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Abstract. We propose a modification to the fork choice rule of proof-
of-work blockchains. Instead of choosing the heaviest chain, we choose
the chain with the most intrinsic work. The intrinsic work of a block is
roughly the number of zeroes at the front of its hash. This modification
allows us to safely speed up the protocol, yielding a roughly 40% improve-
ment in confirmation delay as compared to Bitcoin for adversaries close
to 10%. Our modification is at the level of the proof-of-work inequality,
and thus can be composed with any other methods to improve latency
proposed in the literature (e.g., GHOST). We compile detailed simula-
tion evidence from 3,000 years of simulated executions of our system
across different parameters. We formally prove the security of our new
protocol in the Bitcoin Backbone model. These proofs use a new tech-
nical tool, the real-valued Random Oracle which may be of independent
interest.

1 Introduction

In Bitcoin [24], a valid block must satisfy the proof-of-work inequality H(B) < T ,
where H is a hash function and T is a small target. Simply put, valid blocks must
have hashes that begin with a desired number of 0s. Some blocks satisfy the in-
equality better than others: They have a bunch of extra zeroes at the front of
their hash. Nevertheless, these “heavier” blocks are counted all the same when
choosing which chain to mine on. We posit that the weight of a block is infor-
mation that can be useful to improve the protocol. In this paper, we introduce
PoEM. We modify the fork choice rule of Bitcoin to take this information into
account, achieving better confirmation latency.
Construction overview. Miners still mine on the heaviest chain. We only
change how chains are scored. In Bitcoin, every block counts for the same work6.
In PoEM, we give each block a score equal to the number of extra zeroes at the
front of its hash, a value we call its intrinstic work. Honest parties adopt the
chain with the most total intrinsic work.

6Bitcoin blocks can count differently when difficulty adjusts, but count the same
during the same epoch. Our analysis is in the static population setting [10], where the
population does not change with time.
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Fig. 1: A Bitcoin (left) and a PoEM (right) execution where the honest parties
(top) and the adversary (bottom) are handed the same blocks. The honest PoEM
tree grows faster than the honest Bitcoin tree as compared to the adversarial
chain.

To guarantee security, it suffices [5] that the work of any honest chain grows
faster than the work of the adversary’s chain. Suppose we have n blocks produced
in quick succession. If they are honestly produced, they will be placed in parallel
due to network delays, forming n forks. If they are adversarially produced, since
no network delay is incurred, they will be placed in series, forming a chain of
length n. In Bitcoin, all blocks count the same constant amount of work w. So the
honest chain grows by w, and the adversarial chain grows by nw. In PoEM, each
block is scored differently: w1, w2, . . . , wn, but has an expected work of w. The
adversarial chain grows by the sum of its blocks’ work,

∑n
i=1 wi. In expectation,

this is equal to nw, same as Bitcoin. However, the honest chain now grows by the
heaviest block’s work: maxi wi, which in expectation is greater than w. Hence,
in expectation, honest PoEM chains grow faster than honest Bitcoin chains in
relation to the adversary’s chain.

Let’s look at the example in Figure 1. The same blocks, with the same amount
of work, are given to both the adversary and the honest parties. The adversary
places all her blocks in series, while the honest blocks are necessarily placed
in parallel due to network delay. In Bitcoin, the adversary makes 3 times the
progress that the honest parties make. However, in PoEM, the adversary only
makes 2 times the progress that the honest parties make. This means that honest
work is more effectively utilized in PoEM than in Bitcoin. Less honest work is
wasted.
Our contributions.

– We construct a protocol which retains the same level of security as Bitcoin,
while achieving better confirmation latency because the block production
rate can be safely increased.

– We simulate over 3,000 years of continuous-time executions of both Bitcoin
and PoEM using a combination of numeric and analytic techniques across a
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range of parameters and conclude that PoEM is 40% faster in latency than
Bitcoin for a 10% adversary.

– We prove the security of PoEM in the Bitcoin Backbone [10] model. This
requires novel techniques such as the real-valued random oracle, a hash model
that returns a continuous value. We prove it behaves identically to the usual
random oracle with overwhelming probability.

– We deployed a production testnet in which more than 2,000 miners from
the community participated with an average hash rate of 50 GH/s using
ProgPoW [23].

