain in O(1) and then run their protocol on top of it.
Consensus nodes and full nodes, on the other hand, can use Blink to identify the
new genesis and from it extract the commitment to the whole state of the ledger.
Then, upon receiving from other nodes the state of the ledger, e.g., the set of
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UTXOs, they can verify its validity, without downloading and re-executing the
entire history of transaction.

State Verification. As stated in Section 2, Blink extracts a commitment to
the global state of the ledger on the premise that each block embeds state com-
mitments. Commitments come in different flavors (Merkle trees, accumulators,
vector commitments), and they are used to efficiently download and validate the
state of the ledger without having to receive and re-execute a complete copy of
the ledger. In a chain with state commitments, Blink allows to verify account bal-
ances and read the current state of on-chain contracts in O(1). For a discussion
on chains that have state commitments and how to introduce them to systems
like Bitcoin, see Section 7.

Historical Transaction Verification. However uncommon, some applica-
tions might need to verify the on-chain inclusion of a transaction that is, e.g.,
1 day old. Consider the case where a user wants to verify a day old transaction
inclusion. With Blink, they can identify the new genesis, and then hop back,
block by block, until hitting the block with the desired transaction. This naive
approach for checking past transactions comes with a linear overhead in the age
of the transaction: the older the transaction, the more blocks the client has to
process. More efficient techniques exist under the name of proofs of ancestry :
these add within block headers a commitment to a data structure, e.g., a Merkle
Mountain Range or a vector commitment, that allows to navigate the chain
backward with a logarithmic or constant overhead in the age of the transaction,
respectively. Combining Blink with chains that have proofs of ancestry allows
for more efficient historical transaction verification.

Bridging with Blink. In recent years, light clients have become a pivotal com-
ponent for bridge protocols, allowing to efficiently and securely read blockchain
data within new resource-constrained environment: the blockchain itself. Suc-
cessful bridges move a high volume of transactions: ideally, at least one transac-
tion per block. Therefore, every block including a cross-chain transaction must
be relayed from the source to the destination chain by default, in an SPV-like
fashion. However, the on-chain costs of the bridge contract can be minimized by
skipping the block verification: blocks can be optimistically accepted and only
verified on-demand in case a dispute is raised. This is what an optimistic bridge
does. We now show how to use Blink for creating succinct fraud proofs for an
optimistic bridge.

Consider a PoW source blockchain CS equipped with ancestry proofs and a
destination chain CD. Relayers of the bridge optimistically relay a block B from
CS to the bridge contract in CD, along with a random string ηR freshly sam-
pled for the block. Should a challenger notice that relayers submitted an invalid
block, they have a time window to trigger a challenge, pinpointing the contested
block B, and revealing a newly sampled random string ηC . The challenger also
publishes a transaction Txη on CS , which includes η := ηR ⊕ ηC (⊕ is bit-wise
xor). The bridge contract will accept the first valid Blink proof received and, via
ancestry proof, verify whether the contested block B is an ancestor of the first
block in π. If this is not the case, B is removed from the bridge contract. We note
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that both parties need to contribute with a random string to prevent each of
them from cheating, i.e., pre-mining a fake proof. Honest behavior can be incen-
tivized through collateral that is slashed or redistributed in case of misbehavior.

5 Analysis

In this section, we present the main theorems and an overview on the proof strat-
egy. For model and definitions from the Bitcoin Backbone, see Appendix B. For
our general results, see Appendix C. For the complete analysis of Blink security,
see Appendix D. In this paper, we prove the following main theorem:

Theorem 1 (Ledger Client Security for Blink). Blink is ledger client
secure as per Definition 5, with the safety parameter v being the wait time pa-
rameter u of liveness.

We start by identifying a special type of block: a convergence event at round
r (Definition 19). A convergence event is an honestly produced block that, by r,
has no acceptable parallel block (Definition 18); a block is acceptable if it is valid
and there is at least one honest party who may extend it. Convergence events
have interesting properties: (i) acceptable blocks at r descend from all conver-

gence events at r (Lemma 7); (ii) let B̃ be a convergence event at rc, and B̂ be an
existing valid block whose height is larger than the one of B̃ by at least k. Then,
B̃ is destined to become stable for all honest parties, even if B̂ is only known
to the adversary (Lemma 8); (iii) for any block, the prior convergence event
is always less than k blocks back (Theorem 5). These properties are formally
presented in Appendix C: they are general and not specific to our construction,
therefore they might be of independent interest.

We prove the admissibility of π[0], arguing about its liveness and safety (The-
orem 8). Towards proving safety of π[0], we show that π[k :] always extends B̃
which, at the time that π is found, is the convergence event closest to π[k :]
(Theorem 7). Since π[k] is fewer than k blocks in the future from its closest
convergence event, B̃ ∈ π. Also, B̃ will become stable (Lemma 8), and thus π[0]
is safe. Towards proving liveness for π[0], we know that π[k] is fresh because
it contains the newly sampled η; π[0] is k blocks distant, and thus fresh. As a
result of honest majority, a proof extending B̃ is found first. To conclude, as-
suming that block include state commitments, we prove by reduction that any
client construction that fulfils the chain client security definition, also fulfills the
ledger client security definition (Corollary 3).

Theorem 2. Blink has optimal communication cost, i.e., O(k).

The communication cost (Definition 6) measures the bits sent/received by V
during an execution E of a protocol Π(P, V ). V sends η whose size is Oλ(1) to
all provers, and it receives (at most) one proof consisting of 2k+1 block headers
for each P ∈ P, plus an inclusion proof for Txη which is of size logN , with N
being the average number of transactions in a block; logN can be considered a
constant. This makes for a total size of O(k).
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Note that in any light client construction the communication cost increases
linearly in the number of provers. Nevertheless, the communication cost of Blink
remains constant in the system’s lifetime. From Theorems 1 and 2, Blink is an
Optimal Proof of Proof-of-Work (Definition 7).

