
Secret-Sharing Schemes for High Slices

Amos Beimel1 , Oriol Farràs2 , Or Lasri1 , and Oded Nir3

1 Ben-Gurion University of the Negev, Be’er-Sheva, Israel
2 Universitat Rovira i Virgili, Tarragona, Spain

3 Tel Aviv University, Tel Aviv, Israel
amos.beimel@gmail.com, oriol.farras@urv.cat, orshlomo@post.bgu.ac.il,

odednir123@gmail.com

Abstract. In a secret-sharing scheme, a secret is shared among n parties
such that the secret can be recovered by authorized coalitions, while it
should be kept hidden from unauthorized coalitions. In this work we
study secret-sharing for k-slice access structures, in which coalitions of
size k are either authorized or not, larger coalitions are authorized and
smaller are unauthorized. Known schemes for these access structures
had smaller shares for small k’s than for large ones; hence our focus is
on “high” (n− k)-slices where k is small.
Our work is inspired by several motivations: 1) Obtaining efficient schemes
(with perfect or computational security) for natural families of access
structures; 2) Making progress in the search for better schemes for gen-
eral access structures, which are often based on schemes for slice access
structures; 3) Proving or disproving the conjecture by Csirmaz (J. Math.
Cryptol., 2020) that an access structures and its dual can be realized by
secret-sharing schemes with the same share size.
The main results of this work are:
Perfect schemes for high slices. We present a scheme for (n − k)-

slices with information-theoretic security and share size kn·2Õ(
√
k logn).

Using a different scheme with slightly larger shares, we prove that
the ratio between the optimal share size of k-slices and that of their
dual (n− k)-slices is bounded by n.

Computational schemes for high slices. We present a scheme for
(n−k)-slices with computational security and share size O(k2λ logn)
based on the existence of one-way functions. Our scheme makes use
of a non-standard view point on Shamir secret-sharing schemes that
allows to share many secrets with different thresholds with low cost.

Multislice access structures. (a : b)-multislices are access structures
that behave similarly to slices, but are unconstrained on coalitions
in a wider range of cardinalities between a and b. We use our new
schemes for high slices to realize multislices with the same share sizes
that their duals have today. This solves an open question raised by
Applebaum and Nir (Crypto, 2021), and allows to realize hypergraph
access structures that are chosen uniformly at random under a nat-
ural set of distributions with share size 20.491n+o(n) compared to the
previous result of 20.5n+o(n).

This document is the full version of [BFLN24], published at TCC 2024.

https://orcid.org/0000-0002-6572-4195
https://orcid.org/0000-0002-7495-5980
https://orcid.org/0009-0006-7419-1454
https://orcid.org/0009-0008-7860-8151

2 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

1 Introduction

Secret-sharing schemes, introduced by Shamir [Sha79] and Blakley [Bla79], is
a pivotal cryptographic primitive that has many applications in cryptography
and in neighboring fields (see, e.g., survey works of [Bei11,ADH17,CSNN24] for
details about such applications). In a secret-sharing scheme, a dealer that holds a
secret shares it among n parties, by sending each party a single message (called
a share). It is required that predefined authorized coalitions will be able to
recover the secret from their shares and that the secret will remain hidden from
all unauthorized coalitions. A scheme is called perfect when the secret is kept
information-theoretically hidden from unauthorized sets (i.e. they cannot learn
anything about the secret from their shares even if they are computationally
unbounded); it is called computational if secrecy is held against parties that are
computationally bounded. The collection of authorized coalitions is called an
access structure, and it can be captured by a monotone function f : {0, 1}n →
{0, 1} that outputs 1 on an input x ∈ {0, 1}n iff x is the characteristic vector of
an authorized set.

The most important efficiency measure for secret-sharing schemes is the size
of the shares dealt to the participating parties. Hence, the goal of many re-
search works has been to realize all (general) n-party access structures with
small shares. Towards this end, modern schemes (following the seminal work of
Liu and Vaikuntanathan [LV18]) typically first realize restricted families of access
structures with non-trivially small shares and then compose them, in some “so-
phisticated” way, to get better schemes for general access structures. Improving
the share size of such restricted families of access structure became a relatively
central problem in the field. Among the families used in the above-mentioned
paradigm, we can list k-slices (also knwon as k-uniform access structures) and
(a : b)-multislices. A k-slice function can output arbitrary values for inputs of
Hamming weight k, and must output 0 on lighter inputs and 1 on heavier ones.
(a : b)-multislices are monotone functions that are unconstrained on inputs of
Hamming weight between a and b, but must take the value 0 on lighter inputs,
and the value 1 on heavier inputs. Note that a (k : k)-multislice is a k-slice.

Despite the growing importance of these access-structure families, works that
have studied them so far have been, in some sense, incomprehensive, as they
mainly focused on the regime where k ≪ n. For example, there are at least
a dozen papers dealing with secret-sharing schemes for 2-slices (also known as
forbidden graph access structures (see, e.g., [SS97,BIKK14,BFMP22]). To the
best of our knowledge, no previous papers study (n − 2)-slices. Moreover, the
best perfect schemes for slices have much smaller shares when k is small (“low
slices”), compared to when k is large (“high slices”). For computational schemes
the situation is even worse, as we do not know of any work that studied compu-
tational secret-sharing schemes for slices based on most basic assumption of the

Secret-Sharing Schemes for High Slices 3

existence of one-way functions (OWF).4 We therefore bring forward the following
questions:

– Can high slices be realized by a perfect scheme with the same share
sizes as low slices?

– Can better schemes for high slices help improve schemes for general
access structures?

– Can natural families of functions like slices be realized with smaller
shares assuming OWFs exist?

Before we move on to survey the literature regarding the topics discussed so
far, we note that these questions are also closely related to the concept of secret-
sharing duality. In the notation of functions, the dual of an access structure
f : {0, 1}n → {0, 1} is the function f∗ that satisfies f∗(x) = 1 − f(x), where
x is the string for which xi = 1 − xi in every i ∈ [n]. We observe that if f is
monotone then so is f∗, that for every function f it holds that (f∗)∗ = f , that
the duals of k-slices are (n−k)-slices, and that the duals of (a : b)-multislices are
(n−b : n−a)-multislices. For linear and multi-linear secret-sharing schemes (see
Definition 2.2), the optimal share size of every function and its dual are identical
[Gál95,Feh98,FHKP17], but it is not known whether this property holds for
general schemes. In his work from 2020, Csirmaz [Csi20] focused on this question
and formalized the following conjecture:

Conjecture 1.1 (Csirmaz’s conjecture). The optimal share size per bit of the
secret (also known as the information ratio) of primal and dual access structures
is equal.

Csirmaz showed that in a relaxed model of secret sharing (where errors in re-
covery or security may occur with negligible probability), the conjecture is false.
It is entirely unclear whether this says anything about duality in the standard
(error-free) model when sharing one-bit secrets. In fact, we can neither exclude
the possibility that the conjecture is true nor the possibility of an exponential
gap between the share size of access structures and their duals. On the positive
side, it is known that for simple functions such as thresholds the dual and primal
share sizes are equal for large enough secrets, and Bogdanov [Bog23] recently
proved that the optimal share size of 2-thresholds and (n− 1)-thresholds is ex-
actly the same for every n. Hence, studying duality of more complex families
of functions seems like a natural next step in better understanding Csirmaz’s
conjecture. We ask the following question about the share size of slices:

– Can we bound the gap between the share sizes of slices and their
duals? I.e., given a scheme for k-slices with share size L, can we
realize their dual (n − k)-slices with shares of size L · t(n, k) where
t(n, k) is small?

4 Computational schemes for low slices follow from combining results of
[ABF+19,ABI+23b].

4 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

1.1 Related Work

Perfect schemes for general access structures. The first perfect schemes for gen-
eral access structures that were introduced by Ito, Saito and Nishizeki. [ISN87]
had shares of size O(2n). A generalization of these schemes was presented by
Benaloh and Leiscter [BL88], showing that if a function can be computed by a
monotone formula of size L then it can be realized by a secret-sharing scheme
with total share size L. In [KW93], it was shown that the share size of any func-
tion can also be tied to its monotone span-program complexity, but this is still
O(2n) in the worst case. A breakthrough result of Liu and Vaikuntanathan [LV18]
followed decades later, describing a scheme with share size O(20.994n). Since then,
the state of the art has further improved several times [ABF+19,ABNP20,AN21].
In the latest among these developments, Applebaum and Nir [AN21] showed how
to realize general access structures with shares of size 1.5n+o(n). On the lower
bound front, Csirmaz [Csi97] described an access structure that requires shares
of size Ω(n/ log n), and it was proved in [ABN+22] that the modern techniques
following the breakthrough of [LV18] cannot realize all access structures with

shares smaller than 2o(n/ log2 n).

Perfect Schemes for Slices and Multislices. Secret-sharing schemes for slice ac-
cess structures, also called uniform access structures, were previously studied
in several works as [AA18,BKN18,BP18,LV18,ABF+19,AN21,ABN+22]. There
exists a simple scheme that realizes every k-slice f by taking a monotone DNF
or CNF formulas for f and applying the formula-to-scheme transformation of
[BL88]. For one-bit secrets,5 this scheme has shares of size

(
n−1
k−1

)
for k-slices and(

n−1
n−k

)
for (n− k)-slices for k ≤ n/2. The best-known upper bounds on the share

size of slices in literature outperform the naive scheme above in some regimes,
as detailed in the following Fig. 1. Prior to this work (see the bounds stated in
Fig. 1), there exists a gap between the share sizes of slices and their duals. When
k is constant, k-slices have share sizes of no(1) while their dual (n−k)-slices have

share sizes of O
((

n−1
n−k

))
= O(nk−1). When k = log n (a regime is relevant for

realizing multislices and general functions) the gap will be between nO(log logn)

for low slices and O(nlogn) for high ones. We also note that the multi-linear
scheme of [AA18] for k-slices has information ratio 2O(k) for secrets with size
that is double-exponential in n. By the duality closure properties for multi-linear
schemes, this implies that there exists a scheme for (n− k)-slices with the same
information ratio.

For multislice access structures, the situation is similar. Applebaum and
Nir [AN21] designed a scheme for (a : b)-multislices as a stepping stone for

5 For long secrets it is sometimes known how to realize schemes with smaller share
sizes per secret bit (better information ratio) with amortization techniques. The
share size of mentioned scheme based on formulas can be improved by a factor of
logn for moderately long secrets and k ≤ n/2 [EP97,Bei23], and a k-slice scheme
of [ABF+19] has information ratio k2 for secrets of size that is doubly-exponential
in n.

Secret-Sharing Schemes for High Slices 5

The share size of perfect schemes for k-slices and (n− k)-slices

Slice

height
Below logn

Between logn

and n/ logn

Between

n/ logn and

n− n/ logn

(n− k)-slices

for k ≤ n/ logn

Upper

bounds

2O(k)+Õ(
√
k logn)

[AA18]

kn · 2Õ(
√
k logn)

[ABF+19]

2Õ(
√
n)

[LV18]

kn · 2Õ(
√
k logn)

Theorem 3.5,

compared to O(nk−1) in

the formula-based scheme

Lower

bounds
Ω(logn) [KN90,CCX13,BGK16]

Fig. 1. The best-known bounds on the share size of perfect secret-sharing schemes for
k-slices for 1 < k < n− 2. For k = 1 there exist simple schemes with share size logn,
and for k = n−2 shares of size O(

√
n) can be obtained by taking the dual scheme of the

2-slice scheme of [GKW15]. The Ω(logn) lower bound by [KN90,CCX13] was proved
for the 2-threshold function (which is also a 2-slice function). The same bound was
later proved in [BGK16] for all k-slices. The borders between the ranges of parameters
are written without asymptotical notation for better readability (e.g., should be Θ(

√
n)

instead of
√
n).

schemes for general functions with shares of size min{
(

b
≥a

)
· 2o(n), 20.585n+o(n)},

where
(

b
≥a

)
:=
∑

a≤i≤b

(
b
i

)
. It is not hard to see that this scheme is not “balanced”

with respect to duality. For example, the share size for (0 : 0.1n)-multislices is
20.1n+o(n) while that of their dual (0.9n : n)-multislices is 2H2(0.9)n+o(n) > 20.45n,
where H2 is the binary entropy function.

Computational Secret-Sharing Schemes Based on OWF. Computational secret-
sharing schemes (CSSS) can be based on a variety of cryptographic hardness
assumptions. In this work, we will focus on the most basic one: the existence
of one-way functions (OWFs). In the computational setting, the efficiency of
schemes will also be measured with respect to a security parameter λ.6 Yao
[Yao89] (see also [VNS+03]) was the first to consider secret-sharing schemes in
the computational setting. He showed that assuming the existence of one-way
functions, any function that can be computed by a monotone circuit with C
wires can be realized by a CSSS with share size O(λC). 7

6 In the computational setting, the share size may also be reduced by using public
information.

7 Alternatively, with a CSSS with shares of size O(λ) and public information of size
O(λC). As mentioned before, in the information-theoretic setting, a similar result is
only known for monotone formulas [BL88].

6 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

Krawczyk [Kra94] showed how to share large secrets of size S according to a
k-threshold function with shares of size |S|/k+λ, thus bypassing an information-
theoretic lower bound [KGH83] that states that shares cannot be smaller than
the secret size. In this example, as opposed to the perfect schemes mentioned
so far, the share sizes decrease when the cardinality k of the authorized sets
increases.

In the latest exciting study of computational schemes by Applebaum et
al. [ABI+23b], they introduced new efficient schemes based on one-way functions
for several families of access structures, including DNF formulas with long terms
and CDS protocols (which are essentially a special class of slice functions, see
discussion below). Their k-server CDS protocols have messages of size λ+O(1)
and poly(t(λ))-security (for a binary domain of inputs). By the connections be-
tween CDS protocols and secret-sharing schemes for slices [ABF+19,AA18], it
can be shown (similarly to the proof in Section 4) that this implies that k-
slices can be realized with shares of size O

(
λ log n ·min

{
kn, 2O(k)

})
for k ≤

√
n

or k ≥ n −
√
n if OWF exist. Unlike the scheme of Krawczyk for thresholds,

here the share size grows with k, the cardinality of the minimal authorized sets,
and high slices are more expensive than low ones. Constructing computational
secret-sharing schemes based on one-way functions for additional families of ac-
cess structures, or even for all access structures, is an interesting open problem.

Besides the results discussed so far that are based on one-way functions, some
schemes in the literature were based on stronger assumptions. In [ABI+23b],
they designed several such schemes. Under the RSA assumption, they describe
a CSSS that, given an arbitrary access structure f , represented by a truth table
of size N = 2n, produces shares of size poly(n) in time Õ(N). Weaker results are
obtained under the decisional Diffie-Hellman and the decisional bilinear Diffie-
Hellman assumptions. Under the RSA assumption, they also realize monotone
CNF formulas with share size polylog(m), where m is the number of clauses in
the CNF formula. When considering (n − k)-slices that can be computed by a
CNF with O(nk) clauses, the RSA based scheme with shares of size poly(k log n).
In [KNY17], they give a construction of a computational secret-sharing scheme
for any monotone function in NP assuming witness encryption for NP and the
existence of one-way functions.

1.2 Our Results

We present several secret-sharing schemes for high slice functions, aiming to
narrow or close as many gaps as possible between the share size of low slices and
that of high slices. Our computational scheme for high slices will perform even
better than its counterpart for low slices.

We prove the following theorem for perfect schemes:

Theorem 1.2 (Perfect Schemes for High Slices). Let k ≤ n/2 be positive
integers. For every (n− k)-slice function f , there exists a secret-sharing scheme

realizing f with share size kn · 2Õ(
√
k logn).

Secret-Sharing Schemes for High Slices 7

Our scheme closes the current gap in share sizes between slices and their duals
when k is logarithmic in n (share size of nO(log logn) in both cases), and narrows
it down substantially when k is constant (n1+o(1) compared to no(1) for low
constant-k slices). We note that given any constant integer k, our scheme for
(n − k)-slices even outperform the scheme by Applebaum et al. [ABF+19] that

only works for long secrets of size at least 2n
n−k

, and has shares of size O(n2)
per secret bit.

We also present a scheme for (n − k)-slices with a simpler structure that
proves the following theorem:

Theorem 1.3 (Duality and Slices). For every two integers k < n, if there
exists an n-party secret-sharing scheme for k-slices with share size L, then there
exists an n-party secret-sharing scheme for (n− k)-slices with share size L · n.

Our scheme works for every k, and so it allows to realize high slice functions with
low ones or the other way around. Thus, by Theorem 1.3 the ratio between the
share size of slice functions and their duals is bounded by n in both directions.
We remark that for a given (n− k)-slice, our construction uses a k-slice that is
not its dual.

Next, we present a computational scheme for high slices, which implies the
following theorem:

Theorem 1.4 (Computational Scheme for High Slices, Informal). Let
f be an (n − k)-slice with k ≤

√
n. Then if OWF exist, f can be realized by a

computationally-secure secret-sharing scheme with share size O(k2λ log n) (where
λ is the security parameter). The running time of the sharing and reconstruction
algorithms in the CSSS is poly(

(
n
k

)
, λ).8

Recall that by the previously-best scheme for k-slices based on OWFs has shares
of size min{kn, 2O(k)} · λ log n [AA18,ABF+19,ABI+23b]. Similarly to the com-
putational scheme of Krawczyk and unlike perfect schemes, by Theorem 1.4 high
slices now have smaller shares than low slices in CSSS.