Related work. Bitcoin was first proven secure in the static population set-
ting [10], and later also studied in the variable population setting [11]. The
idea of using a more nuanced proof-of-work inequality in which some blocks
are considered heavier than others was first put forth by Andrew Miller [22],
with the first complete protocol to utilize it being Proofs of Proof-of-Work [16].
These were later refined multiple times to account for non-interactivity [18],
backwards compatibility [19], onlineness [17], on-chain data efficiency [15], gas
consumption [4], bribing resilience [31], and variable populations [30]. We are the
first to modify the fork choice rule to take these refinements into account, follow-
ing our previous short paper “POEM: Proof of Entropy Minima” [21], where the
entropic fork choice rule was defined but not analyzed. Our work only changes
the PoW inequality. Other mechanisms refining the fork choice rule are orthog-
onal and can be combined with our approach, yielding even further performance
gains. Such examples include GHOST [28], PHANTOM [29], SPECTRE [26],
and GhostDAG [27]. Additional mechanisms towards improving the latency and
throughput of proof-of-work blockchains at the consensus layer, also compos-
able with ours, include parallel chains [8], separation of transaction/consensus
blocks [1], hybrid approaches between proof-of-work and proof-of-stake [20], and
the use of microblocks [7].

2 Definitions & Model

Notation. Given a sequence Y , we address it using Y [i] to mean the ith element
(starting from 0). We use |Y | to denote the length of Y . Negative indices address
elements from the end, so Y [−i] is the ith element from the end, and Y [−1] in
particular is the last. We use Y [i:j] to denote the subarray of Y consisting of the
elements indexed from i (inclusive) to j (exclusive). The notation Y [i:] means
the subarray of Y from i onwards, while Y [:j] means the subsequence of Y up to
(but not including) j. The notation ∥ denotes the concatenation of two strings.
Given a sequence of strings (Yi)i∈[n] we denote by

∥∥
i∈[n]

Yi the concatenation
of all the strings in the sequence, in order. We denote by Bern(p) the Bernoulli
distribution with parameter p, and Exp(λ) the exponential distribution with
mean 1

λ . We use → to mean implication, and ⇒ to mean a logical deduction
step in a proof.

The protocols we are interested in are known in the literature as distributed
ledger protocols (or logs, consensus, state machine replication, or full atomic com-
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mit channels) and are operated by a set of mutually untrusted parties among
which the majority will be assumed to be honest, take as input unordered trans-
actions, and produce as output a safe and live stable ledger of transactions (i.e.,
a sequence of transactions).

Definition 1 (Distributed Ledger Protocol). A distributed ledger protocol
is an Interactive Turing Machine (ITM) which exposes the following methods:

– write(tx): Takes user input by accepting some transaction tx.
– read(): Produces user output in the form of a ledger (a sequence of trans-

actions)

The distributed ledger protocol is executed by a set of n parties. In a dis-
tributed ledger protocol execution, the notation PLLLr denotes the output of
read() invoked on party P at the end of round r. We will call PLLLr simply
the ledger of P at r, implying that it is the stable ledger reported by P . We note
that, in our treatment, ledgers are simple sequences of transactions, not blocks.

We denote that ledger P1LLLr1 is a prefix of ledger P2LLLr2 , using the notation
P1LLLr1 ≼ P2LLLr2 . When (P1LLLr1 ≼ P2LLLr2) ∨ (P2LLLr2 ≼ P1LLLr1) holds, we use the
notation P1LLLr1 ∼ P2LLLr2 .

Definition 2 (Safety). A distributed ledger protocol is safe if for any honest
parties P1, P2 and any rounds r1, r2, it holds that P1LLLr1 ∼ P2LLLr2 .

Definition 3 (Liveness). A distributed ledger protocol is live(u) if for any
honest party that attempts to inject a transaction tx at round r, it holds that
tx ∈ PLLLr+u for all honest parties P .

Definition 4 (Security). A distributed ledger protocol is secure if it is both
safe and live(u).

