
Watermarkable and Zero-Knowledge Veri�able Delay Functions

from any Proof of Exponentiation

Charlotte Ho�mann and Krzysztof Pietrzak

Institute of Science and Technology Austria

{charlotte.hoffmann, pietrzak}@ista.ac.at

Abstract

A veri�able delay function VDF(x, T) → (y, π) maps an input x and time parameter T to an output
y together with an e�ciently veri�able proof π certifying that y was correctly computed. The function
runs in T sequential steps, and it should not be possible to compute y much faster than that. The only
known practical VDFs use sequential squaring in groups of unknown order as the sequential function,

i.e., y = x2T . There are two constructions for the proof of exponentiation (PoE) certifying that y = x2T ,
with Wesolowski (Eurocrypt'19) having very short proofs, but they are more expensive to compute and
the soundness relies on stronger assumptions than the PoE proposed by Pietrzak (ITCS'19).

A recent application of VDFs by Arun, Bonneau and Clark (Asiacrypt'22) are short-lived proofs and
signatures, which are proofs and signatures which are only sound for some time t, but after that can
be forged by anyone. For this they rely on �watermarkable VDFs�, where the proof embeds a prover
chosen watermark. To achieve stronger notions of proofs/signatures with reusable forgeability, they rely
on �zero-knowledge VDFs�, where instead of the output y, one just proves knowledge of this output. The
existing proposals for watermarkable and zero-knowledge VDFs all build on Wesolowski's PoE, for the
watermarkable VDFs there's currently no security proof.

In this work we give the �rst constructions that transform any PoEs in hidden order groups into
watermarkable VDFs and into zkVDFs, solving an open question by Arun et al.. Unlike our watermarkable
VDF, the zkVDF (required for reusable forgeability) is not very practical as the number of group elements
in the proof is a security parameter. To address this, we introduce the notion of zero-knowledge proofs
of sequential work (zkPoSW), a notion that relaxes zkVDFs by not requiring that the output is unique.
We show that zkPoSW are su�cient to construct proofs or signatures with reusable forgeability, and
construct e�cient zkPoSW from any PoE, ultimately achieving short lived proofs and signatures that
improve upon Arun et al's construction in several dimensions (faster forging times, weaker assumptions).

A key idea underlying our constructions is to not directly construct a (watermarked or zk) proof for

y = x2T , but instead give a (watermarked or zk) proof for the more basic statement that x′, y′ satisfy

x′ = xr, y′ = yr for some r, together with a normal PoE for y′ = (x′)2
T

.

1

Contents

1 Introduction 3

1.1 Our Contribution . 3
1.2 Related Work . 6

2 Preliminaries 7

2.1 Relations and Interactive Proofs . 7
2.2 Veri�able Delay Functions . 7
2.3 Assumptions . 8
2.4 The Group of Signed Quadratic Residues . 9

3 Three Zero-Knowledge Proofs of Knowledge 9

3.1 Proof of Knowledge of Discrete Log . 9
3.2 Proof of Knowledge of Same Discrete Log . 10
3.3 Proof of Knowledge of Same Discrete Log with one Hidden Base 12

4 Modi�ed Discrete-Log Assumptions 13

5 Watermarkable VDFs 14

5.1 De�nition . 14
5.2 The Decisional Iterated Squaring Assumption . 14
5.3 Construction . 15

6 Zero-Knowledge VDFs 17

6.1 De�nition . 17
6.2 Construction . 18

7 Zero-Knowledge Proofs of Sequential Work 19

7.1 De�nition . 20
7.2 The Generalized Iterated Squaring Assumption . 20
7.3 Construction . 20

8 Short-Lived Proofs from our Zero-Knowledge PoSW 22

8.1 Sigma Protocols . 22
8.2 Our Construction . 23

9 Conclusion and Open Problems 23

2

1 Introduction

Veri�able delay functions (VDFs), introduced by Boneh et al. [BBBF18], are functions that take a prescribed
amount of time T to compute and can be veri�ed in time much less than T . They have found a lot of
applications including the design of blockchains [CP18], randomness beacons [Rab83, SJH+21], proofs of
data replication [BBBF18] and computational time-stamping [CE12, LSS20].

Time-Based Deniability from VDFs. A recent application of VDFs was presented by Arun, Bonneau
and Clark in [ABC22]. The authors construct so called short-lived proofs and short-lived signatures from
VDFs that satisfy some additional properties. Short-lived proofs and signatures are only valid for a prescribed
amount of time T . After time T they are easy to forge by anyone and hence validity cannot be veri�ed
anymore. The authors of [ABC22] achieve this notion for any relation R by combining a proof system for R
with a VDF computation using a simple OR statement: A short-lived proof is correct if either the proof for
R is correct or a VDF computation has been performed. This way the proof for R is only valid before time T
has passed since after time T anyone can output a valid proof by proving that they have performed the VDF
computation. One useful property that short-lived proofs and signatures can have is reusable forgeability,
which means that one slow computation enables e�cient proof forgery for many statements.

Zero-Knowledge VDFs. Zero-Knowledge VDFs are VDFs that can verify that a prover P knows the

result y = x2T without revealing any other information about y to the veri�er V, i.e., instead of sending the
result y to V, P and V engage in a zero-knowledge proof of knowledge of y. Such VDFs were introduced
by Arun, Bonneau and Clark in [ABC22], where they use it as a building block to construct short-lived
proofs. The zero-knowledge VDF in [ABC22] is a zero-knowledge version of Wesolowski's VDF. Using this
VDF in the OR construction described above to obtain a short-lived proof provides some form of reusable
forgeability: After performing one slow computation of the delay function, one can forge proofs for multiple
statements of the same sender by providing a re-randomized VDF proof for each statement. Using the
zero-knowledge VDF in [ABC22] computing a re-randomized proof takes time roughly T/ log(T) since this
is the time it takes compute Wesolowski's VDF proof. Since Pietrzak's VDF proof can be computed in time
T/
√
T , a zero-knowledge version of Pietrzak's VDF would enable much faster forging times. The authors

of [ABC22] leave a construction of a zero-knowledge version of Pietrzak's VDF as an open problem.

Watermarkable VDFs. Watermarkable VDFs are VDFs in which the proof can be watermarked, i.e., tied
to a speci�c prover. They were informally introduced by Wesolowski in [Wes19], where he claims that his
VDF can be watermarked by including a unique identi�er in the computation of the random challenge. The
authors of [ABC22] point out that security of this scheme is not proven since the proof of Wesolowski's VDF

reveals the value xq for a large q which may speed up the computation of y = x2T and hence the computation
of a proof with a di�erent watermark. They propose to watermark the proof of their zero-knowledge VDF
construction by including a unique identi�er in the computation of the random challenge of the proof. Since
the protocol is zero-knowledge, the watermarked proof does not reveal any information that might help

computing a proof with a di�erent watermark. However, this also means that the value y = x2T cannot be
revealed, which might be relevant in other applications of watermarkable VDFs.

1.1 Our Contribution

We give the �rst constructions that transform any PoE in hidden order groups into a watermarkable VDF
and into a zero-knowledge VDF. We note that this gives the �rst practical watermarkable VDF with a
security proof, and the zkVDF solves the open problem stated in [ABC22] asking for a zkVDF based on
Pietrzak's VDF.

Instantiating the watermarkable VDFs with Pietrzak's PoE and using it in the [ABC22] construction of
short-lived proofs (without reusable forgeability) we get proofs with signi�cantly faster forging times and
under di�erent (arguably weaker) assumptions than the construction in [ABC22].

3

Our watermarkable VDF is practically e�cient and only slightly increases the proof size of the PoE.
However, the zero-knowledge VDF increases the proof size by roughly 4λ group elements, where λ is a
statistical security parameter. While the proof size is still independent of the time parameter T , a blow-up
by 4λ group elements is undesirable in practice.

To address this, we introduce the notion of zero-knowledge proofs of sequential work (zkPoSW). We
show that zkPoSW can replace zkVDFs in the construction of short-lived proofs and signatures with reusable
forgeability from [ABC22], and also give a construction that transforms any PoE into a zkPoSW which only
increases the proof size of the PoE by 3 group elements. As before, using Pietrzak's PoE we get short lived
proofs and signatures with shorter forging times and di�erent assumptions than [ABC22].

Watermarkable VDFs. We construct the �rst general watermarkable VDF scheme from any PoE in

hidden order groups. In this construction the proof of the statement x2T = y is computed as follows:

1. Sample a random r ← ±[2λ].

2. Compute x′ := xr and y′ := yr.

3. Compute a PoE proof πPoE for the statement (x′)2
T

= y′.

4. Compute a watermarked zero-knowledge proof of knowledge of r, denoted by πPoK.

5. Publish x, x′, y, y′, πPoE and πPoK.

Watermarking the proof of knowledge is done by including a unique identi�er in the computation of the
random challenge. Watermark unforgeability holds by soundness of the proof of knowledge, a decisional
variant of the discrete log assumption in hidden order groups and a decisional variant of the iterated squaring
assumption: If the proof of knowledge is sound, then the only two ways for an adversary to forge a proof
with its own watermark are the following:

� Find r such that xr = x′ and yr = y′, copy πPoE and honestly compute πPoK. By �nding r, the adversary
�nds a small discrete log of x′ with base x.

� Compute a PoE for a new statement (xr′)2
T

= yr
′
faster than time T . If the adversary is able to do

this, then in particular it can also recognize that y is indeed the result of x2T in time faster than T ,
which breaks the decisional iterated squaring assumption.

The construction in [ABC22] is only slightly more e�cient than ours: It increases the proof size of
Wesolowski's proof by one group element, whereas our construction increases the proof size of a PoE by
four group elements. However, our construction can watermark any PoE, while the construction in [ABC22]
cannot be generalized to other PoEs than Wesolowski's. Further, the watermarkable VDF in [ABC22] cannot
reveal the output of the iterated squaring instance since it is based on a zero knowledge VDF, which may
be undesirable for other applications.

Zero-Knowledge VDFs. We construct the �rst general zero-knowledge VDF scheme from any PoE in
hidden order groups. It is similar to the watermarkable VDF construction but instead of publishing the

element y, the prover just proves knowledge of y. In this construction the proof of the statement x2T = y is
computed as follows:

1. Sample a random r ← ±[2λ].

2. Compute x′ := xr and y′ := yr.

3. Compute a PoE proof πPoE for the statement (x′)2
T

= y′.