6 Evaluation

We evaluate Blink by measuring its proof size and waiting time for Bitcoin. A
Proof-of-Concept implementation is available at [25], and entropy transactions
broadcast during the evaluation can be inspected here [26]. The client uses the
python-bitcoin-utils library [27] to create entropy transactions and communi-
cates via RPC APIs using the python request HTTP library [28].

Experimental Setup. We deployed two mainnet Bitcoin full nodes running
Bitcoin Core 25.0 and acting as untrusted provers: one was operated in-house
on our own hardware (Central Europe) and the other one on a Vultr virtual ma-
chine (UK). We use two different deployments to emulate more realistic network
conditions. The nodes maintain a complete copy of the ledger and they allow
us to broadcast transactions to the Bitcoin network as well as retrieve blocks,
transactions, and inclusion proofs. We ran our custom implementation client
on commodity hardware. The client begins by sampling uniformly at random
a 160-bit string η and creating Txη by placing η in an OP RETURN output. The
size of Txη is 222 bytes. Then, the client connects to the two Bitcoin full nodes,
broadcasts Txη, and waits for it to be k-confirmed. We set k = 6 according to
Bitcoin folklore. When one of the two full nodes reports Txη k-deep, the client
downloads and verifies the Blink proof (2k + 1 block headers) by checking their
parent-child relation and the PoW inequality. The client additionally downloads
and verifies the inclusion proof of Txη in the middle block.

Proof Size. We measure all the data received by the client from the full node
that first reports Txη with k confirmations. This data amounts to 7728 bytes
(7360 for the Blink proof, 368 for verifying transaction inclusion).

The 7728 bytes are due to full nodes using the inefficient JSON format and to
the available standard RPC endpoints of the bitcoin daemon full node. Using an
optimized data transmission that avoids superfluous data, the total amount of
data transmitted over the network can be brought down to 1646 bytes per prover
(1040 bytes for the 13 headers of 80 bytes each, 384 bytes for the Merkle inclusion
proof consisting of 12 sibling SHA256 hashes of 256 bits each, and 222 bytes for
the transaction Txη). In Table 2, for height 841368, we compare the amount of
data downloaded by Blink (1.6KB) to the one of a full node (684GB), to an SPV
client (67.3MB), to NIPoPoW and FlyClient clients (10.0KB and ∼5KB, respec-
tively), and, finally, to a PoW ZK-STARK client (ZeroSync[9], 197KB). Impor-
tantly, the differences between these clients increase as the blockchain grows.

Waiting Time. We measure the time it takes the client algorithm to run, aver-
aging it over 10 runs. We broadcast the entropy transaction with a high-priority
fee, which allows Txη to be included in the next 1 or 2 blocks. The average wait-
ing time for the client to accept a proof is 59 minutes, with a standard deviation
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Full SPV[2] KLS[5], NIPoPoW [3], FlyClient[6] ZK ZeroSync Blink
node Mining LogSpace[13] Client [9]

684GB 67.3MB 10KB ∼5KB 197KB 1.6KB

Table 2. Amount of data light clients download for Bitcoin at height 841368, k = 6.

of 17 minutes, in accordance with the Bitcoin folklore of 6 blocks per hour. Any
node that waits for 6 confirmations to report transactions final incurs the same
waiting time.

7 Practicality, Limitations, and Extensions of Blink

State Commitments. Some of the applications presented in Section 4 operate
on the premise that each block embeds a state commitment to the current ledger
state. While several blockchains like ZCash, Nimiq, and Ethereum PoW uphold
this premise, the most notable PoW blockchain, Bitcoin, does not incorporate
state commitments in its block headers. NIPoPoWs, i.e., the polylogarithmic
clients described in [3,6], have the potential to be added retroactively via a vel-
vet fork [12,29]. The idea of introducing state commitments for Blink via velvet
fork is appealing, however, its practical deployment is still undetermined.

Entropy Transaction. We observe that to make light clients more efficient,
the computational and storage complexity is often shifted from the light client to
the full nodes or to the consensus nodes: for instance, NIPoPoW clients require
consensus nodes to augment the chain with an interliking structure, FlyClient
requires full nodes to store and update an MMR where each leaf is a block of the
chain (plus additional metadata), and zk clients require full nodes to compute
heavy proofs. In this respect, Blink has optimal resource consumption for all the
parties involved : the light client, the full nodes, and the consensus nodes. Blink
only requires to post on-chain a transaction with high entropy.

The Blink’s entropy transaction does not need to have a Blink-specific for-
mat, but it can be, for instance, a transaction that sends money to a fresh
address sampled with high entropy. In this case, the fee required to publish the
entropy transaction is absorbed by the fee of performing a payment. If the en-
tropy transaction is posted with the sole purpose of injecting entropy on-chain
(e.g., by using the OP RETURN opcode), fees can be paid in the form, for instance,
of an anyone-can-spend output. The way the light client pays the on-chain fees
can be optimized on the application level: For instance, dedicated contracts or
untrusted services can mitigate the clients’ costs by batching different requests
and compressing multiple entropy values into a single transaction. For example,
multiple random strings can be ordered in a Merkle tree, and only the Merkle
root is published on-chain within the entropy transaction. For this to be safe,
each client instance needs a proof of inclusion of its randomness in the tree.

Interactivity. Blink demands one round of interactivity between the client and
the full nodes, unlike its predecessors that operate non-interactively [6,3,5]. This
is the trade-off we incur for achieving a constant-sized proof instead of a poly-
logarithmic one. We could remove the interactivity by introducing additional
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assumptions, for example: (i) a trusted committee service operates the client,
similarly to the service provided by Chainlink for oracles, (ii) a random beacon
acts as global entropy source and provides a service for Blink clients. However,
both solutions come with drawbacks, i.e., centralization or a strong non-practical
cryptographic primitive, respectively. It remains an open question whether de-
signing a O(1) non-interactive client is possible without extra assumptions.

