
Don’t Use It Twice! Solving Relaxed Linear
Equivalence Problems

Alessandro Budroni1, Jesús-Javier Chi-Domı́nguez1, Giuseppe D’Alconzo2,
Antonio J. Di Scala2, and Mukul Kulkarni1

1 Cryptography Research Center, Technology Innovation Institute, UAE
{alessandro.budroni,jesus.dominguez,mukul.kulkarni}@tii.ae

2 Department of Mathematical Sciences, Polytechnic University of Turin, Italy
{giuseppe.dalconzo,antonio.discala}@polito.it

Abstract. The Linear Code Equivalence (LCE) Problem has received
increased attention in recent years due to its applicability in construct-
ing efficient digital signatures. Notably, the LESS signature scheme based
on LCE is under consideration for the NIST post-quantum standardiza-
tion process, along with the MEDS signature scheme that relies on an
extension of LCE to the rank metric, namely the Matrix Code Equiv-
alence (MCE) Problem. Building upon these developments, a family of
signatures with additional properties, including linkable ring, group, and
threshold signatures, has been proposed. These novel constructions in-
troduce relaxed versions of LCE (and MCE), wherein multiple samples
share the same secret equivalence. Despite their significance, these vari-
ations have often lacked a thorough security analysis, being assumed
to be as challenging as their original counterparts. Addressing this gap,
our work delves into the sample complexity of LCE and MCE — pre-
cisely, the sufficient number of samples required for efficient recovery of
the shared secret equivalence. Our findings reveal, for instance, that one
should not use the same secret twice in the LCE setting since this enables
a polynomial time (and memory) algorithm to retrieve the secret. Con-
sequently, our results unveil the insecurity of two advanced signatures
based on variants of the LCE Problem.

Keywords: Algebraic Attack · Code Equivalence · Group Actions · Cryptanal-
ysis · Post-quantum Cryptography

1 Introduction

Following the ongoing NIST post-quantum standardization process for additional
digital signature schemes [28], there has been an increased interest in construct-
ing new quantum-resistant digital signatures. Moving beyond the proposals at
the prior NIST post-quantum standardization process [27], the research commu-
nity explored a broader spectrum of computational problems, conjectured to be
hard, for building efficient signature schemes. A family of such hard problems

is represented by those computational problems consisting of finding an equiva-
lence or isomorphism between two algebraic/geometrical structures. For exam-
ple, among the candidates for the NIST post-quantum standardization process,
the digital signature Hawk [12] relies on the hardness of the Lattice Isomorphism
Problem (LIP), LESS [2] on the Linear Code Equivalence Problem (LCE), MEDS
[15] on the Matrix Code Equivalence Problem (MCE), and SQIsign [14] on the
problem of finding isogenies between supersingular elliptic curves.

All these hard problems can be modeled as group actions. This common
framework has been utilized by cryptographers in two significant ways. First,
protocols defined for a specific hard problem have often been adapted into anal-
ogous protocols using another hard problem, leveraging the similar structure
and properties of the underlying group actions. For example, the Calamari ring
signature [10] relying on isogenies has been translated to code equivalence [4].
Second, some protocols have been defined in a general manner for group actions
and subsequently instantiated with specific problems [25,22,7]. This approach
not only broadens the applicability of these cryptographic protocols but also
provides a unified theoretical foundation for their security and efficiency.

While group actions used in cryptography are generally assumed to guaran-
tee one-wayness, specific group actions might or might not satisfy certain ad-
ditional properties such as weak-unpredictability and weak-pseudorandomness.
This subject has already been studied for LCE and MCE by D’Alconzo and Di
Scala [19] and for LIP by Benčina et al. [8]. Consequently, instantiating proto-
cols with a specific group action without ensuring that stronger cryptographic
properties are satisfied may result in insecure protocols. In addition, to achieve
specific functionalities such as threshold signature or linkability on ring signa-
tures, some relaxed versions of these hard problems have been proposed. These
variants are often conjectured to exhibit a level of difficulty comparable to their
original counterparts but without formal proof or comprehensive cryptanalytic
investigation.

In this work, we significantly improve the sample complexity estimated by
D’Alconzo and Di Scala for LCE and MCE, i.e., the sufficient number of samples
sharing the same secret required for breaking weak-unpredictability. Further-
more, we give an algorithm to solve two variants of LCE, namely the Inverse
Code Equivalence Problem (ILCE) and the Code Equivalence Problem with two
samples (2-LCE),3 in polynomial time, that were introduced to construct linkable
ring signatures [4] and threshold signatures [7], respectively. As a consequence,
the schemes that rely on the hardness of ILCE and 2-LCE are not secure. How-
ever, we wish to highlight that our result does not affect the one-wayness of
LCE/MCE.

We summarize in Table 1 the applications of LCE and MCE group actions
that are still considered secure, and the ones that have been discovered not
secure by this work and [19] since they require stronger properties such as weak-

3 The authors in [7] gave a more general problem definition in terms of group actions,
namely 2-Group Action Inverse Problem (2-GAIP). Here, we refer by 2-LCE to the
2-GAIP from [7] instantiated with LCE.

2

unpredictability and weak-pseudorandomness. For the case of constructing link-
able ring signatures using the inverse problem of MCE, our work reveals that,
algebraically, this problem is significantly weaker than classic MCE. Thus, we
believe that further investigation in this case is necessary.

ID scheme /
signature

Commitment Linkable ring
signature

from [10,4,16]

Pseudo
random

function from
[1]

Updatable
encryption
from [25]

LCE ✓ ✓ ✗ ✗ ✗

MCE ✓ ✓ ✓(?) ✗ ✗

Table 1: Overview of the secure and insecure known instantiations of primitives
constructed from LCE and MCE group actions. The symbols ✗ and ✓ denote
that the corresponding primitive is insecure or remains secure. The symbol ✓(?)
denotes that no specific attacks are known, but we suggest further investigation.
The third column in the LCE setting concerns the cryptographic scenario when
the code length doubles the code dimension.

1.1 Overview of the contribution

Informally, we say that two linear codes C1 and C2 of length n and dimension k
over a finite field Fq are equivalent if there exists a monomial matrix Q ∈ Fn×n

q

such that C2 = C1Q. Given two generators G1,G2 ∈ Fk×n
q of two equivalent

codes, the Linear Code Equivalence Problem (LCE) is the problem of finding an
invertible matrix S and a monomial matrix Q such that G2 = SG1Q. When Q
is a permutation matrix, the problem is called Permutation Code Equivalence
Problem (PCE).

On the hardness of LCE given t samples

Our first contribution is investigating the impact of providing more than one LCE
sample sharing the same secret matrix Q to the adversary. We explore how this
explicitly affects the hardness of recovering Q. In particular, we derive a concrete
bound on the number of necessary samples that allow an efficient recovery of
the secret. Additionally, similar results are also obtained for MCE. We present
our result in the following lemma:

Lemma (Informal). For (n, k)-linear codes over a finite field Fq, the secret

monomial matrix Q can be recovered from
⌊

n2

k(n−k)

⌋
+1 samples of LCE sharing

the same Q in polynomial time, with non-negligible probability.

3

The above result improves upon the work by D’Alconzo and Di Scala [19],
who provided a bound of n · k samples applicable solely to code generators
that are not in systematic form. In contrast, our result removes this limitation,
extending the applicability to codes represented in systematic form as well. The
key ingredient of our result relies on constructing a linear system from each
sample, where only the entries of Q are the variables (and not those of S).
Specifically, we use the relation G1QH⊤

2 = 0, where H2 is a parity-check matrix
of G2, to construct the following homogeneous linear system:

(G1 ⊗H2) · vec(Q) = 0, (1)

where vec(Q) is the column vector whose entries are the entries of Q row-by-row.
This linear system is underdetermined, meaning that there are fewer equations
than variables. However, by combining the systems from different samples, we
obtain with high probability a determined linear system whose solution can be
found via Gaussian elimination, leading to the recovery of Q.

Solving 2-LCE and ILCE for (2k, k)-linear codes

Our second contribution is to introduce a polynomial-time algorithm for solving
2-LCE, i.e., the problem of retrieving Q from only 2 LCE samples, specifically
for k = n/2. Thanks to the fact that ILCE can be seen as a 2-LCE instance via
a simple transformation, we are able to solve this problem in polynomial time
as well. Our algorithm is inspired by Saeed’s work [33] and, in addition to the
results mentioned in the lemma above, it exploits the structure of the secret
monomial matrix to recover it.

Our method consists of first constructing a linear system as in Equation (1)
with the two available LCE samples[

G1 ⊗H2

G′
1 ⊗H ′

2

]
· vec(Q) = 0. (2)

Then, we guess which entries of the secret matrix Q are non-zero. Thanks to the
structure ofQ, for each guess on a non-zero variable, we can simultaneously guess
additional 2n−2 entries on the same row and column to be zero. When evaluating
the variables corresponding to our guess in the system in Equation (2), we obtain
a new smaller non-homogeneous system of the form Ax = b. We prove that the
matrix of coefficientsA is not full-rank, allowing us to distinguish correct guesses
from the wrong ones, with high probability, using the Rouché–Capelli Theorem:
to determine whether the obtained systems accept solutions or not, we check
whether rank (A) = rank (A|b). We show that for wrong guesses rank (A) ̸=
rank (A|b) with probability 1− 1

q , which allows us to distinguish them efficiently
from correct guesses.

Our algorithm consists of iterating this test on all possible n2 guesses on
the entries of Q and setting the variables that did not pass the Rouché–Capelli
test to zero. Our heuristic analysis shows that, for q > 2 and n ≥ 4, we are
able to discard enough variables so that the remaining ones can be retrieved via

4

Gaussian elimination, hence revealing the secret Q. The time complexity of our
algorithm is indeed polynomial and consists of making two rank computations
for each of the n2 guesses, resulting in O(n2+2ω), for ω ∈ [2, 3].

We validate our theoretical results through extensive experiments and simu-
lations performed by means of a SageMath [38] proof-of-concept implementation.
All scripts are available in [13].

