Application-Aware Approximate Homomorphic Encryption:
Configuring FHE for Practical Use

Andreea Alexandru', Ahmad Al Badawi'!, Daniele Micciancio'?, and Yuriy Polyakov!

Duality Technologies
ZUniversity of California, San Diego

Abstract

Fully Homomorphic Encryption (FHE) is a powerful tool for
performing computations on encrypted data. The Cheon-Kim-
Kim-Song (CKKS) scheme, an instantiation of approximate
FHE, is particularly effective for privacy-preserving machine
learning applications over real and complex numbers. Al-
though CKKS offers clear efficiency advantages, confusion
persists around accurately describing applications in FHE
libraries and securely instantiating the scheme for these ap-
plications, particularly after the key recovery attacks by Li
and Micciancio (EUROCRYPT’21) for the IND-CPAP setting.
There is presently a gap between the application-agnostic,
generic definition of IND-CPAP, and efficient, application-
specific instantiation of CKKS in software libraries, which
led to recent attacks by Guo et al. (USENIX Security’24).

To close this gap, we introduce the notion of application-
aware homomorphic encryption (AAHE) and devise related
security definitions. This model corresponds more closely
to how FHE schemes are implemented and used in practice,
while also identifying and addressing the potential vulnera-
bilities in popular libraries. We then provide an application
specification language (ASL) and formulate guidelines for im-
plementing the AAHE model to achieve IND-CPAP security
for practical applications of CKKS. We present a proof-of-
concept implementation of the ASL in the OpenFHE library
showing how the attacks by Guo et al. can be countered. More-
over, we show that our new model and ASL can be used for
the secure and efficient instantiation of exact FHE schemes
and to counter the recent IND-CPAP attacks by Cheon et al.
(CCS’24) and Checri et al. (CRYPTO’24).

1 Introduction

Homomorphic encryption is a cryptographic primitive that
enables the evaluation of certain computations over encrypted
inputs, without intermediate decryptions. Its most powerful
form, Fully Homomorphic Encryption (FHE), allows the eval-
uation of arbitrary arithmetic or boolean circuits, and has con-

siderably advanced since Gentry’s breakthrough in 2009 [23].

Today, there are several families of efficient FHE schemes,
which can be divided according to whether the result of
the encrypted computations is exact or approximate. In the
exact FHE family, we have schemes which achieve a neg-
ligible correctness error when homomorphically evaluat-
ing arithmetic circuits over finite fields: Brakerski-Gentry-
Vaikuntanathan (BGV) [8] and Brakerski/Fan-Vercauteren
(BFV) [7,20], or when homomorphically performing bit-
wise/small plaintext-space operations: Ducas-Micciancio
(DM/FHEW) [18], Chillotti-Gama-Georgieva-Izabachene
(CGGV/ TFHE) [13], Lee-Micciancio-Kim-Choi-Deryabin-
Eom-Yoo (LMKCDEY) [37]. The approximate FHE family
allows for small errors to corrupt the least significant bits of
the message.' The Cheon-Kim-Kim-Song (CKKS) [12] can
be seen as an FHE scheme over fixed-point numbers, which
enables significantly more efficient computations than exact
FHE schemes over real-valued data in privacy-preserving
large-scale applications.

However, the efficiency of the CKKS scheme comes at a
cost. First, correct decryption now must be replaced by a more
involved notion of approximate correctness which requires
the scheme parameters to be set so that the decrypted output is
not “too far” from the expected cleartext output. Second, the
error corrupting the decrypted output can be used in certain
passive attacks to recover the secret key.

IND-CPAP Security. The security model for FHE schemes is
passive, i.e., FHE schemes are proven secure against Chosen
Plaintext Attacks (CPA), where all ciphertexts are properly
computed (using the scheme’s algorithms) and the adversary
cannot submit arbitrary (maliciously chosen) ciphertexts to
decryption oracles. It is folklore that no FHE scheme can

'In this sense, an approximate encryption scheme does not satisfy the stan-
dard correctness property as it may never produce exact decryptions. So, its
correctness error is usually not negligible. On the other hand, “exact” schemes
with high correctness error probability are not good approximate schemes
because, when wrong, they may produce results that are very far from the
correct one. Neither approximate nor exact schemes with non-negligible
correctness error should be considered secure encryption schemes according
to the standard definition, which implicitly assumes exact correctness.

achieve IND-CCA2 security (arbitrary decryption oracle ac-
cess), and only FHE schemes that do not rely on circular secu-
rity assumptions can achieve IND-CCAT1 security (decryption
oracle access only available before the challenge). Thus, FHE
schemes are not resilient to active attacks without additional
security measures, e.g., zero-knowledge proofs.

However, there are vulnerabilities arising from incomplete
passive security definitions. In particular, IND-CPA-security
(access only to an encryption oracle) is too weak for approx-
imate FHE schemes. Li and Micciancio [38] devised a key
recovery attack on the CKKS scheme when the plaintext
output of the computation is revealed to the adversary, i.e.,
when giving the adversary a very weak decryption oracle.
The Li-Micciancio attack runs in expected polynomial time
and exploits the fact that only from the input plaintext, output
ciphertext and output plaintext, an adversary can retrieve the
ciphertext error and use it to compute the secret key. To better
capture the passive security of approximate FHE schemes,
the authors introduced a new definition, IND-CPAP, which
additionally gives the adversary access to an evaluation oracle
and limited access to a decryption oracle for outputs of the
evaluation oracle.

To counter this attack, Li et al. [39] showed how to post-
process the raw decryption output of the CKKS scheme to
achieve IND-CPAP security, by adding Gaussian noise (or
flooding noise), whose magnitude depends on the worst-case’
error growth of the homomorphic computation.

Most of the FHE libraries that implement CKKS added mit-
igations to the Li-Micciancio attack. For instance, Microsoft
SEAL [48] included a disclaimer advising against sharing
the decrypted CKKS ciphertexts. OpenFHE [45], HEIlib [29],
and HEAAN [28] implemented the Gaussian flooding tech-
nique, whereas Lattigo [36] implemented a rounding proce-
dure (equivalent to noise flooding). Two primary strategies
are employed to estimate the Gaussian noise used for flood-
ing: static noise estimation and dynamic noise estimation [39].
Of interest to this paper is static noise estimation, which can
be performed offline and computes the flooding noise dis-
tribution parameter based on publicly known bounds on the
inputs and the function to be evaluated. Doing this using the-
oretical worst-case bounds can overestimate the actual noise
by a large margin, and negatively impacts performance. So,
in practice, it is common to use a more pragmatic approach,
such as selecting a representative input from the set of al-
lowed inputs, executing the computation, and observing the
resulting noise bound, or by using heuristic noise estimation
expressions [15, 16,44]. This approach is supported by the
OpenFHE [45], HEIib [29], Lattigo [36] and HEAAN [28]
(under restricted conditions) libraries. All libraries allow so-
phisticated users to further enhance these protective measures
by estimating desired output precision and establishing tighter

2Here, “worst-case” is over the choices of the input and computation to
be performed. Error growth can still be analyzed on the average with respect
to the (honest) encryption randomness.

bounds for the flooding noise.

Attacks by Guo et al. Recently, Guo et al. [25] claimed
that any non-worst-case countermeasure added as part of the
CKKS decryption is still vulnerable to the Li-Micciancio key
recovery attack. In [25], “worst-case” refers not only to the
input choice, but also to encryption randomness. The authors
focus on the OpenFHE library and illustrate two attacks.

In their first attack, the circuit corresponding to the addi-
tion of n independent inputs is used to estimate the noise for
decryption. However, in the computation phase, the attacker
provides the addition circuit of n copies of the same input. In-
deed, the error obtained by adding » independent encryptions
differs from the noise incurred by adding the same encryp-
tion n times, and the latter is significantly larger, leading to a
key recovery attack. Notwithstanding, from a circuit perspec-
tive, although the circuits C(xy,...,x,) = x; + ...+ x, and
C'(x1,...,%;) = x1 +...+x1 have the same worst-case error
estimate and the same output when the inputs to the first cir-
cuit are all equal to x1, they are still two different circuits. In
their second attack, the authors of [25] specify a circuit with n
inputs in the noise estimation phase, and a circuit with n’ >> n
inputs in the evaluation phase. In both cases, different circuits
are expected to produce different errors, and existing FHE
libraries seem to design the noise added in the decryption
phase to be valid for the same circuit.

Clearly, there are deficiencies in the existing FHE libraries’
description of the supported application specifications for
which security is guaranteed during evaluation. For instance,
the allowed circuit description in the OpenFHE library is not
sufficiently granular, as demonstrated by recent attacks, i.e.,
rather than the concrete circuit description, OpenFHE allows
taking as input the maximum number of operations on a given
level. However, there is also a misunderstanding around the
idea of worst-case noise estimation and IND-CPAP-security.
Generic IND-CPAP-security requires that noise estimation be
performed over all circuits which satisfy the desired level
of correctness, and use the obtained maximum bound in the
decryption mechanism. Therefore, even using the worst-case
estimates for the circuit C as suggested in [25] would not
necessarily ensure generic IND-CPAP-security, as there might
be other circuits for which this noise is not sufficient. This
signals a second shortcoming in the literature, which resulted
in the attacks from [25]. In this work, we address both issues.

A broader perspective. These attacks can also be interpreted
as specifying a certain set of encryption parameters, com-
puted to achieve correctness for a given circuit, but then using
those parameters to evaluate a distinct circuit. Note that such
attacks are not specific to approximate FHE. We discuss a
folklore attack [3] on the family of exact FHE schemes, which
succeeds against any kind of noise estimation technique. In
the case of Learning with Errors (LWE)-based exact FHE,
evaluating a different circuit than the one for which the en-
cryption parameters were computed can lead to an overflow

in the ciphertext error, corrupting the underlying plaintext.
Such decryption failures can be used to mount a key recovery
attack [17,41]. Moreover, concurrent works [10, 11] propose
key recovery attacks similar to [25] that take advantage of
incorrect decryption results in exact FHE schemes. Hence, a
more refined definition for exact FHE schemes (exact in the
given application class and inexact outside), which accounts
for an allowed class of circuits, is also of practical interest.

A different, stronger notion for FHE security is function
privacy, which also hides the computation performed over
the encrypted inputs; in other words, all honestly produced
ciphertexts should have the same distribution. Achieving func-
tion privacy for the popular FHE schemes requires expensive
procedures such as superpolynomial noise flooding or boot-
strapping [6, 19,22, 33, 34]. The IND-CPAP definition does
not include function privacy but can be extended to do so.
Satisfying function privacy would address the key recovery
attack outlined above, but the cost would be substantial.

On a separate note, the Li-Micciancio attack and the noise
flooding mitigation are also known to be applicable in the
threshold encryption setting for all FHE schemes, where dis-
tributed decryption is achieved by parties publishing a partial
decryption using their secret key shares [2,34].

Related work. We remark that the need to restrict the evalua-
tion function of an (approximate) FHE scheme to functions
over which the scheme is (approximately) correct is some-
what implicit in previous work. For example, this assumption
is underlying in [38, Lemma 1] when proving the equivalence
between IND-CPA and IND-CPAP for FHE schemes with ex-
act decryption. This was already observed in [35, Theorem
6.5], where [38, Lemma 1] is rephrased using a circuit class
to make this assumption explicit. This is related to our notion
of application-aware security, but there are important differ-
ences: in [35], the circuit class is a global parameter of the
FHE scheme, and it is not part of the syntax of the key gener-
ation algorithm. On the other hand, in our application-aware
security model, the user provides a set of functions (as part of
the application specification) as an extra input to the key gen-
eration algorithm, which will use it to fine-tune the parameter
generation. Moreover, [35] defines the circuit class as a set
of functions mapping ciphertexts to ciphertexts. While func-
tions between ciphertexts are required for noise estimation,
it is problematic to include this in the definitions (see Ap-
pendix D for a detailed discussion). In our work, we address
the same concerns in an abstract and more satisfactory way by
explicitly using an Application Specification Language (ASL),
which easily maps to (well-defined) functions on messages,
but may include additional information, such as directives to
the evaluation function on where to apply bootstrapping.
Finally, recent and concurrent works focusing on defini-
tions towards active security for FHE such as [1, 9,40, 49]
are orthogonal to our work, but also take into consideration
some concept of application specification. For instance, the
FuncCPA definition [1] is in a similar vein as our application-

aware model, but with the crucial difference that the adversary
submits a vector of potentially maliciously crafted ciphertexts
(instead of plaintexts) and a function to an oracle, which re-
turns an encryption of the function applied on the decryptions
of the submitted ciphertexts. Achieving this kind of mali-
cious security requires a notion of circuit privacy and a strong
sanitization procedure. The definition of maliciously secure
verifiable FHE from [49] also specifies a function at key gen-
eration time. Moreover, works such as [40] assume schemes
to be correct in the same way that we do, explicitly prohibiting
attacks such as [10].

1.1 Our Contribution

There is a major gap between the generic IND-CPAP defini-
tion and the use of approximate FHE in practice. To achieve
compliance with the generic definition, impractically large
parameters would need to be used. The practical implementa-
tions of approximate FHE in common FHE libraries typically
work with more efficient parameter sets and implicitly assume
that these parameters can be used only for specific applica-
tions. However, no or insufficient validators are implemented
in FHE libraries to ensure the above. This led to misinterpre-
tation of the proper usage of FHE libraries, and resulted in
attacks like [10, 11,25].