4. Compute a zero-knowledge proof of knowledge of y and r, denoted by πPoK.

4

5. Publish x, x′, y, y′, πPoE and πPoK.

To prove that this scheme is zero-knowledge, we need to give the simulator a precomputed pair x∗, y∗ and

a PoE for the statement (x∗)2
T

= y∗. Then it can output a simulated proof simply by forging the proof of
knowledge of y and r. We need to rely on a decisional version of the discrete log assumption in hidden order
groups so that the adversary cannot decide if there exists a small discrete log between elements x∗ and x
or not. The bottleneck of this construction is the zero-knowledge proof of knowledge of y and r. We obtain
it by combing Schnorr's protocol with the Guillou-Quisquater protocol for proving knowledge of a s-root in
hidden order groups. In our setting we can only proof soundness of this scheme when using challenge space
{0, 1} and running λ many repetitions, which makes the scheme unpractical.

Zero-Knowledge Proofs of Sequential Work. We salvage the e�ciency of the above scheme by drop-
ping the requirement of a proof of knowledge of y. This means that our construction is not a VDF anymore:

The prover might not know the unique result y = x2T since it can also just compute y′ = (xr)2
T

and output
a valid proof. However, we assume that computing the proof still requires time T , which is su�cient for a

proof of sequential work. We call the assumption that computing (xr)2
T

for an adversarially chosen r ̸= 0
takes T sequential steps generalized iterated squaring assumption. In this construction, given x, the proof of
sequential work is computed as follows:

1. Compute y = x2T together with advice string α.

2. Sample a random r ← ±[2λ].

3. Compute x′ := xr and y′ := yr.

4. Compute a PoE proof πPoE for the statement (x′)2
T

= y′ using α.

5. Compute a zero-knowledge proof of knowledge of r, denoted by πPoK.

6. Publish x, x′, y, y′, πPoE and πPoK.

New Assumptions. As discussed above, we use three assumptions in this work that are natural mod-
i�cations of well-known assumptions but, to the best of our knowledge, have not already been de�ned in
previous work.

� The decisional discrete log assumption with small exponents (de�ned in Section 4) states that given
group elements a, b it's hard to decide if there exists a discrete logarithm w, b = aw even if the discrete
logarithm w is guaranteed to be bounded by 2λ for a security parameter λ (rather than uniform as in
the standard discrete log assumption).

We require this assumption to hold in the groups of unknown order over which the corresponding VDFs
are de�ned. In groups of known order a stronger assumption is sometimes made in Di�e-Hellman key
exchange where, for e�ciency reasons, the exponents are chosen to be random numbers of only, say
275 bits (https://www.rfc-editor.org/rfc/rfc7919#section-5.2). In [Can97] Canetti makes an
even stronger assumption (DHI Assumption II) in groups of order 2q + 1 for a large prime q, which
implies that discrete log is hard even when the set from which the exponent is chosen is �well spread�,
which basically means it can be an arbitrary set of only slightly superpolynomial size.

� The decisional iterated squaring assumption (de�ned in Section 5.2) is the natural decisional variant
of the iterated squaring assumption. It states that given a random x in a group of unknown order, not

only does it take time T to compute y = x2T , but already distinguishing y from z2 for a random z is
hard. The reason we only consider indistinguishability from a random square z2 and not a random z
is that otherwise the e�ciently computable Jacobi symbol could be used to distinguish.

� The generalized iterated squaring assumption (de�ned in Section 7.2) states that given x, computing

a tuple (r, y) such that y = (xr)2
T

requires time T . This generalizes the iterated squaring assumption
where one requires r = 1.

5

https://www.rfc-editor.org/rfc/rfc7919#section-5.2

1.2 Related Work

Time-Release Cryptography. VDFs are an example of timed-release cryptographic primitives [May94].
The �rst such primitives were time-lock puzzles (TLPs) [RSW96] and timed commitments [BN00]. A TLP
can be seen as a delay function that also allows e�cient computation (and hence veri�cation) of its output
via a trapdoor. The TLP from [RSW96] uses repeated squaring as the delay function, with the factorization
of the modulus as the trapdoor. Prior to VDFs the notion of proofs of sequential work (PoSWs) was
introduced by Mahmoody, Moran and Vadhan [MMV13]. Unlike TLPs, PoSWs can be constructed from
random oracles [MMV11]. The construction from [MMV13] is based on random oracles but is not practical
as the prover needs space linear in T to compute the PoSW. A construction using just log(T) space was given
in [CP18]. Constructions with extra properties like being �reversible� [AKK+19] or �incremental� [DLM19]
were proposed shortly afterwards. The sloth function of Lenstra and Wesolowski [LW17] is already close to
a unique PoSW. However, veri�cation takes time linear in T . Finally, VDFs were introduced by Boneh et
al. [BBBF18]. Mahmoody, Smith and Wu [MSW20] showed that VDFs cannot be built from hash functions.

Proofs of Exponentiation. One way to obtain practical VDFs is to rely on iterated squaring in a hidden
order group as the delay function and then construct a proof of exponentiation (PoE) to make the result
veri�able. The �rst PoEs were introduced concurrently by Wesolowski [Wes19] and Pietrzak [Pie19]. Block
et al. [BHR+21] presented the �rst statistically-sound PoE in any group, which they use to build polynomial
commitment schemes. The PoE in [HHK+22] is built on their protocol and reduces the complexity, whenever
the exponent can be chosen in a special way. [HHKK23] construct a PoE in an extension �eld of ZN to build
a VDF from a potentially weaker assumption than iterated squaring. In [HHKP23] a PoE for Proth number
groups is given to certify proofs of non-primality. Batching protocols for PoEs can be found in [Rot21] and
[HHI24].

Other Veri�able Delay Functions. There are several candidate VDFs not based on iterated squaring,
such as the isogenies-based constructions [DMPS19, Sha19, CSRHT22], the permutation-polynomial based
construction [BBBF18] and the constructions from lattice problems [LM23, CLM23]. Freitag, Pass and
Sirkin [FPS22] constructed VDFs from any sequentially hard function and polynomial hardness of learning
with errors. While some of the above construction possibly provide post quantum security, they are currently
not as e�cient as the VDFs built from iterated squaring. Other VDF candidates rely on �arithmetization
friendly� symmetric primitives and practically e�cient SNARKs [BBBF18, SB19, KMT22].

Time-Based Deniability. Baldimtsi et al. [BKZZ16] build so called proofs of work or knowledge, with
which a prover can prove that they either know the witness of a statement or it has solved a proof of work
puzzle. However, in their work both cases are indistinguishable from the beginning, whereas in short-lived
proofs the cases are indistinguishable only after time T has passed. Specter, Park and Green [SPG21] build
protocols that prove that either a prover knows the witness of a statement or it has seen a value released at
time T . Ferrari, Géraud and Sirkin [FGN15] construct fading signatures that also lose validity after a certain
amount of time based on the RSW time-lock puzzle. However, they need to rely on a trusted authority that
knows a trapdoor and they need that the veri�er is more powerful than the prover.

Colburn [Col18] constructs short-lived proofs and signatures from proofs of work in his master thesis.
The proofs of work in his thesis consist of �nding preimages of hash functions and are thus parallelizable.

Wesolowski [Wes19] was the �rst one to use VDFs as a building block for time-based deniability. He
presents an identi�cation protocol based on a trapdoor VDF that loses its validity after time T . Finally,
Arun, Bonneau and Clark [ABC22] were the �rst ones to build general short-lived proofs and signatures
from VDFs.

6

2 Preliminaries

In the rest of the paper, we let λ denote a security parameter. We use [n] := {1, . . . , n} to denote the set of
all positive integers smaller than or equal to n.

2.1 Relations and Interactive Proofs

A relation R ⊂ X ×W is a set of pairs (x,w), where x is called the instance and w is called the witness.
The set of all values x for which there exists a witness w such that (x,w) ∈ R is called the language LR for
R.

De�nition 1 (interactive proof). For a function ε : N → [0, 1], an interactive proof for a relation R is a
pair of interacting PPT algorithms (P,V), called the prover and the veri�er, where P takes as input a pair
(x,w) ∈ R and V takes as input x. We require the algorithms to satisfy the following properties

� Completeness: For every x ∈ LR, if V interacts with P on the common instance x, then V accepts
with probability 1.

� Soundness: For every x ̸∈ LR and every cheating prover strategy P̃, the acceptance probability of
the veri�er V when interacting with P̃ is less than ε(|x|), where ε is called the soundness error.

De�nition 2 (proof of knowledge). A proof of knowledge is an interactive proof that is knowledge sound,
i.e., for (potentially malicious) prover P∗ that makes V accept proof π for instance x of bit-length n with
probability δ, there exists an e�cient extractor E , which can interact with P∗ and outputs a witness w such
that (x,w) ∈ R with probability at least (δ−ε)/poly(n), where poly is some positive polynomial and ε ∈ [0, 1]
is called the soundness error.

De�nition 3 (honest veri�er zero-knowledge proof). An honest veri�er zero-knowledge proof is an interac-
tive proof that is zero knowledge, i.e., there exists an e�cient simulator S that, given instance x and a value
r, can output an accepting transcript for x with veri�er's message r which is indistinguishable from a real
transcript with an honest veri�er.

It is well known that any constant round interactive proof in which the veri�er messages only consist
of random elements can be transformed into a non-interactive proof via the Fiat-Shamir heuristic [FS87]
by deriving the veri�er's messages via a suitable hash function. If the interactive proof is honest veri�er
zero-knowledge, the non-interactive version is fully zero-knowledge (i.e., no assumption on the behavior of
the veri�er is needed) in the random oracle model. In the random oracle model the hash function is modelled
as a publicly available random function O. The simulator S has programmable access to O, which means
that it can set the output of O to a value of its choice as long as the distribution of the output values is
uniform.

De�nition 4 (proof of exponentiation). A proof of exponentiation (PoE) in a group G is an interactive
proof for the language

L = {(x, y, e) ∈ G2 × N | xe = y}.

2.2 Veri�able Delay Functions

Veri�able Delay Functions were introduced by Boneh et al. in [BBBF18].

De�nition 5. A veri�able delay function (VDF) is a set of algorithms (Setup, Eval, Prove, Verify), where

Setup(1λ, T)→ pp on input statistical security parameter 1λ and time parameter T outputs public param-
eters pp.

Eval(pp, x)→ (y, α) on input (pp, x, T) outputs (y, α), where α is an advice string.

7

Prove(pp, x, y, α)→ (y, π) outputs a proof π for y.

Verify(pp, x, y, π)→ accept/reject checks that y = Eval(pp, x).

