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Abstract

We present an encrypted multi-map, a fundamental data structure underlying searchable encryp-
tion/structured encryption. Our protocol supports updates and is designed for applications demanding
very strong data security. Not only it hides the information about queries and data, but also the query,
access, and volume patterns. Our protocol utilizes a position-based ORAM and an encrypted dictio-
nary. We provide two instantiations of the protocol, along with their operation-type-revealing variants,
all using PathORAM but with different encrypted dictionary instantiations (AVL tree or BSkiplist).
Their efficiency has been evaluated through both asymptotic and concrete complexity analysis, out-
performing prior work while achieving the same level of strong security. We have implemented our
instantiations and evaluated their performance on two real-world email databases (Enron and Lucene).
We also discuss the strengths and limitations of our construction, including its resizability, and high-
light that optimized solutions, even with heavy network utilization, may become practical as network
speed improves.structured encryption searchable encryption provable security

1 Introduction

Motivation and Prior Work. The growth of cloud storage is soaring at an unprecedented rate. It
is predicted that by 2025, 100 zettabytes of data will be stored on the cloud, accounting for 50% of
the world’s data [1]. Although cloud storage providers are often trusted, the confidentiality of stored
data can still be compromised, posing a significant threat to customers and violating regulations such
as PCI DSS, HIPAA, EU Data Protection, which mandate data confidentiality.

Adding data confidentiality to cloud applications such as outsourced database is challenging due to
the limitations of off-the-shelf encryption schemes. To address this issue, extensive research have been
conducted in the areas of searchable symmetric encryption (SSE) and structured encryption (STE)
over the past 20 years.

The existing SSE/STE solutions vary significantly in terms of security and efficiency, as these
properties often conflict with each other. Earlier works, such as [2]–[5] prioritize efficiency over security.
Most of these schemes leak query, access, and volume patterns at the very least,1 and some solutions,
e.g., [3], even leak the data (i.e., database records) equality. Later, various works [6]–[16] have shown
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1 By query pattern, we mean the information that reveals whether the same keyword has been used repeatedly
in search or update queries. The access pattern refers to the information indicating whether the same data is
accessed on the server. The volume pattern, on the other hand, is leaked when the amount of communication
differs among queries.
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that seemingly innocuous leakage can lead to devastating attacks that reveal a significant amount of
information about the data.

Accordingly, more recent research [17]–[22] has shifted towards finding solutions with much stronger
security, aiming to develop provably-secure solutions that hide query, access, and volume patterns.
However, most works do not succeed in providing constructions that provably hide query, access
patterns, and volume patterns. These patterns are hidden in Oblix [18], but the protocol relies on
secure hardware such as Intel’s SGX. Reichert et al. [19] extends Oblix to support range queries and
adds differential privacy to the volume pattern. However, as demonstrated in [13], [23], a differentially
private volume pattern does not provide sufficient privacy guarantees. Patel et al. [22] propose a
volume-hiding construction, but it leaks the query pattern. Their construction is vulnerable to a
query-recovery attack by Oya and Kerschbaum [13].

The above constructions have a significant limitation for deployment: they are static and lack
support for updates. There has been growing interest in secure dynamic databases [5], [24]–[39], which
brings additional requirements of forward security — update queries should not reveal which keywords
are involved [24], and backward security — search queries should not reveal removed documents or
keywords [25].

We discuss the ones with the strongest security. Chamani et al. [27] propose three constructions:
Mitra, Orion, and Horus, with Orion achieving the strongest security among the three. However, none
of these schemes are volume-hiding, and the attempt to achieve it through access padding will greatly
impact efficiency. In Section 4, we demonstrate that above schemes and SEAL [21] all suffer from
significant round complexity overhead from padding ORAM accesses for volume-hiding, even when
batched access is allowed. Miers and Mohassel [26] propose an efficient SSE scheme that allows obliv-
ious updates, but it has the drawback of leaking substantial information about the index through
the incorporation of non-oblivious reads for efficiency (hence leaks the query and access patterns for
search queries). Additionally, as explained in [25], their scheme is not forward-secure.

Finally, George et al. [37] present a leakage suppression framework to eliminate the query (i.e.,
query-equality) leakage for dynamic schemes while preserving the volume-hiding property. Though
the security of their construction is strong, the framework is mostly theoretical and there is no im-
plementation. Our analysis shows that an efficient implementation may not be possible. Although
their protocol additionally supports dynamically increasing M , the total number of keywords, we
chose not to pursue this for several reasons, which we explain in the remarks. Xu et al. [40] study
a folklore approach where the client downloads, updates, and uploads the encrypted index for each
query. While this approach is considered secure in a straightforward manner, it suffers from severe
bandwidth overhead.

Despite tremendous research progress, a dynamic protocol for outsourced databases that hides
query, access, and volume patterns, is both backward and forward secure, and reasonably efficient,
remains unavailable. The current state is somewhat stagnant, as it is widely recognized that leakage-
abuse attacks can be very dangerous, but at the same time, avoiding leaking volume and other patterns
by relying on ORAM and padding is believed to yield prohibitively slow protocols.

Recently there have been significant progress in the related area of private information retrieval
(PIR). But PIR is a somewhat more difficult problem for the setting where there are multiple clients
and the server owns the data. The most efficient solutions rely on fully-homomorphic encryption and
either require computation linear in the database size or massive storage and pre-processing. We
discuss while PIR-based solutions are not likely to yield efficient SSE/STE in the full paper [41].

Even though there are no efficient SSE/STE solutions with no leakage, companies are eager to
deploy Recently, major database vendor MongoDB, has built and integrated an SSE/STE scheme
called queryable encryption (QE) into its database system and made QE available.2 Not surprisingly,
the attacks start to appear [42].

2 https://www.mongodb.com/docs/manual/core/queryable-encryption/
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Should we accept that having leakage and attacks is unavoidable with SSE/STE solutions which
are practical or close to be practical? Our work aims to show that it is too early to give up and settle.

Our Focus. Our goal is to explore the possibility of constructing a protocol with extremely strong
security that is not prohibitively slow. Our result is a construction that outperforms prior proposals
with comparable security. While it is understood that a protocol with such strong security (particularly
volume-hiding) may not be highly efficient, our result shows that one does not have to give up on very
strong security. As network speed improves, optimized solutions, even with heavy network utilization,
may become practical.

In this work, we concentrate on the common scenario where the client performs exact match queries
to search for documents or database records that match a given keyword. In line with almost all the
related work, we use [4]’s database abstraction and focus on constructing an encrypted multi-map that
maps labels to values. This has direct application to encrypted databases using STE and SSE.

Like previous work, we consider limited client storage, which cannot be linear in either the number
of labels or values. This is to ensure that the scheme can be easily adapted to a multi-client setting
or to scenarios where the same client uses multiple devices. The client(s) must have the same secret
key, and their states must kept in sync to maintain the database while mitigating the query/access
leakage. The sublinear client storage also aligns with the scalability requirement necessary for building
a potentially large encrypted database. For instance, the feature vectors of media data, such as images
can be high-dimensional, and the associated label space can be orders of magnitude larger than the
English word space used in email databases.

As for trust consideration, we are only interested in secure solutions that do not rely on the
assumption of non-colluding servers or the use of secure hardware, such as SGX. This is because the
assumption of non-colluding servers can be difficult to meet in practice, as even if non-colluding cloud
providers exist, the service is typically provided by a single company with access to all the data.
Furthermore, relying on secure hardware places trust in hardware manufacturers, and the promised
security guarantees can be difficult to verify, not to mention the potential privacy risks due to side-
channel attacks.

We will compare our protocol with those from[37], [40] as they are the only ones with comparable
strong security.

Protocol Overview. In order to build an encrypted multi-map, one cannot simply use oblivious
RAM (ORAM) [43] as it is. If we store each label and its associated values in an ORAM block and
retrieve the values using the label, the client needs to know its associated block id for ORAM access.
However, the limitation of sublinear storage prohibits storing locally the mapping or hash tables
(e.g., Cuckoo hashing). Furthermore, using a cryptographically-secure hash function would lead to an
ORAM of infeasible size.

Generic Construction. At a high-level, our encrypted multi-map protocol EMM consists of two com-
ponents: an ORAM, which can be viewed as an encrypted array, and an encrypted dictionary (map);
both support oblivious access. The client assigns each label an ORAM index (i.e., block id), and stores
the label’s associated list of values (padded to some maximum length for volume hiding) in the block
indicated by the ORAM index. The ORAM enables the client to retrieve the block using the index,
and its security properties guarantee that the server does not learn anything about the client’s data
or the index, including the query, access, and volume patterns.

We note that while our protocol does not use novel building blocks, our techniques to combine and
optimize them are novel, and most importantly lead to a security result that is significantly stronger
than most prior work. Our approach to improve efficiency is simple yet effective: we pack all values
(e.g., database records or document identifiers) into a single block, avoiding an increase in bandwidth
costs and significantly reducing the round complexity in search queries compared with padding ORAM
accesses as performed by SEAL to hide volume leakage.
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To meet the restriction on the client’s storage, we use an encrypted dictionary with oblivious
access. The encrypted dictionary stores the mapping between labels and ORAM indices on the server.
Thus the client can first retrieve the label’s index from the dictionary, then query the ORAM to obtain
the list of values. However, this solution is not very efficient, as each ORAM access can incur many
rounds of communication.

To improve efficiency, we analyze ORAM operations with a focus on position-based ORAMs. These
ORAMs use position maps to maintain mappings between the ORAM indices and physical block
addresses on the server. The client keeps the position map secret for oblivious access. To prevent the
client’s storage from growing linearly with the number of blocks, the position map is typically stored
recursively in smaller ORAMs on the server, but this results in high round complexity during access.
To resolve this issue, we store the position map in the encrypted dictionary alongside the label-index
mapping, which is necessary for access. Our protocol naturally supports batched operations — the
client can update one label and the associated values at once, with no additional cost compared with
the atomic operation, which updates only one label and value pair per operation.

We also improve the efficiency of our protocol by extending the functionality of the building blocks.
Firstly, we extend the encrypted dictionary to support a new operation type that combines standard
Get and Put into one. This significantly reduces bandwidth costs and round complexity, especially for
less efficient encrypted dictionary instantiations that hide query and access patterns (i.e., oblivious
maps). Secondly, we extend the (non-recursive) position-based ORAM syntax to include ReadUp,
combining Read and Write into one operation. Some instantiations, such as PathORAM [44] and
RingORAM [45] naturally support this modification. These extensions for ORAM and encrypted
dictionary can be achieved generically using standard operations, but their efficient realization is
specific to certain instantiations.

Instantiations. We present two instantiations, EMMavl and EMMbskip, of our generic encrypted multi-
map protocol, along with their operation-type-revealing variants EMMr

avl and EMMr
bskip. These vari-

ants allow an attacker to determine whether the client is performing a search or update. All our
instantiations utilize standard non-recursive position-based ORAM, such as PathORAM [44] and
RingORAM [45], but differ in the encrypted dictionary instantiation. EMMavl and EMMr

avl use AVL-
tree-based encrypted dictionary OAvlTreeE [46] and AvlTreeE, respectively, hiding the query, access,
and volume patterns. AvlTreeE is our modification of OAvlTreeE that allows revealing the operation
type. EMMbskip and EMMr

bskip are built with encrypted dictionary, instantiated by oblivious BSkiplist
with encryption (OBSkiplistE) [47], [48] and its operation-type-revealing variant BSkiplistE, which we
propose. Unlike [47], [48], which only provide an oblivious map, our optimization and security relax-
ation are tailored specifically for the encrypted multi-map, commonly used in SSE/STE. Most existing
encrypted multi-map constructions do not hide the operation type. In the applications where it is ac-
ceptable, which could be many, EMMr

avl (or EMMr
bskip) permits enhancement in bandwidth costs for

Get (or GetUp), and at least 3× (or 2×) improvement in round complexity compared with hiding the
operation type. For a comprehensive comparison of their efficiency, refer to the complexity analysis
(see full paper [41]) and the implementation part (Section 8).