Blocks & Mining. Similar to Bitcoin, our protocol consists of miners who
attempt to find blocks. Each miner locally maintains their adopted chain C,
which is the best chain so far. A chain is a sequence of blocks beginning with a
known genesis block G, considered honest by definition. A block is a triplet of
the form B = (h, x, ctr), where h ∈ {0, 1}κ is a reference to the previous block,
x ∈ {0, 1}∗ contains the transactions of the block, and ctr ∈ N is a nonce used to
produce proof-of-work. The hash of block B is denoted as H(B) = H(h ∥x ∥ ctr).
The h is a reference to the previous block hash H(B′). We let H be a κ-bit hash
function, normalized to the interval [0, 1). 7 Despite the normalization, the hash
can be stored in a κ-bit string. When a chain C appears in the execution, we
say that block C[j] extends block C[i] if i < j.

Each honest party attempts to mine a block extending the chain they cur-
rently have by brute forcing the nonce ctr until H(B) < T , where T is the fixed
target. When this happens, the block is broadcast to all other parties.

7The deployed hash function of, e.g., Bitcoin, is SHA-256, which outputs a 256-bit
string. The value can be scaled to the interval [0, 1) by dividing by 2256.
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Bitcoin Backbone. We analyze the protocol using the model introduced in
the Bitcoin Backbone [10] paper. The polynomially bound protocol execution is
parametrized by a security parameter κ ∈ N and orchestrated by an environment
Z which is not unlike Canneti’s UC model [3]. The execution commences in
discrete rounds 1, 2, . . ., and has a total duration of L, polynomial in the security
parameter κ. We assume a synchronous communication network with a fixed
delay of ∆ = 1: If an honest party sends a message to the network at some
round r, this message is delivered to all honest parties (including itself) at round
r+1. We also assume a static setting, where the protocol is executed by a fixed
total number of n ∈ N parties, unknown to the honest parties. In the execution,
the adversary controls t < n of the parties, and each of the n − t other parties
are honest and execute the prescribed Distributed Ledger Protocol. We let the
first 1, 2, . . . , n − t parties be the honest parties and the last n − t + 1, . . . , n
parties be the corrupted parties, which may behave arbitrarily. This choice is
without loss of generality [10, Proposition 18]. Parties communicate through an
unauthenticated network, meaning that the adversary can “spoof” [6] the source
address of any message that is delivered. The adversary can also send different
messages to different parties in the same round.
Static difficulty. Our analysis is in the static population model in which the
difficulty and target remain static. In the static model, Bitcoin uses the longest
chain rule [10], where each block counts for 1 unit. On the contrary, in the
real deployment of Bitcoin, the difficulty is dynamically adjusted (the variable
population model [11]), and the heaviest chain is chosen. The scoring in the
variable difficulty model makes each block count for 1

T ∈ (1,∞), where T ∈ (0, 1)
is the nominal target of the block, although T is adjusted from epoch to epoch.
In PoEM, we count the intrinsic work of each block, which is different from the
nominal target T and depends on the value H(B) < T , and choose the heaviest
chain based on this rule: Each block counts for − lg H(B)

T . In both Bitcoin and
PoEM, block validity is the same: A well-formed block is valid if H(B) < T . Like
Bitcoin, PoEM can also be adapted to work in the variable difficulty setting by
adjusting the difficulty depending on the observed block production rate of the
system. We perform our analysis in the static population model, and leave the
analysis in the variable population model for future work.

We let H(x) be a κ-bit hash function, normalized to the interval [0, 1). One
can construct such a normalized hash function by invoking a usual κ-bit hash
function (e.g., SHA256) and dividing the output by 2κ. We model H as a random
oracle.
The q-bounded model. Following the tradition of the Bitcoin Backbone [10]
paper, during each round, each honest party is allowed to query the random
oracle with q different x values. Similarly, the adversary is allowed to query the
random oracle with tq different x values.
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3 Construction

In the PoEM construction, only the fork choice rule of the original Bitcoin pro-
tocol is modified. Honest parties, instead of adopting the longest chain, at the
beginning of each round, now adopt the chain with the most intrinsic work.

Algorithm 1 The honest party.