Applications for Multislices. As applications of our perfect schemes for high
slices, we present two schemes for (a : b)-multislices. The first one, optimized for
the case where a and b are linear in n, solves an open question raised in [AN21],
and has implications on the share size of general access structures. The second
scheme is optimized for the regime where a = n− k and b = n. The first scheme
allows us to prove the following theorem:

Theorem 1.5 (Share Size of General Multislices). For every 1 ≤ a ≤ b ≤
n, every (a : b)-multislice can be realized by a secret-sharing scheme with share
size

(
n−a
≥n−b

)
· 2o(n).

8 As implied by [LS20,ABI+23b], this running time is necessary for every CSSS for
(n− k)-slices.

8 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

The share size of computational schemes for k-slices based on OWF

Slice height k-slices (n− k)-slices

Upper bounds
min{kn, 2O(k)} · λ logn

[AA18,ABF+19,ABI+23b]

O(k2λ logn)

Theorem 4.1

Lower bounds Ω(logn) [ABI+23a] 2 [ABI+23a]

Fig. 2. The best-known upper and lower bounds on the share size for computational
secret-sharing schemes for k-slice and (n − k)-slices based on OWF, for k ≤ n/2.
The lower bound [ABI+23a] does not require the OWF assumption; if we allow public
information only a weaker bound of Ω(log logn) is proved in [ABI+23a].

This scheme closes the duality gap for multislices in the relevant regime. I.e.,
if we combine our scheme with that of [AN21] the share sizes of (a : b)-multislices
and of their dual (n − b : n − a, n)-multislices are equal up to sub-exponential
factors in n. We also prove the following theorem based on our second scheme
for multislices, which is taylor-made for (n− k : n)-multislices for small k’s.

Theorem 1.6 (Share Size of (n − k : n)-Multislices). For every k <
log n(log log n)2, every (n − k : n)-multislice can be realized by a secret-sharing

scheme with share size k5kn2Õ(
√
k logn). For every log n(log log n)2 ≤ k ≤ n/ log2 n,

every (n− k : n)-multislice can be realized by a secret-sharing scheme with share
size 2O(k).

For example, the share size for constant k’s in this scheme is n1+o(1), and
for k = log n it is nO(log logn), similarly to the (n − k)-slice schemes. When
log n ≤ k ≤ log n(log log n)2 the share size is k5k+o(k) and for larger values
of k, the share size is 2O(k). We note that our second construction also works
for (n − k)-hypergraph functions, which are a specific subclass of (n − k : n)-
multislices where the minterms are all of size (n− k). I.e., a k-hypergraph acts
the same as slices for inputs with weight ≤ k, but outputs 1 on a heavier input y
only if there exists a 1-input x of weight k such that y ≥ x. 9 Hypergraph access
structures were studied, e.g., in [AN21,Bei23]. We also present computational,
linear, and multi-linear secret-sharing schemes for (n − k : n)-multislices (see
Theorems 5.16 and 5.18).

Applications for Random Hypergraph Access Structures. Applebaum
and Nir [AN21] studied the share size of “random hypergraphs”. They showed
that if a k-hypergraph f is chosen by drawing mk minterms uniformly at random
then with high probability the share size of f would be smaller than that of
general k-hypergraphs. A result in the same spirit was proved in [BF20a] for small
k’s. More formally (yet still omitting some technical details), using multislices
they proved that for every k and mk the share size of hypergraphs generated

9 We say that y ≥ x if in every coordinate yi ≥ xi.

Secret-Sharing Schemes for High Slices 9

according to the above-mentioned procedure is
√(

n
k

)
· 2o(n) with probability

1−2−Ω(n). The hardest random k-hypergraph in this case is when k = n/2 with
shares of size 2n/2+o(n). Applebaum and Nir also showed that balancing existing
schemes for multislices with respect to duality (i.e., proving Theorem 1.5), would
further improve this result. Hence, we prove the following corollary. We only
state the improvement for the hardest random hypergraph, and refer the reader
to [AN21, Theorem 6.2] for the general expression for every k which is somewhat
involved.

Corollary 1.7 (Schemes for Random Hypergraphs). For every k ∈ [n],
mk ≤

(
n
k

)
, if a k-hypergraph is chosen by drawing mk minterms of size k uni-

formly at random, then it can be realized with share size 20.491n+o(n) with prob-
ability 1− 2−Ω(n).

We note that general access structures can be easily realized given schemes for
k-hypergraphs for 1 ≤ k ≤ n; so this result may give hope for obtaining better
schemes for general access structures with share size below 20.5n.

1.3 Our Techniques

Perfect Schemes for High Slices and Duality. Our first scheme for (n −
k)-slices relies on existing schemes for k-slices. The description below provides
correctness and security for sets of size exactly n−k; correctness and security for
sets of sizes below or above n−k can be easily achieved with additional threshold
schemes. To realize an (n − k)-slice access structure f , we start by generating
shares to a k-slice function f determined by f , defined as f(x) = f(x) for every x
of weight k. Then, each share shi of f is distributed with an (n−k)-out-of-(n−1)
threshold scheme among all of the parties except for the i-th one. Following this,
let A be set of size (n− k) whose characteristic vector x satisfies f(x) = 1, i.e.,
A = {Pi : xi = 1}. For each i such that xi = 1, i.e., xi = 0, Pi ̸∈ A and the
n−k parties of A can recover shi. For Pi such that Pi ∈ A, the parties only hold
n−k−1 shares of an (n−k)-threshold scheme, and thus will learn nothing about
shi. In total, the parties of A can recover k shares of f that correspond to the
coalition A = {Pi : xi = 0}, and since f(x) = f(x) = 1 this suffices to recover
the secret. Similarly, unauthorized sets will recover f -shares of unauthorized sets
under f , and thus will learn nothing about the secret. This construction uses
a “trick” introduced by Berkowitz [Ber82] of replacing a negated variable xi

with a threshold gate over all variables but the i’th one. Berkowitz used this
idea to construct monotone formulas for k-slices from non-monotone formulas
for k-slices, and Beimel, Kushilevitz and Nissim [BKN18] used it to construct
secret-sharing schemes for slices from CDS protocols

We now return to the open problem discussed earlier: Can we bound the gap
between the share sizes of slices and their duals? It is evident that our scheme
solves this problem. Given better schemes for k-slices, we would be able to plug
them into our construction and immediately get a better scheme for (n − k)-
slices. This proves Theorem 1.3 stated above. Following this theorem, we make

10 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

explicit some properties of our construction that we think may find future use
by defining duality compilers:

Definition 1.8 (Duality Compilers). Let F be a family of n-variable func-

tions and let F∗ def
= {f∗ : f ∈ F} (where f∗ is the dual of f). A duality compiler

for F is a transformation that takes as input secret-sharing schemes with share
size cF (n) for every function in a family F and a function f∗ ∈ F∗ and outputs a
secret-sharing scheme realizing f∗ with share size cF∗(n). The goal in designing
such compilers is to have a small blow-up ratio cF∗(n)/cF (n).

This definition expands the standard viewpoint on secret-sharing duality.
Instead of examining specific functions and their duals, it shifts the focus to
families of functions and their duals, and enables to draw new conclusions. We
stress that in order to realize the function f , such duality compilers do not have
to use a scheme for f∗, and they may, for example, use a scheme for a different
function f ′ ∈ F or for a set of functions S ⊆ F . Our construction provides a
duality compiler for (n − k)-slices to their duals, i.e., k-slices, with blow-up n
(where for every (n − k)-slice f , the construction uses a secret-sharing scheme
for the k-slice f).

Perfect Schemes for High Slices via CDS. Our second scheme for (n− k)-
slices is based on conditional disclosure of secrets (CDS) protocols [GIKM00].
In a CDS protocol, there are k servers S1, . . . ,Sk, each holding a private input
xi, the secret s, and a common random string r, and a referee is holding the
inputs x1, . . . , xk. Each server computes a message as a function of its input
xi, the secret s, and the common random string r (the message of each server
is independent of the other inputs and is computed without seeing the other
messages). Each server sends its message to the referee. We say that the CDS
protocol realizes a function g if the referee can reconstruct s (from the k messages
and the k inputs) if and only if g(x1, . . . , xk) = 1.

Given an (n− k)-slice, we will use a CDS protocol for a function gf : [n]k →
{0, 1} that encodes the way f behaves on inputs with weight n−k: On an input
(i1, . . . , ik) the function gf outputs the same as f when given an input with 0’s in
the indices (i1, . . . , ik) and 1’s in all other indices. For example, on i1 = 2, i2 = 4
and n = 5 we define gf (2, 4) = f(10101). Then, our goal is to distribute CDS
messages generated according to gf in a way that for every input x of weight n−k
the set of parties A = {Pi : xi = 1} will be able to recover k CDS messages, one
from each server, that correspond to the input x. I.e., in the previous example,
{P1, P3, P5} should be able to reconstruct the message of the first server on input
i1 = 2 and the message of the second server on input i2 = 4. Keeping the scheme
based on slices in mind, a natural approach to do so would be to share every
CDS message of the j-th server with the input i with an (n− k)-out-of-(n− 1)
threshold scheme to all parties but the i-th one. However, this time a set of n−k
parties will be able to recover k messages of every CDS server, and in this case,
the protocol does not guarantee any privacy. We will solve this issue by sharing

Secret-Sharing Schemes for High Slices 11

the CDS messages in a more sophisticated way, inspired by the scheme for slices
of [ABF+19]. See examples and more technical details in Section 3.

Computational Schemes for High Slices. The starting point of our com-
putational schemes for (n− k)-slices is to take the previously described perfect
scheme based on CDS protocols and plug into it the computational CDS proto-
col of [ABI+23b]. The share size in this implementation would be O(nkλ log n).
While this is better than existing perfect schemes for high slices, we still need
to save a multiplicative factor of n/k to prove Theorem 1.4. To do so, we notice
that most of the shares dealt in the CDS-based scheme are of Shamir’s thresh-
old secret-sharing schemes with high thresholds. In an (n′ − t)-out-of-n′ Shamir
scheme, (n′ − t − 1) shares are independent random strings. Instead of dealing
these random strings directly to the parties, we give each party only a (shorter)
seed of a PRG, and the party generates its share from its seed. Our observation
is that the same seed can be used for all schemes, which allows for further sav-
ings in the share size. In Shamir’s scheme, t+1 of the shares are correlated with
previous shares and we need to give them explicitly to the parties; with careful
load balancing we can still get small shares as desired. For the full technical
details, see Section 4.

Schemes for Multislices. Existing schemes for (a : b)-multislices are better
when a and b are small. The scheme in [AN21] is aimed for the case where a = αn,
b = βn for constants α, β, and it has smaller shares when these constants are
small. A scheme in [BF20b] implicitly realizes (0 : k)-multislices, and has huge
shares for their dual (n− k : n)-multislices. We build schemes that complement
the mentioned schemes and equalize the best-known share size for primal and
dual multislices.

The constructions in [BF20b,AN21] both rely on formulas for multislices over
CDS gates. By simple duality properties of formulas (Lemma 5.1), given such
a formula F that computes a function f , if we replace in F every gate that
computes a function g with a gate that computes the dual g∗ of g, we will get
a formula of the same size that computes f∗. Hence, in order to transform the
known schemes for low multislices to schemes for high multislices it essentially
suffices to realize the duals of CDS gates with small shares. The duals of CDS
gates are functions that are somewhat contrived and hard to work with, and
the key observation in our scheme is that the duals of k-server CDS gates can
be replaced by (n − k)-slices. Hence, if we use our schemes for high slices we
can realize high multislices with the same share size as low ones, employing
the standard formula-to-scheme transformation (see Lemma 5.2 for a formal
version).

1.4 Open Questions

Better Perfect Schemes for General Access Structures. In this work, we construct
schemes for random hypergraphs. The obvious question to ask is whether these

12 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

ideas (and shares of size 2αn for α < 1/2) can be extended to schemes for worst-
case hypergraphs, and from there to general access structures. The other side of
this coin would be that random hypergraphs are easier for secret sharing than
worst case ones.

Better Computational Schemes for Multislices from OWFs. When we construct
(n− k : n)-multislices from (n− k)-slices, we follow a black-box transformation
that is analogous to the construction of Robust CDS protocols (a generalization
of CDS protocols defined in [ABNP20]) that adds a multiplicative factor of kO(k)

to the share size. An improvement of this technique would lead to a reduction of
the share size for multislices, and such an improvement may be easier to obtain
taking advantage of one-way functions.

A Candidate for Duality-Separation. The best-known share size for k-slices with
a constant k ≥ 2 is no(1), while that of their dual (n−k)-slices is now n1+o(1). It
will be interesting to see whether this gap can be closed, or rather to prove that
it is inherent. A possible path towards closing this gap may be to realize the
dual of k-server CDS gates directly and more cheaply than our implementations
of general (n− k)-slices.

Duality-compilers. Duality-compilers seem like a useful abstraction that may
help obtain new bounds for secret sharing for families of functions. A natural
next step would be to describe duality-compilers with a small blow-up for other
families of functions. For example, the well-studied family of graph access struc-
tures where every minimal authorized coalition is of size 2, or its more general
version of k-hypergraphs where every minimal authorized set is of size k.

1.5 Organization

In Section 3 we construct prefect schemes for high slices, proving Theorem 3.5
and Theorem 1.3. Thereafter, in Section 4 we present our computational scheme
for high slices, proving Theorem 1.4. Finally, in Section 5 we show how our new
schemes for slices help build better schemes for multislices, proving Theorem 1.5
and Theorem 1.6.

2 Preliminaries

2.1 Perfect Secret-Sharing Schemes

We define perfect secret-sharing scheme as given in [CK93,BC94]; in these schemes
the security is information theoretic. Secret-sharing schemes with computational
security will be defined in Section 2.3. For more information about this definition
and secret-sharing in general, see [Bei11]. We start by defining an access struc-
ture, which is the collection of sets of parties that are authorized to reconstruct
the secret. We describe an access structure by a monotone Boolean function.

Secret-Sharing Schemes for High Slices 13

Notation on Monotone Boolean Functions. The weight of an input x ∈ {0, 1}n,
denoted wt(x), is the number of bits in x that are one, i.e., wt(x) = | {i : xi = 1} |.
For two strings x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ {0, 1}n, we say that x ≤ y if
xi ≤ yi for every 1 ≤ i ≤ n. A function f : {0, 1}n → {0, 1} is monotone if x ≤ y
implies f(x) ≤ f(y).

We will also consider partially defined functions, where f(x) = ∗ denotes
that f is undefined on x. A partially defined function f : {0, 1}n → {0, 1, ∗} is
monotone if there does not exist x, y ∈ {0, 1}n such that x ≤ y, f(x) = 1, and
f(y) = 0. A minterm of a monotone function f is a minimal input x ∈ {0, 1}n
such that f(x) = 1, i.e., for every y ̸= x if y ≤ x then f(y) ∈ {0, ∗}. A maxterm
of a monotone function f is a maximal input x ∈ {0, 1}n such that f(x) = 0,
i.e., for every y ̸= x if y ≥ x then f(y) ∈ {1, ∗}.

Definition 2.1 (Access Structures). An n-party access structure is a mono-
tone function f : {0, 1}n → {0, 1, ∗} such that f(0n) ̸= 1. Let P = {P1, . . . , Pn}
be a set of parties; for an input x = (x1, . . . , xn) ∈ {0, 1}, we define the set
of parties that it represents as Ix = {Pi : xi = 1}. For every x ∈ {0, 1}n, if
f(x) = 1, then we say that Ix is authorized; if f(x) = 0, then we say that Ix is
forbidden.

A secret-sharing scheme is a randomized mapping Π(s; r) whose input is a
secret and a random string. A dealer distributes a secret s ∈ S according to Π
by first sampling a random string r ∈ R with uniform distribution, computing a
vector of sharesΠ(s; r) = (sh1, . . . , shn), and privately communicating each share
shj to party Pj . We require that any authorized set of parties can reconstruct
the secret from its shares and any forbidden set cannot learn any information
on the secret.

Definition 2.2 (Secret-Sharing Schemes). A secret-sharing scheme Π with
domain of secrets S, such that |S| ≥ 2, is a mapping from S×R, where R is some
finite set called the set of random strings, to a tuple of n-sets S1×S2×· · ·×Sn,
where Sj is called the domain of shares of Pj. For an input x ∈ {0, 1}n, we
denote Πx(s; r) as the restriction of Π(s; r) to its Ix-entries, i.e., (shj)j:xj=1.

A secret-sharing scheme Π with domain of secrets S realizes an access struc-
ture f : {0, 1}n → {0, 1, ∗} if the following two requirements hold:

Correctness. For any input x ∈ {0, 1}n such that f(x) = 1 there exists a recon-
struction function Reconx :

∏
{i:xi=1} Si → S such that Reconx (Πx(s; r)) =

s for every secret s ∈ S and every random string r ∈ R.
Security. For any input x ∈ {0, 1}n s.t. f(x) = 0 and every pair of secrets

s, s′ ∈ S, the distributions Πx(s; r) and Πx(s
′; r) are identical, where the

distributions are over the choice of r from R at random with uniform distri-
bution.

Given a secret-sharing scheme Π, define the size of the secret as log |S|, the
share size of party Pj as log |Sj |, the share size as max1≤j≤n {log |Sj |}, the total

share size as
∑n

j=1 log |Sj |, and the information ratio as
max1≤j≤n{log |Sj |}

log |S| .

14 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

By default, when we talk about the share size of secret-sharing schemes
for an access structure, we consider schemes for one-bit secrets. Note that in
Definition 2.2, there are no requirements for inputs x for which f(x) is undefined,
e.g., the parties in Ix can have partial information on the secret without being
able to reconstruct it.

We next define multi-linear and linear secret-sharing schemes, which are
schemes in which the mapping that the dealer uses to generate the shares is
linear. Many of the known constructions of secret-sharing schemes are linear
and multi-linear.