The algorithm Eval can compute the output y in T sequential steps. A VDF must additionally satisfy
three properties:

Completeness: For all tuples (pp, x, y, π), where y = Eval(pp, x) and π = Prove(pp, x, y, α), algorithm
Verify(pp, x, y, π) outputs accept.

Sequentiality: Any parallel algorithm that uses at most poly(λ) processors and outputs y = Eval(pp, x)
with noticeable probability runs in time at least T .

Soundness: If Verify(pp, x, y, π) outputs accept, then the probability that y ̸= Eval(pp, x) is negligible.

2.3 Assumptions

In this paper we need the following well-known assumptions in hidden-order groups. In Sections 4, 5.2
and 7.2 we state the novel assumption that we need.

De�nition 6 (strong RSA assumption). Let GGen(1λ) be a randomized algorithm that outputs the de-
scription of a hidden-order group G. We say that the strong RSA assumption holds for GGen if, for any
probabilistic polynomial-time algorithm A, the probability of winning the following game is negligible in λ:

1. A takes as input the description of a group G output by GGen(1λ) and an element a ∈ G.

2. A outputs a pair (e, b) ∈ Z×G.

3. A wins if and only if e ̸= 1 and be = a.

The following assumption, which was �rst formalized in [BBF18], states that it is (computationally) hard
to �nd elements of low order. Note that our assumption is a bit stronger than theirs because our upper bound
on the order is 23λ+2, while they assume the upper bound 2λ. There are groups in which this assumption
holds information theoretically because such elements do not exist: The group of signed quadratic residues
QR+

N of an RSA integer N = pq, where p and q are safe primes, i.e., p = 2p′ + 1 and q = 2q′ + 1 for some
primes p′, q′ that are larger than 23λ+2.

De�nition 7 (low order assumption). Let GGen(1λ) be a randomized algorithm that outputs the description
of a hidden-order group G. We say that the low order assumption holds for GGen if, for any probabilistic
polynomial-time algorithm A, the probability of winning the following game is negligible in λ:

1. A takes as input the description of a group G output by GGen(1λ).

2. A outputs a pair (d, a) ∈ [23λ+2]×G.

3. A wins if and only if a ̸= 1 and ad = 1.

The following assumption was �rst stated by Rivest, Shamir and Wagner [RSW96].

De�nition 8 (iterated squaring assumption). Let GGen(1λ) be a randomized algorithm that outputs the
description of a hidden-order group G. We say that the iterated squaring assumption holds for GGen if, for
any probabilistic parallel algorithm A that uses at most poly(λ) processors and runs in time less than T , the
probability of winning the following game is negligible in λ:

1. A takes as input the description of a group G output by GGen(1λ), a random group element x and an
integer T .

2. A wins if it outputs element y = x2T .

8

Instance: (a1, a2,G), where a1, a2 ∈ G

Parameters: statistical security parameter λ

Witness: Exponent w ∈ ±[2λ] such that aw1 = a2 in G

Protocol:

1. P samples t← ±[23λ] uniformly at random, computes b := at1 and sends it to V.

2. V samples c← [2λ] uniformly at random and sends it to P.

3. P computes s := t+ cw and sends it to V.

4. V checks if s ∈ ±[23λ+1] and as1 = bac2 and outputs accept or reject accordingly.

Figure 1: Proof of Knowledge of Discrete Log [Sch91, KTY04].

Remark 1. We note that, strictly speaking, the iterated assumption as stated above does not hold. Bernstein
and Sorenson [BS07] showed that one can reduce the sequential time of computing an iterated squaring

instance x2T from T to T/ log log(T) using at least T 2 processors. While this is a nice theoretical result, it
is not practical in our setting. In practice the time parameter T will be at most 232, so the algorithm by
Bernstein and Sorenson can reduce the sequential time by at most a factor of 6, for which it would need at
least T 2 = 264 processors. For simplicity we will ignore this log log(T) factor in the rest of the paper.

2.4 The Group of Signed Quadratic Residues

One example of a hidden order group that has useful properties is the group of signed quadratic residues [FS00,
HK09] with a safe prime modulus. We call a prime number p safe if p = 2p′ + 1 for a prime number p′. We
say that N = pq is a safe prime modulus, if both p and q are safe primes. Let Z∗

N denote the multiplicative
group modulo N . The group of quadratic residues modulo N is de�ned as QRN := {a2 mod N : a ∈ Z∗

N}
and the group of signed quadratic residues is de�ned as

QR+
N := {| b |: b ∈ QRN},

where | b | is the absolute value of b when representing the elements of ZN as {−(N − 1)/2, . . . , (N − 1)/2}.
QR+

N is a cyclic group with group operation a ◦ b :=| a · b mod N |. Unlike in QRN , membership in QR+
N

can be e�ciently tested: We have that b ∈ QR+
N if 0 ≤ b ≤ (N − 1)/2 and the Jacobi symbol of b modulo N

is +1.

3 Three Zero-Knowledge Proofs of Knowledge

We begin by presenting three zero-knowledge proofs of knowledge. We need the �rst one to construct a
zero-knowledge proof of sequential work in Section 7, the second one to construct a watermarkable VDF in
Section 5 and the third one to construct a zero-knowledge VDF in Section 6. The proofs of knowledge are
not tight : while the size of the witness of an honest prover is bounded by 2λ, the extractor might extract a
witness of size up to 23λ+2. We will see later that this is su�cient for our applications.

3.1 Proof of Knowledge of Discrete Log

In Figure 1 we present Schnorr's protocol [Sch91] in hidden order groups. We use it as a building block to
construct the zero knowledge PoSW in Section 7. Schnorr originally de�ned and analyzed the protocol in
prime order groups. Later, Kiayias, Tsiounis and Yung [KTY04] proved that it is also secure in hidden order

9

groups, where knowledge soundness is based on the strong RSA assumption. We note that the soundness
property only guarantees knowledge of an exponent in ±[23λ+2] instead of ±[2λ]. This is su�cient for our
application. The authors of [CPP17] claim that knowledge soundness of the protocol can be based on the
RSA assumption instead of the Strong-RSA assumption but we are not aware of a formal proof.

Theorem 1 ([KTY04]). Under the strong RSA assumption, the protocol in Figure 1 is an honest veri�er

zero-knowledge proof of knowledge with soundness error 1/2λ. The soundness property guarantees knowledge
of an exponent in ±[23λ+2].

Theorem 1 is a special case of [KTY04, Theorem 10]. For completeness we restate the proof for this case.

Proof of Theorem 1. Completeness follows by inspection of the protocol. To prove knowledge soundness
we construct an extractor E that outputs a witness w given two accepting transcripts (a1, a2, b1, c, s) and

(a1, a2, b1, c
∗, s∗). Since both transcripts are accepting, it holds that as−s∗

1 = ac−c∗

2 . Let γ = gcd(s−s∗, c−c∗)
and α, β be such that γ = α(s−s∗)+β(c− c∗). With high probability it holds that γ is coprime to the order
of G since otherwise we could factor the group order and in particular break the strong RSA assumption.
We thus have

a
s−s∗

γ

1 = a
c−c∗

γ

2

and hence

a1 = a
α s−s∗

γ +β c−c∗
γ

1 = (aα2 a
β
1)

c−c∗
γ .

Now if c− c∗ > γ, we can transform the prover into an algorithm that breaks the strong RSA assumption:
aα2 a

β
1 is the (c − c∗/γ)-root of a1. We therefore have that c − c∗ = γ and hence w = (s − s∗/c − c∗) is the

discrete log of a2 with base a1. Since s, s′ ∈ ±[23λ+1] we have that w ∈ ±[23λ+2].
It remains to prove that the protocol is honest veri�er zero knowledge. Consider the simulator S that

takes as input a tuple (a1, a2, c
∗), samples s∗ ← ±[23λ] uniformly at random and computes b∗ = as1a

−c
2 . To

prove that this transcript is indistinguishable from a real transcript, we show that the statistical distance of
the random variable s∗ ← ±[23λ] to the random variable s = t + cw for a �xed w ∈ ±[22λ] and uniformly
random t ← ±[23λ] and c ← [2λ] is negligible. Since s∗ is distributed uniformly over ±[23λ], it takes each
value in this set with probability 1/23λ+1. Now consider the distribution of s. Any value in the range
[−23λ + 22λ, 23λ − 22λ] is selected with probability 2λ/(2λ23λ+1) = 1/23λ+1 since for any choice of c we can
�nd a t that yields the respective value. On the rest of the values the distributions might di�er. If follows
that the statistical distance of the two distributions is at most

1− 23λ+1 − 22λ+1

23λ+1
=

1

2λ
.

3.2 Proof of Knowledge of Same Discrete Log

The main tool in our construction of a watermarkable signature scheme is a proof of knowledge of the same
discrete log for two di�erent bases. The protocol is a special case of the general proof of knowledge for
�discrete-log relations sets� introduced by Kiayias, Tsiounis and Yung in [KTY04]. It was �rst constructed
in prime order groups by Chaum and Pederson [CP93] We present it in Figure 2.

Theorem 2 ([KTY04, Theorem 10]). Under the Strong-RSA assumption, the protocol in Figure 2 is an hon-

est veri�er zero-knowledge proof of knowledge with soundness error 1/2λ. The soundness property guarantees
knowledge of an exponent in ±[23λ+2].

Theorem 2 is a special case of [KTY04, Theorem 10]. The proof is very similar to the proof of Theorem 1
so we omit it. To make the protocol non-interactive, we apply the Fiat-Shamir heuristic, i.e., we replace the
challenge sent by the veri�er by a hash of the instance, the �rst message and an identi�er ID of the prover.
The protocol can be found in Figure 3. In our application to watermarkable VDFs, we need this protocol
to be watermarked. We achieve this by including an ID of the prover in the input of the hash function that
computes the Fiat-Shamir challenge.

10

Instance: (a1, a2, a3, a4,G), where a1, a2, a3, a4 ∈ G

Parameters: statistical security parameter λ

Witness: Exponent w ∈ ±[2λ] such that aw1 = a2 and aw3 = a4 in G

Protocol:

1. P samples t← [23λ] uniformly at random, computes b1 := at1 and b2 := at3 and sends (b1, b2) to V.

2. V samples c← [2λ] uniformly at random and sends it to P.

3. P computes s := t+ cw and sends it to V.

4. V checks if s ∈ ±[23λ+1], as1 = b1a
c
2 and as3 = b2a

c
4 holds and outputs accept or reject accordingly.