Variable Difficulty. Blink is analyzed in the static setting [10], i.e., the PoW
difficulty remains the same throughout the protocol execution. In practice, Bit-
coin uses a variable difficulty recalculation. Blink can still be used safely if we
assume that parties agree on the difficulty beforehand by looking it up on a
trusted service, or making assumptions on the computational power of the ad-
versary. Ideally, designing a secure client in the variable difficulty setting [30]
should be possible by using difficulty balloons to succinctly measure the current
difficulty [31]. This approach utilizes entropy proofs to estimate (within some
error) the current PoW difficulty of the network, by which point Blink can be
applied as is. However, we anticipate that such an approach would only be secure
under a weaker adversary, i.e., one that controls up to 1/3 of the computational
power of the system. To provide an intuition behind this threshold, consider
an adversary t < 1/2 that abstains from mining while the clients measures the
difficulty, thus creating a false sense of the total computational power and of
the number of blocks they can create in a set of rounds. Then, the adversary
takes advantage of this false estimation to mine privately the required proof, vi-
olating the safety of Blink. We estimate that this adversarial advantage may be
mitigated if honest nodes can produce double as many blocks as the adversary.

Alternatively, one could change the selection rule for the proof: the client can
choose the proof with the most work after taking the intersection of all proofs
within a timeout. We conjecture such an approach may alleviate the possible
attack vectors of a minority adversary, and we plan to explore it in future work.
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23. Peter Gaži, Aggelos Kiayias, and Dionysis Zindros. Proof-of-Stake Sidechains. In
2019 IEEE Symposium on Security and Privacy (SP), 2019.

24. Ertem Nusret Tas, Dionysis Zindros, Lei Yang, and David Tse. Light Clients
for Lazy Blockchains. In Financial Cryptography and Data Security FC 2024.
Springer-Verlag, 2024.

25. Blink Implementation, 2024. https://github.com/scaffino/Blink.
26. Bitcoin Address. https://shorturl.at/9gQP2.
27. Bitcoin Utils, 2024. https://pypi.org/project/bitcoin-utils/.
28. Python Request Library, 2024. https://pypi.org/project/requests/.
29. A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and W. J.

Knottenbelt. A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes
in Practice. In Financial Cryptography and Data Security, FC 2019, Berlin,
Heidelberg, 2019. Springer Berlin Heidelberg.

30. Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol with chains of variable difficulty. In Advances in Cryptology – CRYPTO
2017. Springer International Publishing, 2017.

31. Dionysis Zindros. Decentralized Blockchain Interoperability. PhD thesis, University
of Athens, Apr 2020.

A Algorithms and Pseudocodes

Figure 6 shows the Blink protocol for payment verification.
Algorithm 1 showcases the algorithm run by the Blink client, employing Al-

gorithm 2; similarly, in Algorithm 3 we present the code run by provers. We use
m 99K A to indicate that message m is sent to party A and m L99 A to indicate
that message m is received from party A.

B Background from the Bitcoin Backbone [10]

We now introduce notation, definitions, theorems, and lemmas stated in [10]
which will be necessary for our analysis.

https://github.com/scaffino/Blink
https://shorturl.at/9gQP2
https://pypi.org/project/bitcoin-utils/
https://pypi.org/project/requests/
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Proof Construction

5. V accepts the first π it receives consisting of 2k + 1 consecutive well-formed
blocks where the middle block contains η, i.e., π[k] = Bη

6. Upon accepting π, V extracts the new genesis G′ := π[0] and sends G′ to all P ∈ P
7. Each P ∈ P keeps sending all the blocks descending from G′ in their chain

State Extraction

8. V maintains the longest chain C descending from G′
9. V terminates when it sees Txη k-deep in C

Fig. 6. Payment verification with Blink. Steps 1-4 are akin to Figure 5.

Algorithm 1 The algorithm ran by the verifier V , i.e., the Blink client. We split
the proof π into (π0, π1), with π0 allowing to identify a stable and recent block
of the blockchain, i.e., the new genesis G′, and π1 being the Merkle proof that
verifies inclusion of η into the middle block of π0.

1: function VerifierG ( )
2: η L99 {0, 1}λ
3: for P ∈ P do
4: η 99K P
5: while True do
6: π L99 P ▷ Only constant amount of data downloaded
7: (π0, π1) = π
8: if ValidG(π, η) then
9: return π0[0]
10: end if
11: end while
12: end for
13: end function

B.1 PoW Blockchain Model

A blockchain protocol is a distributed ledger protocol that operates typically as
follows: Consensus nodes receive and broadcast chains composed of blocks. Each
node P maintains a view of the blockchain, denoted by CP , which invariably
starts with the genesis block G. Nodes verify these chains by ensuring they com-
ply with the validity and consensus rules. These chains include fixed-size trans-
actions arranged in a specific order. Every node interprets its chain to produce
a transaction sequence, i.e., to output its ledger. Moreover, a consensus node
receives new, unconfirmed transactions from the network, and attempts to add
them to its ledger by proposing a new block that includes them. The nodes’ local
views the ledger can vary from node to node because of the network latency. Hon-
est nodes adhere to the consensus protocol, while adversarial nodes may diverge
from it. Nevertheless, under specific assumptions, a blockchain protocol may
guarantee that the local chains of different parties satisfy the two key properties
of ledgers, namely safety and liveness, albeit typically in a probabilistic manner.
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Algorithm 2 The algorithm ran by V to check the validity of the blocks in the
proof. Let x be the root of the transaction Merkle tree in a block, and s be its
parent hash.

