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Abstract. In recent work [Crypto’24], Dodis, Jost, and Marcedone introduced Compact Key
Storage (CKS) as a modern approach to backup for end-to-end (E2E) secure applications. As
most E2E-secure applications rely on a sequence of secrets (s1, . . . , sn) from which, together with
the ciphertexts sent over the network, all content can be restored, Dodis et al. introduced CKS as
a primitive for backing up (s1, . . . , sn). The authors provided definitions as well as two practically
efficient schemes (with different functionality-efficiency trade-offs). Both, their security definitions
and schemes relied however on the random oracle model (ROM).

In this paper, we first show that this reliance is inherent. More concretely, we argue that
in the standard model, one cannot have a general CKS instantiation that is applicable to all
“CKS-compatible games”, as defined by Dodis et al., and realized by their ROM construction.
Therefore, one must restrict the notion of CKS-compatible games to allow for standard model
CKS instantiations.

We then introduce an alternative standard-model CKS definition that makes concessions in
terms of functionality (thereby circumventing the impossibility). More precisely, we specify CKS
which does not recover the original secret si but a derived key ki, and then observe that this
still suffices for many real-world applications. We instantiate this new notion based on minimal
assumptions. For passive security, we provide an instantiation based on one-way functions only.
For stronger notions, we additionally need collision-resistant hash functions and dual-PRFs,
which we argue to be minimal.

Finally, we provide a modularization of the CKS protocols of Dodis et al. In particular,
we present a unified protocol (and proof) for standard-model equivalents for both protocols
introduced in the original work.
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1 Introduction

Backup is an essential functionality of any application storing user data. For instance, users of a secure
messaging (SM) application may expect cloud backup to be provided such that they do not lose their
conversation history or sent and received attachments, such as photos, in the event their device is
broken, lost, or stolen. The existing cryptographic literature on backup heavily focuses on how to
secure a cryptographic secret under a human-memorizable secret, such as a low-entropy password. For
instance, WhatsApp combines hardware secure modules (HSM) with PAKE such that users can retrieve
a cryptographic secret, that is securely stored on WhatsApp’s HSMs, based on their password. Various
solutions replacing the trust assumption on the HSM with secret sharing have also been proposed. For
example password-protected secret sharing (PPSS) [1,11] and more recent solutions such as updatable
oblivious key management [12] and DPaSE [6].

In contrast, very little attention has been paid to what cryptographic secret should be securely stored
or how this interacts with the security of the application under consideration. Indeed, most end-to-end
(E2E) secure applications use the rather naive solution of using a static secret key to symmetrically
encrypt the user content and upload it to the cloud. This not only can have determinantal effects on
the application’s (presumed) security as recently demonstrated by Fábrega et al. [9] but also lacks all
of the advanced security properties, such as forward secrecy (FS) and post-compromise security (PCS),
we have been accustomed to from E2E-secure protocols. Secure messaging furthermore has a clear
push toward enabling large groups with potentially thousands of members — such as the recent IETF
Message Layer Security (MLS) standard. The naive backup solution, however, cannot take advantage
of this inherent redundancy across users for either storage or bandwidth.

Compact Key Storage. In recent work, Dodis et al. [7] introduce the notion of compact key storage
(CKS). Essentially, CKS serves as the backup of underlying secrets of an E2E-secure application, rather
than the content itself. For instance, for an SM application using the Double Ratchet protocol, CKS
would back up the keys from the symmetric ratcheting layer used to encrypt and authenticate the
ciphertexts. In addition, the service provider would then need to retain the original Double Ratchet
ciphertexts or outsource them to some cloud storage of the users’ choice.

CKS uses a compact secret state that evolves whenever a user’s application learns or generates a
new key, offloading the storage to an untrusted server. Crucially, (1) any users outsourcing the same
sequence of keys can use a shared outsourced storage and (2) CKS allows for fine-grained FS and PCS
such that every user can restore exactly the set of keys they once knew and have not erased in the
meantime. The compact local state can then be backed up using traditional methods such as HSMs or
secret sharing. This has several key benefits:

– PCS/FS: When using CKS for backup, the combined application inherits the PCS/FS guarantees
of the underlying messaging application. In particular, user can efficiently erase messages from
their storage and the backup by securely replacing their CKS state with an updated one.

– Deduplication: All cloud storage (both the CKS storage and the storage of the application
ciphertexts) is shared among all users of a given chat.

– Delegation: Fine-grained FS enables efficient delegation of parts of the conversation history. The
user can create a copy of their CKS state, erase all parts they wish not to share, and then delegate
access by sending the CKS state to another party.

In their work, Dodis et al. observe that the natural security notion — key indistinguishability from
randomness, conditioned on the outsourced storage — is impossible. Instead, the authors propose a
novel security notion of preservation security which, roughly speaking, demands that a broad class of
applications remains secure when enhanced by CKS. That is, for each given application one needs to
show that it is “CKS compatible” to deduce that it can be securely augmented by any secure CKS
scheme. They then provide formal definitions of preservation security and present efficient schemes.
However, both the security notion and the protocol inherently live in the Random Oracle model
(ROM).

1.1 Contributions

In this work, we investigate CKS in the standard model.

Impossibility of preservation security. First, we show that the notion of preservation security by Dodis
et al. inherently requires an idealized model. More concretely, we show that for any CKS scheme in
the standard model, there exists a CKS-compatible game that becomes insecure when enhanced with
the CKS scheme.1

Standard model CKS definitions. While the original CKS notion was aimed at augmenting any (legacy)
E2E-secure application, we observe that if the application is designed with CKS in mind, then the
aforementioned impossibility can be circumvented. More concretely, we observe the following: if instead
of recovering the original secrets (s1, . . . , sn), henceforth called seed, each party only needs to recover a
derived key (k1, . . . , kn) then the impossibility no longer holds. For instance, assume that the seeds are
1 Note the order of quantifiers. A stronger statement that there exist CKS-compatible applications that are

insecure for any CKS scheme is conceivable, but left to future work. Still, our result means we cannot
instantiate the definition from [7].
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Fig. 1: [7, Fig. 7]. A schematic representation of all-or-nothing CKS scheme from [7]. The top half
depicts the parties outsourcing the keys, while the lower half shows the key-recovery process.

the output of a Continuous Group Agreement (CKA) or Continuous Group Key Agreement (CGKA)
protocol. Our proposed notion is compatible with any E2E-secure application that only uses a derived
key ki = KDF(si) instead of the seed. This can either be a new application explicitly with CKS in
mind (in which case the standard-model CKA scheme gets to choose the KDF) or a legacy application
that already happens to involve an additional key derivation step (under modest assumptions on the
KDF).

On a high level, we observe that the impossibility stems from circularity that necessitates an
idealized model such as the ROM. Having an explicit key derivation step then resolves this circularity.
Indeed, we observe that for this weaker notion of CKA, indistinguishability from randomness is
achievable, no longer necessitating the (rather intricate) notion of preservation security. We then adapt
the CKS notion accordingly. Our standard-model CKS is incomparable with the original ROM-based
definition from [7]. On the one hand, we obtain the stronger indistinguishability-based notion. On the
other hand, we have to concede in several aspects:

– As mentioned above, standard-model CKS recovers only keys instead of the seeds. This makes it
(potentially) unsuitable for some legacy applications.

– Delegation of keys only. Similarly, parties can only delegate keys. This somewhat restricts func-
tionality as the receiving party can no longer equally contribute to the shared outsourced state
without the original seeds.

– Selective security only. Fully adaptive security seems to imply non-committing encryption for
messages longer than the key, as the compact local state is significantly shorter than the total length
of the keys that are outsourced. This is generally known to be impossible in the standard model.
We therefore settle for selective security, even though for (some of) our schemes the framework by
Kamath et al. [13] should yield at least quasi-polynomial reductions against adaptive adversaries.

Standard-model CKS schemes. We present an efficient scheme for standard-model CKA. When targeting
outsider security and an honest-but-curious server, our scheme only needs a PRG and one-time secure
symmetric encryption. In other words, in its weakest form, it can be constructed purely from one-way
functions. When targeting an actively malicious server, we additionally need collision-resistant hash
functions. To achieve insider security, where either parties delegate inconsistent keys, or already start
with inconsistent seeds, our scheme additionally needs a Dual-PRF [2,4], for which it is an open
problem whether they can be constructed from one-way functions.

Modularization. Dodis et al. [7] present two CKS schemes: One which allows all-or-nothing delegation
(and all-or-nothing erasure) and which has a constant size local state stu. The other allows to efficiently
delegate any continuous interval of secrets and has a local state that grows logarithmically in the
number of epochs. At their core, both schemes use Convergent Encryption (CE) [8] to recursively
aggregate the two secrets into one and a ciphertext. Slightly simplified, the former scheme aggregates
the old state stu and the secret s for the next consecutive epoch as:

– Parse (K, T )← stu
– Compute a new key K ′ ← H(stu||s)
– Compute C ′ ← SE. Enc(K, (stu||s))
– Compute T ′ ← H(C ′∥T )
– Set st′

u ← (K, T ) and send C← (C, T ′) to the server.

This process is called “derive” in the schematic representation of the all-or-nothing scheme in
Fig. 1. The security of the scheme inherently requires the ROM for the key generation in the second
step. Moreover, the authors of [7] observe that the abstraction of CE as Message Locked Encryption
(MLE) by Bellare et al. [3] does not apply to the recursive application, and the authors instead proved
the scheme’s security directly based on the security of the symmetric encryption SE. Enc and the
ROM. This raises the question: what is the appropriate substitute for the above “derivation box” for
standard-model CKS? Observe that while the above construction allows to recover s based on the
ciphertext and the local state, whereas standard-model CKS only needs to recover a key that is derived
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from the seed. We, therefore, answer this question by introducing the abstraction of a Trapdoor KDF
(TKDF). A TKDF, in a nutshell, represents a kind of “invertible” KDF that generates a key k and
updated state z′ from a seed s and previous state z, such that from z a secret trapdoor t to invert the
operation can be derived.

As a second abstraction, we introduce the notion of iterative CKS, which is a class of CKS protocols
that encompass both schemes from [7]. This abstraction has several benefits: (1) its definitions are
significantly simpler than the ones of fully general CKS; (2) it allows us to formalize and prove the
security of a natural unified protocol of which the all-or-nothing and the interval protocol are special
cases. In particular, we note that the iterative CKS notion reduces finding the right trade-off between
functionality (in terms of delegation and fine-grained erasure) and efficiency of the scheme to a graph
theoretic problem. The class of graphs involved is further closely related to graphs studied in pebbling
games, for instance, allowing us to link it with the work on adaptive security by Jafargholi et al. [10]
and Kamath et al. [13].

1.2 Outline

In Section 2, we first argue the impossibility of standard-model CKS, according to the definition of [7],
and then introduce an alternative definition with weakened functionality (which still suffices for many
practical applications). In Section 3, we then introduce the TKDF notion, abstracting over the core
component of both constructions from [7], and provide an efficient instantiation from standard-model
primitives. In Section 4 we introduce a special case of CKS protocols, dubbed iterative CKS, and show
how a generic protocol (based on TKDF) abstracts over both protocols from [7]. Finally, in Section 5,
we sketch how any iterative CKS protocol implies a general (standard model) CKS protocol. Some
preliminaries are presented in Appendix A.