1: G
2: C ← [ ]
3: function constructor(G′)
4: G ← G′ ▷ Select Genesis Block
5: C ← [G] ▷ Add Genesis Block to start of chain
6: round ← 1
7: end function
8: function executenet(1κ)
9: M̄ ← net.receive() ▷ Receive chains from the network

10: C ← maxvalid(C ∪ M̄) ▷ Adopt heaviest chain
11: x← input() ▷ Take all transactions in mempool
12: B ← PoW(x,H(C[−1])) ▷ Mine a new block
13: if B ̸= ⊥ then ▷ Successful mining
14: net.broadcast(C ∥B) ▷ Broadcast mined chain
15: else
16: net.broadcast(C) ▷ Broadcast adopted chain
17: end if
18: round ← round+1
19: end function
20: function read
21: return ([:−k]◁ C).x
22: end function

Definition 5 (Block Intrinsic Work). The intrinsic work of a block hash
A ∈ {0, 1

2κ ,
2
2κ , . . . ,

2κ−1
2κ } is denoted work(A) = γ−lg A

T ∈ [γ,∞], where γ ∈ R+

is the bias parameter of the protocol.

For genesis, we set work(G) = 1 (an arbitrary constant) by convention.

Definition 6 (Chain Intrinsic Work). The intrinsic work of a chain C is
the sum of the intrinsic work of all blocks in C. It is denoted as work(C) =∑

B∈C work(H(B)).

Blockchain notation. For chain C, we write [α]◁ C to denote the block C[i]
of C such that work(C[:i]) < α ≤ work(C[:i+ 1]). If work(C) < α, then let
[α]◁C = ⊥. If α is negative, then [α]◁C is defined as the block C[i] of C such
that work(C[i:]) > −α ≥ work(C[i+ 1:]). We use the slicing notation [α:β]◁C
to denote C[i:j] where i is the index of [α] ◁ C and j is the index of [β] ◁ C
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in C respectively. The notation [α:]◁ C means C[i:], and the notation [:β]◁ C
means C[:j], where i and j are defined with respect to α and β respectively as
above. Any continuous chunk of blocks C[i:j] is called a subchain of C. Given a
block B, we denote by B.x the sequence of transactions included in B. Given a
chain C, we denote by C.x the sequence of transactions in all the blocks of C in
order, namely

∥∥
B∈C

B.x.
In Algorithm 1 we show the code of an honest party. First, the party is

constructed using the constructor function (Line 3). In every round, each
party is executed by the environment using function execute (this is an artifact
of the lockstep round-based nature of our time model).

Algorithm 2 The Proof-of-Work discovery algorithm
1: function PoWH,T,q(x, h)
2: ctr

$← {0, 1}κ
3: for i← 1 to q do
4: B ← h ∥x ∥ ctr
5: if H(B) < T then
6: return B
7: end if
8: ctr ← ctr + 1
9: end for

10: return ⊥
11: end function

The honest party begins each round with a certain value stored in his chain
C. We say that the honest party has chain C at this round. The party calls
net.receive() to get all the chains from the network (Line 9) and chooses
the “best” chain among them. We say that the honest party adopts this chain.
By PCCCr, we denote the chain that was adopted by party P at round r. This
comparison for the “best” chain is performed by function maxvalid in Line 10,
and is the single point that we deviate from the original Bitcoin protocol. Next,
the honest party attempts to mine a block using the PoW function (Line 2),
which also remains the same as the original protocol: He repeatedly tries to
find a block B that satisfies the PoW equation H(B) < T , where the target
T ∈ {0, 1

2κ ,
2
2κ , . . . ,

2κ−1
2κ } is a small real number in the interval [0, 1). If a block is

found, this block is broadcast8 to the network using function net.broadcast().
We will now analyze the functionality maxvalid. The method receives as

input a set of chains and returns the “best” chain based on a validation and
chain adoption rule. The function iterates over all provided chains and first
checks their validity in Line 9, using function validate (Algorithm 4). The

8We use the term broadcast to mean the unreliable, best-effort anonymous manner
of communication between honest parties that guarantees message delivery from one
honest party to all other honest parties. This is called diffuse in the Backbone series
of works.
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Algorithm 3 The maxvalid algorithm
1: function maxvalidG(C)
2: Cmax ← [ ]
3: maxwork← 0
4: for C ∈ C do
5: if ¬validateG(C) then
6: continue
7: end if
8: thiswork← work(C)
9: if thiswork > maxwork then

10: Cmax ← C
11: maxwork← thiswork
12: end if
13: end for
14: return Cmax
15: end function

validate function remains unchanged compared to Bitcoin. The chains that
satisfy the validation rule are compared with one another to find the chain with
the most intrinsic work (hereforth “heaviest chain”). Finally, in Line 14, we
return the “best” chain Cmax.