Our work closes this gap by introducing the notion of
Application-Aware Homomorphic Encryption, related defini-
tions, and guidelines for the practical use of IND-CPAP-secure
FHE, including an application specification language. We
summarize our contributions in the following.

First, we present the notion of application-aware homomor-
phic encryption schemes and devise related security defini-
tions, which correspond more closely to how homomorphic
encryption schemes are implemented and used in practice.
Application-aware FHE adds a description of an application
specification to be supported to the correctness and security
of the scheme. Our definition is motivated by leveled FHE but
we also show how it extends to scenarios with bootstrapping.
Furthermore, the application-aware model can be used with
both worst-case and average-case noise estimation.

Second, we formulate guidelines for implementing the
application-aware FHE model in practice and, to this end,
we introduce an application specification language. We dis-
cuss how this model can be supported by FHE libraries, e.g.,
by checking the compliance of a given computation with the
application specification. We highlight that libraries by them-
selves cannot prevent all possible misuses, but can provide
helper capabilities to minimize the risks of unsafe use.

Third, we provide a proof-of-concept implementation of
an example ASL in OpenFHE showing how the attacks by
Guo et al. [25] can be countered. Moreover, our application-
aware definitions and ASL provide a useful tool to under-
stand the correct way to use FHE libraries and detect misuses.
We also demonstrate that our application-aware definitions

are applicable to both approximate and exact homomorphic
encryption schemes, and we include a proof-of-concept im-
plementation for ASL-based BFV in OpenFHE. In the exact
case, the goal is to forbid the output of incorrect decryption
results, as the latter can be used to mount secret key recovery
attacks [10, 11]. Using ASL, the attacks in [10, 11] can be
prevented by correctly describing the intended circuits and
generating the appropriate noise parameters.

1.2 Organization

We describe the foundational concepts in Section 2. Section 3
introduces our new application-aware security model and de-
fines its properties. We describe an application specification
language in Section 4 and propose practical guidelines for
implementing the application-aware model in Section 5. Sec-
tion 6 examines the recent secret-key recovery attacks for
both approximate and exact FHE schemes based on our new
model. We summarize our contributions in Section 7 and out-
line future research topics. Further theoretical results on our
model and attack descriptions are provided in the Appendix.

2 Preliminaries

We denote scalars as lowercase letters and vectors as low-
ercase boldface letters. We use x <— X for general sampling
from a distribution X.

2.1 Measuring Security

Following [39], we measure the security of cryptographic
primitives using the bit-security framework of [43] and its
extension [39,42] to computational/statistical bit-security.
Cryptographic primitives are usually parametrized by a
main security parameter K, which can be either a discrete se-
curity level (e.g., Level 1-5 security) or a positive integer (in
the asymptotic setting). The number of bits of computational
¢(x) or statistical security s(k) offered by a cryptographic
primitive is a function of the main security parameter K. The
difference between c and s is that computational properties are
based on the assumption that some computational problem is
hard to solve, while statistical properties hold unconditionally.
To take into account possible algorithmic improvements in
solving the underlying problem (and the ability to improve
an attack’s success probability by investing computational
effort) it is common practice to use higher values for ¢ than
for s. For primitives that use both computational assumptions
and statistical security techniques, the concrete security level
is specified by the pair of numbers (¢, s). If a (purely compu-
tational) cryptographic primitive achieves c-bits of compu-
tational security, then it is (c,s)-secure for any s. Similarly,
s-bits of statistical security imply (c,s)-security for any c.
When we say that an adversary has negligible advan-
tage in breaking a primitive, we mean that the primitive

achieves (c,s) security, for appropriately large values of c,s,
e.g., (c,s) = (128,64). In the asymptotic security setting this
should be interpreted as achieving (c(k),s(k))-security, for
appropriate functions c¢(x), s(k) = 0(logx) at least superlog-
arithmic, and most typically linear in ¥, e.g., ¢(k) = k and
s(x) = x/2. In particular, any attack should have either run-
ning time exponentially large in K, or success probability
exponentially small in K (or a combination of the two.)

Within the context of computational/statistical security, the
distinction between correctness and security properties (and
acceptable error levels) is somehow artificial, because (as
demonstrated by recent attacks [10, 11,25]) failure of correct-
ness can have a major impact on security. Thus, correctness
should be regarded as an integral part of a cryptographic defi-
nition, alongside with other security properties. More substan-
tial is the difference between computational and statistical
properties, which associate different concrete interpretations
to the term negligible. Correctness usually holds uncondition-
ally, and it is therefore a statistical property. In particular, it is
enough for correctness to achieve s-bits of security for some
s < c. On the other hand, computational security properties
require c-bits. In both cases, we can say that the properties
achieves (c, s)-bits of computational/statistical security.

In choosing the security level (c,s) of an application, one
should remember that even in a statistical setting, the adver-
sary can increase its success probability by repeating the
attack. However, this typically involves interaction with the
user (by issuing many encryption challenge queries), and can
be controlled by the application (e.g., by placing a bound on
the number of encryptions before requiring a rekeying). This
should not be confused with computational security, where
the adversary can increase it success probability by investing
computational resources locally, without further interaction
with the user. Still, for applications making a large number of
oracle calls, one should scale both security parameters (¢, s)
appropriately. We refer the reader to [39,42] for more details.

2.2 Correctness properties

We introduce general notations and definitions for security and
correctness properties of encryption schemes. There are two
types of properties, described by either a decision game (e.g.,
indistinguishability of ciphertexts) or a search game (e.g.,
security against key recovery attacks), defined in Appendix A.
We will use search games to model correctness properties, in
which case we say that a scheme is G-correct for a game G.

We first describe (homomorphic) encryption syntax, using
the notation from [38, 39]. For ease of exposition, we do not
distinguish between the notation of public encryption keys
and public evaluation keys, and denote all by pk.

Definition 1 (PK-FHE scheme). A public-key homomorphic
encryption scheme with plaintext space M, ciphertext space
C, public key space PXK, secret-key space SK, and space

of evaluatable circuits L, is a tuple of four probabilistic
polynomial-time algorithms

Enc: PKx M — C,
Eval: PKx LxC— C.

KeyGen: 1N — PK x 5K,
Dec:SKXC— M,

To illustrate some issues related to the probabilistic defi-
nition of correctness for (homomorphic) encryption, we first
describe a very strong notion of perfect correctness. For
any positive integer k, we write £ for the set of all circuits
C(x1,...,x¢) € L that take precisely k inputs.

Definition 2 (Perfect Correctness). An FHE scheme E =
(KeyGen, Enc, Dec, Eval) with message space M is perfectly
correct for some class of circuits L if for all xy,...,x, € M,
C € Ly and security parameter K,

Decsk(Evaka(C, Encpk(xl), ceey Encpk(xk))) = C(x1 goee ,xk)

with probability 1 over the choice of (pk, sk) < KeyGen(1¥)
and the randomness of Enc and Eval.

Requiring correctness to hold with probability 1 may seem
unrealistically strong, as a negligible failure probability is
usually acceptable. However, simply relaxing the above cor-
rectness property to hold except with negligible probability is
usually too weak to capture a meaningful notion of correct-
ness.” In order to capture the adaptive selection of the input
messages x; and circuit C, correctness properties need to be
formulated as security games.

Definition 3 (Exact FHE Correctness). The correctness of
an FHE scheme ‘E = (KeyGen, Enc, Dec, Eval) with message
space M and class of circuits L is defined by the following
search game:

Expro@t% [4](x) : (sk, pk) < KeyGen(1¥)
(X1, ,Xn) < A(1%, pk)
cti < Encpx(xi) fori=1,...,n
C <+ A(cty,...,cty)
ct <+ Evalp(C,cty,...,cty)
if Decgk(ct) # C(x1,...,xn)
then return 1 else return 0.

The above definition illustrates some adaptive choices, but
for simplicity we have considered an adversary that chooses
the messages x1, . .., x, non-adaptively from each other. (They
may still depend on the public key.) More generally, one
may let 4 choose the messages x; sequentially, one at a time,
after seeing the encryption of the previous messages, perform
multiple evaluation queries, etc. We provide the adaptive
definitions in full generality in Appendix B.

et Encpk (x) be a pathological encryption scheme that, if the input
message equals the public key, it outputs garbage. This satisfies the definition,
because for any message m, the probability that any specific public key
pk = m is chosen is negligible. Still, the scheme is not correct if messages
may depend on pk or if the circuit C may depend on pk or input ciphertexts.

Remark 1. Since the definition for search games allows for
nonzero (but negligible) advantage, the definition of correct-
ness for exact FHE schemes also allows for some small prob-
ability that ciphertexts do not decrypt correctly. However, just
like any game based property, this failure probability is re-
quired to be negligible. If an FHE scheme has a non-negligible
correctness error, then it does not satisfy Definition 3, and it
is not considered a correct exact FHE scheme.

In the case of an approximate FHE scheme, it is (almost)
never the case that the correctness property is satisfied, so
any adversary will typically achieve advantage close to 1
in the search game of Definition 3. Capturing approximate
FHE schemes requires a different correctness definition, with
respect to an error estimation function Estimate. While there
are multiple approximate correctness definitions (see [39]),
here we focus on the static approximate correctness, where
Estimate can be computed as a function of the circuit C alone.

Definition 4 (Static Approximate Correctness). Let ‘E =
(KeyGen, Enc, Dec,Eval) be an FHE scheme with normed
message space M. Let L be a space of circuits, and let
Estimate : L — Ry be an efficiently computable function.
The tuple E = (E, Estimate) satisfies static approximate cor-
rectness if it is correct for the following search game:

Expra™o<E[7] (x) : (sk, pk) ¢ KeyGen(1)
(X105 %) < A(1%, pk)
cti <~ Encpx(xi) fori=1,...,n
C+ A(cty,...,cty)
ct<+ Evalp(C,cty, ... cty)
x < Decg(ct)
if ||x—C(x1,...,x,)|| > Estimate(C)

then return 1 else return 0.

In practice, the error estimation function Estimate is de-
fined in a modular way, starting from the error estimate of
the input ciphertexts ct; (which are fresh encryptions of the
messages X;), and proceeding gate by gate, computing an error
estimate for each wire of the circuit C. The Estimate func-
tion can be used to compute either a provable worst-case
bound on the error or a possibly heuristic average-case bound.
In either case, the adversary advantage in the (approximate)
correctness game is always assumed to be negligible.

2.3 Generic Security Definitions

The standard definition of secure encryption (not only homo-
morphic) against passive adversaries is indistinguishability
against chosen plaintext attacks.

Definition 5 (IND-CPA Security). Let £ = (KeyGen, Enc,
Dec, Eval) be a homomorphic encryption scheme. IND-CPA

security is defined by the following decision game:

Expr,”[4](1%) : (sk, pk) < KeyGen(1¥)
(x0,x1) < A(1%, pk)
Ct+ Encpk(x;,)
b+ A(ct)
return(b’).

The above experiment defines a corresponding notion of se-
curity. For a scheme to be secure, efficient adversaries should
only achieve negligible advantage.

An enhanced definition, called IND-CPAP with decryption
oracles, was proposed in [38] to properly model the security
of approximate homomorphic encryption schemes. We re-
mark that the decryption oracle introduced by the IND-CPAP
definition impacts the adversary’s advantage in the statistical
parameter. Here, we describe the non-adaptive version of the
definition, corresponding to the common application scenario
where a dataset (xj,...,x,) is encrypted at the outset, then
a homomorphic computation is performed on it, and finally
the result of the homomorphic computation is decrypted. As
common in homomorphic encryption schemes, we assume all
messages belong to a fixed message space M —all messages
have (or can be padded to) the same length.

Definition 6 (IND-CPAP Security). Let E = (KeyGen, Enc,
Dec, Eval) be a public-key homomorphic (possibly approxi-
mate) encryption scheme with plaintext space M and cipher-
text space C. IND-CPAP security is defined by the following
decision game:

ExpriP[4](1%) : (sk, pk) + KeyGen(1¥)
(x0,x1,C) + A(1*, pk)
if Xo,x1 & M" or C ¢ L then abort
if C(x0) # C(x1) then abort
ot Encp(xp)
cf « Evalp(C,ct)
y < Decg(ct)
b« A(et.ct,y)
return(b’).

3 Application-Aware Security Models

Ideally, the key generation procedure of a (fully) homomor-
phic encryption scheme would take as input a required se-
curity level, and produce a key that allows to perform arbi-
trary computations on ciphertexts. However, the only known
method to achieve FHE (i.e., the ability to perform arbi-
trary computations using a fixed key) requires the use of
a costly bootstrapping procedure. So, many schemes settle for
the weaker notion of “somewhat homomorphic” encryption,

where the user provides some information about the compu-
tation to be performed at key generation time, and obtains a
key that supports that type of computations.