Definition 2.3 (Multi-Linear and Linear Secret-Sharing Schemes). Let
Π be a secret-sharing scheme with domain of secrets S. We say that Π is
a multi-linear secret-sharing scheme over a finite field F if there are integers
ℓd, ℓr, ℓ1, . . . , ℓn such that S = Fℓd , R = Fℓr , S1 = Fℓ1 , . . . , Sn = Fℓn , and the
mapping Π is a linear mapping over F from Fℓd+ℓr to Fℓ1+···+ℓn . We say that a
scheme is linear over F if S = F (i.e., when ℓd = 1).

Slice, Mutislice, and Hypergraph Access Structures. In this work we construct
secret-sharing schemes for slices and for multislice access structures. A k-slice
(also called uniform access structure) is an access structure where all sets of size
smaller than k are forbidden, all sets of size larger than k are authorized, and
sets of size k can be either forbidden or authorized. An (a : b)-multislice is an
access structure where all sets of size smaller than a are forbidden, all sets of
size larger than b are authorized, and sets of size between a and b can be either
forbidden or authorized. A k-hypergraph access structure is an access structure
whose minimal authorized sets are of size k, and it can have forbidden sets of
size much larger than k.

Definition 2.4 (Slices, Multislices, and Hypergraphs). Let k, n be integers
such that k ≤ n. A (k, n)-slice is a function f : {0, 1}n → {0, 1} such that if
wt(x) < k, then f(x) = 0 and if wt(x) > k, then f(x) = 1. A partially defined
(k, n)-slice is a function that is defined on all inputs of weight k and is undefined
on all other inputs. When n is clear from the context, we write k slice instead of
(k, n)-slice. Let a, b, n be integers such that 1 ≤ a ≤ b ≤ n. An (a, b)-multislice is
a monotone function f : {0, 1}n → {0, 1} such that if wt(x) < a, then f(x) = 0
and if wt(x) > b, then f(x) = 1. A k-hypergraph access structure is a function
f : {0, 1}n → {0, 1} such that all its minterms have weight exactly k.

Note that a k-slice is a (k, k)-multislice and a k-hypergraph is a (k, n)-
multislice.

Remark 2.5. To construct a secret-sharing scheme for a (fully-defined) k-slice,
it suffices to construct a secret-sharing scheme for the partially defined function
f ′ : {0, 1}n → {0, 1, ∗}, where f ′(x) = f(x) if wt(x) = k and f ′(x) = ∗ otherwise.
Given a secret-sharing scheme Π ′ realizing f ′, we construct a secret-sharing
scheme Π with secret s ∈ {0, 1} realizing f as follows:

1. Share the secret s using a (k + 1)-out-of-n secret-sharing scheme and give
each party one share of this scheme.

Secret-Sharing Schemes for High Slices 15

2. Choose a random bit r1 with uniform distribution and compute r2 = r1⊕ s.
3. Share r1 using a k-out-of-n secret-sharing scheme and give each party one

share of this scheme.
4. Share r2 using the secret-sharing scheme Π ′ and give each party its share of

this scheme.

It can be verified that Π realizes the fully-defined k-slice f . The share size in Π
is equal to the share size in Π ′ up to an additive term of O(log n). Thus, in this
paper, we will realize partially defined slices.

2.2 Protocols for Conditional Disclosure of Secrets

We next define conditional disclosure of secrets (CDS) protocols, a useful cryp-
tographic primitive introduced by Gertner et al. [GIKM00]. In particular, this
primitive is used to construct secret-sharing schemes for general access struc-
tures, starting in the work of [LV18]. An informal presentation of CDS protocols
appears in the introduction.

Definition 2.6 (Conditional Disclosure of Secrets (CDS) Protocols).
A k-server CDS protocol P, with domain of secrets S, domain of common ran-
dom strings R, and finite message domains M1, . . . ,Mk, consists of k encoding
functions Enc1, . . . ,Enck, where Enci : Xi×S×R→Mi for every i ∈ [k]. For
an input x = (x1, . . . , xk) ∈ X1× · · ·×Xk, secret s ∈ S, and randomness r ∈ R,
we let Enc(x, s; r) = (Enc1(x1, s; r), . . . ,Enck(xk, s; r)).

Let g : X1 × · · · × Xk → {0, 1} be a k-input function. We say that P is a
CDS protocol for g if it satisfies the following properties:

Correctness. There is a deterministic reconstruction function Dec : X1×· · ·×
Xk × M1 × · · · × Mk → S such that for every input x = (x1, . . . , xk) ∈
X1 × · · · × Xk for which g(x1, . . . , xk) = 1, every secret s ∈ S, and every
common random string r ∈ R, it holds that Dec(x,Enc(x, s; r)) = s.

Security. For every input x = (x1, . . . , xk) ∈ X1×· · ·×Xk satisfying g(x1, . . . ,
xk) = 0 and every pair of secrets s, s′ ∈ S, the distributions Enc(x, s; r) and
Enc(x, s′; r) are equally distributed, where the probability distributions are
over the choice of r from R with uniform distribution.

The message size of a CDS protocol P is defined as the size of the largest
message sent by the servers, i.e., max1≤i≤k log |Mi|.

2.3 Computational Secret-Sharing Schemes and CDS Protocols

We quote the definition of computational secret-sharing schemes (CSSS) from [ABI+23b].
In a t(λ)-secure CSSS the sharing and reconstruction are efficient, and no adver-
sary running in time t(λ) can learn non-negligible information about the secret
from the shares of any unauthorized set of parties (where λ is the security pa-
rameter). When defining “efficiency” it is important to consider the way the
access structure is represented. In this paper, we will mainly represent an access

16 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

structure as a k-slice function, explicitly describing f(x) for every input x of
weight k. Nevertheless, in the definition of CSSS we use the abstract definition
of a representation model.

Definition 2.7 (Representation Model [ABI+23b]). A representation model
is a polynomial time computable function U : {0, 1}∗ × {0, 1}∗ → {0, 1}, where
U(Prog, x) is referred to as the value returned by a “program” Prog on an input
x ∈ {0, 1}n. We assume that each Prog specifies the input size n and |Prog | ≥ n.
We say that Prog represents the function f : {0, 1}n → {0, 1} in the representa-
tion model U if U(Prog, x) = f(x).

Definition 2.8 (Comp. Secret-Sharing Schemes. (CSSS) [ABI+23b]).
A CSSS for a representation model U consists of a pair of algorithms CSSS =
(CSSS.Share, CSSS.Recon) with the following syntax.

Sharing. CSSS.Share(1λ,Prog, s) → (sh1, . . . , shn) (where n denotes the in-
put length of Prog) is a randomized poly-time algorithm that takes as input
a security parameter λ, a program Prog, and a secret s ∈ {0, 1}; it outputs
n shares sh1, . . . , shn, where shi, for 1 ≤ i ≤ n, is the share of party Pi.

10

Reconstruction. CSSS.Recon(Prog, x, (shi)i:xi=1)→ s is a deterministic poly-
time algorithm that takes as input a program Prog, an input x ∈ {0, 1}n
(where n denotes the input size of Prog), and shares of the parties in Ix =
{Pi : xi = 1}. The algorithm outputs a secret s ∈ {0, 1}.

We say that CSSS is correct (with respect to U) if for every λ, s, program
Prog, and input x ∈ {0, 1}n such that U(Prog, x) = 1 (where n denotes the input
length of Prog), the process of invoking

CSSS.Share(1λ,Prog, s)→ (sh1, . . . , shn)

and then invoking CSSS.Recon(Prog, x, (shi)i:xi=1) always returns s.

To define the security of CSSS we consider the following game between a
non-uniform t(λ)-time adversary A and a challenger:

1. The adversary A on input 1λ chooses Prog and an input x ∈ {0, 1}n such
that U(Prog, x) = 0 (where n is the input size of Prog) and sends them to
the challenger.

2. The challenger chooses a secret s ←U {0, 1} uniformly at random. It com-
putes (sh1, . . . , shn) ← CSSS.Share(1λ,Prog, s) and sends (shi)xi=1 to the
adversary.

3. The adversary outputs a bit s′.

The adversary wins the game if s′ = s. We say that CSSS is t(λ)-secure if for
every non-uniform t(λ)-time adversary A and sufficiently large λ, the probability

10 In [ABI+23b], the scheme also returns public information sh0 given to all parties (or
published in the cloud); in this work we do not use this public information.

Secret-Sharing Schemes for High Slices 17

that A wins is at most 1/2+1/t(λ). By default, we require t(λ)-security for every
polynomial t(·). In any case, we always assume that 1/t(λ) is negligible.11

A computational CDS (CCDS) protocol is defined similarly to CSSS.

Definition 2.9 (Computational CDS Protocols). A computational CDS
protocol for a representation model U consists of a pair of algorithms CCDS =
(CCDS.Enc, CCDS.Dec) with the following syntax.

Encoding. CCDS.Enc(1λ,Prog, i, xi, s; r)→ mi is a randomized poly-time al-
gorithm that takes as input a security parameter λ, a program Prog, an index
1 ≤ i ≤ k, an input xi ∈ {0, 1}ℓ, a secret s ∈ {0, 1}, and a common random
string r (where kℓ denotes the input length of Prog). It outputs a message
mi.

Decoding. CCDS.Dec(Prog,m1, . . . ,mk, x1, . . . , xk) → s is a deterministic
poly-time algorithm that takes as input a program Prog, k messages, and k
inputs, each one of length ℓ (where kℓ denotes the input size of Prog). The
algorithm outputs a secret s ∈ {0, 1}.

We say that CCDS is correct (with respect to U) if for every λ, s, program

Prog, inputs x1, . . . , xk ∈ {0, 1}ℓ such that U(Prog, (x1, . . . , xk)) = 1 (where kℓ
denotes the input length of Prog), and common random string r, the process of
invoking

CCDS.Enc(1λ,Prog, i, xi, s; r)→ mi for every 1 ≤ i ≤ k,

and then invoking CCDS.Dec(Prog,m1, . . . ,mk, x1, . . . ,mk) always returns s.
To define the security of CCDS we consider the following game between a

non-uniform t(λ)-time adversary A and a challenger:

1. The adversary A on input 1λ chooses Prog and inputs x1, . . . , xk ∈ {0, 1}ℓ
such that U(Prog, (x1, . . . , xk)) = 0 (where kℓ is the input size of Prog) and
sends them to the challenger.

2. The challenger chooses a secret s←U {0, 1} uniformly at random and sam-
ples a common random string r. For every 1 ≤ i ≤ k, the challenger com-
putes mi ← CCDS.Dec(1λ,Prog, i, xi, s; r); it then sends m1, . . . ,mk to the
adversary.

3. The adversary outputs a bit s′.

The adversary wins the game if s′ = s. We say that CCDS is t(λ)-secure if for
every non-uniform t(λ)-time adversary A and sufficiently large λ, the probability
that A wins is at most 1/2+1/t(λ). By default, we require t(λ)-security for every
polynomial t(·). In any case, we always assume that 1/t(λ) is negligible.

11 A function ε(λ) is negligible if for every positive polynomial (λ) there exits λ0 such
that ε(λ) ≤ 1/p(λ) for every λ > λ0. Our results remain valid also when t(λ) ≥ λ,
as in [ABI+23b]; for simplicity of our notations we prefer to only consider negligible
functions.

18 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

Theorem 2.10 ([ABI+23b]). Assuming t(λ)-secure one-way functions exist,
for all k-input functions g : ({0, 1}ℓ)k → {0, 1}, represented by truth tables of
size N = 2ℓk, there exists a poly(t(λ))-secure CCDS protocol with message size
O(λℓ). The running time of the encoding and decoding algorithms is O(2ℓkλ).

Remark 2.11. Applebaum et al. [ABI+23c, Theorem 5.2] state their result as a
construction of a CSSS for k-partite access structures in which the share size
is λ+O(1). By a simple transformation, this implies a k-server CCDS protocol
with share size λ + O(1) for 1-bit inputs. To get a k-server CCDS protocol for
ℓ-bit inputs, we start with a kℓ-server CCDS protocol for 1-bit inputs, partition
the servers to k sets of size ℓ, and simulate each set by a server of the k-server
CCDS protocol; this increases the message size by a multiplicative factor of ℓ.

3 Perfect Secret-Sharing Schemes for (n − k)-Slices

We provide two new constructions of perfect secret-sharing schemes for (n− k)-
slice functions. The first one is based on schemes for k-slices, and the second
one on k-server CDS protocols. By the current state of the art of CDS protocols
and secret-sharing schemes for slices, the second scheme is more efficient by a
factor of n. For small k’s it has shares of size kn1+o(1), compared to shares of
size kn2+o(1) for the first simpler scheme. However, if more efficient schemes for
slices will be constructed, the first scheme may become the leading one.

3.1 Construction from Schemes for k-Slices

In this section, we prove Theorem 3.1, which is a reformulation of Theorem 1.3.
We describe a simple scheme for (n − k)-slices based on a scheme for k-slices.
Specifically, we will show how to realize an (n−k)-slice f given a scheme for the
partially-defined k-slice f , where f(x) = f(x) for every input x of weight k and
undefined for other inputs.12

The secret: An element s ∈ {0, 1}.
The scheme:

1. Share the secret s with a secret-sharing scheme Π realizing f ; denote by
sh1, . . . , shn the resulting shares.

2. For every t ∈ [n], share sht with Shamir’s (n−k)-out-of-(n−1) secret-sharing
scheme, and distribute one share to each party in {P1, . . . , Pn} \ {Pt}.

The share of each Pj: A share of each sht for every t ̸= j.

Fig. 3. A secret-sharing scheme realizing a partially defined (n − k)-slice f using a
scheme Π for the partially defined k-slice f .

12 For an input x = (x1, . . . , xn) ∈ {0, 1}n, we define x = (x1, . . . , xn).

Secret-Sharing Schemes for High Slices 19

Theorem 3.1. Let f : {0, 1}n → bit be an (n − k)-slice. If there is a secret-
sharing scheme for the partially defined k-slice f with share size cslice(k, n),
then there is a secret-sharing scheme realizing the slice f with share size O(n ·
max {log n, cslice(k, n)}).

Proof. By Remark 2.5, it suffices to realize partially-defined slice functions, only
defined on inputs of weight n−k. The scheme for such a function f is described in
Fig. 3. We next prove the correctness and security of the scheme, only considering
inputs of weight n− k.

For correctness, if f(x) = 1 then by definition f(x) = f(x) = 1, and hence
the shares {shi : xi = 1} = {shi : xi = 0} of Π reveal the secret. For every i such
that xi = 0, the parties of Ix can compute every shi generated in Step 1 by
combining their corresponding n− k shares in the threshold sharing of shi dealt
in Step 2 (since Pi /∈ Ix), and thus can recover the secret s.

For security, if f(x) = 0 then by definition f(x) = f(x) = 0. For every i such
that xi = 1, the parties in Ix only hold the shares of Ix \ {Pi}, i.e., they hold
n−k−1 shares in a secret-sharing scheme with threshold n−k and these shares
are uniformly distributed. Thus, the parties in Ix can only obtain the shares
{shi : xi = 0} = {shi : xi = 1} of Π from the shares generated in Step 1 for the
access structure f . These are shares of the set Ix which is an unauthorized set
of f ; therefore they reveal no information on s.

The share of each party consists of n − 1 shares of shares of Π; each share
in a Shamir threshold scheme has size O(max {log n, cslice(n, k)}. ⊓⊔

Using the k-slice secret-sharing scheme of [ABF+19], which has share size

kn · 2Õ(
√
k logn), in Theorem 3.1, results in a scheme for (n− k)-slices with share

size n2k ·2Õ(
√
k logn). In the following section we prove Theorem 3.5 by presenting

a better scheme.

3.2 Construction from k-Server CDS Protocols

We now preset the second construction for (n − k)-slices. The structure of
this construction is similar to the construction from [ABF+19] of secret-sharing
schemes for k-slices from k-server CDS protocols. For that, we need to define
the following functions; in these functions we encodes an input of weight (n−k)
by the k indices in which the input is 0.

Definition 3.2 (The Function gf). Let f : {0, 1}n → {0, 1} be an (n − k)-
slice. For a sequence j1, . . . , jk of k distinct numbers in [n] we define an input
Xj1,...,jk = (x1, . . . , xn) as xj1 = xj2 = · · · = xjk = 0 and all other bits of x
are 1; the weight of Xj1,...,jk is exactly n − k. We define the k-input function
gf : [n]k → {0, 1}, where gf (j1, . . . , jk) = 1 if and only if 1 ≤ j1 < · · · < jk ≤ n
and f(Xj1,...,jk) = 1.

Example 3.3. For the sequence (2, 3), the input X2,3 is 1001n−3. Let f be the
(n − 2)-slice function, where f(x) = 1 for an input x = (x1, . . . , xn) of weight

20 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

n− 2 if and only if there is an index 1 ≤ j ≤ n− 1 such that xj = xj+1 = 0. In
this case gf (j1, j2) = 1 if and only if j2 = j1 + 1. E.g., for n = 5,

gf (2, 3) = f(X2,3) = f(10011) = 1 and gf (2, 4) = f(X2,4) = f(10101) = 0.