Figure 2: Proof of Knowledge of same discrete log [KTY04]

Instance: (a1, a2, a3, a4, ID,G), where a1, a2, a3, a4 ∈ G and ID is a unique identi�er of P

Parameters: statistical security parameter λ, hash function H

Witness: Exponent w ∈ [2λ] such that aw1 = a2 and aw3 = a4 in G

Protocol:

1. P samples t← [23λ+1] uniformly at random and computes b1 := at1 and b2 := at3.

2. P computes c := H(a1, a2, a3, a4, b1, b2, ID)

3. P computes s := t+ cw and publishes (b1, b2, c, s) as the proof.

4. To check the proof (b1, b2, c, s), V checks if H(a1, a2, a3, a4, b1, b2, ID) = c, s ∈ ±[23λ+1] and if both
as1 = b1a

c
2 and as3 = b2a

c
4 hold and outputs accept or reject accordingly.

Figure 3: PoKsDL: The watermarked non-interactive Proof of Knowledge of same discrete log

11

Instance: (a1, a2, a4,G), where a1, a2, a4 ∈ G

Parameters: statistical security parameter λ

Witness: Element a3 and exponent w ∈ ±[2λ] such that aw1 = a2 and aw3 = a4 in G

Protocol: P and V repeat the following procedure λ times:

1. P samples a5 ← G uniformly at random, computes b1 := aw5 and sends b1 to V.

2. V samples a bit b← {0, 1} uniformly and random and sends it to P.

3. P samples t← ±[23λ] uniformly at random, computes a6 := a5a
b
3, b2 := at1 and b3 := at6 and sends

(a6, b2, b3) to V.

4. V samples c← [2λ] uniformly at random and sends it to P.

5. P computes s := t+ cw and sends it to V.

6. V checks if s ∈ ±[23λ+1], as1 = b2a
c
2 and as6 = b3(b1a

b
4)

c hold and outputs accept or reject

accordingly.

Figure 4: Proof of Knowledge of same discrete log with one hidden base

3.3 Proof of Knowledge of Same Discrete Log with one Hidden Base

In our zero-knowledge VDF construction we need a proof of knowledge that's similar to the one in the last
section but without revealing element a3. The protocol is given in Figure 4. It is a combination of the
protocol in Figure 2 and the well-known Guillou-Quisquater protocol [GQ90] for proving knowledge of a
root.

Theorem 3. Under the Strong-RSA assumption, the protocol in Figure 4 is an honest veri�er zero-knowledge

proof of knowledge with soundness error 1/2λ. The soundness property guarantees knowledge of an exponent

in ±[23λ+2].

Proof. Completeness follows by inspection of the protocol. To prove knowledge soundness we consider one of
the λ many executions. We construct an extractor E that outputs a witness (w, a3) given four accepting tran-
scripts (b1, 0, a6, b2, b3, c, s), (b1, 0, a6, b2, b3, c

∗, s∗), (b1, 1, a
∗
6, b

∗
2, b

∗
3, c

∗∗, s∗∗) and (b1, 1, a
∗
6, b

∗
2, b

∗
3, c

∗∗∗, s∗∗∗). E
�rst extracts w and then a3.

1. Since the �rst and the second transcripts are accepting, it holds that as−s∗

1 = ac−c∗

2 . Let γ = gcd(s−
s∗, c− c∗) and α, β be such that γ = α(s− s∗) + β(c− c∗). Then we have

a
s−s∗

γ

1 = a
c−c∗

γ

2

and hence

a1 = a
α s−s∗

γ +β c−c∗
γ

1 = (aα2 a
β
1)

c−c∗
γ .

Now if c−c∗ > γ, we can transform the prover into an algorithm that breaks the strong RSA assumption:
aα2 a

β
1 is the (c− c∗/γ)-root of a1. We therefore have that c− c∗ = γ and hence w = (s− s∗/c− c∗) is

the discrete log of a2 with base a1 and the discrete log of b1 with base a6. By the same argument we
get that w = (s∗∗ − s∗∗∗/c∗∗ − c∗∗∗) is the discrete log of b1a4 with base a∗6.

2. Now consider the second and third transcript. We have seen above that aw6 = b1 and (a∗6)
w = b1a4.

This means that a∗6/a6 is a w-root of a4.

12

It remains to prove honest veri�er zero-knowledge. Given (a1, a2, a4, b, c), the simulator S constructs an
accepting transcript (b1, b, a6, b2, b3, c, s) as follows: It �rst samples s ← ±[23λ] and a6 ← G uniformly at
random. If b = 0, S samples e ← ±[2λ] uniformly at random and sets b1 = ae6. If b = 1, it samples b1 ← G
uniformly at random. Finally, S computes b2 = as1a

−c
2 and b3 = as6b

−c
1 a−bc

4 . Indistinguishability follows
since the distribution of the simulated s has statistical distance 1/2λ from the distribution of an honestly
computed s as we have seen in the proof of Theorem 1.

4 Modi�ed Discrete-Log Assumptions

In our constructions we need to rely on the assumption that it is hard to recognize whether there exists a
small discrete log between two given elements or not. Note that this is easy in one case: Given two elements
a, b ∈ G, where a is a square and b is a non-square, there exists no discrete log of b to base a since a raised
to any power yields a square. We assume that it is hard in all other cases.

De�nition 9 (discrete log assumption with small exponents). Let GGen(1λ) be a randomized algorithm
that outputs the description of a hidden-order group G. We say that the discrete log assumption with small

exponents holds for GGen if, for any probabilistic polynomial-time algorithm A, the probability of winning
the following game is negligible in λ:

1. A takes as input the description of a group G output by GGen(1λ), and two elements a, b ∈ G, where
a is uniformly random and b = aw for some w ∈ ±[2λ−1].

2. A outputs an integer w′ ∈ ±[2λ−1].

3. A wins if and only if b = aw
′
.

De�nition 10 (decisional discrete log assumption with small exponents). Let GGen(1λ) be a randomized
algorithm that outputs the description of a hidden-order group G. We say that the decisional discrete log

assumption with small exponents holds for GGen if, for any probabilistic polynomial-time algorithm A, the
probability of winning the following game is negligible in λ:

1. A takes as input the description of a group G output by GGen(1λ), and two elements a, b ∈ G, where
a is uniformly random and for b there are two possibilities of probability 1/2 each: Either b = aw for

some w ∈ ±[2λ−1] or b = z2
b

for a uniformly random group element z ∈ G, where b = 1 if a is a square
and b = 0 if not.

2. A outputs 0 or 1 indicating whether or not b = aw for some w ∈ ±[2λ−1].

3. A wins if and only if it outputs the correct bit with probability greater than 1/2.

Remark 2 (the special case of QR+
N). Note that the decisional discrete log assumption with small exponents

holds information theoretically in the group of signed quadratic residues QR+
N , where N is a safe prime

modulus, whenever the group order of QR+
N is at least 2λ. This is because in this group almost all elements

are generators and all elements are squares. Hence, if you pick two random group elements, the discrete log
of one element to the base the other element exists with high probability so the two cases in the assumption
are statistically indistinguishable.

Further, in this case, we have a straightforward reduction from the strong RSA assumption to the
discrete log assumption with small exponents: Given a random group element g, one can solve the strong
RSA challenge by sampling a random group element h and sending (h, g) to the adversary A that breaks the
discrete log assumption with small exponents. When A outputs w, the reduction sends (w, h) to the strong
RSA challenger.

13

5 Watermarkable VDFs

In this section we show how to transform any PoE into a watermarkable VDF. We begin by recalling the
de�nition of watermarkable VDFs.

5.1 De�nition

Watermarkable veri�able delay functions were informally introduced by Wesolowski [Wes19]. The �rst formal
de�nition was given by Arun, Bonneau and Clark in [ABC22].

De�nition 11. A watermarkable VDF is a set of algorithms (Setup, Eval, WatermarkProve, Verify),
where

Setup(1λ, T)→ pp on input statistical security parameter 1λ and time parameter T outputs public param-
eters pp.

Eval(pp, x)→ (y, α) on input (pp, x, T) outputs (y, α), where α is an advice string.

WatermarkProve(pp, x, µ, y, α)→ (y, πµ) outputs a proof for y with embedded watermark µ.

Verify(pp, x, µ̃, y, πµ)→ accept/reject checks that y = Eval(pp, x) and that the watermark µ̃ is embed-
ded in πµ.

The algorithm Eval can compute the output y in T sequential steps. A watermarkable VDF must
additionally satisfy four properties: The security properties of a basic VDF and watermark unforgeability.
We state them informally below. The formal de�nitions can be found in [BBBF18] and [ABC22].

Completeness: For all tuples (pp, x, µ, y, πµ), where y = Eval(pp, x) and πµ = WatermarkProve(pp, x, µ, y, α),
algorithm Verify(pp, x, µ, y, πµ) outputs accept.

Sequentiality: Any parallel algorithm that uses at most poly(λ) processors and outputs y = Eval(pp, x)
with noticeable probability runs in time at least T .

Soundness: If Verify(pp, x, µ̃, y, πµ) outputs accept, then the probability that y ̸= Eval(pp, x) is negli-
gible.

Watermark Unforgeability: For any pair of algorithms (A0,A1), where A0 runs in time O(poly(T, λ))
and A1 runs in time less than T , the probability that (A0,A1) wins the following game is negligible:

1. The challenger C runs Setup(1λ, T)→ pp and sends pp to (A0,A1).

2. Precomputation algorithm A0(pp) outputs advice string α̃.

3. Challenger C samples a random input x, runs Eval(pp, x)→ (y, α) and sends (x, y, α̃) to A1.

4. Online algorithmA1 sends q many watermark queries µi to C and obtains WatermarkProve(pp, x, µi, y, α)→
πµi

.

5. AlgorithmA1 outputs a forgery pair (µ∗, πµ∗) and wins if µ∗ ̸= µi for all i ∈ [q] and Verify(pp, x, µ̃, y, πµ)
outputs accept.

5.2 The Decisional Iterated Squaring Assumption

For security of our construction we need to make the assumption that the decisional version of the iterated
squaring assumption is also hard. We consider an adversary that gets as input a pair of group elements

(x, y) and needs to decide whether or not y = x2T . The YES instances are pairs (x, x2T) for a uniformly
random group element x. The NO instances are pairs (x, z2) for uniformly random group elements x and z.

Note that it is necessary to square the element z because x2T is a square and in RSA groups one can rule
out that an element is a square, whenever its (e�ciently computable) Jacobi symbol is −1.

14

Setup(1λ, T)→ pp = (G, H) outputs a �nite abelian group G of unknown order and an e�ciently
computable hash function H.

Eval(pp, x)→ (y, α) on input (pp, x, T) outputs (y, α), where y = x2T and α is an advice string for
PoE.