1: function ValidG (π, η)
2: (π0, π1)← π
3: if |π0| < k + 1 then
4: return False
5: end if
6: if ¬MerkleVerify(π1, η) ∨ π1.root ̸= π0[k + 1].x then
7: return False
8: end if
9: h = π0[0].s
10: for B ∈ π0 do
11: if B.s ̸= h then ▷ Ancestry failure
12: return False
13: end if
14: h = H(B)
15: if h ≥ T then ▷ Hardcoded target T, static setting
16: return False ▷ PoW failure
17: end if
18: return G = π0[0] ∨ |π0| = 2k + 1
19: end for
20: end function

Algorithm 3 The algorithm ran by the provers P ∈ P.
1: function Prover( )
2: η L99 V
3: Txη L99 MakeTx(η)
4: Txη 99K Network ▷ Wait for Txη to be k-confirmed
5: π0 L99 C[−(2k + 1):] ▷ By Common Prefix, Tx ∈ C[−(2k + 1):]
6: π1 L99 MerkleProve(C[k + 1], η)
7: π ← (π0, π1)
8: π 99K V
9: end function
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To model the Proof-of-Work setting, the q-bounded synchronous setting de-
fined in [10] can be leveraged. The protocol is analyzed in the static model,
where the number of consensus nodes n remains fixed throughout the protocol
execution, albeit not known to the nodes themselves. Furthermore, each of them
is assumed to have an equal computational power (flat model). The protocol pro-
ceeds in synchronous communication rounds. We highlight that the static model
implies static difficulty, i.e., the PoW difficulty remains the same throughout the
protocol execution. The limited capability of the nodes to generate PoW solu-
tions is captured by their restricted access to the hash functionH(·) modeled as a
Random Oracle; each node is allowed q queries per round. The adversary controls
up to t < n

2 nodes, meaning they are allowed t·q queries per round. The adversary
can insert messages, manipulate their order, and launch Sybil attacks, creating
seemingly honest messages. However, the adversary cannot censor honest parties’
messages, ensuring that all honest parties receive honestly broadcast messages.

The Bitcoin Backbone model [10] identifies three security properties of a
blockchain: common prefix, chain quality, and chain growth. Informally, com-
mon prefix dictates that at any point in time, any two honest parties’ chains
after pruning the last k blocks are either the same or one is a prefix of the other.
Chain growth expresses that the blockchain makes progress at least at the pace
at which the honest parties produce blocks. Finally, chain quality captures the
ratio of honestly produced blocks in the system in any long enough chunk of the
chain. The formal definitions can be found in Appendix B. A blockchain pro-
tocol satisfying common prefix, chain quality, and chain growth also maintains
a secure ledger, as per Definition 3 and Definition 4, under the so-called k-deep
confirmation rule. This rule states that all nodes consider a block safe when it
is part of their local chain pruned by the last k blocks. As expected, both safety
and liveness hold probabilistically.

B.2 Formal Properties and Definitions

The properties of blockchain protocols defined in the backbone model are pre-
sented below. Such properties are defined as predicates over the random variable
viewt,n

Π,A,Z by quantifying over all possible adversaries A and environments Z that
are polynomially bounded. Note that blockchain protocols typically satisfy prop-
erties with a small probability of error in a security parameter κ (or others). The
probability space is determined by random queries to the random oracle func-
tionality and by the private coins of all interactive Turing machine instances.

Definition 10 (Common Prefix Property [10]). The common prefix prop-
erty Qcp with parameter k ∈ N states that for any pair of honest players P1, P2

adopting the chains C1, C2 at rounds r1 ≤ r2 in viewt,n
Π,A,Z respectively, it holds

that C
|k|
1 ⪯ C2.

Definition 11 (Chain Quality Property [10]). The chain quality property
Qcq with parameters µ ∈ R and ℓ ∈ N states that for any honest party P with
chain C in viewt,n

Π,A,Z , it holds that for any ℓ consecutive blocks of C, the ratio
of honest blocks is at least µ.
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Definition 12 (Chain Growth Property [10]). The chain growth property
Qcg with parameters τ ∈ R and s ∈ N states that for any honest party P that has
a chain C in viewt,n

Π,A,Z , it holds that after any s consecutive rounds, it adopts a
chain that is at least τ · s blocks longer than C.

Closely following[10], we will call a query q ∈ N of a party successful if it
returns a valid solution to the PoW. For each round i, j ∈ [q], and k ∈ [t], we
define Boolean random variables Xi, Yi, and Zijk as follows. If at round i an
honest party obtains a PoW, thenXi = 1, otherwiseXi = 0. If at round i exactly
one honest party obtains a PoW, then Yi = 1, otherwise Yi = 0. Regarding the
adversary, if at round i, the j-th query of the k-th corrupted party is successful,
then Zijk = 1, otherwise Zijk = 0. Define also Zi =

∑t
k=1

∑q
j=1 Zijk. For a set

of rounds S, let X(S) =
∑

r∈S Xr and similarly define Y (S) and Z(S). Further,
if Xi = 1, we call i a successful round and if Yi = 1, a uniquely successful round.
We denote with f the probability that at least one honest party succeeds in
finding a PoW in a round.

Definition 13 (Typical Execution [10]). An execution is (ϵ, λ)-typical (or
just typical), for ϵ ∈ (0, 1) and integer λ ≥ 2/f , if, for any set S of at least λ
consecutive rounds, the following hold.
(a) (1− ϵ)E[X(S)] < X(S) < (1 + ϵ)E[X(S)] and (1− ϵ)E[Y (S)] < Y (S).
(b) Z(S) < E[Z(S)] + ϵE[X(S)].
(c) No insertions, no copies, and no predictions occurred.

Let n be the number of consensus nodes, out of which t are controlled by
the adversary. Let Q be an upper bound on the number of computation or ver-
ification queries to the random oracle. Let L be the total number of rounds
in the execution, and λ, κ security parameters. Finally, we denote with ν the
min-entropy of the value that the miner attempts to insert in the chain.