In Fig. 4, we describe the secret-sharing scheme realizing a partially defined
(n−k)-slice f using a k-server CDS protocol for gf . We next describe the ideas of
the scheme, considering an (n−2)-slice f . We execute a 2-server CDS protocol for
gf ; let mi,j be the message of server Si in the 2-server CDS protocol with input
j ∈ [n]. Consider an input x of weight n− 2 such that f(x) = 1 and let j1 < j2
be the indices such that xj1 = xj2 = 0, i.e., x = Xj1,j2 . Thus, gf (j1, j2) = 1
and the secret can be reconstructed from m1,j1 ,m2,j2 . We can try and apply the
same strategy as in the scheme described in Fig. 3, that is, sharing each message
mi,j in an (n− 2)-out-of-(n− 1) secret-sharing scheme and give the shares to all
parties except for Pj . In this case, the parties in Ix can reconstruct m1,j1 ,m2,j2

and reconstruct the secret. However, when f(x = Xj1,j2) = 0 the parties in Ix
can also reconstruct m1,j2 ,m2,j1 (as, for example, the shares of m1,j2 are given
to all parties except for Pj2). In this case, the parties in Ix can reconstruct two
messages of the first server and there are no security guarantees from the CDS
protocol.13

We need to ensure that the parties in Ix can only reconstruct the message
m1,j , where j is the smallest index such that xj = 0. In this case x1 = · · · =
xj−1 = 1 and all the n − j bits xj+1, . . . , xn are 1 except for exactly one bit.
Thus, for every j we share m1,j in a 2-out-of-2 secret-sharing scheme. We share
the first share in a (j−1)-out-of-(j−1) secret-sharing scheme and give the shares
to the first j−1 parties. Similarly, we share the second share in a (n−j−1)-out-
of-(n− j) secret-sharing scheme and give the shares to the last n− j parties. We
treatm2,j symmetrically. Some technical details arise in the first and last indices.
For example, j2 ≥ 1, so we do not need to share m2,1. As another example, if
j1 = 1, there are no parties with index smaller than 1 and we share m1,1 in a
(n− k)-out-of-(n− 1) scheme (without sharing it in a 2-out-of-2 scheme).

The scheme for (n− k)-slice functions generalizes this idea, where each mes-
sage mi,j is shared using a 2-out-of-2 secret-sharing scheme, the first and second
shares are shared among the first j−1 parties and last n− j parties respectively
with appropriate thresholds.

Lemma 3.4. Let f : {0, 1}n → {0, 1} be an (n− k)-slice. If there is a k-server
CDS protocol for gf : [n]k → {0, 1} with message size ccds(k, n), then there is a
secret-sharing scheme realizing f with share size O(k ·n ·max {log n, ccds(k, n))}.

Proof. By Remark 2.5, it suffices to realize partially-defined slice functions, only
defined on inputs of weight n− k. The scheme for such a function f is described
in Fig. 4. We next prove the correctness security of the scheme, only considering

13 This problem can be solved by using robust CDS protocols (as defined in [ABNP20]);
however, the known robust CDS protocols have very large message size. We use an
idea of [ABF+19] to solve this problem.

Secret-Sharing Schemes for High Slices 21

The secret: An element s ∈ {0, 1}.
Auxiliary protocol: Let P be a k-server CDS protocol with message size
c = ccds(k, n) for the function gf : [n]k → {0, 1} (defined in Definition 3.2).

The scheme:

1. Choose a common random string r as chosen in the k-server CDS protocol
P and execute P with the secret s and the common random string r. For
every i ∈ [k], j ∈ [n], let mi,j ∈ {0, 1}c be the message of server Si in P
with input j ∈ [n], i.e., mi,j = Enci(j, s; r).

2. For i + 1 ≤ j ≤ n − k + i − 1, share mi,j in a 2-out-of-2 secret-sharing
scheme, that is, choose m1

i,j with uniform distribution from {0, 1}c and
compute m2

i,j = mi,j ⊕m1
i,j .

3. Let m2
i,i = mi,i and m1

i,n−k+i = mi,n−k+i for every i ∈ [k].
4. For every i ∈ [k] and i+ 1 ≤ j ≤ n− k + i, share the string m1

i,j using the
(j − i)-out-of-(j − 1) secret-sharing scheme among the first j − 1 parties.

5. For every i ∈ [k] and every i ≤ j ≤ n− k+ i− 1, share the string m2
i,j using

an (n− k− j+ i)-out-of-(n− j) secret-sharing scheme among the last n− j
parties.

Fig. 4. A secret-sharing scheme realizing a partially defined (n − k)-slice f using a
k-server CDS protocol P for gf .

inputs of weight n − k. That is, we consider an input x such that xji = · · · =
xjk = 0 for some indices 1 ≤ ji ≤ · · · ≤ jk ≤ n and all other bits in x are 1, i.e.,
x = Xji,··· ,jk .

Assume that f(x) = 1. We next explain how the parties in Ix can recover
mi,ji for every i ∈ [k]. First observe that i ≤ ji ≤ n− k+ i (since there are i− 1
bits in x that are zero before xji and there are k− i bits that are zero after xji).
If i = ji, then x1 = x2 = · · · = xi = 0 and Ix has (n− i)− (k− i) = n−k parties
with index greater than ji = i, i.e., the parties in Ix can recover m2

i,ji
= mi,ji ,

which is shared via a secret-sharing scheme with threshold n−k− ji+ i = n−k.
Analogously, if ji = n − k + i, then xn−k+i = xn−k+i+1 = · · · = xn = 0 and Ix
has (ji − 1)− (i− 1) = n− k + i− 1− i+ 1 = n− k parties with index smaller
than ji = n−k+ i, i.e., the parties in Ix can recover m1

i,ji
= mi,ji . Now consider

the case that i + 1 ≤ ji ≤ n − k + i − 1. The subset Ix has ji − i parties with
index smaller than ji and n − ji − (k − i) parties with index greater than ji.
So the subset Ix can recover both m1

i,ji
and m2

i,ji
and so can compute mi,ji . As

gf (j1, . . . , jk) = 1 and the parties in Ix can recover the messagesm1,j1 , . . . ,mk,jk ,
they can recover the secret.

Assume that f(x) = 0. In this case gf (j1, . . . , jk) = 0, hence the parties in
Ix cannot obtain any information on s from the messages mi,j1 , . . . ,mk,jk they
can recover. We next claim that the parties in Ix have no information on any
message mi,j , where j ̸= ji. Since j ̸= ji, the number of bits that are zero in
x in the first j bits of x is not i, i.e., either there are at least i bits that are
zero among the first j − 1 bits of x or there are at least k − i bits that are

22 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

zero among the last n − j bits of x (since exactly k bits of x are zero). In the
former case, the parties in Ix hold at most j − 1 − i shares in a secret-sharing
scheme of m1

i,j with threshold j − i, hence they have no information on m1
i,j ,

thus, they have no information on mi,j . In the latter case, the parties in Ix hold
at most (n − j) − (k − i) = n − k − j shares in a secret-sharing scheme of m2

i,j

with threshold n− k− j+1, hence they have no information on m2
i,j , thus, they

have no information on mi,j . As each mi,j is shared independently, the parties
in Ix gain no information from the sharing of all the messages (mi,j)i∈[k],j ̸=ij .
To conclude, the set Ix only obtains the messages mi,j1 , . . . ,mk,jk , which by the
security of the CDS protocol give no information on the secret.

The share of each party is composed of O(nk) shares in Shamir’s thresh-
old secret-sharing schemes with O(n) parties. Thus, the share size is O(nk ·
max{log n, ccds(k, n)}). ⊓⊔

Theorem 3.5 (Perfect Schemes for High Slices, Theorem 1.2 Restated).
Let k ≤ n/2 be positive integers. For every (n− k)-slice function f , there exists
a secret-sharing scheme realizing f with share size

kn · 2O(
√
k logn) log(k logn) = kn · 2Õ(

√
k logn).

Proof. By [LVW18], there is a k-server CDS protocol for functions g : [n]k →
{0, 1} with message size 2O(

√
k logn log(k logn)). Using this protocol in Lemma 3.4,

we get for every (n− k)-slice a secret-sharing scheme with the share size stated
in the theorem. ⊓⊔

4 Computationally-Secure Schemes for (n − k)-Slices

In this section, we construct CSSSs for (n − k)-slices. The first observation is
that for k ≤

√
n we can use the CCDS protocol of [ABI+23b] (see Theorem 2.10)

in the scheme of Lemma 3.4 and obtain a secret-sharing scheme for (n−k)-slices
with share size O(kλn log n); this is a slight improvement compared to the perfect
scheme we constructed. Similarly, for k ≤

√
n we can obtain a CSSS realizing

k-slices with share size O(min
{
2k, nk

}
·kλ log n) by plugging the CCDS protocol

of [ABI+23b] in the schemes of [AA18,ABF+19].14

Our goal is to save a factor of n/k in the share size of CSSS realizing (n−k)-
slices compared to the above-mentioned CSSS for (n−k)-slices. Recall that in our
scheme described in Lemma 3.4, the share of each party contains O(kn) shares in
threshold secret-sharing schemes with secrets of size cccds(λ, k, n) = O(λ log n).
We show how to realize these secret-sharing schemes such that the share size of
each party in the O(kn) threshold schemes is O(k2λ log n). The idea is to give
each party a seed of a pseudorandom generator (PRG) that is expanded to a
pseudorandom string containing the O(kn) shares. The obstacle is that the n

14 The proofs of the constructions of [AA18,ABF+19] and Lemma 3.4 are when the
CDS protocol is perfect; however, they can be updated to the computational setting,
similarly to the proof of Claim 4.2.

Secret-Sharing Schemes for High Slices 23

shares are correlated. We use the fact that in the t-out-of-n secret-sharing of
Shamir [Sha79] the first t− 1 shares are uniformly distributed and independent.
While the schemes described in the previous paragraph are relatively simple
– they take a formula for f and realize some of its gates with computational
schemes instead of perfect ones, our scheme for (n− k)-slices treats the perfect
scheme as “white box”, replacing the shares that are random by pseudorandom
strings. This methodology is not new; however, the way we utilize it is new.

In Fig. 6, we present the sharing in Shamir’s scheme making this fact explicit;
in our presentation, the dealer gives a random element to a set A of t−1 parties
and then picks a polynomial Q that interpolates the t − 1 shares of A and
the secret to generate the shares for the rest of the parties B. Note that in this
scheme the polynomial Q is a uniformly distributed polynomial of degree at most
t− 1 such that Q(0) = s, that is, the sharing is exactly as in the more common
description of Shamir’s secret-sharing scheme. This is similar to the systematic
encoding of Reed-Solomon codes. We use Procedure Interpolate, described in
Fig. 5, to compute the polynomial. We will use this procedure in our scheme for
(n − k)-slices; the above sets A and B will be carefully chosen to minimize the
share size of each party.

Procedure Interpolate(t, A,B, s, (shi)Pi∈A):
Parameters: A threshold t, a set of t− 1 parties A, a set of parties B disjoint
from A, a secret s, and the shares (shi)Pi∈A of the parties in A.

1. The dealer computes the unique polynomial Q of degree at most t − 1 in
Fp[x] that satisfies Q(0) = s and Q(i) = shi for every Pi ∈ A.

2. The dealer computes shi = Q(i) for every Pi ∈ B and returns (shi)Pi∈B .

Fig. 5. A description of Procedure Interpolate that, given shares of t− 1 parties and
a secret, uses interpolation to find the polynomial that passes via these points and
computes the other shares using this polynomial.

We can change Shamir’s scheme as described in Fig. 6, giving each party in
A an independent seed wi of a pseudorandom generator (PRG), and for Pi ∈ A,
the party Pi and the dealer compute shi = PRG(wi). The dealer also computes
shares (shi)Pi∈B from (shi)Pi∈A and the secret (using Procedure Interpolate)
and gives these shares to the parties in B. The total share size in this scheme
is O(tλ+ (n− t) log p) (where Shamir’s scheme is executed over Fp for a prime
p > n). 15 In a single execution of this scheme, using PRGs reduces the total
share size when n − t is small and the length of the secret is bigger than the
security parameter (i.e., it avoids the lower bound of the length of the secret

15 The same results also hold for Fq, where q > n is a prime power. For the sake of
simplicity, we restrict the presentation to the case that q is a prime number.

24 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

The secret: An element s ∈ Fp, where p > n is a prime.
Public parameters: A set A ⊂ P = {P1, . . . , Pn} such that |A| = t− 1.
The scheme:

1. For every Pi ∈ A, choose shi independently with uniform distribution
from Fp.

2. Interpolate(t, A, P \A, s, (shi)Pi∈A).

The shares: sh1, . . . , shn.

Fig. 6. Shamir’s t-out-of-n secret-sharing scheme with a systematic choice of the poly-
nomial.

that holds for perfect secret-sharing schemes [KGH83]). Note that Krawczyk’s
construction [Kra94] gives a smaller share size for this case.16

When using the scheme many times with different secrets, the saving is more
dramatic – the dealer can give each of the first t − 1 parties only one seed wi,
which will be expanded to the shares of the party in all the schemes, that is, the
share size of these parties is O(λ). This can be done even when the thresholds
in the various secret-sharing schemes are not the same, and for different sets
A. Specifically, in our secret-sharing scheme for (n− k)-slices we execute O(nk)
threshold t-out-of-n′ secret-sharing schemes with various t, n′ such that n′−t ≤ k
and log p = O(λ log n) (this is the length of the messages in the CCDS protocol,
which we need to share with Shamir’s scheme). The total share size in these
executions is O(nλ + k2λn log n), i.e., one seed per party and k “extra” shares
for each of the O(nk) executions of the threshold scheme, each “extra” share is
of length O(λ log n). We can balance the share size in these O(nk) executions by
giving each of the n parties “extra” shares only in O(k2) schemes; this results in
share size O(k2λ log n) per party.

The following Theorem 4.1 is a formal statement of Theorem 1.4 from the
introduction; in the formal statement of the theorem we deal with the family of
slice functions rather than a specific function (as required by Definition 2.8 –
the definition of CSSS).

Theorem 4.1. Let k : N → N be a function such that 2 ≤ k(n) ≤
√
n for

every n ∈ N. If t(λ)-secure one-way functions exist for some negligible function
1/t(λ), then there exists a poly(t(λ))-secure CSSS for (n − k(n))-slice func-
tions represented as a truth table of size

(
n

k(n)

)
with share size O(k2λ log n).

The running time of the sharing and reconstruction algorithms of the CSSS is
Õ(nk) · poly(λ) = poly(

(
n

k(n)

)
, λ).

16 We cannot use Krawczyk’s construction as we have a few schemes with different
thresholds and different sets of parties.

Secret-Sharing Schemes for High Slices 25

Input: A secret s ∈ {0, 1} and an (n− k)-slice access structure f described by
a truth table of size

(
n
k

)
.

Auxiliary tools:

– A k-server CCDS protocol CCDS = (CCDS.Enc,CCDS.Dec) with mes-
sage size c = cccds(λ, k, n) for gf : [n]k → {0, 1} (defined in Definition 3.2).

– A pseudorandom generator PRG that gets as an input a seed w
of length λ and outputs a string of length knc; denote PRG(w) =
(PRGi,j(w))i∈[k],j∈[n], where PRGi,j(w) ∈ {0, 1}c.

– Procedure Interpolate from Fig. 5 over a field Fp, where log p ≈ c is the
message size of the CCDS protocol.

The scheme:

1. For every ℓ ∈ [n], sample with uniform distribution a seed wℓ ∈ {0, 1}λ for
the party Pℓ and let yi,j

ℓ ← PRGi,j(wℓ) for every i ∈ [k], j ∈ [n].
2. Choose a common random string r as chosen in the k-server CDS protocol

CCDS and execute CCDS with the secret s and the common random string
r. For every i ∈ [k], j ∈ [n], let mi,j ∈ {0, 1}c be the message mi,j ←
CCDS.Enc(1λ, gf , i, xi = j, s; r).

3. For every i ∈ [k] and i + 1 ≤ j ≤ n − k + i − 1, share mi,j in a 2-out-of-2
secret-sharing scheme, that is, choose m1

i,j with uniform distribution from
{0, 1}c and compute m2

i,j = mi,j ⊕m1
i,j .

4. For every i ∈ [k], let m2
i,i = mi,i and m1

i,n−k+i = mi,n−k+i.
5. For every i ∈ [k] and i + 1 ≤ j ≤ n − k + i, share the string m1

i,j with a
(j − i)-out-of-(j − 1) secret-sharing scheme among the first j − 1 parties a:
Let A = {P1, . . . , Pj−i−1} , B = {Pj−i, . . . , Pj−1}, shi,j,1ℓ ← yi,j

ℓ for 1 ≤ ℓ ≤
j − i− 1, t = j − i, and(

shi,j,1ℓ

)j−1

ℓ=j−i
← Interpolate

(
t, A,B, s = m1

i,j , (sh
i,j,1
ℓ)j−i−1

ℓ=1

)
.

6. For every i ∈ [k] and every i ≤ j ≤ n − k + i − 1, share the string m2
i,j

with an (n − k − j + i)-out-of-(n − j) secret-sharing scheme among the
last n− j parties: Let A = {Pj+k−i+2, . . . , Pn} , B = {Pj+1, . . . , Pj+k−i+1},
shi,j,2ℓ ← yi,j

ℓ for j + k − i+ 2 ≤ ℓ ≤ n, t = n− k − j + 1, and(
shi,j,2ℓ

)j+k−i+1

ℓ=j+1
← Interpolate

(
t, A,B, s = m2

i,j , (sh
i,j,2
ℓ)nℓ=j+k−i+2

)
.

7. The share shℓ of Pℓ is formed by wℓ, shi,j,1ℓ for i ∈ [k] and
max {i+ 1, ℓ+ 1} ≤ j ≤ min {n− k + i, ℓ+ i}, and shi,j,2ℓ for i ∈ [k] and
max {i+ 1, ℓ− k + i− 1} ≤ j ≤ min {n− k + i, ℓ− 1}.

a If j = i+1 then A = ∅ and Procedure Interpolate gives the secret (i.e., m1
i,j)

to the first j − 1 parties; this is a 1-out-of-(j − 1) scheme as required.