Computations (specified by circuits) are often parameter-
ized by a “depth” d, and the corresponding keys can be used
to evaluate any depth-d arithmetic circuit C. Since d can be
set to any value, this allows to perform arbitrary computations,
but needs to be specified at key generation time. The circuit
depth and the type of computation can have a big impact on
the key generation parameters and efficiency of the scheme.
For example, it is often useful to distinguish between the addi-
tion and multiplication operations, as the multiplicative depth
of the computation has a much bigger impact on efficiency
than the additive depth, but both need to be accounted for.

In practice, in most applications, the circuit C to be evalu-
ated is known in advance, and only the input data x is provided
at run-time. For approximate schemes (and some exact ones,
like the GSW cryptosystem [24] and its Ring LWE adapta-
tion [18]), the size of the input messages can also have an
impact on the correctness/security properties. To capture this,
the application may specify a set M C M* of possible inputs
to the computation C : M* — M. This allows even better
fine-tuning of the key generation parameters, producing an
evaluation key ek that supports the computation of interest
C(x) on the type of inputs x € M that can occur in prac-
tice. Since FHE algorithms are naturally parameterized by
the (multiplicative) depth of the computation, and can encrypt
arbitrary messages in M, ek is syntactically similar to any
key that supports the evaluation of arbitrary circuits of the
same depth as C on any input x € M*. However, it is impor-
tant to note that using ek to evaluate such circuits and input
data does not provide any correctness or security guarantees.
Unfortunately, theoretical definitions of homomorphic encryp-
tion do not explicitly model restrictions on the computation
(beyond specifying the circuit depth), and this has led to some
confusion and misuse of homomorphic encryption libraries.

In order to clarify the situation, we introduce the notion
of application-aware homomorphic encryption scheme and
associated security notions which correspond to how homo-
morphic encryption schemes should be implemented and used
in practice. Our definitions apply both to exact and approxi-
mate homomorphic schemes. We focus here on the simplest
yet general type of computations, where the input data is pro-
vided at the beginning of the computation, the circuit to be
evaluated on it is chosen non-adaptively, and a single value is
provided as the final output of the computation. We include
the adaptive definitions in Appendix B.

Definition 7. Let M and L be the message space and func-
tion space of a homomorphic encryption scheme. A compu-
tation C is described by a circuit C: M* — M, and a subset
of its inputs dom(C) C M*. The computation C represents
the restriction of a circuit C € L to the domain dom(C). We
write L for the set of computations, i.e., circuits C with re-
stricted domain dom(C). An application App C L is a set of

computations that admits a compact description.

We define an application App” to be a subset of L to cap-
ture scenarios where the user wants to generate a single set
of parameters that supports one of several possible compu-
tations C € App, e.g., when the specific C that needs to be
evaluated is not known at key generation time, or when the
same keys are used to perform multiple, different computa-
tions. However, a common setting in practice is when there
is a single computation C to be performed (possibly multiple
times, but on different inputs x € dom(C)). Then, App = {C}
is a singleton set, and can describe the application with a sin-
gle circuit C and associated domain dom(C). We now define
an application-aware homomorphic encryption scheme.

Definition 8. An application-aware public-key homomor-
phic encryption scheme for application App C L is a tu-
ple of four probabilistic polynomial-time algorithms E =
(KeyGen, Enc, Dec, Eval) as in Definition 1 with the only dif-
ference that the key generation algorithm takes an application
specification App C L as an additional parameter:

KeyGen: 1N x 22 — PK x SK.

The intuition is that KeyGen(x, App) will produce keys that
can be used to encrypt data in dom(C), and then evaluate C
homomorphically, only for C € App. In the common scenario
where App = {C} consists of a single computation which is
known at key generation time, one can think of KeyGen(k,C)
as taking as input just C € L rather than a subset of L.

Naturally, the correctness and security definitions should be
modified accordingly. In the case of approximate homomor-
phic encryption, the estimation function Estimate(C) takes
as input not only a circuit C, but also a specification of the
application input domain dom(C). We provide a unified defini-
tion that applies both to exact and approximate homomorphic

encryption schemes.”

Definition 9 (Static Approximate Correctness). Let ‘E =
(KeyGen, Enc, Dec, Eval) be an (approximate) FHE scheme
with (normed) message space M and application space from
L, and let Estimate : 2- — R be an efficiently computable
Sfunction. We say that the tuple = (E, Estimate) satisfies
application-aware static approximate correctness if it is cor-
rect for the following search game:

ExprePP* (2] (x) : App A(x)
(sk, pk) < KeyGen(x, App)
X < A(pk)

“#A class of applications App may be specified by a pair of numbers (d, 1)
to represent the set of all computations C where C: M* — M is an arithmetic
circuit of depth at most d, and dom(C) is the set of all inputs x € M* so
[|x;|| < p for all i. A more complete description is provided in Section 4.

SExact schemes correspond to setting Estimate(C) = 0, i.e., no approxi-
mation is allowed in the final result of the computation.

cti < Encpx(x;) fori=1,...,n

C <+ A(cty,...,ct,)

if C ¢ App or x ¢ dom(C) then abort
cf < Evaly(C,ct)

y < Decg(ct)

if ||y —C(x)|| > Estimate(C)

then return 1 else return 0.

Definition 10 (Application-aware IND-CPAP Security). Let
E = (KeyGen, Enc,Dec,Eval) be an (approximate) FHE
scheme with (normed) message space M and application
space from L. Application-aware IND-CPAP security is de-
fined by the following decision game:

ExprZpad [4](x) : App + A(x)
(sk, pk) < KeyGen(x, App)
(x0,x1,C) + A(pk)
ct < Encp(xp)
C« A(ct)
if C ¢ App or xo,x; ¢ dom(C) then abort
if C(x0) # C(x1) then abort
cf + Evaly(C,ct)
y < Decg(ct)
b« Aa(ct,y)
return(b’).

The exact FHE correctness and IND-CPA-security defini-
tions (Definitions 3 and 5) can be also trivially extended to
the application-aware model.

Bootstrapping. So far, the bootstrapping procedure of an
FHE scheme, which resets the noise of a ciphertext, was im-
plicitly treated as a computation of a certain depth using an
evaluation key. Here we detail how to represent bootstrapping
in the application-aware model.

FHE schemes are used in three main ways (we prefer an
itemized description for clarity): (i) pure leveled computa-
tions, (ii) leveled computations and bootstrapping, and (iii)
bootstrapping after each gate. For (i), typically used for BGV,
BFV and CKKS (and the main focus of our paper), the lev-
eled computations desired to be evaluated should represent
the application in the KeyGen algorithm, as described so far.
For (iii), chiefly used for DM, CGGI and LMKCDEY, the ap-
plication should be specified as gates with the bootstrapping
procedure (and the number of gates). Informally, because
bootstrapping is performed after each gate—leading to full
composability—the circuit becomes a function of the secret
key rather than a function of the user inputs, thus only the
number of gates (rather than their type) needs to be specified.
The case of (ii) is a combination between (i) and (iii), where
the application should be specified as the computation(s) to

be performed before bootstrapping, the bootstrapping pro-
cedure, and the number of bootstrapping operations to be
performed. Ideally, the specification of the bootstrapping pro-
cedure (along with an associated probability of failure) should
be done by the library. We will revisit this in Section 5.

Finally, it is crucial to note that performing computations
that are not in App may result not only in incorrect results, but
also in security loss, including a total key recovery attack. An
adversary (to the correctness/security properties) that speci-
fies a certain App during key generation, and then carries out
a computation C(x) for C ¢ App or x ¢ dom(C) during the
attack is not a valid adversary to the application-aware FHE.
Showing that an encryption scheme can be broken using an
invalid adversary does not show that the scheme is insecure,
since no security (or even correctness) claim is made about
invalid adversaries. Rather, it should be considered as a warn-
ing against misusing the encryption scheme to carry out a
homomorphic computation that it was not designed to handle.

In Appendix C, we show that the IND-CPA and IND-CPAP
security in the application-aware model hold as expected
against valid adversaries.

4 Application Specification Languages

Since the interface of an application-aware FHE scheme re-
quires the user to provide the KeyGen algorithm with an ap-
plication specification, any library supporting the application-
aware model requires a formal, well-specified mechanism to
describe applications. In other words, we need an application
specification language (ASL) which can be used to describe
the application, readily maps to the operations supported by
FHE schemes and can be easily parsed by the library to deter-
mine the scheme parameters.

In this section we describe an example language that can
be used to describe simple, but representative applications,
such as of the type used in the recent attacks described in
Section 6. We demonstrate the feasibility of the approach by
implementing the language in the OpenFHE library.

As in previous subsections, we consider applications App =
{C} consisting of a single function. In our sample ASL, a
function operates on values which can be integers in the
case of exact schemes and reals in approximate schemes (the
effective precision will be determined by the scaling factor pa-
rameter), and is described simply by a sequence of operations
[1:0p1,2:0p2,...,n:0py], each preceded by the correspond-
ing line number, and possibly taking one or more parameters.
Each operation can be one of the following:

e {:input ay by. This instruction represents an input to the
function, consisting of a value xy in the range [ay, by] of
the appropriate data type. The parameters can be any two
values in the message space of the encryption scheme,
with ay < by. The number k of input instructions in a
program represents the number of inputs to the function

C. We may assume without loss of generality that all the
input instructions occur at the beginning of the program,
i.e., they use line numbers £ = 1,... k.

e ¢:add iy jy. Add up the values computed by the instruc-
tions at lines iy and jy. Here iy, j, < £ are two positive
integers representing line numbers, and are required to
be smaller than the current line ¢. It is possible to use the
same index iy = jy to double a value.

e ¢:mul iy j,. Multiply the values computed by the in-
structions at lines iy, jy < £. It is possible to use the same
index iy = jy to square a value.

The program represents a circuit C(xy, .. .,x;) with k input
wires (represented by the input instructions,) and n — k addi-
tion and multiplication gates (represented by add and mul.)
Each line number ¢ represents either an input or the output
wire of a gate. The domain is given by the cartesian product
ITecrlac, be], where L is the set of all line numbers containing
an input instruction. The program is evaluated on a list of
inputs x1,...,x; in this domain in the obvious way, assigning
a value to each line number: x; for the input gates, and com-
puting the sum or product of two previous lines iy, j; for the
add and mul gates. The final output of the program is given by
the last instruction, computing x,,. As a shorthand notation for
parsing the App = {C} description in ASL, we will also use
C = [I(C),dom(C),C,0(C)], where I(C) and O(C) denote all
inputs and all outputs of the circuit C. For some examples of
programs written in this simple language, see Section 6.

This language describes the circuit in a manner that can be
used by KeyGen and Eval to compute the noise estimates and
evaluate the corresponding ciphertext circuit, respectively. In
other words, this ASL can be used also to parse the scheme-
specific mapping to a circuit over ciphertexts (both of these
algorithms have to use the same mapping). Note that the
inputs thus correspond to independent encryptions and each
gate to the corresponding homomorphic operation.

The domain description is relevant for noise estimation in
approximate schemes (and certain exact schemes, like GSW).
We remark that using the range is only one possible exam-
ple; one can specify a distribution instead or even provide
concrete samples for the inputs. In this ASL example, used
as a basis for the prototype implementation in OpenFHE, we
chose the range as a middle ground between simplicity and
effectiveness. Furthermore, this language can be extended in
a number of ways, by including:

* An explicit outputi, instruction, to allow for programs
that output more than one value. For A output instruc-
tions, C would be a function with output (yy,...,yp).

* More operations, as supported by the FHE scheme being
implemented. These could be either specialized versions
of add, mul, e.g., to double or square a number, or gen-
uinely new operations.

» Explicit support for SIMD operations, where “wires”

carry a vector of values, on which additions and multipli-
cations (or other operations) are performed in parallel.

* Additional operations on vectors, like the permutation
(rotation) operations implemented using automorphisms
and key-switching by some FHE schemes.

¢ A special unary function computation operation eval Tyiy,
where 7y is a function on a small domain represented by
a table, e.g., to represent “functional bootstrapping”.

 Special identity functions for “no-operation” instruction
£ :id iy, which simply copies a value from line i; to line /.

While instructions of the last kind serve no useful purpose
on the plaintext data, they can be used to represent, e.g., an in-
vocation of the bootstrapping algorithm, giving more control
to the expert user on where and how often bootstrapping is per-
formed. Similarly, such instructions can be used to describe
advanced optimizations such as lazy relinearization.

5 Practical Guidelines for Application-Aware
Homomorphic Encryption

Recall that homomorphic encryption schemes are only pas-
sively-secure. Under Definition 10, this translates to the at-
tacker not being allowed to submit invalid ciphertexts or func-
tions not part of the application App selected during key gen-
eration. Therefore, users should ensure they adequately follow
these specifications when working with FHE schemes.

However, misuses of cryptography can occur in practice,
and one should make the use of FHE libraries less error-prone
using the application-aware model formulated in our work.
Instead of relying simply on the user expertise, FHE libraries
can make the application specification App an explicit pa-
rameter of the key generation procedure, store App as part of
the key/evaluation context, and then implement appropriate
checks when the user makes calls to the encryption, evaluation
and decryption functions. We remark that from a practical per-
spective, compilers are a promising solution to implement the
application-aware model in FHE libraries. In the following,
we provide a practical description of the secure application-
aware FHE schemes, specify validators and instructions for
the FHE libraries’ users and developers.

