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Abstract. Side-channel attacks pose a significant threat to the security of crypto-
graphic hardware implementations and Threshold Implementation (TI) is a well-
established countermeasure to mitigate those attacks. In 2023, Piccione et al. pro-
posed a general construction of (first-order) TIs that is universal for S-boxes that are
bijective vectorial Boolean function (functions from a binary vector space Fn

2 into
itself). This paper presents a novel approach to TI by addressing a broader class of
cryptographic functions and providing a new construction for quadratic balanced func-
tions in the framework of second-order attacks. We investigate the case of functions
(also not necessarily bijective) that are defined between two finite Abelian groups by
using the notion of functional degree introduced by Aichinger and Moosbauer in 2021.
We show that if a function F has functional degree (at most) d and the cardinality
of the domain is divisible by the cardinality of the codomain, then F admits a TI
with s ≥ d + 2 shares, and for the case d = 2 and F is balanced we have that F
admits a second order TI with s ≥ 7 shares. As a real-world application, we present a
general construction for the TI of any multiplication map with 4 shares. Furthermore,
we introduce first-order secure conversion procedures between an additive sharing
over Fn

p (called Boolean sharing if p = 2) and an additive sharing over Zpn (called
Arithmetic sharing if p = 2).
Keywords: Threshold Implementation, Arithmetic masking, Abelian groups, Func-
tional Degree, Boolean Functions

1 Introduction
Differential Power Analysis (DPA) attacks [KJJ99] target the hardware implementations
of a cryptographic algorithm by measuring the power consumption of the physical device.
Since then, many countermeasures were developed in order to mitigate those attacks. One
of the most common is called Boolean masking [GP99, CJRR99] which is a technique based
on Boolean sharing that secure the implementation against a formally defined adversary
model. However, if the effect of glitches is not taken into account, this can lead to an
attack on a masked implementation [MPO05]. Nikova, Rechberger, and Rijmen [NRR06]
published in 2006 a countermeasure called Threshold Implementation (TI) which builds
upon Boolean masking and takes glitches into account.

In mathematical terms, a threshold implementation is a vectorial Boolean function F
that satisfies three fundamental properties with respect to a given vectorial Boolean function
F . Those properties are correctness, non-completeness, and uniformity. Throughout the
years, the problem of constructing F for a given F was considered a challenging problem
[BNN+12, BGN+15, BBS17]. In [PAB+23], this has been solved for the case where F is
bijective but with d + 2 shares (both in input and output) where d is the algebraic degree
of F . The theoretical optimal number is d + 1, but there is some evidence reported in
[BNN+12, PAB+23] to the fact that for many functions F the number of optimal shares is
actually d+2 with one example for which it is mathematically proven. In this paper, we do
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not discuss the case d + 1 further and, instead, we consider a more general mathematical
setting where we can generalize the construction in [PAB+23]. With this, we provide a
better understanding of the threshold implementation theory. We consider the problem
of constructing a threshold implementation for a function F : X → Y between two finite
Abelian groups X and Y where we use the definition provided by Dhooghe et al. [DNR19]
with additive sharing both in the input and the output. For any x ∈ X (resp. y ∈ Y), a
vector of shares (x1, . . . , xs) ∈ Xs (resp. (y1, . . . , yt) ∈ Yt) is such that x1 + · · · + xs = x
(resp. y1 + · · · + ys = y). The additive sharing over Z2n is called arithmetic sharing (or
arithmetic masking) [Gou01] and it has been the building block of the implementations of
two of the NIST standards for post quantum cryptography, Kyber and Dilithium [Bou22].
Moreover, there has been a recent interest in prime-field sharing (also called prime-field
masking) over Mersenne primes 2n − 1 [CMM+23] which is the additive sharing over F2n−1.
Moreover, among Arithmetic-Oriented (AO) symmetric ciphers and post-quantum schemes,
there are numerous examples of schemes that require, or are already being implemented
with, additive masking.

A fundamental notion in the threshold implementation theory is the one of algebraic
degree. For functions between Abelian groups, we are going to use the notion of functional
degree. Aichinger and Moosbauer in [AM21] introduce such notion with the purpose of
extending Chevalley-waring type results to the general case of a function F : X → Y
between two Abelian groups X and Y. The functional degree of F is defined by the smallest
positive natural number such that Fréchet’s equation is satisfied, which is equivalent to
ask that every d + 1-th order derivative vanishes. A derivative of F through a direction
a ∈ X is defined by ∆aF (x) = F (x + a) − F (x) for any x ∈ X. The idea of using Fréchet’s
equation to introduce a notion of degree was already studied by many authors in the past
(see for instance [Lac04]). However, we refer to the paper [AM21] because this is the first
work that gives solid mathematical foundations without the use of any representation
of F . We also build upon the following works [Sch14, CS22] which have studied the
Integer-Valued (IV) polynomial representation of functions with finite functional degree.
We believe that this representation could be useful for cryptographic application in the
case where a polynomial representation is not possible. For instance, in the context of
Fully Homomorphic Encryption (FHE), in the TFHE scheme [CGGI20] the programmable
bootstrapping can evaluate any function from Z2n to itself defined only by a lookup
table. It is then considered while designing or cryptanalyzing symmetric schemes over Z2n

[CHMS22, GMAH+23].
In Section 2, we introduce the preliminaries necessary for this paper including the

notion of functional degree and the IV polynomial representation. In Section 3, we present
a general theory for the notion of threshold implementation of functions between Abelian
groups and we show that many classical results still hold. In Section 4, we present the
main result of this paper. We provide a general construction of threshold implementations
with s ≥ d + 2 shares in input and d + 2 shares in output for all F : X → Y with functional
degree at most d < ∞ and such that |X| is divisible by |Y|. In particular, the result
holds for any vectorial Boolean function F : Fn

2 → Fm
2 with m ≤ n and F having algebraic

degree at most d. Then we present a threshold implementation with 4 shares of the
multiplication map over a finite ring. In Section 5, we present a general construction
of second order threshold implementations with s ≥ 7 shares in input and 7 shares in
output for all quadratic balanced functions. In Section 6, we present first-order secure
conversion algorithms between additive sharings in Fn

p and Zpn that are built upon the
general construction defined in Section 4.
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2 Preliminaries
For any n ∈ N with n ≥ 2, the set Zn denotes the ring of integers modulo n and we represent
elements of Zn as integers between 0 and n − 1 or as classes a + nZ = {a + bn : b ∈ Z} for
some a ∈ Z. The set Fq denotes the finite field with q elements, where q is a power of a
prime p. We recall that Fp = Zp and that Fq ̸= Zq if q ̸= p.

Let r, s ∈ N. We set [r, s] = {i ∈ N : r ≤ i ≤ s, i ≥ 1}, [s] = [1, s] (notice that [0] = ∅),
Ps denotes the power set of [s], and P∗

s = Ps \ {[s]} (notice that P0 = {∅}). Moreover, for
all j ∈ {0, . . . , s}, we write Ps,j = {I ∈ Ps | |I| = j} (notice that Ps,0 = P0).

In this paper, we consider every Abelian group X with additive notation. Let
x1, . . . , xs ∈ X, then we use the convention that

∑
i∈∅ xi = 0.

2.1 Functions between Abelian groups
Let F : X → Y where X and Y are Abelian groups.

We say that F is a linear function if F (x + x′) = F (x) + F (x′) for all x, x′ ∈ X. We
say that F is an affine function if F ′ = F − F (0) is a linear function. Note that we
use the terms linear and affine here, even though X and Y are general Abelian groups,
not necessarily vector or affine spaces. The derivative of F in the direction a ∈ X is
denoted by ∆aF (x) = F (x + a) − F (x) for all x ∈ X and the k-th order derivative of F in
a = (a1, . . . , ak) ∈ Xk is denoted by ∆(k)

a F = ∆a1∆a2 · · · ∆ak
F. If X is Zn or Z, we denote

∆ = ∆1 and ∆(k) = ∆(k)
(1,...,1).

Let X1, . . . ,Xn,Y1, . . . ,Ym be Abelian groups. Let F :
∏

i∈[n] Xi →
∏

j∈[m] Yj . For
any x ∈

∏
i∈[n] Xi, we can write F (x) = (F1(x), . . . , Fm(x)) where Fj :

∏
i∈[n] Xi → Yj

for all j ∈ [m]. Let i ∈ [n], the partial derivative of F in a ∈ Xi through the direction
of the i-th coordinate is denoted by ∂i

aF (x) = F (x1, . . . , xi + a, . . . , xn) − F (x) for all
x = (x1, . . . , xn) ∈

∏
i∈[n] Xi and the k-th order partial derivative of F in a = (a1, . . . , ak) ∈

(Xi)k is denoted by ∂
i,(k)
a F = ∂i

a1
∂i

a2
· · · ∂i

ak
F. We say that the function F depends on its

i-th coordinate input if there exists a ∈ X such that ∂i
aF ≠ 0. Similarly as before, if Xi is

Zmi
or Z, we denote ∂i = ∂i

1 and ∂i,(k) = ∂
i,(k)
(1,...,1). Moreover, for all k = (k1, . . . , kn) ∈ Nn,

we denote ∂(k) = ∂1,k1 · · · ∂1,kn . In some cases, we will use the calligraphic letter F to
denote a function from Xs to Yt where X and Y are Abelian groups.

Suppose that X and Y are finite Abelian groups. We say that F is balanced if
|F −1(y)| = |X|/|Y| for all y ∈ Y. Observe that if F is balanced and |X| = |Y|, then F is
bijective.

2.2 The functional degree
We will use an equivalent definition of the functional degree based on Fréchet’s equation,
∆(d+1)

a F = 0, as given in [AM21], rather than the original definition from abstract algebra.
Let F : X → Y where X and Y are Abelian groups. Then the functional degree of F is

equal to
d◦(F ) = inf{d ∈ N | ∆(d+1)

a F = 0, for all a ∈ Xd+1}.