Fig. 7. A CSSS realizing a partially defined (n− k)-slice f .

26 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

Proof. By Remark 2.5, it suffices to realize partially-defined slice functions, only
defined on inputs of weight n− k. The CSSS for such a function f is described
in Fig. 7.

We first elaborate on the assumptions used in the scheme and prove that
the running time of the sharing algorithm is polynomial in the size of the rep-
resentation of the slice function and the security parameter (as required in
Definition 2.8). In the scheme, we assume that the PRG is poly(t(λ))-secure.
By [HILL99], such PRG can be built from a t(λ)-secure one-way function and
its running time for a pseudorandom string of length knc is knc · poly(λ).
Furthermore, if we use the CCDS protocol of [ABI+23b], the message size is
c = O(λ log n) and the running time of the encoding algorithm (for computing
the nk messages) is nk · poly(λ) (see Theorem 2.10). Finally, interpolation can
be implemented using Õ(n) arithmetic operations over a field Fp (using FFT),
where log p ≈ c = O(λ log n); each arithmetic operation can be performed in time
Õ(log p) = Õ(λ log n) (using Schönhage–Strassen multiplication algorithm). As
the PRG is executed n times and there are O(nk) interpolations, the total run-
ning time of the sharing is nk · poly(λ) + Õ (n2k) · poly(λ). As the size of the

representation of the (n−k)-slice function f is
(

n
k(n)

)
≥ (n/k)k ≥

√
n
k
= (nk)0.5

(as k(n) ≤
√
n), the running time is polynomial in the representation and the

security parameter.

We next prove the correctness and security of the scheme, only considering
inputs of weight n − k. This scheme is an optimization of the perfect secret-
sharing scheme described in Fig. 4, where we use a CCDS protocol instead of a
perfect CDS protocol and use procedure Interpolate to share the shares, using
correlated pseudorandom strings as the “random shares”; however these are valid
shares in Shamir’s secret-sharing scheme. Thus, the correctness follows from the
correctness of the scheme from Fig. 4.

For the security of the scheme described in Fig. 7, we assume that there is
an adversary ACSSS trying to break the CSSS and prove that if ACSSS succeeds
then there is either an adversary breaking the CCDS protocol or an adversary
breaking the PRG, contradicting their security. Recall that ACSSS, on input
1λ, chooses an (n − k)-slice function f and an input x ∈ {0, 1}n such that
wt(x) = n − k and f(x) = 0 and gets from the challenger shares (shi)xi=1

generated by the scheme for a random secret s ∈ {0, 1}.
We define n+1 hybrids, where in the d-th hybrid a secret s is chosen with uni-

form distribution, and the shares given to the adversary are generated similar to
the scheme in Fig. 7, where we replace some pseudorandom strings in step 1 with
truly random strings as follows: For every 1 ≤ ℓ ≤ d, if xℓ = 0 we use for every
i ∈ [k], j ∈ [n] a truly random string for yi,jℓ (instead of yi,jℓ ← PRGi,j(wℓ)). All

other strings yi,jℓ are generated as pseudorandom strings. Let prd be the proba-
bility that the adversary ACSSS guesses the secret given the shares generated in
the d-th hybrid for a uniformly distributed secret s ∈ {0, 1}.

Notice that in the 0-th hybrid the shares given to the adversary are generated
as in the scheme described in Fig. 7. On the other hand, in the n-th hybrid, for
all parties not in Ix, the shares are generated using truly random strings. In this

Secret-Sharing Schemes for High Slices 27

case, we will show that by the security of the CCDS protocol, the probability
that the adversary guesses s, i.e., prn is at most 1/2 + 1/ poly(t(λ)).

Claim 4.2. Assume that the CCDS protocol used in the protocol described in
Fig. 4 is tα(λ)-secure for some constant α < 1 and that ACSSS runs in time
t0.4α(λ). Then, prn ≤ 1/2 + 1/tα(λ).

Proof. Given the adversary ACSSS we construct the following adversary ACCDS

against the CCDS protocol:

Input: 1λ.

– Invoke ACSSS with 1λ and get an (n− k)-slice function f : {0, 1}n → {0, 1}
for some n and an input x ∈ {0, 1}n such that wt(x) = n− k and f(x) = 0;
the function f is described by a truth table of size

(
n
k

)
.

– Construct gf from f and compute the indices j1, . . . , jk, where xj1 = · · · =
xjk = 0 and j1 < · · · < jk and send gf and j1, . . . , jk to the CDS Challenger.

– Get messages (mi,ji)i∈[k] from the challenger, where mi,ji is the message of
the i-th server on input ji and a randomly chosen secret s ∈U {0, 1} (the
same secret is used to generate all messages).

– For every i ∈ [k] and j ̸= ji choose mi,j = 0c.

– Compute shares sh1, . . . , shn using steps 1, 3 – 7 of the scheme described in
Fig. 7.

– Send (shi)xi=1 to ACSSS, get a secret s′, and output it.

Assume thatACSSS outputs the correct secret in the n-th hybrid with probability
1/2+ ε(λ). First, we argue that the probability that ACCDS outputs the correct
secret, i.e., s = s′, is 1/2+ ε(λ). For every i ∈ [k] the message mi,ji is generated
as in the scheme described in Fig. 7 with the secret s chosen by the CCDS
challenger. Fix i ∈ [k] and j ̸= ji and consider the shares given to Ix of mi,j as
generated steps 3 – 7 of the scheme described in Fig. 7. As proved in Lemma 3.4,
in these shares either for m1

i,j or for m
2
i,j the set Ix has less than the appropriate

threshold of shares. Thus, even if some shares of the threshold secret-sharing
scheme that are given to Ix are generated using a pseudorandom string, the
shares given to Ix of 0c and the “real message” mi,j = CCDS.Enc(1λ, gf , i, j; r)
are equally distributed. Thus, the shares given to ACSSS when it attacks the
CSSS described in Fig. 7 and the shares ACSSS gets from ACCDS are equally
distributed and the probability that ACCDS outputs s′ = s is the probability
that ACSSS outputs s′ = s, i.e., prn = 1/2 + ε(λ).

The running time of ACCDS is the running time of ACSSS, the time it takes
to translate f to gf , and the running time of steps 3 – 7 in the scheme described
in Fig. 7. The running time of ACSSS is t0.4α(λ). The size of the description of
gf : [n]k → {0, 1} is nk. On the other hand, the size of the description of f , i.e.,

the size of its truth table on inputs of weight n − k, is
(
n
k

)
≥ (n/k)k ≥

√
n
k
=

(nk)0.5 (where we use the fact that k ≤
√
n). Since the adversary ACSSS runs in

time t0.4α(λ), we deduce that
(
n
k

)
≤ t0.4α(λ). Thus, the time required to write

28 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

gf is at most t0.8(λ). Furthermore, as analyzed above, the running time of steps

3 – 7 is Õ(n2k) · poly(λ). Since k ≥ 2,

Õ(n2k) ≤ Õ(n3) ≤ n2k.

Furthermore, since 1/t(λ) is negligible, poly(λ) ≤ t0.1α(λ). Thus, the running
time of steps 3 – 7 is Õ(n2k) ·poly(λ) ≤ n2kt0.1α(λ) ≤ t0.9α(λ). We conclude that
the running time of ACCDS is less than tα(λ). By the tα(λ)-security of the CCDS
protocol, the probability that ACCDS outputs s = s′ is at most 1/2 + 1/tα(λ);
by the discussion above this is also true for ACSSS. ■ (of Claim 4.2)

We next show that, by the security of the PRG, the probability that an
adversary guesses the secret in hybrid d is at most 1/tα(λ) greater than the
probability that it guesses the secret in hybrid d+ 1.

Claim 4.3. Assume that the PRG used in the protocol described in Fig. 4 is
tα(λ)-secure for some constant α < 1 and that ACSSS runs in time t0.4α(λ).
Then, prd−1 − prd ≤ 1/tα(λ) for every 1 ≤ d ≤ n.

Proof. The two hybrids differ only in the way that yi,jd is generated. Thus, if
xd = 1, the hybrids are the same and the claim follows. In the following we
assume that xd = 0. Given the adversary ACSSS we construct the following
adversary APRG against the PRG:

Input: 1λ and a random or pseudorandom string y = (yi,j)i∈[k],j∈[n], where
yi,j ∈ {0, 1}c.

– Invoke ACSSS with 1λ and get an (n− k)-slice function f : {0, 1}n → {0, 1}
for some n and an input x ∈ {0, 1}n such that wt(x) = n− k and f(x) = 0;
the function f is described by a truth table of size

(
n
k

)
.

– Choose a uniformly distributed secret s ∈ {0, 1}.
– For every ℓ ∈ [n], sample with uniform distribution a seed wℓ ∈ {0, 1}λ.
– For every ℓ ∈ [n] and every every i ∈ [k], j ∈ [n],
• If xℓ = 0 and ℓ ≤ d− 1, then choose yi,jℓ with uniform distribution from
{0, 1}c.
• If ℓ = d, then yi,jℓ = yi,j .

• If xℓ = 1 or ℓ ≥ d+ 1, then yi,jℓ ← PRGi,j(wℓ).
– Compute shares sh1, . . . , shn for the secret s using steps 2 – 7 of the scheme

described in Fig. 7.
– Send (shi)xi=1 to ACSSS, get a secret s′.
– If s = s′ output 1 else output 0.

As in the proof of Claim 4.2, the running time of APRG is less than tα(λ),
thus, by the 1/tα(λ)-security of the PRG, the probabilities that APRG outputs
1 when y is pseudorandom and when y random can differ by at most 1/tα(λ).
Note that if y is pseudorandom then the shares are generated as in hybrid d− 1
and the probability that s = s′ is the probability that ACSSS outputs the correct
secret from the shares generated in hybrid d − 1, i.e., prd−1. Similarly, if y is

Secret-Sharing Schemes for High Slices 29

random then the shares are generated as in hybrid d and the probability that
s = s′ is the probability that ACSSS outputs the correct secret from the shares
generated in hybrid d, i.e., prd. Combining the above 3 facts, we deduce that
prd−1 ≤ prd + 1/tα(λ) as claimed. ■ (of Claim 4.3)

We have assumed that the PRG and the CCDS protocol used in the scheme
of Fig. 7 are 1/tα(λ) secure for some constant α < 1. Consider an adversary
ACSSS that runs in time t0.4α(λ). By Claim 4.2 and Claim 4.3,

pr0 = (pr0 − pr1) + · · ·+ (prn−1 − prn) + prn ≤
n

tα(λ)
+

1

2
+

1

tα(λ)
.

Thus, pr0 – the probability that an adversary guesses the secret in the 0-th
hybrid i.e., in the scheme described in Fig. 7 – is at most 1/2 + n+1

tα(λ) . As n ≤ λ

and 1/t(λ) is a negligible function , this probability is less than 1/2+1/t0.4α(λ).
To conclude, we have proved that the probability that any adversary running in
time at most t0.4α(λ) guesses the secret with probability at most 1/2+1/t0.4α(λ),
i.e., the CSSS is 1/t0.4α(λ)-secure.

We complete the proof by analyzing the share size. There are O(kn) execu-
tions of threshold t′-out-of-n′ secret-sharing schemes in the scheme described in
Fig. 7; in each one of them n′ − t′ ≤ k − 1. In each such scheme there are at
most k “extra” shares. The scheme distributes these “extra” shares such that
each party gets O(k2) “extra” shares, i.e., in the scheme for m1

i,j , which is shared
among the first j − 1 parties only the last i − 1 parties Pj−i, . . . , Pj−1 get the
“extra” shares and in the scheme for m2

i,j , which is shared among the last n−j−
parties only the first k− i parties Pj+1, . . . , Pj+k−i+1 get the “extra” shares. To
conclude, the share of each party contains one seed of size λ and O(k2) shares
in Shamir’s scheme with secrets of length O(λ log n) – the message size of the
CCDS protocol of [ABI+23b] (see Theorem 2.10). All together, the share size of
each party is O(k2λ log n). ⊓⊔

5 Applications to Multislices

In this section, we present implications for multislices of the improved schemes
for (n−k)-slices presented in Sections 3 and 4. We split the results into different
subsections. In Section 5.1, we present some results we use about the construction
of secret-sharing schemes from monotone Boolean formulas. In Section 5.2, we
present general results for (a : b)-multislices, proving Theorem 1.5. For (n : n−k)-
multislices with k = o(n), we are able to find better schemes, and the rest of the
section is dedicated to this case. In Section 5.3, we present better upper bounds
on the share size for perfect schemes and we prove Theorem 1.6. Section 5.4
is dedicated to CSSSs and Section 5.5 is dedicated to linear and multi-linear
secret-sharing schemes.

30 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

5.1 The Framework

First, we discuss the framework in which we use the schemes for (n − k)-slices.
Many general and multislice schemes from recent years are based on the following
paradigm:

1. Given a function f over n bits, build a constant-depth formula F for f
that uses AND and OR gates, together with gates that compute (k,N)-slice
functions for some N , and k = O(logN). In these formulas, all (k,N)-slice
gates are in the same level, that is, in every path from the root to a leaf
there is at most one (k,N)-slice gate.

2. Apply the closure properties of secret-sharing schemes over formulas to real-
ize a scheme for f according to F (Lemma 5.2). Whenever necessary, plug in
a black-box way an efficient scheme for k-slices (or k-server CDS protocols)

that has shares of size 2Õ(
√
k logN)[LVW18].

Given a scheme for a multislice function f that follows the above paradigm,
we will be able to use the following simple duality lemmas to realize the dual of
f . The first lemma is a folklore result that was stated and proved in [ABN+22].
The second one is a natural generalization of the [BL88] whose proof also appears
in [ABN+22].

Lemma 5.1 (Formulas and Duality). Let C be a formula that computes
a function f : {0, 1}n → {0, 1} and let G1, . . . , Gk be its gates. For any gate
G that computes a function g, denote by G∗ a gate that computes g∗. Then, a
formula C ′ with the same structure as C and with every gate Gi replaced with
G∗

i computes the dual function f∗.

Lemma 5.2 (Formulas and Secret Sharing). Suppose that a monotone
function f : {0, 1}n → {0, 1} can be implemented by a formula F over some
collection of monotone gates G, and assume that every gate g ∈ G can be realized
by a secret-sharing scheme whose share-size is wg. Then, f can be realized by
a secret-sharing scheme whose share size is maxi≤i≤n {wF,i}, where the weight
function wF,i is defined as follows.

– The weight wF (v) of a leaf v in F is the product
∏

j wgj where gj is the jth
gate in the (unique) path from the root to v.

– The weight wF,i of the ith variable in the formula F is the sum of wF (v) of
all leaves v labeled by xi.

Similarly, if every gate g can be realized by a secret-sharing scheme whose in-
formation ratio is w′

g, then f can be realized by a secret-sharing scheme with

information ratio of maxi≤i≤n

{
w′

F,i

}
.

It is worth noticing that if we consider a formula F whose gates can be real-
ized by a secret-sharing schemes with good information ratio, then the resulting
share size of party Pi will be between wF,i and w′

F,i. For instance, if F has k
layers of t-out-of-n threshold gates, the share size increases by log n in each path,
but not by logk n.

Secret-Sharing Schemes for High Slices 31

Remark 5.3. Previous constructions of secret-sharing schemes, starting from the
work of Liu and Vaikuntanathan [LV18], use CDS protocols. When viewed as
a formula, this is translated to a so-called CDS gate. We will not define these
gates in this paper; we rather use the observation from [ABN+22] that each
such gate is a slice function, specifically a k-server CDS protocol for a function
f : [N]k → {0, 1} is translated to k-slice function with kN variables. In the
construction of linear and multi-linear secret-sharing schemes we will need the
fact that if there is a CDS protocol for f with message size ccds(k,N), then the
k-server CDS gate can be realized by a secret-sharing scheme in which the share
size of each party is ccds(k,N).

When proving our results for (n − k : n)-multislices, we will also use the
following well-known result on the duality of linear and multi-linear schemes:

Theorem 5.4 ([Gál95,Feh98,FHKP17]). If f can be realized by a linear
secret-sharing scheme over Fq with share size r log q, then f∗ can be realized by
a linear secret-sharing scheme over Fq with share size r log q.

If f can be realized by a multi-linear secret-sharing scheme over Fq with in-
formation ratio r, then f∗ can be realized by a multi-linear secret-sharing scheme
over Fq with information ratio r (and the same domain of secrets).

5.2 Schemes for (a : b)-Multislices

We restate and prove Theorem 1.5, which implies that the current gap between
the share sizes of the family of (a : b)-multislices and its dual can be narrowed
down to 2o(n). Recall that this has implications on the share size of random
hypergraph access structures (Corollary 1.7).

Theorem 5.5 (Share Size of Multislices, Theorem 1.5 Restated). For
every a < b ∈ [n], every (a : b)-multislice can be realized by a secret-sharing
scheme with share size

(
n−a
≥n−b

)
· 2o(n).

Proof. As analyzed by [ABN+22], the scheme of Applebaum and Nir [AN21] for
(a : b)-multislices that has share sizes

(
b

≥a

)
·2o(n) works according to the paradigm

specified in the introduction of this section. For each multislice, they construct a
formula F over AND and OR gates, combined with gates that compute (k,N)-
slice gates with k =

√
n, N =

√
n2

√
n.