We observe that non-recursive position-based ORAM such as PathORAM and RingORAM (we
choose to use PathORAM for simplicity), a crucial building block of our instantiations, satisfies the
property we need for optimization — either Read or Write involves block decryption, reading, over-
writing (if applicable), re-encryption, and write-back. Thus it supports ReadUp naturally as we can
update the block after the read, then perform the standard re-encryption and write-back procedures,
incurring negligible communicational or computational overhead compared with Read or Write. Simi-
larly, as two of our encrypted dictionary instantiations use PathORAM managing the dictionary data,
they can also be extended to support GetUp without additional costs — find the block storing the
matched label (i.e., keyword), update the block value, encrypt the block, and write-back. For more
details, we refer to Section 5.
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Security Analysis. To analyze the security of our protocol, we adopt the formal security definition
for dynamic structured encryption [37], which is also a suitable definition for encrypted multi-maps.

We prove that our protocol satisfies the security definition, with setup leakage limited to the upper-
bound size of the multi-map. If we consider each label to be used as a keyword, with value fields storing
the document identifiers, such leakage can be interpreted as the maximum number of keywords and
documents (associated with each keyword), and the maximum keyword size supported by the system.
Our protocol also has access leakage being empty or revealing only the operation type depending on
the instantiations. This requires that the underlying encrypted dictionary and non-recursive position-
based ORAM be adaptively STE secure and with (almost) no access leakage. Such building blocks
exist under the standard cryptographic assumption (i.e., IND-CPA of the blockcipher-based mode of
operation used for encryption). Our security results imply that all our instantiations achieve strong
backward and forward privacy.

Note that the security level our protocol achieves is extremely strong, and this was not possible
for prior constructions with reasonable efficiency. To justify the value of our construction we have to
of course analyze its performance.

Performance Analysis. To the best of our knowledge, the two approaches that construct or manage
an encrypted multi-map achieving similarly strong security are Xu et al.’s baseline approach [40] and
George et al’s STE with dynamic leakage suppression [37]. Since [37] does not provide an implemen-
tation, we compare the concrete complexity in the full paper [41], showing that our instantiations
outperformed the baseline in bandwidth cost and are much more efficient than [37] in bandwidth and
round complexity.

Furthermore, the asymptotic complexity analysis provided in the full paper [41] shows that our
instantiations outperformed [37] asymptotically in round complexity, and at least equal to and better
than theirs in bandwidth cost under the natural assumptions specified in the full paper.

We also implemented all our instantiations, evaluated their performance on two real-world email
databases Enron and Lucene, commonly used to evaluate efficiency of SSE protocols, and showed that
they provide quite reasonable performance for extremely strong security level (see Section 8 for details).
We found the operation-revealing variants EMMr

avl, EMMr
bskip outperformed their operation-type-

hiding counterparts EMMavl, EMMbskip, respectively. The BSkiplist-based instantiations EMMbskip and
EMMr

bskip performed better than the AVL-tree-based EMMavl and EMMr
avl in respective operation-

type-hiding and revealing categories, incurring fewer rounds and less query latency.

On Resizability and Document Retrieval. In the full paper, we discuss why we focus on an
encrypted multi-map with a bounded size instead of a resizable design. We also discuss how the
encrypted multi-map is extended to retrieve large documents in SSE.

1.1 Remarks

On Resizability. As previously mentioned, supporting updates is crucial for many applications. In
addition to including operations such as addition and deletion, it is useful to avoid fixing the maximum
sizes for the number of keywords and documents. This property is referred as “full dynamism” in [49].

We first observe that a truly dynamic scheme also needs to avoid limiting the multi-map tuple
length, which corresponds to the maximum number of documents per keyword. Otherwise, an existing
keyword cannot be added to newly-inserted documents once the keyword’s associated tuple has already
reached the maximum length. Yet, all dynamic volume-hiding constructions, including [49], fix the
tuple length. We show in Appendix E.1 that allowing a variable tuple length yields a simple file-
injection attack to recover the keywords in the encrypted database exploiting the change in the tuple
length.

So let us go back to “fully” dynamic schemes with fixed tuple length l, referred to as resizable.
We could extend our construction to achieve this property by using the existing resizable variants
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of PathORAM [50] or RingORAM [51]. Varying the number of ORAM blocks would translate into
changing the number of keywords M without the limit. The number of documents N can also be
changed but with an upper bound M × l.

However, we observe that attaining resizability in the number of keywords with very strong security
properties, such as perfect volume-hiding, brings significant performance challenges. This is because
to prevent volume-based attacks, whenever inserting or deleting documents associated with a keyword
w, the changes in the size of the encrypted index must be independent of the existence of w in the
database. This results in performance issues in prior works, such as an increase in the size of the
encrypted index for every search operation in [49], and a fixed size increase for every update operation
including deletion in [52]. Even the more efficient operation-type-revealing variants only support fake
deletions, and does not reduce the size of the encrypted index. These potentially lead to heavy costs for
databases with frequent overwrites. Hence, it is questionable to promote resizable dynamic volume-
hiding solutions as practical. In comparison, our construction, with a fixed maximum size on the
multi-map, allows for real deletions and updates without size increase.

2 Preliminaries

Notation and Convention. For any n ∈ N, we let [n] denote the discrete range [1, n]. For any
vector or ordered set vset, we let vset[i] denote the i-th element and let #vset denote the number
of elements in vset. We use |vset|y to denote the size for representing vset in unit y, e.g., |vset|2
stands for vset’s size in the number of bits. The algorithms are randomized and polynomial-time (in
the security parameter) unless otherwise specified. We use out $←A to indicate out is generated by some
algorithm A using its internal randomness. We use PPT for the short abbreviation of probabilistic-
polynomial-time and let negl(·) to denote the negligible function.

Interactive Algorithm. Our protocol and its building blocks are interactive two-party protocols,
so to formally define them we are going to use the following notation. For every (two-party) in-
teractive algorithm, we use the subscripts to denote the participating parties. More specifically, for
arbitrary interactive algorithm I run between A and B, we use the notation (outputA, outputB) ←
[IA(inputA), IB(inputB)].

Dictionary & Multi-Map. One of our building blocks is an encrypted dictionary (map), and our
protocol is essentially an encrypted multi-map, so we define the corresponding objects here.

Given label space Ldx, value space Vdx, a dictionary is an unordered set of pairs denoted by
DX = {(ℓi, vi)}i∈N, where ℓi ∈ Ldx and vi ∈ Vdx. We use DX[ℓi] to denote ℓi’s associated value, i.e.,
DX[ℓi] = vi.

Given label space Lmm, value space Vmm, a multi-map is an unordered set of pairs denoted by
MM = {(ℓi, vseti)}i∈N, where ℓi ∈ Lmm and vseti ∈ Vmm is a tuple (or a set) associated with ℓi, i.e.,
MM[ℓi] = vseti.

3 Protocol & Building Block Definitions

Recall that we build an interactive protocol, where the server stores the lists of document identifiers
for all keywords in encrypted form, and the client who has the secret key can retrieve the document
identifiers for any keyword, as well as update the data. As we mentioned in the Introduction, this
is basically an encrypted multi-map protocol, where the multi-map’s labels are keywords and the
values are lists of document identifiers. Our building blocks are also interactive protocols: ORAM
(encrypted array) and encrypted dictionary (map). Definitions for structured encryption (STE) [49],
[53] are general enough to cover all these protocols, so we recall the formal definitions below. For each
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case, we will specify the label and value spaces of the underlying data structure and also define its
functionality.

3.1 Structured Encryption (STE)

Structured encryption STE is defined by the label space L, value space V, operation type space O,
functionality F , two algorithms, and one two-party protocol:

- (K,EDS)
$← Setup(1κ, z, ds): is a randomized algorithm run by client C that takes as input a

security parameter κ ∈ N, auxiliary information z ∈ {0, 1}∗ (e.g., the maximum size of the data
structure), data structure ds ∈ L × V 3 with functionality F and outputs secret key K and
encrypted data structure EDS.

- (v∗,EDS∗)← [AccessC(K, op, ℓ, v),AccessS(EDS)]: is a two-party protocol executed between client
C and server S, where C inputs secret key K, operation type op ∈ O, label ℓ ∈ L, and value v ∈ V;
server inputs EDS; at the end, C receives v∗ ∈ V and S updates the encrypted data structure to
EDS∗.

- ds← Dec(K,EDS): is a deterministic algorithm that takes as input secret key K, encrypted data
structure EDS and outputs ds.

Correctness. We define the decryption correctness and Access’s operational correctness as follows.
For all κ ∈ N, all z ∈ {0, 1}∗, all data structure (with data) ds ⊆ L× V with functionality F , we say
that EDS instantiates ds if and only if for all (K,EDS) output by Setup(1κ, z, ds), Dec(K,EDS) = ds;
let ds1 ← ds and EDS1 ← EDS, after applying an arbitrary polynomial-size sequence of opera-
tions {(opi, ℓi, vi)}i∈[q] to EDS1, where opi ∈ O, ℓi ∈ L, vi ∈ V; for all i ∈ [q], (vi+1,EDSi+1) ←
[AccessC(K, opi, ℓi, vi),AccessS(EDSi)], we require vi+1 = v′i+1 and Dec(K,EDSi+1) = ds′i+1, where
(v′i+1, ds

′
i+1) ← F(dsi, opi, ℓi, vi).

Remark 1 (On Functionality F). We define encrypted multi-map, encrypted dictionary functionality
FDS in Definition 32 and ORAM functionality FRAM in Definition C1.

3.2 STE Security Definition

We present the standard STE simulation-based adaptive security [49], [53] in our style. The adversary
can adaptively choose the data structure (with data), adaptively make updates and queries, and is
given the encrypted data structure. As common for works dealing with ORAM, we focus on the semi-
honest setting, where the adversary follows the protocol. This models many practical settings where the
attacker does not fully corrupt the system but still can influence and observe the communication. We
leave the treatment of the stronger malicious security for future work. As usual, we use an abstract
leakage profile L that specifies the information that the protocol leaks, which can be accessed by
the simulator in the security definition. We say that an STE scheme is adaptively L-secure if no
efficient adversary can distinguish the transcripts from the honest execution of the protocol in the real
world and the simulated ones in the ideal world with non-negligible probability. This security notion
captures that all efficient honest-but-curious adversaries cannot learn more than that the leakage
profile specifies. We will aim at constructions with minimal leakage.

Definition 31 (Adaptive Security for STE). Given label space L, value space V, and operation type
space O, let Π be a STE protocol with functionality F . Let LΠ = (LSetup,LAccess) be the leakage profile
describing leakage of Π’s algorithms. Let κ ∈ N be the security parameter. Consider the probabilistic
experiments defined in Figure 1.
3 Even though STE considers arbitrary data structures, we only focus on those of this type.
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RealΠ,A,q(1
κ, z) :

1: Given 1κ, z, adversary A outputs a data structure ds1 ⊆
L× V.