WatermarkProve(pp, x, ID, y, α)→ (y, πµ) outputs y and

πµ = (x′, y′, PoKsDL(pp, x, x′, y, y′, ID), PoE(pp, x′, y′, T, α)),

where x′ := xr and y′ := yr for some uniformly random r ← ±[2λ].

Verify(pp, x, µ̃, y, πµ)→ accept/reject checks if both PoKsDL(pp, x, x′, y, y′, ID) and
PoE(pp, x′, y′, T)) verify.

Figure 5: A Watermarkable VDF from any proof of exponentiation PoE using the proof of knowledge PoKsDL
presented in Figure 3.

De�nition 12 (decisional iterated squaring assumption). Let GGen(1λ) be a randomized algorithm that
outputs the description of a hidden-order group G. We say that the decisional iterated squaring assumption

holds for GGen if, for any probabilistic parallel algorithm A that uses at most poly(λ) processors and runs in
time less than T , the probability of winning the following game is negligible in λ:

1. A takes as input the description of a group G output by GGen(1λ), a random group element x, an
integer T and a group element y which, with probability 1/2 each, takes one of the following two

forms: either y = z2 for a uniformly random group element z or y = x2T .

2. A outputs 0 or 1 indicating whether or not y = x2T .

3. A wins if it outputs the correct bit with probability greater than 1/2.

5.3 Construction

In Figure 5 we present our watermarkable VDF. The main idea is to randomize the instance (x, y) to

(x′, y′) := (xr, yr) with a secret exponent r and then provide a PoE for the statement (x′)2
T

= y′ and
a watermarked proof of knowledge for r using the protocol in Figure 2. We present the protocol as non-
interactive since only non-interactive proofs need to be watermarked.

Theorem 4. Let PoE be a complete and sound proof of exponentiation. The algorithms in Figure 5 de�ne a

sound and complete VDF, relative to the iterated squaring assumption, the strong RSA assumption and the

low order assumption.

Proof. Sequentiality of the VDF follows immediately from the iterated squaring assumption. Completeness
follows by inspection of the protocol from the completeness property of PoE. Soundness follows from the low
order assumption, the strong RSA assumption and soundness of PoE. To see this, we show how to transform
an adversary A that outputs an accepting proof

πµ = (x′, y′, PoKsDL(pp, x, x′, y, y′, ID), PoE(pp, x′, y′, T))

with x2T ̸= y with probability δ into an adversary B that breaks either the low order assumption, the strong
RSA assumption or soundness of PoE with probability δ. The adversary B does the following:

1. Try to extract the secret exponent r from PoKsDL. If this is not possible, use A to break the strong
RSA assumption similar to the proof of Theorem 2.

15

2. If r is extractable, compute ỹ := x2T and α := ỹy−r. If α ̸= 1, check if αr = 1. If so, then α is
an element of low order and r is a multiple of its order. B outputs (α, r) and breaks the low order
assumption.

3. If α = 1 or αr ̸= 1, then (x′)2
T ̸= y′, so PoE(pp, x′, y′, T) is a proof for a false statement, which is a

contradiction to the assumption that PoE is sound.

Whenever the proof output by A is accepting but x2T ̸= y, algorithm B terminates in one of the steps,
which concludes the proof.

Remark 3 (On the running time of algorithm B). Note that in the above proof the running time of algorithm
B might be linear in the time parameter T because it needs to solve an iterated squaring instance in the
second step. This means that, to break the low order assumption or the soundness of the PoE, it needs at
least time T . Giving an adversary time linear in T to break the soundness of the PoE is necessary for a
meaningful soundness de�nition since an honest prover also needs time T to compute the result of an instance
and the corresponding proof. Giving an adversary against the low order assumption time T to break it, is
in line with its usage in the literature (see [Wes19, Pie19], where it is needed for soundness of PoEs). If B
breaks the strong RSA assumption it is much faster since it never gets to step 2. In particular, we have that
its running time is independent of T in this case.

Theorem 5. Let PoE be a complete and sound proof of exponentiation. The VDF de�ned by the algorithms

in Figure 5 is watermark unforgeable in the random oracle model, relative to the strong RSA assumption,

the decisional discrete log assumption with small exponents and the decisional iterated squaring assumption.

Proof. We show how to transform an adversary A that wins the watermark unforgeability game with proba-
bility δ into an adversary B that breaks either the soundness of PoKsDL (and hence the strong RSA assump-
tion), the discrete log assumption or the decisional iterated squaring assumption with probability δ/2.

1. Let q be the number of queries that A is allowed to make. Upon receiving as input a group G and
a time parameter T , B precomputes q′ tuples {(xi, yi, PoE(pp, xi, yi, T))}i∈[q′], where for all i ∈ [q′],

xi ← G is a uniformly random group element, yi = x2T

i and PoE(pp, xi, yi, T) is an honestly computed
proof of exponentiation. Call L the list of those tuples. B computes those tuples until L contains q
entries in which xi is a square.

2. B gets as input a discrete log challenge (g, ga), where g is a random group element in G and a is a
random number in ±[2λ−1]. Note that by the decisional discrete log assumption with small exponents,
B should not be able to �nd a.

3. B sends G to A0 and obtains advice string α̃.

4. B gets as input a decisional iterated squaring challenge consisting of two group elements xd, yd that

are either uniformly random elements in G or xd is uniformly random in G and yd = x2T

d

5. To simulate the watermark unforgeability game for the statement x2T = y, it chooses one of the
following two strategies at random, each with probability 1/2. Note that B can always forge a proof of
knowledge of same discrete log since PoKsDL is honest veri�er zero-knowledge and the random oracle
is programmable.

Strategy 1: Compute y := g2
T

and y′ := (ga)2
T

and send (G, H, g, y, α̃) to A1. When A1 makes a
watermark query IDi, sample a random r ← ±[2λ−1], forge PoKsDL(pp, g, ga+r, y, (y′)r, IDi) and
compute PoE(pp, ga+r, (y′)r, T). Send

πi := (ga+r, (y′)r, PoKsDL(pp, g, ga+r, y, (y′)r, IDi), PoE(pp, g
a+r, (y′)r, T))

to A1. If A1 wins the game, it outputs

(ID∗, π∗ = (x∗, y∗, PoKsDL(pp, g, x∗, y, y∗, ID∗)), PoE(pp, x∗, y∗, T)).

16

If (x∗, y∗) ̸= (xi, yi) for all i ∈ [q], abort. Else, let ℓ ∈ [2λ] be such that (x∗, y∗) = (ga+ℓ, (y′)ℓ). B
tries to extract a+ ℓ from PoKsDL. If it is successful, it subtracts ℓ from the extracted value and
outputs a, thereby breaking the the discrete log assumption. If it is not able to extract, it can
use A to break the strong RSA assumption similiar to the proof of Theorem 2.

Strategy 2: Send (pp, xd, yd, α̃) to A1. If xd is a square, remove all tuples (xi, yi, PoE(pp, xi, yi, T)),
where xi is not a square, from the list L. When A1 makes a watermark query IDi, pick an unused
tuple (xi, yi, PoE(pp, xi, yi, T)) from L, forge PoKsDL(pp, xd, xi, yd, yi, IDi) and send

πi := (xi, yi, PoKsDL(pp, xd, xi, yd, yi, IDi), PoE(pp, xi, yi, T))

to A1. By the decisional discrete log assumption with small exponents and the zero-knowledge
property of PoKsDL, πi is indistinguishable from an honestly computed watermarked proof. If A1

outputs
(ID∗, π∗ = (x∗, y∗, PoKsDL(pp, xd, x∗, yd, y∗, ID∗), PoE(pp, x∗, y∗, T)),

check if (x∗, y∗) = (xi, yi) for some i ∈ [q] and abort if it holds. Otherwise, try to extract the
secret r from PoKsDL. If this is not possible, use A to break the strong RSA assumption as above.

If it is possible, we have that the statement x2T

d = yd holds since the PoE is sound. In this case B
sends 1 to the decisional iterated squaring challenger. If A1 does not output a tuple of the form
above, B sends 0 or 1 to the decisional iterated squaring challenger each with probability 1/2.

If adversary B does not abort in Strategy 1, it breaks either the strong RSA assumption or the decisional
discrete log assumption with small exponents with probability δ. If B does not abort in Strategy 2, it
either breaks the strong RSA assumption with probability δ or it recognizes a true instance in the decisional
iterated squaring game with probability 1/2 + δ/2. Since aborting in Strategy 1 and aborting in Strategy 2
are mutually exclusive, the claim follows.

Remark 4 (On the running time of algorithm B). Note that in the �rst strategy B runs in time linear in T
to break the strong RSA assumption or the discrete log assumption. We therefore need to assume that these
assumptions are secure against adversaries that run in time linear in T , which is at most 232 in practice.

The next corollary follows from the discussion in Remark 2.

Corollary 1. Let PoE be a complete and sound proof of exponentiation and let G = QR+
N , where N is a

safe prime modulus. The construction in Figure 5 is a watermarkable VDF in G relative to the decisional

iterated squaring assumption and the strong RSA assumption.

E�ciency Watermarking a PoE with the construction in Figure 5 increases the complexity of the under-
lying PoE scheme as follows:

� The proof size grows by 4 group elements and one integer of size at most 23λ+1.

� The veri�er needs to perform 4 additional small group exponentiations (with exponents of size at most
23λ+1) and 2 group multiplications.

� The prover needs to perform 4 additional small exponentiations (with exponents of size at most 23lλ).

6 Zero-Knowledge VDFs

6.1 De�nition

Zero-knowledge veri�able delay functions were introduced by Arun, Bonneau and Clark in [ABC22].

De�nition 13. A zero-knowledge VDF is a set of algorithms (Setup, Eval, Prove Verify, Sim), where

17

Setup(1λ, T)→ pp on input statistical security parameter 1λ and time parameter T outputs public param-
eters pp.

Eval(pp, x)→ (y, α) on input (pp, x, T) outputs (y, α), where α is an advice string.

Prove(pp, x, y, α)→ π outputs a proof π of knowledge of element y.

Verify(pp, x, π)→ accept/reject checks that π is a valid proof of knowledge.

Sim(pp, x, c∗, α̃)→ π∗ outputs a simulated proof of knowledge π∗ using randomness c∗ and precomputed
advice string α̃.

The algorithm Eval can compute the output y in T sequential steps. A zero-knowledge VDF must
additionally satisfy four properties: Completeness, sequentiality, knowledge soundness and zero-knowledge.

Completeness: For all tuples (pp, x, y, π), where y = Eval(pp, x) and π = Prove(pp, x, y, α), algorithm
Verify(pp, x, y, π) outputs accept.