5.1 Application-Aware Approximate FHE

Definitions 8—10 and results in Appendix C assume (implicit)
validators which ensure the validity of the attacker’s queries.
However, in practice, homomorphic encryption implementa-
tions do not typically include any validity checks and rely on
the user’s discipline to avoid the improper use of the library.

Protocol | makes the presence of the validators explicit and
provides guidelines for the correct usage of approximate FHE
schemes in the IND-CPAP setting with respect to an applica-
tion class App. The transformation from [39] for IND-CPAP,

described in Appendix C.2, uses a mechanism to define new
KeyGen’ and Dec’ algorithms. In Protocol | we separate the
derivation of the public parameters pp and noise estimates
{t;} from the secret key sk sampling and public key pk com-
putation in KeyGen’. Specifically, the protocol includes two
phases: offline, when the noise estimates are computed and
scheme parameters are found without using the secret key,
and online, when the actual homomorphic computation is per-
formed using the secret key (sk is used to derive the evaluation
keys and to perform the decryption, and is not used by the
evaluator). This explicit split into phases removes the burden
from the user to compute the parameters and only requires
the user to specify the same application class in both offline
and online phases. The offline phase may require multiple
iterations to achieve both the desired functionality/precision
and the security work factor; concretely for CKKS, to find
the ciphertext modulus Q and ring dimension N.

The online phase may invoke one or more validators to
check whether the executed computation belongs to App.
Concretely, during evaluation, the library API should call
a ValidateCircuit procedure, which, given an application (de-
scribed in our ASL), determines if it is allowed, i.e., the gates
of the evaluated circuit satisfy the application specification.
Checking that the input values belong to the function domain
is more challenging because the input to Eval is encrypted.
Therefore, during encryption, the library API should call a
ValidateEncryption procedure to ensure that the inputs are
in the correct domain. This check may be hard to enforce
in practice if the inputs are provided as different encryption
calls, unless the domain dom(C) = M!"©)! restricts each mes-
sage independently to the same set M C M. To alleviate this,
encryption should also be provided with an index ¢ for each
input such that it can check the range as specified in App,
i.e., check that an input m with index £ is in the range [ay, by
before encryption. The encryption could also tag the output
ciphertext with the index ¢, to indicate that it is the encryption
of a valid input for position ¢. Then, ValidateCircuit could
also check that the input ciphertexts are properly tagged with
the indexes £ = 1,...,k. Note that this also implies that the
ciphertexts passed as input to Eval are independently com-
puted, fresh encryptions of the input values, as required by our
application-aware security definition. Finally, if an alternative
run-time estimation is desired, the accumulated noise can be
estimated during Enc and Eval, and a noise check can be per-
formed during Dec using a ValidateDecryption procedure.

We reiterate that these validators are relevant in the passive
security model, normally used by FHE, and rely on Eval being
called with public key and input ciphertexts that have been
honestly computed. (An active adversary could easily modify
the tags of the ciphertexts output by Enc, add tags to cipher-
texts output by Eval, or come up with invalid ciphertexts on its
own, and go around all the checks performed by the library.)
These checks are still useful to detect possible (honest) mis-
uses that do not satisfy the application-aware model and that

Protocol 1 Application-Aware FHE scheme for App.
Offline Noise Estimation and Parameter Generation
Input: «,App (in ASL).

Qutput: pp.

1: Initialize pp for the given application App (using an
optimistic value of lattice dimension). Parse App = |, C;.
Each C; is specified as 1(C;), dom(C;), C;, and O(C;).

2: Compute noise estimates ¢ using current pp on
representative inputs for all computations C;, for each
C; € App: {t; + Estimate(App) }ico(c))-

3: Update pp based on current ¢.

4: If current pp do not satisfy x, update pp (increase the
lattice dimension) and go to Step 2.

Online Execution

Input: pp to all, {m; };c|(c),dom(C) to the Encryptor, C to
the Evaluator.

Output: {Decg(cti) }ico(c)-

1: The Decryptor runs KeyGen’(pp, App) and outputs the
public key pk (including the evaluation keys) and keeps
the secret key sk private.

2: The Encryptor uses ValidateEncryption to check that
{mi}icic) € dom(C), and, if so, computes the ciphertexts
{cti <= Encpk(m;) }ici(c) and sends them to the evaluator.

3: The Evaluator runs ValidateCircuit to check if C € App
and if yes, runs {ct; <— Evalo(C,{ct;} jei(c)) }ico(c) and
outputs it. Otherwise, it outputs L.

4: The Decryptor outputs {Decy, (ct;) };co(c) (noise checks
via ValidateDecryption may also be performed before
outputting the result; the decryptor may also output L if
the current noise estimate is above the bound #).”

“We remark that if parameters are properly set, failure of a noise bound
check should not happen in practice. If it does, it should be interpreted as a
critical error that the scheme parameters are not set properly and the scheme
may provide no security guarantees. Checking for error bounds is good for
security because it limits possible information leakage to only one bit.

can lead to a key recovery attack even by a passive adversary.

Application Specification. In approximate FHE, the appli-
cation specification needs to include the description of sup-
ported computations as well as a compact description of the
input messages, for instance, their range. The multiplicative
depth is commonly used in guiding the parameter selection
during the offline phase, but it may often be insufficient by
itself as demonstrated by the attacks discussed in Section 6.
When CKKS bootstrapping is used, one has to also check that
the probability of decryption failure during bootstrapping is
negligible (see [5] for more details) and to stipulate the boot-
strapping procedure as part of the application specification.
Our proposed ASL addresses the challenges related to the
application specification for CKKS.

Current Library Limitations. The guidelines provided by

10

libraries typically recommend running full computations (in
the estimation mode) to obtain tight noise bounds and gen-
erate scheme parameters. Here we focus on OpenFHE and
HEIib as they both describe concrete guidelines [30,47] for
configuring specifically IND-CPAP-secure approximate homo-
morphic encryption. Both libraries follow the two-phase (first
estimate on test data, then evaluate on actual encrypted data)
approach and require running full computations (step-by-step
procedures) during the offline estimation phase.

OpenFHE finds tight estimates during the offline phase for
approximation noise by computing the variance over the slots
corresponding to the imaginary part of the decrypted plaintext
vector (these slots are set to zero during encoding so only real
inputs are supported). OpenFHE also implements the flooding
noise estimation method proposed in [39] based on differen-
tial privacy. However, there is no check that the same circuit is
used for both noise estimation and evaluation, which enabled
the attacks in [25]. OpenFHE only takes the multiplicative
depth, scaling factor, representative test data, and optionally
ring dimension to describe the application. Then it relies on
the user to implement the evaluation procedure and provide
encrypted inputs to it. The procedure itself is not formalized
and there is some ambiguity in how the inputs are fed to the
procedure. In this work, we propose to use ASLs to elimi-
nate the ambiguity and provide a unique way to describe the
circuits and inputs during estimation and evaluation phases.

The guidelines provided by HElib [30] have similar limita-
tions: HElib’s noise estimation mechanism, which provides
tight estimates for BGV, can become highly inaccurate for
CKKS as soon as the message magnitudes significantly de-
viate from unity [4]. Hence, the noise estimation mechanism
cannot be used to check that circuits provided during the eval-
uation phase match those used during the estimation phase.

Proof-of-concept implementation in OpenFHE. We pro-
posed an ASL tailored to CKKS to check that compatible
circuits are used during the estimation and execution phases.
The ASL for CKKS requires a granular description of inputs
so that the test data used during the estimation phase repre-
sent well the encrypted data supplied during the evaluation
phase. Concretely, an example of such description is that for
each input, the ASL supplies the range. These input-specific
parameters are then used by the library to generate test data
during the estimation phase (note that initializing the input
vectors to the boundary values yields the worst-case bounds).

We provide a proof-of-concept implementation of this
method in OpenFHE and demonstrate it for the case cor-
responding to the attacks in [25]. At a high level, our im-
plementation adds SetEvalCircuit (for a single circuit) and
SetEvalCircuits (if multiple circuits are supported) to param-
eter generation, ValidateCircuit to check that the circuit used
for evaluation is compatible with the circuits set during pa-
rameter generation, and EvaluateCircuit to evaluate the full
circuit after validating it. All these methods take a circuit
definition (using the example ASL) as an input parameter.

Note that the ValidateEncryption and ValidateDecryption ca-
pabilities can also be added, but we focused specifically on
EvaluateCircuit in our proof-of-concept implementation as
the latter is sufficient to circumvent the attacks [25].

5.2 Application-Aware Exact FHE

Protocol 1 can also be applied in the case of the exact FHE
family. However, there are a couple of practical differences
between exact and approximate FHE settings. First, the goal
of the protocol in the exact setting is to guarantee correct de-
cryption with negligible probability of failure. The probability
of failure is taken as a parameter in the key generation, in the
form of the statistical security parameter. Second, for schemes
such as BFV/BGYV, the message bounds are not needed in the
application specification because all plaintext operations are
performed over finite fields (i.e., modulo the plaintext modu-
lus), which significantly simplifies the noise estimation.

Current Library Limitations. The BGV implementation
of OpenFHE takes three parameters to describe the appli-
cation class: the multiplicative depth, the maximum (over
all levels) number of additions per level, and the maximum
number of key switching operations per level (a similar pro-
cedure is used for BFV). Using these three input parameters,
OpenFHE finds all scheme parameters via the procedure de-
scribed in [32, Sec. 4], using analytical expressions. The prob-
ability of failure does not need to be set by the user because the
heuristic estimates used internally for BGV/BFV estimation
are conservatively chosen to achieve negligible probability
of failure. More concretely, the conservative expansion fac-
tor bound of 2+/N is used for all multiplications of random
polynomials, for the ring dimension N (see [26, Sec. 6]), re-
sulting in the probability of decryption failure below 27100,
Nevertheless, the current approach in OpenFHE (using only
the mentioned three parameters) cannot uniquely describe all
applications, which made the attacks in [10, 11] possible. Our
proposed ASL addresses this problem. Moreover, no valida-
tor such as ValidateCircuit is currently used to determine that
the parameters were generated for the same (or compatible)
circuit that is being evaluated.

In HEIib, a more complicated representation of application
specification is supported for BGV. The concept of level is not
explicitly used, and ciphertext-specific noise estimation us-
ing the canonical embedding (see [27]) is employed to make
decisions on when to invoke modulus switching (or bootstrap-
ping), as well as to enforce the correctness of the decryption
output. Using this tight noise estimation mechanism for BGV,
HEIlib already provides the functionality corresponding to
ValidateDecryption in Protocol 1, which gives it empirical
protection against the attacks [10, 11].

Proof-of-concept implementation in OpenFHE. Instead of
relying on the three parameters to describe BGV/BFV circuits,
we add the support of ASL to OpenFHE. The new methods

11

introduced to OpenFHE are similar to the CKKS case except
for two major differences. First, we add EstimateCircuit to
compute a tight estimate for a given circuit. This estimation
functionality can be used to verify the compatibility of the
circuits during the evaluation phase without explicitly speci-
fying them during parameter generation (thus extending the
functionality as compared to the CKKS case). Second, the
input ranges do not need to be explicitly given (as they can
be automatically derived from the plaintext modulus for most
applications). We keep explicit input ranges in our proof-
of-concept implementation for generality (as they could be
potentially needed in scenarios with bootstrapping, where
multiple plaintext moduli can be used). Our proof-of-concept
implementation supports only BFV, but can also be extended
to BGV by using a different noise estimation capability (al-
ready provided in OpenFHE).

While the safeguards described above are intended to pro-
tect against attacks exploiting invalid circuits, recent works
have also identified vulnerabilities related to the incorrect
setting of parameters with respect to the (c,s)-security. We
give more details on the latter in Appendix E.3.

6 Discussion of Secret Key Recovery Attacks

We briefly summarize the Li-Micciancio key-recovery at-
tack [38], as all attacks on CKKS, BGV and BFV from [10,
11,25] are based on the same methodology. Let us consider a
toy version of symmetric-key CKKS based on the Ring LWE
hardness problem (see Appendix A.3), where the encoding
and decoding are considered errorless (the attack can be ex-
tended to the efficient CKKS scheme used in practice [12,31]).
Let the secret key be sk = (1,s), where s + {0,—1,1}" is
sampled from the uniform ternary distribution. The encryp-
tion of a message is Encsk(m) = (a,b) € R, where a + Ry
and b =a-s+e+m, for e + A((0,0) with support Rp. To
decrypt a ciphertext of form ct = (a,b) encrypting m, one
performs Decg((a,b)) = b—a-s mod Q. An attacker can
specify m = 0 to the encryption oracle to obtain ct = (a,b),
where b = a - s+ e, then the identity function to the evaluation
oracle, and can finally request the decryption of ct from the
decryption oracle, which returns Decg(ct) = e mod Q. The
attacker retrieves b —e = a-s mod Q. Making N such queries
allows the adversary to form a system of linear equations in
the secret s with high probability. When a is invertible, as few
as a single query is sufficient to recover the secret key.

The gist of the attack is retrieving the error from the decryp-
tion query, which can be used, along with public information
such as the ciphertexts, to recover the secret key. This im-
plies that the basic CKKS scheme is not IND-CPAP-secure.
Li et al. [39] further analyzed the IND-CPAP definition and
introduced a mechanism for achieving this security level for
CKKS, through estimating and adding Gaussian noise during
the decryption procedure such that the decryption query out-

put does not reveal any useful information. However, they did
not formally include the estimation procedure and its relation
to the evaluated function class in the definition, something
which needs to be done by libraries like OpenFHE and HElib
that implement their security countermeasures.

