
An Embedded Domain-Specific Language for Using One-Hot
Vectors and Binary Matrices in Secure Computation Protocols

Andrei Lapets
Reity

Boston, MA
al@reity.org

Abstract
The use of secure computation protocols within production soft-
ware systems and applications is complicated by the fact that such
protocols sometimes rely upon – or are most compatible with – un-
usual or restricted models of computation. We employ the features
of a contemporary and widely used programming language to cre-
ate an embedded domain-specific language for working with user-
defined functions as binary matrices that operate on one-hot vec-
tors. At least when working with small finite domains, this allows
programmers to overcome the restrictions of more simple secure
computation protocols that support only linear operations (such as
addition and scalar multiplication) on private inputs. Notably, pro-
grammers are able to define their own input and output domains,
to use all available host language features and libraries to define
functions that operate on these domains, and to translate inputs,
outputs, and functions between their usual host language represen-
tations and their one-hot vector or binary matrix forms. Further-
more, these features compose in a straightforward way with simple
secure computation libraries available for the host language.

1. Introduction
Contemporary families of secure computation protocols such as se-
cure multi-party computation (MPC) [6] and homomorphic encryp-
tion (HE) [14] allow programmers to build applications that oper-
ate on data that remains encrypted without decrypting it. While a
broad array of general-purpose secure MPC [8, 16, 18] and HE
[2, 5, 14, 15] protocols exist (with new ones being introduced reg-
ularly), these usually achieve their expressive power at the cost of
increased overheads in terms of (1) computation and communica-
tion and (2) the mathematical sophistication required to apply them
successfully within an application scenario.

Some of the simpler secure computation protocols (such as lin-
ear secret sharing schemes [16] or the Paillier cryptosystem [15])
can be used to perform only those computations that can be repre-
sented as linear transformations of the encrypted or secret-shared
input data. However, even such limited protocols have been de-
ployed in production within suitable scenarios [11]. Furthermore,
such protocols can be used to implement a broad variety of other
functions when working with small finite domains [10] by repre-
senting computations as binary matrices that can be applied to one-
hot vectors. This technique presents an alternative region within the
trade-off space, and exploration of this region when tackling suit-
able use cases can be facilitated by the right programming tools.

We propose an embedded domain-specific language (EDSL)
[7] for (1) defining inputs and outputs in a way that enables easy
translation to and from their one-hot vector representations and (2)
defining functions in a way that enables easy translation to and from
binary matrices. This allows programmers to define input and out-

put domains using the host language’s type system, and to use all
the features, libraries, and paradigms found in the host language
when defining functions that operate over these domains. It also al-
lows programmers to compose these capabilities with secure com-
putation protocol libraries available for the host language.

As secure computation protocols mature and find applications,
they (1) will need to be incorporated into contemporary software
stacks that rely on languages such as Python and JavaScript and (2)
will ideally be deployable within cloud-based infrastructure, web
browsers, and mobile operating systems. Furthermore, software en-
gineers encountering implemented solutions may be interested in
relying on their existing experience and toolchains when auditing
them, verifying their correctness, or evaluating their performance.
Thus, we illustrate and examine the potential of an EDSL for lever-
aging one-hot vector and matrix representations by presenting such
an EDSL implemented within the Python programming language.

2. Background and Related Work
Numerous frameworks exist for building software solutions that
employ secure computation techniques [9, 14], including dedicated
programming languages, compilers, and both standalone and em-
bedded DSLs. However, none are specialized exclusively to ac-
commodate an approach that leverages one-hot vectors and binary
matrices to implement arbitrary user-defined functions [10]. Tech-
niques based on one-hot vectors are employed within a number of
domain-specific [1, 13] and general-purpose [3, 4, 17, 17] secure
computation protocols, so there may be value in enabling rapid
prototyping of software artifacts that rely on these representations.
This work reflects the motivation and structure of prior work on an
embedded DSL for building circuits [12] that could be used within
garbled circuit protocols [8, 18].