2: (K,EDS1)
$← Setup(1κ, z, ds1).

3: A is given EDS1.
4: A adaptively makes q queries in any order,
5: for all t ∈ [q] do
6: Access(opt, ℓt, vt):
7: where opt ∈ O, ℓt ∈ L, vt ∈ V,
8: returns to A the transcript of honest
9: execution

10: [AccessC(K, opt, ℓt, vt), AccessS(EDSt)],
11: and server S’s output EDSt+1.
12: end for
13: Finally, A outputs bit b.
14: The experiment returns the same bit b.

IdealΠ,A,S,F,q(1
κ, z) :

1: Given 1κ, z, adversary A outputs a data structure ds1 ⊆
L× V.

2: Given 1κ, z,LSetup(ds1), simulator S outputs encrypted
data structure EDS1 and sends it to A.

3: Let S be an honest server and given EDS1.
4: A adaptively makes q queries in any order,
5: for all t ∈ [q] do
6: Access(opt, ℓt, vt):
7: where opt ∈ O, ℓt ∈ L, vt ∈ V,
8: returns to A the transcript of
9: [S(LAccess(dst, opt, ℓt, vt)),AccessS(EDSt)],

10: and server S’s output EDSt+1;
11: dst+1 ← F(dst, opt, ℓt, vt).
12: end for
13: Finally, A outputs bit b.
14: The experiment returns the same bit b.

Fig. 1: Experiments for Defining STE Adaptive Security.

We say that Π is adaptively LΠ-secure if for all z ∈ {0, 1}∗, there exists a PPT simulator S such
that for all PPT adversaries A, all q which is a polynomial (in κ), the following is negligible (in κ):∣∣∣Pr [RealΠ,A,q(1

κ, z) = 1 ]− Pr [ IdealΠ,A,S,F,q(1
κ, z) = 1 ]

∣∣∣.
Remark 2 (On Forward and Backward Security). The forward and backward security notions [54] are
used to categorize the search and update leakage. Since we propose constructions with very strong
security where the leakage is basically absent (two instantiations achieve empty access leakage and two
leak at most the operation type), they will trivially satisfy the forward and strongest (BP-I) backward
security. Therefore, we skip the formal definitions of forward and backward security here.

Remark 3 (On Randomized Functionality F). Since we only cover data structures that support de-
terministic functionality, the simplified security definition suffices — the client’s output is not given
to the adversary as it can compute the correct output itself.

3.3 EMM and EDX Functionality

In Section 3.1, we provided a general STE syntax that covers our encrypted multi-map protocol and
its two building blocks — encrypted dictionary and ORAM. Here we complete the definitions by
specifying the functionality for each case.

Reactive Functionality. Following the ORAM literature, we say that the functionality is reactive if it
holds an internal state between the executions, and we assume the functionality discussed throughout
this work is all reactive unless specified otherwise. In standard computational RAM model of word
size w ∈ N (in bits), we assume an (upper-bound) Nram number of memory blocks to store the data
structure with block size Bram in bits.

EMM and EDX Functionality. We formally describe the basic operations associated with the data
structure that permits accessing, adding and deleting the data. We define the reactive functionality FDS

and abuse the notations by changing the subscript to indicate whether it is used for FDX (dictionary)
or FMM (multi-map), respectively. In both cases, we set label space L = {0, 1}∗; set value space
V = {0, 1}∗ for dictionary and V = {{0, 1}∗}∗ for multi-map. We use ∗ to simplify the notations,
whereas the length restrictions are usually enforced in practice.
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Definition 32 (FDS). Given label space L, value space V, and operation type space O = {Get,Put,Remove},
we define reactive functionality FDS, for every data structure ds ⊆ L×V, FDS(ds, op, ℓ, v): where data
structure ds is stored in the state, op ∈ O, ℓ ∈ L, and v ∈ V,
1. If op = Get, if ℓ is in ds then v∗ ← ds[ℓ]; otherwise v∗ ← ⊥.
2. If op = Put, if ℓ is in ds then v∗ ← ds[ℓ], ds[ℓ]← v∗ ∪ v 4; otherwise ds[ℓ]← v.
3. If op = Remove,

- if ℓ is in ds then
v∗ ← ds[ℓ]; if v = ⊥ then ds[ℓ]← ⊥;
otherwise, ds[ℓ]← v∗ \ v.

- otherwise, v∗ ← ⊥.
4. Output (v∗, ds).

Remark 4. For Get operation in Definition 32, input v is set to ⊥. For Remove operation, we abuse
the notation for the dictionary case as we can interpret the dictionary’s value field as a set that only
contains single element. We may write FMM and FDX defined the same as in Definition 32 to indicate
the data structure is either a multi-map or a dictionary.
Remark 5. We note that [55] uses a multi-map functionality definition where Put directly overwrites
existing values; [35] defines functionality on vectors, introducing edit and append operations. We
instead focus on standard multi-map functionality where each label is associated with a set. Our set
operation naturally accommodates atomic operation — operating on a single value can be interpreted
as operating on a set with one single element.

3.4 Non-recursive Position-based ORAM

Besides the encrypted dictionary mentioned above, non-recursive position-based ORAM is a crucial
building block of our construction. Our definition is new and captures the general non-recursive
position-based ORAM. We start with defining a position map and position tag as follows.

Position Tag and Map. We use position tag to refer to a set of physical addresses associated with
a block id, for example, the position tag of the i-th block is denoted by posi = {addrj}j∈[S], where
S is some upper-bound size. For position-based ORAM managing Nram blocks, we define the position
map as pmap = {(i, posi)}i∈[Nram].

We refer to Appendix C.1 for syntax, correctness, and security definitions. In particular, we adapt
the STE syntax, write the position map explicitly, and incorporate ORAM.GenPosTag(1κ,M) algo-
rithm, which takes as input security parameter 1κ, total number of blocks M , and outputs some
random position tag.

4 Generic Protocol EMM

Before we present our generic protocol, we note that directly adding (full) volume-hiding to SEAL or
other ORAM-based SSE/STE schemes by padding the number of ORAM accesses to the tuple length
leads to prohibitive roundtrip latency. For example, suppose the tuple length is 10000 (i.e., number
of documents associated with each keyword), and with a batch size equal to 10 for ORAM access
(client’s stash size grows linearly in the batch size ×⌈log2 M∗⌉), for every query, SEAL will yield 1000
rounds of communication, incurring 30s round latency.

So a different approach is needed, and we propose to pack the document identifiers into a single
block, as padding the number of ORAM accesses to the tuple length incurs at least the tuple length
of rounds of communication, while costs equal or more bandwidth. We are now ready to present our
protocol.
4 Use ds[ℓ]← v for dictionary.
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4.1 EMM Protocol Overview

We build our generic encrypted multi-map protocol EMM using an encrypted dictionary EDX that hides
the query, access, and volume patterns, and a non-recursive position-based ORAM (with encrypted
blocks). We consider the setting where the client keeps a small state, avoiding using storage that is
linear in either the total number of labels or values in the multi-map, so that it can be easily adapted
to the multi-client or multi-device setting.

As mentioned in the Introduction, our encrypted multi-map protocol allocates an ORAM block
storing the associated values for each label in the multi-map. (In our application it will be storing
document ids for each keyword.) This is a common straightforward approach. But to achieve practical
efficiency, we employ some novel ideas. To help understand our approach, we first briefly recall how
position-based ORAM operates.

Position-based ORAM Overview. The client first shuffles the memory blocks and keeps secret
the position map — the mappings between the block ids and the position tags (i.e., sets of physical
addresses, see Section 3.4). For each ORAM operation (Read or Write), the client will retrieve the
blocks, decrypt, re-encrypt, and write back to a set of new random physical addresses and update the
local position map. A secure non-recursive position-based ORAM guarantees computational oblivi-
ousness — by observing the memory accesses, no efficient adversary can glean information about the
underlying blocks that the client accesses. A drawback of non-recursive ORAM is that the position
map grows linearly in the total number of memory blocks and may become infeasible to fit the client’s
local storage. Usually, a recursion technique is proposed — saving the client’s storage by recursively
storing the position maps in a series of ORAMs so that only the first level’s (smaller) ORAM’s position
map is stored locally by the client, while the last level’s ORAM stores the data blocks. The number of
levels of recursion is bounded by O(logNram) for managing Nram blocks, which implies a multiplicative
factor increase in round complexity and costs more bandwidth compared with the non-recursive one.
Thus it is desirable to use a non-recursive position-based ORAM if possible, but how to deal with the
linear position map storage if Nram is a significantly large number?

Ideas for Optimization. Our idea is to store each label’s associated block id and position tag in an
encrypted dictionary on the server side. Since position-based ORAM requires updating the position
tag for each block access, we propose novel optimization techniques to enable encrypted dictionary
handling the update without additional costs on top of the label lookup.

Protocol Overview. We now describe our generic protocol: given a multi-map and its maximum
size, 5 for each label ℓ in the multi-map, we allocate an ORAM block indexed by bidℓ to store its
values. Then in the encrypted dictionary EDX, at the label ℓ’s associated value field, we store the
block identifier bidℓ and its corresponding position tag posbidℓ .

Performing multi-map operations using EMM is straightforward: for Get operation, we first find in
the encrypted dictionary label ℓ’s associated block id bidℓ and position tag posbidℓ ; then read ORAM’s
bidℓ-th block to obtain its associated values with posbidℓ . For Put and Remove operations, our generic
EMM protocol supports both atomic operation — updating a label and a single value, and set operation
— updating a label and a set of values. The set operation incurs almost negligible computational and
communicational overheads compared with the atomic one as we store the label’s associated values
in a single ORAM block. For each multi-map operation, we only require one EDX operation, followed
by two ORAM operations (Read and Write) and one update to EDX refreshing the position tag (and
possibly the block id). The volume-hiding property inherits from that both label and value stored in
the encrypted dictionary are fixed in size. A significant advantage of our scheme is we use non-recursive
position-based ORAM, which improves the efficiency compared with the recursive cases, and at the
same time does not sacrifice security as Horus does, applying PRF to labels to generate position tags
[56], as we store the position tags in the encrypted dictionary, which can be easily accessed.
5 For simplicity, we consider the maximum size is fixed after setup.
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Setup(1κ,M∗∥Bram,mm) :

1: BidStack.Init(⌊log2 M∗⌋)
2: array← ()
3: for each (ℓi, vseti) in mm do
4: blocki ← i∥vseti
5: array[i]← blocki
6: BidStack.IncCtr()
7: end for
8: (Koram∥pmap, oarray)

$← ORAM.Setup(1κ,
9: M∥Bram, array)

10: dx← {}
11: for each (ℓi, vseti) in mm do
12: dx← dx ∪ {(ℓi, (i, pmap[i]))}
13: end for
14: (Kedx, edx)

$← EDX.Setup(1κ,M, dx)
15: K ← (Kedx,Koram)
16: emm← (edx, oarray)
17: return (K, emm)

Dec(K, emm) :

1: Parse emm as (edx, oarray)
2: Parse K as (Kedx,Koram)
3: dx← EDX.Dec(Kedx, edx)
4: R← ()
5: array← ORAM.Dec(Koram, oarray)
6: for each block in array do
7: if block ̸= ⊥ then
8: Parse block as (i, vseti)
9: R[i]← vseti

10: end if
11: end for
12: mm← {}
13: for each (ℓi, (i, pmap[i])) in dx do
14: vset← R[i]
15: mm← mm ∪ {(ℓi, vseti)}
16: end for
17: return mm

Fig. 2: Encrypted Multi-Map Protocol EMM (Part 1).