1.2 Related work

Permutation Code Equivalence. The cryptanalysis of equivalence problems
on linear codes started with Leon’s algorithm [24], which presented a way to
compute the permutation between two equivalent codes using the information
provided by codewords of minimal weight, but it is unpractical for cryptographic
instances. Later, Petrank and Roth [31] showed that PCE is unlikely to be NP-
complete. In his seminal work [36], Sendrier introduced the Support Splitting
Algorithm, which can recover the secret permutation underlying PCE in time
Õ(qh), where q is the cardinality of the field and h is the dimension of the hull
of the code, namely the intersection between the code and its dual. In addition,
two more attacks on PCE with trivial hulls have been proposed [33,3]. All these
results imply that PCE is not hard when the hull is small, and this happens with
high probability when the code is randomly chosen ([35] showed that in this
case, the hull dimension is a small constant). Hence, PCE must be instantiated
with self-dual or weakly-dual codes to be suitable in cryptography.

Linear Code Equivalence and Matrix Code Equivalence. In [37] Sendrier
and Simos showed that LCE can be reduced to PCE using the closure of the code.
This implied that one should be able to solve LCE using the above techniques,
but, for q ≥ 5, the closure of a code is always weakly-self dual, and the Support
Splitting Algorithm becomes unfeasible. Contrary to PCE, random instances of
LCE remain intractable, and hence, they can be used in the design of cryptosys-
tems. After the publication of LESS [11], the effort for cryptanalyzing PCE and
LCE increased [5,9], which led to a refinement of the conjectured practical com-
plexity of solving these problems. Recently, [17] showed that the LCE (as well as
PCE) is equivalent to its variant which is based on canonical form of the under-
lying codes. In some parameter regimes, they provided the best known attacks
on LCE. In summary, the known techniques are practical for particular classes of
codes, while finding the permutation or the linear map leading to the equivalence
seems to be still intractable for carefully generated instances. In the case of ma-
trix codes, the equivalence problem was first studied from a cryptographic point
of view in [32] and it is further cryptanalyzed in the work that introduces MEDS
[16], presenting an adaptation of Leon’s algorithm in the setting of matrix codes
and an algebraic modelling.

Organization. We give in Section 2 the necessary notation and preliminaries. In
Section 3 we give results on the sample complexity of LCE and MCE. In Section 4
we describe a new algorithm that solves both ILCE and 2-LCE in polynomial time,

5

and we give the result of our experiments related to it in Section 5. Finally, we
discuss the cryptographic implications of our work in Section 6.

2 Preliminaries

2.1 Notation

In this paper, we denote with N, Z and R the sets of natural, integer and real
numbers respectively. For a number n ∈ N we use [n] for the set {1, 2, . . . , n}. We
denote matrices with upper-case bold letters (e.g.A) and vectors with lower-case
bold letters (e.g. a). We treat vectors as columns unless otherwise specified. Let
Fq denote a finite field of order q. The tensor product (A⊗B) ∈ Fmr×ns

q of two
matrices A ∈ Fm×n

q and B ∈ Fr×s
q is defined as the Kronecker product of A and

B.
We use GLn(Fq) for the set of invertible n× n matrices with elements in Fq,

Permn(Fq) for the set of permutation matrices of dimension n, and Monon(Fq)
for the set of n× n monomial matrices, i.e., that can be written as M = DP ,
where D ∈ Fn×n

q is full-rank diagonal, and P ∈ Permn(Fq). We also use In to
denote n× n identity matrix over Fq.

For any matrix M ∈ Fm×n
q , we write vec(M) to denote the column vector

of mn coefficients consisting of the concatenation of the rows of M .
We assume that computing multiplication and inverse of matrices can be

performed using O(nω) field operations for some ω ∈ [2, 3].4 Consequently, we
assume that solving a linear system Ax = b with A ∈ Fn×n

q and b ∈ Fn
q

takes time O(nω) field operations, and that calculating the rank (and kernel) of
A ∈ Fn×n

q costs O(nω) field operations.5

The following propositions will be used in Section 4.

Proposition 1. Let A,B,C,D ∈ F(k)×(2k−1)
q be matrices, for k ≥ 2. Then the

rank of the matrix, M ∈ F(2k2)×(2k−1)2

q , defined as

M =

[
A⊗B
C ⊗D

]
is strictly smaller than 2k2.

Proof. Given the dimension of the matrices, there exist α,β,γ, δ ∈ Fk
q non-zero

vectors such that[
α γ

] [A
C

]
= 0, and

[
β δ

] [B
D

]
= 0.

Then, the vector
v = (α⊗ β,−γ ⊗ δ)

4 For example, in the case of the well-known Strassen’s algorithm which is considered
as the best algorithm for matrix multiplications for large n, one can set ω = log2(7).

5 If the matrix A ∈ Fr×s
q is rectangular, we set n = max{r, s} in the complexity.

6

is such that v ·M = 0. Indeed

(α⊗ β,−γ ⊗ δ)

[
A⊗B
C ⊗D

]
= (α ·A)⊗ (β ·B)− (γ ·C)⊗ (δ ·D) =

(γ ·C)⊗ (δ ·D)− (γ ·C)⊗ (δ ·D) = 0

Hence, the left kernel of M ∈ F2k2×(2k−1)2

q is not null and it follows that
rank (M) < 2k2. ⊓⊔

2.2 Linear Codes and Equivalence Problems

An (n, k)-linear code C over Fq is a k-dimensional vector subspace of Fn
q . We say

that C has length n and dimension k. The rate of the code is the ratio r := k
n .

Unless differently specified, along this paper we consider r ∈ (0, 1
2].

A matrix G ∈ Fk×n
q is called a generator matrix of C if its rows form a basis

of C, that is C = {uTG,u ∈ Fk
q}. We say that G is in systematic form if G =

(Ik M) for some M ∈ Fk×(n−k)
q . A code that admits a generator in systematic

form is called systematic code, and such generator can be obtained in polynomial-
time by computing the reduced row-echelon form of a given generator. We denote
this operation with SF(·). Moreover, the generator in systematic form gives a
standard basis for the k-dimensional vector subspace of Fn

q corresponding to the
code. For a generator matrix G, we denote (G)−i the generator matrix of the
code punctured at position i, i.e., the code obtained by removing the i-th column
from G.

A full-rank matrix H ∈ F(n−k)×n
q is called parity check matrix of C if and

only if ∀ c ∈ C it holds that Hc = 0. Note that if SF(G) = (Ik M), for a

matrix M ∈ Fk×(n−k)
q , then the matrix (−M⊤ In−k) is a parity-check for C.

The parity-check matrix generates the dual code of C, denoted with C⊥. The
hull of a code C is defined as the intersection of C with its dual. A code C is
said weakly self-dual if C ⊂ C⊥ and self-dual if C = C⊥. In both these cases, the
dimension of the hull is equal to the dimension of the code.

Due to the extended variety of namings to the Linear Code Equivalence
Problem (see Table 2), and for consistency between notations in different articles,
we use the acronyms from [37] and [16].

Let G,G′ be the generator matrices of two (n, k)-linear codes C, C′. We say
that C and C′ are equivalent if there exist S ∈ GLk(Fq) and Q ∈ Monon(Fq) such
that G′ = SGQ.

Definition 1 (Linear Code Equivalence (LCE) Problem). Let G,G′ ∈
Fk×n
q be the generator matrices of two (n, k)-linear codes C, C′, respectively. The

Code Equivalence Problem is to find matrices S ∈ GLk(Fq) and Q ∈ Monon(Fq)
(if they exist) such that G′ = SGQ.

Sometimes, in the literature, LCE is stated as in Definition 1 but with the
assurance that such matrices S and Q establishing the equivalence between

7

Permutation Code Linear Code Matrix Code
Equivalence Problem Equivalence Problem Equivalence Problem

[37,23,29] PCE LCE —

[34] PEP — —

[17,30,2] PEP LEP —

[7] PEP LEP MCE

[16,32] — — MCE

Table 2: Notation naming for the Linear, Permutation, and Matrix Code Equiv-
alence Problems through the state-of-the-art.

the two codes exist. Indeed, cryptographic schemes inherently guarantee the
equivalence by construction. Consequently, this work explicitly addresses and
incorporates this scenario.

If instead of being a monomial, the secret matrix Q is a permutation ma-
trix, then the problem is known as Permutation Code Equivalence (PCE)
Problem.

A (m×r, k) matrix code is a subspace D of dimension k of the space of m×r
matrices. The following problem was introduced in [32,16]. Two matrix codes
D,D′ are equivalent if there exists two matrices A ∈ GLm(Fq) and B ∈ GLr(Fq)
such that D′ = ADB. In fact, [16, Lemma 1] proved that the MCE problem can
be redefined in terms of the tensor product AT ⊗B as described below.

Definition 2 (Matrix Code Equivalence (MCE) Problem). Let G,G′ ∈
Fk×mr
q be generators of two (m×r, k)-matrix codes D,D′ respectively. The Matrix

Code Equivalence problem is to find (if they exist) S ∈ GLk(Fq), A ∈ GLm(Fq)
and B ∈ GLr(Fq) such that G′ = SG(A⊤ ⊗B).

Inverse Linear Code Equivalence Problem: In the context of linkable ring signa-
tures, the following problem was initially introduced in [4].

Definition 3 (Inverse Linear Code Equivalence (ILCE) Problem). Let
G,G′,G′′ ∈ Fk×n

q be the generator matrices of three (n, k)-linear codes C, C′

and C′′ respectively. The Inverse Linear Code Equivalence Problem is to find
(if they exist) S ∈ GLk(Fq) and Q ∈ Monon(Fq) such that G′ = SGQ and
G′′ = S−1GQ−1.

Similarly, we define the Inverse Permutation Code Equivalence (IPCE)
Problem variant for when the secret monomial is a permutation matrix. There
is also an Inverse Matrix Code Equivalence Problem variant, named IMCE and
introduced in [16], that essentially replaces Q ∈ Monor(Fq) with Q ∈ GLmr(Fq).