In Section 3 and Appendix C, we clarified the IND-CPAP
definition in the practical context of user applications, and
gave precise formulations of application-aware security state-
ments in support of FHE libraries. Consequently, FHE li-
braries that implement approximate FHE schemes with the
countermeasures proposed in [39], or instantiate exact FHE
schemes with parameters that satisfy appropriate correctness
bounds for specified circuits, satisfy the application-aware
notion of IND-CPAP-security and should be immune to the
Li-Micciancio attack [38] and its variants.

Recently, a number of works have extended the attack
of [38] to either (i) defeat the security countermeasures for ap-
proximate FHE [25] or (ii) break exact FHE schemes [10, 11].
As in the original attack, these works use an IND-CPAP ad-
versary that extracts the LWE encryption noise via decryp-
tion queries, and then uses this information to recover the
secret key or break the indistinguishability of the scheme.
In [10, 11, 25], this is achieved by exploiting queries to the
evaluator or decryptor that are valid according to Definition 6,
but invalid according to Definition 10. For approximate FHE,
this bypasses the intended effect of the noise flooding mecha-
nism. For exact schemes, this breaks the equivalence between
IND-CPA and IND-CPAP-security. (Note that these attacks vi-
olate the assumptions of Theorems | and 2 in Appendix C.)

In this section, we describe the attacks [10, 11,25] using
our application-aware security definitions and the simple ASL
from Section 4. This serves two purposes. One is to show that
these attacks highlight the dangers associated to both currently
insufficient library specifications and to using the libraries
improperly, rather than a vulnerability in the schemes or in the
implementations. The other is to show how application-aware
security can be used to explain the security guarantees offered
by FHE schemes and provide robust guidelines on the use of
the libraries to avoid the pitfalls of [10, 11,25].

6.1 Attacks on Approximate FHE schemes

Guo et al. [25] proposed two attacks with the goal of injecting
a smaller noise in the decryption procedure than required.
This allows the attacker to retrieve sufficient information
about the original noise in order to recover the secret key.
We now translate the attacks from [25] to the application-
aware IND-CPAP formalism from Section 3 using the ASL in
Section 4. The attacks are not adaptive, meaning the attacker
does not use the results of previous queries before submitting
new ones, so we can use the simplified definition of IND-C PAD,
(In Appendix E.1, we show the formulation under the adaptive
definition as well, which was how it was described in [25].)
In the first attack (called “average-case estimation attack”),

12

the attacker specifies App = {C} on n inputs, described by the
circuit C(x1,...,%;) = X1 + ...+ Xy, for which the parameters
and noise estimate for the differentially private mechanism
are being computed. Using ASL, App would be specified
as in (1). In the attack, the authors use messages equal to 0
in both estimation and evaluation; we use a non-degenerate
range for generality. For n = 1,000, the noise estimate and
ciphertext modulus are 13 and 72 bits, respectively.

The attacker then asks for the encryption of input x; and
specifies the function C'(x;) = x; + ...+ x; for evaluation
(keeping the same number of inputs as above, it could also be
C'(x1,-.,%;) = x1 +...+x1). Under ASL, this specification
would look as in (2). Naturally, the parameters for ' are 18
and 77 bits, respectively, which are 5 bits (= 0.5logn) larger
than the ones estimated for C.

1: input -1 1,

2: input -1 1,

. 1: input —1 1,
: 2: add 1 1,

n: input —1 1, 3: add 2 1,
n+1: add 1 2 M .)
n+2: add n+1 3, :

. n+1: add n 1.

2n—1: add 2n—2 n.

Despite the fact that when x; = x1, fori = 2,...,n, the out-
puts of the two computations are the same, the computations
C' and C are different, and, importantly, C’ ¢ App. This means
C' is not a valid query according to Definition 10. An imple-
mentation of ValidateCircuit would disallow the evaluation
of C'. The same holds for computing the addition recursively,
via doubling, also explored in [25], that can be specified as

1: input —1 1,
2: add 1 1,

3: add 2 27 (3)

logn+1: add logn logn.

In the case of the second attack (called “empirical noise
attack”), the attacker specifies for the run-time evaluation the
circuit C” (x1,. .., %y) = x1 +...+xy, for n’ # n (in ASL, the
specification looks like (1) but with n replaced by n’), while
still using App = {C} defined in (1). But C” # C and C" ¢
App, rendering this query invalid according to Definition 10.

The authors of [25] suggest that in order to avoid attacks,
one should always use worst-case noise estimates. But from
the description above, it should be clear that the real issue
exploited by their attack is not the difference between average-
case and worst-case error estimates. Choosing the scheme
parameters based on worst-case error estimates for C, and then
evaluating C' homomorphically using the same key, based on
the ad-hoc analysis that C and C’ produce similar worst-case
noise estimates, is error-prone and theoretically unjustified.
If the user also wants to evaluate C’, it is better to include
C' in App at key generation time, and let the library choose

the parameters accordingly, as done in our proof-of-concept
implementation. Moreover, while C and C’ have the same
worst-case noise bounds, this is not the case for other circuits
like C". In any case, if C’' ¢ App, one cannot invoke Theorem 2
and claim generic IND-CPAP-security. This is true even if the
differentially-private mechanism applied in decryption uses
worst-case noise bounds over C and C'.

Instead, for application-aware IND-CPAP-security (Defini-
tion 10), one can clearly define and focus on a specific com-
putation class App. The practical significance of this model
is that one can thus compute smaller parameters (leading to
more efficient implementation), as long as only valid com-
putations are performed, and still achieve application-aware
IND-CPAP-security. Importantly, this also allows the use of
non-worst-case noise bound estimation, and refutes the claim
from [25] that any usage of non-worst-case estimates is inse-
cure, as long as the estimation is performed globally over the
class of allowed computations.

Finally, from the perspective of Section 5, these attacks
violate Protocol 1, as the computation they run during the
online phase does not belong to the application class App
specified during the offline estimation phase. Crucially, it is
the responsibility of the libraries such as OpenFHE to clarify
the guidelines for application specifications, and validate the
use of the same computation during offline and online phases.

6.2 Attacks on Exact FHE schemes

Exact FHE schemes (Definition 3) are a special case of ap-
proximate FHE schemes with a perfect estimation function
Estimate(App) = 0 (no approximation error). In the case
of decryption failures, these schemes can still deviate from
recovering the exact message, enabling the Li-Micciancio
attack [38]. According to Definition 3, decryption failures
should occur with at most negligible probability (see Re-
mark 1). However, if a cryptographic library is misconfig-
ured or improperly used, decryption failures may occur with
noticeable probability and may be exploited in attacks.
There are several folkore attacks on schemes such as
BGV/BFV where decryption is allowed despite an over-
flown ciphertext error. We describe such an attack [3] in
Appendix E.2. What makes this attack possible is allowing
for as many additions (whose number depends on the cipher-
text modulus) as to lead to an incorrect decryption result. In
Definitions 8—10, one specifies the application class in the key
generation algorithm. This would translate to the user specify-
ing the addition circuit, which fixes the number of inputs and
the number of addition gates, and obtaining public parameters
that are correct with respect to this computation. Then, during
run-time, only the evaluation of this computation is allowed,
which returns correct decryptions with high probability.
Recently, Checri et al. [10] and Cheon et al. [11] pro-
posed similar key recovery attacks against OpenFHE and
other libraries. Their attacks on BGV/BFV schemes fix the

13

parameters of the schemes—implicitly, by specifying a com-
putation class App, corresponding to (1), which returns pa-
rameters for achieving exact correctness for App—and then
using these parameters to perform a different computation
C' ¢ App, which can be specified as in (3). This computa-
tion C’ is chosen such that for ct; «— Encok(x;) , i = 1,...,n,
it holds that Decg(Evalp(C',cty,...,cty)) # C(x1,...,xn).
Concretely, for the attack in [11] with plaintext modulus
p = 65,537, ring dimension N = §,192 and 44 doubling op-
erations, the circuit C specified in OpenFHE, corresponding
to (1), leads to a ciphertext modulus of 37 bits and a noise
estimate of 19 bits, whereas the implemented circuit, corre-
sponding to (3), leads to a required ciphertext modulus of 75
bits and a noise estimate of 57 bits. But since C ¢ App, neither
application-aware correctness nor IND-CPAP-security is guar-
anteed. The attacks in [10, 11] show that this lack of security
is not just a (well-known, but theoretical) possibility, but a
real threat in practice. We defer more details to Appendix E.2.

7 Concluding Remarks

In this work, we proposed a framework for secure and effi-
cient configuration of approximate FHE schemes by introduc-
ing the concept of application-aware FHE. Our framework
addresses the current confusion surrounding the secure in-
stantiation of the CKKS scheme in practice, especially af-
ter recent secret-key recovery attacks which highlighted the
practical limitations of the generic IND-CPAP model. Unlike
generic and potentially hard-to-satisfy security models, our
application-aware security model reflects the real-world use
of FHE. We provide practical guidelines for FHE developers
and users to achieve IND-CPAP security in the application-
aware setting. We also demonstrate that our application-aware
model can be used to securely instantiate exact FHE schemes.

This work is a first step in establishing the practical pro-
cedures for the secure, efficient use of FHE in the IND-CPAP
setting. In the future, more expressive/compact application
specification languages could be developed. Improving the
implementation of automated validators for testing that com-
putations are in the allowed application class is also desirable.

Note that while FHE has a great potential for privacy-
preserving computations, realizing it in practice brings about
many challenges. First, library developers aim for better us-
ability to hide the underlying complicated details. However,
these simplified interfaces might increase the chance of library
misconfiguration and misuse. Second, the honest-but-curious
assumption in the FHE security model is hard to satisfy in
practice. Although cryptography provides tools such as au-
thentication, commitments, and zero-knowledge proofs to
ensure adherence to established protocols, these solutions are
often too computationally expensive in the context of FHE
applications [21], and are still actively being researched. Le-
gal auditing and other non-cryptographic approaches could
offer valuable complementary measures.

References

[1]

[2

—

[4]

[5

=

[7

—

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

AKAVIA, A., GENTRY, C., HALEVI, S., AND VALD, M. Achievable
CCA2 relaxation for homomorphic encryption. In TCC 2022, Part Il
(Nov. 2022), E. Kiltz and V. Vaikuntanathan, Eds., vol. 13748 of LNCS,
Springer, Cham, pp. 70-99.

ASHAROV, G., JAIN, A., LOPEZ-ALT, A., TROMER, E., VAIKUN-
TANATHAN, V., AND WICHS, D. Multiparty computation with low
communication, computation and interaction via threshold FHE. In
EUROCRYPT 2012 (Apr. 2012), D. Pointcheval and T. Johansson, Eds.,
vol. 7237 of LNCS, Springer, Berlin, Heidelberg, pp. 483-501.

BERGAMASCHI, F., CHEON, J. H., DAL, W., HALEVI, S., KIM, A.,
Kim, D., LAINE, K., L1, B., MICCIANCIO, D., PAPADIMITRIOU, A.,
POLYAKOV, Y., SHOUP, V., SONG, Y., AND VAIKUNTANATHAN, V.
Personal Communication, 2020. Email thread on October 30, 2020.

BERGAMASCHI, F., HALEVI, S., HALEVI, T. T., AND HUNT, H. Ho-
momorphic training of 30,000 logistic regression models. In Applied
Cryptography and Network Security: 17th International Conference,
ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings (Berlin,
Heidelberg, 2019), Springer-Verlag, p. 592-611.

BOSSUAT, J.-P., MOUCHET, C., TRONCOSO-PASTORIZA, J. R., AND
HUBAUX, J.-P. Efficient bootstrapping for approximate homomorphic
encryption with non-sparse keys. In EUROCRYPT 2021, Part I (Oct.
2021), A. Canteaut and F.-X. Standaert, Eds., vol. 12696 of LNCS,
Springer, Cham, pp. 587-617.

BOURSE, F., DEL PINO, R., MINELLI, M., AND WEE, H. FHE cir-
cuit privacy almost for free. In CRYPTO 2016, Part II (Aug. 2016),
M. Robshaw and J. Katz, Eds., vol. 9815 of LNCS, Springer, Berlin,
Heidelberg, pp. 62—-89.

BRAKERSKI, Z. Fully homomorphic encryption without modulus
switching from classical GapSVP. In CRYPTO 2012 (Aug. 2012),
R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of LNCS, Springer,
Berlin, Heidelberg, pp. 868-886.

BRAKERSKI, Z., GENTRY, C., AND VAIKUNTANATHAN, V. (Leveled)
fully homomorphic encryption without bootstrapping. In ITCS 2012
(Jan. 2012), S. Goldwasser, Ed., ACM, pp. 309-325.

CANARD, S., FONTAINE, C., PHAN, D. H., POINTCHEVAL, D., RE-
NARD, M., AND SIRDEY, R. Relations among new CCA security
notions for approximate FHE. Cryptology ePrint Archive, Report
2024/812, 2024.