Theorem 3 (Theorem 4.5 in [10]). An execution is not typical with proba-
bility less than

ϵtyp = 4L2e−Ω(ϵ2λf) + 3Q22−κ + [(n− t)L]22−ν .

Lemma 1 (Lemma 4.6 in [10]). The following hold for any set S of at
least λ consecutive rounds in a typical execution. For S = {i : r < i < s} and
S′ = {i : r ≤ i ≤ s}, Z(S′) < Y (S).

Lemma 2 (Lemma 4.8 in [10], (aka Patience Lemma)). In a typical exe-
cution, any k ≥ 2λf consecutive blocks of a chain have been computed in more
than k

2f consecutive rounds.

Lemma 3 (Lemma 4.1 in [10], (aka Pairing Lemma)). Suppose the k-th
block B of a chain C was computed by an honest party in a uniquely successful
round. Then the k-th block a chain C′ either is B or has been computed by the
adversary.
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Lemma 4 (Lemma 4.2 in [10], (aka Chain Growth)). Suppose that at
round r an honest party has a chain of length l. Then, by round s ≥ r, every
honest party has adopted a chain of length at least l +

∑s−1
i=r Xi.

Theorem 4 (Theorem 4.11 in [10], (aka Chain Quality)). In a typical
execution the chain quality property holds with parameters ℓ ≥ 2λf and

µ = 1− 1 + f

(1− f)(1− ϵ)
· t

n− t
− (1 + f)ϵ

1− ϵ

> 1− 1

1− 2δ/3
· t

n− t
− δ/3

1− δ/3

δ→0−−−→ n− 2t

n− t

Corollary 1 (Corollary 4.12 in [10]). In a typical execution the following
hold.
– Any ⌈2λf⌉ consecutive blocks in the chain of an honest party contain at least

one honest block.
– For any λ consecutive rounds, the chain of an honest party contains an hon-

est block computed in one of these rounds.

In our analysis, we assume a typical execution in all proofs. We note that
from Theorem 3 typical execution fails with negligible probability, resulting in
our proofs holding with overwhelming probability.

C General Results

In this section, we introduce some definitions, observations, and lemmas that
will be used as building blocks in the formal analysis of Blink security (Ap-
pendix D.1).

C.1 Notation

We denote with C
⋂
r :=

⋂
P∈H CPr the intersection of the view of all honest par-

ties’ chains at round r. Similarly, we denote with C
⋃
r :=

⋃
P∈H CPr the union of

the chains of all honest parties, that yields a blocktree. For simplicity, we extend
our slicing notation that chops off the last k elements of a sequence, i.e., [: −k],
to trees as well. For trees, it works as follows. For every leaf in a tree, select
that leaf and the k− 1 preceding nodes. Then, for every leaf, remove all selected
nodes. The slicing notation for trees will be helpful later on, when distinguishing
between a stable chain in the view of all honest parties and a stable chain in the

view of at least one honest party. It follows that C
⋂
r [: −k] is the intersection of

the view of the blockchain of all honest parties at round r, pruned of the last k

blocks; likewise, C
⋃
r [: −k] is the union of the view of the blockchain of all honest

parties at round r, pruned of the last k blocks. In Lemma 5 (Appendix B), we

prove that C
⋃
r [:−k] =

⋃
P∈H CPr [:−k].
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We say a block extends another block, if the former has the latter as ancestor
and has a higher block height. We say a block descends from another block, if
the former extends the latter or they are the same block. Finally, two blocks are
parallel when they have the same height.

C.2 Our General Results

Let H be a hash function modeled as a Random Oracle, and let T be the target
hash value used by parties for solving the PoW. Given a chain C and a block b
to be inserted in the chain, consider the hash h = H(C[−1], b) of these values,
and let ctr be a counter.

Definition 14 (PoW Inequality). The PoW inequality holds if H(ctr, h) < T.

If a ctr fulfilling the PoW inequality is found, the chain C is extended by
the block b (which includes ctr). If no suitable ctr is found, the chain remains
unaltered.

Definition 15 (Valid Chain). A chain C is (syntactically) valid if:
– C = ∅, or
– C[: −1] is valid and the PoW inequality holds for h = H(C[−2], C[−1]).

Definition 16 (Valid Block). A block is valid if it belongs to a valid chain.

Lemma 5. The following equality holds:

C
⋃
r [:−k] =

⋃
P∈H

CPr [:−k] (1)

Proof. We observe that C
⋃
r is a tree where each leaf CPr corresponds to the view of

the chain of (at least) one honest party P at some round r. C
⋃
r [:−k] is the result

of taking C
⋃
r and removing the last k blocks from each of the leaves of the tree.⋃

P∈H CPr [:−k] is the result of taking all the chains of honest parties at round r,
chopping off the last k blocks and taking the union of these chains. By common
prefix, honest parties’ chains can only diverge by less than k blocks; therefore,

C
⋃
r [:−k] is a chain such that C

⋃
r [:−k] =

⋃
P∈H CPr [:−k], with some honest parties

being aware of all the blocks in it, and some others lagging behind.

Definition 17 (Acceptable Chain at r). A valid chain C is acceptable at
round r, if
– C = ∅, or
– C[: −1] is acceptable at r, and either C ⪯ C

⋂
r [: −k] or C

⋂
r [: −k] ⪯ C .

An important notion we use is an acceptable block. Intuitively, an acceptable
block is a block to which honest parties can switch to without violating com-
mon prefix. Honest nodes will never switch to chains containing non-acceptable
blocks.
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Definition 18 (Acceptable Block at r). A block is acceptable at r if it
belongs to an acceptable chain at r.

Observation 1 If a block is stable in an honest party’s view, it is also accept-
able.

Observation 2 All honestly produced blocks are acceptable in the round in which
they are produced.

Observation 3 All honestly produced blocks only descend from blocks that are
acceptable in the round in which the former are produced.