By Lemma 5.1, if we replace every gate G in F by its dual gate G∗ we get a
formula F ∗ that computes f∗, the dual of f . This formula will consist of AND and
OR gates, together with (N−k,N)-slice gates with k =

√
n, N =

√
n2

√
n, which

are the duals of the slice gates that appeared in F . By Lemma 5.2, the overhead
of realizing a secret-sharing scheme for f∗ based on F ∗ compared to realizing f
based on F boils down solely to the difference in the cost of the different types
of slice gates used in each of the formulas. In [ABNP20] the (k,N)-slices of F

with the above parameters were realized with share size 2Õ(
√
n); by Theorem 3.5

we get the same asymptotical share size for the (N − k,N)-slices of F ∗, i.e., we

get share size kN2Õ(
√
k logN) = 2Õ(

√
n). Hence, since the scheme of [ABNP20]

32 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

realizes (n − b : n − a)-multislices with shares of size
(

n−a
≥n−b

)
· 2o(n), their dual

(a : b)-multislices can also be realized with the same share size, as desired. ⊓⊔

5.3 Schemes for (n − k : n)-Multislices

In the rest of this section, we construct schemes for (n− k : n)-multislices that
are more efficient than the ones described in Theorem 1.5 when k = o(n). Our
main result for perfect schemes is in Theorem 5.18. The current best upper and
lower bounds for (n− k : n)-multislices are summarized in Fig. 8.

The share size of perfect schemes for (n− k : n)-multislices

k ≥ t1 t1 ≥ k ≥ t2 t2 ≥ k ≥ t3 t3 ≥ k

Upper bounds 20.59n [AN21] O(
(
n−1
k−1

)
)

2O(k)

Theorem 5.12

k5kn2Õ(
√
k logn)

Theorem 5.12

Lower bounds Ω(k log k) [Csi97] Ω(logn) [BGK16]

Fig. 8. The best-known bounds on the share size of perfect secret-sharing schemes for
(n−k : n)-multislices. See Remark 5.23 for more details. The thresholds for the bounds
in the table are are t1 = 0.14n, t2 = n/ log2 n, and t3 = logn(log logn)2.

The schemes for (n − k : n)-multislices use our schemes for high slices, con-
structions for k-hypergraphs from [BF20a] (which are based on robust CDS pro-
tocols from [ABNP20]) and an adaptation of constructions for k-hypergraphs
from [ABNP20]. In Lemma 5.11, we show how to realize (n − k : n)-multislices
from secret-sharing schemes for (n− k)-slices. The realization has a few stages.
In Definition 5.6 we recall a definition from [BF20a] of a special family of func-
tions, called (hi, k)-hypergraphs. In Lemma 5.7, we show that in order to realize
(n − k : n)-multislices it suffices to realize the duals of (hi, k)-hypergraphs.
In Lemma 5.9, we quote a result of [BF20a] and in Lemma 5.10, we describe
an adaptation of a result of [ABNP20]; these lemmas are used in the proof of
Lemma 5.11 to realize the duals of (hi, k)-hypergraphs from (n − k)-slices, i.e.,
to realize (n − k : n)-multislices from (n − k)-slices. Lemma 5.10 is proved in
Appendix A.

We start by giving some additional notation and presenting some previous
results.

Definition 5.6 ((hi, k)-Hypergraphs). Let i ≤ k ≤ n and let TRk+1,n be
the threshold k + 1 function on n variables. Given an i-hypergraph hi (i.e., a
function whose minterms are of size exactly i), the (hi, k)-hypergraph is defined
as hi ∨TRk+1,n. That is, in the (hi, k)-hypergraph all inputs of weight less than
i are zeros of f , all inputs of weight greater than k are ones of f , and an input y
of weight between i and k is a one of f if and only if there is a minterm x (i.e.,
an input of weight i for which f(x) = 1) such that x ≤ y.

Secret-Sharing Schemes for High Slices 33

Note that a (hi, k)-hypergraph is a (i, k)-multislice, a (hk, k)-hypergraph is
a k-slice, and a (hi, n)-hypergraph is a hypergraph.

We next show how to realize (n − k : n)-multislices from secret-sharing
schemes for the dual of (hi, k)-hypergraphs

Lemma 5.7 (Multislices from duals of (hi, k)-hypergraphs). Let f be
an (n−k : n)-multislice. Assume that for every i ≤ k < n and every i-hypergraph
hi, the dual of the (hi, k)-hypergraph can be realized by a secret-sharing scheme
with share size cdual(i, k, n). Then f can be realized by a secret-sharing schemes

with share size
∑k

i=1 cdual(i, k, n). If the secret-sharing schemes for the duals of
(hi, k)-hypergraphs are linear, the resulting scheme is linear.

Proof. As f(x) = 0 for every x of weight less than n − k, the maxterms of f
(i.e., the maximal inputs x such that f(x) = 0) are of weight at least n− k − 1,
thus, f can be written as f = (∧ki=1fi) ∧TRn−k,n, where fi is a function whose
maxterms are of weight exactly n− i. For this proof, it is convenient to describe
the access structure as f = ∧ki=1(fi ∧ TRn−k,n).

Fix i such that 1 ≤ i ≤ k. By Lemma 5.1, the dual of fi ∧ TRn−k,n is
f∗
i ∨ TR∗

n−k,n. By definition, f∗
i is a function whose minterms are of weight i,

i.e., an i-hypergraph and TR∗
n−k,n = TRk+1,n. We obtain that f∗

i ∨ TRk+1,n

is a (f∗
i , k)-hypergraph and fi ∧ TRn−k,n is the dual of a (f∗

i , k)-hypergraph.
By the assumption of the lemma, fi ∧TRn−k,n can be realized with a shares of

size cdual(i, k, n), thus, f can be realized with shares of size
∑k

i=1 cdual(i, k, n)
by Lemma 5.2. ⊓⊔

In our schemes, we use a construction of [BF20b] for (hi, k) hypergraphs
(which follows from results of [ABNP20]) and an adaptation of a construction
of [ABNP20]. These constructions implicitly follow the framework of Section 5.1,
that is, they implicitly construct a formula whose properties are described in
Lemma 5.9. For these lemmas we define k-partite slice functions.

Definition 5.8 (k-partite slice functions). A (k, kN)-slice g : [kN]→ {0, 1}
is a (k, kN)-partite slice if for every input x of weight k such that g(x) = 1 and
for every j ∈ [k]

| {ℓ : xℓ = 1} ∩ {(j − 1)N + 1, . . . , jN} | = 1,

that is, the variables are partitioned to k subsets of size N and in each minterm
of weight k there is exactly one satisfied variable in each subset.

Notice that (k, kN)-partite slices are called CDS gates in [ABN+22]; they are
basically equivalent to k-server CDS protocols (defined in [GIKM00]) and can be

realized by a secret-sharing scheme with share size 2O(
√
k logN log logN) [LVW18].

Lemma 5.9 ([BF20a, Lemma 7.2 (implicit)]). Let hi be an i-hypergraph

with n variables, and let i ≤ k ≤ min{i · n/2, 2
√

n/i} be an integer. Then, there
is a constant depth monotone formula for the (hi, k)-hypergraph with AND, OR,
threshold, and (i, ni)-partite slices, whose size is ℓi = O(i3i2iki log2i−1 k log2 n).
Furthermore, all the (i, ni)-partite slice gates are in the same level.

34 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

Lemma 5.10. Let hi be an i-hypergraph with n variables, and let k be an integer

such that max {i, log n · log log n} ≤ k ≤ min{i · n/2, 2
√

n/i}. Then, there is a
constant depth monotone formula for the (hi, k)-hypergraphs with AND, OR,
threshold, and (O(k/ log k), nO(log k))-partite slice gates, whose size is ℓi = 2O(k).
Furthermore, all the (O(k/ log k), nO(log k))-partite slices are in the same level.

The proof of Lemma 5.10 can be found in Appendix A.

Lemma 5.11 (Multislices via a formula with partite-slice gates). Let
k < n. Assume that for every i ≤ k, for every (hi, k) hypergraph there is a
formula of size ℓi with AND, OR, threshold, and (κi, κiNi)-partite slice gates and
all slices are in the same level. Furthermore, assume that for every 1 ≤ i ≤ k
every (κkNk − κk, κkNk)-slice can be realized by a secret-sharing scheme with
1-bit secrets and share size cslice(κi, κiNi, 1) ≤ cslice(κk, κkNK , 1). Then every
(n − k : n)-multislice f can be realized by a secret-sharing scheme with 1-bit
secrets and share size

k∑
i=1

O(cslice(κkNk − κk, κkNk, 1)ℓi polylog(n)).

If the secret-sharing schemes for the (Niκi− i, κiNi)-slices are linear, the result-
ing scheme is linear.

Proof. By Lemma 5.7, in order to construct a secret-sharing scheme for f it
suffices to show how to realize duals of (hi, k) hypergraphs.

We realize the dual of an (hi, k) hypergraph by the formula-based secret-
sharing scheme of Lemma 5.2 using the dual of the formula that is assumed in
the lemma. By Lemma 5.1 the dual of the formula computes the dual of the
(hi, k) hypergraph; this formula has size ℓi, constant depth, and its gates are
AND, OR, threshold, and dual of (κi, κiNi)-partite slices. As every (κi, κiNi)-
partite slice is, in particular, a (κi, κiNi)-slice, its dual is a (κiNi−κi, κiNi)-slice.

Recall that for a one-bit secret, AND and OR functions can be realized by a
secret-sharing scheme with share size 1, threshold functions can be realized by
a scheme with share size log n, and (κiNi − κi, κiNi)-slices can be realized by a
scheme with share size cslice(κiNi − κi, κiNi, 1). As all slice functions are in the
same level, by Lemma 5.2, the dual of every (hi, k) hypergraph can be realized
by a secret-sharing scheme with one-bit secrets and share size O(ℓicslice(κiNi −
κi, κiNi, 1) polylog(n)).

By Lemma 5.7, every (n−k : n) multislice can be realized by a secret-sharing
scheme with one-bit secrets and share size

k∑
i=1

O(cslice(κiNi − κi, κiNi, 1)ℓi polylog(n))

≤
k∑

i=1

O(cslice((κkNk − κk, κkNk)ℓi polylog(n)).

⊓⊔

Secret-Sharing Schemes for High Slices 35

Theorem 5.12 (Share Size of (n − k : n)-Multislices, Theorem 1.6 Re-
stated). For k ≤ log n(log log n)2, every (n−k : n)-multislice can be realized by

a secret-sharing scheme with share size k5k ·n·2Õ(
√
k logn). For log n(log log n)2 <

k < n/ log2 n, every (n − k : n)-multislice can be realized by a secret-sharing
scheme with share size 2O(k).

Proof. The theorem is a consequence of Lemma 5.11, taking schemes for slice
functions from Theorem 3.5.

For k < log n(log log n)2, we use formula of Lemma 5.9 with κi = i, Ni = n,

and ℓi = O(i3i2iki log2i−1 k log2 n). Observe that
∑k

i=1 ℓi = O(ℓk). We next
calculate the resulting share size in this case.

k∑
i=1

O(cslice(nk − k, nk, 1) · ℓi polylog(n))

≤ Õ(cslice(nk − k, nk, 1) · ℓk)

= k2n2Õ(
√
k logn) ·O(k3k2kkk log2k−1 k log2 n)

= Õ(n) · 2Õ(
√
k logn) ·

(
k5k · 2

k log2k−1 k3

kk

)
= k5kn2Õ(

√
k logn).

For log n(log log n)2 < k < n/ log2 n, we use formula of Lemma 5.10 with κi =

O(k/ log k), Ni = nO(log k), and ℓi = 2O(k). Observe that
∑k

i=1 ℓi = 2O(k).
Furthermore, by Theorem 3.5,

cslice(n
O(log k) −O(k/ log k), nO(log k), 1)

= nO(log k) · (k/ log k) · 2O(
√

(k/ log k) log(nO(log k)) log(k/ log k·log(nO(log k)))

= 2O(log k logn+
√

k log(n)(log k+log logn)).

When k > log n(log log n)2, the above expression is at most 2O(k). The resulting
share size in this case is as follows.

k∑
i=1

O(cslice(n
O(log k) −O(k/ log k), nO(log k), 1) · ℓi polylog(n)) = 2O(k).

⊓⊔

Remark 5.13. In Theorem 5.12, we implicitly construct a constant depth formula
for (n− k : n)-multislices of size O(kℓk) with AND, OR, threshold, and dual of
partite slice gates, where the dual of partite slice gates are in the same level. That
is, we construct a formula for duals of (hi, k)-hypergraphs (using the formulas
of Lemma 5.9 or Lemma 5.2)and construct from it a formula for (n − k : n)-
multislices. In most of our constructions, we replace the dual of (κiNi−κi, κiNi)-
partite slice gates by (κi, κiNi)-slices.

36 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

Remark 5.14. In Theorem 5.12, we can improve the share size to 2Õ(
√
k logn)

when log n log log n < k ≤ log n(log log n)2 by using the formula of Lemma 5.10.
To simplify the theorem, we ignore this case.

5.4 CSSS for (n − k : n)-Multislices

We next use the construction of Section 5.3 to construct CSSS for (n − k : n)-
multislices. For the CSSS we use a computational analogue of the formula-based
perfect secret-sharing scheme of Benaloh and Leichter [BL88]; in our scheme
we use CSSS to realize the gates. Proving the security of the resulting CSSS
requires analyzing the representation size of the gates and the share size as well
as running time of the CSSS implementing the gates. We prove the security for
the specific formula of Lemma 5.2. We remark that in the computational setting,
Yao [Yao89] showed that a CSSS can use a monotone circuit ; however, we do
not need this generalization.

Remark 5.15. The CSSS for (n−k : n)-multislices as described in Theorem 5.16
is interesting when k ≤ log n. For log n < k < log n(log log(n))2, it has share size
that is worse than the perfect secret-sharing scheme described in Theorem 5.12
by a factor of λ. Furthermore, for k > log n(log log(n)), we can use the formula
of Lemma 5.10 and obtain a CSSS with share size O(2O(k)λ polylog(n)). As this
secret-sharing scheme will only outperform the perfect secret-sharing scheme
described in Theorem 5.12 in a small range of parameters, we omit these details.

Theorem 5.16 (CSSSs for (n − k : n)-Multislices). Let k ≤
√
n and

t(λ) ≥ kck · polylog(n) for a sufficiently large constant c. Assuming the exis-
tence of t(λ)-secure OWFs, there is a poly(t(λ))-secure CSSS for (n − k : n)-
multislices, represented as a truth table of all inputs of weight at least n−k. The
share size in the CSSS is O(k5kλ polylog(n)), where λ is the security parameter,
and the running time of the sharing and reconstruction algorithms of the CSSS
is Õ(n4k) · poly(λ) = poly(

(
n
k

)
, λ).

Proof. The construction of the CSSS is the same as the construction used to
prove Lemma 5.2, i.e., a generalization of the formula-based secret-sharing scheme
of [BL88]. To prove the security of the CSSS we will need to explicitly describe
it as some of the details of the scheme require care. We use the formula for
(n − k : n)-multislices as discussed in Remark 5.13. This is a constant depth
formula of size O(kℓk) with AND, OR, threshold, and (in− i, in)-slice gates for
some 1 ≤ i ≤ k. By Theorem 4.1, assuming the existence of t(λ)-OWFs, there
are tα(λ)-secure CSSSs for these functions with share size O(k2λ log n).

We next describe the CSSS. To share a secret s ∈ {0, 1} for an (n − k : n)-
multislice f , we use the following recursive procedure:

– We start from the root of the formula for f and the secret s.
– In each recursive call, we are at some gate G and have some secret sG

generated for the gate.
• If G is a leaf labeled by some variable xi, we give sG to party Pi.

Secret-Sharing Schemes for High Slices 37

• Otherwise, we share sG using a CSSS realizing G, producing shares
sh1, . . . , shk, where k is the arity of the gate.

• For each 1 ≤ j ≤ k, the share of the gate Gj , where Gj is the j-th child
of G, is shj . We apply the procedure recursively for Gj and shj .

To complete the description of the scheme, we need to elaborate on the CSSS
for each gate. For AND, OR, and threshold gates we use information-theoretic
secret-sharing realizing them. For a gate computing an (in− i, in)-slice function
g we use the CSSS of Theorem 4.1. Note that in this case the secret for the
CSSS for the (kn − k)-slice is composed of many bits and we share each bit of
the secret independently using the CSSS of Theorem 4.1.17

The correctness follows by the same arguments as in [BL88] as we next ex-
plain. For every gate G in the formula computing f , let fG be the function
computed by the sub-formula rooted at the gate. For every input x such that
f(x) = 1, by staring from the leaves and going to the root, the parties in Ix
can reconstruct the secret of the gate G for every gate G such that fG(x) = 1;
in particular they can reconstruct the secret of the root, i.e., the secret shared
in the CSSS. The share size of this scheme is computed as in Lemma 5.2, i.e.,
denoting the share size in the CSSS for slices by ccslice(k, n, 1) = Õ(k2λ), the
share size is

O(ccslice(k, nk, 1) · kℓk · polylog(n)) = O(k5k · λ · polylog(n)).

The running time of the sharing and reconstruction algorithms of the CSSS is
O(ℓkk · polylog(n)) times the running time of the sharing and reconstruction
algorithms for the CSSS for (nk−k, nk)-slices, i.e., it is Õ(k5k(nk)k) ·poly(λ) =
Õ(n4k) · poly(λ) = poly(

(
n
k

)
, λ) (since k ≤

√
n).

We next argue that the CSSS we constructed is poly(t(λ))-secure assuming
the CSSS for (kn−k)-slices are poly(t(λ))-secure. That is, we assume that there
is an adversary Amultislice breaking the CSSS for (n − k : n)-multislices and
construct an adversary Aslice breaking the CSSS for (n− k : n)-slices.