2 Compact Key Storage

2.1 Overview

Recall from Section 1 that Compact Key Storage allows a group of users that know a shared set of
secrets (s1, . . . , sn) to maintain a shared backup of those secrets. To this end, for every new secret si

obtained by the users, at least one user uploads a ciphertext Ci to the (untrusted) server. Each user
u only keeps a small local state stu and the server storage should not grow in the number of users

— hence the name compact. All users must then be able to use their local state and the ciphertexts
to recover all secrets they once knew (and have not explicitly erased). Importantly, [7] introduced
CKS for dynamic groups, meaning that not every user necessarily knows all secrets. On the contrary,
a user who does not know a certain secret si should not be able to derive any information about si

from the CKS ciphertexts. This, in turn, implies post-compromise security, as stu before the user u
learned si together with all ciphertexts (C1, . . . , Cn) must not leak information about si. Unfortunately,
it was shown in [7] that the natural definition of si remaining pseudorandom given all ciphertexts
(C1, . . . , Cn), and a party’s initial state, is impossible even in idealized models.

Before recapping the formal CKS notion of [7], let us provide a high-level summary of the desired
functionality.

– Outsourcing secrets. Each user can append a secret si for a new epoch i to their local state. To
save bandwidth, this should, intuitively, be an operation done locally by all users except one. As
this is infeasible when having users who know substantially different subsets of secrets, [7] relaxed
this condition slightly. More precisely, a user U should upload unless another user U′, who knew a
superset of the secrets of the former, did the upload when learning si.

– Retrieving secrets. Whenever the user U later wants to retrieve one or more of the secrets they
knew at some point, they should be able to use their local state stu and the help of the server.
The notion of [7] imposes integrity to ensure that U will never retrieve a different secret than
they originally knew. Of course, as for any outsourced storage scheme a malicious server can do a
denial-of-service attack. A strong correctness notion, however, ensures that as long as the server is
honest other malicious group members cannot prevent U from retrieving their secrets.

– Key delegation. A user U should be able to delegate access to the entirety or parts of their secrets
by sending a short message msg over a secure channel to any other user U′. Using msg, U′ should
then be able to recover those secrets with the help of the server.

– Key erasure. To securely delete specific content of the application, the user U should be able to
delete access to their secrets. In other words, U may wish to erase si (or more generally a subset
of the secrets) such that afterward their updated state stU and the ciphertexts (C1, . . . , Cn) no
longer reveal information about si, without requiring the server to securely erase information. This
can be seen as a special case of delegation where the user delegates themselves the set of secrets
they wish to retain; more efficient implementations are however conceivable.

It is not too hard to see that it is impossible for a scheme to support erasing and delegating
arbitrary subsets of the secrets while maintaining a compact local state. Thus, [7] parametrized each
concrete CKS in the set of operations that it supports efficiently. Those sets are described as predicates
that determine whether an operation is feasible for a set of epochs share given the set of epochs know
for which the user currently “knows” the secrets (i.e., learned and not erased them).
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Definition 1 ([7, Def. 1]). A delegation family G is a predicate G : P(N)×P(N)→ {0, 1}, where for
a set know ⊆ N of epochs with the respective keys known to a party, G(know, share) indicates whether
they can delegate share ⊆ N. Analogously, a retrieval family R and a erasure family E indicate whether
the party can recover share ⊆ N or erase share ⊆ N, respectively.

2.2 CKS Syntax

We now recap the Compact Key Storage notion. The following section is mostly taken verbatim from
[7].

Definition 2 ([7, Def. 2]). A Compact Key Storage (CKS) scheme CKS for a delegation family G,
a retrieval family R, and an erasure family E (or (G,R, E)-CKS for short) is an interactive protocol
between stateful user U and server S algorithms, respectively, defined by the following sub-algorithms:

Initialization:
– The stS ← S.Init(1κ) algorithm initializes the server’s state.
– The st← U.Init(1κ) algorithm initializes a user’s state.

Key Management:
– The non-interactive append algorithm takes the current state st, an epoch e, a secret s, and flag

upload. The invocation (
st′, stup

)
← U.Append(st, e, s, upload),

produces an updated state st′ and, if upload = true, an upload state stup. (If upload = false,
then stup = ⊥.)

– The interactive upload algorithm takes the upload state and after the interaction(
⊥; st′

S
)
←

〈
U.Upload(stup)↔ S.Upload(stS)

〉
,

the server outputs an updated state st′
S.

– The interactive erase algorithm takes the current state st and a set of epochs share ⊆ N. After the
following interaction (

st′;⊥
)
←

〈
U.Erase(st, share)↔ S.Erase(stS)

〉
,

both the user outputs an updated state st′ (and the server has no output).
Delegation:

– The interactive granting algorithm takes a user U1’s state st1 and a set share ⊆ N of keys to be
shared with another user U2. After the interaction(

msg;⊥
)
←

〈
U1.Grant(st1, share)↔ S.Grant(stS)

〉
the user outputs the information msg to be sent to the other party U2.

– The interactive grant-accepting algorithm extends another user’s U2 known key set by processing a
grant msg. After the interaction(

st′
2, stup;⊥

)
←

〈
U2.Accept(st2, share, msg, upload)↔ S.Accept(stS)

〉
the user outputs an updated state st′

2, as well as (if upload = true) a state for the Upload algorithm.
Retrieval:

– The interactive key-retrieval algorithm restores the secrets for epochs share ⊆ N with the interaction(
secrets; st′

S
)
←

〈
U.Retrieve(st, share)↔ S.Retrieve(stS)

〉
ending with the user outputting a function secrets : share→ s, as well as an updated server state.

A CKS scheme is considered efficient if all operations work in sublinear — ideally logarithmic
— time in the number of epochs n (when secrets are appended in consecutive order). As such, the
predicates (G,R, E) dictate efficiency requirements: if for instance a party wants to retrieve an arbitrary
set I of epochs, they can find a minimal cover I = I1 ∪ · · · ∪ Ik of subsets consistent with R and
retrieve subset. This leads to an overall efficiency of O(k log(n)). In terms of client state, we require it
to grow at most in the order of O(d log(n)), with d denoting the number of erasure operations.

In case secrets are appended sparsely (such as odd epochs only), are appended completely out
of order, or linearly many erasures have been performed, efficiency may degrade to linear time. The
server state must grow at most linearly in the number of overall epochs outsourced by any party, and
in particular, must not grow in the number of participating parties.

2.3 Impossibility of Standard-model CKS

The authors of [7] showed that any non-trivial state compactness guarantee of the user makes it
impossible to satisfy the most desirable key indistinguishability property for CKS, even if one only
wants to recover all n secrets (s1, . . . , sn) from the latest state stn of the user, with the help of the CKS
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server. Concretely, the following probability cannot be upper bounded by 1
2 + negl(κ) for all efficient

attackers A:

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b←$ {0, 1}
st← U.Init(1κ); stS ← S.Init(1κ)
s0

1, s1
1, s0

2, s1
2, . . . , s0

n, s1
n ←$ {0, 1}κ

∀i ∈ [n] : (st, stup)← U.Append(st, i, s0
i , true),(

⊥; stS
)
←

〈
U.Upload(stup)↔ S.Upload(stS)

〉
b′ ← A(1κ, sb

1, . . . , sb
n, stS)


Intuitively, one cannot expect that the n secrets (s1, . . . , sn) are still pseudorandom when the attacker
gets access to the CKS functionality (in particular, server public storage stS). This is because CKS
provides a testable functionality — (user) state compaction — which is not possible with random
unrelated secrets.

To circumvent this result in the random oracle model (ROM), the authors introduced a rather
intricate, weaker notion of “CKS-preservation”, described below. Note that while the authors of [7]
observed that relying on an idealized model for CKS-preservation seemed inherent, no formal result
was proven. In the next section, we close this gap, showing that preservation security is impossible
in the standard model. Since preservation security was meant to be the weakest meaningful security
notion for CKS this, in spirit, establishes that CKS recovering the original secrets (as a standalone
primitive) is impossible in the standard model.2

Impossibility of CKS-preservation. Intuitively, CKS-preservation relaxes key indistinguishability with
the requirement that access to the CKS functionality does not hurt the security of the underlying
application Π (originally not designed with CKS in mind). To make this statement non-tautologous,
[7] had to define the types of applications Π where this makes sense, without using CKS-syntax inside
Π, but still keeping Π as general as possible. They call such games CKS-compatible. Below we give a
special case of such a CKS-compatible game, which already shows the impossibility of standard-model
CKS-presevation.

Concretely, we will concentrate on the (subset of) CKS-compatible games Π where: (1) Π has a
sequence of secrets (s1, . . . , sn); (2) Π remains secure even if permits the adversary A has access to
the testing oracle Test(i, s) which returns 1 if s = si. The ROM-based construction of [7] worked for
all the games in this class, provided the honest parties do not use the random oracle utilized by the
CKS.3 Thus, to show the standard-model impossibility of instantiating this result, we only need to
construct a single game Π which satisfies properties (1) and (2), but where the knowledge of server
state stS will break Π.

Counter-Example Game. We consider the following game Π between the challenger C and the
polynomial-time attacker A, where κ is the security parameter, and n is chosen large enough so
that the length of the CKS state stn after appending n random secrets si ∈ {0, 1}κ satisfies |stn| ≤
n(κ− ω(log κ)).

1. C samples random s1, . . . , sn ∈ {0, 1}κ.
2. C computes the states of the user after appending s1, . . . , sn:

st0 ← U.Init(1κ)
∀i ∈ [n] : (sti, ·)← U.Append(sti−1, i, si, false),

3. C sends stn to A.
4. C honestly responds to Test(i, s) queries of A: return 1 iff s = si.
5. A send guess values s′

1, . . . , s′
n.

6. C outputs 1 iff ∀i ∈ [n] si = s′
i.

First, we argue that this game is easily won by the attacker if the attacker A additionally gets
the server state stS when the standard-model CKS is applied to s1, . . . , sn, as allowed by the CKS-
preservation security security definition from [7]. This is true because the correctness of the CKS holds
even when the Append and the Upload algorithms are run by the different users. Namely, the adversary
can still successfully recover the original secrets s1, . . . , sn, by using the “Alice’s state” stn (given to A
by the challenger C above) and the server state stS obtained when “another user Bob” (corresponding
to the helper in the “CKS-enhanced game” of [7]) uploaded the corresponding ciphertexts to the server.
Hence, CKS-preservation does not happen for Π.

Second, we nevertheless argue that the original game Π is “CKS-compatible”. Namely, Π is secure
against any polynomial time attacker A, who does not get to see the server state stS in Π, but is
allowed to have the Test oracle. To see this, we use a standard compression argument. Let us say that
A made q = poly(κ) queries to the Test oracle. The key observation is to notice that one can compactly
encode all q responses using significantly fewer than q bits. Namely, for each i ∈ [n], we only need to
know the first index j ∈ [q + 1] where the q’s query of A was successful (or set j = q + 1 if this never
2 In the standard model, our result is a strict strengthening of the impossibility result of key-indistinguishable

CKS from [7], but does not generalize to idealized models.
3 In practice, this is easy to accomplish with salting.
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happened). Thus, all q answers obtained by A take at most n log(q + 1) = O(n log κ) bits to encode.
Now, if the attacker wins Π with non-negligible probability, we can use A to successfully compress nκ
truly random bits s1, . . . , sn as follows:

– Include the final state stn, whose size is assumed to be |stn| ≤ n(κ− ω(log κ)).
– Include the encoding of q test queries of A, which takes at most n log(q + 1) = O(n log κ) bits to

encode.

Combined, this information is enough to run the attacker to produce its guess s′
1, . . . , s′

n. Yet, the
compression string has overall length |stn|+ n log(q + 1)≪ nκ. Which means that the probability that
(s′

1, . . . , s′
n) = (s1, . . . , sn) must be negligible. Which shows that game Π is CKS-compatible.