Observation 4 Any block B produced in round rB and acceptable in round r ≥
rB, is also acceptable in all rounds in the set of consecutive rounds {rB , . . . , r}.

Definition 19 (Convergence Event at r). A block B is a convergence event
at round r if it is produced in a uniquely successful round rB and, by round
r ≥ rB, it does not have a parallel acceptable block in any round in the set of
consecutive rounds {rB , . . . , r}.

Observation 5 A convergence event is always honestly produced.

Lemma 6. If a block B produced in round rB is a convergence event at round
r, it is a convergence event in all rounds in the set of consecutive rounds {rB , . . . , r}.

Proof. By definition, there are no acceptable blocks at {rB , . . . , r} parallel to B.
Therefore, B fulfills the definition of convergence event at all rounds {rB , . . . , r}.

Lemma 7. An acceptable block B at r must descend from all convergence events
at r with a height smaller or equal to B’s height.

Proof. Towards a contradiction, suppose there exists a convergence event B̂ at
r, such that B does not descend from B̂. There must be a block B′ parallel to
B̂ from which B descends. Because B is acceptable at r, by definition, B′ needs
to be acceptable at r. However, both B′ acceptable and B̂ being a convergence
event, imply B̂ = B′. Thus, B′ descends from B̂, reaching a contradiction.

Lemma 8. Let r be the round in which a block B was produced. For any block

B and any round r′, for which B is a convergence event at r′ and B ∈ C
⋂
r′ [: −k],

blocks acceptable at any round after r always extend B.

Proof. From Observation 2 and Lemma 7, honest parties will extend B in the
rounds between r and r′ (included). B is stable for all honest parties at round
r′. Therefore, after r′ all honest parties only extend B, otherwise common prefix
is violated.

We denote with |X(S)|, |Y (S)|, and |Z(S)| the number of successful queries
X, Y , and Z in a set of consecutive rounds S.
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Fig. 7. This figure illustrates the proof of Theorem 5.

Theorem 5 (General Eventual Stability). Consider a convergence event
B̃ at r∗, which was produced in round r̃ and it has height l̃. If there exists a block

with height l ≥ l̃ + k in C
⋃
r∗ then, in a typical execution, B̃ becomes stable for at

least one honest party at most at round r̃ + u, i.e., B̃ ∈ C
⋃
r̃+u[: −k].

Proof. Consider Figure 7. Let l̃ be the height of B̃ and r̃ the round at which B̃ was
produced. Since B̃ is a convergence event, we know that it was honestly produced.
Thus, at any round r > r̃, honest parties have adopted a chain of length at least l̃.

By round r∗, since B̃ is a convergence event and due to causality, the ac-
ceptable blocks with height larger than l̃ have been mined at or after r̃ . Since
the blocktree at round r∗ contains a block with a height l ≥ l̃ + k, at least k
consecutive blocks were mined in the set of consecutive rounds S′ := {r̃, . . . , r∗}.
Let S := {r̃− 1, . . . , r∗ +1}. We can thus apply the patience lemma (Lemma 2)
to this set of rounds, which means that |S| > λ and typicality bounds apply.
In particular, |X(S)| > |Z(S′)|, which implies |X(S)| > k

2 . From chain growth
(Lemma 4), we know that in every round r in which there is at least one honest
block found, i.e. Xr = 1, honest parties increase the length of their chains by
(at least) 1. It follows that in any round r > r∗, honest parties have adopted a
chain longer than l̃ + k

2 .

Towards contradiction, suppose that B̃ ̸∈ C
⋃
r̃+u[: −k]. This means that there

exists a round ru in which all honest parties have adopted a stable chain CA
of length lA ≥ l̃ + k which excludes B̃. We note that all honest parties must
have adopted CA, otherwise common prefix would be violated. It follows that:
(i) ru < r + u because otherwise, by chain quality and chain growth, at round
r+u, B̃ would be stable; (ii) r∗ < ru because, by definition of convergence event
at r∗, B̃ does not have any parallel acceptable adversarial block at round r∗. The
blocks CA[−(k + 1) :] have a height of at least l̃ and are produced after r∗. We
now proceed with a counting argument for the set of rounds Sa := {r∗, . . . , ra},
where ra ≤ ru is the first round in which CA contains at least k blocks with
a height higher or equal to l̃. Again, since (at least) k consecutive blocks were
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mined in Sa and we can apply Lemma 2 to this set of rounds, which means that
|Sa| > λ and typicality bounds apply. In particular, |X(Sa)| > |Z(S′

a)|, which
implies |X(Sa)| > k

2 .
From Lemma 4, we know that there are at least |X(Sa)| consecutive blocks

extending B̃. From Lemma 2, we know that |Sa| ≥ λ, which means that typi-
cality bounds apply, i.e., |X(Sa)| > |Z(Sa)|, hence |X(Sa)| > k

2 and Z(Sa) <
k
2 .

The chain CA which extends B′ but not B̃, has a length of at most l̃ − 1 + k
2 , as

honest parties do not extend shorter chains. Therefore, at round ra, all honest
parties cannot have adopted CA, because they have a chain of length at least
l̃ + k, which includes B̃. This concludes the contradiction.

Theorem 6 (General Vicinity). Consider any acceptable block Ḃ at round
r, produced in ṙ and having a height larger than any honestly produced block in
any round before ṙ. Let B̃ be a convergence event at ṙ, such that B̃ is the closest
convergence event to Ḃ in terms of height, and such that the height l̃ of B̃ is
smaller or equal to the height l̇ of Ḃ, i.e., l̃ ≤ l̇. In a typical execution, l̇− l̃ < k.

B̃

r̃

S

Y (S)

Z(S)

ṙ

Ḃ

time

Fig. 8. This figure illustrates the proof of Theorem 6.