Definition 4 (Inverse Matrix Code Equivalence (IMCE) Problem). Let
G,G′,G′′ ∈ Fk×mr

q be generators of three (m× r, k)-matrix codes D,D′ and D′′

8

respectively. The Inverse Matrix Code Equivalence problem is to find (if they
exist) S ∈ GLk(Fq), A ∈ GLm(Fq) and B ∈ GLr(Fq) such that G′ = SGQ and
G′′ = S−1GQ−1 with Q = (A⊤ ⊗B) ∈ GLmr(Fq).

Remark 1. In practice, one often works with generator matrices in systematic
forms [2,15]. Hence, when G,G′ are in systematic form, we say that C, C′ are
equivalent if there exists Q ∈ Monon(Fq) such that G′ = SF(GQ). The problems
LCE, PCE, MCE, and the corresponding inverse variants can all be equivalently
restated with the generators in systematic form without changing the hardness
of the problems. Unless differently stated, we consider these problems in their
systematic form version to ease the analysis presented in this paper.

2.3 Code equivalence problems with multiple samples

In order to study the stronger cryptographic properties of the equivalence prob-
lems, we introduce some new definitions allowing an interaction with stronger
adversaries. We give in Definition 5 a relaxed version of LCE where the adversary
has access to multiple LCE samples for the same secret monomial Q.

Definition 5 (t-LCE). Let n, k, q be positive integers such that k < n and q is
prime. Let Q ∈ Monon(Fq) be a secret monomial matrix. We denote by Ln,k,q,Q

the probability distribution on Fk×n
q ×Fk×n

q obtained by sampling M ∈ Fk×(n−k)
q

uniformly at random, setting G = (Ik M) ∈ Fk×n
q , and returning

(G,G′ = SF(GQ)).

Given t independent samples from Ln,k,q,Q, the t-samples LCE problem, denoted
as t-LCE, is to find Q.

Informally, the distribution Ln,k,q,Q samples a generator matrix G (in sys-
tematic form) of a random (n, k)-linear code over Fq and outputs the pair
(G,G′), where G′ is the generator matrix (in systematic form) of another equiv-
alent linear code, and the equivalence is established via a secret monomial matrix
Q. When the parameters n, k, q are clear by the context, we simplify the notation
and drop the indices from the shortening of the problem, i.e., we simply write
t-LCE. Also, notice that 1-LCE corresponds to LCE, so in this case only write
LCE. The t-samples version problem for ILCE is as follows.

Definition 6 (t-ILCE). Let n, k, q be positive integers such that k < n and q is

prime. Let Q ∈ Monon(Fq) be a secret monomial matrix. We denote by L̂n,k,q,Q

the probability distribution on Fk×n
q × Fk×n

q × Fk×n
q obtained by sampling M ∈

Fk×(n−k)
q uniformly at random, setting G = (Ik M) ∈ Fk×n

q , and returning

(G,G′ = SF(GQ),G′′ = SF(GQ−1)).

Given t independent samples from L̂n,k,q,Q, the t-samples ILCE problem, denoted
as t-ILCE, is to find Q.

9

Similarly, we call t-PCE (resp. t-IPCE) the problem of retrieving the secret
matrix P ∈ Permn(Fq) given t samples of PCE (resp. IPCE). We also refer to
t-MCE (resp. t-IMCE) the problem of retrieving the secret matrices A ∈ GLm(Fq)
and B ∈ GLr(Fq), from t samples of MCE (resp. MCE).

2.4 Code equivalences modeled as group actions

A group action is a mapping of the form ⋆ : G × X → X, where G is a
group and X is a set, such that for any g1, g2 ∈ G and any x ∈ X, we have
g1 ⋆ (g2 ⋆ x) = (g1g2) ⋆ x. Cryptographic group actions are endowed with cer-
tain hardness properties, such as one-wayness, weak-unpredictability and weak-
pseudorandomness [1].

The Linear Code Equivalence problem (Definition 1) has been modeled as a
group action in [19] with the base set being Fk×n

q and the group being GLk(Fq)×
Monon(Fq). In this work, we follow the approach similar to [7] that makes use
of the systematic form. Recall that with SF() we denote the computation of
reduced row-echelon form. Define the following equivalence relation

A ≃SF B ⇐⇒ SF(A) = SF(B), A,B ∈ Fk×n
q .

Consider the base set as X = Fk×n
q / ≃SF and the group as G = Monon(Fq).

Then the group action ⋆ is defined as

⋆ : G×X → X, (Q,G) 7→ Q ⋆G := SF(GQ).

Similarly, PCE and MCE are modeled as group actions following the same
framework. Consequently, it follows that LCE, PCE, and MCE are instances of
the so-called Vectorization Problem [18].

2-LCE, 2-PCE, and 2-MCE are special cases of the 2-GAIP defined in [7,
Problem 3]. Additionally, Definition 7 describes a useful property required for
building secure threshold signatures as analyzed in [7].

Definition 7. (2-weakly pseudorandom group action [7, Def. 3]) A group action
⋆ : G×X → X is 2-weakly pseudorandom if there is no probabilistic polynomial
time algorithm that given (x, g ⋆x) can distinguish with non-negligible probability
between (x′, y′) and (x′, g ⋆ x′) with. x′, y′ ∈ X sampled uniformly at random
from X.

3 Solving Code Equivalence with Multiple Instances

Recently, D’Alconzo and Di Scala [19] showed that, using representation theory,
for certain group actions (G,X, ⋆) it is possible to recover the secret g ∈ G from a
polynomial number of samples of the form (xi, g ⋆ xi) for random xi ∈ X. In the
case of the group action defined in Section 2.4, this can be viewed as variants of
the problems t-LCE, t-PCE, and t-MCE that do not use the systematic form SF.
They show that these variants can be solved efficiently (with high probability)

10

when t ∈ poly(λ). In the case of t-LCE they showed that t ≥ nk samples are
sufficient to recover the secret matrices S and Q (with high probability).

In this section, we improve the state-of-the-art by (a) showing that a signifi-
cantly lower number of samples is sufficient to recover the secret matrix for the
corresponding computational problem, and (b) unlike [19] our results cover even
the cases when the codes are represented in the systematic form. In the rest of
the paper we focus on the representation with codes in the systematic form since
it leads to simpler analysis, however, we emphasize that our results extend to
the general case as well since we can always compute the reduced row echelon
form of the generator matrices.

In what follows, we focus our analysis on t-LCE. The main difference between
t-LCE and t-MCE problems in the context of our techniques is that the secret
matrix Q is a monomial matrix in the case of t-LCE, whereas for t-MCE problem
the secret matrix is a tensor product

(
A⊤ ⊗B

)
. Since we do not exploit the

monomial structure of Q in the following analysis of t-LCE presented in this
section, our results extend in a straightforward manner to the more general
case of t-MCE. Moreover, we also do not restrict the underlying linear codes to
possess any specific properties or structure e.g. self-dual codes or low dimension
of hull. Our strategy, analogous to [19], consists of using the available samples to
construct a linear system whose unknowns are the entries of the secret matrix.
If the rank of the resulting linear system is large enough, then one is able to
retrieve the secret simply via Gaussian elimination in polynomial time.

Proposition 2. Given two generator matrices G = (Ik M) ∈ Fk×n
q and G′ =

SF(GQ) = (Ik M ′) ∈ Fk×n
q of two equivalent codes for some Q ∈ GLn(Fq), we

have that [
(Ik M)⊗ (−M ′⊤ In−k)

]
vec(Q) = 0. (3)

Proof. This is a straightforward application of [33, Definition 1.1.3, Corollary
3.2.13, and Corollary 3.2.20] without assuming the matrixQ to be a permutation,
where G = (Ik M) and the parity-check matrix of the code generated by G′ =

(Ik M ′) is given by (−M ′⊤ In−k). Note that for any code generated by matrix

G′, by definition we know that G′H ′⊤ = 0. We can therefore, obtain eq. (3)
by substituting GQ for G′ and writing the resulting equation in tensor product
notation. ⊓⊔

Notice that Proposition 2 gives k(n− k) linear equations in the n2 variables
vec(Q) determining the entries of Q. 6 Such a linear system has the following
particular structure. Let us denote the (i, j)-th entry of M by Mi,j , then the ho-
mogeneous linear system of equations derived from Equation (3) can be written
as: A · vec(Q) = 0 where A is equal to

6 In case of LCE we restrict Q to be in Monon(Fq), while for MCE we assume that
n = mr and Q = A⊤ ⊗B for some A ∈ GLm(Fq) and B ∈ GLr(Fq).

11

−M ′⊤ Ic 0 0 · · · 0 −M1,1M

′⊤ M1,1Ic · · · −M1,cM
′⊤ M1,cIc

0 0 −M ′⊤ Ic
. . .

... −M2,1M
′⊤ M2,1Ic · · · −M2,cM

′⊤ M2,cIc
...

. . .
. . .

. . .
. . . 0

...
... · · ·

...
...

0 · · · 0 0 −M ′⊤ Ic −Mk,1M
′⊤ Mk,1Ic · · · −Mk,cM

′⊤ Mk,cIc

with c = (n− k). In particular, the matrix A has full (row) rank due to the

presence of k identity blocks In−k.

Proposition 3. Given t > 0 samples from Ln,k,q,Q

(Gi = (I|Mi), G′
i = SF(GiQ) = (I|M ′

i)) , i = 1, . . . , t,

for a fixed secret Q ∈ Monon(Fq), define the following matrix

A =

(Ik M1)⊗ (−M ′

1
⊤
In−k)

(Ik M2)⊗ (−M ′
2
⊤
In−k)

. . .

(Ik Mt)⊗ (−M ′
t
⊤
In−k)

 . (4)

Then rank (A) < n2.