Given a security parameter λ, let f be the multislice chosen by Amultislice,
let n be the input size of f , and let x ∈ {0, 1}n such that f(x) = 0 be the input
chosen by Amultislice. We start with some notation. Consider the formula for f
and assume that it has m = O(ℓk) gates G1, . . . , Gm, where we order the gates
such that if the output of gate Gi is an input of gate Gj then i < j, e.g., Gm is
the root and G1 is a leaf labeled by some variable xj . Finally, for 1 ≤ i ≤ m, let
fi be the function computed by the sub-formula rooted at Gi.

We define m + 1 hybrids. Recall that the CSSS for f computes secrets for
the gates, starting with the root Gm, then a secret for Gm−1, and so on until it
computes secrets for the leaves. In every non-leaf gate Gi, the CSSS shares the
secret of the gate, and the shares are the secrets of the children of the gate. The
share of party Pj is the secret of all laves labeled by xi.

17 By a simple hybrid argument, this is a CSSS for long secrets; in such a CSSS the
adversary sends two secrets s0, s1 of the same length to the challenger, the challenger
shares sb for a uniformly distributed b, sends the shares of Ix to the adversary, and
the adversary needs to output b.

38 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

In the j-th hybrid, we consider a similar process, where for a gate Gi, where
i = j, . . . , 1, if fi(x) = 0, we replace the secret of gate Gi by an all-zero string
of the same length. The j-th hybrid contains the shares (shℓ)xi=1 generated in
this process. Let pri be the probability that Amultislice wins the security game
when it is given the shares generated in the i-th hybrid. In particular, the 0-th
hybrid is the shares of Ix generated by the CSSS, thus pr0 is the probability
that Amultislice wins the security game in the CSSS. In the other extreme, in the
m-th hybrid, the output is independent of the secret, since fm(x) = f(x) = 0
and we replace the secret with 0. Thus, prm = 1/2. We next prove that pri−1

and pri are almost the same.

Claim 5.17. Assume that for every 1 ≤ i ≤ i and for some constant α < 1, the
CSSS for (n − i, n)-slices is tα(λ)-secure. Furthermore, assume that Amultislice

runs in time t0.1α(λ). Then, pri−1 − pri ≤ 2/tα(λ) for every 1 ≤ i ≤ m.

Proof. If fi(x) = 1 then the (i− 1)-th and the i-th hybrid are the same and the
claim is trivial. We thus assume that fi(x) = 0. If Gi is a leaf labeled by some
variable xj , then xj = 0, i.e., the secret of this gate is not part of the shares
given to Ix, and the two hybrids are equal.

Otherwise, the i-th gate is an internal gate such that fi(x) = 0. Let j1, . . . , jℓ
be the indices of the children of Gi. All these indices are smaller than i and for
every jk such that fjk(x) = 0 the secret of the gate Gjk is the all-zero string.
Since fi(x) = 0, the shares of the CSSS for Gi that are not replaced are shares
of a forbidden set of Gi. If Gi is either an OR, AND, or a threshold gate, the
shares of the forbidden set of G are equally distributed when the secret is the
all-zero string and when the secret is generated by the (i − 1)-hybrid, i.e., also
in this case the two hybrids are equal.

We are left with the interesting case where fi(x) = 0 and Gi is an (n′ − i)-
slice function for some n′ < n, 1 ≤ i ≤ k. Given the adversary Amultislice trying
to break the CSSS for the (n − k : n)-multislices, we construct the following
adversary Aslice trying to break the CSSS for (n′ − i)-slices:

Input: The security parameter 1λ, and the (n− k : n)-multislice f : {0, 1}n →
{0, 1} and the input x s.t. f(x) = 0 that are generated by Amultislice.

– Choose s ∈ {0, 1} with uniform distribution.
– Generate shares similar to the (i− 1)-th and i-th hybrids with the secret s:

• For j = m,m− 1, . . . , i generate secrets for the gates Gm, Gm−1, . . . , Gi

as in the (i− 1)-th hybrid (and the CSSS).
• Let s0 be the secret of gate i and s1 be the all-zero string of the same

length.
• Let y be the values of the sub-formulas of the children of Gi with input
x and g be the (n′ − i)-slice computed by Gi.

• Send g, y, and s0, s1 to the Challenger of the CSSS for slices, and get the
shares of Iy for the secret sb for a uniformly distributed b.

Secret-Sharing Schemes for High Slices 39

• For every ℓ such that yℓ = 0 choose the all-zero string of the appropriate
length as the ℓ-th share.

• For j = i−1, i−2, . . . , 1 generate secrets for the gates Gi−1, Gi−2, . . . , G1

as in the hybrids using the shares generated for the CSSSs for the gates
Gm, . . . , Gi.

• The share of Pj are the secrets of all leaves labeled by xj .
– Give the shares of Ix to the adversary Amultislice and get a secret s′ ∈ {0, 1}.
– If s = s′ output b′ = 0, otherwise output b′ = 1.

We start by analyzing the running time of Aslice. As we assume that Aslice runs
in time t0.1α(λ) and it outputs a multislice f whose representation size is at least(
n
k

)
≥ nk/2 (since k ≤

√
n),

nk/2 ≤ t0.1α(λ). (1)

The running time of Aslice is dominated by the running time of Amultislice and
by the running of the sharing algorithm of the CSSS for the multislice f , i.e., it
is Õ(n4k) · poly(λ) + t0.1α(λ) < tα(λ) (by (1)).

We are ready to bound pri−1−pri. Let b be the bit chosen by the challenger.
By the tα(λ)-security of the CSSS for the slice functions,

Pr[Aslice wins the security game] = Pr[b = b′] ≤ 1/2 + 1/tα(λ). (2)

Observe that if b = 1 then the secret of Gi is s1, the all-zero string; if b = 0 then
the secret of Gi is s0 as generated by the CSSS. In other words, if b = 1 the
shares are generated as in the i-th hybrid, and if b = 0 the shares are generated
as in the (i− 1)-th hybrid. The adversary Aslice outputs b = b′ if

– b = 0 and Amultislice outputs s = s′, or
– b = 1 and Amultislice outputs s ̸= s′.

That is, Aslice outputs b = b′ with probability

0.5pri−1 + 0.5(1− pri) = 0.5 + 0.5(pri−1 − pri).

Thus, by (2), pri − pri−1 ≤ 2/tα(λ). ■ (of Claim 5.17)

Concluding the security proof the CSSS for multislices, we assume that

Amultislice runs in time t0.1α(λ) and tα(λ) > ℓ
10/9
k ; the last assumption holds

since tα(λ) ≥ kck polylog(n) for a sufficiently large c. By Claim 5.17, the prob-
ability that Amultislice wins the security game in the CSSS, i.e., pr0, is bounded
by

pr0 = (pr0 − pr1) + · · ·+ (prm−1 − prm) + prm

≤ 1/2 +
m

tα(λ)
= 1/2 +

O(ℓk)

tα(λ)
≤ 1

t0.1α(λ)
,

since m = O(ℓk). Thus, every adversary that runs in time at most t0.1α(λ) break
the CSSS for the multislices with probability at most 1/t0.1α(λ), i.e., the CSSS
is t0.1α(λ)-secure. ⊓⊔

40 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

5.5 Linear and Multi-Linear Schemes for (n − k : n)-Multislices

Next, we provide upper and lower bounds on the share size and information ratio
for linear and multi-linear schemes. Notice that the gap between the bounds is
asymptotically tight when k is constant.

Theorem 5.18 (Linear Schemes for (n − k : n)-Multislices). Let 1 <
k < n/ log2 n. Then (n − k : n)-multislices can be realized by a linear secret-
sharing scheme with share size Õ(k5kn(k−1)/2).

Proof. By [BP18,LVW18], the share size of linear schemes for (k, kn)-partite
slices (which are equivalent to k-server CDS protocols) is at most

cpartite-slice(k, kn, 1) = O
(
n

k−1
2

)
.

By Lemma 5.1, the share size of linear schemes for dual of (k, nk)-partite slices

is at most cpartite-slice(k, kn, 1) = O(n
k−1
2). Thus, by Lemma 5.11, the share size

of linear schemes for (n− k : n)-multislices is at most

O(cpartite-slice(k, kn, 1) · polylog(n) · ℓk) = Õ
(
n

k−1
2 · k4k2k log2k−1 k

)
= Õ(n

k−1
2 k5k).

⊓⊔

Theorem 5.19 (Multi-Linear Secret-Sharing Schemes for (n − k : n)-
Multislices). For 1 < k < log n log log(n), every (n − k : n)-multislice f

can be realized by a multi-linear secret-sharing scheme with secrets of size 2n
k−1

with information ratio O(k5k log2 n). For log n log log(n) < k < n/ log2 n, every
(n − k : n)-multislice f can be realized by a multi-linear secret-sharing scheme

with secrets of size 2n
O(k)

with information ratio 2O(k).

Proof. The construction of the multi-linear secret-sharing schemes (with long
secrets) is similar to the construction of the secret-sharing scheme in Lemma 5.11.
By Lemma 5.7, in order to construct a secret-sharing scheme for f it suffices to
show how to realize duals of (hi, k) hypergraphs. We realize the dual of an (hi, k)
hypergraph by the formula-based secret-sharing scheme of Lemma 5.2 using the
dual of the formulas of Lemmas 5.9 and 5.10. The gates in these dual formulas
are AND, OR, threshold, and dual of (κ, κN)-partite slices. We use the fact that
for m > log n, AND, OR, and threshold functions can be realized by a secret-
sharing scheme with information ratio 1. The share size required to realize the
dual of (κ, κN)-partite slices is the same as the share size required to realize
(κ, κN)-partite slices (by Lemma 5.1 – the duality of multi-linear secret-sharing
schemes). We use the multi-linear k-server CDS protocols from [AA18] to realize
(κ, κN)-partite slices; the information ratio of the resulting scheme is O(1) for

long secrets of size 2N
k−1

. Thus, by the last item in Lemma 5.2, the information
ratio of multi-linear schemes for (n − k : n)-multislices is O(

∑k
i=1 ℓi), where ℓi

is the size of a formula realizing (hi, k) hypergraphs.

Secret-Sharing Schemes for High Slices 41

For k < log n log log(n), we use the formula of Lemma 5.9. In this case∑k
i=1 ℓi = O(k5k log2 n) and the secrets are of size 2n

k−1

, as we use (k, nk)-
partite slice gates. For log n log log(n) < k < n/ log2 n, we use the formula of

Lemma 5.10. In this case
∑k

i=1 ℓi = 2O(k) and the secrets are of size 2n
O(k)

, as
we use (O(k/ log k), nO(log k))-partite slice gates. ⊓⊔

In order to understand these upper bounds, we provide the following lower
bounds.

Theorem 5.20. For almost all (n − k : n)-multislices, the total share size in
every linear secret-sharing scheme with a one-bit secret realizing these access
structures is Ω(n(k−1)/2/k(k+1)/2).

To prove this result, we need the a result for access structures with bounded
rank, from [BFMP22]. We say that an access structure has rank r if its minimal
authorized sets are of size at most r. Theorem 5.21 is obtained by counting the
number of possible matrices of a certain size for L. The same argument can be
applied for a family of access structures L whose duals have rank at most r.

Theorem 5.21 ([BFMP22]). Let L be a family of access structures with rank
at most r. Then, for almost all access structures in L, the max share size for
sharing a one-bit secret in a linear secret-sharing scheme is Ω(

√
log |L|/rn).

Proof of Theorem 5.20. The dual of (n− k : n)-multislices are access structures
whose maximal forbidden subsets are of size at most k. That is, access structures

of rank (k + 1). The number of such access structures is greater than 2(
n
k).

Applying Theorem 5.21 we have that for almost all of these access structures,
the max share size for sharing a one-bit secret in a linear secret-sharing scheme
is

Ω

(√(
n

k

)
/(k + 1)n

)
≥ Ω

(√
nk/kk(k + 1)n

)
= Ω

(√
nk−1/kk+1

)
.

⊓⊔

Theorem 5.22. For every k and n > 2k, there exist (n− k : n)-multislices that
require information ratio Ω(k/ log k).

Proof. This lower bound is obtained by constructing a multislice from the Csir-
maz access structures [Csi97]. These access stuctures are (ℓ : n′)-multislices for an
integer ℓ and n′ = ℓ+2ℓ. These multislices require information ratioΩ(n′/ log n′).
Now choose the smallest ℓ with k > 2ℓ and consider the Csirmaz’ function f ′ on
{0, 1}n′

. Define f : {0, 1}n′ × {0, 1}n−n′ → {0, 1} as f(x′, x′′) = f ′(x′) ∧ f ′′(x′′),
where f ′′ that is the AND of the last n−n′ variables. The information ratio for
this function is at least Ω(n′/ log n′) = Ω(k/ log k). ⊓⊔

Remark 5.23. In Theorems 5.12, 5.16, 5.18 and 5.19, we construct schemes for
(n−k : n)-multislices from schemes for (nk−k, nk)-slices or (nk−k, nk)-partite

42 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

slices following similar black-box transformations. For k ≤ log n(log log n)2, the
share size of the resulting schemes are, approximately, O(k5k) times the share
size of the scheme for (n − k)-slices. When k = O(log n/(log log n)2), this term
is no(1). For k ≥ log n(log log n)2, the share size is 2O(k).

Next, we detail some particular cases. In Theorem 5.12, if k is constant, the
share size is n1+o(1), while the best previous upper bound was O(

(
n−1
k−1

)
). In The-

orem 5.18, we provide the first computational scheme for multislices assuming
OWFs. Based on the harness assumption for RSA, the scheme in [ABI+23b] for
(n − k : n)-multislices has shares of size polynomial in k log n and the security
parameter. In our case, for constant k, the share size is O(λ log3 n). Analogously
to the perfect case (see Fig. 8), the share size of our CSSSs improves the previous
upper bounds for k = O(n1/6).

Comparing Theorem 5.16 and Theorem 5.20, we see that our linear schemes
for (n− k : n)-multislices are asymptotically optimal for constant k. Our multi-
linear schemes for (n − k : n)-multislices have constant information ratio for
constant k. For linear and multi-linear schemes, the best previous bound for
small k was also O(

(
n−1
k−1

)
). Notice that for k = 2, 3, the schemes with the smallest

share size are the linear ones in Theorem 5.16 (the bound of Theorem 5.12 is
worse). The existence of better non-linear schemes is an open problem.

In the case of linear schemes, the best scheme for k between n/2 and n/8
has share size Õ(2(n+k)/2) [AN21]. For k = O(n1/12), the best scheme is the
one in Theorem 5.16. For intermediate values of k, the best bound is O(

(
n−1
k−1

)
).

Regarding the information ratio of multi-linear schemes, our schemes are better
than the previous ones for k = O(n1/6), analogously to the perfect case (Fig. 8).

Acknowledgments. We thank Benny Applebaum and Eliran Kachlon for valu-
able comments on earlier drafts of this paper. The first author is supported by
the ISF grant 391/21 and by the ERC grant 742754 (project NTSC). The sec-
ond author is supported by the grant 2021SGR 00115 from the Government of
Catalonia, the project ACITHEC PID2021-124928NB-I00 from the Government
of Spain, and the project HERMES funded by the European Union NextGen-
erationEU/PRTR via INCIBE. The third author is supported by the ISF grant
391/21 and by the Frankel center for computer science. The forth author is sup-
ported by ISF grant no. 2805/21 and by the European Union (ERC, NFITSC,
101097959). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the Euro-
pean Research Council. Neither the European Union nor the granting authority
can be held responsible for them.

References

AA18. Benny Applebaum and Barak Arkis. On the power of amortization in secret
sharing: d-uniform secret sharing and CDS with constant information rate.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, volume 11239
of LNCS, pages 317–344. Springer-Verlag, 2018.

Secret-Sharing Schemes for High Slices 43

ABF+19. Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter.
Secret-sharing schemes for general and uniform access structures. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, volume 11478 of
LNCS, pages 441–471. Springer-Verlag, 2019.

ABI+23a. Damiano Abram, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Varun
Narayanan. Cryptography from planted graphs: Security with logarithmic-
size messages. In Guy N. Rothblum and Hoeteck Wee, editors, TCC 2023,
volume 14369 of LNCS, pages 286–315, 2023.

ABI+23b. Benny Applebaum, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Tianren
Liu, and Vinod Vaikuntanathan. Succinct computational secret sharing. In
STOC 2023, pages 1553–1566. ACM, 2023.

ABI+23c. Benny Applebaum, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Tianren
Liu, and Vinod Vaikuntanathan. Succinct computational secret sharing.
Technical Report 2023/955, Cryptology ePrint Archive, 2023.

ABN+22. Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter, and Toniann
Pitassi. Secret sharing, slice formulas, and monotone real circuits. In ITCS
2022, volume 215 of LIPIcs, pages 8:1–8:23, 2022.

ABNP20. Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. Better secret
sharing via robust conditional disclosure of secrets. In STOC 2020, pages
280–293. ACM, 2020.

ADH17. Varunya Attasena, Jérôme Darmont, and Nouria Harbi. Secret sharing for
cloud data security: a survey. The VLDB Journal, 26(5):657–681, 2017.

AN21. Benny Applebaum and Oded Nir. Upslices, downslices, and secret-sharing
with complexity of 1.5n. In Tal Malkin and Chris Peikert, editors, CRYPTO
2021, volume 12827 of LNCS, pages 627–655. Springer, 2021.

BC94. Amos Beimel and Benny Chor. Universally ideal secret sharing schemes.
IEEE Trans. on Information Theory, 40(3):786–794, 1994.