Sequentiality: Any parallel algorithm that uses at most poly(λ) processors and outputs y = Eval(pp, x)
with noticeable probability runs in time at least T .

Knowledge Soundness: For any adversary A that outputs a proof π for instance x of bit-length n, such
that Verify(pp, x, π) outputs accept with probability δ, there exists an extractor E that with proba-
bility at least (δ− ε)/poly(n) outputs element y = Eval(pp, x) in time less than T , where poly is some
positive polynomial and ε ∈ [0, 1] is called the soundness error.

Zero Knowledge: There exists a simulator S that, given instance x, randomness c∗ and a precomputed
advice string α̃, outputs a proof π∗ in time less than T such that Verify(pp, x, π∗) outputs accept
and π∗ is indistinguishable from an honestly computed proof.

6.2 Construction

Our construction of a zero-knowledge VDF can be found in Figure 6. We note that this construction can be
transformed into a watermarkable zero-knowledge VDF by including a unique identi�er in the computation
of the randomness in the proof of knowledge of same discrete log. Since this extension is a straightforward
combination of our two constructions, we refrain from analyzing it formally.

Theorem 6. Let PoE be a complete and sound proof of exponentiation. The algorithms in Figure 6 de�ne a

zero-knowledge VDF, relative to the iterated squaring assumption, the strong RSA assumption, the low order

assumption and the decisional discrete log assumption with small exponents.

Proof. Sequentiality of the VDF follows immediately from the iterated squaring assumption. Completeness
follows by inspection of the protocol and from the completeness property of PoE. Knowledge soundness
follows from the low order assumption, the strong RSA assumption and soundness of PoE. To see this, we

describe an extractor E that outputs y = x2T in time less than T by interacting with an adversary A that
outputs an accepting proof

π = (x′, y′, PoKsDLh(pp, x, x′, y′), PoE(pp, x′, y′, T)).

The extractor E �rst tries to extract an exponent r and a base element ỹ from PoKsDLh such that xr = x′ and
ỹr = y′. If this is not possible, it can break the strong RSA assumption similar to the proof of Theorem 3.
Assume that ỹ ̸= y. Then we would have that (ỹ/y)r = 1 and hence ỹ/y would be an element of low order.
Hence, by the low order assumption ỹ = y. Since the running time of the extractor is independent of T ,
knowledge soundness follows.

It remains to prove zero knowledge. Consider the simulator Sim. From the zero-knowledge property of
PoKsDLh and the decisional discrete log assumption with small exponents, we follow that the simulated proof
π∗ is computationally indistinguishable from an honest proof.

18

Setup(1λ, T)→ pp = (G, H) outputs a �nite abelian group G of unknown order and an e�ciently
computable hash function H.

Eval(pp, x, T)→ (y, α) outputs (y, α), where y = x2T and α is an advice string for PoE.

Prove(pp, x, ID, y, α)→ π outputs

π = (x′, y′, PoKsDLh(pp, x, x′, y′), PoE(pp, x′, y′, T)),

where x′ := xr and y′ := yr for a uniformly random r ← ±[2λ].

Verify(pp, x, π)→ accept/reject checks if PoKsDLh(pp, x, x′, y′) and PoE(pp, x′, y′, T) verify.

Sim(pp, x, c∗, x∗
1, y

∗
1 , PoE(pp, x

∗
1, y

∗
1 , T), , x

∗
2, y

∗
2 , PoE(pp, x

∗
2, y

∗
2 , T))→ π∗ on input pp, x, c∗, a random

square x∗
1, a random non-square x∗

2 and the corresponding PoEs, simulates PoKsDLh(pp, x, x∗, y∗)
with randomness c∗ and outputs

π∗ = (x∗, y∗, PoKsDLh(pp, x, x∗, y∗), PoE(pp, x∗, y∗, T)),

for x∗ := x∗
1, if x is a square and x∗ ← {x∗

1, x
∗
2} uniformly random if x is a non-square.

Figure 6: A zero-knowledge VDF from any proof of exponentiation PoE. PoKsDLh is the non-interactive
version of the proof of knowledge presented in Figure 4.

The next corollary follows from the discussion in Remark 2.

Corollary 2. Let PoE be a complete and sound proof of exponentiation and let G = QR+
N , where N is a safe

prime modulus. The construction in Figure 6 is a zero-knowledge VDF in G relative to the iterated squaring

assumption and the strong RSA assumption.

E�ciency Transforming a PoE into a zero-knowledge VDF with the construction in Figure 6 increases
the complexity of the underlying PoE scheme as follows:

� The proof size grows by 4λ+ 2 group elements and λ many integers of size at most 23λ+1.

� The veri�er needs to perform 4λ additional small group exponentiations (with exponents of size at
most 23λ+1) and 3λ group multiplications.

� The prover needs to perform 3λ+ 2 additional small exponentiations (with exponents of size at most
23λ).

7 Zero-Knowledge Proofs of Sequential Work

Our construction of a general zero-knowledge VDF is not practical, with the proof of knowledge of y being
the bottleneck. Without it our construction does not satisfy the de�nition of a zero-knowledge VDF: If the
prover just needed to output x, x′, y′ and a proof of knowledge of r such that xr = x′, then it could �rst raise

x to a random r and then compute y′ = (x′)2
T

. In particular, it would produce the output without ever
knowing y. The main observation in this section is that, while this protocol does not satisfy the de�nition
of a zero-knowledge VDF, it is still su�cient for the application to short-lived proofs presented in [ABC22,
Section 7] because the prover still needs time T to compute the output. The protocol can be found in
Figure 7 and the application to short-lived proofs in the next section.

19

7.1 De�nition

De�nition 14. A zero-knowledge proof of sequential work is a set of algorithms (Setup, Prove Verify,
Sim), where

Setup(1λ, T)→ pp on input statistical security parameter 1λ and time parameter T outputs public param-
eters pp.

Prove(pp, x, y, α)→ π outputs a proof π of sequential work of time T .

Verify(pp, x, π)→ accept/reject checks that π is a valid proof of sequential work.

Sim(pp, x, c∗, α̃)→ π∗ outputs a simulated proof of sequential work π∗ using randomness c∗ and precom-
puted advice string α̃.

The algorithm Eval can compute the output y in T sequential steps. A zero-knowledge proof of sequential
work must additionally satisfy four properties: Completeness, sequentiality, soundness and zero-knowledge.

Completeness: For all tuples (pp, x, y, π), where y = Eval(pp, x) and π = Prove(pp, x, y, α), algorithm
Verify(pp, x, y, π) outputs accept.

Sequentiality: Any parallel algorithm that uses at most poly(λ) processors and outputs π = Prove(pp, x)
with noticeable probability runs in time at least T .

Zero Knowledge: There exists a simulator S that, given instance x and randomness c∗ and a precomputed
advice string α̃, outputs a proof π∗ in time less than T such that Verify(pp, x, π∗) outputs accept
and π∗ is indistinguishable from an honestly computed proof.

7.2 The Generalized Iterated Squaring Assumption

For the security of our construction we need to make the following assumption.

De�nition 15 (generalized iterated squaring assumption). Let GGen(1λ) be a randomized algorithm that
outputs the description of a hidden-order group G. We say that the generalized iterated squaring assumption

holds for GGen if, for any probabilistic parallel algorithm A that uses at most poly(λ) processors and runs in
time less than T , the probability of winning the following game is negligible in λ:

1. A takes as input the description of a group G output by GGen(1λ), a random group element x and an
integer T .

2. A outputs a pair (r, y) ∈ Z×G.

3. A wins if and only if r ̸= 0 and y = (xr)2
T

.

7.3 Construction

Theorem 7. Let PoE be a complete and sound proof of exponentiation. The algorithms in Figure 7 de�ne a

zero-knowledge PoSW, relative to the generalized iterated squaring assumption, the strong RSA assumption

and the decisional discrete log assumption with small exponents.

Proof. Completeness follows by inspection of the protocol and from the completeness property of PoE.
Sequentiality of the PoSW follows from the generalized iterated squaring assumption, the RSA assumption
and soundness of PoE: Assume that an adversary A can output π in time less than T . We construct an
adversary B that breaks either the RSA assumption or the generalized iterated squaring assumption as
follows:

1. B obtains as input a the description of a group G and a generalized iterated squaring challenge x ∈ G.

20

Setup(1λ, T)→ pp = (G, H) outputs a �nite abelian group G of unknown order and an e�ciently
computable hash function H.

Prove(pp, x)→ π outputs

π := (x′, y′, PoKDL(pp, x, x′), PoE(pp, x′, y′, T, α)),

where x′ := xr and for some uniformly random r ← ±[2λ].

Verify(pp, x, π)→ accept/reject checks if both PoKDL(pp, x, x′) and PoE(pp, x′, y′, T)) verify.

Sim(pp, x, c∗, x∗
1, y

∗
1 , PoE(pp, x

∗
1, y

∗
1 , T), x

∗
2, y

∗
2 , PoE(pp, x

∗
2, y

∗
2 , T))→ π∗ on input pp, x, c∗, a random

square x∗
1, a random non-square x∗

2 and the corresponding PoEs, simulates PoKDL(pp, x, x∗) with
randomness c∗ and outputs

π∗ = (x∗, y∗, PoKDL(pp, x, x∗), PoE(pp, x∗, y∗, T)),

for x∗ := x∗
1, if x is a square and x∗ ← {x∗

1, x
∗
2} uniformly random if x is a non-square.

Figure 7: A Zero-Knowledge Proof of Sequential Work from any proof of exponentiation PoE. PoKDL is the
non-interactive version of the proof of knowledge presented in Figure 1.

2. B forwards G and x to adversary A.

3. If A is successful, it outputs a valid proof

π = (x′, y′, PoKDL(pp, x, x′), PoE(pp, x′, y′, T, α)).

4. B �rst tries to extract the secret exponent r from PoKDL. If this is not possible, it can use A to break
the RSA assumption similar to the proof of Theorem 1.

5. If it is possible, B outputs (r, y′) to break the generalized iterated squaring assumption.

The running time of B is independent of T . By soundness of PoE we have that B breaks one of the two
assumptions with the same probability as the winning probability of A. It remains to prove zero knowledge.
Consider the simulator Sim. From the zero-knowledge property of PoKDL and the decisional discrete log
assumption with small exponents, we follow that the simulated proof π∗ is computationally indistinguishable
from an honest proof.

The next corollary follows from the discussion in Remark 2.