Discussion. We make several observations. First, our game Π was allowed to depend on the (hypo-
thetical) algorithms of the standard-model CKS. Indeed, unlike ROM, there is no effective mechanism
to prevent honest users from (artificially) utilizing the CKS inside the game Π, if Π is only restricted
to satisfy very weak properties (1) and (2) for CKS-preservation.4 Notice, that simple techniques
like utilizing the common reference string do not help, since that string should be available to the
users to run the CKS, and a general application (even CKS-compatible) could still “trick” the users
to use the right common reference string. Second, our counter-example above is extremely artificial,
specifically targeting to break CKS-compatibility, while supporting the Test oracle. This is expected,
since for most “natural” applications, such as Signal or MLS, we expect the heuristic instantiation of
the ROM-based construction of [7] to be secure in the real world. Instead, the counter-example below
should be viewed from the lens that “CKS-preservation” does not appear to be the right security notion
of CKS for standard-model instantiations. Indeed, our standard model solution will go back to the
clean and elegant key-indistinguishability, but will slightly change the functionality of the application
to circumvent the impossibility result below.

2.4 Weaker Standard Model CKS

In this section, we now introduce our new notion of standard-model CKS. Simply put, we distinguish
between seeds (s1, . . . , sn) and keys (k1, . . . , kn), where each key is (deterministically) derived from
its respective seed. More concretely, U.Append appends a seed si whilst U.Retrieve later recovers the
respective key ki. In addition, delegation is assumed to only delegate keys rather than seeds. This
weaker notion of CKS, of course, is only compatible with applications that distribute seeds, for instance
as part of a CGKA, but then use keys for the message encryption layer.

Definition 3. A Standard Model Compact Key Storage (CKS) scheme CKS is a CKS scheme for
which there is additionally a deterministic algorithm U.Key(e, s)→ k which takes an epoch e and a
seed s, and returns the corresponding key k. A standard-model CKS scheme is defined with respect
to a generalized delegation family G, retrieval family R, and erasure family E, each of which takes
two arguments: the set of epochs for which a party knows the seeds (and therefore also the keys) and
the set of epochs for which they know the keys only. Finally, for consistency, we denote the output of
U.Retrieve as keys (instead of secrets).

Correctness and Security. We now adapt correctness and security to the standard-model setting.
The former remains mostly unchanged from ROM-CKS with the obvious difference that U.Retrieve
now must return the correct keys instead of seeds. That is, if a user for epoch e appended a seed s to
their CKS state, then correctness requires that U.Retrieve later recovers U.Key(e, s), instead of s as in
the ROM-CKS notion.

ROM-CKS formalized security as two properties: preservation security and integrity. Intuitively, the
former demands that applying CKS to a so-called “CKS-compatible” application does not undermine
that application’s security. The latter, on the other hand, requires that the CKS scheme only recovers
correct seeds — that is, the ones they initially appended to their state — or an error, for an honest
party interacting with a malicious server potentially colluding with other malicious users. Integrity
of standard-model CKS also remains mostly unchanged from ROM-CKS, with the obvious changes
to accommodate the key derivation. For concreteness, we present both the adapted correctness and
integrity games in Appendix B.

In the remainder of this section, we present the key-indistinguishability notion of standard-model
CKS. This notion replaced the preservation-security notion and, intuitively, represents the desired
best-possible security.

Definition 4. We say that a standard-model (G,R, E)-CKS scheme CKS is key indistinguishable, if
the probability of any PPT adversary A winning the (G,R, E)-CKS-KeyIndistA

CKS game from Fig. 2 is
negligible in κ.

The goal of the adversary is to guess whether the game uses real keys (b = 0) or random ones (b = 1).
The game follows the template of the preservation-security game from [7], which is very similar to the
one of the correctness and integrity games. Notably, the adversary has various oracles mirroring the
CKS algorithms. For each of the interactive algorithms, the adversary furthermore assumes the role of
the server; that is, the game considers an actively malicious server. (Note that we assume the adversary
4 Indeed, we will later observe (cf. Theorem 3 and Corollary 4) that for a special sub-class of protocols, we

can build provably secure CKS in the standard model, even satisfying key indistinguishability!
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Game (G,R, E)-CKS-KeyIndistA
CKS (Security)

Main
b←$ {0, 1}
n← 0
St[·], Secret[·], Keys[·], GrantInfo[·]← ⊥
KnownSeed[·, ·], KnownKey[·, ·], ActualKey[·, ·]← false
(stA , Corr)← A(1κ)
b′ ← ACreateUser,...,Accept(1κ, stA)
return b′ = b

Oracle CreateUser
n← n + 1
St[n]← U.Init(1κ)

Oracle Corrupt
Input: u ∈ [n]

req ActualKey[u, ·] ⊆ Corr
return St[u]

Oracle Append
Input: (u, e, s) ∈ [n]× N× {0, 1}κ

req ¬KnownSeed[u, e]
(s, k)← sample-if-nec(u, e, s)
KnownKey[u, e]← true;
KnownSeed[u, e]← true
try (St[u], stup)← U.Append(St[u], e, s, upload)
try

〈
U.Upload(stup)↔ A

〉
return k

Oracle Erase
Input: (u, share) ∈ [n]× P(N)

req E(KnownSeed[u, ·], KnownKey[u, ·], share)
try

(
St[u];⊥

)
←

〈
U.Erase(St[u], share)↔ A

〉
for e ∈ share do

KnownSeed[u, e]← false; KnownKey[u, e]← false
ActualKey[u, e]← false

Oracle Retrieve
Input: (u, share) ∈ [n]× P(N)

req R(KnownSeed[u, ·], KnownKey[u, ·], share)
try

(
keys;⊥

)
←

〈
U.Retrieve(St[u], share)↔ A

〉
for e ∈ share do

if ActualKey[u, e] then keys(e)← Keys[e]
return keys

Oracle Grant
Input: (u, share, leak) ∈ [n]× [n]× P(N)× {0, 1}

req G(KnownSeed[u, ·], KnownKey[u, ·], share)
actual← {e ∈ share | ActualKey[u, e]}
req ¬leak ∨ actual ⊆ Corr
try

(
msg;⊥

)
←

〈
U.Grant(St[u], share)↔ A

〉
if leak then

h← msg
else

h←$ {0, 1}κ // handle for delivery
Msgs[h]← (msg, actual)

return h

Oracle Accept
Input: (u′, share, h) ∈ [n]× P(N)× {0, 1}∗

actual = ⊥
if Msgs[h] ̸= ⊥ then

(msg, actual)← Msgs[h] // Delivery
else

msg← h // Injection
try

(
St[u′], stup;⊥

)
←

〈
U.Accept(St[u′], share, msg, upload)↔ A

〉
try

〈
U.Upload(stup)↔ A

〉
if actual ̸= ⊥ then

for e ∈ actual do
if KnownKey[u′, e] = false then

ActualKey[u′, e]← true
for e ∈ share do

KnownKey[u′, e]← true

sample-if-nec(U, e, s)

if s ̸= ⊥ then
k← U.Key(e, s)
return (s, k)

else if Secret[e] ̸= ⊥ then
Secret[e]←$ {0, 1}κ

if b = 0 ∨ e ∈ Corr then Keys[e]← U.Key(e, s)
else Keys[e]←$ {0, 1}κ

ActualKey[U, e]← true
return (Secret[e], Keys[e])

Fig. 2: The key-indistinguishability notion for standard-model CKS. We assume the adversary to not
interleave calls of the adversarial oracles for the same user.

not to interleave calls of the oracles for the same user.) The game mostly just executes the protocol
while keeping track of some additional state. For instance, KnownSeed[U, e] and KnownKey[U, e] keep
track whether the user u knows the seed and key for epoch e, respectively. Furthermore, the game uses
ActualKey[u, e] to keep track whether the key known by the user for an epoch is the one chosen by
the game or one injected by the adversary. The seeds and keys chosen by the game are tracked using
Seed[e] and Keys[e].

Observe that the function sample-if-nec samples one fresh seed for every epoch e and then uses
that one consistently thorough the execution. Furthermore, depending on the bit b, it either derives
the respective key or chooses an independent one. Those keys are then output as part of U.Append
and U.Retrieve as challenges, whenever the respective user is known to use the proper seed. (If the
adversary instead provides a seed for U.Append, by inputting s ̸= ⊥, then sample-if-nec just returns
keys that are consistent.)

Finally, note that in the Grant oracle the adversary gets to choose whether they receive the message
produces by U.Grant or not, using the leak flag. This message is assumed to be transmitted over a
secure channel to the recipient; therefore, leaking the message implies leaking the delegated keys. If
the message is transmitted securely, then the adversary is given an opaque handle h to the message
instead, which they later can use for delivery to another user u′. In the Accept oracle, the adversary
can then either input a handle h or a granting message msg. In the former case, the game looks up the
actual granting message msg, as well as for which of the granted keys correspond to actual keys chosen
by the game (as opposed to keys injected by the adversary).

Note that the game formalizes selective security by having the adversary commit to the set Corr
of all epochs for which the keys can be compromised before starting the interaction. Any type of
corruption, whether leaking a user’s private set or a grant message, is then predicated all of the keys
which can be deduced by correctness being for corruptible epochs. Finally, observe that this formalizes
forward secrecy and post-compromise security as corruptions are allowed whenever a user are not
supposed to know the epoch’s actual key.

3 Trapdoor Key Derivation

3.1 Defining TKDFs

In this section, we introduce the Trapdoor KDF (TKDF) primitive that will serve as the fundamental
building block for our standard-model schemes. Recall from Section 1.1 that TKDF, in a nutshell,
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Fig. 3: A schematic representation of our symmetric TKDF scheme.

represents a kind of “invertible” KDF that generates a key k and updated state z′ from a seed s and
previous state z, such that from z a secret trapdoor t to invert the operation can be derived.

A schematic representation of a TKDF scheme is presented in Fig. 3. Observe that (to avoid
circularity) we only require the inversion to recover the key and trapdoor rather than the seed and
state. To be suitable for our CKS construction, we also require certain operations to be deterministic,
as expressed as part of the following definition.

Definition 5. A Trapdoor Key Derivation Function (TKDF) is a tuple (TKDF. Key, TKDF. Derive,
TKDF. Trapdoor, TKDF. Invert) of PPT algorithms with an associated seed space S, key space K,
state space Z, trapdoor space T , and ciphertext space C.

– The deterministic key derivation algorithm ki ← TKDF. Key(si) outputs the key ki corresponding
to a seed si

– The state derivation algorithm (zi, ci)← TKDF. Derive(si, zi−1) takes a seed si and a state zi−1 as
inputs, and outputs the next state zi and a ciphertext ci. The algorithm can be randomized, but zi is
a deterministic function of the inputs. Hence, only ci may depend on the algorithm’s randomness.

– The deterministic ti ← TKDF. Trapdoor(zi) algorithm outputs a trapdoor ti based on the state.
– The deterministic inversion algorithm (ki, ti−1) ← TKDF. Invert(ci, ti) takes the ciphertext and

trapdoor, and outputs the key and the previous trapdoor.

We generally require the state space Z to be small (e.g., about as big as the key space) and in particular
to consist only of elements of the same length.

Correctness requires that TKDF. Invert correctly inverts TKDF. Derive, as formalized by the
following definition.

Definition 6 (Correctness). We say that a TKDF is correct, if

Pr

(ki, ti−1) = TKDF. Invert(ci, ti)

∣∣∣∣∣∣∣∣∣∣∣∣

si ←$ S, zi−1 ←$ Z,

ti−1 ← TKDF. Trapdoor(zi−1),
ki ← TKDF. Key(si),

(zi, ci)← TKDF. Derive(si, zi−1),
ti ← TKDF. Trapdoor(zi)

 = 1,

where the randomness is taken both over the sampling of zi−1 and si, as well as over the coins of
TKDF. Derive.