We have that d◦(F ) = 0 if and only if F is constant and d◦(F ) ≤ 1 if and only if F is
affine [AM21, Lemma 3.1]. If we can write Y =

∏
j∈[m] Yj where Y1, . . .Ym are Abelian

groups, then we can write F = (F1, . . . , Fm) where Fj : X → Yj for all j ∈ [m]. By [AM21,
Lemma 3.4], we have that d◦(F ) = supj∈[m] d◦(Fj).

A useful notion is the one of partial degree. Assuming we can write X =
∏

i∈[n] Yi

where X1, . . .Xn are Abelian groups. Then the partial degree of F in i ∈ [n] is denoted as

d◦
i (F ) = inf({d ∈ N | ∂i,(d+1)

a F = 0 for all a ∈ Xi}).
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By [AM21, Theorem 5.2], for all i ∈ [n] we have that d◦
i (F ) ≤ d◦(F ) ≤

∑
i′∈[n] d◦

i′(F ).
Let p be a prime. Any function F : Fn

p → Fm
p has a unique representation of the

following form

F (x1, . . . , xn) =
∑

u∈{0,...,p−1}n

cuxu1
1 · · · xun

n , cu ∈ Fm
p

that is called the algebraic normal form (ANF). The algebraic degree of F is denoted
by da(F ) = sup

{∑
i∈[n] ui : cu ̸= 0

}
. By using [AM21, Theorem 10.3], it follows that

d◦(F ) = da(F ). For p = 2, a function f : Fn
2 → F2 is called a Boolean function and a

function F : Fn
2 → Fm

2 is called a vectorial Boolean function.

2.3 Integer-Valued (IV) polynomials
We use the following definition for the binomial coefficient. That is, for all n, k ∈ Z we
have that (

n

k

)
=


n(n−1)···(n−k+1)

k! if k > 0,

1 if k = 0,

0 if k < 0.

Let p ∈ N be a prime, a1, . . . , an, b1, . . . , bn ∈ {0, . . . , p − 1}, and a =
∑

i∈[n] aip
i−1,

b =
∑

i∈[n] bip
i−1. We have that the Lucas’ Theorem holds:(

a

b

)
=
∏

i∈[n]

(
ai

bi

)
(mod p).

For us, an Integer-Valued (IV) polynomial is any polynomial in Q[x1, . . . , xn] such that
when it is evaluated over Zn takes values over Z. We will use [CC97] as a reference. A
univariate Integer-Valued (IV) monomial of degree d ∈ N is the polynomial

(
x
d

)
in Q[x].

A multivariate Integer-Valued (IV) monomial of multidegree (d1, . . . , dn) ∈ Nn is the
polynomial

(
x1,...,xn

d1,...,dn

)
=
∏n

j=1
(

xj

dj

)
in Q[x1, . . . , xn]. An Integer-Valued (IV) polynomial P

is a polynomial in Q[x1, . . . , xn] that can be written as

P (x1, . . . , xn) =
∑

d∈Nn

Pd

(
x1, . . . , xn

d1, . . . , dn

)
(1)

where Pd ∈ Z and Pd ̸= 0 only for finitely many d ∈ Nn. Moreover, Pd in (1) is equal to
∂(d)P (0) and

∂(d)P (x) =
∑

a∈Nn : ai≤di

(−1)
∑

i∈[n]
(di−ai)

(
d1, . . . , dn

a1, . . . , an

)
P (x + a).

We present the connection between IV polynomials and the functional degree as in
[CS23]. We have that d◦(x1,...,xn

d1,...,dn

)
=
∑

i∈[n] di and d◦
i

(
x1,...,xn

d1,...,dn

)
= di for all i ∈ [n]. Let Y be

a finite Abelian group and let P : Zn → Y with d◦(P ) < ∞. We say that P admits an IV
polynomial representation if we can write P as in (1) where for all d ∈ Nn the coefficients Pd

are equal to ∂(d)P (0). In that case, we have that d◦(P ) = sup
{∑

i∈[n] di : ∂(d)P (0) ̸= 0
}

and that d◦
i (P ) = sup{d ∈ N | ∂i,(d)P (0) ̸= 0} for all i ∈ [n]. Let X =

∏
i∈[n] Zqi for

some qi ∈ N where Z0 = Z and Z1 = {0}. We say that P : Zn → Y is the pullback of a
function F : X → Y if P = F ◦ ε where ε(x1, . . . , xn) = (x1 + q1Z, . . . , xn + qnZ). By using
[CS22, Lemma 3.8], we have that d◦(F ) = d◦(P ). For the case of functions of the form
f :
∏

i∈[n] Zpαi → Zpβ , we know the best possible upper bound for the functional degree.
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Proposition 1 ([CS22, Theorem 4.9]). Let p be prime and α1, . . . , αn, β be positive
integers. Let δp(α, β) =

∑
i∈[n] pαi − n + (β − 1)(p − 1)pαmax−1 where αmax = maxi∈[n] αi.

Then the best upper bound of the functional degree of any f :
∏

i∈[n] Zpαi → Zpβ is given
by d◦(f) ≤ δp(α, β). Moreover, d◦(f) = δp(α, β) if f is such that f(0) = 1 and f(x) = 0
for all x ̸= 0.

3 Threshold Implementations over Abelian groups
The notion of Threshold Implementation (TI) was generalized by Dhooghe et al. [DNR19],
who proved that the threshold implementation technique using Boolean sharing (also
known as Boolean masking) is secure in the first-order robust probing model [DNR19,
Theorem 3.2]. We are interested in the case where the secret sharing scheme of both
input and output is the additive sharing (also called additive masking). Let X be an
Abelian group. An additive s-sharing of x ∈ X is a vector x = (x1, . . . , xs) ∈ Xs such that∑

i∈[s] xi = x. The set of such vectors is denoted by Shs(x). Note that Shs(x) = x+Shs(0)
for all x ∈ Shs(x) and that Shs(0) is an Abelian group of cardinality |X|s−1. Indeed, for
all x, x′ ∈ Shs(x), we have that x − x′ ∈ Shs(0). In this section (if not specified otherwise),
X and Y are Abelian groups, F : X → Y and F : Xs → Xt.

The correctness property follows from [DNR19, Definition 6.3]. We say that F is correct
with respect to F if for all x ∈ X and for all x ∈ Shs(x) we have that F(x) ∈ Sht(F (x)).
An equivalent definition is that F

(∑
i∈[s] xi

)
=
∑

j∈[t] Fj(x) for all x = (x1, . . . , xs) ∈ Xs.
The non-completeness property is almost identical to the one given in [DNR19, Definition

6.4]. We say that F is non-complete if for all j ∈ [t], there exists i ∈ [s] such that ∂i
aFj = 0

for all a ∈ X. Indeed, this is equivalent to say that any of the output share depends on at
most on s − 1 input shares.

The uniformity property follows from [DNR19, Definition 6.5]. For the definition to be
meaningful, we assume that both X and Y are finite, and that F is correct with respect to
F . We say that F is uniform if for all x ∈ X and any y ∈ Sht(F (x)), we have that

|Shs(x) ∩ F−1(y)| = |X|s−1

|Y|t−1 .

Indeed, there a positive integer c such that |Shs(x)∩F−1(y)| = c for all x ∈ X and for all y ∈
Sht(F (x)). This implies that, for all x ∈ X, the restriction of F from Shs(x) to Sht(F (x))
is balanced, and therefore |Shs(x) ∩ F−1(y)| = |Shs(x)|/|Sht(F (x))| = |X|s−1/|Y|t−1.

We are ready to give the definition of threshold implementation. We say that F is
a threshold implementation of F if F is correct with respect to F , non-complete, and
uniform. In this case, we say that F admits a threshold implementation with s shares in
input and t shares in output.

We also discuss higher order threshold implementations. We refer to the definition
given in [DNR19, Definition 3.7] for the k-th order non-completeness property. We say
that F is k-th order non-complete if for all J ∈ Pt,k, there exists i ∈ [s] such that ∂i

aFj = 0
for all a ∈ X and all j ∈ J . Then a k-th order threshold implementation is a threshold
implementation that is also k-th order non-complete.

In this paper, we will also construct threshold implementations F of F with a particular
shape. We say that F is an F -implementation if there exists integers zI,j where I ∈ Ps

and j ∈ [t] such that

Fj(x1, . . . , xs) =
∑

I∈Ps

zI,jF

(∑
i∈I

xi

)
for all x1, . . . , xs ∈ X. Such threshold implementations can be very interesting for applica-
tions when the cost of implementing the evaluation of F is low. For instance, when F is



6 Threshold implementations of cryptographic functions between finite Abelian groups

the conversion map from Fn
p to Zpn or vice versa.

3.1 On the uniformity property
We discuss the uniformity property of F for the cases of F balanced and F bijective.

Proposition 2. Let F be correct with respect to F . Then we have the following:

1. If F is uniform, then F is balanced if and only if F is balanced.

2. If F is bijective, then F is uniform if and only if F is balanced.

Proof. Let us prove item 1. Let y ∈ Y and y ∈ Sht(y). Since F is uniform, we have that
|F−1(y)| =

∑
x∈F −1(y) |Shs(x) ∩ F−1(y)| = |F −1(y)|

(
|X|s−1/|Y|t−1) . This is enough to

prove item 1.
Let us prove item 2. Since F is bijective, then |X| = |Y| = q. Since any bijective

function is balanced, we can use item 1 to conclude that if F is uniform, then F is balanced.
Suppose that F is balanced and we claim that F is uniform. Let y = (y1, . . . , yt) ∈ Yt,
y =

∑
j∈[t] yj , and x = F −1(y). Observe that

∣∣F−1(y)
∣∣ =

∑
z∈F −1(y) |Shs(z) ∩ F−1(y)| =∣∣Shs(x) ∩ F−1(y)

∣∣ . Since F is balanced, then |F−1(y)| = |X|s−1

|Y|t−1 = qs−t and |Shs(x) ∩
F−1(y)| = qs−t. This concludes the proof of item 2.