Corollary 3. Let PoE be a complete and sound proof of exponentiation and let G = QR+
N , where N is a

safe prime modulus. The construction in Figure 7 is a zero-knowledge PoSW in G relative to the generalized

iterated squaring assumption and the strong RSA assumption.

E�ciency Transforming a PoE into a zero-knowledge proof of sequential work with the construction in
Figure 7 increases the complexity of the underlying PoE scheme as follows:

� The proof size grows by 3 group elements and one integer of size at most 23λ+1.

� The veri�er needs to perform 2 additional small group exponentiations (with exponents of size at most
23λ+1) and 1 group multiplications.

� The prover needs to perform 3 additional small exponentiations (with exponents of size at most 23λ).

21

Setup(1λ, T)→ pp = (pp
zkPoSW

,ppR) = (G, H,ppR) outputs a �nite abelian group G of unknown or-
der, an e�ciently computable hash function H and the public parameters of the proof system for
R.

Precompute(pp
zkPoSW

, T)→ (b∗, y∗, π∗
PoE

) outputs a uniformly random b∗ ← G, y∗ = (b∗)2
T

and π∗
PoE

=
PoE(pp

zkPoSW
, b∗, y∗, T).

Prove(pp, T, x, b, w, b∗, y∗, π∗
PoE

)→ (πzkPoSW, πR) outputs

� Forged
πzkPoSW = (b∗, y∗, PoKDL(pp

zkPoSW
, b, b∗), πPoE),

where PoKDL(pp
zkPoSW

, b, b∗) is forged with challenge c1.

� An honestly computed proof πR with random challenge c2 such that c1+ c2 = c = H(x, b, a),
where a is the �rst element of πR.

Forge(pp, T, x, b)→ (π̃zkPoSW, π̃R) outputs

� Honestly computed

π̃zkPoSW = (b′, y′, PoKDL(pp
zkPoSW

, b, b′), PoE(pp
zkPoSW

, b′, y′, T))

with random challenge c1.

� A forged proof π̃R with challenge c2 such that c1 + c2 = c = H(x, b, a), where a is the �rst
element of πR.

Verify(pp, x, πzkPoSW, πR)→ accept/reject checks πzkPoSW and πR and outputs accept if and only if
both proofs verify.

Figure 8: A short-lived proof from our zero knowledge PoSW.

8 Short-Lived Proofs from our Zero-Knowledge PoSW

In this section we discuss how one can use our zero knowledge PoSW in the short-lived proof construction of
[ABC22]. The main idea in the construction of [ABC22] is to transform any sigma protocol Σ for a relation
R into a short lived proof for R by combining Σ with a zero-knowledge VDF (which is also a sigma protocol)
via the standard OR combination of sigma protocols. Since anyone can construct a valid VDF proof in time
T , the combined proof loses its validity after time T . The zero-knowledge property of the VDF is needed
since an honest prover needs to be able to forge a VDF proof in time less than T , which is indistinguishable
from an honest proof also after time T has passed. We �rst recall some facts about sigma protocols before
presenting our construction of a short-lived proof.

8.1 Sigma Protocols

De�nition 16 (sigma protocol). A sigma protocol (Σ-protocol) is an interactive honest veri�er zero-
knowledge proof of knowledge consisting of three messages:

� a �rst message by P denoted by u,

� a second message by V denoted by c and

� a third message by P denoted by z.

22

Cramer, Damgård and Schoenmakers [CDS94] showed that the set of relations with Σ-protocols is closed
under disjunction: Let Σ1 = (u1, c1, z1) be a sigma protocol for relation R1 and Σ2 = (u2, c2, z2) be a sigma
protocol for relation R2 and let x1 be an instance of R1 and x2 an instance of R2. The following protocol
is an honest veri�er zero-knowledge proof of knowledge of either a witness w1 for x1 or a witness w2 for x2.
Assume without loss of generality that P knows witness w1.

1. P picks a random c2 and simulates Σ2 = (u2, c2, z2).

2. P computes the message u1 and sends (u1, u2) to V.

3. V sends a random message c to P.

4. P computes c1 = c⊕ c2, computes the honest third message z1 and sends (z1, z2) to V.

5. V accepts if and only if c1 ⊕ c2 = c and the transcripts for both Σ1 and Σ2 are valid.

8.2 Our Construction

In this section we show how to transform any sigma protocol Σ for a relation R into a short-lived proof for
relation R. The protocol can be found in Figure 8. It di�ers from the construction of [ABC22] in three ways:

� We don't work with a zero-knowledge VDF but a zero-knowledge PoSW. This is possible because the
protocol does not need the uniqueness property of the VDF.

� We need the honest prover to precompute a PoE because it simulates the outputs of the zkPoSW
and the simulator takes as input a precomputed PoE in our construction. This means that in our
construction the prover needs to spend time T once to compute a PoE. Afterwards, it can compute
more valid proofs by re-randomizing this PoE, which is more e�cient than T . With Pietrzak's PoE
[Pie19] it takes time T/

√
T .

� Our zkPoSW is not a sigma protocol but the proof of knowledge PoKDL is. In our construction it is
su�cient to combine Σ and PoKDL via the standard disjunction of sigma protocols.

Using Pietrzak's PoE [Pie19] one can not only re-randomize the precomputed PoEs but also the PoEs needed
for the forged proofs. Hence, it achieves much faster forging times than the construction based on a zero-
knowledge version of Wesolowksi's proof given in [ABC22].

9 Conclusion and Open Problems

In this work we have seen how to e�ciently watermark any proof of exponentiation to obtain practical
watermarkable VDFs. We also constructed practical zero-knowledge proofs of sequential work that can be
used to build short-lived proofs for any NP statement with fast forging times. Our zero-knowledge VDF
construction is asymptotically e�cent but not practical: The proof size grows by a factor λ because the
proof of knowledge that is being used as a building block needs λ repetitions to be sound. We conclude with
three interesting open problems:

� One interesting open problem that remains is to construct a practical zero-knowledge version of
Pietrzak's VDF, by either removing the need for λ repetitions in our general construction or by working
directly with Pietrzak's protocol.

� The simulator of our zero-knowledge proof of sequential work takes as input a precomputed PoE. In
the application to short-lived proofs the honest prover plays the role of this simulator so it also needs
to precompute a PoE, which takes time T . When using Pietrzak's PoE this work T only needs to be
performed once since one can re-randomize PoEs in time T/

√
T . However, it would be nice to remove

the need for precomputation altogether, which we leave as an open problem.

23

� In this work we made two new sequentiality assumptions: the decisional iterated squaring assumption
and the generalized iterated squaring assumption. While those assumption are very similar to the
iterated squaring assumption, we don't have a reduction from iterated squaring to either of the new
assumptions. It would be nice to give more evidence of hardness by either constructing such a reduction
or computing lower bounds in an idealized model.

References

[ABC22] Arasu Arun, Joseph Bonneau, and Jeremy Clark. Short-lived zero-knowledge proofs and
signatures. In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptology � ASI-

ACRYPT 2022, Part III, volume 13793 of Lecture Notes in Computer Science, pages 487�516,
Taipei, Taiwan, December 5�9, 2022. Springer, Heidelberg, Germany. 3, 4, 6, 14, 17, 19, 22, 23

[AKK+19] Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael Walter.
Reversible proofs of sequential work. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology � EUROCRYPT 2019, Part II, volume 11477 of Lecture Notes in Computer Science,
pages 277�291, Darmstadt, Germany, May 19�23, 2019. Springer, Heidelberg, Germany. 6

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Veri�able delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology � CRYPTO 2018,

Part I, volume 10991 of Lecture Notes in Computer Science, pages 757�788, Santa Barbara,
CA, USA, August 19�23, 2018. Springer, Heidelberg, Germany. 3, 6, 7, 14

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two veri�able delay functions. Cryp-
tology ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/712. 8

[BHR+21] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik Soni. Time-
and space-e�cient arguments from groups of unknown order. In Tal Malkin and Chris Peikert,
editors, Advances in Cryptology � CRYPTO 2021, Part IV, volume 12828 of Lecture Notes in

Computer Science, pages 123�152, Virtual Event, August 16�20, 2021. Springer, Heidelberg,
Germany. 6

[BKZZ16] Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. Indistinguishable
proofs of work or knowledge. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in

Cryptology � ASIACRYPT 2016, Part II, volume 10032 of Lecture Notes in Computer Science,
pages 902�933, Hanoi, Vietnam, December 4�8, 2016. Springer, Heidelberg, Germany. 6

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor, Advances in Cryp-

tology � CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 236�254,
Santa Barbara, CA, USA, August 20�24, 2000. Springer, Heidelberg, Germany. 6

[BS07] D.J. Bernstein and J.P. Sorenson. Modular exponentiation via the explicit chinese remainder
theorem. Mathematics of Computation, 76:443�454, 2007. 9

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial information.
In Burton S. Kaliski Jr., editor, Advances in Cryptology � CRYPTO'97, volume 1294 of Lecture
Notes in Computer Science, pages 455�469, Santa Barbara, CA, USA, August 17�21, 1997.
Springer, Heidelberg, Germany. 5

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and
simpli�ed design of witness hiding protocols. In Yvo Desmedt, editor, Advances in Cryptology �

CRYPTO'94, volume 839 of Lecture Notes in Computer Science, pages 174�187, Santa Barbara,
CA, USA, August 21�25, 1994. Springer, Heidelberg, Germany. 23

24

https://eprint.iacr.org/2018/712

[CE12] Jeremy Clark and Aleksander Essex. CommitCoin: Carbon dating commitments with Bitcoin
- (short paper). In Angelos D. Keromytis, editor, FC 2012: 16th International Conference on

Financial Cryptography and Data Security, volume 7397 of Lecture Notes in Computer Sci-

ence, pages 390�398, Kralendijk, Bonaire, February 27 � March 2, 2012. Springer, Heidelberg,
Germany. 3

[CLM23] Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. Lattice-based succinct arguments from
vanishing polynomials - (extended abstract). In Advances in Cryptology � CRYPTO 2023,

Part II, Lecture Notes in Computer Science, pages 72�105, Santa Barbara, CA, USA, August
2023. Springer, Heidelberg, Germany. 6

[Col18] Michael Colburn. Short-lived signatures. Master's thesis, Concordia University, 2018. 6

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brick-
ell, editor, Advances in Cryptology � CRYPTO'92, volume 740 of Lecture Notes in Computer

Science, pages 89�105, Santa Barbara, CA, USA, August 16�20, 1993. Springer, Heidelberg,
Germany. 10