Proof. Given that every LCE sample brings k(n − k) rows to the matrix A,

there are in total tk(n− k) rows and n2 columns. If t <
⌊

n2

k(n−k)

⌋
+ 1, then the

number of rows is smaller than n2 and the rank cannot reach n2. Otherwise,
there are always more rows than columns, hence the rank of A can be at most
n2. However, by construction we have that A · vec(Q) = 0, hence there exists at
least one linear combination of the columns of A that gives the zero vector. It
follows that A cannot be full-rank, and so rank (A) < n2. ⊓⊔

Studying the probability that the rank of A in Equation (4) is maximal is
not an easy task. The right kernel of A contains solutions of the form vec(X)
such that G′

i = SF(GiX), for i = 1, . . . t, where X is not necessarily monomial.
In other words, such a kernel can be written as follows⋂

i=1,...,t

{vec(X) : G′
i = SF(GiX)} .

For t > 2, the inclusion/exclusion principle does not hold in general, and one
cannot use it to estimate the dimension of such intersection of vector spaces.
Nevertheless, we experimentally studied the probability that the matrix A has
maximal rank (i.e. n2 − 1). Based on our experiments, which are reported in
Section 3.2, we consider the following assumption.

Assumption 1 For a given code rate r, there exist positive integers n0, q0 such

that, for n > n0, q > q0, and t ≥
⌊

1
r(1−r)

⌋
+ 1 =

⌊
n2

k(n−k)

⌋
+ 1, the matrix A

constructed from t random samples from Ln,k,q,Q as in Equation (4) has rank
equal to n2 − 1 with non-negligible probability in n and q.

12

We stress that Assumption 1 is meant to cover all cryptographically inter-
esting cases. Indeed, experimentally, we observed that such an assumption does
not hold true either for codes of very short length and small field or for very
small rate r, which are not of cryptographic interest. For example, for r = 1

2 ,
Assumption 1 seems to hold for n0 = 8 and q0 = 3. Under the hypothesis of
Assumption 1, we give the sample complexity of LCE in Lemma 1.

Lemma 1. For t ≥
⌊

n2

k(n−k)

⌋
+ 1 and under Assumption 1, t-LCE is solvable

with non-negligible probability in time O(n2ω).

Proof. Construct the matrix A from t LCE samples sharing the same secret Q as
in Proposition 3. Following Assumption 1, the right kernel of A has dimension
equal to 1. The generator of such kernel, which can be found via Gaussian
elimination, must be (a multiple of) vec(Q) by construction, and so, a solution
for each of the t LCE instances. ⊓⊔

Notice that Lemma 1 also applies to PCE as this can be seen as a special
case of LCE. We assume an analogue of Assumption 1 for the case of MCE by
setting n := mr in the following corollary.

Corollary 1. For t ≥
⌊

m2r2

k(mr−k)

⌋
+ 1, t-MCE is solvable with non-negligible

probability in time O((mr)
2ω
).

In the parameter setting used LESS [2], i.e. k = n/2, Lemma 1 says that
a constant number of t = 5 samples are enough, for any n, to recover the
secret monomial. Similarly, for the parameter setting used in MEDS [15], i.e.

k = r = m, Corollary 1 says that t =
⌈

k2

k−1

⌉
≈ k samples are enough to re-

cover the secret matrix. We stress that this has no implication on the security
of such protocols because, in both protocols setting, only one sample is provided.

We verified experimentally in SageMath the correctness of Lemma 1 and
Corollary 1, and the scripts are available at [13].

3.1 Implications to ILCE and IMCE

Consider the following ILCE instance(
G, G′ = SF(GQ), G′′ = SF(GQ−1)

)
.

By multiplying Q to the right in the equation at the right-most entry, one gets

(G, G′ = SF(GQ), G = SF(G′′Q)) ,

that is almost a 2-LCE sample. Indeed, these two resulting LCE samples do not
come both from Ln,k,q,Q, but are instead related to each other by the matrix
G appearing twice, even if on different positions. Nevertheless, we argue below
that, for the sake of our analysis, t-ILCE with the above transformation behaves

13

as 2t-LCE.

Given t > 0 random ILCE samples

(Gi = (Ik|Mi), G′
i = (Ik|M ′

i), G′′
i = (Ik|M ′′

i)) , for i = 1, . . . , t,

consider the matrix

A′ =

(Ik M1)⊗ (−M ′

1
⊤
In−k)

(Ik M ′′
1)⊗ (−M1

⊤ In−k)
. . .

(Ik Mt)⊗ (−M ′
t
⊤
In−k)

(Ik M ′′
t)⊗ (−Mt

⊤ In−k)

 . (5)

By construction, we have that A′ · vec(Q) = 0. Hence, for analogous argu-
ments as in the proof of Proposition 3, the matrix A′ has rank always smaller
than n2. Looking at matrixA′, even if each matrixMi appears in two row-blocks,
they are in different columns and they do not seem to bring any evident linear

dependence. In addition, we observed experimentally that, for t =
⌊

n2

2k(n−k)

⌋
+1,

the probability of rank (A′) ̸= n2 − 1 is analogous to the case of 2t-LCE (the re-
sults of our experiments are reported in Section 3.2). On the basis of the above
considerations, we consider Assumption 2 in order to give the sample complexity
of ILCE in Lemma 2.

Assumption 2 For a given code rate r, there exist positive integers n0, q0 such

that, for n > n0, q > q0, and t ≥
⌊

1
2r(1−r)

⌋
+ 1 =

⌊
n2

2k(n−k)

⌋
+ 1, the matrix A′

constructed from t random samples from L̂n,k,q,Q as in Equation (5) has rank
equal to n2 − 1 with non-negligible probability in n and q.

Lemma 2. Under Assumption 2, for t ≥
⌊

n2

2k(n−k)

⌋
+1, t-ILCE is solvable with

non-negligible probability in time O(n2ω).

Proof. Analogous to the proof of Lemma 1. ⊓⊔

Similarly to what is done for MCE, under an analogous assumption to As-
sumption 2 but for IMCE, we have the following corollary.

Corollary 2. For t ≥
⌊

m2r2

2k(mr−k)

⌋
+ 1, t-IMCE is solvable with non-negligible

probability in time O((mr)
2ω
).

Similarly, as above, we verified experimentally in SageMath the correctness
of Lemma 2 and Corollary 2.

3.2 Experimental Validation of Assumptions

In this section, we report the results from our experiments for testing whether
Assumption 1 and Assumption 2 hold in practice.

14

Experiments on Assumption 1. Our experiment consists of testing, for a range
of n, q and code rate r = 1

2 ,
1
4 ,

1
8 ,

1
16 , how many matrices constructed as in Equa-

tion (4) have rank equal to n2 − 1. For each rate, we choose t = ⌊ 1
r(1−r)⌋ + 1

and run 10000 trials and report in Figure 1 the fraction of how many trials pre-
sented the desired maximal rank. One can see that the measured probability of
this event to happen quickly goes to 1 when either or both q and n increase.
In addition, one can notice that when the code rate r is close to either 0 or 1,
the probability of reaching the maximal rank is lower. Tests for rate r > 1

2 gave
symmetrical results as for r < 1

2 . In overall, our experimental results support
Assumption 1.

2 3 5 7 13 31
0

0.2

0.4

0.6

0.8

1

q

P

n = 4

n = 8

n = 16

n = 32

2 3 5 7 13 31
0

0.2

0.4

0.6

0.8

1

q

P

n = 4

n = 8

n = 16

n = 32

(a) Code dimension set to k = n
2
(left) and k = n

4
(right).

2 3 5 7 13 31
0

0.2

0.4

0.6

0.8

1

q

P

n = 8

n = 16

n = 32

n = 40

2 3 5 7 13 31
0

0.2

0.4

0.6

0.8

1

q

P

n = 16

n = 32

n = 48

(b) Code dimension set to k = n
8
(left) and k = n

16
(right).

Fig. 1: The plots report the measured success rate P over 10000 trials that a

matrix A from Equation (4), constructed from t = ⌊ n2

k(n−k)⌋ + 1 random LCE

samples with parameters n, k and q, has rank equal to n2 − 1. Each plots shows
the results for different values of n, q and a code rate r equal to 1

2 ,
1
4 ,

1
8 and 1

16 .

15

Experiments on Assumption 2. Under analogous setting of the above experiment,
we test whether the matrix A′ from Equation (5) has the desired rank n2 − 1,
for t = ⌊ 1

2r(1−r)⌋+ 1. The results reported in Figure 2 support Assumption 2.

2 3 5 7 13 31
0

0.2

0.4

0.6

0.8

1

q

P

n = 4

n = 8

n = 16

n = 32

2 3 5 7 13 31
0

0.2

0.4

0.6

0.8

1

q
P

n = 4

n = 8

n = 16

n = 32

(a) Code dimension set to k = n
2
(left) and k = n

4
(right)

2 3 5 7 13 31
0

0.2

0.4

0.6

0.8

1

q

P

n = 8

n = 16

n = 32

n = 40

2 3 5 7 13 31
0

0.2

0.4

0.6

0.8

1

q

P

n = 16

n = 32

n = 48

(b) Code dimension set to k = n
8
(left) and k = n

16
(right)

Fig. 2: The plots report the measured success rate P over 10000 trials that a

matrix A from Equation (4), constructed from t = ⌊ n2

2k(n−k)⌋ + 1 random ILCE

samples with parameters n, k and q, has rank equal to n2 − 1. Each plots shows
the results for different values of n, q and a code rate r equal 1

2 ,
1
4 ,

1
8 and 1

16 .

3.3 Solving LCE when rank (A) is not maximal

In practice, one can solve t-LCE also when the right rank of the constructed
matrix A from Equation (4) is not strictly maximal (i.e. rank (A) = n2 − 1) as
assumed in Assumption 1. Indeed, we show here that if the right kernel of A

16

has dimension between 2 and n, then the monomial solution (or a multiple of
it) must be an element of a specific set of generators with high probability, and
this set can be computed in polynomial time.

Let us assume that the right kernel of A has dimension n and let g1, . . . , gn ∈
Fn2

q be its generators (smaller rank cases are analogous). With high probability,
there exists a basis transformation that makes g1, . . . , gn a standard basis, that
is, where

g1 = (

n︷ ︸︸ ︷
1, 0, . . . , 0, ∗, . . . , ∗)

g2 = (0, 1, . . . , 0, ∗, . . . , ∗)
· · ·

gn = (0, . . . , 0, 1, ∗, . . . , ∗).