For security, we require that the resulting key ki is indistinguishable from an independent uniform
random, for an attacker that does not know the seed si. Analogously, we require that the trapdoor ti

is indistinguishable from random for an attacker that does not know the secret state zi. (This will be
important for being able to iterate the TKDF.) Finally, we require the ciphertext ci to be semantically
secure and not reveal any information about either ki or ti−1 to an adversary not knowing ti. The
precise security definitions are a bit subtle. We now first state the formal definition and then discuss
some of the intricacies.

Definition 7 (TKDF Security). A TKDF scheme is said to be secure if there exists a PPT algorithm
TKDF. Sim(ti, ki, ti−1)→ ci which simulates ciphertexts such that the following three properties hold:

1. Key randomness. For any PPT A, the advantage

AdvGKeyRand
TKDF

(A) :=
∣∣∣Pr[GKeyRand-0

TKDF (A)⇒ 1]− Pr[GKeyRand-1
TKDF (A)⇒ 1]

∣∣∣
is negligible in the security parameter κ, for the real-or-ideal game from Fig. 4.

2. Trapdoor randomness. For any PPT A, the advantage

AdvGTdRand
TKDF

(A) :=
∣∣Pr[GTdRand-0

TKDF (A)⇒ 1]− Pr[GTdRand-1
TKDF (A)⇒ 1]

∣∣
is negligible in the security parameter κ, for the real-or-ideal game from Fig. 5.
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Game GKeyRand-0
TKDF

Main
si ←$ S
ki ← TKDF. Key(si)
b← ADerive(1κ, ki)
return b

Oracle Derive(zi−1)

(zi, ci)← TKDF. Derive(si, zi−1)
return (zi, ci)

Game GKeyRand-1
TKDF

Main
Zi[·]← ⊥
ki ←$ K
b← ADerive(1κ, ki)
return b

Oracle Derive(zi−1)

if Zi[zi−1] = ⊥ then Zi[zi−1]←$ Z
ti ← TKDF. Trapdoor(Zi[zi−1])
ti−1 ← TKDF. Trapdoor(zi−1)
ci ← TKDF. Sim(ti, ki, ti−1)
return (Zi[zi−1], ci)

Fig. 4: The games formalizing key-randomness of a TKDF scheme.

Game GTdRand-0
TKDF

Main
zi−1 ←$ Z
ti−1 ← TKDF. Trapdoor(zi−1)
b← ADerive(1κ, ti−1)
return b

Oracle Derive(si)

(zi, ci)← TKDF. Derive(si, zi−1)
return (zi, ci)

Game GTdRand-1
TKDF

Main
Zi[·]← ⊥
ti−1 ←$ T
b← ADerive(1κ, ti−1)
return b

Oracle Derive(si)

if Zi[si] = ⊥ then Zi[si]←$ Z
ti ← TKDF. Trapdoor(Zi[si])
ki ← TKDF. Key(si)
ci ← TKDF. Sim(ti, ki, ti−1)
return (zi, ci)

Fig. 5: The games formalizing trapdoor-randomness of a TKDF scheme.

3. Semantic security. For any keys k0
i and k1

i , and any trapdoors t0
i−1 and t1

i−1, the following
distributions are computationally indistinguishable:{(

k0
i , k1

i , t0
i−1, t1

i−1, TKDF. Sim(ti, k0
i , t0

i−1)
)

: ti ←$ T
}

≈c

{(
k0

i , k1
i , t0

i−1, t1
i−1, TKDF. Sim(ti, k1

i , t1
i−1)

)
: ti ←$ T

}
.

We denote with AdvGIND-CPA-OT
TKDF

(A) the maximum respective advantage for an adversary A, over
any challenge.

We say that the TKDF scheme is one-time secure if no PPT adversary has non-negligible advantage
when restricted to a single Derive query in the key-randomness and trapdoor-randomness games.

Let us consider the key-randomness property. Intuitively, this property requires that ki is indistin-
guishable from random when not knowing the seed si. However, the property further has to account for
leakage from the ciphertext and, especially, the state zi (which can be used for subsequent evaluations).
Therefore, the property demands that ki and zi are indistinguishable from independently sampled
uniform random values. In any actual scheme, however, those values are related via the ciphertext ci

by correctness: Any attacker can derive ti from zi and use this to decrypt ci, resulting in (ti−1, ki).
Therefore, GKeyRand-1

TKDF allows the ciphertext to be generated consistently using a simulator TKDF. Sim.
Crucially, the simulator ensures that ti from zi are only related indirectly via the trapdoor ti, i.e.,
that the above check is essentially the only thing an attacker can do to distinguish ki and zi from
independent uniform random values. Finally, note that the attacker gets multiple TKDF. Derive queries
for their prior state zi−1 of choice. This will turn out to be vital for active security where several users
knowing the same seed si are tricked to evaluate the TKDF with different prior states. Indeed, for
passive security one-time TKDF security suffices.

Trapdoor randomness is then defined analogously to key randomness. For instance, the attacker
gets to do multiple TKDF. Derive to anticipate attacks where to parties with the same secret state zi

are tricked into using different seeds si chosen by the adversary.
Finally, consider semantic security. This is essentially one-time IND-CPA security for the ciphertext.

Note that as all three security properties use the same simulator, the former ones already imply that
the simulated ciphertext is indistinguishable from a real one. Phrasing semantic security in terms of
the simulator will turn out to make the definition a bit easier to use in hybrid arguments where either
key randomness or trapdoor randomness is applied first.

3.2 Symmetric TKDF

For more CKS schemes with non-trivial delegation and erasure, we need a TKDF that treats its two
inputs more interchangeably than the basic TKDF notion introduced above. That is, a TKDF does
not strictly distinguish between the concepts of seeds and states and allows them to be used somewhat
interchangeably. In particular, we want (1) a TKDF state z can be used as a seed for a subsequent
TKDF call, and (2) that trapdoors are generated analogously to derived keys.
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Fig. 6: A schematic representation of the Symmetric TKDF scheme from Fig. 7. The left box shows
both TKDF. Key (the upper output only depending on si) and TKDF. Derive (the middle and lower
outputs).

Protocol Symmetric TKDF Scheme

TKDF. Key

Input: si ∈ S
(ki, ·)← PRG(si)
return ki

TKDF. Trapdoor

Input: zi ∈ Z
(ti, ·)← PRG(zi)
return ti

TKDF. Derive

Input: (si, zi−1) ∈ S × Z
(ki, xi)← PRG(si)
(ti−1, yi)← PRG(zi−1)
zi ← dPRF(xi, yi)
(·, ti)← PRG(zi)
ci ← SE. Encti ((ti−1, ki))
return (zi, ci)

TKDF. Invert

Input: (ci, ti) ∈ C × T
(ti−1, ki)← SE. Decti (ci)
return (ki, ti−1)

Fig. 7: A simple construction based on a PRG, a dual-PRF, and symmetric encryption. Note that
TKDF. Key and TKDF. Trapdoor are the same, as required for a symmetric TKDF.

We call such a TKDF a symmetric TKDF. (We remark that unlike the notion of a symmetric
PRF [4] we do not necessarily require that such a TKDF treats its argument symmetrically, i.e.,
TKDF. Derive(s, z) = TKDF. Derive(z, s), but simply that the two arguments play the same general
role.) We formalize the structural requirement in the following definition.

Definition 8. A symmetric TKDF is a TKDF scheme with the following structural properties:

– The seed space is equal to the state space, i.e., S = Z, and the key space is equal to the trapdoor
space, i.e., K = T .

– The key derivation is equivalent to the trapdoor derivation, i.e., TKDF. Key = TKDF. Trapdoor.

The security of a symmetric TKDF is the same as the security of a regular TKDF. Note that key
randomness and trapdoor randomness coincide iff TKDF. Derive treats its argument symmetrically.

3.3 A Standard-Model Symmetric-TKDF Construction

We now present a simple construction of a symmetric TKDF. The construction is based on a length-
doubling PRG, a dual-PRF [2,4], and a one-time secure symmetric encryption scheme SE. Recall that
a dual-PRF is a deterministic algorithm dPRF : {0, 1}κ × {0, 1}κ → {0, 1}κ that behaves like a PRF
in both arguments, i.e., such that for a uniform random key k, both dPRF(k, ·) and dPRF(·, k) are
PRFs. The scheme first uses the PRG to expand the seed si into the key ki and an auxiliary value
xi, and to expand the previous zi−1 into yi and the previous trapdoor ti−1. The values xi and yi are
then combined using the dPRF to obtain the next state zi. From this state, we moreover derive the
current trapdoors ti as the second part of the output yield from expanding zi (analogously as for ti−1).
ti then serves as encryption key to encrypt (ti−1, ki). The trapdoor algorithm simply recomputes ti

from zi and, finally, the inversion algorithm decrypts the ciphertext to obtain the trapdoor and key.5
A schematic depiction of the scheme is presented in Fig. 6, whereas for completeness formal definition
is given in Fig. 7.

Note that we assumed here that Z = S = {0, 1}κ. Using a length-doubling PRG, we can thus
observe that K = T = {0, 1}κ as well, implying that our construction satisfies the structural property
of a symmetric TKDF. Correctness then immediately follows by the correctness of the symmetric
encryption scheme SE. Security is established by the following theorem.
5 We remark that if a party consecutively computes zi ← TKDF. Derive(si, zi−1), and zi+1 ←

TKDF. Derive(si+1, zi), then an actual implementation would not need to expand zi in both operations
separately. Thus, the number of PRG iterations per epoch is actually two instead of three.
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Theorem 1. Assume SE is a one-time IND-CPA secure symmetric encryption scheme, PRG is a
secure length-doubling pseudo-random generator, and dPRF is a secure dual-PRF. Then, the TKDF
from Fig. 7 scheme is secure. More formally, for each of the three properties and every PPT adversary
A, there exist attackers APRG against the PRG security game GIND

PRG, and ASE against the IND-CPA
game GIND-CPA

SE , that have roughly the same running time, such that
AdvGKeyRand

TKDF
(A) ≤ AdvGIND

PRG
(APRG) + AdvGIND

dPRF
(AdPRF) (1)

AdvGTdRand
TKDF

(A) ≤ AdvGIND
PRG

(APRG) + AdvGIND
dPRF

(AdPRF) (2)

AdvGIND-CPA-OT
TKDF

(A) ≤ AdvGIND-CPA-OT
SE

(ASE). (3)
Proof. We use the following simple simulator that just mimics the encryption performed by the scheme

TKDF. Sim(ti, k0
i , t0

i−1) := SE. Encti
((ti−1, ki)).

First, consider key randomness. Observe that, in the TKDF. Derive computation of GKeyRand-0
TKDF , by

PRG security ki and xi are indistinguishable from independent and uniformly random sampled values
as si is sampled uniformly at random and not otherwise used. Now, we can apply dual-PRF security to
conclude that in the Derive oracle the dPRF(xi, zi−1) evaluation furthermore behaves like a uniform
random function in the second argument. Therefore, we can instead replace zi with the output of
a URF, as in GKeyRand-1

TKDF . The indistinguishability now follows by observing that TKDF. Derive just
computes ti and ti−1 the same way as TKDF. Trapdoor in GKeyRand-1

TKDF , followed by the same encryption
that TKDF. Sim performs.

The trapdoor randomness follows analogously, using that dPRF(·, zi−1) behaves like a uniform
random function for zi−1 chosen uniformly at random. Finally, consider the semantic security. Given
the definition of our simulator, this follows directly from the one-time IND-CPA security of SE. Enc. ⊓⊔
Corollary 1. Trapdoor KDFs exist if and only if dual-PRFs exist.
Proof. Dual-PRFs imply the existence of one-way functions and, thus, PRG and (one-time secure)
symmetric encryption. Therefore, the first direction follows from Theorem 1. Moreover, observe that
key-randomness and trapdoor-randomness games jointly imply dual-PRF security with respect to the
first output zi of TKDF. Derive.