Bei11. Amos Beimel. Secret-sharing schemes: A survey. In Yeow Meng Chee,
Zhenbo Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang,
and Chaoping Xing, editors, Coding and Cryptology – Third International
Workshop, IWCC 2011, volume 6639 of LNCS, pages 11–46. Springer-
Verlag, 2011.

Bei23. Amos Beimel. Lower bounds for secret-sharing schemes for k-hypergraphs.
In ITC 2023, volume 267 of LIPIcs, pages 16:1–16:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

Ber82. S. Berkowitz. On some relationships between monotone and nonmonotone
circuit complexity. Technical report, Department of Computer Science, Uni-
versity of Toronto, 1982.

BF20a. Amos Beimel and Oriol Farràs. The share size of secret-sharing schemes
for almost all access structures and graphs. IACR Cryptol. ePrint Arch.,
2020:664, 2020.

BF20b. Amos Beimel and Oriol Farràs. The share size of secret-sharing schemes
for almost all access structures and graphs. In TCC 2020, volume 12552 of
LNCS, pages 499–529, 2020.

BFLN24. Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir. Secret-sharing schemes
for high slices. In TCC, 2024.

BFMP22. Amos Beimel, Oriol Farràs, Yuval Mintz, and Naty Peter. Linear
secret-sharing schemes for forbidden graph access structures. IEEE-TIT,
68(3):2083–2100, 2022.

44 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

BGK16. Andrej Bogdanov, Siyao Guo, and Ilan Komargodski. Threshold secret
sharing requires a linear size alphabet. In TCC 2016, volume 9986 of LNCS,
pages 471–484, 2016.

BIKK14. Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On
the cryptographic complexity of the worst functions. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 317–342. Springer-Verlag,
2014.

BKN18. Amos Beimel, Eyal Kushilevitz, and Pnina Nissim. The complexity of mul-
tiparty PSM protocols and related models. In Jesper Buus Nielsen and Vin-
cent Rijmen, editors, EUROCRYPT 2018, volume 10821 of LNCS, pages
287–318. Springer-Verlag, 2018.

BL88. Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and
monotone functions. In Shaffi Goldwasser, editor, CRYPTO ’88, volume
403 of LNCS, pages 27–35. Springer-Verlag, 1988.

Bla79. George Robert Blakley. Safeguarding cryptographic keys. In Proc. of the
1979 AFIPS National Computer Conference, volume 48 of AFIPS Confer-
ence proceedings, pages 313–317. AFIPS Press, 1979.

Bog23. Andrej Bogdanov. Csirmaz’s duality conjecture and threshold secret shar-
ing. In Kai-Min Chung, editor, ITC, volume 267 of LIPIcs, pages 3:1–3:6,
2023.

BP18. Amos Beimel and Naty Peter. Optimal linear multiparty conditional disclo-
sure of secrets protocols. In Thomas Peyrin and Steven D. Galbraith, edi-
tors, ASIACRYPT 2018, volume 11274 of LNCS, pages 332–362. Springer,
2018.

CCX13. Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. Bounds on the
threshold gap in secret sharing and its applications. IEEE Trans. Inf. The-
ory, 59(9):5600–5612, 2013.

CK93. Benny Chor and Eyal Kushilevitz. Secret sharing over infinite domains. J.
of Cryptology, 6(2):87–96, 1993.

Csi97. László Csirmaz. The size of a share must be large. J. of Cryptology,
10(4):223–231, 1997.

Csi20. László Csirmaz. Secret sharing and duality. J. Math. Cryptol., 15(1):157–
173, 2020.

CSNN24. Arup Kumar Chattopadhyay, Sanchita Saha, Amitava Nag, and Sukumar
Nandi. Secret sharing: A comprehensive survey, taxonomy and applications.
Computer Science Review, 51:100608, 2024.

EP97. Paul Erdös and László Pyber. Covering a graph by complete bipartite
graphs. Discrete Mathematics, 170(1–3):249–251, 1997.

Feh98. Serge Fehr. Span programs over rings and how to share a secret from a
module. Master’s thesis, ETH Zurich, 1998.

FHKP17. Oriol Farràs, Torben Brandt Hansen, Tarik Kaced, and Carles Padró. On
the information ratio of non-perfect secret sharing schemes. Algorithmica,
79(4):987–1013, 2017.

Gál95. Anna Gál. Combinatorial Methods in Boolean Function Complexity. PhD
thesis, U. of Chicago, 1995.

GIKM00. Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting
data privacy in private information retrieval schemes. J. of Computer and
System Sciences, 60(3):592–629, 2000.

GKW15. Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication com-
plexity of conditional disclosure of secrets and attribute-based encryption.

Secret-Sharing Schemes for High Slices 45

In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO 2015, vol-
ume 9216 of LNCS, pages 485–502. Springer-Verlag, 2015.

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
Construction of a pseudo-random generator from any one-way function.
SIAM J. on Computing, 28(4):1364–1396, 1999.

ISN87. Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes real-
izing general access structure. In Globecom 87, pages 99–102, 1987. Journal
version: Multiple assignment scheme for sharing secret. J. of Cryptology,
6(1), 15-20, 1993.

KGH83. Ehud D. Karnin, Jonathan W. Greene, and Martin E. Hellman. On secret
sharing systems. IEEE Trans. on Information Theory, 29(1):35–41, 1983.

KN90. Joe Kilian and Noam Nisan, 1990. Unpublished result.
KNY17. Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for NP. J.

Cryptol., 30(2):444–469, 2017.
Kra94. Hugo Krawczyk. Secret sharing made short. In CRYPTO ’93, volume 773

of LNCS, pages 136–146. Springer-Verlag, 1994.
KW93. Mauricio Karchmer and Avi Wigderson. On span programs. In 8th Structure

in Complexity Theory, pages 102–111, 1993.
LS20. Kasper Green Larsen and Mark Simkin. Secret sharing lower bound: Either

reconstruction is hard or shares are long. In SCN 2020, volume 12238 of
LNCS, pages 566–578. Springer, 2020.

LV18. Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier
in secret sharing. In 50th STOC, pages 699–708, 2018.

LVW18. Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards breaking
the exponential barrier for general secret sharing. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, volume 10820 of LNCS,
pages 567–596. Springer-Verlag, 2018.

Sha79. Adi Shamir. How to share a secret. Communications of the ACM, 22:612–
613, 1979.

SS97. Hung-Min Sun and Shiuh-Pyng Shieh. Secret sharing in graph-based pro-
hibited structures. In INFOCOM ’97, pages 718–724, 1997.

VNS+03. V. Vinod, Arvind Narayanan, K. Srinathan, C. Pandu Rangan, and
Kwangjo Kim. On the power of computational secret sharing. In Indocrypt
2003, volume 2904 of LNCS, pages 162–176. Springer-Verlag, 2003.

Yao89. Andrew C. Yao. Unpublished manuscript, 1989. Presented at Oberwolfach
and DIMACS workshops.

A Proof of Lemma 5.10 – A Formula for
(hi, k)-Hypergraphs

In this section, we prove Lemma 5.10, i.e., we show an improved formula of size
2O(k) for (hi, k)-hypergraphs when k ≥ log n(log log n). The formula is an adap-
tation of a construction of [ABNP20], taking different parameters (in [ABNP20],
they considered ((1/2−δ)n : (1/2+δ)n)-multislice for some constant δ). For this
construction, we define partite hypergraphs and robust partite hypergraphs.

Definition A.1 (Partite Hypergraphs and Robust Partite Hypergraphs).
A (k, kN)-hypergraph h : [kN] → {0, 1} is (k, kN)-partite if for every minterm

46 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

x of h (of weight k) and for every j ∈ [k]

| {ℓ : xℓ = 1} ∩ {(j − 1)N + 1, . . . , jN} | = 1,

that is, the variables are partitioned to k subsets of size N and in each minterm
of weight k there is exactly one satisfied variable in each subset.

We say that a function h : [kN] → {0, 1} is a t-robust (k, kN)-partite hy-
pergraph if there is a (k, kN)-partite hypergraph h′ such that

h(x) = h′(x) ∨
k∨

j=1

TRt+1,N (x(j−1)k+1, . . . , xjk),

i.e., h(x) = 1 if h′(x) = 1 or if it contains at least t+ 1 satisfied variables from
some subset {(j − 1)k + 1, . . . , jk}.

Observe that t-robust (k, kN)-partite hypergraphs are basically equivalent to
k-server robust CDS protocols (defined in [ABNP20]) and can be realized by a

secret-sharing scheme with share size logN ·kO(k) · (t log2 t)k2O(
√
k logN) log logN)

[ABNP20]; in particular, they can be computed by a small monotone formula
with the following properties.

Theorem A.2 (Implicit in [ABNP20], Explicit in [ABN+22]). Every
t-robust (k, kN)-partite hypergraph can be computed by a constant depth formula
of size logN · kO(k) · (t log2 t)k with AND,OR, and (k, kN)-slices gates.

Proof of Lemma 5.10. The construction has two stages. We first construct a
formula that accepts every minterm (of weight i) with probability at least 3/4
and rejects every maxterm (of weight k) with probability at least 3/4; the con-
struction is randomized and the probability is over the randomness of the con-
struction. We then use a few copies of the construction from the first stage to
reduce the error; by a simple union bound we prove that there exists a scheme
that accepts all minterms and rejects all maxterms. In the proof we construct a
formula of size 2O(k), we do not try to optimize the constant in the exponent.
Furthermore, for various values of i the formula size can be reduced; however,
as we are interested in the maximum size over all 1 ≤ i ≤ k, and we do not try
to improve the formula size for such values of i. The worst case is roughly when
i = k/2.

First Stage. Let k′ ≤ k be a parameter to be fixed later. We randomly partition
[n] to k′ sets C1, . . . , Ck′ , where Pr[ℓ ∈ Cj] = 1/k′ for every ℓ ∈ [n], j ∈ [k′].
Using this partition, we define a t-robust (k′, k′N)-hypergraph that will be used
to compute the (hi, k)-hypergraph.

Fix a set B of size k and j ∈ [k′], w.l.o.g., let B = {1, . . . , k}. The expected
value of |B ∩ Cj | is |B|/k′ = k/k′. By the Chernoff bound, the size of B ∩ Cj is
close to the expected value with high probability. Recall the following Chernoff
bound. Let 0 < p < 1 and X1, . . . , Xk be independent binary random variables

Secret-Sharing Schemes for High Slices 47

such that Pr[Xℓ = 1] = p for every ℓ ∈ [k] and let X =
∑k

ℓ=1 Xℓ. Then, denoting
µ = E[X] = kp, for every 0 < δ < 1 we have

Pr[X > (1 + δ)µ] ≤ e−µδ2/3.

Thus, letting Xℓ = 1 if ℓ ∈ Cj ,

Pr

[
|B ∩ Cj | ≥

k

k′
+

√
3k ln(4k′)

k′

]
= Pr

[
X ≥

(
1 +

√
3k′ ln(4k′)

k

)
k

k′

]

≤ e−
k
k′ ·

3k′ ln(4k′)
k /3 =

1

4k′
.

(3)

We will take k′ such that
√

3k ln(4k′)/k′ ≤ k/k′, e.g.,

k′ ≤ k

3 log k
. (4)

Notice that in this case δ ≤ 1 and we can apply the Chernoff bound. By the
union bound,

Pr
[
∀j∈[k′]|B ∩ Cj | ≤

2k

k′

]
≥ Pr

[
∀j∈[k′]|B ∩ Cj | ≤

k

k′
+

√
3k ln(4k′)

k′

]
≥ 3/4.

(5)

The same conclusions holds for a set B such that |B| ≤ k. In particular, for
every minterm (of weight i, where i ≤ k) with probability at least 3/4, the set
B = {ℓ : xℓ = 1} contains at most 2k/k′ elements from each set Cj .

The above fact motivates the definition of the following t = 22k/k
′
-robust

(k′, k′N)-hypergraph h (the choice of t will be explained below), where

1. N =
(

n
≤2k/k′

)
≤ n2k/k′

.

2. For every j we index the first
(|Cj |
≤2k/k′

)
variables in the j-th part (i.e., x(j−1)N+1,

. . . , xjN) by subsets of Cj of size at most 2k/k′,
3. For a minterm x ∈ {0, 1}n of hi (of weight i), let Aj = {ℓ ∈ Cj : xℓ = 1}

for j ∈ [k′] (i.e., A1 ∪ · · · ∪ Ak′ are the coordinates in which x is one). If

|Aj | ≤ 2k/k′ for every j ∈ [k′], then for the input y ∈ {0, 1}kN such that
yAj

= 1 for every j ∈ [k′] and all other coordinates are zero we define
h(y) = 1.

4. For every y of weight k′ such that f(y) is not defined in item 3, we define
h(y) = 0.

5. For every y of weight greater than k, we define h(y) = 1 if and only if
– There exists y0 of weight k such that h(y0) = 1 and y0 ≤ y, or
– There exists j ∈ [k′] such that

| {ℓ : yℓ = 1} ∩ {(j − 1)N + 1, . . . , jN} | > t.

48 Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir

Example A.3. Let k = 12, k′ = 3, and n = 100. Let C1 = {1, . . . , 40}, C2 =
{41, . . . , 57}, and C3 = {58, . . . , 100} be the random partition. Consider the
input x, where x1 = · · · = x7 = 1, x45 = x46 = 1, and x91 = x92 = x93 = 1
and assume that h12(x) = 1. Then, h(y) = 1 for the input y of weight 3, where
y{1,...,7} = y{45,46} = y{91,92,93} = 1 and all other coordinates are 0.

Furthermore, consider the input x, where x1 = · · · = x9 = 1, x45 = x46 = 1,
and x91 = 1. Since | {1, . . . , 9}∩C1| = 9 > 2k/k′, there is no input y correspond-
ing to x.

We construct the formula F for hi by constructing the formula for h guar-
anteed by Theorem A.2, where we replace each input wire of h indexed by a
non-empty set A by an a gate AND((xℓ)ℓ∈A), assign 1 to the input wire labeled
by an empty set, and assign 0 to the input wires that are not indexed by a set.
We next analyze the properties of the construction.

Let x be a minterm of weight i of hi and let Aj = {ℓ : xℓ = 1}∩Cj for j ∈ [k′].
We claim that if each Aj is of size at most 2k/k′, which occurs with probability
at least 3/4 by (5), then F (x) = 1. Let y be such that yAj = 1 for every j ∈ [k′]
and all other coordinates are zero. Since all Aj ’s are small, y is properly defined
and h(y) = 1 by item 3 of the definition of h. Furthermore, AND((xℓ)ℓ∈Aj

) for
every j ∈ [k′]. Thus, F (x) = 1.

Let x be a maxterm of the (hi, k)-hypergraph, in particular, the weight of x
is k. a Let Aj = {ℓ : xℓ = 1} ∩ Cj for j ∈ [k′]. We claim if each Aj is of size at
most 2k/k′, which by (5) occurs with probability at least 3/4, then F (x) = 0.
By the construction of F , the input wires of h that are satisfied by x are exactly
the wires that are indexed by a set A such that A ⊆ Aj for some j ∈ [k′]; let
y be the input to h such that yA = 1 if and only if A ⊆ Aj . In the j’th part

of y, there are at most 2|Aj | ≤ 22k/k
′
inputs wires of h that are satisfied by x.

For every x′ ≤ x, it must be that hi(x
′) = 0 (by the monotonicity of hi). Thus,

h(y′) = 0 for every y′ ≤ y of weight k′. By Item 5 of the definition of h, in
particular, by the fact that h is 22k/k

′
-robust, h(y) = 0 and F (x) = 0.

Second Stage. We take u = O(k log n) copies F1, . . . , Fu of the construction for
F of the first stage; in each copy we choose the random partition independently.
The final construction is G(x) = TRu/2,u(F1(x), . . . , Fu(x)) ∨ TRk+1,n(x), that
is, the formula returns 1 if at least u/2 of the copies of F output 1 or if the input
has weight at least k + 1. Let x be an input of weight i such that hi(x) = 1.
By a simple Chernoff bound, more than half of the copies of F output 1 with
probability at least 1− 1/4nk; in this case G(x) = 1. Similarly, let x be an input
of weight k such that hi(x) = 0. By a simple Chernoff bound, more than half of
the copies of F output 0 with probability at least 1−1/4nk; in this case G(x) = 0.
By the union bound, with probability at least half, G outputs the correct value
for every minterm and maxterm. Thus, there are u partitions, such that G with
F1, . . . , Fu induced by these partitions computes the (hi, k)-hypergraph.

Formula Size. It remains to analyze the size (i.e., number of gates) of G. We use
the formula of Theorem A.2 for a t-robust (k′, k′N)-partite hypergraph, where

Secret-Sharing Schemes for High Slices 49

N =
(

n
2k/k′

)
≤ n2k/k′

and t = 22k/k
′
. The size of the formula for k ≥ log n is

logN · k′O(k′) · (t log2 t)k
′
= O

(
k/k′ log n · 2O(k′ log k′) · (22k/k

′
(2k/k′)2)k

′
)

= O
(
2O(k′ log k′+k)

)
.

(6)

In F , each leaf of the formula is replaced by an AND gate and the fan-in of each
gate in the formula of Theorem A.2 is at most k′N . Thus, the size of the formula
F is O(k′N · 2O(k+k′ log k′)) = 2O(k+k′ log k′+k logn/k′). Taking k′ = k/3 log k (as
required in (4)), we obtain that the size of the formula F is 2O(k+log k logn). For
k ≥ log n log log n, the size of F is 2O(k). As G contains O(k log n) copies of F ,
its size is also 2O(k). ⊓⊔

	Secret-Sharing Schemes for High Slices