Let us assume that vec(Q) ̸= αgi, for any α ∈ F∗
q and i = 1, . . . , n. Then it means

that vec(Q) must be a linear combination of g1, . . . , gn. However, because of the
monomial structure ofQ, vec(Q) has only one non-zero entry in its first n entries.
It follows that vec(Q) cannot be a combination of two or more gi as this would
generate more than one non-zero entry in these first n positions. Hence, vec(Q)
must be one of the elements of the standard basis of the kernel or a multiple of
it.

Thanks to this observation, we were able in practice to solve the cases in
which n2 − n ≤ rank (A) ≤ n2 − 1, and, in particular, for k = n

2 , we could find
the secret monomial with only 4 random LCE samples, which decreases by 1 the
sample complexity given by Lemma 1.

4 Further Improvements by Exploiting the Monomial
Matrix Structure

In this section, we exploit the structure of the secret matrix in LCE and ILCE to
further reduce the number of samples necessary to retrieve the secret monomial.
Specifically, we show how to solve, in polynomial time, 2-LCE and ILCE for code
rate 1

2 . The approach presented below builds upon the algorithm by Saeed for
PCE [33, Sec. 3.7]. As in Section 3, we consider the generators of the codes in
systematic form to ease our analysis.

4.1 Solving 2-LCE for k = n/2 in polynomial-time

In this section, we introduce a new algorithm that solves 2-LCE in polynomial
time for codes of rate 1

2 . Consider a secret matrix Q ∈ Monon(Fq) and the
following two LCE instances:(

G1 = (Ik M), G′
1 = SF(G1Q) = (Ik M ′)

)
,(

G2 = (Ik N), G′
2 = SF(G2Q) = (Ik N ′)

)
.

(6)

17

for k = n/2. We apply Proposition 2 to each instance and write the following
homogeneous linear system

S :

A︷ ︸︸ ︷[
(Ik M)⊗ (−M ′⊤ In−k)

(Ik N)⊗ (−N ′⊤ In−k)

]
vec(Q) =

[
0
0

]
. (7)

The following proposition gives a sufficient and necessary condition for A to
be full-rank.

Proposition 4. Consider two LCE instances as in Equation (6), for k = n
2 .

Then the matrix A defined in Equation (7) is such that rank (A) < 2k(n− k) if
and only if rank (M −N) < k.

Before giving the proof for Proposition 4, we need to prove the following
proposition.

Proposition 5. Under the same setting of Proposition 4, we have that

rank (M ′ −N ′) < k ⇐⇒ rank (M −N) < k.

Proof. First, we prove that rank (M ′ −N ′) < k ⇒ rank (M −N) < k. One
has that

G′
1 −G′

2 = (Ik M ′)− (Ik N ′) = X(Ik M)Q− Y (Ik N)Q

for some invertible X,Y ∈ Fk×k
q . Then

(0|M ′ −N ′)Q−1 = (X(Ik M)− Y (Ik N)) = (X|Y)

[
Ik M
−Ik −N

]
.

For any matrix Z let kerL(Z) be its left kernel. Let w⊤ ∈ kerL(M
′ −N ′), then

0 = w⊤ · (0|M ′ −N ′)Q−1 = w⊤ · (X|Y)

[
Ik M
−Ik −N

]
.

It follows that w′⊤ = w⊤ · (X|Y) ∈ kerL

([
Ik M
−Ik −N

])
Notice that w′ ∈ Fn

q

must be of the form w′ = (v,v), with v ̸= 0 ∈ Fk
q and v⊤ ∈ kerL (M −N).

Hence we have that rank (M −N) < k. The other implication rank (M −N) <
k ⇒ rank (M ′ −N ′) < k follows by using analogous arguments as above. ⊓⊔

We can now give the proof of Proposition 4.

Proof (Proposition 4). First, we prove that rank (M −N) < k ⇒ rank (A) <

2k(n−k). Notice that since A has n2 columns and 2k(n−k) = n2

2 rows, rank (A)
can be at most equal to 2k(n−k). Let v⊤ ̸= 0 ∈ kerL(M −N), then there exists
w⊤ ̸= 0 ∈ kerL(M

′ −N ′) from Proposition 5. Then we have that

(v⊤| − v⊤)

[
(Ik M)
(Ik N)

]
= 0 and (w⊤| −w⊤)

[
(−M ′⊤ In−k)

(−N ′⊤ In−k)

]
= 0.

18

It follows that

(v⊤ ⊗w⊤| − v⊤ ⊗w⊤)

[
(Ik M)⊗ (−M ′⊤ In−k)

(Ik N)⊗ (−N ′⊤ In−k)

]
= 0.

Hence, (v⊤ ⊗w⊤| − v⊤ ⊗w⊤) ̸= 0 ∈ kerL(A) and so rank (A) < 2k(n− k).
We prove now that rank (A) < 2k(n − k) ⇒ rank (M −N) < k. Let s⊤ =

(s1
⊤, s2

⊤) ̸= 0 ∈ kerL(A). If we restrict the multiplication s⊤A = 0 to the first
2k columns of A, we get the following equation

(s⊤1 |s⊤2)

−M ′⊤ In−k

0 0
−N ′⊤ In−k

0 0

 = 0.

Let s̄1, s̄2 ∈ Fk
q be the vectors of the first k entries of s1 and s2 respectively.

Then we have that

(s̄⊤1 |s̄⊤2)
[
−M ′⊤ In−k

−N ′⊤ In−k

]
= 0.

It follows that s̄⊤1 +s̄⊤2 = 0, therefore −s̄⊤1 = s̄⊤2 and that s̄⊤1 ∈ kerL(M
′⊤−N ′⊤)

and, for k = n
2 , rank (M

′ −N ′) < k. From Proposition 5 we conclude that
rank (M −N) < k. ⊓⊔

Description of the Algorithm. The main idea of our algorithm is to infer
information about the secret monomial matrix Q by guessing the position of the
non-zero entry in each row and checking whether the resulting reduced system
admits solutions. More specifically, we iteratively guess the entries of Q to be
non-zero. Each guess consists of evaluating the variable corresponding to the
(i, j)-th entry of Q to be equal to 1. Thanks to the monomial structure of Q,
this results in guessing a total of 2n − 1 variables simultaneously, since all the
remaining variables in the i-th row and in the j-th column must be equal to 0.
Then, we either retain or discard the guess depending on whether the reduced
linear system obtained from such a guess admits any solution(s) or not.

We now explain why such a guess on the correct non-zero position of Q is
still useful even if Q(i, j) ̸= 1. Recall that Q = PD, where P is a permutation
matrix in Permn(Fq) and D is a diagonal matrix in GLn(Fq). Let di ∈ F∗

q be

the i-th diagonal entry of D. Then Ri = d−1
i Q satisfies G′

1 = SF(G1Ri) and
G′

2 = SF(G2Ri) for each i ∈ {1, . . . , n}. In other words, this guess restricts the
set of possible solutions to include a specific multiple Ri of Q that has 1 in
its i-th non-zero entry (due to scaling by di) which also serves as a solution to
the given 2-LCE instance. Therefore, such an evaluation on the non-zero entry
remains valid.

We give here a characterization of the linear system obtained by guessing a
single position. SettingQ(i, j) = 1 andQ(i, µ),Q(η, j) = 0, for µ ∈ {1 . . . n}\{j}

19

and η ∈ {1 . . . n} \ {i}, results in removing the corresponding 2n− 1 columns of
A from the linear system S in Equation (7). This operation produces the linear
system

Si,j : Aij · vec(Q′) = bij (8)

in dimension 2k(n− k)× (n− 1)2, where

Aij =

[
(Ik M)−i ⊗ (−M ′⊤ In−k)−j

(Ik N)−i ⊗ (−N ′⊤ In−k)−j

]
,

−bij =

[
(Ik M)i ⊗ (−M ′⊤ In−k)j
(Ik N)i ⊗ (−N ′⊤ In−k)j

]
,

and Q′ is the (n−1)×(n−1) matrix obtained by removing the i-th row and j-th
column from Q. In other words, we obtain a new non-homogeneous linear system
given by the tensor product of G punctured at position i and H ′ (parity check
matrix of G′) punctured at position j. Notice that the vector of the constant
terms bij corresponds to the (n(i− 1) + j)-th column of the original matrix A,
i.e., the one corresponding to the variable Q(i, j) that is guessed to be non-zero.

On each guess, we use the following test to accept or reject a guess.

Test 1 For the guess on the (i, j)-th entry of Q to be non-zero, construct a
reduced system Sij from S (as in Equation (8)) with (n−1)2 variables by setting
Q(i, j) = 1 and Q(i, µ),Q(η, j) = 0, for µ ∈ {1 . . . n}\{j} and η ∈ {1 . . . n}\{i}.
Accept the guess if the system Sij accepts at least one solution, reject otherwise.

We use Rouché–Capelli Theorem to check whether Sij accepts solutions
or not. Indeed, the system Sij accepts solutions if and only if rank (Aij) =
rank (Aij |bij). When a guess is rejected, this means that no solution in S ex-
ists with Q(i, j) ̸= 0. Hence, the variable corresponding to Q(i, j) in S is set
to zero. If enough variables are set to zero after the guessing procedure, i.e. the
system becomes (over)determined, and we can retrieve the remaining ones using
Gaussian elimination. The whole strategy is outlined in Algorithm 1.

20

Algorithm 1 Solving 2-LCE

Input: A 2-LCE instance as in Equation (6)
Output: A monomial matrix R, solution to Equation (6) or ⊥
1: Construct the linear system S given by Equation (7)
2: Set g = [g1, . . . , gn] such that gi is an empty list
3: for i := 1 to n do ▷ loop over rows
4: for j := 1 to n do ▷ loop over columns
5: if Test 1 passes then
6: Append j to the list gi
7: end if
8: end for
9: end for
10: Construct the linear system Sred obtained by substituting Q(i, j) = 0 in S for each

i := 1, . . . , n and j ̸∈ gi
11: if Sred is underdetermined then
12: Return ⊥
13: end if
14: Compute a solution matrix R of the linear system Sred

15: Return R

Notice that, when Algorithm 1 succeeds, it returns an equivalent solution (a
scalar multiple of) to the original secret matrix Q.