We optimize our generic EMM protocol by removing the update procedure to EDX after the ORAM
accesses and enabling both Read and Write in a single ORAM operation. We achieve the optimization
by extending the standard functionality of EDX and ORAM. Specifically, we extend EDX functionality
to include a single operation for both Get and Put. This improvement is significant, especially for
EDX instantiations suppressing query-equality and access patterns based on oblivious maps, where
GetUp only costs the same bandwidth and rounds of communication as Get. Similarly, we extend the
functionality of ORAM to combine Read and Write as a single operation.

On Recursive Position-based ORAMs. We also discuss in Appendix D on why our generic
protocol EMM and its instantiations do not yield a position-based ORAM that is asymptotically
better in efficiency than the existing recursive position-based ORAMs.

4.2 Extended Functionality

Due to the space limit, we present the extended functionality for encrypted dictionary and ORAM we
talked about in the previous subsection in Appendix B1 and Appendix C2, respectively.

4.3 Algorithms of EMM Protocol

We are now ready to specify our generic encrypted multi-map protocol EMM. We list its algorithms
in Figure 2, 7, 3, and 4. In the generic protocol, we refer to abstract label space L and value space
V for generality. To use our EMM as part of SSE, we can let the label space be the keyword space,
L = {0, 1}lenW for some maximum keyword length lenW; let the value space be the space of sets
of document identifiers, V = {{0, 1}lenID}∗, where lenID is the maximum length of the document
identifier.

The Setup algorithm takes as input security parameter κ, auxiliary information M∗∥Bram, and
multi-map mm over L × V. M∗ is the upper-bound on the number of labels. Bram, the RAM block
size, has to be sufficient to store one block id and an upper-bound number of values associated to each
label (Section E.1 discusses resizability and fixing maximum size in detail).

One challenge for dynamic updates is to maintain a list of free block ids, which relates to both
the Remove operation and the Get operation. ORAM-based SSE/STE schemes usually store, for each
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AccessC,κ(K, op, ℓ, vset) :
1: Parse K as (Kedx,Koram)

2: pos∗
$← ORAM.GenPosTag(1κ,M)

3: if op = Get then
4: op1 ← GetUp; data1 ← ⊥∥pos∗
5: else if op = Put then
6: bid← BidStack.GetBid()
7: op1 ← GetUp; data1 ← bid∥pos∗
8: else ▷ Condition op = Remove
9: if vset ̸= ⊥ then

10: op1 ← GetUp; data1 ← ⊥∥pos∗
11: else
12: op1 ← Remove; data1 ← ⊥
13: end if
14: end if
15: Run EDX.AccessC(Kedx, op1, ℓ, data1) with S and get out1

AccessS(emm) :

1: Parse emm as (edx, oarray)
15: Run EDX.AccessS(edx) with C and get edx∗

Fig. 3: Encrypted Multi-Map Protocol EMM (Part 2).

keyword, a set of deleted document produce a set of inserted document identifiers using 1 to ctr; and
existing document identifiers will be the set difference between the two.

Since EDX and ORAM have the same number of blocks, we directly use the one-to-one mapping
between the two, so that we only need to manage the block ids of EDX and use the same block id in
ORAM. We manage the block ids using BidStack in Figure 7 (Appendix E) which always keeps the
last element in the stack as the global counter, and stores the free block id if a block (i.e., keyword)
has been freed. We set the initial stack size to be ⌈log2(M∗)⌉ (passed as a parameter depending on
an estimate of the frequency of the remove operations). Under the constraint of having as little local
storage as possible, as the stack keeping the counter and also the deletion records grows linearly in
the number of blocks (number of keywords), the size increase reveals information about the deletion
record, BidStack can be instantiated using an oblivious stack and store it together with EDX and
ORAM. For operation-type-hiding EMM schemes, the stack will be accessed every time; for operation-
type-revealing EMM schemes, the stack will be accessed only for Put and Remove. BidStack can be
accessed together with EDX to avoid additional roundtrips.

5 Protocol Instantiations

We present two instantiations of our generic protocol EMM, denoted by EMMavl and EMMbskip and
their corresponding operation-type-revealing variants EMMr

avl and EMMr
bskip. All protocols instantiate

the non-recursive ORAM with non-recursive PathORAM [50] for simplicity but differ in the instan-
tiations of the encrypted dictionary. We briefly recall PathORAM (Appendix C.3) and show how it
efficiently supports ORAM’s extended functionality (Definition C2). We then discuss the encrypted
dictionary instantiations — oblivious AVL tree with encryption (OAvlTreeE), oblivious BSkiplist with
encryption (OBSkiplistE), and their operation-type-revealing variants AvlTreeE and BSkiplistE, and
show how they efficiently support the extended functionality for the encrypted dictionary.

Encrypted Dictionary Instantiations. For our encrypted dictionary we pick two constructions
from [57], [58] that were more formally defined in [48]: oblivious AVL-tree with encryption (OAvlTreeE)
and oblivious BSkiplist with encryption (OBSkiplistE). In [48] the constructions were formalized as
oblivious maps with encryption OMapE. OMapE security is defined using the same STE security
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AccessC,κ(K, op, ℓ, vset) :
16: if out1 ̸= ⊥ then
17: Parse out1 as (bid′, pos′)
18: if op= Get then
19: op2 ← Read; data2 ← ⊥
20: else if op= Put then
21: op2 ← ReadUp; flag← Put
22: data2 ← flag∥vset
23: if bid′ ̸= bid then ▷ Label ℓ already exists
24: BidStack.AddBid(bid)
25: end if
26: else ▷ Condition op = Remove
27: if vset ̸= ⊥ then
28: op2 ← ReadUp; flag← Remove
29: data2 ← flag∥vset
30: else
31: op2 ←Write; data2 ← ⊥
32: BidStack.AddBid(bid′)
33: end if
34: end if
35: Run ORAM.AccessC(Koram∥pos′∥pos∗,op2, bid′, data2)
36: with server S and get out2
37: if out2 ̸= ⊥ then
38: Parse out2 as bid∗∥vset∗
39: return vset∗

40: else
41: return ⊥
42: end if
43: else ▷ Perform one dummy ORAM access
44: bid′

$← [M ] ; pos′ $← ORAM.GenPosTag(1κ,M)
45: Run ORAM.AccessC(Koram∥pos′∥pos∗, op2, bid′, data2)
46: with server S and get ⊥
47: return ⊥
48: end if

AccessS(emm) :

35: Run ORAM.AccessS(oarray) with C and get oarray∗

45: Run ORAM.AccessS(oarray) with C and get oarray∗
46: emm∗ ← (edx∗, oarray∗)
47: return emm∗

Fig. 4: Encrypted Multi-Map Protocol EMM (Part 3).

(Definition 31) while ensuring the empty Access leakage. Hence we can treat OMapE as a class of
encrypted dictionaries with empty access leakage — hiding the query, access, and volume patterns.

We now discuss how we use OAvlTreeE and OBSkiplistE to support efficient GetUp. Both OAvlTreeE
and OBSkiplistE rely on underlying non-recursive position-based ORAM (e.g., non-recursive PathORAM)
to manage the dictionary data, where each block stores a label and the associated value. They enable
oblivious search by making O(logM∗) accesses to the underlying ORAM of M∗ blocks. By instanti-
ating the underlying ORAM with PathORAM that supports ReadUp, OAvlTreeE and OBSkiplistE can
easily support GetUp — when the ORAM block storing the label is found, instead of keeping the
same value, re-encrypt, and writeback, we update the value then follow the standard procedure of
OAvlTreeE and OBSkiplistE. Hence it improves efficiency compared with using only black-box dictio-
nary operations Get then Put.

Since our EMMavl and EMMbskip directly instantiate the encrypted dictionary with OAvlTreeE,OBSkiplistE
respectively [48], we refer the details to their work. Due to the lack of space, we move the discussion on
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AvlTreeE and BSkiplistE to Appendix F.3. The essential idea is to remove the dummy ORAM accesses
for Get (or GetUp) used originally in OAvlTreeE and OBSkiplistE for hiding the operation type.

6 Security Analysis

We state the security of the generic protocol EMM, instantiations EMMavl, EMMbskip and their
operation-type-revealing variants EMMr

avl and EMMr
bskip.

Security of Generic Protocol EMM. The following theorem states the security guarantee our
generic protocol provides. It implies that the protocol inherits the strong security of its building
blocks.

Theorem 61 (Main Theorem). The generic encrypted multi-map protocol EMM with building blocks
encrypted dictionary EDX and non-recursive position-based ORAM, is adaptively LEMM-secure, if EDX
is adaptively LEDX-secure and ORAM is adaptively LORAM-secure (cf. Definition 31), where LEMM =
(LSetup, LAccess) with LSetup = (LEDX.Setup,LORAM.Setup), LAccess = (LEDX.Access,LORAM.Access).

Due to the space limit, we provide the proof sketch in Appendix F.2. It is certainly essential to
make sure that our building blocks have strong security.

Security of EMMavl and EMMbskip. Let M∗ be the upper-bound on the maximum number of labels
of the multi-map. Parameter nodeSize is the size of every node in bits; height is the height of the
structure (i.e., AVL tree or BSkiplist); bucketSize is the size of every bucket in bits as part of its
underlying ORAM; parameter β is the branching factor of OBSkiplistE’s underlying BSkiplist.

Based on previous results [48], [59], we show in Appendix F.1 that PathORAM is adaptively
LPathORAM-secure (cf. Definition 31) assuming the blockcipher-based mode of operation used for en-
cryption is IND-CPA with LPathORAM.Setup = (M∗, Bporam, bucketSizeporam) and LPathORAM.Access

= ⊥, where Bporam is the block size in bits, and bucketSizeporam is the bucket size in bits. Since
PathORAM’s Read and Write operations require reading and writing back the encrypted blocks, we
show that this property provides optimized ReadUp without sacrificing security (Appendix F.3). All
instantiations of encrypted dictionary OAvlTreeE, OBSkiplistE, and their variants AvlTreeE,BSkiplistE
are built on PathORAM. The only security difference between OAvlTreeE and AvlTreeE (OBSkiplistE
and BSkiplistE) is that the former hides the operation type, while the latter does not. By uti-
lizing underlying PathORAM’s optimized ReadUp, all encrypted dictionary instantiations support
optimized GetUp, incurring no security loss (see justification in Appendix F.3). The following se-
curity statements hold as part of our instantiations: OAvlTreeE is adaptively LOAvlTreeE-secure (cf.
Definition 31) assuming the blockcipher-based mode of operation used for encryption is IND-CPA,
with LOAvlTreeE = (LOAvlTreeE.Setup, LOAvlTreeE.Access), where LOAvlTreeE.Setup = (M∗, nodeSize, height,
bucketSize), LOAvlTreeE.Access = ⊥; OBSkiplistE is adaptively LOBSkiplistE-secure (cf. Definition 31) as-
suming the blockcipher-based mode of operation used for encryption is IND-CPA with LOBSkiplistE =
(LOBSkiplistE.Setup, LOBSkiplistE.Access), where LOBSkiplistE.Setup = (M∗, nodeSize, height, β, bucketSize),
LOBSkiplistE.Access = ⊥.