Algorithm 4 The chain validation algorithm remains unchanged. First, in
Line 2, we check that the first block of the chain is the genesis block. Then, in
Line 8, we check that all blocks satisfy the PoW equation and correctly point to
their previous block. State transition validation is excluded for simplicity.
1: function validateG(C)
2: if C[0] ̸= G then
3: return false
4: end if
5: ĥ← H(C[0])
6: for B ∈ C[1:] do
7: (h, x, ctr)← B
8: if H(B) ≥ T ∨ h ̸= ĥ then
9: return false ▷ Invalid PoW or ancestry

10: end if
11: ĥ← H(B)
12: end for
13: return true
14: end function

When the time comes to report the stable chain (function read in Algo-
rithm 1 Line 20), after the function execute has been called, the honest party
removes the unstable part of the chain, namely the last k bits of work from the
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chain, and reports the remaining chain as stable. Note that, contrary to Bitcoin,
the variable k is measured in bits of work, and not in blocks (looking ahead, k
will be shown to be polynomial in the security parameter κ, and we will calculate
its value in the analysis section).

This concludes the PoEM construction.

4 Experiments

In this section, we report on experimental measurements illustrating the concrete
improvements in latency of PoEM as compared to Bitcoin. We implemented a
stochastic simulation in 1500 lines of Rust code9 and used Python’s matplotlib
to plot the results comparing Bitcoin and PoEM.

We simulate various executions of Bitcoin and PoEM with different param-
eterizations. In each simulated execution, we fix the block production rate g
(honest blocks produced per network delay ∆), the adversarial ratio β (ratio of
adversary’s mining power divided by the total mining power), and, for PoEM,
also the bias parameter γ, and we measure the latency of the system. The la-
tency is defined as the time it takes for a new transaction to become stable in the
system (i.e., k-confirmed for a sufficiently large k). The challenge is to measure
the latency of the two systems at the same security level. As the two systems
operate differently, simply taking the same number of blocks (or work) does not
constitute a fair comparison.

We measure the time needed from the moment an honest block is mined
until the first time any honest party considers the block stable, and only for
those blocks which eventually do become stable. We use the private mining
attack as the adversarial strategy, which was proven [5] to be the best possible
attack against Bitcoin in the continuous-time model [14]. In a nutshell, in this
strategy, the adversary mines blocks in private on her own chain, whereas the
honest parties mine their own blocktree, following the heaviest chain rule (in
Bitcoin) or the most intrinsic work rule (in PoEM) respectively. The adversary
imposes a network delay of ∆ on honest parties. Our simulation begins with all
honest parties and the adversary agreeing on a particular genesis block G with no
premining having occurred. At that point, the adversary uses the private mining
strategy with the goal of conducting a double-spend in a block immediately
following G. For a particular execution simulation sample, we determine the
safe confirmation parameter k that the honest parties should have used to avoid
this double-spend. Whereas in our experiments, this confirmation parameter is
determined retroactively, in the real implementation, the confirmation parameter
should be determined prospectively.

We simulate the adversary and the honest parties independently. On the one
hand, the adversary mines blocks in a chain without incurring any delay, and
therefore without any forks. The adversary’s block production rate is g β

1−β . On
the other hand, the honest parties incur a network delay of ∆ for each mined

9The source code is available in the following repository: https://github.com/
commonprefix/poem/tree/main/simulation

https://github.com/commonprefix/poem/tree/main/simulation
https://github.com/commonprefix/poem/tree/main/simulation
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block, and they mine blocks at a rate of g. Because of this delay, the blocks
mined by the honest parties form a blocktree.