Variants. We now consider some variants of the scheme. First, observe that for one-time TKDF
security, we can replace the dual-PRF with a simple XOR operation of xi and yi. The proof follows
analogously, observing that for a single evaluation xi⊕ yi behaves indistinguishable from the dual-PRF.
While dPRFs are known to be constructible from standard assumptions [4] it is an open problem
whether than can be constructed from one-way functions only.
Theorem 2. When replacing zi ← dPRF(xi, yi) with zi ← xi ⊕ yi in the scheme from Fig. 7, then the
modified scheme is one-time TKDF secure, assuming SE is a one-time IND-CPA secure symmetric
encryption scheme and PRG is a secure length-doubling pseudo-random generator.
Corollary 2. The existence of one-way functions implies the existence of one-time secure TKDF
schemes.

Second, we observe that the usage of the PRG is just one special case of a key derivation mechanism,
expanding a seed si or state zi into two independent secrets. Therefore, if we have a legacy application
that already prescribes a key-derivation step, and that allows us to derive one more unrelated secret,
then our scheme can be made compatible with the legacy application. For instance, the MLS group
messaging protocol already involves a key derivation function (KDF) based on HKDF [14,5]. Our
TKDF scheme, could therefore derive ki according to that key derivation and xi using the same
key derivation but on a different context (and analogously for expanding zi). As long as the legacy
application does not use that context itself, the composed scheme is secure. The proof of the following
theorem follows analogous to Theorem 1.
Theorem 3. For any secure key derivation function (KDF) we can replace the usage of PRG in the
scheme from Fig. 7 with the KDF evaluated twice on two distinct contexts. The resulting scheme is a
secure TKDF, assuming the KDF, the dual-PRF are secure and SE is a one-time IND-CPA secure
symmetric encryption scheme.

4 Iterative CKS
Recall from Section 1.1 that the all-or-nothing scheme by Dodis et al. was built around iteratively
applying a “derivation” that aggregates a secret state and a seed into a new secret state (and a
ciphertext) as depicted in Fig. 1. The second scheme by Dodis et al. — which allows for efficient
delegation and erasure of arbitrary continuous intervals of secrets — follows a similar template. Indeed,
the scheme simply arranges the epochs as leaves in a binary tree, where each node aggregates its two
children. (We refer to [7] for details on the scheme.)

In this section, we abstract CKS schemes built around this template. We call such a scheme
an iterative CKS scheme, for which we define the respective notion. The corresponding (security)
definitions for this special case turn out to be significantly simpler than the (fully general) CKS notion
as introduced in [7]. We then present a unified protocol for the iterative CKS template, based on a
TKDF, and prove its security. This essentially allows us to reduce choosing the right trade-off between
functionality (in terms of delegation and fine-grained erasure) and efficiency of CKS schemes to a
graph theoretic problem.
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4.1 Syntax

In this section, we formally introduce the simplified iterative CKS notion. On a high level, the idea
is that such a scheme repeatedly aggregates secrets — which could either be seeds or secret states
themselves — into a new secret and a ciphertext. Intuitively, the resulting secret should allow to reverse
the aggregation. Therefore, recursively, the state when combined with the appropriate ciphertexts
should allow recovering any secret that went into the aggregation.

Note that the aggregation essentially forms a directed graph with seeds as sources and each non-
source having indegree two. To avoid circularity, we will restrict ourselves to directed acyclic graphs
(DAG). The following definition assigns each node the set of epochs that have a path from their source
to the node, i.e., the set of seeds they aggregate over.

Definition 9. We say S ⊆ P(2N) is a set family for an interactive CKS if:
1. ∅ /∈ S
2. {e} ∈ S, for all e ∈ N
3. For each set S ∈ S with |S| > 1, there exists a unique decomposition S1,S2 ∈ S such that
S = S1 ∪ S2.

Furthermore, let DagS denote the respective DAG over the set S where an edge (Si,Sj) is present iff
there exists S ′ ∈ S such that Sj = Si ∪ S ′. By property 3, each internal node of DagS has in-degree 2.

We now define iterative CKS for a set family S. Recursively aggregating seeds according to edges in
DagS, such a scheme allows a party knowing all seeds {se | e ∈ S} to create a compact seeds state SSS
and a compact keys state KSS , as well as ciphertext CS . For security, the ciphertexts should not reveal
any information about the keys derived from the seeds. For correctness, on the other hand, the keys
state KSS and ciphertext CS should be sufficient to recover the keys by “undoing” the aggregation
and, ultimately, recover individual keys ke.

Definition 10. An Iterative Compact Key Storage (I-CKS) scheme CKS consists of the following
PPT algorithms:

– GenPub(1κ)→ pub generates public parameters for the scheme.
– DeriveKey(pub, se, e)→ ke returns the key corresponding to a seed for epoch e. This algorithm is

assumed to be deterministic.
– Init(pub, e, se)→ (SS{e}, C{e}) initializes a secret seeds state for S = {e}. Additionally, output an

(optional) ciphertext.
– Compact(S1, SSS1 ,S2, SSS2)→ (SSS1∪S2 , CS1∪S2) takes two seed states and compacts them into a

joint one and a ciphertext to be stored. This assumes that (S1 ∪ S2) ∈ S.
– DeriveKS(S, SSS)→ KSS computes the keys state corresponding to a seeds state.
– Expand(S, KSS , CS ,S1,S2)→ (KSS1 , KSS2) obtains the keys state for a subintervals S1 ⊂ S and
S2 ⊂ S based on the keys state for the joint interval S = S1 ∪ S2 and the respective ciphertext.

– Recover(e, KS{e}, C{e})→ ke recovers the key ke for an epoch e.

Correctness. We now formalize the correctness of our notion. Simply put, we require the following
two properties:

1. Recover “undoes” Init. Consider an epoch e ∈ N. Then,
– (SS{e}, C{e})← Init(pub, e, se)
– KS{e} ← DeriveKS({e}, SS{e})
– k′

e ← Recover(e, KS{e}, C{e})
outputs the correct key, i.e., k′

e = DeriveKey(pub, se, e).

2. Expand “undoes” Compact. Consider an epoch sets S1,S2 ∈ S such that their union is in S. Then,
– (SSS′ , CS′)← Compact(S1, SSS1 ,S2, SSS2)
– KSS′ ← DeriveKS(S ′, SSS′)
– (KS ′

S1
, KS ′

S2
)← Expand(S ′, KSS′ , CS′ ,S1,S2)

produces keys states such that KS ′
S1

is interchangeable with KSS1 obtained via DeriveKS(S1, SSS1),
and KS ′

S2
is interchangeable with KSS2 , respectively.

A formal version of correctness is presented in Fig. 8. Note that the game treats any seeds state,
keys state, and ciphertext for the same epoch set S ∈ S interchangeably. In a deterministic scheme
this is trivially achieved by each being unique — we however only formally require DeriveKey to be
deterministic.

4.2 Security

For security, we consider two games: pseudorandomness and integrity. The pseudorandomness game
is depicted in Fig. 9. The game allows the adversary to create an arbitrary number of seed states
for a single epoch, using Init, and then to gradually accumulate seeds using Compact, returning the
ciphertext to the adversary. For Init, the adversary obtains either the real key ke, if b = 0, or a random
one, if b = 1. Note that the adversary can also inject their own seed by inputting se ̸= ⊥, in which case
the real key is used. Finally, note that, for simplicity, the game formalizes selective security, with the
adversary having to commit to the set of corruptions Corr ahead of time. However, observe that the
structure of our game (and I-CKS in general) is essentially one of a pebbling game on the graph DagS.
Therefore, the framework on adaptive security by Jafargholi et al. [10] and Kamath et al. [13] should
allow us to get (quasi-polynomial) adaptive security for specific graphs DagS.
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Game GCorr
I-CKS

Main
win← false,
public SS, KS, C← []
pub← GenPub(1κ)
AInit,...,Recover(1κ, pub)
return win

Oracle Init(e, se)

S ← {e}
ke ← DeriveKey(pub, se, e)
KS ← {(e, ke)}
SSS ← Init(pub, e, se)
SS +← (S, SSS ,KS)

Oracle Compact(S1, SSS1 ,KS1 ,S2, SSS2 ,KS2 )

S ′ ← S1 ∪ S2
req S ′ ∈ S ∧ (S1, SSS1 ,KS1 ) ∈ SS

∧ (S2, SSS2 ,KS2 ) ∈ SS
∧ ¬∃e, k1 ̸= k2 : (e, k1) ∈ K1 ∧ (e, k2) ∈ K2

(SSS′ , CS′ )← Compact(S1, SSS1 ,S2, SSS2 )
KS′ ← K1 ∪ K2

SS +← (S ′, SSS′ ,K′); C +← (S ′, CS′ ,K′)

Oracle DeriveKS(S, SSS ,KS)

req (S, SSS ,KS) ∈ SS
KSS ← DeriveKS(S, SSS)
KS +← (S, KSS ,KS)

Oracle Expand(S, KSS ,KS , CS ,S1,S2)

req (S, KSS ,KS) ∈ KS ∧ (S, CS ,KS) ∈ C
∧ S1 ∈ S ∧ S2 ∈ S ∧ (S1 ∪ S2) = S

(KSS1 , KSS2 )← Expand(S, KSS , CS ,S1,S2)
KS1 ← {(e, k) ∈ KS | e ∈ S1}
KS2 ← {(e, k) ∈ KS | e ∈ S2}
KS +← (S1, KSS1 ,KS1 ); KS +← (S2, KSS2 ,KS2 )

Oracle Recover(e, KS{e}, C{e},K{e})

S ← {e}
req (S, KSS ,KS) ∈ KS ∧ (S, CS ,KS) ∈ C
ke ← Recover(e, KSS , CS)
if (e, ke) /∈ KS then win← true

Fig. 8: The Iterative CKS correctness game.

Game GKeys-RoR
I-CKS

Main
b←$ {0, 1},
SS← []
Seeds[·], Keys[·]← ⊥
pub← GenPub(1κ)
(stA , Corr)← A(1κ, pub)
b′ ← AInit,Corrupt,Compact(stA)
return b′ = b

Oracle Init(i, e, se)

S ← {e}
(se, ke)← sample-if-nec(e, se)
(SSS , CS)← Init(pub, e, se)
SS +← (S, SSS)
return (ke, CS)

Oracle Corrupt(i)

(S, SSS)← SS[i]
req S ⊆ Corr
return SSS

Oracle Compact(i, j)

(S1, SSS1 )← SS[i]; (S2, SSS2 )← SS[j]
S ′ ← S1 ∪ S2
req S ′ ∈ S
(SSS′ , CS′ )← Compact(S1, SSS1 ,S2, SSS2 )
SS +← (S ′, SSS′ )
return CS′

sample-if-nec(e, se)

ke ← DeriveKey(Seeds[e])
if se ̸= ⊥ then return (se, ke)
else if Seeds[e] = ⊥ then

Seeds[e]←$ {0, 1}κ

if b = 0 ∨ e ∈ Corr then Keys[e]← ke
else Keys[e]←$ {0, 1}κ

return (Seeds[e], Keys[e])

Fig. 9: The real-or-random security game for an Iterative CKS scheme.