We summarize the security statements for our two instantiations EMMavl and EMMbskip. The
proofs follow from Theorem 61 and the above security statements.

Theorem 62. The encrypted multi-map protocol EMMavl is adaptively LEMMavl-secure (cf. Defini-
tion 31) assuming the blockcipher-based mode of operation used for encryption is IND-CPA, where
LEMMavl = (LSetup, LAccess) with LSetup = (M∗, nodeSize, bucketSize, height, Bporam, bucketSizeporam),
and LAccess = ⊥.

Theorem 63. The encrypted multi-map protocol EMMbskip is adaptively LEMMbskip-secure (cf. Defi-
nition 31) assuming the blockcipher-based mode of operation used for encryption is IND-CPA, where
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LEMMbskip = (LSetup, LAccess) with LSetup = (M∗, nodeSize, bucketSize, height, β, Bporam, bucketSizeporam),
and LAccess = ⊥.

The variants EMMr
avl and EMMr

bskip have similar security statements as above but differ in the
leakage profile — both instantiations leak the operation type in Access, namely, LAccess = op ∈
{Get,Put,Remove}. Due to the lack of space, we omit the formal security statements for the two
operation-type-revealing variants EMMr

avl and EMMr
bskip, and move the explanation that the access

leakage contains at most the operation type to Appendix F.4. We remark that, as also mentioned in
the Introduction, the setup leakage of all instantiations can be interpreted as the upper-bound size
of multi-map, since other data-dependent parameters e.g., height, nodeSize, bucketSize, block size
B, β already have been fixed by the upper-bound size and the degree of obliviousness as part of the
security parameter.
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(b) Round Complexity Comparison.
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(d) Bandwidth Cost for q = 10000.
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(e) Hiding Operation Types.

Parameter Value
havl 1.45× ⌈log2(M∗ + 2)⌉
hbskip ⌈logβ M∗⌉
hporam ⌈log2 M∗⌉

Scheme # Rounds
EMMavl r1 = 3 · q · havl + 3
EMMr

avl r2 = (⌈p · q⌉+ 3 · (q − ⌈p · q⌉)) · havl + 3
EMMbskip r3 = 2 · q · hbskip + 3
EMMr

bskip r4 = (⌈p · q⌉+ 2 · (q − ⌈p · q⌉)) · hbskip + 3

N k l

Enron 30109 15 17303
Lucene 66491 16 49758

Block Size (bytes) AvlTreeE BSkiplistE PathORAM
Enron 64 585 5649
Lucene 64 585 12471

(f) Parameters and Expressions.

Fig. 5: Simulation Results and Parameters.

7 Complexity Analysis

Before analyzing the complexity of our protocols, we first establish the notations and conventions. For
any multi-map mm and its arbitrary multi-map mm∗ of some upper-bound size, we write Lmm∗ ,Vmm∗

to denote the label and value space fixed by mm∗. Let M∗ = #Lmm∗ be the upper-bound size on the
total number of labels; let lmm∗ be the maximum tuple length, namely, the maximum number of values
associated with each label. For round complexity, we use the convention — the number of rounds equals
the number of interactions between the client and server, where one single round involves sending a
message and receiving a message. All our instantiations EMMavl,EMMbskip,EMMr

avl,EMMr
bskip have

computational and communicational complexity O(log2 M∗+logM∗ ·lmm∗ ·maxv∈Vmm∗ |v|2), and round
complexity O(logM∗). We also provide their concrete expressions in Figure 5f.
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Complexity Comparison with [49] and Baseline [52]. We have mentioned that [49] and [52]’s
baseline are the only two work proposing EMM constructions that hides query, access, and volume
patterns. As [49] does not provide any implementation, we present complexity analysis of their most
efficient instantiation ZAVLH using the complexity expressions provided in their full paper, with ours
and baseline. In particular, we focus on the concrete complexity comparison and show from the
simulation results that our instantiations perform significantly better than theirs in communicational
and round complexity, and better than baseline in communicational complexity. We also provide
an asymptotic complexity comparison with [49] in Appendix G.2, where we show under the same
assumptions as [49], though our instantiations cannot outperform ZAVLH asymptotically in bandwidth
complexity, they always have better asymptotic round complexity since ZAVLH’s rebuild suffers from
high round complexity due to oblivious shuffling.

Before moving to discuss the simulation results, we continue describing the parameters used in the
simulation. For arbitrary database represented using a multi-map mm, let N denote the number of
documents (i.e., values) in the database, let N =

∑
ℓ∈Lmm

#mm[ℓ] (N is written as N in [49]). Let t
denote the number of keywords (i.e., labels), l denote the maximum tuple length, g denote the growth
factor (g > 1) — a parameter that determines the upper-bound size of the multi-map. Specifically, for
arbitrary multi-map with N, t, l given in the setup, its upper-bound size has t∗ = g · t, l∗ = g · l, N∗

=
g2 · N (choosing g2 to compute N

∗
is due to that N represents the total number of all keywords’

associated documents). In the following experiments, if it is not explicitly specified, g is fixed at 1.5.
For an arbitrary sequence of query operations, we assume 10% are Put, 10% are Remove, and the
rest 80% are Get. Figure 5f shows the expressions we use for simulation with p = 80% indicates
the percentage of the operations that are Get. Due to the space limit, we continue describing the
parameters and expressions used to generate the plots in Appendix G.1.

We are now ready to present our simulation results. Same as in [49], we use N = 65536, t =
256, l = 512 as default parameters. We also investigate λ’s (for every λ operations ZAVLH needs to
run one rebuild) influence shown in Figure 5c: for default database, varying λ in between 1 and 1600,
and running 10, 000 operations to ensure that at least one rebuild occurs. We found that increasing
λ does not always lead to performance improvement of ZAVLH. We use the optimal λ = 176 we
found through the experiment in the rest of the experiments ([49] sets λ = 64 as default). Both
Figures 5a and 5b show that ZAVLH follows a trend with a step-size increase in bandwidth and
rounds, reflecting the heavy overhead introduced by the rebuild — a necessary procedure to suppress
the leakage in their framework. Unfortunately, it can be seen from the figure that after around 550
queries, the accumulated bandwidth cost of ZAVLH is even greater than the baseline — downloading
and updating the encrypted database for every query. Throughout the simulation experiments, we
found that the maximum tuple length l plays a more significant role in efficiency than N . Though the
suggested l is relatively small compared with N (and possibly N), we show that our instantiations are
still practical even when l is close to the total number of documents N in Implementations (Sec 8). We
also analyze how the growth factor, namely, the increase in the multi-map’s upper-bound size impacts
the performance. The multi-map’s upper-bound size does not affect the baseline and the ZAVLH’s
performance for a fixed sequence of operations but affects our instantiations as the underlying ORAM
usually occupies non-resizable pre-allocated storage. However, Figure 5d shows that for a database of
up to 100 times increase in size, even after 10, 000 operations, the less efficient variants EMMavl and
EMMbskip still perform much better than the baseline, whereas ZAVLH performs the worst.

To offer guidance on selecting the instantiations for practice, Figure 5e shows the round complexity
results on a database of the size that is an element in {1, 5, 10, 50} times the default size accordingly.
We found AVL-tree-based instantiations incur more rounds than BSkiplist-based ones and are more
sensitive to the size increase in the database — overlapped blue lines show that the round increase is
less sensitive to the size increase. We expand the discussion and provide more figures on bandwidth
costs in Appendix G.1.
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8 Implementations and Experiments

Implementation. We built our instantiations EMMavl and EMMbskip and their operation-type-
revealing variants EMMr

avl and EMMr
bskip

6 in C++ using OAvlTreeE and OBSkiplistE’s implemen-
tations in [48]. Our implementations manage the dataset using RocksDB (optimized for SSD), which
suits the typical setting that the storage is more affordable than the memory. Although storing all
the data directly in the memory removes the loading time of the SSD-based database, we found for
database of at least moderate size, the significant query latency overhead comes from the rounds of
communication and the bandwidth cost compared with the computational cost — a major concern in
most of the ORAM-based solutions.

Experimental Setup. We conducted our experiments on two public available email databases Enron
and Lucene, where each email is treated as a single document, of size 30109 and 66491. We use their
processed version, fixing the keyword space to a set of the most frequently-used 3000 keywords,
provided by Oya and Kerschbaum [60], [61].

Since our instantiations achieve the volume-hiding property through padding each tuple to the
largest size, this specific keyword space captures the worst scenario for evaluation. As in the com-
plexity analysis, we store document identifiers in each PathORAM block using the cheaper storage
representation of the two: either a list of l document identifiers where each is a 32-bit integer or a
bitvector of N -bits where all 1’s indicate the matched document identifiers in the database. Still, we
show that our instantiations are practical in this setting. Our experimental results were generated on
a commodity laptop with 12-core Intel(R) Core i7-8750H CPU @ 2.20GHz, 16GB RAM, and 360GB
SSD, running Ubuntu 20.04.

EMMavl EMMr
avl EMMbskip EMMr

bskip
1 # Rounds 70 35 14 10

Bandwidth (kBs) 885.07 751.65 1623.72 1227.62
Time (ms) 2170.81 1110.13 549.90 398.20

2 # Rounds 76 38 14 10
Bandwidth (kBs) 1671.78 1526.93 2387.56 1991.46
Time (ms) 2413.74 1262.15 611.00 459.32

Table 1: Average Bandwidth and Communicational Cost Comparison for Enron (1) and Lucene (2).

In all EMM instantiations, we use the parameters in Figure 5f, where N denotes the total number
of documents, k denotes the maximum keyword length in bytes, and l denotes the maximum tuple
length, namely, the maximum number of emails associated with every single keyword. We also fix the
growth factor to 1.5. All AVL-tree-based and BSkiplist-based instantiations took less than 30 minutes
to set up either Enron or Lucene. Same to the concrete complexity analysis, in our experiments, we
assume 80% operations are Get, 10% are Put, and the rest 10% are Remove. We generated the results
by running 1000 operations on each dataset, performing Get and Remove operations on keywords and
associated document identifiers selected randomly from the corresponding dataset. We also ensure that
Remove is performed first and Get after, canceling each other out so that after 1000 operations, the
dataset stays the same as the setup one. The average computational time for each operation among all
instantiations is below 300 ms. For the more concerned communicational overhead, we simulated the
communicational time under network condition with 100 mbps for either uploading or downloading
and 30 ms in round latency. Table 1 shows that the communicational overhead is still reasonable for
practice among all instantiations. Although the bandwidth costs are comparable between the AVL-
tree-based instantiations and BSkiplist-based ones, the round complexity contributes significantly to
6 Our implementation will be available at https://gitlab.com/obliviousEMM/emm.

https://gitlab.com/obliviousEMM/emm
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the query latency. Our experiments show that the BSkiplist-based instantiations and the operation-
revealing variants are preferable.

Both Enron and Lucene are commonly used as the target databases to demonstrate the effectiveness
of the leakage-abuse attacks. Notably, the email databases are vulnerable to file-injection attacks as
everyone can send emails to the target client. Thus evaluating performance on the above two databases
carries practical meaning to demonstrate our instantiations’ effectiveness minimizing all common
SSE/STE leakage patterns while being sufficiently efficient for practice. Though our instantiations
cost more bandwidth and rounds than the “leaky” solutions for strong security, we show that they are
practically promising in some applications (e.g., email databases).