To save time, instead of wastefully simulating proof of work, we artificially
simulate block production using a continuous-time stochastic process. We know
that the time between the creation of two honest blocks is exponentially dis-
tributed with rate g (because the times of block creation form a Poisson point
process [14]). Hence, we take multiple independent samples from exp(g) to get
the interval between each successive honest block production event, thereby giv-
ing rise to a Poisson point process of honest block creations (even though these
blocks may not necessarily be placed in a chain). We simulate a similar indepen-
dent Poisson point process for the adversary by sampling from exp(g β

1−β ). These
two stochastic processes produce the block creation times of the honest and ad-
versary parties, from which we can determine the blocktree that was constructed
taking the delay into account.

In Bitcoin, the work of each block is equal to one, whereas in PoEM, the work
of a block is distributed as γ+exp( 1

ln 2 ) (as we show in the Analysis section). Note
that these biased exponential samples of work are a different, parallel process
from the exponential samples of time intervals between block creations. Hence,
in PoEM’s case, we sample from γ+exp( 1

ln 2 ) to get the work of each block in the
execution. The creation time of each block and its work are enough to simulate
the honest parties’ execution and determine the blocktree that was constructed.
The honest blocktree is computed as follows: We create a list of events pertaining
to either the creation of a new honest block, or the arrival of the block to the
rest of honest parties ∆ later10. We sort these events in chronological order and
process them one by one. Throughout time, we maintain a single value indicating
the cumulative work of the heaviest chain seen so far by all honest parties. For
every block, we also keep the cumulative work of the chain ending at that block.
At the block creation event, we compute the cumulative work associated with
the block as the cumulative work of the heaviest chain seen so far plus the work
of the block (1 in Bitcoin, sampled in PoEM). At the block arrival event, we
compare the cumulative work of the chain ending at the arrival block with the
cumulative work of the heaviest chain seen so far11. If it is heavier, we update
our best cumulative work value. Every time we update the best cumulative work
value, we remember this cumulative work together with the creation timestamp
associated with the block that caused the work to increase.

Then, independently we simulate the adversary’s execution. Like in the hon-
est execution, we sample from exp(g β

1−β ) to get the interval between the time
of successive adversarially produced blocks, where g β

1−β is the adversary’s block
production rate. Then, similar to the honest simulation, we set the work of each
block to 1 in Bitcoin, and sample from γ+exp( 1

ln 2 ) to get the work of each block
in PoEM. Since the adversary has no network delay, all her blocks are chained

10Delaying all blocks by the maximum possible delay ∆ was proven to be an optimal
adversarial strategy [5].

11We make the usual [5] simplifying assumption that the number of mining parties
n→∞, meaning that each block is mined by a different party.



A Better Proof-of-Work Fork Choice Rule 11

in series. Again, we maintain an association of timestamps and cumulative work
values for every block.

Having simulated the honest and adversary executions, we can now determine
the latency of the system (whether Bitcoin or PoEM). To find this latency, we
must find the minimum safe confirmation parameter k (where k is denominated
in amount of work per block, as measured by the respective system). To do this,
we determine the last point in time when the adversary had a chain with more
work than the honest parties, and we record the work k of the honest chain
that first surpasses the adversary’s chain immediately after. For this execution,
a confirmation parameter larger or equal to k would safeguard the protocol from
a Common Prefix violation.

To accurately calculate the latency of a given system parameterization (g, β)
– and, for PoEM, also γ – we simulate 100,000 such executions and record
the minimum safe confirmation parameter k for each execution. We wish to
determine the value of k that gives a specific security level – in our case, we
want 90% of the executions to be safe from a Common Prefix violation (i.e.,
3.32 bits of security12). Intuitively, using a common reference security level is
what allows us to fairly compare these disparate systems.

In a nutshell, we set k∗ to be the minimum confirmation parameter that
would safeguard 90% of the executions against a Common Prefix violation. To
do this, we collect all the safe k values of the 100,000 Monte Carlo iterations
into a list. We take the 20% highest percentile of the list and set k∗ to be the
mean of these values (i.e., the expected shortfall at 20%, noting that the 90%
mark falls in the middle of the top 20% percentile).

The latency of the system is calculated as d = k∗

f , where f is the aver-
age cumulative work increase rate for the honest chains. The latency d is the
average time it takes to produce k∗ chained honest work in the system (both
in Bitcoin and PoEM). To acquire f , we calculate the honest cumulative work
increase rate for each execution and take their average across all Monte Carlo
iterations. Namely, for each execution, we take the maximum honest cumulative
work achieved during the execution’s lifetime, and divide it by the time at which
it occurred.