We note that Proposition 2 addresses all the cases. See Appendix A for the details.
We can have that F and F are unbalanced and F is uniform. Moreover, we can have F
and F are balanced and F is not uniform.

3.2 Functional expansions and non-completeness
We say that F admits a functional expansion of the s-th order if there exists a family of
integers {kI}I∈P∗

s
such that

F

∑
i∈[s]

xi

 =
∑

I∈P∗
s

kI · F

(∑
i∈I

xi

)

for all x1, . . . , xs ∈ X. In [CPRR15, Corollary 1], it was shown that every function
F : Fn

2 → Fm
2 admits a functional expansion of the s-th order where s ≥ da(F ) + 1.

Moreover, we have that if F : (Fn
2 )s → (Fm

2 )t is non-complete and correct with respect to F ,
then both s and t must be greater than or equal to da(F )+1 [NRR06, Theorem 1]. Indeed,
one can use a functional expansion of the s-th order and construct F . This observation
was made first in [PAB+23] and used to construct a family of threshold implementations.
Clearly, there is a connection between functional expansions and the algebraic degree of F .
We want to achieve similar results by using the notion of functional degree introduced by
Aichinger and Moosbauer in [AM21].

In [AM21, Lemma 4.1], it is proven that for a function F to have finite functional degree
is equivalent to three other properties. The first two can be described as the existence of
particular functional expansions of F while the last one is the existence of a function F
which is correct with respect to F and non-complete. We present the following lemma in
our notation and prove that it is equivalent to [AM21, Lemma 4.1].

Lemma 1. Let d be a non-negative integer. Then the following are equivalent:

1. d◦(F ) ≤ d.
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2. For every positive integer s ≥ d + 1, the function F admits the following functional
expansion of the s-th order:

F

∑
i∈[s]

xi

 =
s−1∑
j=0

(−1)s−1−j
∑

I∈Ps,j

F

(∑
i∈I

xi

)
.

3. For every positive integer s ≥ d + 1, the function F admits a functional expansion of
the s-th order for some family of integers Ks = {kI}I∈P∗

s
where kI = 0 if |I| ≥ d + 1.

4. For every positive integer s ≥ d + 1, there exists a function F : Xs → Yd+1 that is
correct with respect to F and non-complete.

Proof. 1, 2, 3 are equivalent respectively to the first three items in [AM21, Lemma
4.1]. Let us call 4a the fourth item in [AM21, Lemma 4.1] which states that there exist
functions F1, . . . , Fd+1 : Xd+1 → Y such that for all x = (x1, . . . , xd+1) ∈ Xd+1 we have
F
(∑

i∈[d+1] xi

)
=
∑

j∈[d+1] Fj(x) and for each j ∈ [d+1], the function Fj does not depend
on its j-th coordinate. We show that 4 is equivalent to 4a. It is clear that 4a implies 4
since for any s ≥ d + 1, we can set F = (F1, . . . , Fd+1, 0, . . . , 0). We conclude by proving
that 4 implies 4a. Let F : Xd+1 → Yd+1 be correct with respect to F and non-complete.
Let F1, . . . , Fd+1 : Xd+1 → Y be such that F = (F1, . . . , Fd+1). We define J1 = {i ∈
[d + 1] | ∂1

aFi = 0 for all a ∈ X} and Jj = {i ∈ [d + 1] \ Jj−1 | ∂j
aFi = 0 for all a ∈ X} for

j ∈ [2, d + 1]. Set F ′
j =

∑
i∈Jj

Fi where we recall that
∑

i∈∅ Fi = 0. Then F ′
1, . . . , F ′

d+1
satisfies 4a.

A natural problem that rises from Lemma 1 is to give an explicit form of the functional
expansion described in item 3. To the best of our knowledge, we are not aware if this result
is known for the general case. In the binary case, this problem was solved in [CPRR15,
Corollary 1].
Proposition 3. Let d be a non-negative integer. Let X and Y be Abelian groups and
F : X → Y. Then d◦(F ) ≤ d if and only if for any positive integer s ≥ d + 1, F admits the
following functional expansion of the s-th order:

F

∑
i∈[s]

xi

 =
d∑

j=0
µs,d(j)

∑
I∈Ps,j

F

(∑
i∈I

xi

)

where µs,d(j) =
(

s−j−1
d−j

)
(−1)d−j .

Proof. Let us prove it by induction on d starting from s − 1 and descending to d◦(F ). The
case d = s − 1 follows by Lemma 1 because µs,s−1(j) = (−1)s−1−j . Assume d◦(F ) < d ≤
s − 1. Let I ∈ Ps,d, then we have that

F

(∑
i∈I

xi

)
=

d−1∑
j=0

(−1)d−1−j
∑

J⊆I, |J|=j

F

(∑
i∈J

xi

)
.

Now take any J ∈ Ps,j with j < d. There exists exactly
(

s−j
d−j

)
sets I in Ps,d such that

J ⊆ I. Therefore, we have that

F

∑
i∈[s]

xi

 =
d−1∑
j=0

(
µs,d(j) + µs,d(d)

(
s − j

d − j

)
(−1)d−1−j

) ∑
I∈Ps,j

F

(∑
i∈I

xi

)
.

Since µs,d(d) = 1, we have that µs,d(j) + µs,d(d)
(

s−j
d−j

)
(−1)d−1−j =

(
s−j−1

d−j

)
(−1)d−j +(

s−j
d−j

)
(−1)d−1−j =

(
−
(

s−j−1
d−j

)
+
(

s−j
d−j

))
(−1)d−1−j =

(
s−j−1
d−1−j

)
(−1)d−1−j = µs,d−1(j). This

concludes the proof.
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3.3 On the minimal number of input and output shares
With the following proposition, we generalize [NRR06, Theorem 1] for our setting.

Proposition 4. Let d be a non-negative integer. Let F be correct with respect to F . If
d◦(F ) = d and F is non-complete, then s and t are greater than or equal to d + 1.

Proof. Suppose that t ≤ d. Let x = (x1, . . . , xs) ∈ Xs. Since F is non-complete,
then for any j ∈ [t] there exists ij ∈ [s] such that ∂

ij
a Fj(x) = 0 for all a ∈ X. Let

H(x) = F
(∑

i∈[s] xi

)
, x =

∑
i∈[s] xi, and a = (a1, . . . , at) ∈ Xt. Then we have that

0 =
∑

j∈[t] ∂
ij
aj Fj(x) = ∂i1

a1
· · · ∂it

at

∑
j∈[t] Fj(x) = ∂i1

a1
· · · ∂it

at
H(x) = ∆(t)

a F (x) because
∂k

aH(x) = F
(∑

i∈[s] xi + a
)

− F
(∑

i∈[s] xi

)
= ∆aF (x) for any k ∈ [s] and any a ∈ X.

Therefore, we have that ∆(t)
a F (x) = 0 but this is not possible because d◦(F ) = d > t − 1.

So we have that t ≥ d + 1. Suppose that s ≤ d and t ≥ d + 1. By item 4 of Lemma 1, this
implies that d◦(F ) = d < s and this is not possible since s ≤ d.

We discuss now higher order non-completeness. Instead of deriving all the results
from the beginning, we are going to prove that the existence of a correct and k-th order
non-complete function is equivalent to the existence of a particular set covering [Pet19,
Definition 2.1] and then we are going to use the theory developed in [Pet19] to derive some
results.

Proposition 5. Let k be a positive integers and d be a non-negative integer such that
d = d◦(F ). Then there exists a k-th order non-complete function F correct with respect to
F if and only if there exists Snc

s,d,k ⊆ Ps such that

1. t ≥ |Snc
s,d,k|.

2. For every I ∈ Ps,d there exists J ∈ Snc
s,d,k such that I ⊆ J .

3. Every J ∈ Snc
s,d,k is such that |J | ≥ d.

4. For every J1, . . . , Jk ∈ Snc
s,d,k we have that ∪k

i=1Ji ̸= Ps.

In particular, we can choose F to be such that for each j ∈ [t] there exists Ij ∈ Snc
s,d,k such

that ∂i
aFj = 0 for all a ∈ X and all i ∈ [s] \ Ij.

Proof. If Snc
s,d,k ⊆ Ps exists, then by using item 2 and 3, we must have that s ≥ d + 1.

Then we can construct F by using a functional expansion of the s-th order for some family
of integers Ks = {kI}I∈P∗

s
where kI = 0 if |I| ≥ d + 1. We known that it exists because of

Lemma 1 item 3.
If F exists, then we must have that s ≥ d + 1 because of Proposition 4. Then we can

construct Snc
s,d,k by including for each j ∈ [t] the set Ij ∈ Ps such that ∂i

aFj = 0 for all
a ∈ X and all i ∈ [s] \ Ij .

Corollary 1. Let k be a positive integer and d be a non-negative integer such that
d = d◦(F ). If there exists a k-th order non-complete function F correct with respect to F ,
then s and t are greater than or equal to kd + 1. Moreover, if s = kd + 1 then t ≥

(
kd+1

k

)
.

Proof. It follows from [Pet19, Proposition 2.5], [Pet19, Proposition 2.6] and [Pet19, Corol-
lary 2.8].
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3.4 Compositions of threshold implementations
We want to discuss the property of the composition of two threshold implementations. Let
W be an Abelian group, let u be a positive integer, let G : Y → W, let H = G ◦ F , let
G : Yt → Wu and let H = G ◦ F . We have that if F is correct with respect to F and G
is correct with respect to G, then H is correct with respect to H. Indeed, if x ∈ Shs(x)
then F(x) ∈ Sht(F (x)) and H(x) = G(F(x)) ∈ Shu(G(F (x))) = Shu(H(x)). Moreover, if
F is uniform and G is uniform, then H uniform. The proof is basically identical to the one
given in [DNR19, Lemma 3.2], but we do it for completeness. Indeed, for all x ∈ Shs(x)
and w ∈ Shu(H(x)) then∣∣Shs(x) ∩ H−1(w)

∣∣ = |{x ∈ Shs(x) : H(x) = w}| =
∣∣{x ∈ Shs(x) : F(x) ∈ G−1(w)

}∣∣
=

∑
y∈Sht(F (x))∩G−1(w)

∣∣Shs(x) ∩ F−1(y)
∣∣ = |X|s−1

|Y|t−1
|Y|t−1

|W|u−1 = |X|s−1

|W|u−1 .