9 Discussion

We have demonstrated the feasibility of an ORAM-based encrypted index EMM combining an en-
crypted dictionary EDX with a non-recursive position-based ORAM through simulation and experi-
ments on real-world databases. Due to limited space, we move the discussion to Appendix E.1, on the
strengths and limitations of our construction, the trade-offs involved in having a resizable dynamic
volume-hiding SSE/STE scheme, and the implications for making our construction resizable (in the
number of keywords or database records).

10 Conclusion

We presented a generic encrypted multi-map protocol for the application of searching on outsourced
dynamic encrypted databases. Our protocol leverages an encrypted dictionary and an ORAM. Two
instantiations and their operation-type-revealing variants were proposed, all using PathORAM, but
with different encrypted dictionary instantiations. Our solutions, EMMavl and EMMbskip provide very
strong security, by hiding the information about the data, queries, operation type, and common
leakage patterns, namely the query, access, and volume patterns. The operation-type-revealing variants
EMMr

avl and EMMr
bskip are more efficient and suitable for scenarios that allow operation-type leakage.

Although full padding incurs a high efficiency cost if we wish to prevent any form of volume leakage,
under such a strict perfect volume-hiding constraint, our instantiations still outperform the only
two known solutions [49], [52] that achieve similar strong security, with improved bandwidth cost and
better round complexity than [49]. Since the network latency dominates the efficiency of our solutions,
with the increase of network speed (e.g., 1 gbps compared with 100 mbps used in our evaluation),
deployment of solutions heavily reliant on network communications may become viable.
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A Applications to Symmetric Searchable Encryption

As we mentioned in the introduction, the encrypted index does not support directly secure search on
documents of large size, e.g., photos, videos. An additional round of secure document access is usually
suggested after obtaining the document identifiers.

Then how to accomplish the task securely with little leakage? Although retrieving a small number
of documents through ORAMs may be feasible, we are interested in other viable methods, especially
considering the result by Naveed [62] showing that retrieving matched documents one by one through
ORAM costs more bandwidth than transferring the whole encrypted database.

As we have minimized all leakage of the search index in the first stage to obtain the document
identifiers, we prefer a practical document access scheme with strong security for the second stage.
To the best of our knowledge, Grubbs et al’s Pancake scheme [63] can facilitate the needs. It is a
frequency-smoothing scheme that introduces fake accesses for queries so that the access pattern is
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computationally indistinguishable from uniform distributions. However, their security definition as-
sumes the queries are independent, addressing neither the query-equality leakage nor the adaptive
security. We acknowledge the latest query-recovery attack [64], exploiting the query dependence un-
addressed by Pancake’s non-adaptive security. Thus, it cannot work for the first stage nor directly yield
an encrypted multi-map with strong security. We choose it for the second stage is due to the following
considerations: first, only document identifiers (e.g., contains no semantic meaning) are sent in the
second stage; each document identifier is typically associated with multiple keywords, and these two
factors together with Pancake’s computationally uniform access pattern mitigate the query-recovery
risk. Second, large documents imply data of higher min-entropy, compared with values of small size,
e.g., age, posing difficulty to adversaries exploiting query dependence for database reconstruction.
Finally, Pancake is highly efficient — within 3 − 6 times the cost of the unsecured document access.
However, the security-performance trade-off are promoted to the users for choice. A closer examination
of adopting this approach in the second stage and its security implication is beyond the scope of this
work, and we leave it for future research.

B Extended Functionality for EDX

Definition B1 (F̃DX). Let label space L = {0, 1}∗ and value space V = {0, 1}∗, where dx ⊆ L × V,
op ∈ {Get,Put,Remove,GetUp}, F̃DX(dx, op, ℓ, v): where data structure dx is stored in the state, op ∈ O,
ℓ ∈ L, and v ∈ V,

1. If op ∈ {Get,Put,Remove}, define the same as in Definition 32.
2. If op = GetUp, parse v as v1∥v2,

- if ℓ is in dx then v∗ ← dx[ℓ]; parse dx[ℓ] as v′1∥v′2; dx[ℓ]← v′1∥v2;
- otherwise:

- if v1 ̸= ⊥ then dx[ℓ]← v and v∗ ← v;
otherwise v∗ ← ⊥.

3. Output (v∗, dx).

Remark 6. The above extended operation GetUp can always be achieved by performing Get then Put
as part of the standard functionality FDX (Definition 32). However, efficiency is a different issue. For
our specific instantiations we will utilize the novel optimization technique that will allow us to have
GetUp costing almost the same bandwidth and rounds of communication as performing either Get or
Put.

C Non-recursive Position-based ORAM

C.1 Non-recursive Position-based ORAM Definitions

Our definition is new and captures the general non-recursive position-based ORAM. We start with
defining a position map and position tag. A position map is a mapping from the memory block ids to
sets of physical addresses, known as position tags.

Position-based ORAM Syntax. We adapt the STE syntax for non-recursive position-based ORAM.
To manage an Nram-block memory array with block size Bram in bits, fixing label space L = [Nram],
value space V = {0, 1}Bram , operation type space O, we define ORAM = (Setup,Access,Dec). Let C
denote a stateful client, and S denote the server.

- pos
$← ORAM.GenPosTag(1κ, Nram): is a randomized algorithm that takes as input security param-

eter κ ∈ N, number of blocks Nram, and outputs the position tag pos.
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- (K∥pmap, oarray)
$← ORAM.Setup(1κ, z, array): is a randomized algorithm that takes as input se-

curity parameter κ, auxiliary information z = Nram∥Bram, and array ∈ L×V with functionality F .
It outputs a secret key K, a position map pmap, and an encrypted array oarray.

- (v∗, oarray∗) ← [ORAM.AccessC(K∥pmap[ℓ]∥pmap∗[ℓ], op, ℓ, v), ORAM.AccessS(oarray)]: is a two-
party protocol executed by client C and server S, where C inputs secret key K, position tag
pmap[ℓ], the updated position tag pmap∗[ℓ], operation type op ∈ O, block id ℓ ∈ L, and data
v ∈ {0, 1}Bram ; S inputs oarray; at the end, C receives v∗ ∈ {0, 1}Bram , and S updates the encrypted
array to oarray∗.

- array ← ORAM.Dec(K, oarray): is a deterministic algorithm that takes as input secret key K,
encrypted array oarray, and outputs array.

The standard ORAM functionality is defined as follows.

Definition C1 (FRAM). For Nram-block memory array with block size Bram in bits, label space L =
[Nram], value space V = {0, 1}Bram , operation type space O = {Read,Write}, we define reactive func-
tionality F̃RAM, for every array ⊆ L×V, FRAM(array, op, ℓ, v): where array is stored in the state, op ∈ O,
ℓ ∈ L, and v ∈ V,

1. If op = Read, if ℓ is in [Nram] then v∗ ← array[ℓ]; otherwise v∗ ← ⊥.
2. If op = Write, array[ℓ]← v and v∗ ← ⊥.
3. Output (v∗, array).

Correctness. We adapt the correctness definition from Section 3.1. For all κ ∈ N, all z ∈ {0, 1}∗,
all array ⊆ L × V with functionality F , we say that non-recursive position-based ORAM is correct
if and only if the following conditions hold: for all (K∥pmap, oarray) output by Setup(1κ, z, array),
Dec(K, oarray) = array; let array1 ← array, oarray1 ← oarray, and pmap1 ← pmap, after applying
an arbitrary polynomial-size sequence of operations {(opi, ℓi, vi)}i∈[q] to oarray1, where opi ∈ O,
ℓi ∈ L, vi ∈ V; for all i ∈ [q], all pmapi+1 output by ORAM.GenPosTag(1κ, Nram), (vi+1, oarrayi+1) ←
[AccessC(K∥pmapi[ℓ]∥pmapi+1[ℓ], opi, ℓi, vi), AccessS(oarrayi)], we require vi+1 = v′i+1 and Dec(K, oarrayi+1)
= array′i+1, where (v′i+1, array

′
i+1)← F(arrayi, opi, ℓi, vi).

Security. We show that if a non-recursive position-based ORAM (with encrypted blocks) that supports
either standard functionality FRAM or extended functionality (used in our generic protocol) satisfying
adaptive obliviousness [59], it is secure under STE’s adaptive security notion (Definition 31) with an
empty leakage profile. We provide a security proof sketch in Appendix F.1.

C.2 Extended Functionality for ORAM

We also specify non-recursive ORAM’s extended functionality F̃RAM to include ReadUp below. The
ReadUp operation either removes or adds values in the existing block, indicated by a flag (Remove

or Put) in the argument. As part of the generic protocol, non-recursive ORAM with F̃RAM maintains
a memory array, of which each block stores a block id concatenated with a set of values.

Definition C2 (F̃RAM). For Nram-block memory array with block size Bram in bits, let label space
L = [Nram], value space V = {0, 1}Bram , operation type space O = {Read,Write,ReadUp}, we define
reactive functionality F̃RAM, for every array ⊆ L× V,
FRAM(array, op, ℓ, v): where array is stored in the state, op ∈ O, ℓ ∈ L, and v ∈ V,

1. If op ∈ {Read,Write}, define the same as in Definition C1.
2. If op = ReadUp, parse v as flag∥vset, parse array[ℓ] as bid′∥vset′, v∗ ← array[ℓ],

- if flag = Remove, uset← vset′ \ vset,
array[ℓ]← bid′∥uset.
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- if flag = Put, uset← vset′ ∪ vset,
array[ℓ]← bid′∥uset.

3. Output (v∗, array).

Remark 7. The extended operation ReadUp can be generally achieved by performing Read then Write.
However, efficiency gains are not always possible. For our instantiations we will apply the optimization
technique so that ReadUp cuts the cost up to a half.

C.3 PathORAM

We recall that PathORAM with Nram blocks organizes the encrypted array as a complete binary tree of
height = ⌈log2 Nram⌉+1, comprising Noram = 2⌈log2 Nram⌉+1−1 nodes. Each node is a fixed size bucket
storing the encrypted blocks. The bucketSize is chosen based on the degree of obliviousness (part of
the security parameter). It suffices to use the leaf node id, an element of the set [2⌈log2 Nram⌉], as the
position tag since given the leaf node id, the server can find all the blocks on the path from the root
to that leaf node. More specifically, PathORAM.GenPosTag(1κ,M) used as part of EMM is defined as:
x

$← [2⌈log2 M⌉] and outputs x. We show how PathORAM naturally supports optimized ReadUp below.
We now show how PathORAM supports efficient extended ReadUp operation. For either Read or

Write PathORAM reads and writes back blocks along a tree path. Reading requires decrypting the
blocks and storing in the local stash. So instead of either keeping or overwriting the block value,
we update the value and perform the same write-back procedure afterwards. The accessed block is
mapped to a new random position indicated by the leaf node. All blocks in the local stash on the same
path indicated by the old position tag will be padded with dummy blocks, encrypted, and written
back to the server. Thus, performing ReadUp compared with Read then Write improves the efficiency
by avoiding additional path reading and write-back.

  4   2     3

1 2 3 4

1

Fig. 6: Nram = 4, bucketSize = 2×Boram.