Definition 11. An I-CKS scheme is secure, if for any set family S, the following advantage

AdvGKeys-RoR
I-CKS

(A) := Pr[GKeys-RoR
I-CKS (A)⇒ 1]

is negligible in κ for any PPT adversary A. We say that the scheme is passively secure if the advantage
is negligible for any A who is restricted to only pass se = ⊥ to the Init oracle.

The integrity game, depicted in Fig. 10, is similar to the correctness game in structure. It, however,
no longer restricts the adversary to submit honestly generated ciphertexts and, in turn, allows the
algorithms to fail. Integrity then requires that Recover either fails or outputs the same key ke that was
initially aggregated over. In addition, the game can be won if Compact succeeds on seed states that
contain conflicting information for the same epoch. Observe that the game formalizes a strong variant
of integrity where all states are presumed to be public (analogous to the general CKS integrity game).

Definition 12. An I-CKS scheme is said to satisfy integrity, if for any set family S, the following
advantage is negligible in κ for any PPT adversary A:

AdvGIntegrity
I-CKS

(A) := Pr[GIntegrity
I-CKS (A)⇒ 1].

4.3 Constructing I-CKS from TKDF
We now build a generic iterative CKS scheme based on a (symmetric) TKDF. Recall from Section 1.1
that the goal of a TKDF was to provide a standard-model abstraction for the “derive” and “invert”
boxes used in the schemes of [7]. See, for example, Fig. 1 for a high-level schematic of the ROM-CKS
all-or-nothing scheme — and compare it with the intended analogous for the standard model presented
in Fig. 11.

The scheme for a set family S is then fairly straightforward. In a nutshell, TKDF states roughly
correspond to seed states, and TKDF trapdoors to key states. For each internal node of DagS we
use TKDF. Derive to compact the seed states of its two child nodes as part of Compact. Conversely,
for Expand we use TKDF. Invert to obtain the key states of the node’s children. We now discuss the
scheme in a bit more detail; see Fig. 12 for a pseudocode description.

15



Game GIntegrity
I-CKS

Main
win← false,
public SS, KS← []
pub← GenPub(1κ)
AInit,...,Recover(1κ, pub)
return win

Oracle Init(e, se)

S ← {e}
ke ← DeriveKey(se)
KS ← {(e, ke)}
try (SSS , CS)← Init(pub, e, se)
SS +← (S, SSS ,KS)

Oracle Compact(S1, SSS1 ,KS1 ,S2, SSS2 ,KS2 )

S ′ ← S1 ∪ S2
req (S1, SSS1 ,KS1 )∈ SS

∧ (S2, SSS2 ,KS2 )∈SS ∧ S ′ ∈S
try (SSS′ , CS′ )← Compact(S1, SSS1 ,S2, SSS2 )
if ∃e, k1 ̸= k2 : (e, k1)∈KS1 ∧ (e, k2)∈KS2 then

win← true
SS +← (S ′, SSS′ ,KS1 ∪ KS2 )

Oracle DeriveKS(S, SSS ,KS)

req (S, SSS ,KS) ∈ SS
try KSS ← DeriveKS(S, SSS)
KS +← (S, KSS ,KS)

Oracle Expand(S, KSS ,KS , CS ,S1,S2)

req (S, KSS ,KS) ∈ KS ∧ (S1 ∪ S2) = S
∧ S1 ∈ S ∧ S2 ∈ S

try (KSS1 , KSS2 )← Expand(S, KSS , CS ,S1,S2)
KS1 ← {(e, k) ∈ KS | e ∈ S1}
KS2 ← {(e, k) ∈ KS | e ∈ S2}
KS +← (S1, KSS1 ,KS1 ); KS +← (S2, KSS2 ,KS2 )

Oracle Recover(e, KS{e}, C{e},K{e})

S ← {e}
req (S, KSS ,KS) ∈ KS
try ke ← Recover(e, KSS , CS)
if (e, ke) /∈ KS then win← true

Fig. 10: The integrity game for an Iterative CKS scheme.
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c3

Invert

k3
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Fig. 11: The all-or-nothing scheme from Fig. 1 adapted to the standard-model CKS setting, using a
TKDF instead of convergent encryption. z̃ is some fixed TKDF state used to initialize the iteration.
Note that the tags Ti from Fig. 1 are omitted here (which are not to be confused with the trapdoors
ti).

Seed states and key states. For now, let us describe a variant of the scheme without integrity. Each
seed state SSS is then of one of two forms: (a) a regular state SSS = zS storing a TKDF state, or
(b) an immediate state SSS = se, in case S = {e}. (For clarity, we further mark the state with the
constant ‘seeds′.) Analogously, each keys state KSS either (a) is a TKDF trapdoor KSS = tS , if
|S| > 1, or (b) a key KSe = ke if S = {e}.

Init and Recover. Both Init and Recover are, in principle, extremely simple. The former just outputs
SS{e} = se as seed state, with no ciphertext necessary. The latter takes KS{e} = ke and outputs ke.

Some complications arise from supporting regular TKDF, for instance for the all-or-nothing scheme
depicted in Fig. 11. Observe that here SS{1} and SS{2} have to behave slightly differently, as the
former seed s1 has the extra derivation with the initial constant state z̃. (Looking slightly ahead, the
TKDF. Derive mixing in s2 will be performed as part of Compact of SS{1} and SS{2}.) To solve this
issue, the formal protocol from Fig. 12 solves this issue by introducing a “base set” B ⊆ N of epochs,
for which such an extra derivation should be performed. Both B and z̃ are then considered protocol
parameters.

Compact, DeriveKS, and Expand. As mentioned, Compact corresponds directly to TKDF. Derive
and Expand to TKDF. Invert. Similarly, DeriveKS corresponds directly to TKDF. Trapdoor, deriving
the TKDF trapdoor (= keys state) from the TKDF state (= seeds state). One more subtlety arises,
however. We want different users to compact two states in the same order, i.e., they should agree
on which of the states SSS1 or SSS2 is used as a first and which as a second argument. Otherwise,
various parties who may learn the same set of seeds in different orders may still create incompatible
outsourcings, undermining the compactness of the server state. In particular, the order must be well
defined when using Expand to recover prior trapdoors. We solve this by introducing as a protocol
parameter an order ≺ on any two sets S1 and S2 which can be combined. (Note that this is not required
to be a proper order relation among all S, something like the lexicographic order on the descriptions
of S1 and S2 would suffice.)
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Protocol I-CKS Scheme

Parameters:
– set family S;
– ordering of sets S1 ≺ S2, for all S1, S2 such that S1 ∪ S2 ∈ S;
– set of epochs B ⊆ N for which an extra derivation step is applied;
– a constant TKDF state z̃ ∈ Z to be used for epochs e ∈ B.

GenPub(1κ)

pub←$ {0, 1}κ

return pub

DeriveKey(pub, se, e)

ke ← TKDF. Key(se)
return ke

Init(pub, e, se)

h← Hpub(e)
if e ∈ B then

(z, c)← TKDF. Derive(se, z̃)
SS ← (‘seeds′, z, h)
C ← (h,⊥, c)
return (SS , C )

else
h← Hpub(e)
SS ← (‘seeds′, se, h)
return (SS ,⊥)

Compact(S1, SSS1 ,S2, SSS2 )

req S1,S2 ∈ S ∧ (S1 ∪ S2) ∈ S
∧ S1 ≺ S2

parse (‘seeds′, z1, h1)← SSS1

parse (‘seeds′, z2, h2)← SSS1

(z, c)← TKDF. Derive(z1, z2)
h← Hpub(h1, h2, c)
C ← (h1, h2, c)
SS ← (‘seeds′, z, h)
return (SS , C )

DeriveKS(S, SSS)

req S ∈ S
if ∃e ∈ N \ B : S = {e} then

parse (‘seeds′, s, h)← SSS
k← TKDF. Key(s)
KSS ← (‘keys′, k, h)

else
parse (‘seeds′, z, h)← SSS
t← TKDF. Trapdoor(z)
KSS ← (‘keys′, t, h)

return KSS

Expand(S, KSS , CS ,S1,S2)

req S,S1,S2 ∈ S ∧ (S1 ∪ S2) = S
∧ S1 ≺ S2

parse (‘keys′, t, h)← KSS
parse (h1, h2, c)← CS
req h = Hpub(h1, h2, c)
(t1, t2)← TKDF. Invert(c, t)
KS1 ← (‘keys′, t1, h1)
KS2 ← (‘keys′, t2, h2)
return (KS1, KS2)

Recover(e, KS{e}, C{e})

if e ∈ B then
parse (‘keys′, t, h)← KS{e}
parse (h′,⊥, c)
req h′ = h ∧ h = Hpub(e)
(k, t′)← TKDF. Invert(c, t)
req t′ = TKDF. Trapdoor(z̃)

else
parse (‘keys′, k, h)← KS{e}
req h = Hpub(e)

return k

Fig. 12: A description of the I-CKS scheme based on a (symmetric) TKDF. Note that for brevity we did
not include the public hash key pub as part of every state. Furthermore, in Compact and Expand we
assume S1 ≺ S2; the general protocol is obtained by invoking the algorithm with reversed arguments
in the other case.

Integrity. Finally, let us enhance our protocol to satisfy integrity. This can be done using a collision-
resistant hash function Hpub(·). Each state is enhanced with a hash, where the hash of a combined
state is set to h = Hpub(h1, h2, c), when computing Compact on seed states with hashes h1 and h2,
respectively, and c is the TKDF ciphertext produced during Compact. The hashes h1 and h2 are then
output as part of the ciphertext along c, i.e., we set C = (h1, h2, c). For an immediate state SS{e} the
hash just binds the epoch number e.

Correctness and security. The correctness of the scheme follows from the correctness of the TKDF
and inspection.

Theorem 4. The iterative CKS scheme from Fig. 12 is correct if the underlying TKDF is correct and
has deterministic ciphertexts. More concretely,

AdvGCorr
I−CKS

(A) ≤ (qInit + qCompact) · AdvGCorr
TKDF

(A′)
)

where qInit and qCompact denote bounds on the number of Init and Compact calls.

Proof. Note that the TKDF states and trapdoor are deterministic functions of the inputs. Therefore,
each unique set K = {(e, se) | e ∈ S} of epoch-seed pairs there is exactly one corresponding seed state
SSS and key state KSS . As a result, for each K there exists a unique TKDF state zi and ti. Finally
not that qInit + qCompact is a bound on the number of TKDF instances. Correctness is thus directly
implied by the correctness of the TKDF. ⊓⊔

We now establish security of the TKDF scheme.

Theorem 5. The iterative CKS scheme from Fig. 12 satisfies real-or-random security of keys if the
TKDF is secure. More concretely,

AdvGKeys-RoR
I-CKS

(A) ≤ (qInit + qCompact) ·
(
AdvGKeyRand

TKDF
(A1) + AdvGTdRand

TKDF
(A2)

+ AdvGIND-CPA-OT
TKDF

(A3)
)

where qInit and qCompact denote bounds on the number of Init and Compact calls.

Proof. We perform two sequences of hybrids over DagS. (Technically, over the subset of vertices
the adversary explores during the interaction, i.e., the set of S for which SSS is computed.) More
specifically, we actually have one copy of the node for each distinct seed state SSS the adversary
generates for the node. In each hybrid step, exactly one node gets touched. For simplicity, we ignore
the hashes in the following, as they are only computed on public data (ciphertexts and other hashes).
We say that the node is secure if at least one of its children is secure. A source is said to be secure if it
uses a seed not provided by the adversary and if its epoch is not in Corr .

The first sequence of hybrids is in the direction of the graph, i.e., we visit each secure node once all
its children have been visited. Consider a particular node characterized by v = (S, zS , tS , cS). Do the
following steps:
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– For all its parent nodes that have not been such that v is a left child (according to ≺), replace tS
by a freshly sampled value and cS with a simulated ciphertext.