Heuristic analysis of Algorithm 1. First of all, notice that Test 1 always
accepts a correct guess since, in this case, Sij accepts solutions by construction.
On the other hand, Test 1 may or may not accept a wrong guess. Thus, we begin
our analysis by estimating the probability that Test 1 accepts a wrong guess.

Proposition 4 gives the condition for which the matrix of coefficients A in
Equation (7) is full rank. In particular, given that M ,N are sampled uniformly
at random, we know that

Pr

(
rank (A) =

n2

2

)
= Pr (rank (M −N) = k) = 1− 1

q
. (9)

On the other hand, Proposition 1 applied to the matrix of coefficients Aij of

the reduced system Sij (Equation (8)) tells us that rank (Aij) =
n2

2 −d, for some
d > 0. Using Rouché–Capelli Theorem to check whether Sij admits solutions or
not, implies that the guess (i, j) passes Test 1 if and only if rank (Aij |bij) =

rank (Aij) =
n2

2 − d.

Let X be the left kernel of Aij . The dimension of X is n2

2 − rank (Aij) = d,

and let BX ∈ Fd×n2

2
q be its generator matrix. Similarly, Let Y be the left kernel

of bij of dimension n2

2 − rank (bij) = n2

2 − 1 and let BY ∈ F(n2

2 −1)×n2

2
q be its

generator matrix. Then, we have that

rank (Aij |bij) = rank (Aij) ⇐⇒ X ⊂ Y ⇐⇒ rank (BY) = rank

([
BY

BX

])
.

21

Heuristically, we model BX and BY as random matrices, and the probability
that all rows of BX are linearly dependant from the rows of BY is approximately
equal to 1

qd
. Therefore, the expected probability that a wrong guess passes Test 1

is 1
qd
.

Let us now estimate the expected number of variables that will pass Test 1,
i.e., the number of variables of the system Sred in Algorithm 1. Here, we consider
the most probable scenario of d = 1 (that is also the worst case scenario, since
for d > 1 Test 1 accepts wrong guesses with lower probability). In total, there
are n correct guesses (one for each row) that will always pass Test 1, and the
remaining n2 − n incorrect guesses will pass with probability 1

q . The expected
number of survival variables is

N = n+ (n2 − n)
1

q
. (10)

We have that the resulting system is (over)determined when N ≤ n2

2 , and this
is true when

q ≥ 2(n− 1)

n− 2
. (11)

Notice that, for q > 2 and n ≥ 4, Equation (11) is always satisfied. Hence, when
the parameters satisfy Equation (11), the condition that determines the success

of Algorithm 1 is that rank (A) = n2

2 , which happens with probability 1− 1
q (see

Equation (9)).

Complexity. The computational cost of checking rank (Aij |bij) = rank (Aij) is
O(n2ω), for ω ∈ [2, 3]. This computation must be repeated for n2 guesses, giving
a computational complexity of

O(n2+2ω)

field operations. The memory complexity is of O(n4) field elements.
In order to check the correctness of Algorithm 1 and of the proposed analysis,

we perform extensive experiments in SageMath up to code length n = 128 as
discussed in Section 5.1.

4.2 Solving ILCE for k = n/2 in polynomial-time

Consider an ILCE instance

(G = (Ik|M), G′ = (Ik|M ′), G′′ = (Ik|M ′′)) .

Following the same reasoning as in Section 3.1, we obtain a system which is
almost same as the one obtained from a 2-LCE instance. For Algorithm 1 to
work, we need first to check that the following matrix

A′ =

[
(Ik M)⊗ (−M ′⊤ In−k)

(Ik M ′′)⊗ (−M⊤ In−k)

]
. (12)

22

is full rank. According to Proposition 4,A′ is full-rank if and only if kerL (M −M ′′)
is trivial. Heuristically, given that M is random and modelling M ′′ as also ran-
dom,A′ is full rank with probability 1− 1

q . Then, guessing variables of the system

A′ · vec(Q) = 0 produces a system analogous to Equation (8), where Proposi-
tion 1 naturally applies to A′. Consequently, the requirements for Algorithm 1
are met, allowing us to solve ILCE in polynomial time.

Our experiments, reported in Section 5.2, show that Algorithm 1 solves 2-LCE
and ILCE with analogous success probability.

4.3 Solving 2-PCE and IPCE for self-dual codes

Since PCE is a special case of LCE, the above results also apply to IPCE and
2-PCE for random codes. However, in this case, it is already known that PCE
can be solved in polynomial time using the Support Splitting Algorithm [36].
Unfortunately, for the case of self-dual codes, this approach has exponential
time complexity.

We argue that the hull of the code does not play a role in our algorithm.
First, notice that when building the system in Equation (7), the code and its
dual are never used simultaneously (instead, we use the dual of an equivalent
code). Specifically, given two PCE instances

(G1,G
′
1) (G2,G

′
2),

with secret permutation matrix P , we construct the system (notice that in this
case, G′

i is the dual of itself)[
G1 ⊗G′

1

G2 ⊗G′
2

]
vec(P) =

[
0
0

]
. (13)

Second, the key factor that makes the Rouché–Capelli test work is that the ma-
trix of coefficients after puncturing Aij must not be full-rank, and this is true via
Proposition 1 regardless of the dimension of the hull. Finally, our experiments,
reported in Section 5.3, show that our algorithm solves both IPCE and 2-PCE
for self-dual code instances similarly to the case of random code instances (with
trivial hull).

4.4 Comparisons with Saeed’s algorithm [33]

In [33, Section 3.7], Saeed proposed an algorithm to solve PCE for random code
instances. Let the following(

G1 = (Ik M),G2 = SF(G1P) = (Ik M ′)
)
,

be a PCE instance, where P ∈ Permn(Fq). From this only sample, they construct
the following linear system

23

(Ik M)⊗ (−M ′⊤ In−k)

(−M⊤ In−k)⊗ (Ik M ′)
In ⊗ 1⊤

n

1⊤
n ⊗ In

 vec(P) =

0
0
1n

1n

 , (14)

where 1n is the column vector of length n and 1 in each entry. Notice that the
first equations block is analogous to the one of Equation (7). The second block
is obtained thanks to the following observation: since P−1 = P⊤, we have that
G1 = SF(G2P

−1) = SF(G2P
⊤) also holds. However, these new equations are,

in general, linearly independent from the above only when the hull of the code is
trivial. The last two equation blocks simply condition the sum of the elements of
P in the same row and column to equal 1, which is true for every permutation
matrix.

Starting from the system in Equation (14), Saeed’s algorithm works similarly
to ours. However, our algorithm proposes a more efficient method for recovering
the final secret (Line 14 of Algorithm 1). Specifically, our heuristic analysis
shows that the number of survival variables is smaller than or equal to the
number of equations, allowing an efficient recovery of the secret via Gaussian
elimination. In contrast, the author of [33] does not present such an analysis,
and they also do not specify how to recover the final solution. They, in fact,
speculate that retrieving the solution may be computationally expensive as this
step may require an exhaustive search on a large set.7

5 Experiments

We support the findings presented in this manuscript with extensive experiments
and simulations performed by means of a SageMath [38] proof-of-concept imple-
mentation available at [13]. Regarding Section 3, we provide the scripts to test
the correctness of Lemmas 1 and 2 and Corollaries 1 and 2. For Section 4, we
report in this section the results of extensive experiments performed on solving
2-LCE/ILCE with random codes, and 2-PCE/IPCE with self-dual codes.

5.1 Solving 2-LCE

We perform extensive experiments to corroborate the weaker security provided
by 2-LCE and ILCE when compared to LCE. We take into consideration the
following observation on the parameter set from [2]:

– 128 bits: n = 252 and q = 127 satisfies q ≈ n/2,
– 192 bits: n = 400 and q = 127 satisfies q ≈ n/3,
– 256 bits: n = 548 and q = 127 satisfies q ≈ n/4.

7 In [33, page 62], the author says “This might have high complexity depending on the
size of the solution set.” We interpret this as requiring an exhaustive search.

24

To the best of our knowledge, the concrete security of 2-LCE was not analyzed
before this work, and therefore we test our results on 2-LCE using the parameters
providing different security levels for LCE. Thus, we focus on the following param-
eter set: n ∈ [32, 40, 48, 64, 72, 80, 96, 128], k = n/2, and q ∈ [n/2, n/3, n/4, 127].
Essentially, we tackle cases that are believed to provide security equivalent to
20−70 bits in the case of LCE; such a complexity estimation is based on the
analysis presented in [2]. Table 3 presents our experiments’ time and memory
measurements on a 2.45 GHz AMD EPYC 7763 64-core Processor machine with
1T of RAM running Ubuntu 22.04.2 LTS.

From some preliminary experiments, we observed that the upper bound
in Proposition 1 is reached with overwhelming probability, i.e., rank (Aij) =
n2

2 − 1. Hence, we optimize the algorithm and avoid one rank computation per
guess by substituting the Rouché–Capelli test with the test of checking whether

rank (Aij |bij) = n2

2 − 1 or not.
Our implementation employs parallelization per row; more precisely, it runs n

processors in parallel, and the jth processor has the task of computing the rank of
Si,j . Consequently, that parallelization approach gives a factor of n times faster,
but the memory increases by the same factor (i.e., it is n times bigger). We use
the multiprocessing Python package for the parallelization and the tracemalloc
Python module to measure the memory usage. In addition, for each parameter set
considered, Table 3 reports a comparison of the expected number of variables in
Sred against the average obtained in our experiments. This comparison illustrates
that our experimental findings align with the analysis presented in Section 4.