Figure 6 shows a toy example of PathORAM to demonstrate ReadUp, where Nram = 4, bucketSize =
2 × Boram, and Boram is the encrypted block size. The node ids are written below the leaf nodes
and the block ids are written in the blocks. Other than the numbered blocks, the rest are dummy
blocks and all blocks are encrypted. Assume PathORAM.Setup outputs a position map pmap =
{(1, 2), (2, 4), (3, 3), (4, 1)}, where the first field is the block id, and the second field is the leaf node id.
To perform ReadUp on block 1 (the red block), similar to Read and Write, generate a random position
tag using ORAM.GenPosTag(1κ, Nram). Suppose 4 is the output. Update pos∗1 ← 4; fetch and decrypt
all the blocks along the red path; perform an update to block 1. Then perform PathORAM’s standard
lazy write back: the valid blocks and the position tags are kept in the client’s local stash. Blocks
are written back optimistically if their position tag is matched. Having a stash size of O(logNram)
is sufficient to prevent stash overflow. In this example, with pos∗1 = 4, all blocks along the red path
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Init(s) :

1: st← {}
2: ctr← 0
3: stack_size← s

GetBid() :

1: if st ̸= ∅ then
2: r ← st[0]
3: st← st \ {r}
4: else
5: r ← ctr

6: ctr← ctr+ 1
7: end if
8: return r

AddBid(x) :

1: if x = ctr− 1 then
2: ctr← ctr− 1
3: else
4: if #st < stack_size

then
5: st← st ∪ {x}
6: end if
7: end if

IncCtr() :

1: ctr← ctr+ 1

Fig. 7: Algorithms for Auxiliary Class BidStack.

except block 1 are re-encrypted, padded, and written back to the server. Only when further operations
involving accessing the green path, block 1 will be written back to the server.

D Generic Protocol EMM and Recursive Position-based ORAMs

Remark 8 (On Recursive ORAMs). One may ask whether our generic protocol EMM and its instan-
tiations yield a position-based ORAM that is asymptotically better in efficiency than the existing
recursive position-based ORAMs, by storing the mappings between block ids and position tags in the
encrypted dictionary. The answer is simply no: given Nram, the total number of memory blocks, the
recursive ORAM storing the position tags recursively in a series ORAMs in O(logNram) number of
levels performs asymptotically the same as looking up a position tag in an oblivious map and then
performing non-recursive position-based ORAM access. Interestingly, Wang et al.’s work on oblivious
data structures [57] was inspired by how to conduct an efficient search on (recursive) position-based
ORAMs in the first place [65]. We emphasize why combining EDX and non-recursive ORAM perfectly
fits our setting: for each label, we need to find the block id due to the small client storage constraint,
and relying on hashing is not feasible (See Introduction). Therefore, outsourcing the labels and block
ids in an encrypted dictionary becomes inevitable. By including additional position tags in the en-
crypted dictionary, we can obtain (and update) both block id and its position tag on every label
look-up. Then, naturally, a non-recursive position-based ORAM to store the label’s associated values
is a better choice than the recursive one. It costs only two rounds of communication for each ORAM
access compared with O(logNram) communication rounds for the recursive one.

E Algorithms for Auxiliary Class BidStack

In Figure 7, we include the algorithms of the auxiliary class BidStack.

E.1 Prices to Pay for Fully Dynamic Volume-hiding SSE/STE

In the following discussion, we say an STE/SSE scheme is “fully dynamic” if it is dynamic and resizable.

On Resizability. We justify our decision not to pursue fully dynamic schemes by showing that
all volume-hiding fully dynamic STE/SSE schemes suffer inherently from an unavoidable efficiency
overhead: for operation-type-hiding schemes, during Access, every operation needs to yield the same
(or computationally indistinguishable) increase in the size of encrypted index, otherwise, the operation
type is revealed and also the adversary can exploit the size change to recover the query. Similarly, it
follows that even the search and delete need to yield (almost) the same increase in the encrypted index
as an insert! As for the operation-type-revealing schemes, though search and delete can now be hidden
under the same operation type, without increasing the encrypted size, still, the delete operation is
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“fake” that does not actually reduce the size of the encrypted index in order to prevent a volume/size-
change attack. A special case of the size-based attack which exploits the different size increases for
existing keywords and new keywords (with associated fields are ordered and follow some formatting)
was explored by [52].

The above observation also has a direct implication for our construction. If we make our construc-
tion resizable in the number of keywords, which can be achieved straightforwardly by instantiating
the underlying ORAM with a resizable ORAM (e.g., PathORAM with resizability through techniques
discussed in [66]), our construction will leak the exact number of keywords in the encrypted index
instead of previously fixed maximum size. This information alone is sufficient to be exploited in the
dynamic setting — whether a keyword exists in the encrypted index via keyword/file injection. Thus,
for each insertion operation, it must yield (almost) the same size increase regardless of whether the
keyword already exists in the index, leaving the scheme with little practical appeal — a curse of fully
dynamic volume-hiding SSE/STE schemes given that the adversary has the ability to make the queries
and can observe the size change, captured by the standard security definition.

It makes us question whether a fully dynamic volume-hiding STE/SSE scheme with inherent heavy
costs for efficiency is worth pursing. Additionally, we will discuss a crucial property that has never
been addressed in the literature — varying the tuple length (recall that it refers to the maximum
number of documents associated with each keyword), which yields another obstacle to the ultimate
goal of designing a fully dynamic volume-hiding SSE/STE scheme.

Since our EMM relies on a single ORAM managing M∗ (maximum number of labels) blocks storing
the value fields (i.e., document identifiers), then instantiating ORAM with a resizable one only brings
the benefits adding dynamism for the keywords, but not the documents (or document identifiers)
as the block size is fixed. To our best knowledge, all existing dynamic SSE/STE schemes enforce a
(maximum) tuple length on the total number of documents associated with each keyword. However,
this constraint is insufficient to address the following practical need: maximum (given) tuple length
l ∈ N, some frequent keyword ℓ ∈ L, after a sequence of document insertions associated with ℓ, clients
cannot add ℓ to a newly-inserted document due to that the number of documents associated with ℓ
has already reached the maximum length l.

How about not fixing the maximum number of documents N∗ while achieving a variable tuple
length l? Unfortunately, increasing l is not straightforward in all existing schemes mitigating the
volume leakage or achieving the “volume-hiding” property, and we show a simple file-injection-based
query-recovery attack on if the scheme allows naively varying l. Though [49] supports unconditionally
increasing N , the total number of documents, it is clear that the functionality fails for adding new
documents associated with existing keywords when each existing keyword’s associated tuple is full.

A Query-Recovery Attack on Variable Tuple Length. We now describe the file-injection
keyword-recovery attack against dynamic volume-hiding SSE/STE schemes on variable tuple length.
Captured by the standard STE definition 31, the adversary can inject keyword and document (iden-
tifier) pairs and can observe the size change in the response transcript or the encrypted index by the
adversary. If a SSE/STE scheme reveals the tuple length change in the transcript size or from the size
of the encrypted index, then it is vunerable to the following attack.

Consider a multi-map over L × V, where keyword set L ⊆ {0, 1}∗ of size M , document identifier
set V = [N ]. For simplicity, suppose the initial tuple length l = 1, and we choose in the setup stage,
a database contains only one pair of keyword and document identifier (ℓx, idx), where ℓx ∈ L and
idx ∈ [N ]. Then, we can adopt the brute-force approach to recover ℓx by injecting (adding) pairs
(ℓi, N +1) for all i ∈ [M ] to trigger the change in tuple length. For generality, we allow the client has
a local stash of O(λ · l), meaning that the client can store λ operation’s returned results. We show
that it does not affect the effectiveness of the attack for stashless schemes and some schemes with the
rebuild functionality as in [49] — after λ operations, the client needs to run the rebuild algorithm.
Suppose λ ≥ 2, let ℓ0 = ℓ1, for each i ∈ [M ], we perform λ− 1 search operations on ℓi−1, followed by
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an insertion with (ℓi, N + 1). If resizing occurs (can be detected through the size difference in server
storage or encrypted response transcript), then it means a hit on ℓx. For λ = 1 (also implies the typical
stashless SSE/STE setting), a similar attack applies — we only need to perform the search operation
with ℓi−1 and followed with an insertion with (ℓi, N + 1) for all i ∈ [M ].

On Full Volume Hiding. We comment on the decision to pad the tuple to its maximum length.
Random padding can mitigate the leakage to a degree, such as the differentially-private volume padding
introduced in [67], but simply averaging the transcript size of repeated queries will make the random
padding less effective. SEAL [68] also suggests that for each keyword, padding its associated tuple
length to the next power of 2. However, if such a technique is used in the dynamic setting, by adding
documents on the same keyword, an adversary can also mount a query-recovery attack exploiting the
size change similar to ours. Therefore, one has to accept the efficiency tradeoff due to full-volume-
hiding in applications requiring very strong security. An interesting open question is to explore the
relaxation of the full volume hiding property but provides meaningful privacy guarantee and the
performance gains it allows.

F Security Analysis

F.1 Proof Sketch for Adaptive STE Security of Non-recursive Position-based ORAMs

We show that if a non-recursive position-based ORAM satisfies the adaptive obliviousness [59] and the
blocks are encrypted using IND-CPA blockcipher-based mode of operation SE , then it is STE-secure
(cf. Definition 31) with empty access leakage and setup leakage containing the public parameters of
ORAM — the number of blocks Nram managed by ORAM and block size Bram in bits. For simplicity,
assume for each ORAM, we can compute Noram, the number of encrypted blocks using Nram. Let κ
denote the security parameter. For any x ∈ R, we let ⟨x ⟩ denote x in the format of a binary string.

We construct a simulator S that generates a fake encrypted array and simulates transcripts for
ORAM.Access with honest server S. We argue that no efficient adversary A can distinguish the sim-
ulated encrypted array and transcripts from those yielded from the real executions of ORAM.Access
between honest client C and honest server S. Our primary technique is that, given the setup leakage
— Nram number of blocks, block size Bram, security parameter κ. Fix an IND-CPA symmetric encryp-
tion scheme SE used for block encryption. The simulator S first generates a random KS using SE ’s
key generation algorithm on security parameters κ. Simulator S then encrypts Noram (computed using
Nram and κ) ⟨ 0 ⟩’s of bit length Bram. Then for i = 1 to Noram, EDS1[i] ← EKS (⟨ 0 ⟩), where ⟨ 0 ⟩ is
of bit-length Bram. At the end, S outputs the encrypted array EDS1 and sends it to A. Adversary A
adaptively makes q queries using ORAM.Access. For each ORAM.Access, simulator S sends the server
S a transcript which is a list of physical addresses generated by ORAM.GenPosTag(1κ, Nram). Honest
server S then sends all encrypted blocks associated with those physical addresses to S. Simulator
S then writes back a list of updated encrypted blocks to the same associated addresses back to S.
Finally, honest S will update and output EDSt+1. The “adaptive obliviousness” of ORAM ensures
that the physical addresses (i.e., position tags) are computationally indistinguishable in both worlds.
Together with the IND-CPA property of encrypted blocks guaranteed by SE , ensure computationally
indistinguishable transcripts in both worlds.

F.2 Proof Sketch for Theorem 61

In the generic EMM protocol, we follow the same procedure as in standard non-recursive position-
based ORAM for updating the position map but differ in that the position map is kept in an encrypted
dictionary EDX instead of on the client’s side. Since we require our building block encrypted dictionary
to satisfy (strong) adaptive STE security (Definition 31), ideally only with the setup leakage and the
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access leakage containing at most the operation type, it follows that the privacy of the position map
hold.