We get the optimal system latency for 30 different adversarial ratios β ranging
linearly from 0 to 0.4. We explore the latency of the system for 50 different block
production rates g increasing geometrically from 0.05 to 85 blocks per network
delay. For PoEM, we explore 40 different bias parameters γ starting at 0 and
then ranging geometrically from 0.01 to 20. For each tuple (β, g, γ), we run the
100,000 Monte Carlo iterations to obtain the confirmation delay that achieves
90% security (in the expected shortfall sense), and find the minimum delay
across all configurations (g, γ) (for PoEM) and g (for Bitcoin) for each β. These
optimal latencies are illustrated in Figure 2. For each point in the plot, we ran

12While − lg2(10%) = 3.32 bits of security are not enough for cryptographic security,
we use this as a reference to compare the latency of the two systems. On the contrary,
our theoretical analysis shows that PoEM is secure with overwhelming probability in
the security parameter κ.
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Fig. 2: Bitcoin vs PoEM latency (logarithmic scale) over different adversarial ra-
tios β. The results were obtained by running 200 million simulations per point.
For every value of the triplet (β, g, γ), we perform 100,000 Monte Carlo itera-
tions and obtain the latency-optimal parameters (g, γ) for which the latency is
illustrated on the vertical axis.

100,000×50× 40 = 200,000,000 PoEM simulations and 100,000×50 = 5,000,000
Bitcoin simulations, for a total of 6.15 billion simulation runs across all points
in the plot.

We observe that PoEM outperforms Bitcoin in terms of latency across all
adversarial ratios β. For small values of β, PoEM has as much as 70% faster
confirmation than Bitcoin. The speedup decreases as β increases, but PoEM
still outperforms Bitcoin by 11.7% for adversarial ratios around 0.4. For small
adversarial presence, the block production rate g of PoEM can be safely increased
much more than in Bitcoin. This is illustrated in Figure 3. It is for these larger
values of g that PoEM truly shines, utilizing more effectively the work of the
forks that appear in the honest blocktree (Figure 1).

Some more detail about how exactly the sampling of adversarial and honest
block creation events in the form of the Poisson point process is warranted. We do
not re-sample block creation times for each parametrization triplet (β, g, γ) (or
(β, g) for Bitcoin respectively). Instead, we sample 100,000 independent Poisson
point processes with λ = 1 for the adversary, and 100,000 additional independent
Poisson point processes with λ = 1 for the honest parties. These are the only
timestamp samples we ever take. These Monte Carlo timestamp samples are re-
used all the same for both Bitcoin and PoEM. As the parameters β and g vary,
the existing samples are appropriately scaled (by multiplying their timestamps
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Fig. 3: Bitcoin vs PoEM optimal block production rate g (logarithmic scale)
over different adversarial ratios β. The results were obtained by running 100,000
Monte Carlo iterations for each parametrization triplet (β, g, γ), for a total of
200,000,000 simulations per point.

accordingly) to obtain the correct block production rates for the adversary and
the honest parties, i.e., the Poisson process of the adversary is adjusted to have
a rate of λ = g β

1−β and the Poisson process of the honest parties is adjusted to
have a rate of λ = g. For PoEM in particular, for each block timestamp that
appears in our previous samples, we also sample, independently for each block, an
additional exponentially distributed (with λ = 1

ln 2 ) sample indicating the work
of the block. These samples are also re-used across all parameterizations. As the
parameter γ varies, the works are adjusted, without resampling, by adding the
constant γ to each block’s work. Following these time and work adjustments, the
honest blocktree is recomputed to account for the delay and different cumulative
chain work.