Regarding non-completeness, the problem can be addressed in the concrete implemen-
tation by waiting to the end of the current clock cycle and run the second implementation
in the next clock cycle. Since the number of shares is related to the functional degree of F ,
in most cases, it is a good idea to decompose it in low degree functions F1, . . . , Fℓ such that
F = F1 ◦ · · · ◦ Fℓ because the respective threshold implementations will need fewer shares.
We can say, by oversimplifying a lot, that such implementation need k clock cycles of the
CPU. In itself, the decomposition problem is very hard even by restricting to permutations
of Fn

2 [NNR19, Pet23, LSaa24, APB+23]. For k-th order non-completeness, what we have
discussed previously is usually not enough to make the whole implementation k-th order
secure. For this reason, we will not discuss real-world examples with higher order security
than one.

4 On a general construction of threshold implementations
with d + 2 shares

In this section, we are going to generalize the construction defined in [PAB+23]. We will
consider those functions F : X → Y between two finite Abelian groups such that |X| is
divisible by |Y| and d◦(F ) < ∞. The hypothesis d◦(F ) < ∞ is strictly necessary because
of Lemma 1. We impose that |X| is divisible by |Y| because we will need the existence
of at least one balanced function from X to Y. Therefore, we need that s ≥ t because if
F : Xs → Yt is uniform then |X|s−1/|Y|t−1 = |X|s−t(|X|/|Y|)t−1 must be a positive integer.
Remark 1. If d◦(F ) = 1, then we can easily construct a threshold implementation of F for
any t ≥ 2 by setting Fj(x) = F (xj) for all j ∈ [t − 1] and Ft(x) =

∑
i∈[t,s] F (xi) − (s −

1)F (0).
First, we describe a way to construct functions F that are correct and uniform. This

includes the result obtained in [PAB+23] but requires a completely different proof. Indeed,
in the proof of [PAB+23, Proposition 3] it is enough to prove that the function F is a
permutation (because F is a permutation, s = t and by Proposition 2), but instead we are
going to prove the uniformity property by using only the definition. Then we present a
functional expansion into terms that can be distributed in the coordinate functions of F
in order to make it non-complete.

In the following, we have the main theorem of this section that we are going to prove.

Theorem 1. Let X and Y be finite Abelian groups such that |X| is divisible by |Y|. Let s, d
be positive integers such that s ≥ d+2. Then any function F : X → Y with functional degree
at most d admits a threshold implementation F with s shares in input and d + 2 shares in
output. Moreover, if F is balanced, then we can choose F to be an F -implementation.
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As a direct consequence of Theorem 1, we have the following corollary.

Corollary 2. Let m, n, p, s, d be positive integers such that m ≤ n, s ≥ d + 2, and p is a
prime. Then any function F : Fn

p → Fm
p with algebraic degree at most d admits a threshold

implementation F with s shares in input and d + 2 shares in output. Moreover, if F is
balanced, then we can choose F to be an F -implementation.

We provide a general form for the construction of a correct and uniform function.

Proposition 6. Let X and Y be finite Abelian groups such that |X| is divisible by |Y|.
Let F : X → Y be any function. Let s and t be positive integers such that 2 ≤ t ≤ s.
For any j ∈ {1, . . . , t − 1}, let Pj : X → Y be balanced and let Cj : Xj → Y. Let b =
(b1, . . . , bt−1) ∈ {0, 1}t−1 and let F : Xs → Yt be a function defined as follows for any
x = (x1, . . . , xs) ∈ Xs:

Ft(x) = F

∑
i∈[s]

xi

−
∑

j∈[t−1]

Fj(x)

and for any j ∈ [t − 1] we have

Fj(x) = (1 − bj) · Pj (xj) + bj · Pj

 ∑
i∈[j+1,s]

xi

+ Cj(x(j)),

where x(j) = ((xi)i∈[j−1],
∑

i∈[j,s] xi) with the abuse of notation that x(1) =
∑

i∈[s] xi.
Then the following holds:

1. F is correct with respect to F .

2. F is uniform.

Proof. Let us prove 1. Function F is correct with respect to F because

∑
j∈[t]

Fj(x) =
∑

j∈[t−1]

Fj(x) + Ft(x) = F

∑
i∈[s]

xi

 .

Let us prove 2. Let x ∈ X and let y ∈ Sht(F (x)). Consider the system

y1 = F1(x)
y2 = F2(x)
. . .

yt = Ft(x)
x =

∑
i∈[s] xi

(2)

in the variable x ∈ Xs. Observe that the number of solutions of system (2) is equal to
|Shs(x) ∩ (F)−1(y)|. So if we prove that system (2) has exactly |X|s−1/|Y|t−1 solutions,
then we have that F is uniform. To do that, we are going to turn system (2) into a
triangular system. Observe that by summing the first t equations of system (2), we have
that

∑
j∈[t] yj =

∑
j∈[t] Fj(x) = F

(∑
i∈[s] xi

)
= F (x). So we can replace the t-th equation

of system (2) with the equation
∑

j∈[t] yj = F (x). For any j ∈ [t − 1], we claim that we
can replace the j-th equation of system (2) with a condition of the form xj ∈ Γj(xi)i∈[j−1]
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where Γj(xi)i∈[j−1] ⊆ X has cardinality |X|/|Y| for all (xi)i∈[j−1] ∈ Xj−1. So we have that
system (2) is equivalent to the following system

xj ∈ Γj(xi)i∈[j−1], j ∈ [t − 1]∑
j∈[t] yj = F (x)

x =
∑

i∈[s] xi

. (3)

System (3) can be solved in the following way. Let x ∈ Xs be any solution of system (3).
By solving the first t − 1 equations in order, we have that the number of choices of the
first t − 1 coordinates of x are exactly (|X|/|Y|)t−1. Observe that the t-th equation is
not written in terms of x. By using the t + 1-th equation, we have that there are |X|s−t

choices for the remaining s − t coordinates of x. So the number of solutions of system (3)
is (|X|)s−1/(|Y|)t−1 and so is the number of solution of system (2).

Let us prove that for any j ∈ [t − 1] we can replace the j-th equation of system (2) with
a condition of the form xj ∈ Γj(xi)i∈[j−1] where Γj(xi)i∈[j−1] ⊆ X has cardinality |X|/|Y|.
By using the t + 1-th equation of system (2), we have that

∑
i∈[j,s] xi = x −

∑
i∈[j−1] xi.

Therefore, the term Cj(x(j)) depends only on (xi)i∈[j−1]. Suppose that bj = 0. Then
yj = Pj(xj) + Cj(x(j)) and so we have that

Γj(xi)i∈[j−1] = P −1
j

(
yj − Cj(x(j))

)
and that Γj(xi)i∈[j−1] has cardinality |X|/|Y| because Pj is balanced. Suppose that bj = 1.
Then yj = Pj(

∑
i∈[j+1,s] xi) + Cj(x(j)) and xj ∈ Γj(xi)i∈[j−1] = (x −

∑
i∈[j−1] xi) −

P −1
1 (y1 − C1(x)) because

yj = Pj

 ∑
i∈[j+1,s]

xi

+ Cj(x(j)),

∑
i∈[j+1,s]

xi ∈ P −1
j

(
yj − Cj(x(j))

)
,

xj ∈

 ∑
i∈[j−1]

xi − x

− P −1
j

(
yj − Cj(x(j))

)
= Γj(xi)i∈[j−1],

by using the t + 1-th equation of system (2). We claim that Γj(xi)i∈[j−1] has cardinality
|X|/|Y|. Since Pj is balanced, the set P −1

j

(
yj − Cj(x(j))

)
has cardinality |X|/|Y| and

therefore
(∑

i∈[j−1] xi − x
)

− P −1
j

(
yj − Cj(x(j))

)
has cardinality |X|/|Y| as well. This

proves that Γj(xi)i∈[j−1] has cardinality |X|/|Y|.

We have established some sufficient conditions to construct a correct and uniform
function. One can recognize that we can prove the uniformity property of the construction
in [PAB+23] by using directly Proposition 6. With the following lemma, we will address the
non-completeness property. This follows the same rationale of the proof of the construction
in [PAB+23].

Lemma 2 ([PAB+23, Lemma 2]). Let t be a positive integer. For any j ∈ [2, t + 1],
let Jj = {I ∪ [j, t] : I ∈ Pj−2}. Then P∗

t+1 = Pt ∪ {I ∪ {t + 1} : I ∈ P∗
t } and the sets

J2, . . . , Jt+1 form a partition of P∗
t .

Lemma 3. Let X and Y be finite Abelian groups and let F : X → Y be a function. If
d◦(F ) ≤ d for some positive integer d, then for any positive integer s ≥ d + 2 we have that



12 Threshold implementations of cryptographic functions between finite Abelian groups

F admits the following functional expansion of the s-th order:

F

∑
i∈[s]

xi

 =
∑

j∈[2,d+1]

∑
I∈Pj−2

(−1)j−|I|F

∑
i∈I

xi +
∑

i∈[j,s]

xi

+
∑

I∈Pd

(−1)d−|I|F

(∑
i∈I

xi

)
.

Proof. Let zi = xi for i = 1, . . . , d and zd+1 =
∑

i∈[d+1,s] xi. Then the result follows by
using Lemma 1 and Lemma 2:

F

∑
i∈[s]

xi

 = F

 ∑
i∈[d+1]

zi

 =
∑

I′∈P∗
d+1

(−1)d−|I′|F

(∑
i∈I′

zi

)

=
∑

j∈[2,d+1]

∑
I∈Pj−2

(−1)d−|I|−(d−j)F

∑
i∈I

zi +
∑

i∈[j,d+1]

zi

+
∑

I∈Pd

(−1)d−|I|F

(∑
i∈I

zi

)

=
∑

j∈[2,d+1]

∑
I∈Pj−2

(−1)j−|I|F

∑
i∈I

xi +
∑

i∈[j,s]

xi

+
∑

I∈Pd

(−1)d−|I|F

(∑
i∈I

xi

)
.