– Analogously for parent nodes where v is the right child. (Replace each node only once.)

Note that the invariant we maintain is that when starting the hybrid step, v already has an independent
TKDF trapdoor and simulated ciphertext, meaning its z is independent of nodes lower in the graph.
Therefore, the first step is indistinguishable by key randomness whereas the latter by trapdoor
randomness. (For source nodes with e ∈ B initially perform the same step.)

Now consider the second sequence of hybrids in the reverse direction. For simplicity, consider a sink
v = (S, zS , tS , cS). Observe that zS is not used at all in the game. Therefore, we can apply semantic
security to replace cS with a ciphertext that is independent of all other values in the game. More
generally, once for v the ciphertext of all its parent nodes have had their ciphertext replaced, the above
argument holds.

At the end of the second hybrid sequence, all trapdoors/keys assigned to secure nodes are (1)
independently and uniformly sampled and (2) not otherwise used in the game. It is easy to see that in
this game the adversary can thus not distinguish “real” keys from random ones. ⊓⊔

Theorem 6. The iterative CKS scheme from Fig. 12 satisfies integrity if the hash function Hpub(·) is
collision-resistant and the TKDF correct and has deterministic ciphertexts. More concretely,

AdvGIntegrity
I-CKS

(A) ≤ (qInit + qCompact) ·
(
AdvGCorr

TKDF
(A′) + AdvGCR

H
(A′′)

)
where qInit and qCompact denote bounds on the number of Init and Compact calls.

Proof. By collision resistance of the hash function Hpub(·), Expand and Recover will only accept the
exact ciphertext C used to generate the respective keys space. Furthermore, the protocol will only
accept the correct hash values for the child nodes in DagS as well. This reduces integrity to correctness,
which in turn is implied by the correctness of the TKDF. ⊓⊔

Variants. The above scheme is secure against an active adversary controlling the server (i.e., delivering
wrong ciphertexts) and malicious insiders making parties use inconsistent and adversarially chosen
seeds. We state some simple observations about weaker security models. First, we note that hash
functions are only needed to protect against an active attacker delivering wrong ciphertexts.

Corollary 3. Standard-model I-CKS against honest-but-curious servers, i.e., without integrity, can be
built from dual-PRFs. Additionally, the TKDF ciphertexts do not need to be deterministic.

Second, we observe that one-time TKDF security suffices when considering outsider security only.

Lemma 1. Outsider-secure I-CKS, e.g., when restricting the adversary to submit se = ⊥ for the Init
oracle can be built from one-time secure TKDF and, therefore, from one-way function only.

Proof. Observe that in the proof of real-or-random security, the number of TKDF. Derive(z, ·) queries
correspond to the number of distinct other seed states z gets compacted with. In the case of outsider
security, those states are unique (for each set S). Therefore, one-time key randomness suffices. The
analogous argument can be made for TKDF. Derive(·, z) and one-time trapdoor randomness.

5 CKS from Iterative CKS

In this section, we sketch how to turn any iterative CKS scheme into a regular (standard model) CKS
scheme. This provides a template for how to use iterative CKS for a group of parties to outsource
a sequence of keys that are derived from seeds. Note that the key derivation U.Key(e, s) for the
standard-model CKS scheme is just the one from the iterative CKS scheme, i.e., DeriveKey(se, e). If
we target insider security or security against malicious servers, we require the iterative CKS scheme to
have deterministic ciphertexts. For the weakest passive security notion, any I-CKS scheme suffices. In
the following, we consider the stronger security notion (and briefly discuss the weaker variants).

Server state and algorithms. The server just implements a bulletin board BB. Each entry stores
an I-CKS ciphertext C and is indexed by a collision-resistant hash thereof, i.e., BB[Hpub(C )] = C .
Importantly, the server will compute the hash themselves. This ensures that a malicious insider cannot
overwrite a valid ciphertext of another user, or preemptively set a position of the bulletin board to
something invalid. For a passively secure CKS protocol, we can index the bulletin board using a
description of the set S instead, i.e., BB[S] = CS . The server will then store the first ciphertext sent
for each S and ignore all subsequent ones.

As we will see, U.Upload will just send a set of ciphertexts that the server will store. Similarly,
U.Erase, U.Grant, U.Accept, and U.retrieve will query the bulletin board for a subset of positions. We
note that for our specific iterative CKS scheme, this could be a bit optimized: as C = (h1, h2, c) the
user would not need to (iteratively) query for h1 and h2 and the server could just (recursively) include
all ciphertexts needed by the protocol.
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User state. The client state depends on the graph DagS. More specifically, the client stores the seeds
state SSS or the keys state KSS for a subset of nodes. We say that for a node S ∈ S, we say that
SSS is derivable if either (a) SSS is directly stored or (b) it is derivable for at least one of the parent
nodes of S. We say that KSS is derivable if either (a) KSS is stored, (b) SSS is stored, or (c) the keys
state is derivable for at least one of the parent nodes of S. We say that SSS and KSS are indirectly
derivable if the respective options (a) do not apply. The user state is then maintained subject to the
following invariant, where additional seeds states or keys states are purged.

Invariant 1 (Compactness) A node S ∈ S only has the seeds state SS stored if it’s not indirectly
derivable. Analogously, it only has the keys state KS stored if it’s not indirectly derivable. (This in
particular means that that no node stores both seeds and keys state.)

Appending seeds. When appending a seed se for an epoch e, the algorithm proceeds in three steps:

1. Create a seeds state SS{e} ← Init(e, se) for the leaf node.
2. Iteratively derive seeds along all paths starting at the leaf node using Compact. That is, for any

of the nodes along a path, if the seeds states of both children are known, then use Compact to
compute the one for this node.

3. Purge any seeds states or keys states that violate compactness.

The upload state stup then contains all ciphertexts produced by Compact. We assume those
ciphertexts to be deterministic (which does not violate security; for instance, our TKDF uses a
one-time IND-CPA secure encryption scheme) then they can simply be sent to the server.

Retrieving keys. To retrieve the key ke for an epoch e, U.retrieve identifies a node on a path from the
leaf S = {e} for which either the seeds state or the keys state is stored. (If multiple candidates exist,
pick e.g. the one the shortest distance from the leaf.) If it is a seeds state, use DeriveKS to derive the
respective keys state. Then the algorithm uses Expand and finally Recover to retrieve the key. For
each step, request the necessary ciphertexts from the server. To retrieve the keys for an entire subset
of epochs share ⊂ N, the above steps are generalized by identifying a suitable set of (internal) nodes
that cover share with respect to reachability in DagS.

Delegation. Delegation works similarly to the retrieval of keys, except that internal nodes are not
further expanded if all or their descendants are part of the set of delegated keys share ⊂ N. Note that
the delegation message can either contain keys states KSS or SSS . The latter is preferable if it is
stored by the delegating user. The accepting user receives those elements. If they already know keys for
any epoch e ∈ share they check consistency by recovering the key ke according to their own state and
the retrieved one. Afterward, they add the obtained information to their local state and compact it.

Erasing keys. Erasure works like self-delegation of the epochs not erased, except that no consistency
checks are needed. That is, if a user knows — i.e., can currently recover — keys for epochs K and
wants to erase share, then they self-delegate K \ share.

Functionality and efficiency. Observe that the efficiency of the above scheme inherently depends
on DagS. As a result, the choice of DagS also dictates which sets of epochs can be efficiently retrieved,
delegated, and erased as formalized by R, G, and E . We do not make this connection fully formal but
only highlight some of the relations.

– Small covers. For the user state to be compact, there need to exist nodes that “cover” large sets of
epochs, i.e., for which a large set of leaf nodes are descendants. For instance in the all-or-nothing
scheme in [7] there exist nodes that cover [1, n], for any n, and in the interval scheme nodes that
cover [2i, 2i + 2j − 1] for i, j ∈ {0, 1, . . .}.
Similarly, delegation and erasure only work efficiently for subsets share ⊂ N that have a small
cover, sub-linear in share.

– Limited out degrees. If a node in DagS has too many ancestors on disjoint paths, then U.Append
becomes inefficient. In [7], both schemes used a structure where each node has out-degree 1.

– Short diameter. If DagS contains too long path, then U.Append or U.retrieve can become inefficient.
This is, for instance, the reason why the all-or-nothing scheme cannot support efficient (i.e., sub-
linear) retrieval of individual keys.

Security and correctness. The security of the standard-model CKS scheme reduces directly to the
respective properties of the iterative CKS scheme. In other words, the integrity of the CKS scheme
follows from the integrity of the I-CKS scheme, and analogously for pseudorandomness and correctness.
The proof of the following theorem follows by inspection.

Theorem 7 (Informal). The above sketched CKS scheme is correct and secure if the iterative CKS
scheme is correct and secure. The same furthermore applies to the variants considering passive security
or security against an honest-but-curious server.
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Legacy compatibility. Observe that the result from Theorem 3 carries over to the entire CKS
scheme.

Corollary 4. Assume there is an E2E-secure application that provides a secure KDF, that we can
evaluate on one additional input, to derive keys from initial seeds (and does not otherwise use the
seeds). Then we can build a CKS scheme that is compatible with said application that recovers the keys.

In particular, this class of legacy applications contains common schemes such as the Double Ratchet
or MLS, which use a key schedule based on HKDF.
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A Preliminaries

Notation. Let N := {1, 2, . . .}. x← a denotes assigning the value a to the variable x and, for a set S,
we write x←$ S to denote sampling an element uniformly at random. P(S) denotes the powerset of S
and κ ∈ N the security parameter. When describing stateful algorithms or security games, we make
use of the following special keywords. First, for a boolean condition cond, the statement req cond is a
shorthand for “if cond is false, revert all changes to the state made during this invocation and return
an error ⊥.” Second, the statement parse (x, y)← z denotes the attempt to parse z as a tuple and
abort analogous to req in case this is not possible. Third, we use try y ← A(x) to denote that if the
invocation of algorithm A fails, the calling procedure itself unwinds and aborts with an error.

Interactive Algorithms. For describing interactive algorithms, we adapt the notation of [7] and
assume a simple notion of (token-based) interactive algorithms. An execution of a two-party algorithm
Alg between parties A and B is denoted (yA; yB) ←

〈
A.Alg(xA) ↔ B.Alg(xB)

〉
, where xA and xB

denote the respective parties’ inputs and yA and yB their outputs. In particular, we view oracle
machines as a special case of such an interactive algorithm where the oracle name is appropriately
encoded as part of a message sent from the invoking party to the invoked party.

When executing an interactive protocol between two honest parties in a security game we assume
that the oracle blocks until the interaction is finished. We write (yU ;⊥)←

〈
U.Alg(xU )↔ A

〉
to denote

that the adversary acts as the second party. In that case, whenever the interactive protocol transfers
control to the adversary, they may either choose to reply and transfer control back to the party U , or
may choose to invoke a different oracle, or answer to a different ongoing interactive protocol. As such,
the adversary may arbitrarily interleave oracle invocations and protocol executions (unless otherwise
specified). The execution of the oracle code continues once the honest party terminates.

Cryptographic Primitives. We use some basic cryptographic primitives.

Pseudo-Random Generators. A length-doubling pseudo-random generator PRG: {0, 1}κ → {0, 1}2κ.
We require that {

PRG(Uκ)
}

κ∈N ≈c

{
U2κ

}
κ∈N

where Un denotes the uniform distribution over {0, 1}n.

Dual-PRF. A dual-PRF, as introduced in [2], is a function dPRF: X × Y → Z is a deterministic
algorithm such that for uniform random x←$ X and y ←$ Y , both dPRF(x, ·) and dPRF(·, y) behave
like a PRF. That is, the former is computationally indistinguishable, for any PPT adversary A having
oracle access, from a uniform random function F : Y → Z and the latter form a uniform random
function G : X → Z.