5.2 Solving ILCE

We report the results of the experiments that we performed to support our
claims in Section 4.2, i.e., Algorithm 1 solves ILCE analogously to 2-LCE. For
different values of n and q, we report in Table 4 the measured success rate over
100 trials of both problems. One can see that 2-LCE and ILCE get solved with
approximately the same success probability and that this corresponds to the
success condition probability of Algorithm 1 (Equation (9)).

5.3 Solving Self Dual 2-PCE and IPCE Instances

In this section, we report the results of our experiments to support our claim
in Section 4.3, that is, Algorithm 1 solves 2-PCE and IPCE with self-dual codes
instances analogously to random codes instances.

We consider the set of self-dual codes generators provided in [20,21], for
n ∈ {16, 24, 28, 36, 40, 44}, k = n/2, and q = 7. Given that, for each n only
one generator G is given, we compute different 2-PCE instances at every test
iteration as follows. First, we compute the generator of an equivalent code G1 of
G through a random permutation T , and then we compute a PCE instance as
(G1,G2 = SF(G1P)), where P is the random secret permutation to discover.
Table 5 reports the success rate over 100 trials, for the available values of n.

25

n q Estimated
LCE bit
security

Expected
vars in
Sred

Measured
vars in
Sred

Memory
(GB)

Runtime Ratio

32

7 20 178 178 1.03 20s 18/20
11 22 125 124 1.02 19s 14/20
17 23 92 93 1.03 19s 19/20
127 29 40 40 1.05 19s 20/20

40

11 25 185 183 2.57 48s 20/20
13 25 163 165 2.56 47s 20/20
19 27 124 121 2.56 47s 19/20
127 33 53 54 2.57 47s 19/20

48

13 28 225 231 5.34 01m 41s 19/20
17 29 183 173 5.35 01m 44s 18/20
23 31 148 146 5.34 01m 44s 19/20
127 37 66 69 5.36 01m 43s 20/20

64

17 35 305 288 16.96 07m 08s 17/20
23 37 242 240 16.96 07m 00s 17/20
31 38 196 191 16.96 07m 06s 20/20
127 44 96 97 16.97 07m 02s 20/20

72

19 39 345 343 27.19 13m 27s 20/20
23 40 297 291 27.19 13m 58s 17/20
37 42 212 212 27.20 12m 50s 18/20
127 47 113 113 27.21 13m 08s 20/20

80

19 41 416 417 41.48 21m 40s 18/20
29 44 301 302 41.50 21m 48s 20/20
41 46 236 228 41.49 18m 37s 18/20
127 51 130 132 41.50 18m 09s 20/20

96

23 48 496 499 86.10 01h 04m 20/20
31 51 393 392 86.10 01h 04m 19/20
47 54 292 284 86.10 01h 04m 20/20
127 58 169 169 86.09 01h 08m 20/20

128

31 63 656 639 272.06 06h 02m 20/20
43 66 509 519 272.07 06h 02m 19/20
61 69 397 397 272.06 05h 51m 19/20
127 73 257 252 272.10 04h 39m 20/20

Table 3: The data corresponds to the average of solving 20 random 2-LCE in-
stances. The fourth and the fifth columns present the expected number of vari-
ables in Sred according to Equation (10) and the average of the observed values,
respectively. The last column presents the number of successfully solved random
2-LCE instances (i.e., the success ratio obtained from the experiments).

One can note that our algorithm succeeds with probability approximately equal

26

q
n

16 24 32 40 1− 1
q

7
2-LCE 0.81 0.84 0.81 0.86

0.86
ILCE 0.87 0.82 0.86 0.85

11
2-LCE 0.92 0.87 0.93 0.87

0.91
ILCE 0.91 0.93 0.89 0.90

17
2-LCE 0.95 0.95 0.93 0.92

0.94
ILCE 0.96 0.94 0.96 0.96

31
2-LCE 0.96 0.99 0.96 0.95

0.97
ILCE 0.94 0.96 0.98 0.98

Table 4: The data corresponds to the number of solved instances divided by the
total number of experiments (which is 100). The last column reports the expected
success probability from our analysis, that is, the system in Equation (7) is full-
rank. In all the experiments, we have k = n/2.

to 1 − 1
q ≈ 0.86, matching the probability of our success condition, that is, the

coefficient matrix in Equation (13) is full-rank (see Equation (9)).

n 16 24 28 36 40 44

2-PCE 0.85 0.86 0.88 0.91 0.87 0.89

IPCE 0.85 0.83 0.88 0.84 0.90 0.86

Table 5: The data corresponds to the number of solved self-dual instances divided
by the total number of experiments (which is 100). In all the experiments, we
have q = 7 and k = n/2.

6 Cryptographic implications

To better illustrate the impact of the results from Section 4, we start by giving a
comparison between the estimated complexities of LCE according to [2], and the
complexity for 2-LCE and ILCE according to Section 4. We follow the parameter
sets from [2], ensuring 128, 192, and 256 security bits for LCE under the current
most efficient algorithms for solving it. On the other hand, the estimations from
Section 4 imply a security of 2-LCE and ILCE of around 60-70 security bits for
the same parameter sets (see Table 6).

27

n k q LCE 2-LCE & ILCE

252 126 127 128 61

400 200 127 192 66

548 274 127 256 70

Table 6: The column corresponding to LCE is according to the security analysis
from [2]. The column corresponding to 2-LCE & ILCE concerns the complexity
of Algorithm 1 (detailed in Section 4) with ω = log2(7). The presented numbers
are given in logarithm base two.

On the impact on ILCE-based linkable signatures: In [4], the authors stated that
if the ILCE problem were proved to be safe, all the necessary linkable proper-
ties would be satisfied, thus building a secure linkable ring signature scheme.
Nevertheless, as a direct consequence of Section 4.2, we have that any linkable
signature relying on the hardness of the ILCE problem is insecure when the
conditions from Section 4 are satisfied.

On the impact on 2-LCE-based threshold signatures: The authors of [7] intro-
duced the 2-LCE problem in the group action framework [7, Problem 3] and em-
phasized constructions for 2-weakly pseudorandom scenarios. Specifically, they
proposed a threshold signature whose distributed key generation algorithm is
based on the conjectured 2-weakly pseudorandom group actions built on top of
the LCE and MCE problems. Nevertheless, as another consequence of Section 4,
we show that Definition 7 when instantiated with group action based on LCE
does not achieve the pseudorandomness property as we can use Algorithm 1 to
recover the secret, which breaks the unpredictability as well as the pseudoran-
domness of the group action. Therefore, the threshold signature instantiations
with LESS from [7, Sec. 5.3] become insecure when k = n/2.8

Other implications: D’Alconzo and Di Scala have demonstrated that the LCE
and MCE group actions do not guarantee weak unpredictability and weak pseu-
dorandomness properties [19]. However, their findings do not apply when the
instances are given in systematic form. Our work addresses this gap by provid-
ing a more general framework that includes the systematic form case. In light
of this, Table 1 summarizes the primitives that, with instantiations from the
literature, can and cannot be constructed using these group actions.

What about the implications to 2-MCE? Given that the secret matrices of 2-MCE
instances do not have the monomial structure, the algorithms from Section 4 do
not apply to solving 2-MCE instances. In particular, it is unclear how to perform
a similar guessing on the entries of the secret matrices.

8 The authors published an updated version of their protocol that does not rely on
2-LCE as a preprint after our attack was made public [6].

28

Acknowledgments

Giuseppe D’Alconzo and Antonio J. Di Scala are members of GNSAGA of IN-
dAM and of CrypTO, the group of Cryptography and Number Theory of the
Politecnico di Torino.

The work of Antonio J. Di Scala was partially supported by the QUBIP
project (https://www.qubip.eu), funded by the European Union under the Hori-
zon Europe framework programme [grant agreement no. 101119746].

This work was partially supported by project SERICS (PE00000014) under
the MUR National Recovery and Resilience Plan funded by the European Union
– NextGenerationEU.

We would also like to thank Andrea Natale and Ricardo Pontaza for their
insights and discussions, which helped us improve the analysis of our tech-
niques. Finally, we thank the anonymous reviewers of a previous version of this
manuscript who provided us with helpful comments and recommendations.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai and Wang [26], pp. 411–439. https://doi.org/
10.1007/978-3-030-64834-3 14

2. Baldi, M., Beckwith, A.B.L., Biasse, J.F., Esser, A., Gaj, K., Mohajerani, K.,
Pelosi, G., Persichetti, E., Saarinen, M.J.O., Santini, P., Wallace, R.: LESS (version
1.1). Tech. rep., National Institute of Standards and Technology (2023), https:
//www.less-project.com/

3. Bardet, M., Otmani, A., Saeed-Taha, M.: Permutation Code Equivalence is Not
Harder Than Graph Isomorphism When Hulls Are Trivial. In: 2019 IEEE In-
ternational Symposium on Information Theory (ISIT). pp. 2464–2468 (2019).
https://doi.org/10.1109/ISIT.2019.8849855

4. Barenghi, A., Biasse, J., Ngo, T., Persichetti, E., Santini, P.: Advanced sig-
nature functionalities from the code equivalence problem. International Jour-
nal of Computer Mathematics: Computer Systems Theory 7(2), 112–128 (2022),
https://doi.org/10.1080/23799927.2022.2048206

5. Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: On the computational hard-
ness of the code equivalence problem in cryptography. Advances in Mathematics
of Communications 17(1), 23–55 (2023), https://doi.org/10.3934/amc.2022064

6. Battagliola, M., Borin, G., Meneghetti, A., Persichetti, E.: Cutting the GRASS:
Threshold GRoup Action Signature Schemes. Cryptology ePrint Archive, Paper
2023/859 (2023), https://eprint.iacr.org/2023/859

7. Battagliola, M., Borin, G., Meneghetti, A., Persichetti, E.: Cutting the grass:
Threshold group action signature schemes. In: Oswald, E. (ed.) Topics in Cryp-
tology – CT-RSA 2024. pp. 460–489. Springer Nature Switzerland, Cham (2024),
https://doi.org/10.1007/978-3-031-58868-6 18