Lemma 4. Suppose to be in the hypothesis of Proposition 6. Let d be a positive integer.
If d◦(F ) ≤ d and t = d + 2, then there exists at least one choice of C1, . . . , Cd+1 such that
the following holds:

• C1 is constant,

• for any j ∈ [2, d + 1] and any a ∈ X we have that ∂j−1
a Cj = 0.

• there exists k ∈ [d + 1, s] such that ∂k
aFd+2 = 0 for all a ∈ X.

In this case, F is a threshold implementation of F .

Proof. We set C1 = 0 and

Cj(x(j)) =
∑

I∈Pj−2

(−1)j−|I|F

∑
i∈I

xi +
∑

i∈[j,s]

xi

− bj−1 · Pj−1

 ∑
i∈[j,s]

xi


for any j ∈ [2, d + 1] and any x ∈ Xs. So C1, . . . , Cd+1 satisfy the first two items. Let us
prove the last item. By using Lemma 3, we have that Fd+2(x) is equal to

F

∑
i∈[s]

xi

−
∑

j∈[d+1]

Cj(x(j)) + (1 − bj) · Pj (xj) + bj · Pj

 ∑
i∈[j+1,s]

xi


=F

∑
i∈[s]

xi

−
∑

j∈[2,d+1]

∑
I∈Pj−2

(−1)j−|I|F

∑
i∈I

xi +
∑

i∈[j,s]

xi


−

∑
j∈[d+1]

(1 − bj) · Pj (xj) − bd+1 · Pd+1

 ∑
i∈[d+2,s]

xi


=
∑

I∈Pd

(−1)d−|I|F

(∑
i∈I

xi

)
−

∑
j∈[d+1]

(1 − bj) · Pj (xj) − bd+1 · Pd+1

 ∑
i∈[d+2,s]

xi

 .



Enrico Piccione 13

So we have that ∂d+2
a Fd+2(x) = 0 if bd+1 = 0 and ∂d+1

a Fd+2(x) = 0 if bd+1 = 1.
Let us show that F is a threshold implementation of F . Since all the hypothesis of

Proposition 6 are satisfied, then F is correct and uniform. To conclude, we claim that F
is non-complete. Let a ∈ X and x ∈ Xs. Since C1 is constant, we have that ∂2

aF1 = 0 if
b1 = 0 and ∂1

aF1 = 0 if b1 = 1. For any j ∈ [2, d + 1], we have that ∂j−1
a Fj = ∂j−1

a Cj = 0.
Then there exists k ∈ [d + 1, s] such that ∂k

aFd+2 = 0.

In Appendix B, we write explicitly the example described in the proof of Lemma 4.

Proof of Theorem 1. Take F as in Appendix B and if F is balanced set Pj = F .

Remark 2. Let F be as in Appendix B. We can use Proposition 3 to simplify some
expressions in the definition of F . Let j be a positive integer greater or equal than 2.
Then

∑
I∈Pj−2

(−1)j−|I|F
(∑

i∈I xi +
∑

i∈[j,s] xi

)
is equal to 0 if j > d◦(F ) + 2 and to∑

I∈Pj−2
(−1)j−|I|F

(∑
i∈I xi

)
if j = d◦(F ) + 2.

Remark 3. Let us consider the case where F is balanced. We want to give an explicit form
of the construction given in Appendix B that minimizes the number of sums of the input
shares. We present an elegant solution. For each j ∈ [2, d + 1], we have that the term
(−1)jF

(∑
i∈[j,s] xi

)
appears in the expression of Fj(x). However, if Pj−1 = (−1)j−2F

and bj−1 = 1 then such term is cancelled in the expression of Fj(x) and computed instead
in Fj−1(x). Indeed, we have that

Fj(x) =(1 − bj) · Pj (xj) + bj · Pj

 ∑
i∈[j+1,s]

xi

+
∑

I∈Pj−2

(−1)j−|I|F

∑
i∈I

xi +
∑

i∈[j,s]

xi


− (−1)jF

 ∑
i∈[j,s]

xi


=(1 − bj) · Pj (xj) + bj · Pj

 ∑
i∈[j+1,s]

xi

+
∑

I∈P∗
j−2

(−1)j−|I|F

∑
i∈I

xi +
∑

i∈[j,s]

xi

 .

One can find the explicit expression in Appendix B.1.
Remark 4. We estimate the number of operations needed to evaluate F as in Appendix B.1.
Let F ′ be as in Appendix B.1 with s = d+2, then F(x) = F ′

(
x1, . . . , xd+1,

∑
i∈[d+2,s] xi

)
.

So we can assume d = s − 2. Without loss of generality, assume d = O(d◦). The number
of evaluations of F is O(2d◦). The number of additions (considering also subtractions) in
Y is equal to O(2d◦). The number of additions in X is equal to O(d◦ · 2d◦).

4.1 On a Threshold implementation of the multiplication map with 4
shares

There are numerous uses of the multiplication maps in cryptography, such as the square and
multiply algorithm used for the side-channel secure implementation of AES in [Bar86] and
the Pseudo-Random Function Ciminion [DGGK21]. We are going to give an implementation
with 4 shares. To the best of our knowledge, it does not exist in literature an implementation
with fewer shares that does not use some extra assumption.

Let R be a finite ring. Let F : R2 → R be the multiplication map, i.e. F (a, b) = ab.
Then it is easy to show that F has functional degree 2. Let L : R2 → R defined by
L(a, b) = a + b. Observe that L is linear and balanced. Let x = (x1, x2, x3, x4) ∈ (R2)4
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where xi = (ai, bi) ∈ R2 for i ∈ [4]. Then we can construct F : (R2)4 → R4 as in Appendix
B with b1 = b2 = b3 = 0 and P1 = P2 = P3 = L. Therefore, F(x) is equal to

a1 + b1
a2 + b2 +

∑
i,j∈[2,4] aibj

a3 + b3 + a1b1 + a1b3 + a1b4 + a3b1 + a4b1
a1b2 + a2b1 − a1 − a2 − a3 − b1 − b2 − b3

 .

5 On a construction for second order Threshold Implemen-
tation of quadratic balanced functions

In this section, we present a construction for second order Threshold Implementation of
quadratic balanced functions. We want to demonstrate that it is possible to do general
construction of higher order threshold implementations with a similar idea to the one
used in Section 4. We recall that using a higher order threshold implementation of
a cryptographic function is usually not enough, as one need to implement the entire
cryptographic scheme by taking into account the same level of security. For this reason,
we do not present real-world applications of the main result of this section.

As in Section 4, we want |X| to be divisible by |Y| and s ≥ t. By Proposition 5, the
minimum value for s is equal to 5 but then t ≥

(5
2
)

= 10. If we take s = 6, then by [Pet19,
Theorem 2.15] we have that t ≥ 6. Similarly to the construction in Section 4, the minimal
number of shares is not suited for a general construction, but we are going to prove that if
we take s ≥ 7 and t = 7 then a general construction is possible. In this section, we are
going to prove the following theorem.

Theorem 2. Let X and Y be finite Abelian groups such that |X| is divisible by |Y|. Let
F : X → Y be a quadratic balanced function. Let s be a positive integer such that s ≥ 7.
Then the function F : Xs → Y7 defined by F(x) equal to

F (x1)
F
(

x1 + x5 + x6 +
∑

i∈[7,s] xi

)
F
(

x2 + x3 + x6 +
∑

i∈[7,s] xi

)
F (x2 + x4 + x5)

F (x1 + x3) + F (x1 + x2) − 4F (x1) − 2F (x2)
F
(∑

i∈[7,s] xi

)
+ F (x1 + x4) + F

(
x4 + x6 +

∑
i∈[7,s] xi

)
− 3F (x4) − 2F

(
x6 +

∑
i∈[7,s] xi

)
F (x3 + x4) + F (x3 + x5) + 7F (0) − 3F (x3) − 2F (x5) − F

(∑
i∈[7,s] xi

)


is a second order Threshold Implementation of F that is also an F -implementation.

Lemma 5. The set S = {{1, 5, 6}, {2, 3, 6}, {2, 4, 5}, {1, 2, 3}, {1, 4, 6}, {3, 4, 5}} satisfies
the properties described in Proposition 5 with (s, t, d, k) = (6, 6, 2, 2).

Lemma 6. Let F : X → Y be quadratic. Let S3 = {{1, 5, 6}, {2, 3, 6}, {2, 4, 5}}, let
S2 = {{3, 4}, {3, 5}, {1, 3}, {1, 2}, {1, 4}, {4, 6}} and let z1, . . . , z6 ∈ X. Then F

(∑6
i=1 zi

)
is equal to

∑
I∈S3

F

(∑
i∈I

zi

)
+
∑
I∈S2

F

(∑
i∈I

zi

)
+ 7F (0) − 3

∑
i∈{1,3,4}

F (zi) − 2
∑

i∈{2,5,6}

F (zi). (4)
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Proof. By using Proposition 3 with (s, d) = (6, 2) we have that

F

( 6∑
i=1

zi

)
=
∑

I∈P6,2

F

(∑
i∈I

zi

)
− 4

∑
i∈[6]

F (zi) + 10F (0) (5)

because µ6,2(2) =
(3

0
)
(−1)0 = 1, µ6,2(1) =

(4
1
)
(−1)1 = −4 and µ6,2(0) =

(5
2
)
(−1)2 = 10. If

we take the expression in (4) and we apply Proposition 3 with (s, d) = (3, 2) on F
(∑

i∈I zi

)
with I ∈ S3, then we obtain

F

(∑
i∈I

zi

)
=

∑
J⊆I, |J|=2

F

(∑
i∈J

zi

)
−
∑
i∈I

F (zi) + F (0)

because µ3,2(j) =
(2−j

2−j

)
(−1)2−j = (−1)j . Since {J ⊆ I | I ∈ S3, |J | = 2} ∪ S2 = P6,2, we

have that (4) turns into

∑
I∈P6,2

F

(∑
i∈I

zi

)
+ 10F (0) − 3

∑
i∈{1,3,4}

F (zi) − 2
∑

i∈{2,5,6}

F (zi)+

−
∑

i∈{1,5,6}

F (zi) −
∑

i∈{2,3,6}

F (zi) −
∑

i∈{2,4,5}

F (zi)

that is equal to the right side of (5). This concludes the proof.