Proof. Consider Figure 8. Let r̃ ≤ ṙ be the round in which B̃ was produced.
We now look at the blocks {B}Y (S) that were honestly produced in the uniquely
successful rounds in S := {r̃+1, . . . , ṙ−1}, i.e., Y (S). By definition, every block
B ∈ {B}Y (S) has a height smaller than Ḃ. However, due to Lemma 7, every block

B ∈ {B}Y (S) also extends B̃ and thus has a height larger than B̃.

Because B̃ is the nearest convergence event at ṙ, any block B ∈ {B}Y (S) needs
to have a parallel, acceptable at ṙ (and thus mined at or before ṙ) block. Oth-
erwise, B would be the nearest convergence event to Ḃ. Because these parallel
blocks are acceptable, they need to extend B̃ (Lemma 7) and thus by causality,
need to have been produced at or after r̃ and at or before ṙ, which means they
are produced in S′ := {r̃, . . . , ṙ}. Additionally, from Lemma 3, we know that
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these parallel blocks need to be adversarially produced. Thus, there needs to be
at least one successful adversarial query within S′ for each uniquely successful
round in S, i.e., |Z(S′)| ≥ |Y (S)|.

Due to causality, the blocks between B̃ and Ḃ need to have been produced in
S′′ := {r̃, . . . , ṙ−1}. Suppose towards a contradiction, the difference in height be-
tween Ḃ and B̃ is k or more. From Lemma 2 we know that |S′′| > λ, thus |S| ≥ λ,
and thus, typicality bounds apply to this set of rounds. Thus, by Lemma 1 it
holds that |Z(S′)| < |Y (S)|, which contradicts the above.

D Analysis of Blink

D.1 Safety and Liveness of Blink

We model time to proceed in discrete rounds. Our network model stipulates that
messages sent in a round r reach the recipient in round r+ 1. Like other nodes,
the client can send and receive messages.

Consider a client booting up at round r0 − 1 and broadcasting the entropy
η. η is received by the blockchain nodes at round r0. We say the proof π is gen-
erated at round r∗ and received by the client at round r∗ + 1. Upon receiving
the proof, the client sends π[0] to full nodes and waits for Txη to become stable.
Finally, the client terminates when Txη is stable in the chain of honest parties,
i.e., at round r∗∗ ≥ r∗ + 3.

Should the blockchain have fewer than k blocks at round r0, a proof with
fewer than k blocks before η is valid if its first block is the genesis block. How-
ever, if the chain is shorter than k blocks, the chain itself is already succinct and
a light client is not needed.

Consider the blocktree of the execution at round r0. We define B′ ∈ C
⋂
r0 as

the block with the greatest height which is a convergence event at r0.

Lemma 9. B′ exists.

Proof. The genesis block satisfies the definition of B′.

We denote the round in which B′ was produced as r′, with r′ < r0. From
Lemma 8, we know that all honest blocks produced after r′ extend B′.

Now, consider the blocktree of the execution at round r∗. We define B̃ as the
block with the greatest height that descends from B′, was mined before r0, and
it is a convergence event at r∗. Because this block is similar to the blocks named
B̃ in Theorems 5 and 6, we re-use the name B̃. We say B̃ is produced at round
r̃, with r′ ≤ r̃ < r0. We define S̃ := {r̃, . . . , r∗}.

Lemma 10. B̃ exists.

Proof. B′ satisfies the definition of B̃.

Lemma 11. Acceptable blocks produced in S̃ descend from B̃.

Proof. This follows directly from Lemmas 6 and 7 (Appendix C).
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As a consequence of Lemma 11 and Observation 2, all honest blocks produced
in S̃ descend from B̃.

Lemma 12. All honest blocks produced in uniquely successful rounds within
{r̃ + 1, . . . , r0} have a parallel acceptable (by r∗) adversarial block.

Proof. Because of the maximality (in terms of height) of B̃, all blocks extending
B̃ and mined in uniquely successful rounds before r0 have a parallel, acceptable
adversarial block.

For a set of consecutive rounds S, let X(S) be honest queries, i.e., rounds
in which at least one honest node found a block, Y (S) be uniquely successful
honest queries, i.e., rounds in which exactly one honest node found a block, and
Z(S) be adversarial queries, i.e., rounds in which the adversary found a block.
We denote with |X(S)|, |Y (S)|, and |Z(S)| the number of successful queries in
X(S), Y (S), and Z(S). These sets are defined in [10] or Appendix B.

Theorem 7 (Anchor). In a typical execution, the block with η and its k sub-
sequent blocks of the proof π that the client accepts, i.e., π[k :], always extend
B̃.

Proof. Let Y (S̃) be the set of honest uniquely successful queries within S̃, and
Z(S̃) be the set of successful adversarial queries within S̃. Consider Figure 9 and
let us define the following disjoint sets, Y1, Y2 and Z1, Z2, where Y1 ∪Y2 = Y (S̃)
and Z1 ∪ Z2 = Z(S̃).

1. The queries of Z1 produce blocks that extend B̃.
2. The queries of Z2 produce blocks that do not extend B̃.
3. The queries of Y1 produce blocks parallel to (at least) one of the blocks in Z1

acceptable at r∗.
4. The queries of Y2 produce blocks not parallel to any of the blocks in Z1

acceptable at r∗.
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Fig. 9. This figure illustrates the proof of Theorem 7.
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Claim. If |Y2| = k+1, at round r∗+1 the client has received a proof π with the
blocks π[k :] extending B̃.

This is true because in Y2 there are no successful adversarial queries in S̃ pro-
ducing blocks extending B̃ and having parallel blocks. Furthermore, by definition
of B̃ and by causality, there cannot be successful adversarial queries outside of S̃
producing blocks extending B̃. Yet, there can exist successful adversarial queries
in Z2 which produce blocks not extending B̃.

Claim. After r0, honest parties do not extend blocks in Z2.

Blocks in Z2 do not extend B̃, and thus are not acceptable by r∗. Therefore
honest parties do not extend them within S̃.