Hash functions. We use a family of hash functions Hk(·) : {0, 1}∗ → {0, 1}κ, indexed by a public
hash-key k ∈ {0, 1}κ. We require the function family to be collision-resistant, namely, that given k
chosen uniformly at random any PPT adversary A has negligible probability in finding x ̸= x′ such
that Hk(x) = Hk(x′).

Symmetric encryption. Finally, we require a one-time IND-CPA secure symmetric encryption scheme
SE = (SE. Enc, SE. Dec). Here one-time security means that the adversary only gets to make a single
challenge (m0, m1) to the challenger — to receive an encryption of mb — with no further encryption
(or decryption) queries allowed.

B Standard-model CKS: Definitions

In this section, we formally define correctness and integrity for standard-model CKS. The definitions
follow closely the ones for ROM-CKS as introduced in [7].

B.1 Correctness

In a nutshell, correctness requires that parties retrieve the correct keys when interacting with an honest
server. Note that the correctness notion accounts for malicious insiders: even when a malicious insider
uploads information to the honest server, correctness must be ensured for honest users. The game is a
rather straightforward modification of the one from [7], the main differences are:

– The game keeps track separately of for which epoch a user u knows the seed and key using the
KnownSeed and KnownKey arrays, respectively, instead of using a single Known array. Whenever a
seed is appended, the user is assumed to both know the seed and key, whereas delegation is only
assumed to delegate keys.

– Accordingly, the game tracks the concrete seeds and keys each user knows using Seeds[u, e] and
Keys[u, e]. The latter is now used for all consistency checks, i.e., the game uses Keys[u, e] to ensure
that a user never retrieves an inconsistent key. The Seeds[u, e] is used for functionality as part of
subsumed. More concretely, for correctness, we say that a party must upload unless another party
knows at least as many seeds. This models that a party only having been delegated keys might not
be able to contribute to the shared CKS state in the same manner as a party having appended the
underlying seed.
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Game (G,R, E)-CKS-CorrA
CKS (Correctness)

Main
win← false, n← 0
St[·], Seeds[·, ·], Keys[·, ·], GrantInfo[·]← ⊥
KnownSeed[·, ·], KnownKey[·, ·]← false
stS ← S.Init(1κ)
ACreateUser,...,UploadAdv(1κ, stS)
return win

Oracle CreateUser
n← n + 1
St[n]← U.Init(1κ)
return St[n]

Oracle Append
Input: (u, e, s, upload) ∈ [n]× N× {0, 1}κ × {0, 1}

req Keys[u, e] = ⊥
Seeds[u, e]← s; Keys[u, e]← U.Key(e, s)
KnownSeed[u, e]← true; KnownKey[u, e]← true
if ¬subsumed(u) then

upload← true
(St[u], stup)← U.Append(St[u], e, s, upload)
if upload then(
⊥; stS

)
←

〈
U.Upload(stup)↔ S.Upload(stS)

〉
return (stS, St[u], stup)

Oracle Erase
Input: (u, share) ∈ [n]× P(N)

req E(KnownSeed[u, ·], KnownKey[u, ·], share)(
st′;⊥

)
←

〈
U.Erase(St[u], share)↔ S.Erase(stS)

〉
if st′ = ERROR then

if ∃e ∈ share : Keys[u, e] ̸= ⊥ then win← true
else

St[u]← st′

for e ∈ share do
KnownSeed[u, e]← false
KnownKey[u, e]← false
Seeds[u, e]← ⊥; Keys[u, e]← ⊥

return st′

Oracle Retrieve
Input: (u, share) ∈ [n]× P(N)

req R(KnownSeed[u, ·], KnownKey[u, ·], share)(
keys;⊥

)
←〈

U.Retrieve(St[u], share)↔ S.Retrieve(stS)
〉

if keys = ERROR then
if ∀e ∈ share : Keys[u, e] ̸= ⊥ then win← true

else
for e ∈ share do

if Keys[u, e] /∈ {⊥, keys(e)} then
win← true

Keys[u, e]← keys(e)
return keys

Oracle Grant
Input: (u, share) ∈ [n]× [n]× P(N)

req G(KnownSeed[u, ·], KnownKey[u, ·], share)(
msg;⊥

)
←

〈
U.Grant(St[u], share)↔ S.Grant(stS)

〉
if msg = ERROR then

if ∀e ∈ share : Keys[u, e] ̸= ⊥ then win← true
else

keys[·]← ⊥
for e ∈ share do

keys[e]← Keys[u, e]
GrantInfo[msg]← (share, keys)

return msg

Oracle Accept
Input: (u′, msg, share, upload)

∈ [n]× {0, 1}∗ × P(N)× {0, 1}
(share′, keys)← GrantInfo[msg]
if GrantInfo[msg] ̸= ⊥ ∧ share′ = share then

for e ∈ share do
Keys[u, e]← keys[e]
KnownKey[u, e]← true

if ¬subsumed(u′) then upload← true
else upload← true(
st′, stup;⊥

)
←

〈
U.Accept(St[u′], share, msg, upload)
↔ S.Accept(stS)

〉
if upload then(
⊥; stS

)
←

〈
U.Upload(stup)↔ S.Upload(stS)

〉
if GrantInfo[msg] ̸= ⊥ ∧ share′ = share then

if st′ = ERROR then win← true
St[u′]← st′

else if st′ ̸= ERROR then
for e ∈ share do Known[u, e]← true
St[u′]← st′

return (stS, st′)

Oracle UploadAdv

(⊥; stS)←
〈
A ↔ S.Upload(stS)

〉
return stS

subsumed

Input: u ∈ [n]
return ∃u′ ̸= u ∈ [n] :

∀e : Seeds[u, e] ∈ {⊥, Seeds[u′, e]}

Fig. 13: The Compact Key Storage correctness notion. We assume that the adversary does not interleave
calls to UploadAdv with calls to other oracles.
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– The retrieval predicate R, delegation predicate G, and erasure predicate E are evaluated on both
KnownSeed and KnownKey, in correspondence to their generalized definition for standard-model
CKS.

Let us briefly discuss some aspects of the correctness game — we refer to [7] for a more in-depth
discussion. First, observe the use of the upload flag in the Append and Accept oracles. Using this flag,
the adversary can force the user to run the upload procedure, as correctness must hold even if multiple
users upload. The flag is overwritten in case the user must upload for correctness, as determined by
the subsumed helper. Second, observe the slight discrepancy between KnownKey[u, e] and Keys[u, e]. In
principle, whenever a user has a concrete key assigned, i.e., Keys[u, e] ̸= ⊥, then KnownKey[u, e] = true.
The converse does not necessarily hold, however. If the user is granted some key by a malicious user
(indicated by msg not produced by the Grant oracle) then the game does not know the resulting key.
Keys[u, e] is then set whenever the game first learns of the injected key, to ensure that the user only
outputs one key for a given epoch even after a malicious delegation. Finally, observe the error handling.
Erase, Retrieve, and Grant may all fail after having accepted a malicious grant. This allows Accept
to be efficient and not verify the entire set of keys share upfront. Erase is allowed to fail if all keys
where maliciously injected; therefore any secure key can be erase. Retrieve and Grant may even fail if
at least one of the involved keys has been injected.

Definition 13. We say that a (G,R, E)-CKS scheme CKS is correct, if the probability of any adversary
A winning the (G,R, E)-CKS-CorrA

CKS game from Fig. 13 is negligible in κ.

B.2 Integrity
Integrity requires that users either restore their correct key, i.e., the one they outsourced, or output an
explicit error indicating that a key could not be restored. The modifications compared to ROM-CKS
are similar to the one for the correctness notion. In particular, the game now keeps track of the keys a
user outsources instead of the seeds.

Overall, the game works fairly similarly to the correctness game. Let us briefly mention some of the
intricacies. First, note that the game uses placeholders for keys not yet known to the game. Concretely,
whenever a user u accepts an injected grant message msg, the game assigns placeholders Kp, for p ∈ N,
for all the keys. Those placeholders are later (globally) replaced once the key becomes known. This
allows to enforce consistency even if u further delegates those keys. Second, observe that all algorithms
are now allowed to fail, as indicated with the try keyword. Integrity guarantees consistency only
whenever users succeed. Finally, we note that the game formalizes a strong variant of integrity where
the adversary is assumed to know all secret states. This guarantees that even state leakages cannot
break integrity.

Definition 14. We say that a CKS scheme CKS satisfies integrity, if the probability of any adversary
A winning the CKS-IntA

CKS game from Fig. 14 is negligible in κ.

Game CKS-IntA
CKS (Integrity)

Main
win← false
n← 0
p← 0
St[·], Keys[·], Granted[·]← ⊥
ACreateUser,Append,Erase,Grant,Retrieve(1κ)
return win

Oracle CreateUser
n← n + 1
St[n]← U.Init(1κ)
return St[n]

Oracle Append
Input: (u, e, s) ∈ [n]× N× {0, 1}κ

try (St[u], stup)← U.Append(St[u], e, k, upload)
try

〈
U.Upload(stup)↔ A

〉
k← U.Key(e, s)
if Keys[u, e] ̸= ⊥ ∧ Keys[u, e] ̸= k

∧ ∀p ∈ N : Keys[u, e] ̸= Kp then
win← true

if ∃p ∈ N : Keys[u, e] = Kp then
for all (u′, e′) s.t. Keys[u′, e′] = Kp do

Keys[u′, e′]← k
else

Keys[u, e]← k
return St[u]

Oracle Erase
Input: (u, share) ∈ [n]× N× P(N)

try
(
St[u];⊥

)
←

〈
U.Erase(St[u], share)↔ A

〉
for e ∈ share do Keys[u, e]← ⊥
return St[u]

Oracle Grant
Input: (u, share) ∈ [n]× P(N)

try
(
msg;⊥

)
←

〈
U.Grant(St[u], share)↔ A

〉
for e ∈ share do

if Keys[u, e] = ⊥ then win← true
Granted[msg]← {(e, Keys[u, e]) | e ∈ share}
return (St[u], msg)

Oracle Accept
Input: (u′, share, msg) ∈ [n]× P(N)× {0, 1}∗

try
(
St[u′], stup;⊥

)
←

〈
U.Accept(St[u′], share, msg, upload)↔ A

〉
try

(
St[u′];⊥

)
←

〈
U.Upload(stup)↔ A

〉
if Granted[msg] ̸= ⊥ then

if share ̸= {e | (e, ·) ∈ Granted[msg]} then
win← true

for (e, k) ∈ Granted[msg] do
if Keys[u′, e] /∈ {⊥, k} then win← true
Keys[u′, e]← k

else
for e ∈ share do

if Keys[u′, e] = ⊥ then
p← p + 1
Keys[u′, e]← Kp

return St[n′]

Oracle Retrieve
Input: (u, share) ∈ [n]× P(N)

try
(
keys;⊥

)
←

〈
U.Retrieve(St[u], share)↔ A

〉
for e ∈ share do

if Keys[u, e] ̸= keys(e) ∧ ∀p ∈ N : Keys[u, e] ̸= Kp then
win← true

if ∃p ∈ N : Keys[u, e] = Kp then
for all (u′, e′) s.t. Keys[u′, e′] = Kp do

Keys[u′, e′]← keys(e)
return St[u]

Fig. 14: The integrity notion of CKS. The values Kp, for p ∈ N, are placeholders that are assumed to
be distinct symbols, i.e., Kp ̸= ⊥, Kp ̸= k for any bitstring k, and Kp ̸= Kq for p ̸= q.
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