CHECRI, M., SIRDEY, R., BOUDGUIGA, A., AND BULTEL, J.-P. On
the practical CPA” security of “exact” and threshold FHE schemes
and libraries. In CRYPTO 2024, Part III (Aug. 2024), L. Reyzin and
D. Stebila, Eds., vol. 14922 of LNCS, Springer, Cham, pp. 3-33.

CHEON, J. H., CHOE, H., PASSELEGUE, A., STEHLE, D., AND SU-
VANTO, E. Attacks against the IND-CPAP security of exact FHE
schemes. In ACM CCS 2024 (Oct. 2024), B. Luo, X. Liao, J. Xu,
E. Kirda, and D. Lie, Eds., ACM Press, pp. 2505-2519.

CHEON, J. H., KiM, A., KIM, M., AND SONG, Y. S. Homomorphic en-
cryption for arithmetic of approximate numbers. In ASIACRYPT 2017,
Part I (Dec. 2017), T. Takagi and T. Peyrin, Eds., vol. 10624 of LNCS,
Springer, Cham, pp. 409—437.

CHILLOTTI, I., GAMA, N., GEORGIEVA, M., AND IZABACHENE, M.
Faster packed homomorphic operations and efficient circuit bootstrap-
ping for TFHE. In ASIACRYPT 2017, Part I (Dec. 2017), T. Takagi
and T. Peyrin, Eds., vol. 10624 of LNCS, Springer, Cham, pp. 377-408.

CHILLOTTI, I., GAMA, N., GEORGIEVA, M., AND IZABACHENE,
M. TFHE: Fast fully homomorphic encryption library, August 2016.
https://tfhe.github.io/tfhe/.

COSTACHE, A., CURTIS, B. R., HALES, E., MURPHY, S., OGILVIE,
T., AND PLAYER, R. On the precision loss in approximate homo-
morphic encryption. Cryptology ePrint Archive, Report 2022/162,
2022.

14

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

COSTACHE, A., NURNBERGER, L., AND PLAYER, R. Optimisations
and tradeoffs for HElib. In CT-RSA 2023 (Apr. 2023), M. Rosulek, Ed.,
vol. 13871 of LNCS, Springer, Cham, pp. 29-53.

D’ ANVERS, J.-P., VERCAUTEREN, F., AND VERBAUWHEDE, I. The
impact of error dependencies on ring/mod-LWE/LWR based schemes.
In Post-Quantum Cryptography - 10th International Conference,
PQCrypto 2019 (2019), J. Ding and R. Steinwandt, Eds., Springer,
Cham, pp. 103-115.

Ducas, L., AND MICCIANCIO, D. FHEW: Bootstrapping homomor-
phic encryption in less than a second. In EUROCRYPT 2015, Part I
(Apr. 2015), E. Oswald and M. Fischlin, Eds., vol. 9056 of LNCS,
Springer, Berlin, Heidelberg, pp. 617-640.

Ducas, L., AND STEHLE, D. Sanitization of FHE ciphertexts. In
EUROCRYPT 2016, Part I (May 2016), M. Fischlin and J.-S. Coron,
Eds., vol. 9665 of LNCS, Springer, Berlin, Heidelberg, pp. 294-310.

FAN, J., AND VERCAUTEREN, F. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144,
2012.

FRANKLE, J., PARK, S., SHAAR, D., GOLDWASSER, S., AND
WEITZNER, D. J. Practical accountability of secret processes. In
USENIX Security 2018 (Aug. 2018), W. Enck and A. P. Felt, Eds.,
USENIX Association, pp. 657-674.

GENTRY, C. A fully homomorphic encryption scheme. Stanford uni-
versity, 2009.

GENTRY, C. Fully homomorphic encryption using ideal lattices. In
41st ACM STOC (May / June 2009), M. Mitzenmacher, Ed., ACM
Press, pp. 169-178.

GENTRY, C., SAHAI, A., AND WATERS, B. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. Cryptology ePrint Archive, Report 2013/340, 2013.

Guo, Q., NABOKOV, D., SUVANTO, E., AND JOHANSSON, T. Key
recovery attacks on approximate homomorphic encryption with non-
worst-case noise flooding countermeasures. In USENIX Security 2024
(Aug. 2024), D. Balzarotti and W. Xu, Eds., USENIX Association.

HALEVI, S., POLYAKOV, Y., AND SHOUP, V. An improved RNS
variant of the BFV homomorphic encryption scheme. In CT-RSA 2019
(Mar. 2019), M. Matsui, Ed., vol. 11405 of LNCS, Springer, Cham,
pp. 83-105.

HALEVI, S., AND SHOUP, V. Design and implementation of HElib: a
homomorphic encryption library. Cryptology ePrint Archive, Report
2020/1481, 2020.

HEAAN v2.1. https://github.com/snucrypto/HEAAN, Dec 2020. SNU-
CRYPTO.

HEIib v2.3. https://github.com/homenc/HElib, Jul 2023. IBM.

Security of Approximate-Numbers Homomorphic Encrypt. https://
github.com/homenc/HElib/blob/master/CKKS-security.md, 2024. [On-
line; accessed 7-Feb-2024].

KIM, A., PAPADIMITRIOU, A., AND POLYAKOV, Y. Approximate
homomorphic encryption with reduced approximation error. In C7-
RSA 2022 (Mar. 2022), S. D. Galbraith, Ed., vol. 13161 of LNCS,
Springer, Cham, pp. 120-144.

KiM, A., POLYAKOV, Y., AND ZUCCA, V. Revisiting homomorphic
encryption schemes for finite fields. In ASIACRYPT 2021, Part III (Dec.
2021), M. Tibouchi and H. Wang, Eds., vol. 13092 of LNCS, Springer,
Cham, pp. 608-639.

KLUCZNIAK, K. Circuit privacy for FHEW/TFHE-style fully homo-
morphic encryption in practice. Cryptology ePrint Archive, Report
2022/1459, 2022.

KLUCZNIAK, K., AND SANTATO, G. On circuit private, multikey and
threshold approximate homomorphic encryption. Cryptology ePrint
Archive, Report 2023/301, 2023.

https://github.com/snucrypto/HEAAN
https://github.com/homenc/HElib
https://github.com/homenc/HElib/blob/master/CKKS-security.md
https://github.com/homenc/HElib/blob/master/CKKS-security.md

[35] KNABENHANS, C. Practical integrity protection for private computa-
tions. Master’s thesis, ETH Zurich, 2022.

[36] Lattigo v5. https://github.com/tuneinsight/lattigo, Nov 2023. EPFL-
LDS, Tune Insight SA.

[37]1 LEE, Y., MICCIANCIO, D., KIM, A., CHOI, R., DERYABIN, M., EOM,
J., AND Y00, D. Efficient FHEW bootstrapping with small evalua-
tion keys, and applications to threshold homomorphic encryption. In
EUROCRYPT 2023, Part 111 (Apr. 2023), C. Hazay and M. Stam, Eds.,
vol. 14006 of LNCS, Springer, Cham, pp. 227-256.

[38] LI, B., AND MICCIANCIO, D. On the security of homomorphic en-
cryption on approximate numbers. In EUROCRYPT 2021, Part I (Oct.
2021), A. Canteaut and F.-X. Standaert, Eds., vol. 12696 of LNCS,
Springer, Cham, pp. 648-677.

[39] L1, B., MICCIANCIO, D., SCHULTZ, M., AND SORRELL, J. Securing
approximate homomorphic encryption using differential privacy. In
CRYPTO 2022, Part I (Aug. 2022), Y. Dodis and T. Shrimpton, Eds.,
vol. 13507 of LNCS, Springer, Cham, pp. 560-589.

[40] MANULIS, M., AND NGUYEN, J. Fully homomorphic encryption
beyond IND-CCA1 security: Integrity through verifiability. In EU-
ROCRYPT 2024, Part 11 (May 2024), M. Joye and G. Leander, Eds.,
vol. 14652 of LNCS, Springer, Cham, pp. 63-93.

[41] MARINGER, G., FRITZMANN, T., AND SEPULVEDA, J. The influence
of LWE/RLWE parameters on the stochastic dependence of decryption
failures. In ICICS 20 (Aug. 2020), W. Meng, D. Gollmann, C. D. Jensen,
and J. Zhou, Eds., vol. 11999 of LNCS, Springer, Cham, pp. 331-349.

[42] MICCIANCIO, D., AND SCHULTZ-WU, M. Bit security: Optimal adver-
saries, equivalence results, and a toolbox for computational-statistical
security analysis. In TCC 2024, Part II (Dec. 2024), E. Boyle and
M. Mahmoody, Eds., vol. 15365 of LNCS, Springer, Cham, pp. 224—
254.

[43] MICCIANCIO, D., AND WALTER, M. On the bit security of crypto-
graphic primitives. In EUROCRYPT 2018, Part I (Apr. / May 2018),
J. B. Nielsen and V. Rijmen, Eds., vol. 10820 of LNCS, Springer, Cham,
pp. 3-28.

[44] MURPHY, S., AND PLAYER, R. A central limit framework for ring-
LWE decryption. Cryptology ePrint Archive, Report 2019/452, 2019.

[45

OpenFHE v1.2. https://github.com/openfheorg/openthe-development,
Dec 2023. OpenFHE Org.

[46] OpenFHE Lattice Estimator. https://github.com/openfheorg/openthe-
lattice-estimator, 2024. [Online; accessed 7-Feb-2024].

[47] CKKS Noise Flooding. https://github.com/opentheorg/
openfhe-development/blob/main/src/pke/examples/
CKKS_NOISE_FLOODING.md, 2024. [Online; accessed 7-
Feb-2024].

[48] Microsoft SEAL v4.1. https://github.com/Microsoft/SEAL, Jan. 2023.
Microsoft Research, Redmond, WA.

[49] VIAND, A., KNABENHANS, C., AND HITHNAWI, A. Verifiable fully
homomorphic encryption. arXiv preprint arXiv:2301.07041 (2023).

[50] ZAMA. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme
for Boolean and Integer Arithmetics Over Encrypted Data, 2022. https:
//github.com/zama-ai/tfhe-rs.

A More preliminaries

A.1 Security Games

Definition 11 (Decision game). A decision game G is de-

fined by an experiment Exprbg o [A4] parameterized by a bit
b € {0,1}, (encryption) scheme S and adversary 4, that on

input a security parameter K, runs a computation (using the
algorithms of S and A) and outputs a bit. The advantage
Adv5g [4](x) of A in breaking the G-security of S is

| Pr{Exprd ™ [4](k) = 1} — Pr{Expry *[4] () = 1}].

The scheme S is G-secure if for any efficient (probabilis-
tic, polynomial time, stateful) adversary A, the advantage
Adv5g [4](x) is negligible in K.

Definition 12 (Search game). A search game G is defined
by an experiment Exprg"g [4] parametrized by a (encryption)
scheme S and adversary A, that on input a security parameter
K, outputs a bit. The advantage of A is simply the probability

Adv[A)(x) = Pr{Expr9=[4](x) = 1}

that the experiment outputs 1. The scheme S is G-secure
if for any efficient (probabilistic, polynomial time, stateful)
adversary A, the advantage AdeG (4] (x) is negligible in K.

As a standard convention, if at any point in an experiment
the adversary makes a syntactically incorrect query (e.g., in-
dices out of range) or an invalid query (e.g., a circuit C not
supported by the scheme), the experiment returns an error
symbol L in the case of a decision game and O in the case of
search game.

A.2 Differential Privacy

Definition 13 (KL Divergence). Let P and Q, be dis-
crete distributions with common support X. The Kullback-
Leibler (KL) divergence between P and Q is D(P||Q) :=

Eeex 2()In ().

Definition 14 (Norm KLDP [39]). Fort € R>g, let M; : B —
C be a family of randomized algorithms, where B is a normed
space with norm ||-|| : B— Rx. Let p € R be a privacy bound.
We say that the family M, is p-Kullback-Leibler differentially
private (p-KLDP) if, for all x,x' € B with | x—X'|| <t, it holds:

D (M,(x)|M,(x)) < p.

Definition 15 (Gaussian Mechanism). Let p > 0 and n € N.
Define the (discrete) Gaussian Mechanism M; : 7' — 7" be
the mechanism that, on input X € Z* outputs a sample from

2
%n (X, é?ln)

A.3 Ring Learning With Errors

Let N be a power two. Then, the polynomial ring R :=
Z[X]/(XN 4 1) is the 2N-th cyclotomic field’s ring of inte-
gers. Let Rp := R/OR be the ring with coefficients reduced
modulo Q.

https://github.com/tuneinsight/lattigo
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-lattice-estimator
https://github.com/openfheorg/openfhe-lattice-estimator
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/Microsoft/SEAL
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

The Ring Learning With Errors (Ring LWE) distribution
with secret s € Z" under a distribution %, and error distri-
bution 7y, denoted as RLWE,(N, Q,), outputs pairs of form
(a,b) € R, where a < Rg and b :=a - s+ e for e < y. The
decisional Ring LWE assumption with error distribution %,
secret distribution), and m samples, states that for s <— (s,
the product distribution RLWE(N, Q,)™ is computationally
indistinguishable from the uniform distribution over (R2Q)’".