3. Embedded DSL for Leveraging One-Hot
Vector and Binary Matrix Representations

The EDSL presented in this work allows programmers to define
two categories of constructs. First, it allows programmers to use
the host language type system to define and build up domains of
values that can be automatically converted to and from their one-hot
vector representations. A Cartesian product operation over domains
is provided, allowing easy composition of domains. Second, it
enables the use of any appropriately annotated function as a binary
matrix that can be applied to a one-hot vector representation of
a value. This can be accomplished either via direct conversion of
a function to a corresponding binary matrix or via an operator
that performs the matrix operation iteratively (thus avoiding the
construction of the entire matrix in memory at any one time).

Adopting the design rationale articulated and demonstrated in
prior work on circuit synthesis [12], the EDSL presented in this

work is implemented as an open-source Python package.1 The li-
brary provides class definitions for domains, one-hot vectors, and
matrices. Its functionalities are achieved by relying on several fea-
tures of the Python programming language: higher-order functions,
inheritance, operator overloading, type annotations, and reflection.

• Each domain consists of one or more component dimensions
that must be of a known fixed size and must have a strict order.
Domains can be composed via a Cartesian product operator
that is implemented by overloading of the built-in * operator.
The square bracket notation for domain objects is overloaded
to allow access to individual values within the domain by their
index, while the domain object itself can be applied to a value
to obtain that value’s one-hot vector representation.

• One-hot vectors are implemented by default as integers (wherein
the integer represents the index of the sole nonzero entry in the
one-hot vector) to conserve memory. However, also being it-
erable, one-hot vector objects yield the entries of the one-hot
vector when iterated. This makes it possible to prepare one-hot
vectors for encryption (as presented in Figures 3 and 4). The
matrix multiplication operator for one-hot vectors is overloaded
to allow composition with encrypted matrix representations (as
presented in Figure 5).

• Binary matrix objects wrap their corresponding function objects
and can be applied to a one-hot vector instance (or any iterable
data structure of the appropriate length and supporting addition
and scalar multiplication operations) using the overloaded ma-
trix multiplication operator. This is implemented iteratively in
order to conserve memory, but an explicit representation of the
matrix can also be obtained. This makes it possible to prepare
matrices for encryption (as presented in Figure 5).

4. Example Applications
We illustrate some of the relevant features of the EDSL by consid-
ering a simple comparison function. A few examples demonstrate
how the EDSL can be used in conjunction with secure computation
protocol libraries (either to work with encrypted input and output
values or to work with an encrypted function).

4.1 Comparison Operation on a Small Domain of Integers
Figure 1 presents a definition of a comparison function that oper-
ates on inputs from the domain of pairs of 8-bit integers and re-
turns outputs within a user-defined enumerated domain consisting
of three string values.

import matricity

uint8 = matricity.domain(range(2 ** 8))
enum3 = matricity.domain([’less’, ’same’, ’more’])

def compare(x: uint8, y: uint8) -> enum3:
if x < y:

return ’less’
elif x > y:

return ’more’
else:

return ’same’

Figure 1. Simple comparison function for 8-bit integers.

1 The library is available at https://pypi.org/project/matricity/.

Figure 2 presents how the function can be converted into an
abstract binary matrix instance and how this matrix can be applied
to a one-hot vector representing a pair of inputs.

>>> import matricity
>>> d = uint8 * uint8
>>> v = d((11, 7)) # Input value as one-hot vector.
>>> m = matricity.matrix(compare) # Binary matrix.
>>> w = tuple(m @ v) # Matrix multiplication.
>>> w # Output as one-hot vector.
(0, 1, 0)
>>> enum3[w] # Corresponding output value.
’more’

Figure 2. Use of comparison function as a binary matrix.