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology � EUROCRYPT 2018, Part II, volume
10821 of Lecture Notes in Computer Science, pages 451�467, Tel Aviv, Israel, April 29 � May 3,
2018. Springer, Heidelberg, Germany. 3, 6

[CPP17] Geo�roy Couteau, Thomas Peters, and David Pointcheval. Removing the strong RSA assump-
tion from arguments over the integers. In Jean-Sébastien Coron and Jesper Buus Nielsen, edi-
tors, Advances in Cryptology � EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes in
Computer Science, pages 321�350, Paris, France, April 30 � May 4, 2017. Springer, Heidelberg,
Germany. 10

[CSRHT22] Jorge Chavez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi. Veri�able isogeny
walks: Towards an isogeny-based postquantum vdf. In Riham AlTawy and Andreas Hülsing,
editors, Selected Areas in Cryptography, pages 441�460, Cham, 2022. Springer International
Publishing. 6

[DLM19] Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. Incremental proofs of sequential work. In
Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology � EUROCRYPT 2019, Part II,
volume 11477 of Lecture Notes in Computer Science, pages 292�323, Darmstadt, Germany,
May 19�23, 2019. Springer, Heidelberg, Germany. 6

[DMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Veri�able delay functions
from supersingular isogenies and pairings. In Steven D. Galbraith and Shiho Moriai, editors, Ad-
vances in Cryptology � ASIACRYPT 2019, Part I, volume 11921 of Lecture Notes in Computer

Science, pages 248�277, Kobe, Japan, December 8�12, 2019. Springer, Heidelberg, Germany. 6

[FGN15] Houda Ferradi, Rémi Géraud, and David Naccache. Slow motion zero knowledge identifying
with colliding commitments. In Revised Selected Papers of the 11th International Conference

on Information Security and Cryptology - Volume 9589, Inscrypt 2015, page 381�396, Berlin,
Heidelberg, 2015. Springer-Verlag. 6

[FPS22] Cody Freitag, Rafael Pass, and Naomi Sirkin. Parallelizable delegation from LWE. In Eike
Kiltz and Vinod Vaikuntanathan, editors, TCC 2022: 20th Theory of Cryptography Conference,

Part II, volume 13748 of Lecture Notes in Computer Science, pages 623�652, Chicago, IL, USA,
November 7�10, 2022. Springer, Heidelberg, Germany. 6

25

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi�cation and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology � CRYPTO'86,
volume 263 of Lecture Notes in Computer Science, pages 186�194, Santa Barbara, CA, USA,
August 1987. Springer, Heidelberg, Germany. 7

[FS00] Roger Fischlin and Claus-Peter Schnorr. Stronger security proofs for RSA and Rabin bits.
Journal of Cryptology, 13(2):221�244, March 2000. 9

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A �paradoxical� indentity-based signature
scheme resulting from zero-knowledge. In Sha� Goldwasser, editor, Advances in Cryptology

� CRYPTO'88, volume 403 of Lecture Notes in Computer Science, pages 216�231, Santa Bar-
bara, CA, USA, August 21�25, 1990. Springer, Heidelberg, Germany. 12

[HHI24] Charlotte Ho�mann, Pavel Hubá£ek, and Svetlana Ivanova. Practical batch proofs of exponen-
tiation. Cryptology ePrint Archive, Paper 2024/145, 2024. https://eprint.iacr.org/2024/
145. 6

[HHK+22] Charlotte Ho�mann, Pavel Hubácek, Chethan Kamath, Karen Klein, and Krzysztof Pietrzak.
Practical statistically-sound proofs of exponentiation in any group. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology � CRYPTO 2022, Part II, volume 13508
of Lecture Notes in Computer Science, pages 370�399, Santa Barbara, CA, USA, August 15�18,
2022. Springer, Heidelberg, Germany. 6

[HHKK23] Charlotte Ho�mann, Pavel Hubá£ek, Chethan Kamath, and Tomá² Kr¬ák. (veri�able) delay
functions from lucas sequences. In Guy N. Rothblum and Hoeteck Wee, editors, Theory of

Cryptography - 21st International Conference, TCC 2023, Taipei, Taiwan, November 29 - De-

cember 2, 2023, Proceedings, Part IV, volume 14372 of Lecture Notes in Computer Science,
pages 336�362. Springer, 2023. 6

[HHKP23] Charlotte Ho�mann, Pavel Hubácek, Chethan Kamath, and Krzysztof Pietrzak. Certifying giant
nonprimes. In PKC 2023: 26th International Conference on Theory and Practice of Public Key

Cryptography, Part I, Lecture Notes in Computer Science, pages 530�553. Springer, Heidelberg,
Germany, May 10�13, 2023. 6

[HK09] Dennis Hofheinz and Eike Kiltz. The group of signed quadratic residues and applications. In
Shai Halevi, editor, Advances in Cryptology � CRYPTO 2009, volume 5677 of Lecture Notes

in Computer Science, pages 637�653, Santa Barbara, CA, USA, August 16�20, 2009. Springer,
Heidelberg, Germany. 9

[KMT22] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Tiwari. MinRoot: Candidate se-
quential function for ethereum VDF. Cryptology ePrint Archive, Report 2022/1626, 2022.
https://eprint.iacr.org/2022/1626. 6

[KTY04] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In Christian Cachin
and Jan Camenisch, editors, Advances in Cryptology � EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 571�589, Interlaken, Switzerland, May 2�6, 2004.
Springer, Heidelberg, Germany. 9, 10, 11

[LM23] Russell W. F. Lai and Giulio Malavolta. Lattice-based timed cryptography. Lecture Notes in
Computer Science, pages 782�804, Santa Barbara, CA, USA, August 2023. Springer, Heidelberg,
Germany. 6

[LSS20] Esteban Landerreche, Marc Stevens, and Christian Scha�ner. Non-interactive cryptographic
timestamping based on veri�able delay functions. In Joseph Bonneau and Nadia Heninger,
editors, FC 2020: 24th International Conference on Financial Cryptography and Data Security,
volume 12059 of Lecture Notes in Computer Science, pages 541�558, Kota Kinabalu, Malaysia,
February 10�14, 2020. Springer, Heidelberg, Germany. 3

26

https://eprint.iacr.org/2024/145
https://eprint.iacr.org/2024/145
https://eprint.iacr.org/2022/1626

[LW17] Arjen K. Lenstra and BenjaminWesolowski. Trustworthy public randomness with sloth, unicorn,
and trx. Int. J. Appl. Cryptogr., 3(4):330�343, 2017. 6

[May94] Timothy C. May. Timed-release crypto, 1994. 6

[MMV11] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles in the random
oracle model. In Phillip Rogaway, editor, Advances in Cryptology � CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 39�50, Santa Barbara, CA, USA, August 14�
18, 2011. Springer, Heidelberg, Germany. 6

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly veri�able proofs of sequential
work. In Robert D. Kleinberg, editor, ITCS 2013: 4th Innovations in Theoretical Computer

Science, pages 373�388, Berkeley, CA, USA, January 9�12, 2013. Association for Computing
Machinery. 6

[MSW20] Mohammad Mahmoody, Caleb Smith, and David J. Wu. Can veri�able delay functions be based
on random oracles? In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, ICALP
2020: 47th International Colloquium on Automata, Languages and Programming, volume 168
of LIPIcs, pages 83:1�83:17, Saarbrücken, Germany, July 8�11, 2020. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik. 6

[Pie19] Krzysztof Pietrzak. Simple veri�able delay functions. In Avrim Blum, editor, ITCS 2019: 10th

Innovations in Theoretical Computer Science Conference, volume 124, pages 60:1�60:15, San
Diego, CA, USA, January 10�12, 2019. LIPIcs. 6, 16, 23

[Rab83] Michael O. Rabin. Transaction protection by beacons. J. Comput. Syst. Sci., 27(2):256�267,
1983. 3

[Rot21] Lior Rotem. Simple and e�cient batch veri�cation techniques for veri�able delay functions. In
Kobbi Nissim and Brent Waters, editors, TCC 2021: 19th Theory of Cryptography Conference,

Part III, volume 13044 of Lecture Notes in Computer Science, pages 382�414, Raleigh, NC,
USA, November 8�11, 2021. Springer, Heidelberg, Germany. 6

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Massachusetts Institute of Technology, 1996. 6, 8

[SB19] Kineret Segal and Tom Brand. Presenting: VeeDo a STARK-based VDF service. Technical
report, StarkWare, 2019. 6

[Sch91] C. P. Schnorr. E�cient signature generation by smart cards. J. Cryptol., 4(3):161�174, jan
1991. 9

[Sha19] Barak Shani. A note on isogeny-based hybrid veri�able delay functions. Cryptology ePrint
Archive, Paper 2019/205, 2019. https://eprint.iacr.org/2019/205. 6

[SJH+21] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar R. Weippl.
RandRunner: Distributed randomness from trapdoor VDFs with strong uniqueness. In ISOC

Network and Distributed System Security Symposium � NDSS 2021, Virtual, February 21�25,
2021. The Internet Society. 3

[SPG21] Michael A. Specter, Sunoo Park, and Matthew Green. KeyForge: Non-attributable email from
forward-forgeable signatures. In Michael Bailey and Rachel Greenstadt, editors, USENIX Se-

curity 2021: 30th USENIX Security Symposium, pages 1755�1773. USENIX Association, Au-
gust 11�13, 2021. 6

27

https://eprint.iacr.org/2019/205

[Wes19] Benjamin Wesolowski. E�cient veri�able delay functions. In Yuval Ishai and Vincent Rij-
men, editors, Advances in Cryptology � EUROCRYPT 2019, Part III, volume 11478 of Lecture
Notes in Computer Science, pages 379�407, Darmstadt, Germany, May 19�23, 2019. Springer,
Heidelberg, Germany. 3, 6, 14, 16

28

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Relations and Interactive Proofs
	Verifiable Delay Functions
	Assumptions
	The Group of Signed Quadratic Residues

	Three Zero-Knowledge Proofs of Knowledge
	Proof of Knowledge of Discrete Log
	Proof of Knowledge of Same Discrete Log
	Proof of Knowledge of Same Discrete Log with one Hidden Base

	Modified Discrete-Log Assumptions
	Watermarkable VDFs
	Definition
	The Decisional Iterated Squaring Assumption
	Construction

	Zero-Knowledge VDFs
	Definition
	Construction

	Zero-Knowledge Proofs of Sequential Work
	Definition
	The Generalized Iterated Squaring Assumption
	Construction

	Short-Lived Proofs from our Zero-Knowledge PoSW
	Sigma Protocols
	Our Construction

	Conclusion and Open Problems