B Fully adaptive definitions

For simplicity, in the main body of the paper, we have con-
sidered applications where all input data is specified (and
encrypted) in advance, and then a single homomorphic com-
putation is performed on it. In practice, homomorphic encryp-
tion schemes (and libraries) allow to interleave encryption,
evaluation and decryption queries, performing computations
incrementally (possibly based on the result of decryption
queries), reuse intermediate results of previous homomorphic
computations, etc. In this section, we provide general defi-
nitions of correctness and security properties for this more
general form of encrypted computations. We remark that,
while the mathematical formalization of the properties in this
general setting is somehow more complex (which is why we
postponed it to the appendix), the essence of the definition
is the same, and the main insights of our work can be al-
ready understood from the basic treatment of non-adaptive
definitions.

The first thing that we need to generalize our definitions of
application-aware correctness and security is a formalization
of adaptive, incremental computations. Here, the set £ of
functions supported by a homomorphic encryption scheme
should be understood as the set of basic operations that can be
performed by a single call to Eval, and corresponding to the
functions associated to the individual gates of a larger circuit
representing the entire computation.

Definition 16. Let M and L be the message space and (basic)
function space of a homomorphic encryption scheme. A com-
putation trace is a sequence of basic operations [op;,0p,, .. .]
where each op; can be one of the following:

* an encryption query E(m), where m € M

* an evaluation query H(f,iy,. .., i) where f: M* — M
is a function in L and iy,... i € {1,...,i— 1} are in-
dexes corresponding to previous E or H operations

* adecryption query D(j) where j € {1,...,i— 1} is the
index of a previous E or H operations.

Let Ops™* be the set of all computation sequences. An ap-
plication is specified by a subset App C Ops™ of computa-
tion traces that is closed under prefixes, i.e., such that if
[opy,...,0p,] € App, then [opy,...,op;] is also in App for
alli <n.

16

As usual, we assume that the set App admits a compact
description, and not all possible applications (i.e., subsets of
Ops™) may be supported by a scheme. For example, App may
be described by a single sequence of operations opy,...,0p,
where encryption operations op; = E(y;) carry not a single
message m € M but a bound g; on the message size. This
single sequence represents the set of all possible computation
traces obtained by replacing each y; by any message x; € M
satisfying the given size bound |x;|| < y;. Since the details of
how App may be specified are scheme and application depen-
dent, we formulate our definition using general set notation.

Remark 2. The basic applications App' = {Cy,C,...} intro-
duced in Definition 8 correspond to a special case of Defini-
tion 16, where App is the set of all computation traces of the
form

[E(x1),...,

such that C;: M* — M and (x1,...,x;) € dom(C;) for some
C; € App. Naturally, if C; is specified by a circuit with gates
in L (rather than a single function C; € L), then the operation
H(C;, 1,2,... k) should be replaced by a sequence of oper-
ations H(gj,1,...,k;) corresponding to the individual gates
OfC,'.

E(xk)vH(Cia 1327-~~,k)7D(k+ 1)]

Using this definition of computation we can generalize the
definitions of correctness and security as follows.

Definition 17 (Approximate Correctness). Let E =
(KeyGen, Enc, Dec, Eval) be an (approximate) FHE scheme
with (normed) message space M and application space from
L, and let Estimate : 2- — R be an efficiently computable
function. We say that the tuple = (E,Estimate) satisfies
application-aware static approximate correctness if it is cor-
rect for the following search game:

ExprePP**E[2](x) : App ¢ A(K)
(sk, pk) < KeyGen(x, App)
4°750) (pk)

return O

where Ops(-) is an oracle defined as follows. The oracle
accepts E,H and D queries, and stores a pair (x;,ct;) € M X
C for each E or H query. Each time A issues a new query op;:

o If the sequence of queries issued so far [opy,...,op;] &
App, then abort the experiment with output O

* ifop; = E(x;), then let ct; <— Ency(x;) and return ct; to
A

e ifop, =H(fi,i1,. .., i), then compute x; = fi(xi,,...,X;)
and ct; < Evalp(fi, cti, ..., ct) using previously stored
pairs (xi;, ct;). Then store the new pair (x;,ct;), and
return Ct; to 4.

* ifop; = D(j), then compute y; <— Decgk(ct;) using previ-
ously stored pair (xj,ct;). If ||y; —x;|| < Estimate(App)
return y to A. Otherwise terminate the experiment im-
mediately with output 1.

For simplicity, in the above definition we have used an
Estimate function that outputs the same bound for all decryp-
tion queries. This can be easily generalized to an estimate
function that allows difference decryption queries to be an-
swered with a varying degree of accuracy. As before, our def-
inition applies to both exact and approximate FHE schemes,
where a scheme is exact when Estimate(App) = 0 is the per-
fect accuracy estimation function, so that when answering
decryption queries it must be y; = x;.

Again, it can be seen that basic correctness from Defini-
tion 9 is a special case of Definition 17 when restricted to the
simple applications App’ described in Remark 2.

The definition of IND-CPAP security is generalized simi-
larly.

Definition 18 (IND-CPAP Security). Let E = (KeyGen, Enc,
Dec, Eval) be an (approximate) FHE scheme with (normed)
message space M and application space from L, and let
Estimate : 22 — R be an efficiently computable function.
Application-aware IND-CPAP security is defined by the fol-
lowing decision game:

Expri?®[4](x) : App A(x)
(sk, pk) + KeyGen(k, App)
b 2°7°0) (pk)
return(b’).

where Ops(-) is an oracle defined as follows. The oracle
accepts E,;H, and D queries. H and D queries are similar to
Definition 17. E queries take the form op; = E(x?,x!) instead
of E(x;). For each such query let opf’ be the corresponding
encryption operation E(x?). The oracle Ops(-) stores a triplet
(xi0,%i.1,Ct;) € M? x C for each E or H query. Each time 4
issues a new query op;:

e [If for either b = 0 or b = 1, the sequence of queries
issued so far [opy,...,op;] satisfies [op‘l’, ...,op?] ¢ App,
then abort the experiment with output 0

s ifop; = E(x¥,x}), then compute ct; < Encp(x?), store
(x9,x!, ct;), and return ct; to 4
compute x? =

o if op; = H(fi,i1,.-.,ik), then ;
fil,....xp) for both b € {0,1}, and ot «
Evalpk(fi,cti,...,cl) using previously stored pairs

(x?/,xilj, cti;). Then store the new triplet (x,x!,ct;), and

return ct; to 4.

* if op; = D(j), then retrieve previously stored triplet
(x(},x}-, ct;) and check that x(} = x}-. Ifnot, abort the exper-
iment. Otherwise, compute y; < Decgk(ct;) and return
yjto A

17

Function-privacy. While the IND-CPAP definition (both in
its application-agnostic and application-aware forms) as-
sumes public functions, it can be generalized to private func-
tions. In the application-aware model, the function-private
IND-CPAP definition allows the adversary to also specify two
distinct computations in the application class in the evalua-
tion query. However, function-privacy often requires security
even against adversaries that know the secret key, therefore
the corresponding definition needs to restrict the adversary to
only see ciphertexts that decrypt to equal messages.

C Equivalence between IND-CPA and
IND-CPAP for Application-Aware Schemes

We now adapt the results of [38,39] to the application-aware
model.

C.1 Exact Schemes

The equivalence between IND-CPA and IND-CPAP security
for exact FHE schemes can be extended from its generic
formulation [38, Lemma 1] to the application-aware model.
As expected, for an allowed application class, as long as the
scheme satisfies exact correctness, then the decryption oracle
does not give any new information to the adversary.

Theorem 1. Let E be a correct® application-aware exact ho-
momorphic scheme for application App C L. ‘E is IND-CPA-
secure if and only if it is IND-CPAP-secure.

Proof. First, application-aware IND-CPAP-security also im-
plies application-aware IND-CPA-security, since for the appli-
cation class App, the adversary in the IND-CPA definition is
an IND-CPAP adversary making an Encp call, and no other
Evalpk or Decg calls.’

In the reverse direction, assume towards a contradiction that
‘E is application-aware IND-CPA-secure but not application-
aware IND-CPAP-secure. Given an adversary A4 that breaks
the IND-CPAP-security of £ for an application App, we
show how to build a series of adversaries B(") breaking the
IND-CPA-security of ‘E, for 1 <i < n, where n is the maxi-
mum number of inputs of computations inside App. We can
only have equivalence for the same application class App, so
both 4 and B will select the same App and computations C
in the experiments.

®Recall that a scheme is correct if it satisfies Definition 3 or Definition 4
with Estimate(C) = 0, and that, like all search games, this requires decryp-
tion errors to have negligible probability. This theorem provides no security
guarantees for “exact” encryption schemes that are not correct.

"Technically, for the adversary to issue no evaluation and decryption
calls one needs to use the fully adaptive Definition 18. For the simplified
Definition 9, the adversary is required to make exactly one evaluation and
decryption call. In this case, one can require App to always contain a constant
function mapping all x € M to a fixed value C(x) = 0. This ensures C(xp) =
C(x1) is trivially satisfied. Then, the adversary can simply ignore the results
ct',y of the trivial evaluation and decryption functions.

The adversaries select an App based on the security pa-
rameter k and receive pk < (k,App). Then each B() runs
A(x,App,pk) and answers its queries as follows:

* For each j’th encryption query (xo, x), it stores the plain-
texts and the computed ciphertexts, and returns to 4:

Encpk(x1), if j <i
Encpk(x0), if j > i
Expry”[B1)], if j =1.

ctj <

e For the query C, it lets ct’' + Evaly(C,ct) if C €
App,C(x9) = C(x;) and xp,x; € dom(C), and returns
ct’ to 4.

* For the decryption query for ct’, it returns C(xo) to 4.

Finally, when 4 outputs bit 4, B\ also outputs 5'.

Define the following hybrid distributions #H() =
Expry™ (8] for 1 <i <nand H"+1) = Expri?[B™)]. Note
that by construction, # () = Expr{™[B~] for2 <i < n. Us-
ing the exact correctness of £ with respect to App, it holds that
the decryption response from B0 to 4 are indistinguishable
from those received by 4 in ExpriP* [ﬂl] This leads to hav-

cpad []

ing indistinguishability between #(!) and Expr and

between #H"+1) and Expri %[4]. Therefore, using a union
bound over the hybrid distributions gives that the advantage
of 4 in the IND-CPAP game is smaller than the sum over the
advantages of the n adversaries B() in the IND-CPA game.
Given E was assumed to be IND-CPA-secure for App, the ad-
vantage of each B is negligible and n is polynomial in ,
therefore the advantage of 4 in the IND-CPAP game for App
is also negligible. O

C.2 Approximate Schemes

The starting point of the transformation to achieve IND-CPAP-
security is an application-aware approximate FHE scheme
E = (E, Estimate). The scheme is assumed to satisfy only an
IND-CPA-security notion and the correctness property. In our
setting, the relevant correctness notion is that of static approxi-
mate correctness (Definition 9). The transformation from [39],
described in Algorithm 2, uses a mechanism M to define
new KeyGen’ and Dec’ algorithms, producing a new scheme
M[E] = (KeyGen', Enc, Eval,Dec). The mechanism M, is
simply a randomized algorithm that adds some flooding noise,
parameterized by , to the output of the (IND-CPAP-insecure)
decryption function Decg,. The amount of noise required in
the decryption algorithm to achieve IND-CPAP-security is
quantified in [39] by the notion of p-KLDP (Kullback-Leibler
Differential Privacy, see Appendix A.2), for a sufficiently
small value of p.

18

Algorithm 2 Application-aware M [E] for App.
KeyGen'(k,App) :=

1: (sk,pk) + KeyGen(k,App)

2: t + Estimate(App)

3. sk’ = (sk,¢)

4: return (sk’, pk)
Decly(ct) :=

1: return M;(Decg(ct))

We remark that the input scheme £ is required to satisfy
the static notion of approximate correctness with respect to
the Estimate function given as input to the transformation,
in order for the output scheme M|E] to be secure. M[E] will
also satisfy approximate correctness, but with respect to a
different (typically larger) Estimate’ = M, [Estimate] func-
tion, which includes the additional error introduced by the
mechanism M,. However, since the definition of IND-CPAP
security (Definition 10) does not involve the estimation func-
tion, we will not be concerned with Estimate’. Determining
Estimate’ is important to assess the quality of the output and
usefulness of an application that performs secure approximate
computations on encrypted data, but it is not directly relevant
to security. What is critical for security is that the original
(IND-CPA-secure) scheme is correct with respect to the origi-
nal Estimate function, used to determine the parameter ¢ used
by the security mechanism M;. The formal security statement
is given in the following theorem.

Theorem 2. Let E = (KeyGen, Enc, Dec, Eval) be an approx-
imate FHE scheme with normed message space M and ap-
plication space from L. Let Estimate : 2© — Rx be an ef-
ficiently computable function such that E = (E, Estimate)
be application-aware statically approximate. Let M; be a

p—KLDP mechanism on M, where p <27 %7 If E is (k+8)-

bit secure in the application-aware IND-CPA game, then M|E|
is x-bit secure in the application-aware IND-CPAP-game.