Proof of Theorem 2. The function F is second order non-complete by Lemma 5. Indeed,
since S = {{1, 5, 6}, {2, 3, 6}, {2, 4, 5}, {1, 2, 3}, {1, 4, 6}, {3, 4, 5}} defines a second order
non-complete function, then the same holds for the set Snc

s,2,2 = {J ∪ [7, s] : J ∈ S}. We
prove that F is correct by using Lemma 6. Indeed, the sum

∑
j∈[7] Fj(x) is equal to (4)

by setting zi = xi for i ∈ [5] and z6 = x6 +
∑

i∈[7,s] xi. To conclude, let us prove the
uniformity of F . Let x ∈ X and y ∈ Sh7(F (x)). Consider the system

F1(x) = y1
...
F7(x) = y7∑

i∈[s] xi = x

. (6)

in the variable x ∈ Xs. Observe that the number of solutions of system (6) is equal
to |Sh7(x) ∩ (F)−1(y)|. So if we prove that system (2) has exactly |X|s−1/|Y|7−1 =
|X|s−7(|X|/|Y|)6 solutions, then we have that F is uniform.

Similarly to the proof of Proposition 6, we can turn the seventh equation of system (6)
into

∑
j∈[7] yj = F (x). Let us rewrite the eight equation of system (6) into

∑
i∈[7] xi =

x −
∑

i∈[8,s] xi. Let us fix x̄8, . . . , x̄s ∈ X. We claim that there are exactly (|X|/|Y|)6

choices of (x̄1, . . . , x̄7) ∈ X7 such that (x̄1, . . . , x̄s) is a solution of system (6). This will be
enough to conclude the proof.

Let X = (X1, . . . , X7) ∈ X7 be such that X1 = x1, X2 = x1 + x5 + x6 + x7, X3 =
x2 + x3 + x6 + x7, X4 = x2 + x4 + x5, X5 = x1 + x3, X6 = x7, X7 = x6. It follows that
the linear transformation that maps (x1, . . . , x7) into (X1, . . . , X7) is bijective and that
x1 = X1, x2 = X1 +X3 −X5 −X6 −X7, x3 = −X1 +X5, x4 = −X2 −X3 +X4 +X5 +2X6 +
2X7, x5 = −X1 + X2 − X6 − X7, x6 = X7, x7 = X6. Observe that the eighth equation of
system (6) turns into X4 + X5 + X6 + X7 = x. We claim that for j ∈ [6] we have that
yj = F (Xj) + Gj(X1, . . . , Xj−1, x) where Gj : Xj → Y is some function. Similarly to the
proof of Proposition 6, such claim is enough to prove that system (6) where x8, . . . , xs are
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fixed, has (|X|/|Y|)6 solutions. The claim is true for j ∈ [4] since we have that yj = F (Xj).
Since

x2 = X1 + X3 − X5 − X6 − X7 = X1 + X3 + X4 − x,

the fifth equation of (6) turns into F (X5)+G5(X1, X2, X3, X4, x). Since x6+x7 = X6+X7 =
x − X4 − X5 and

x4 = −X2 − X3 + X4 + X5 + 2X6 + 2X7 = −X2 − X3 − X4 − X5 + 2x,

the sixth equation of (6) turns into F (X6) + G6(X1, X2, X3, X4, X5, x).

6 On the conversion between additive sharings in Fn
p and

Zpn

Let p be a prime and n be a positive integer. In this section, we construct procedures to
convert from an additive sharing over Fn

p to an additive sharing over Zpn and vice versa
by studying the functional degree of the conversion maps between Fn

p and Zpn . These
procedures need s ≥ (n−1)(p−1)+3 shares, cost O(n22n) elementary operations (with the
assumption p << n and s = O(n)), do not need extra randomness, need 1 clock cycle for the
conversion Fn

p to Zpn and ⌈n− logp ((n − 1)(p − 1) + 1)⌉ clock cycles for the conversion Zpn

to Fn
p . We must say that there exists several techniques [CGV14, CGTV15, SPOG19, SH24]

for this type of conversion and each uses at minimum 2 shares, but they all need extra
randomness while our procedure does not need any. It could be argued that to compare
those techniques with ours, one need to generate extra shares and use randomness for
that. However, in some cases, that generation process can be done in preprocessing.
Indeed, let (X1, X2) ∈ Sh2(x) for some x ∈ X (X being either Fn

p or Zpn) one can take
x = (x1, . . . , xs) ∈ Shs(0) and then (x1 + X1, x2 + X2, x3, . . . , xs) is in Shs(x). Another
aspect is the number of clock cycles. In this case, we need to look at the state of the art
regarding real-world implementation [SPOG19, BC22, NDKV24, SH24]. We conclude that
our algorithm is very competitive, as there are many implementations that require way
more clock cycles than ours. The only tradeoff of our algorithm is the operation count
that is exponential in n, while most known procedures are at most polynomial in n. So, in
its current state, the scope is limited to low values of n.
Remark 5. Let p be odd. We show that using the representation in Ap = {0, . . . , p − 1} or
in Bp = {−(p−1)/2, . . . , (p−1)/2} does not change the functional degree of the conversion
maps. Let x(1), . . . , x(n) ∈ Bp and let x̄(j) = x(j) + p−1

2 ∈ Ap for all j ∈ [n]. Then∑
i∈[n] x̄(i)p

i−1 =
∑

i∈[n] x(i)p
i−1+ pn−1

2 . So if F is the conversion map from Fn
p to Zpn that

uses the representation in Ap, then G(x(1), . . . , x(n)) = F
(
x(1) + p−1

2 , . . . , x(n) + p−1
2
)

−
pn−1

2 is the conversion map from Fn
p to Zpn that uses the representation in Bp. Therefore,

we have that d◦(F ) = d◦(G) and d◦(F −1) = d◦(G−1).
We show that by using Lucas’ Theorem, we can compute the functional degree of the

conversion map from Zpn to Fn
p .

Proposition 7. Let p be a prime number and let x ∈ Z. Let x(1), . . . , x(n) ∈ {0, . . . , p − 1}
be such that x =

∑
i∈[n] x(i)p

i−1 (mod pn). Then, for any j ∈ [n], we have that(
x

pj−1

)
= x(j) (mod p).

Proof. If x < 0, then x =
∑

i∈[n] x(i)p
i−1 −mpn where m > 0. If j = 1, then

(
x
1
)

= x = x(1)
(mod p). Assume j > 1. Observe that(

x

pj−1

)
= (−1)pj−1

(
−x + pj−1 − 1

pj−1

)
= −

(
−x + pj−1 − 1

pj−1

)
(mod p)
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because (−1)pj−1 = −1 (mod p) since j > 1. Then −x+pj−1−1 =
(

mpn −
∑

i∈[j,n] x(i)p
i−1
)

+(
pj−1 −

∑
i∈[j−1] x(i)p

i−1 − 1
)

. Since 0 ≤
(

pj−1 −
∑

i∈[j−1] x(i)p
i−1 − 1

)
< pj−1 and(

mpn −
∑

i∈[j,n] x(i)p
i−1
)

≥ pj−1, then by Lucas’ Theorem we have that(
x

pj−1

)
= −

(
−x + pj−1 − 1

pj−1

)
= −

(
mpn −

∑
i∈[j,n] x(i)p

i−1

pj−1

)
(mod p)

= −

mpn−j+1 −
∑

i∈[j,n]

x(i)p
i−j

 = x(j) (mod p).

A direct consequence of Proposition 7 is that the functional degree of the conversion
map from Zpn to Fn

p is equal to pn−1. Indeed, its IV polynomial representation is given by∑
i∈[n]

(
x

pi−1

)
ei where {e1, . . . , en} is the canonical basis of Fn

p . We will show that we can
do better by decomposing this conversion map into functions of small degree.

We use the following notation. Let p be a prime number and let F : Zm → Z. We
denote by F (n) the function from Zm to Zpn defined by F (n)(x) = F (x) + pnZ and we set
Fd = ∂(d)F (0) for any d ∈ Nm. We prove the following lemma that will be useful for the
rest of the section.
Lemma 7. Let p be a prime number and let F : Zm → Z. Then for any positive integers
n, k such that k ≤ n, we have that d◦(pkF (n)) = d◦(F (n−k)).

Proof. Let d ∈ Nm then we have that that pk∂(d)F (n) = 0 if and only if pk∂(d)F = 0
(mod pn) if and only if ∂(d)F = 0 (mod pn−k) if and only if ∂(d)F (n−k) = 0. This is
enough to conclude the proof.

Let χ : Z → Z be the function defined by χ(x) = 1 if x = 0 (mod p) and χ(x) = 0
otherwise. Let α : Z → Z be such that α(x) = x (mod p) and that the image of α is equal
to {0, . . . , p − 1}.
Lemma 8. Let p be a prime number and n a positive integer. Then we have that
d◦(χ(n)) = n(p − 1).

Proof. Since χ(n) is the pullback of the function that maps x + pZ to 1 + pnZ if x = 0
(mod p) and to 0 + pnZ otherwise, then d◦(χ(n)) = n(p − 1) by Proposition 1.

Lemma 9. Let p be a prime number and n be a positive integer. Then we have that
d◦(α(n)) = (n − 1)(p − 1) + 1 and we have the following:

1. α0 = 0, α1 = 1 and αd = −p∆(d−1)χ(1) for all d ≥ 2.