4.2 Composition with Secure MPC and HE Libraries
Figure 3 presents how the definitions in Figures 1 and 2 can be
combined with a library2 that implements Shamir’s secret sharing
scheme [16]. Each entry in the input one-hot vector v is turned
into three secret shares (one for each of three parties). These are
grouped into three vectors (each containing the secret shares of
the one-hot vector entries intended for one of the three parties).
The matrix m is applied directly to each of these using the matrix
multiplication operator. The entries of the output one-hot vector can
then be reconstructed using the interpolation function provided by
the library for Shamir’s scheme and then converted into a value.

>>> import shamirs
>>> (v_a, v_b, v_c) = zip(*[

shamirs.shares(v_i, 3)
for v_i in v

]) # Input shares for parties ‘a‘, ‘b‘, and ‘c‘.
>>> (w_a, w_b, w_c) = (

m @ v_a,
m @ v_b,
m @ v_c

) # Output shares from parties ‘a‘, ‘b‘, and ‘c‘.
>>> w = tuple(

shamirs.interpolate(w_p)
for w_p in zip(w_a, w_b, w_c)

)
>>> w # Reconstructed output one-hot vector.
(0, 0, 1)
>>> enum3[w] # Corresponding output value.
’more’

Figure 3. Comparison example within Shamir’s scheme.

Similarly, Figure 4 presents how this secure computation can be
realized with a library3 that implements the Paillier cryptosystem
[15], applying the matrix m to an encrypted input vector v_e.

Finally, Figure 5 presents how the example can be modified such
that the function matrix m (rather than the input vector) is encrypted.
To make it possible to print a smaller matrix, the matrix construc-
tor is given input and output domain parameters that override the
annotations of the original function definition in Figure 1.

2 The library is available at https://pypi.org/project/shamirs/.
3 The library is available at https://pypi.org/project/pailliers/.

>>> import pailliers
>>> sk = pailliers.secret(2048)
>>> pk = pailliers.public(sk)
>>> v_e = [

pailliers.encrypt(pk, v_i)
for v_i in v

] # Encrypted input vector.
>>> w_e = m @ v_e # Encrypted output one-hot vector.
>>> w = tuple(

pailliers.decrypt(sk, w_i)
for w_i in w_e

)
>>> w # Decrypted output one-hot vector.
(0, 0, 1)
>>> enum3[w] # Corresponding output value.
’more’

Figure 4. Comparison example within the Paillier cryptosystem.

>>> uint2 = matricity.domain(range(2 ** 2))
>>> d = uint2 * uint2
>>> v = d((3, 2)) # Input value as one-hot vector.
>>> m = matricity.matrix(compare, d, enum3)
>>> for row in m:
... print(row)
[0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0]
>>> m_e = [

[pailliers.encrypt(pk, m_ij)) for m_ij in row]
for m_i in m

] # Encrypted matrix.
>>> w_e = m_e @ v # Encrypted output one-hot vector.
>>> w = tuple(

pailliers.decrypt(sk, w_i)
for w_i in w_e

)
>>> w # Decrypted output one-hot vector.
(0, 0, 1)
>>> enum3[w] # Corresponding output value.
’more’

Figure 5. Comparison example in which the function is encrypted.

5. Conclusions and Future Work
We have introduced a library that serves as an EDSL for leveraging
one-hot vector and binary matrix representations within secure
computation protocols. The library allows programmers to leverage
the full extent of host language features and to take advantage of
polymorphism to compose vector and matrix representations with
existing secure computation protocol libraries available for the host
language. In the future, the EDSL can be extended to make it easier
to predict and profile automatically the storage and computation
overheads associated with the one-hot vector representations of
values. The library can also be enhanced to support compression
techniques for vectors and matrices where they may be appropriate
(and compatible with secure computation protocols).

References
[1] A. Abidin, A. Aly, S. Cleemput, and M. A. Mustafa. An MPC-Based

Privacy-Preserving Protocol for a Local Electricity Trading Market. In
S. Foresti and G. Persiano, editors, Cryptology and Network Security,

pages 615–625, Cham, 2016. Springer International Publishing.
[2] J. Benaloh. Dense Probabilistic Encryption. In Se-

lected Areas of Cryptography, May 1994. URL https:
//www.microsoft.com/en-us/research/publication/
dense-probabilistic-encryption/.