Proof. The proof follows the same steps as the proof in Theo-
rem 2 in [39], using similar modifications for the application-
aware non-adaptive case as in the proof of Theorem 1. [

Li et al. [39] illustrated how to use the notion of
bit-security [42, 43], described in Section 2.1, to achieve
IND-CPAP-security with a lower amount of DP noise than
in Theorem 2. The idea is that the statistical security level
s cannot be lowered by the adversary simply by investing
more running time: any adversary running in time 7" will have
advantage at most 2~ ™in(s¢/10¢7) jp preaking the scheme. So,
it is often acceptable to use s < c¢. Since the statistical pa-
rameter s directly influences the additional noise used by the
mechanism M;, this results in a scheme M [%] which is approx-
imately correct with respect to a better Estimate’ function,
and produces higher quality results.

However, it is important to understand that the adversary
running time does not affect the statistical security level s only
as long as the adversary makes the same number of decryption
queries. This is the case, for example, in Theorem 2, which
uses a security definition where the adversary is limited to a
single computation/decryption. This is typically not an issue
in applications of approximate FHE schemes, where the appli-
cation can control the number of decryption queries. Issuing
¢ decryption queries (e.g., as in the fully adaptive security
definition) allows the adversary to gain a 2° factor in both
statistical and computational security. So, while s = 64 (or
even lower values) may be acceptable in some applications
that make a single or small number of decryption queries, it
can result in a total break in applications where the same key
is used to perform a large number (say, 2°°) of homomorphic
evaluations.

Let CKKS denote an instantiation of the application-secure
scheme £ = (KeyGen, Enc, Eval, Dec) with algorithms cor-
responding to the CKKS algorithms form [12, 31]. Practi-
cally, M; from Theorem 2 is instantiated via a discrete Gaus-
sian mechanism (Definition 15 in Appendix A.2). Specifi-
cally, in Algorithm 2 for CKKS, for a positive 6, Decy, (ct) =
Decs(ct) + Nzn (0,67 - 12 -1,). To capture the dependency on
o, we denote the corresponding CKKS scheme instantiation
from Algorithm 2 as M [E_K\P@]G Using the bit-security notion,
one can obtain the following result for an IND-CPAP-secure
instantiation, adapted from [39], which can be extended to
{-decryptions queries in the fully adaptive model.

Theorem 3. If CKKS is (c + log, 24)-bit application-aware
IND-CPA-secure, then, for 6 = \/12-2%/2, M[CKKSs is (c, s)-
bit application-aware IND-CPAP-secure.

Proof. The proof follows the proof of Corollary 2 in [39],
with the correction mentioned in [47]. O

For the fully adaptive version of the application-aware
IND-CPAP game, where the adversary can make multiple de-
cryption queries, one has to parameterize Theorem 2 and
Theorem 3 by the number of decryption queries ¢, as done
in [39].

D Comparison with [35]

In [35], the notation F-IND-CPAP is used to capture the re-
striction of the evaluation function to a class of circuits F.
However, in [35, Theorem 6.5], the set ¥ is a global param-
eter of the FHE scheme, and it is not part of the syntax of
the key generation algorithm. Moreover, the function set F
does not explicitly capture any restriction on the encrypted
input values. Another difference between [35] and our work is
that [35] defines F as a set of functions mapping ciphertexts
to ciphertexts, with the intent to capture ciphertext manage-
ment operations (such as bootstrapping, key switching, etc.),

19

which cannot be described as pure functions of plaintext data.
Using functions F: C¥ — (that directly work on cipher-
texts is problematic for a number of reasons: to start with,
the set ¥ only makes sense in the context of a specific en-
cryption scheme, and one cannot use it to capture restricted
functionalities, such as additive homomorphic encryption,
in an abstract way. Perhaps more importantly, an arbitrary
function F: C¥ — C cannot be mapped to a well-defined
function f(m) = Dec(F (Enc(m)) on messages, because Enc
is randomized, and the same message may be mapped (ho-
momorphically) to the encryption of different messages un-
der F. On the other hand, our proposed ASL easily maps to
(well-defined) functions on messages, and is also designed to
include additional information, such as directives to the eval-
uation function on where to apply bootstrapping. However,
this remains abstract, and how it maps to ciphertext is left to
the definition of the Eval function which is part of the FHE
scheme instance, rather than the abstract definition of FHE
syntax and security.

E More on Section 6

E.1 Further comments on attacks in [25]

In [25], the attack is described using the adaptive definition
of IND-CPAP (we gave the definition of application-aware
IND-CPAP in Definition 18). The attack specifies the same
circuit C(x1,...,%,) =x1 + ...+ x, in the estimation and run-
time evaluation, but in one the inputs are on different database
indices, and in the other they are all at the same database
index. This translates to using independent ciphertexts in the
estimations but using correlated ciphertexts at run-time. The
adversary does not have chosen-ciphertexts capabilities, so
below we illustrate how this is achieved through the language
of Definition 18.

Concretely, the computation trace specified by the at-
tacker when choosing App is not the same as the
computation trace specified to the evaluation oracle.
In particular, the computation class is specified as
App = {E(x1),...,E(x,), H(C,1,2,...,n),D(n+ 1)}. Dur-
ing the IND-CPAP experiment, the attacker specifies a
sequence of calls {E(x;),H(C,1,1,...,1),D(n+ 1)} (or
{E(x1),...,E(xn),H(C,1,1,...,1),D(n+ 1)}) which is not
allowed in the application-aware model, since it has a differ-
ent computation trace.

Another claim from [25] against non-worst-case estimates
is that “the user in possession of the secret key may lack prior
knowledge of the function to be evaluated, as could occur in
cases involving private circuits”. Presuming the function is
private falls under the function-privacy model. We discussed
in Section 3 that function-privacy requires a different defini-
tion of IND-CPAP, both in the generic and application-aware
models. Satisfying these new definitions would require differ-
ent estimations than in the non-function-private model, and

the existing libraries do not claim security in the function-
private model.

E.2 Further comments on attacks in [10,11]

Folkore attack on BFV/BGYV. We briefly describe a folk-
lore attack on schemes such as BGV/BFV where decryption
is allowed despite an overflown ciphertext error. This discus-
sion [3] happened following the responsible disclosure of the
attack in [38].

Consider a toy version of the BGV scheme with plaintext
space Z, and ciphertext space Rp, with the secret key sk =
(1,s), where s < {0,—1,1}" is sampled from the uniform
ternary distribution. The encryption of a (possibly encoded)
message Encsk(m) = (a,b) € R%, where a <+ Rg and b =
a-s+ p-e+m, for e < A(0,0) with support Rg. To decrypt
a ciphertext of form ct = (a,b), one performs Decg((a,b)) =
b—a-s mod p. An attacker submits the message m = O to the
encryption oracle, resulting in a ciphertext ct = (a,b) with
randomly sampled a and b =a-s+ p-e mod Q. The attacker
then requests the evaluation of a circuit adding the input to
itself p~! — 1 mod Q times and finally asks for the resulting
ciphertext ct’ = ct+... +ct = (/,b'). Note that ct’ = (a-
p~!mod Q,(a-s+p-e)-p~! mod Q). As such, Decg(ct') =
(p-e)-p~! mod p=e mod p. Itis clear that when e < p, then
one can recover the secret key via linear algebra. The attack
can also be extended for when e > p.

What makes the folklore attack possible is allowing for
as many additions as to lead to an incorrect decryption re-
sult (and implicitly, to a scheme that does not satisfy exact
correctness even probabilistically, with negligible failure prob-
ability). Note that in this attack, Q (and p) is specified first,
and the number of additions required depends on this value.
However, in Definitions 8—10, one specifies the application
class in the key generation algorithm. This would translate
to the user specifying the addition circuit, which fixes the
number of inputs and the number of addition gates, and ob-
taining public parameters that are correct with respect to this
computation (one can specify multiple circuits, but all have
the number of inputs and gates fixed). Then, during run-time,
only the evaluation of this computation is allowed, which with
high probability, disallows adding a value for p~! — 1 mod Q
times.

Attacks on OpenFHE. In particular, the attacks in [10, 11]
are a good example of the risks of not following Protocol 1.
The attacks against OpenFHE go through not because of the
use of average-case noise estimation instead of worst-case
estimation (for addition in BGV/BFV, OpenFHE uses worst-
case estimation), but because the circuit to be evaluated is not
specified correctly. OpenFHE does not support a sufficiently
granular application specification—see Section 5.2—in order
to directly specify C' (in (2), (3)), for the doubling attack
from [11], but only allowed specifications of circuits such as

20

C (in (1)). The OpenFHE use of BGV/BFV for this scenario
that would have prevented the attack would require the user
to supply the number of additions of independent inputs (so
2% instead of 44) before generating the parameters using
SETEVALADDCOUNT, or an equivalent multiplicative depth
using SETMULTIPLICATIVEDEPTH. The same could have
been done for the attack in [10] where the circuit is purely
made of addition gates. Additionally, to reduce the number
of additions, [10] uses an optimization involving rotations,
which should also be accounted for when specifying the al-
lowed application class via SETKEYSWITCHCOUNT, as it
affects the noise estimation bound. Regardless, the correct
way to prevent these attacks is to have the libraries support
a sufficiently descriptive application specification language,
such as what we proposed in Section 4, as to avoid any con-
fusion on how to specify the circuits on which the parameter
sets are being computed for.

E.3 Attacks related to FHEW/TFHE schemes

The works [10, 11] also describe attacks against the schemes
implemented in the TFHE-rs [50] and TFHELIb [14] libraries,
which fall in a different category, related to the incorrect set-
ting of parameters with respect to the (c,s)-security.

CGGI/TFHE is a DM/FHEW-like cryptosystem that allows
to evaluate arbitrary (boolean) circuits performing bootstrap-
ping after each gate. In this context, the set of functions £ sup-
ported by the scheme does not represent entire applications,
but individual gates, which are combined together to evaluate
a complex function. Since bootstrapping is applied after every
gate, this should make the library easier to use, and parameter
configuration less error-prone. The attacks in [10, 11] use the
default parameters of specific libraries. However, these attacks
do not necessary apply to custom parameters and/or other li-
braries, e.g., the FHEW/TFHE implementation in OpenFHE
allows the user to generate a custom parameter set with a user-
defined bootstrapping probability of failure that corresponds
to negligible decryption error even for large circuits.

The attack in [10] exploits the fact that TFHE (like essen-
tially all lattice-based cryptosystems) is linearly homomor-
phic and supports the evaluation of addition operations (in
fact, exclusive-or, or addition modulo 2) very efficiently, with-
out resorting to bootstrapping. Then, by evaluating a huge
number of additions (beyond what can be supported by the
selected scheme parameters—TFHELIib [14] does not automat-
ically apply bootstrapping after a gate evaluation)—one can
trigger decryption errors and recover the secret key. Concep-
tually, this attack is similar to the attacks described before:
since addition is performed without bootstrapping, the maxi-
mum number of homomorphic additions before bootstrapping
should be specified at key generation time, and taken into ac-
count during parameter generation. Our application-aware
security definition allows only the evaluation of circuits that
respect that bound and using the proposed ASL to describe

and validate the circuits would disallow the attack. Alterna-
tively, as the number of additions approaches the allowed
limit, the library or user may inject a bootstrapping operation
to reset the noise to acceptable levels.

On the other hand, the attack in [11] also exploits a weak-
ness of the TFHE-rs library: the choice of a fairly large cor-
rectness error of 274 or even 2717 (for Concrete-python).
Note that such parameters are not correct according to Defi-
nition 3, which requires decryption errors to have negligible
probability. Selecting such parameters to maximize perfor-
mance allows [10, 11] to trigger decryption errors and mount
a key recovery attack.

Concretely, with respect to the (c, s)-security, an incorrectly
set probability of failure for the whole circuit can lead to key
recovery attacks. The probability of decryption failure for a
single bootstrapping operation can be exposed as an input
parameter for certain schemes where it has a major impact on
the efficiency, e.g., DM or CGGI. This application-specific
configurability can be used to achieve better efficiency while
still providing a negligibly small probability of failure for a
given application class, ensuring this is required to prevent an
attack described below. OpenFHE provides a parameter gen-
eration tool [46] for DM, CGGI, and LMKCDEY that takes
the bootstrapping probability of failure as an input argument.
Finally, the number of evaluated gates (under a single key),
which can be extracted using the ASL, should be accounted
for by choosing a smaller failure probability for the single
bootstrapping operation, such that the union bound over all
gates yields an acceptable failure probability.

21

	Introduction
	Our Contribution
	Organization

	Preliminaries
	Measuring Security
	Correctness properties
	Generic Security Definitions

	Application-Aware Security Models
	Application Specification Languages
	Practical Guidelines for Application-Aware Homomorphic Encryption
	Application-Aware Approximate FHE
	Application-Aware Exact FHE

	Discussion of Secret Key Recovery Attacks
	Attacks on Approximate FHE schemes
	Attacks on Exact FHE schemes

	Concluding Remarks
	More preliminaries
	Security Games
	Differential Privacy
	Ring Learning With Errors

	Fully adaptive definitions
	Equivalence between IND-CPA and IND-CPAD for Application-Aware Schemes
	Exact Schemes
	Approximate Schemes

	Comparison with knabenhansMS
	More on Section 6
	Further comments on attacks in USENIX:GNSJ24
	Further comments on attacks in C:CSBB24,CCS:CCPSS24
	Attacks related to FHEW/TFHE schemes