2. In particular, if p = 2 we have that αd = (−1)d−12d−1 for all d ≥ 1.
Proof. Observe that d◦(α(1)) = 1. Suppose that n > 1. Observe that ∆α(x) = 1 − p if
x = p − 1 (mod p) and ∆α(x) = 1 otherwise. So we have that ∆α(x) = 1 − pχ(x + 1).
So for any d ∈ N with d ≥ 2 we have that ∆(d)α(x) = −p∆(d−1)χ(x + 1). By Lemma
7, we have d◦(pχ(n)) = d◦(χ(n−1)). So we have that d◦(α(n)) = d◦(χ(n−1)) + 1 and
d◦(α(n)) = (n − 1)(p − 1) + 1 by Lemma 8.

Suppose that p = 2, then α(x) = 1−(−1)x

2 for any x ∈ Z. We claim that ∆(d)α(x) =
2d−1(−1)x+d−1. For d = 1, we have that ∆α(x) = 1−(−1)x+1

2 − 1−(−1)x

2 = (−1)x. Suppose
the claim is true for d ≥ 1 and let us prove it for d + 1. We have that

∆(d+1)α(x) = ∆∆(d)α(x) = 2d−1 ((−1)x+d − (−1)x+d−1) = 2d(−1)x+d.

This concludes the proof because αd = ∆(d)α(0) = 2d−1(−1)d−1.
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6.1 Conversion from Fn
p to Zpn

Let σ : Zn → Z be defined by σ(x(1), . . . , x(n)) =
∑

i∈[n] α(x(i))pi−1. Then σ(n) is the
pullback of the conversion map from Fn

p to Zpn . We claim that d◦(σ(n)) = (n−1)(p−1)+1.
We observe that if i, j ∈ [n] are such that i ̸= j, then we have that ∂i∂jσ = 0. So for
any i ∈ [n], we have that ∂i,(di)σ(n)(0, . . . , 0) = pi−1∆(di)α(n)(0) and therefore d◦

i (σ(n)) =
d◦(pi−1α(n)). By Lemma 7, we have d◦(pi−1α(n)) = d◦(α(n−i+1)) and so we have that
d◦

i (σ(n)) = d◦(α(n−i+1)). By Lemma 9, we have that d◦
i (σ(n)) = (n − i)(p − 1) + 1 for any

i ∈ [n] and therefore d◦(σ(n)) = (n − 1)(p − 1) + 1.
Let s ≥ (n − 1)(p − 1) + 3 and let x1, . . . , xs ∈ {0, . . . , p − 1}n. Let ⊕n be the addition

over Fn
p and let ⊞n be the addition over Zpn . We want to use the threshold implementation

defined in Appendix B.1 to get y1, . . . , ys ∈ {0, . . . , p − 1}n such that ⊕n

i∈[s]
xi = ⊞n

j∈[s]
yj . See

Appendix C for the explicit construction. By using the estimates in Remark 4 and the
fact that each addition either in Fn

p or in Zpn costs O(n) elementary operations, we have
that the total cost is O(n22n) if p << n and s = O(n).

6.2 Conversion from Zpn to Fn
p

We now have the tools to define a conversion from Zpn to Fn
p by decomposing it into

functions of smaller degree. We consider the conversion map from Zpn to Zp ×Zpn−1 , then
the one from Zp × Zpn−1 to Z2

p × Zpn−2 and so on until we get the conversion to Zn
p = Fn

p .
We must say that this technique is similar to the one described in the paper by Geelen et
al.[GIKV23] even though their scope is very different from us. Indeed, digit extraction is
an important step in the bootstrapping for Homomorphic Encryption [HS15, CH18, GV23].
In [GIKV23], they approach this problem by using polyfunctions which are polynomials in
Zpn [x] represented using the factorial basis {x(x−1) · · · (x−d+1)}d∈N. This representation
is closely related to the IV polynomial representation since

(
x
d

)
= x(x−1)···(x−d+1)

d! . We
must remark that using the IV polynomial representation instead of the polyfunction
representation has the advantage of determining the exact functional degree of a function
by its representation. Indeed, [GIKV23, Corollary 3] is a direct consequence of the theory
developed by Clark et al. in [CS22].

Let η : Z → Z be defined by η(x) = x−α(x)
p . We claim that d◦(η(n)) = d◦(α(n+1)) =

n(p − 1) + 1. By Lemma 9, we have that ∆η(0) = 1−∆α(0)
p = 0 and that ∆(d)η(0) =

−∆(d)α(0)/p for all d ≥ 2. Therefore, we have that d◦(pη(n+1)) = d◦(α(n+1)) and we can
conclude by Lemma 7. Moreover, we have that the function from Zpn to Zpn−1 that maps
x + pnZ to η(n−1)(x) is balanced. Indeed, for any y ∈ Z we can choose x = py + z where z
is any element in {0, . . . , p − 1}.

We can use η to define a procedure that takes an integer x ∈ Z and extract x(1), . . . , x(n) ∈
{0, . . . , p − 1} such that x =

∑
i∈[n] x(i)p

i−1 (mod pn). Let ηj be the application j times
of the function η. Let us consider the map from Zpn to Zp × Zpn−1 with n ≥ 2 defined by

x + pnZ 7→ (x + pZ, η(x) + pn−1Z) = (x + pZ, η(n−1)(x)).

Then we have that

x + pnZ 7→
(

x(1) + pZ, η(n−1)(x)
)

7→
(

x(1) + pZ, x(2) + pZ, η(n−2)(η(x))
)

7→ · · ·

· · · 7→
(

x(1) + pZ, . . . , x(n−1) + pZ, η(1) (ηn−1(x)
))

=
(
x(1) + pZ, . . . , x(n−1) + pZ, x(n) + pZ

)
.
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There are n − 1 steps in this procedure, and each step k involves a function of degree
d◦(η(n−k)) = (n − k)(p − 1) + 1 for k = 1, . . . , n − 1. However, we can make it shorter
depending on the value of p. Observe that if after the first k − 1 steps we have that
(n − 1)(p − 1) + 1 ≥ pn−k (that is when k = ⌈n − logp ((n − 1)(p − 1) + 1)⌉), then we can
conclude the conversion by mapping ηk−1(x) + pn−k+1Z to((

ηk−1(x)
1

)
+ pZ, . . . ,

(
ηk−1(x)

pn−k

)
+ pZ

)
=
(
x(k) + pZ, . . . , x(n) + pZ

)
.

Let s ≥ (n − 1)(p − 1) + 3 and let x1, . . . , xs ∈ {0, . . . , p − 1}n. Let ⊕n be the addition
over Fn

p and let ⊞n be the addition over Zpn . We want to use the threshold implementation
defined in Appendix B.1 to get y1, . . . , ys ∈ {0, . . . , p − 1}n such that ⊞n

i∈[s]
xi = ⊕n

j∈[s]
yj . We

use a combination of the threshold implementation in Appendix E and in Appendix D. By
using the estimates in Remark 4 and the fact that each addition either in Fn

p or in Zpn

costs O(n) elementary operations, we have that the total cost is O(n22n) if p << n and
s = O(n).

7 Conclusion
In this work, we extended the threshold implementation technique to cryptographic func-
tions defined over finite Abelian groups, demonstrating that many classical properties
remain valid in this broader setting. This generalization significantly expands the ap-
plicability of threshold implementations beyond vectorial Boolean functions, enabling
their use in diverse cryptographic scenarios, particularly those involving arithmetic and
prime-field sharing. We proved that functions with functional degree d admit a threshold
implementation with s ≥ d + 2 shares, thereby generalizing and improving the results
presented in [PAB+23]. Furthermore, we extended these findings to second-order threshold
implementations by proposing a general construction for quadratic balanced functions.
Additionally, we provided novel constructions with practical relevance, including a thresh-
old implementation for any multiplication map with four shares and first-order secure
conversion algorithms between additive sharings over Fn

p and Zpn .
There are many open problems that are left unsolved such as addressing the case of

threshold implementation with d + 1 shares, doing more general constructions for higher
order implementation and improving the operation count of the conversion algorithms.
For the latter, one could reduce the operation count to O(n) by finding decompositions
into low degree functions (ideally quadratic or cubic) of the conversion maps.
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A Complementary content for Subsection 3.1

We show an example for the case F unbalanced and F both uniform and unbalanced. Let
F : Z4 → Z2 defined by F (0) = 0, F (1) = 0, F (2) = 0, and F (3) = 1. Let F : Z2

4 → Z2
2 be

defined as follows:

F(x) = (0, 0), x ∈ {(0, 0), (0, 1), (0, 2), (1, 3), (1, 0), (1, 1)},

F(x) = (1, 1), x ∈ {(2, 2), (2, 3), (2, 0), (3, 1), (3, 2), (3, 3)},

F(x) = (1, 0), x ∈ {(0, 3), (1, 2)},

F(x) = (0, 1), x ∈ {(2, 1), (3, 0)}.

By construction, we have that F is unbalanced and it is correct with respect to F . One
can verify that |Sh2(x) ∩ F−1(y)| = 2 = |Z4|2−1

|Z2|2−1 for all x ∈ Z4 and all y ∈ Sh2(F (x)). So
we have that F is uniform.

We show an example for the case F balanced and F both balanced and not uniform.
Let F : Z4 → Z2 defined by F (0) = 0, F (1) = 0, F (2) = 1, and F (3) = 1. Let F : Z2

4 → Z2
2

be defined as follows:

F(x) = (0, 0), x ∈ {(0, 0), (1, 0), (2, 3), (3, 2)},

F(x) = (1, 1), x ∈ {(0, 1), (1, 3), (2, 2), (3, 1)},

F(x) = (1, 0), x ∈ {(0, 2), (1, 2), (2, 1), (3, 0)},

F(x) = (0, 1), x ∈ {(0, 3), (1, 1), (2, 0), (3, 3)}.