After r0, honest nodes will include η in a block, if η was not included before.
It follows that the block in Y2 with the smallest height descends from a block
including η. The k blocks produced by the remaining queries in Y2 extend the
block with η by one block each, as they are uniquely successful and there are no
parallel, adversarial acceptable by r∗ blocks.

Claim. Independently of k, the block in Y2 with the greatest height has all other
blocks of Y2 as ancestors.

Towards a contradiction of Theorem 7, suppose that at round r∗ + 1 the
client accepts a proof π which is generated at round r∗ and where π[k :] does not
extend B̃. For the client to receive such a proof, the number of blocks produced
between r0 and r∗ not extending B̃, thus in Z2, has to be larger than or equal
to k+1. Therefore, also |Z2| ≥ |Y2|. |Y2| can grow at most of 1 per round: if |Y2|
was of k + 1 in a previous round rp < r∗, the light client would have received
the proof in rp+1, contradicting the minimality of r∗. Now we count these sets.
We have that |Z| = |Z1| + |Z2| and |Y | = |Y1| + |Y2|. By definition of Y1, we
know that |Y1| ≤ |Z1|. It follows, that |Z| = |Z1|+ |Z2| ≥ |Y1|+ |Y2| = |Y |. How-
ever, from Lemma 2 we know that |S̃| ≥ λ and thus, typicality bounds apply
to this set of rounds. This means that |Z| < |Y |, which is a contradiction. This
concludes the proof of Theorem 7.

Lemma 13. B̃ ∈ π.

Proof. Because the block containing η, π[k] or Ḃ, which was produced in round
ṙ, is acceptable and has a height larger than any block that was honestly pro-
duced before it, we know from Theorem 6 that the nearest convergence event at
ṙ has a height difference smaller than k blocks.

Theorem 8. In a typical execution, the first element π[0] in the proof π accepted
by Blink client at round r∗ is an admissible block (cf. Definition 8).

Proof. (Safety) From Lemma 13 we know that π includes B̃. From Theorem 5,

we know that B̃ is safe (i.e., B̃ ∈ C
⋃
r0+u[: −k]). Since π[0] is either B̃ or an ancestor

of B̃, π[0] is safe as well, i.e., π[0] ∈ C
⋃
r0+u[: −k] .
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(Liveness) Let l′ be the height of B′. Define B′′ := C
⋂
r0 [−k−1], and denote its

height with height l′′. Since B′ is by definition either B′′ (if the latter is uniquely
successful and has no adversarial blocks at the same height by round r0) or else
an earlier block, it follows that l′′ ≥ l′.

At round r0, honest users each have a local chain with height of at least
l′′+k, because B′′ is stable for all honest parties at round r0. Since π[k] includes
η it has to be mined after r0, which is the round in which η was released. This
means, for the height lk of π[k], it holds that lk > l′′ + k.

As π[0], with height l0, is k blocks before π[k], it holds that l0 = lk − k.
Therefore l0 + k > l′′ + k, which means that l0 > l′′. However, since B′′ was the

last block in the stable intersection at round r0, this implies π[0] ̸∈ C
⋂
r0 [: −k].

Therefore, at round r∗ when the client accepts the a proof π, π[0] is an
admissible block.

We observe that, after r0, every honest chain tip descends from π[0]. We refer
to π[0] as new genesis block G′.

Lemma 14 (New Genesis). The longest chain rule applied to the genesis
block G is consistent with the longest chain rule applied to G′, with G′ being an
admissible block.

Proof. Suppose there exists a longest chain that contains G but does not contain
G′. From admissible safety, we know that G′ is stable for at least one honest user
U , i.e., G′ ∈ C

⋂
r [: −k]. Since the longest chain does not contain G′, honest users

will adopt it in the next round, including the user U who has reported G′ as
stable. This violates common prefix.

Corollary 2 (Chain Client Security for Blink). Blink is chain client secure
according to Definition 9.

Given a client protocol Π which outputs a block B, one can build another
protocol Π ′ that runs Π and reports the state commitment in B.7

Corollary 3. For any client protocol Π that is chain client secure, the corre-
sponding protocol Π ′ constructed in the above manner is ledger client secure
(Definition 5).

This follows from a simple reduction since Π ′ merely reports the state commit-
ment of B. If the state commitment was such that Π ′ is not ledger client state
secure, the corresponding B cannot have been admissible. This concludes the
proof of the main Theorem 1.

7For instance, this can easily be achieved for any blockchain protocol that has
state commitments.
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D.2 Safety and Liveness of Bη := π[k]

We now consider the case where Blink is used to verify a payment (or anything
else that is in Bη), and we show that the corresponding proof size remains con-
stant. We recall that in this use-case, after adopting G′ and sending it to the
provers, the Blink client maintains the longest chain descending from G′. We
now show that the entropy block will be eventually stable for all honest parties
at most 3k consecutive blocks away from G′.

Lemma 15 (Stability of Txη). In a typical execution, a block Bη including
Txη becomes stable for all honest parties at most at round r0 + u, i.e., Bη ∈
C
⋂
r0+u[: −k].

Proof. It follows from the ledger liveness in Definition 4.

Lemma 16 (Vicinity of Txη). In a typical execution, a block Bη including Txη
becomes stable for all honest parties at most 3k consecutive blocks away from G′.

Proof. Let rg be the round at which the new genesis block is produced. By con-
struction, k consecutive blocks are produced between rg and r0. By Lemma 15,
the entropy transaction Txη becomes stable for all honest parties at most at
rs = r0+u. By the liveness of the chain (chain quality and chain growth), at rs,
at most 2k−1 consecutive blocks are produced between G′ and Bη (Corollary 1),
and Txη is at least k blocks deep in every honest party’s chain. It follows that af-
ter at most 3k consecutive blocks are produced, Bη is stable for all honest parties.
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