We now describe how we construct a simulator S that uses Se,So — simulators for EDX,ORAM
for their STE security experiments respectively, as subroutines in the EMM’s security experiment.
During the setup stage, simulator S runs Se and So on EDX and ORAM’s setup leakage, outputs the
two simulated data structures, and sends them to the adversary A. During EMM.Access, S first runs
Se on the EDX’s access leakage with honest server S and outputs the same as Se. S then runs So
on ORAM’s access leakage with honest server S and outputs the same. The transcripts produced by
the honest executions between the client C and the server S, and the ones simulated by the S with
honest server S are computationally indistinguishable since EDX and ORAM both satisfy (strong) STE
security with their setup and access leakage. Thus we can conclude EMM is adaptively STE secure
with a leakage profile that is a union of EDX and ORAM in setup and access, specified in Theorem 61.

F.3 EDX Instantiations and Optimization

EDX Instantiations AvlTreeE and BSkiplistE. We briefly describe AvlTreeE,BSkiplistE — novel vari-
ants of OAvlTreeE, OBSkiplistE, allowing the leakage of the operation type of the underlying encrypted
dictionary. AvlTreeE modifies OAvlTreeE by removing the dummy accesses for Get and GetUp to en-
sure operation obliviousness. For each Get (or GetUp), when no nodes are added or removed to the
underlying AVL tree, the number of ORAM accesses is reduced from suggested 3×⌈1.45× log(M+2)⌉
in [48], [57] to the maximum height of the AVL tree ⌈1.45 × log(M + 2)⌉. It yields 3× efficiency en-
hancement in rounds of communication and bandwidth costs for Get and GetUp (with no AVL-tree
structural change). Similarly, BSkiplistE modifies OBSkiplistE by removing the dummy accesses and
thus reduce the total number of ORAM accesses for Get to the maximum height of the BSkiplist
⌈logβ(M)⌉, yielding 2× efficiency enhancement in rounds of communication and bandwidth costs for
Get and GetUp (with no BSkiplist structural change).

EDX with Optimized GetUp. We first show OBSkiplistE and OAvlTreeE support efficient GetUp
without affecting their security. Since GetUp performs the same procedures as Put, except instead
of overwriting, it performs an update in plaintext on the client’s side — from the adversary’s view,
it is no different from Put. The adaptive obliviousness guarantees that Put, Get,Remove produce
computationally indistinguishable transcripts, and thus we reach the same security conclusion for
OBSkiplistE and OAvlTreeE with optimized GetUp. As AvlTreeE results from OAvlTreeE after reducing
the total number of ORAM accesses to 1.45 × ⌈log (M + 2)⌉ for Get and GetUp (for cases incurring
no structural change to the AVL tree), where M is the upper-bound on the total number of labels, it
satisfies the same STE security as OAvlTreeE but reveals numAccessavl-oram — the number of accesses
to the underlying ORAM.

PathORAM with Optimized ReadUp. We show that PathORAM with optimized ReadUp is with the
same leakage profile as standard one: ReadUp is computationally indistinguishable from performing a
Read since they follow the same procedure of Read except it updates the target block’s value instead of
keeping the same value, which only occurs in plaintext and on the client’s side. Each ReadUp produces a
transcript computationally indistinguishable from Read’s, and thus computationally indistinguishable
from Write’s, guaranteed by the adaptive obliviousness. Hence, PathORAM with optimized ReadUp
has the same leakage profile as standard PathORAM.

F.4 Access Leakage of EMMr
avl and EMMr

bskip

We make the following justification on the access leakage. The encrypted dictionary instantiation
AvlTreeE, BSkiplistE are adaptively LAvlTreeE-secure, adaptively LBSkiplistE-secure (cf. Definition 31),
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having the same setup leakage as OAvlTreeE and OBSkiplistE accordingly. But, both have access leak-
age instead of empty — LAvlTreeE.Access = numAccessavl-oram and LBSkiplistE.Access = numAccessbskip-oram,
where numAccessavl-oram and numAccessbskip-oram denote the number of accesses to the underlying
ORAM as part of AvlTreeE and BSkiplistE respectively. Though our generic protocol EMM only uses en-
crypted dictionary operation GetUp and Remove, the number of accesses to the encrypted dictionary’s
underlying ORAM can differ: for every operation that is either GetUp or Remove, if no node is added or
removed to the underlying AVL tree (or BSkiplist), the number of ORAM access for each operation is
either ⌈1.45×log(M+2)⌉ (or ⌈logβ M⌉); otherwise, is fixed at 3×⌈1.45×log(M+2)⌉ (or 2×⌈logβ M⌉).
Since each EDX instantiation has consistent communicational volume for all accesses to its underlying
ORAM, no additional information is leaked from numAccessavl-oram (or numAccessbskip-oram) other
than the EDX’s operation type and the setup leakage. It follows that partial information about the
multi-map operation type is leaked, and thus we include the operation type leakage during EMM.Access
for EMMr

avl and EMMr
bskip.

G Complexity Analysis (Continue)

G.1 Concrete Complexity

Parameters and Expressions. Same as in [49], we fix the keyword size to 256 bits and value size
(document identifier size) to 64 bits. The branching factor β of the OBSkiplistE is set to 12 as in [48],
[58]. Let block size Bavl = 512 (for AvlTreeE and OAvlTreeE) and Bbskip = 2307 (for BSkiplistE and
OBSkiplistE and Bbskip may vary based on the degree of obliviousness). The total bandwidth cost for q
operations is Bandwidthedx+Bandwidthoram. Let block size for ORAM storing the document identifiers
Bram = min{N, 64·l}+32, where the document identifiers are represented by either N -bit vector or the
maximum tuple of size l containing 64-bit document identifiers; the extra 32-bit is to store the block id.
Bandwidthoram is consistent with all instantiations for retrieving the document identifiers. To compute
the bandwidth, we use bucketSizeavl = 4 · Bavl, bucketSizebskip = 6 · Bbskip, bucketSizeporam =
4 · Bram. The encrypted bucket size EBucketSizex for all x ∈ {avl, bskip, poram} are computed us-
ing length padding and IV appending (e.g., AES-based mode of operations). For any bucketSize

in bits, then its encryption has size ⌈⌈bucketSize/8⌉/16⌉ · 128 + 128. Then, Bandwidthoram = 2 ·
(EBucketSizeporam · (hporam + 1) + 32). Bandwidthedx = 2 · (ri − 3) · (EBucketSizex · (hporam +
1) + 32) for ri in Figure 5f and x ∈ {avl, bskip}.
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Fig. 8: Bandwidth Cost and Round Complexity Comparison Hiding/Revealing Operation Types.

Simulation Results. We continue the discussion in Section 7. Figure 8 shows the bandwidth com-
parison between EMMavl, EMMbskip, also between EMMr

avl and EMMr
bskip), using the growth factor in
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{1, 5, 10, 50} with the default database parameters. We found BSkiplist-based instantiations always
outperform the AVl-tree-based ones in round complexity, but the simulated bandwidth does not differ
much between the two types of instantiations (AVL tree or BSkiplist), which can be justified by the
fact that the bandwidth costs are dominated by retrieving the document identifiers through ORAM.
The parameters we used for our implementations (Figure 5f) also reflect this property — the block
size for EDX is much less than the ORAM’s.

G.2 Asymptotic Complexity Comparison with [49]

Notation. For ease of comparison, we use the nomenclature in [49] in the following discussion, and for
simplicity, we focus only on multi-maps and refer the readers to their work for generalized abstraction.
Given arbitrary multi-map ds with query space Qds, response space Rds, and update space Uds; the
subscript indicates the space is specific for data structure ds. Let dsλ be the extended data structure
with capacity λ, which can be interpreted as extending the original data structure ds with up to λ
operations. Let w be the word size in bits used as the basic data size unit in the RAM computational
model, and |x|w stands for x’s size in number of words.

Comparing with Generic Construction [49]. We first summarize the query computational com-
plexity results from [49] and then compare those with our construction’s. We use notations consistent
with [49] — let time denote the computational complexity, and DDS denote their generic construction.

Assume DDS’s base structured encryption (STE) scheme has query computational complexity
O(log#Qds) and λ = O(#Qds), then the query computational complexity of generic construction
DDS is as follows,

timeddsλO+R =O(#Qds · log#Qds) +O(λ · max
r∈Rdsλ

|r|w · log2 λ)

+O(#Qds · max
r∈Rdsλ

|r|w · log2 #Qds). (1)

The query computational complexity of our construction for λ operations is, timeemm
λO = O(λ·log2 #Qds∗

+λ · log#Qds∗ ·maxr∈Rds∗ |r|w).
If we make the same assumption λ = O(#Qds) as in [49], then, timeemm

λO = O(#Qds · log2 #Qds∗

+#Qds · log#Qds∗ ·maxr∈Rds∗ |r|w).
Comparing with asymptotic complexity of DDS in Equation 1, where O(#Qds · maxr∈Rdsλ

|r|w ·
log2 #Qds) is the dominant term, we can compute that under assumptions log2 #Qds∗ =O(log2 #Qds ·
maxr∈Rds

|r|w) and log#Qds∗ · maxr∈Rds∗ |r|w = O(log2 #Qds · maxr∈Rds
|r|w), our construction is at

least as efficient as their generic construction DDS in query computational complexity [49], namely,
timeemm

λO = O(timeddsλO+R).

Comparing with Concrete Instantiations [49]. We first recap the complexity results of two
concrete instantiations AZL and ZAVLH in [49]. AZL is a perfectly-correct fully-dynamic rebuildable
scheme resulting from applying their dynamic leakage suppression framework to the perfectly-correct
variant of PBS in [53]. It has the following query complexity, timeazlλO+R = (λ + #Qds) · timepbsQ +

O
(
λ ·maxr∈Rdsλ

|r|w · log2 λ
)
+ O

(
#Qds ·maxr∈Rdsλ

|r|w · log2 #Qdsλ

)
, where timepbsQ denotes the

query complexity of the base scheme PBS, which is equal to the query complexity of its underlying
multi-map encryption scheme.

The other instantiation is ZAVLH — a dynamic rebuildable multi-map encryption scheme results
from applying their framework to dynamic AVLHd [53]. Briefly, let n be the number of bins storing a
multi-map of size N , where N is the sum over all labels of the labels’ tuple lengths. Each label l is
mapped at random to t out of n bins, where t is the maximum tuple length. Assume t = O (1) and
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n = O (N/ logN), then the query complexity timezavlhQ is O (t ·N/n) = O (logN), which yields the
query complexity of the whole scheme ZAVLH as follows,

timezavlhλO+R = O (#Lmm · logN) +O
(
λ · max

r∈Rmmλ

|r|w · log2 λ
)

+O
(
#Lmm · max

r∈Rmmλ

|r|w · log2 #Lmmλ

)
.

Based on the above results, the two instantiations all perform asymptotically the same as the
generic construction. Thus, under the same assumptions as in [49], our construction is (at least) as
efficient as the two instantiations.

Round Complexity. Through private conversations with the authors [49], we confirm the round
complexity of their rebuild operation used as part of their instantiations is O(Q′ + Q′ log2 Q′ +
#Qdsλ · R), where R is the add/edit round complexity of the encrypted data structure and Q′ =
#Qds + λ. The overall round complexity is dominated by the oblivious sorting term O(Q′ log2 Q′) =
O
(
(#Qds + λ) log2(#Qds + λ)

)
, assuming that the add/edit round complexity of the encrypted data

structure is at most linear in the size of the query space. Their round complexity for rebuild for every
λ operation is significant, compared with O(log#Qds∗) incurred by our generic protocol EMM for each
operation.