By construction, we have that F is correct with respect to F and F is balanced. However,
F is not uniform because |Sh2(0) ∩ F−1(0, 0)| = 1 ̸= |Z4|2−1

|Z2|2−1 = 2.
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B An example from the general construction of threshold
implementations with d + 2 shares

F1(x) =(1 − b1) · P1 (x1) + b1 · P1

 ∑
i∈[2,s]

xi

 ,

Fj(x) =(1 − bj) · Pj (xj) + bj · Pj

 ∑
i∈[j+1,s]

xi

+
∑

I∈Pj−2

(−1)j−|I|F

∑
i∈I

xi +
∑

i∈[j,s]

xi


− bj−1 · Pj−1

 ∑
i∈[j,s]

xi

 j ∈ [2, d + 1],

Fd+2(x) =
∑

I∈Pd

(−1)d−|I|F

(∑
i∈I

xi

)
−

∑
j∈[d+1]

(1 − bj) · Pj (xj) − bd+1 · Pd+1

 ∑
i∈[d+2,s]

xi

 .

B.1 An example with F balanced

Assume d◦ = d◦(F ) ≥ 2. We set Pk equal to (−1)k−1F if k ∈ [d◦] and equal to F if
k ∈ [d◦, d + 1]. We set bk equal to 1 if k ∈ [d◦] and equal to 0 if k ∈ [d◦, d + 1].

B.1.1 d = d◦(F )

F1(x) =F

 ∑
i∈[2,s]

xi

 ,

Fj(x) =(−1)j−1F

 ∑
i∈[j+1,s]

xi

+
∑

I∈P∗
j−2

(−1)j−|I|F

∑
i∈I

xi +
∑

i∈[j,s]

xi

 j ∈ [2, d],

Fd+1(x) =F (xd+1) +
∑

I∈P∗
d−1

(−1)d+1−|I|F

∑
i∈I

xi +
∑

i∈[d+1,s]

xi

 ,

Fd+2(x) =
∑

I∈Pd

(−1)d−|I|F

(∑
i∈I

xi

)
− F (xd+1) .
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B.1.2 d > d◦(F )

F1(x) =F

 ∑
i∈[2,s]

xi

 ,

Fj(x) =(−1)j−1F

 ∑
i∈[j+1,s]

xi

+
∑

I∈P∗
j−2

(−1)j−|I|F

∑
i∈I

xi +
∑

i∈[j,s]

xi

 j ∈ [2, d◦],

Fd◦+1(x) =F (xd◦+1) +
∑

I∈P∗
d◦−1

(−1)d◦+1−|I|F

∑
i∈I

xi +
∑

i∈[d◦+1,s]

xi


Fd◦+2(x) =F (xd◦+2) +

∑
I∈Pd◦

(−1)d◦−|I|F

(∑
i∈I

xi

)
,

Fj(x) =F (xj) j ∈ [d◦ + 3, d + 1],

Fd+2(x) = −
∑

i∈[d◦+1,d+1]

F (xi) .

C Conversion from additive sharing in Fn
p to additive sharing

in Zpn

Let ⊕n be the addition over Fn
p and let ⊞n be the addition over Zpn . We use the

construction from Appendix B.1. Let d◦ = (n − 1)(p − 1) + 1.

C.1 s = d◦ + 2

y1 = ⊕n

i∈[2,d◦+2]
xi,

yj =(−1)j−1

(
⊕n

i∈[j+1,d◦+2]
xi

)
⊞n ⊞n

I∈P∗
j−2

(−1)j−|I|

(
⊕n

i∈I∪[j,d◦+2]
xi

)
j ∈ [2, d◦],

yd◦+1 = (xd◦+1) ⊞n ⊞n

I∈P∗
d◦−1

(−1)d◦+1−|I|

(
⊕n

i∈I∪[d◦+1,d◦+2]
xi

)
,

yd◦+2 = ⊞n

I∈P∗
d◦

(−1)d◦−|I|
(
⊕n

i∈I
xi

)
⊞n (−1) (xd◦+1) .
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C.2 s > d◦ + 2

y1 = ⊕n

i∈[2,s]
xi,

yj =(−1)j−1

(
⊕n

i∈[j+1,s]
xi

)
⊞n ⊞n

I∈P∗
j−2

(−1)j−|I|

(
⊕n

i∈I∪[j,s]
xi

)
j ∈ [2, d◦],

yd◦+1 = (xd◦+1) ⊞n ⊞n

I∈P∗
d◦−1

(−1)d◦+1−|I|

(
⊕n

i∈I∪[d◦+1,s]
xi

)
,

yd◦+2 = (xd◦+2) ⊞n ⊞n

I∈P∗
d◦

(−1)d◦−|I|
(
⊕n

i∈I
xi

)
,

yj =xj j ∈ [d◦ + 3, s − 1],

ys = −
(

⊞n

i∈[d◦+1,s−1]
xi

)

D Conversion from additive sharing in Zpn to additive shar-
ing in Fn

p

Let ⊕n be the addition over Fn
p and let ⊞n be the addition over Zpn . We use the

construction from Appendix B.1. Let d◦ = pn−1.

D.1 s = d◦ + 2

y1 = ⊞n

i∈[2,d◦+2]
xi,

yj =(−1)j−1
(

⊞n

i∈[j+1,d◦+2]
xi

)
⊕n ⊕n

I∈P∗
j−2

(−1)j−|I|
(

⊞n

i∈I∪[j,d◦+2]
xi

)
j ∈ [2, d◦],

yd◦+1 = (xd◦+1) ⊕n ⊕n

I∈P∗
d◦−1

(−1)d◦+1−|I|
(

⊞n

i∈I∪[d◦+1,d◦+2]
xi

)
,

yd◦+2 = ⊕n

I∈P∗
d◦

(−1)d◦−|I|
(
⊞n

i∈I
xi

)
⊕n (−1) (xd◦+1) .

D.2 s > d◦ + 2

y1 = ⊞n

i∈[2,s]
xi,

yj =(−1)j−1
(

⊞n

i∈[j+1,s]
xi

)
⊕n ⊕n

I∈P∗
j−2

(−1)j−|I|
(
⊞n

i∈I∪[j,s]
xi

)
j ∈ [2, d◦],

yd◦+1 = (xd◦+1) ⊕n ⊕n

I∈P∗
d◦−1

(−1)d◦+1−|I|
(

⊞n

i∈I∪[d◦+1,s]
xi

)
,

yd◦+2 = (xd◦+2) ⊕n ⊕n

I∈P∗
d◦

(−1)d◦−|I|
(
⊞n

i∈I
xi

)
,

yj =xj j ∈ [d◦ + 3, s − 1],

ys = −

(
⊕n

i∈[d◦+1,s−1]
xi

)
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E Conversion from additive sharing in Zpn to additive shar-
ing in Zp × Zpn−1

Let ⊞k be the addition over Zpk . We use the construction from Appendix B.1. Let
d◦ = (n − 1)(p − 1) + 1.

E.1 s = d◦ + 2

y1,(1) = ⊕
i∈[2,d◦+2]

xi,(1),

(y1)(2,n) =
(

⊞n

i∈[2,d◦+2]
xi

)
(2,n)

,

yj,(1) =(−1)j−1 ⊕
i∈[j,d◦+2]

xi,(1) ⊕ (−1)j−1 ⊕
i∈[j+1,d◦+2]

xi,(1) j ∈ [2, d◦],

(yj)(2,n) =(−1)j−1
(

⊞n

i∈[j+1,d◦+2]
xi

)
(2,n)

⊞n−1 ⊞n−1

I∈P∗
j−2

(−1)j−|I|
(

⊞n

i∈I∪[j,d◦+2]
xi

)
(2,n)

j ∈ [2, d◦],

yd◦+1,(1) =xd◦+1,(1) ⊕ (−1)d◦+1 (xd◦+1,(1) ⊕ xd◦+2,(1)
)

,

(yd◦+1)(2,n) = (xd◦+1)(2,n) ⊞
n−1 ⊞n−1

I∈P∗
d◦−1

(−1)d◦+1−|I|
(

⊞n

i∈I∪[d◦+1,d◦+2]
xi

)
(2,n)

,

yd◦+1,(1) = − xd◦+1,(1),

(yd◦+2)(2,n) =⊞n−1

I∈P∗
d◦

(−1)d◦−|I|
(
⊞n

i∈I
xi

)
(2,n)

⊞n−1 (−1) (xd◦+1)(2,n) .

E.2 s > d◦ + 2

y1,(1) = ⊕
i∈[2,s]

xi,(1),

(y1)(2,n) =
(
⊞n

i∈[2,s]
xi

)
(2,n)

,

yj,(1) =(−1)j−1 ⊕
i∈[j+1,s]

xi,(1) ⊕ (−1)j−1 ⊕
i∈[j,s]

xi,(1) j ∈ [2, d◦],

(yj)(2,n) =(−1)j−1
(

⊞n

i∈[j+1,s]
xi

)
(2,n)

⊞n−1 ⊞n−1

I∈P∗
j−2

(−1)j−|I|
(
⊞n

i∈I∪[j,s]
xi

)
(2,n)

j ∈ [2, d◦],

yd◦+1,(1) =xd◦+1,(1) ⊕ (−1)d◦+1

(
⊕

i∈[d◦+1,s]
xi,(1)

)
,

(yd◦+1)(2,n) = (xd◦+1)(2,n) ⊞
n−1 ⊞n−1

I∈P∗
d◦−1

(−1)d◦+1−|I|
(

⊞n

i∈I∪[d◦+1,s]
xi

)
(2,n)

,

yd◦+2,(1) =xd◦+2,(1),

(yd◦+2)(2,n) = (xd◦+2)(2,n) ⊞
n−1 ⊞n−1

I∈P∗
d◦

(−1)d◦−|I|
(
⊞n

i∈I
xi

)
(2,n)

,

yj =xj j ∈ [d◦ + 3, s − 1],

ys,(1) = −

(
⊕

i∈[d◦+1,s−1]
xi,(1)

)

(ys)(2,n) = −
(

⊞n−1

i∈[d◦+1,s−1]
(xi)(2,n)

)
.
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