8. Benčina, B., Budroni, A., Chi-Domı́nguez, J.J., Kulkarni, M.: Properties of Lattice
Isomorphism as a Cryptographic Group Action. In: International Conference on
Post-Quantum Cryptography. pp. 170–201. Springer (2024), https://doi.org/10.
1007/978-3-031-62743-9 6

29

https://www.qubip.eu
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://www.less-project.com/
https://www.less-project.com/
https://doi.org/10.1109/ISIT.2019.8849855
https://doi.org/10.1109/ISIT.2019.8849855
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.3934/amc.2022064
https://eprint.iacr.org/2023/859
https://doi.org/10.1007/978-3-031-58868-6_18
https://doi.org/10.1007/978-3-031-62743-9_6
https://doi.org/10.1007/978-3-031-62743-9_6

9. Beullens, W.: Not enough LESS: An improved algorithm for solving code equiv-
alence problems over Fq. In: International Conference on Selected Areas in Cryp-
tography. pp. 387–403. Springer (2020), https://doi.org/10.1007/978-3-030-81652-
0 15

10. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: Logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai and Wang [26], pp.
464–492. https://doi.org/10.1007/978-3-030-64834-3 16

11. Biasse, J.F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: Code-based
signatures without syndromes. In: Nitaj, A., Youssef, A.M. (eds.) AFRICACRYPT
20. LNCS, vol. 12174, pp. 45–65. Springer, Heidelberg (Jul 2020). https://doi.org/
10.1007/978-3-030-51938-4 3

12. Bos, J.W., Bronchain, O., Ducas, L., Fehr, S., Huang, Y.H., Pornin, T., Postleth-
waite, E.W., Prest, T., Pulles, L.N., van Woerden, W.: Hawk version 1.0
(june 1, 2023). Tech. rep., National Institute of Standards and Technology
(2023), https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-
1/spec-files/hawk-spec-web.pdf

13. Budroni, A., Chi-Domı́nguez, J.J., D’Alconzo, G., Di Scala, A.J., Kulkarni, M.:
relaxed-lce-algorithms, available at https://github.com/JJChiDguez/relaxed-
lce-algorithms.git

14. Chavez-Saab, J., Santos, M.C.R., Feo, L.D., Eriksen, J.K., Hess, B., Kohel, D.,
Leroux, A., Longa, P., Meyer, M., Panny, L., Patranabis, S., Petit, C., Henŕıquez,
F.R., Schaeffler, S., Wesolowski, B.: Sqisign version 1.0 (june 1, 2023). Tech. rep.,
National Institute of Standards and Technology (2023), https://csrc.nist.gov/csrc/
media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf

15. Chou, T., Niederhagen, R., Persichetti, E., Ran, L., Hajatiana, T., Reijnders, K.,
Samardjiska, S., Trimoska, M.: MEDS (version 1.1). Tech. rep., National Institute
of Standards and Technology (2023), https://www.meds-pqc.org/

16. Chou, T., Niederhagen, R., Persichetti, E., Randrianarisoa, T.H., Reijnders, K.,
Samardjiska, S., Trimoska, M.: Take your MEDS: digital signatures from matrix
code equivalence. In: Mrabet, N.E., Feo, L.D., Duquesne, S. (eds.) Progress in
Cryptology - AFRICACRYPT 2023 - 14th International Conference on Cryptology
in Africa, Sousse, Tunisia, July 19-21, 2023, Proceedings. Lecture Notes in Com-
puter Science, vol. 14064, pp. 28–52. Springer (2023). https://doi.org/10.1007/978-
3-031-37679-5 2

17. Chou, T., Persichetti, E., Santini, P.: On Linear Equivalence, Canonical Forms,
and Digital Signatures. Cryptology ePrint Archive, Paper 2023/1533 (2023), https:
//eprint.iacr.org/2023/1533

18. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

19. D’Alconzo, G., Di Scala, A.J.: Representations of group actions and their appli-
cations in cryptography. Finite Fields and Their Applications 99, 102476 (2024).
https://doi.org/https://doi.org/10.1016/j.ffa.2024.102476

20. Gaborit, P., Otmani, A.: TABLES OF SELF-DUAL CODES, available at https://www.
unilim.fr/pages perso/philippe.gaborit/SD/

21. Gaborit, P., Otmani, A.: Experimental constructions of self-dual codes. Finite
Fields and Their Applications 9(3), 372–394 (2003). https://doi.org/https://doi.
org/10.1016/S1071-5797(03)00011-X

22. Joux, A.: MPC in the head for isomorphisms and group actions. Cryptology ePrint
Archive, Paper 2023/664 (2023), https://eprint.iacr.org/2023/664

23. Kazmi, R.A.: Cryptography from post-quantum assumptions. Cryptology ePrint
Archive, Report 2015/376 (2015), https://eprint.iacr.org/2015/376

30

https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/hawk-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/hawk-spec-web.pdf
https://github.com/JJChiDguez/relaxed-lce-algorithms.git
https://github.com/JJChiDguez/relaxed-lce-algorithms.git
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://www.meds-pqc.org/
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
https://eprint.iacr.org/2023/1533
https://eprint.iacr.org/2023/1533
https://eprint.iacr.org/2006/291
https://doi.org/https://doi.org/10.1016/j.ffa.2024.102476
https://doi.org/https://doi.org/10.1016/j.ffa.2024.102476
https://www.unilim.fr/pages_perso/philippe.gaborit/SD/
https://www.unilim.fr/pages_perso/philippe.gaborit/SD/
https://doi.org/https://doi.org/10.1016/S1071-5797(03)00011-X
https://doi.org/https://doi.org/10.1016/S1071-5797(03)00011-X
https://doi.org/https://doi.org/10.1016/S1071-5797(03)00011-X
https://doi.org/https://doi.org/10.1016/S1071-5797(03)00011-X
https://eprint.iacr.org/2023/664
https://eprint.iacr.org/2015/376

24. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans-
actions on Information Theory 28(3), 496–511 (1982), https://doi.org/10.1109/
TIT.1982.1056498

25. Leroux, A., Roméas, M.: Updatable encryption from group actions. In: Interna-
tional Conference on Post-Quantum Cryptography. pp. 20–53. Springer (2024),
https://doi.org/10.1007/978-3-031-62746-0 2

26. Moriai, S., Wang, H. (eds.): ASIACRYPT 2020, Part II, LNCS, vol. 12492.
Springer, Heidelberg (Dec 2020)

27. National Institute of Standards and Technology: Post-Quantum Cryptogra-
phy Standardization. https://csrc.nist.gov/projects/post-quantum-cryptography
(2017)

28. National Institute of Standards and Technology: Post-quantum cryptography: Dig-
ital signature schemes. Round 1 Additional Signatures (2023), https://csrc.nist.
gov/Projects/pqc-dig-sig/round-1-additional-signatures

29. Persichetti, E., Randrianariso, T.H., Santini, P.: An attack on a non-interactive
key exchange from code equivalence. Tatra Mountains Mathematical Publications
82(2), 53–64 (2023), https://doi.org/10.2478/tmmp-2022-0018

30. Persichetti, E., Santini, P.: A New Formulation of the Linear Equivalence Problem
and Shorter LESS Signatures. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryp-
tology – ASIACRYPT 2023. pp. 351–378. Springer Nature Singapore, Singapore
(2023), https://doi.org/10.1007/978-981-99-8739-9 12

31. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Transactions on
Information Theory 43(5), 1602–1604 (1997), https://doi.org/10.1109/18.623157

32. Reijnders, K., Samardjiska, S., Trimoska, M.: Hardness Estimates of the Code
Equivalence Problem in the Rank Metric. Designs, Codes and Cryptography pp.
1–30 (01 2024). https://doi.org/10.1007/s10623-023-01338-x

33. Saeed, M.A.: Algebraic Approach for Code Equivalence. Ph.D. thesis, Nor-
mandie Université, University of Khartoum, (2017), Available at https://theses.
hal.science/tel-01678829v2

34. Santini, P., Baldi, M., Chiaraluce, F.: Computational hardness of the permuted
kernel and subcode equivalence problems. IEEE Transactions on Information The-
ory 70(3), 2254–2270 (2024). https://doi.org/10.1109/TIT.2023.3323068

35. Sendrier, N.: On the dimension of the hull. SIAM Journal on Discrete Mathematics
10(2), 282–293 (1997), https://doi.org/10.1137/S0895480195294027

36. Sendrier, N.: Finding the permutation between equivalent linear codes: the support
splitting algorithm. IEEE Transactions on Information Theory 46(4), 1193–1203
(2000). https://doi.org/10.1109/18.850662

37. Sendrier, N., Simos, D.E.: The hardness of code equivalence over Fq and its applica-
tion to code-based cryptography. In: Gaborit, P. (ed.) Post-Quantum Cryptography
- 5th International Workshop, PQCrypto 2013. pp. 203–216. Springer Heidelberg
(June 2013), https://doi.org/10.1007/978-3-642-38616-9 14

38. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.8) (2023), https://www.sagemath.org

31

https://doi.org/10.1109/TIT.1982.1056498
https://doi.org/10.1109/TIT.1982.1056498
https://doi.org/10.1007/978-3-031-62746-0_2
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.2478/tmmp-2022-0018
https://doi.org/10.1007/978-981-99-8739-9_12
https://doi.org/10.1109/18.623157
https://doi.org/10.1007/s10623-023-01338-x
https://doi.org/10.1007/s10623-023-01338-x
https://theses.hal.science/tel-01678829v2
https://theses.hal.science/tel-01678829v2
https://doi.org/10.1109/TIT.2023.3323068
https://doi.org/10.1109/TIT.2023.3323068
https://doi.org/10.1137/S0895480195294027
https://doi.org/10.1109/18.850662
https://doi.org/10.1109/18.850662
https://doi.org/10.1007/978-3-642-38616-9_14
https://www.sagemath.org

	Don't Use It Twice! Solving Relaxed Linear Equivalence Problems