[3] E. Boyle, N. Gilboa, and Y. Ishai. Function Secret Sharing. In E. Os-
wald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015, pages 337–367, Berlin, Heidelberg, 2015. Springer Berlin Hei-
delberg. ISBN 978-3-662-46803-6.

[4] E. Boyle, N. Gilboa, Y. Ishai, and V. I. Kolobov. Information-
Theoretic Distributed Point Functions. Cryptology ePrint Archive, Pa-
per 2023/028, 2023. URL https://eprint.iacr.org/2023/028.
https://eprint.iacr.org/2023/028.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully Ho-
momorphic Encryption without Bootstrapping. ACM Trans. Comput.
Theory, 6(3), July 2014. ISSN 1942-3454. doi: 10.1145/2633600.
URL https://doi.org/10.1145/2633600.

[6] R. Cramer, I. B. Damgård, and J. B. Nielsen. Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, 2015.

[7] M. Fowler and R. Parsons. Domain-Specific Languages. Addison-
Wesley, Upper Saddle River, NJ, 2011. ISBN 978-0321712943.

[8] O. Goldreich. Cryptography and cryptographic protocols. Dis-
tributed Comput., 16(2-3):177–199, 2003. URL https://doi.org/
10.1007/s00446-002-0077-1.

[9] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic. SoK:
General Purpose Compilers for Secure Multi-Party Computation. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1220–
1237, 2019. URL https://doi.org/10.1109/SP.2019.00028.

[10] A. Lapets. Implementing Arbitrary Maps over Small Finite Domains
using Ring Addition and Scalar Multiplication. Cryptology ePrint
Archive, Paper 2023/1695, 2023. URL https://eprint.iacr.
org/2023/1695.

[11] A. Lapets, F. Jansen, K. D. Albab, R. Issa, L. Qin, M. Varia, and
A. Bestavros. Accessible Privacy-Preserving Web-Based Data Anal-
ysis for Assessing and Addressing Economic Inequalities. In Pro-
ceedings of ACM COMPASS 2018: First Conference on Computing
and Sustainable Societies, San Jose, CA, USA, June 2018. URL
https://doi.org/10.1145/3209811.3212701.

[12] A. Lapets, W. Howe, B. Getchell, and F. Jansen. An Embedded
Domain-Specific Language for Logical Circuit Descriptions with Ap-
plications to Garbled Circuits. Cryptology ePrint Archive, Report
2020/1604, December 2020. URL https://eprint.iacr.org/
2020/1604.

[13] J. Launchbury, I. S. Diatchki, T. DuBuisson, and A. Adams-Moran.
Efficient Lookup-Table Protocol in Secure Multiparty Computa-
tion. SIGPLAN Not., 47(9):189–200, September 2012. ISSN 0362-
1340. doi: 10.1145/2398856.2364556. URL https://doi.org/10.
1145/2398856.2364556.

[14] C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. P. Fitzek, and
N. Aaraj. Survey on Fully Homomorphic Encryption, Theory, and
Applications. Proceedings of the IEEE, 110(10):1572–1609, 2022.
doi: 10.1109/JPROC.2022.3205665.

[15] P. Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In J. Stern, editor, Advances in Cryptology —
EUROCRYPT ’99, pages 223–238, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[16] A. Shamir. How to Share a Secret. Communications of the
ACM, 22(11):612–613, November 1979. ISSN 0001-0782. doi: 10.
1145/359168.359176. URL https://doi.org/10.1145/359168.
359176.

[17] S. Wagh. Pika: Secure Computation using Function Secret Sharing
over Rings. Proceedings on Privacy Enhancing Technologies, 2022:
351–377, 10 2022. doi: 10.56553/popets-2022-0113.

[18] A. C. Yao. How to generate and exchange secrets. In 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), pages
162–167, 1986. URL https://doi.org/10.1109/SFCS.1986.
25.