Each execution was concluded when a certain number of (not necessarily
chained) blocks had been mined. This number was chosen to be large enough so
that k∗ was well-defined, namely the executions were chosen to be long enough
so that there was always a safe confirmation parameter k. However, as the race
between the adversary and the honest parties approaches a tie (β → 0.5, g → ∞),
we set an upper bound on the number of blocks to be mined, and if no safe
confirmation parameter k is found during the execution lifetime we set k to
infinity. In the calculation of the expected shortfall, we discard the executions
for which k is infinite.
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We note some limitations of our experimental methodology. Firstly, the pri-
vate attack has been proven optimal for Bitcoin only, and not for PoEM, but
in our experiments we have used the same attack for both protocols. Secondly,
the optimality of the private attack previously proven [5] is a reduction illustrat-
ing that, for a given resilience β, if the private attack is not possible, then no
attack is possible. In our experiments, we obtain a safe confirmation parameter
k against the private mining attack, but this confirmation parameter has not
been shown to be safe against other attacks, even though the private mining
attack is optimal when it pertains to resilience. Lastly, there is a discrepancy
between the continuous-time model used in our experimental simulations and
the discrete-time model used in our theoretical analysis.
Real-world Deployment. In addition to the above simulations, we have imple-
mented and deployed13 PoEM in a real-world permissionless peer-to-peer setting.
The deployment is on a testnet that has been continuously operating for four
months. During this period, the network generated 7.5 million blocks and 500
million transactions with participation from 2000 miners from the community,
maintaining an average hash rate of 50GH/s using ProgPoW [23]. The miners
computed 518 petahashes in 4 months, with the difficulty ( 2256

T ) varying between
18 billion and 790 billion.

5 Analysis

To analyze the security of PoEM, we work in the following variant of the Random
Oracle model [2], in which the random oracle operates as follows internally.

Definition 7 (Real-Valued Random Oracle). The real-valued random ora-
cle H can be queried with an input value x and returns the value y[:κ] as follows.
When queried with x for the first time, it samples a real value y uniformly at ran-
dom from the continuous interval (0, 1), and returns its first κ bits H(x) = y[:κ].
It then remembers the pair (x, y). We denote by H(x) this sampled value y. When
queried with x for a subsequent time, it returns the first κ bits H(x) = y[:κ] of
the stored y.

We note that this definition is equivalent to the standard Random Oracle
model, as the real number y is unobservable by any Turing Machine, and the
only observable quantity is the κ-bit approximation y[:κ]. Despite this, in the
analysis, we will make use of the real-valued random variable y = H(x).

Definition 8 (Intrinsic Work). We define the intrinsic work of a real number
A ∈ [0, 1) as work(A) = γ − lg A[:κ]

T = γ − lg
⌊2κA⌋

2κ

T ∈ [γ,+∞], where γ ∈ R+ is
the bias parameter of the protocol.

We note that the above definition is a generalization of Definition 5 for A ∈
[0, 1).

13The source code can be found at https://github.com/dominant-strategies/
go-quai/releases/tag/v0.28.2

https://github.com/dominant-strategies/go-quai/releases/tag/v0.28.2
https://github.com/dominant-strategies/go-quai/releases/tag/v0.28.2
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Definition 9 (Real Intrinsic Work). We define the real intrinsic work of a
real number A ∈ [0, 1) as work(A) = γ − lg A

T ∈ [γ,+∞], where γ ∈ R+ is the
bias parameter of the protocol.

To simplify the analysis, we will set bias γ = 0. We observe that, for a block
hash H(x), the actual protocol uses work(H(x)), which is an approximation
of work(H(x)). Because T ∈ {0, 1

2κ ,
2
2κ , . . . ,

2κ−1
2κ }, we have work(H(B)) ↔

work(H(B)). We will use the latter value in our analysis. Looking ahead, our
goal will be to demonstrate that the small discrepancy between these two values
is immaterial to the protocol’s output. The cornerstone of this result is stated
and proven in the technical Hash Separation lemma (Lemma 5) in the appendix.
The reason why this real-valued random oracle is useful is that it allows us to
borrow tools from analysis to prove statements about the protocol. In particular,
the work of a block is distributed as exp( 1

ln 2 ). The sum of the works of multiple
blocks in a chain has a variance that can be bounded using Chernoff bounds
that would not be available if we were to use the quantized work.

In a similar vein to the block real intrinsic work, we define the real intrin-
sic work work(C) of a chain C, which is approximated by its intrinsic work
work(C):

Definition 10 (Real Intrinsic Chain Work). We define the real intrinsic
work of a chain C as work(C) =

∑
B∈C work(H(B)).

Completely analogously to the chain addressing notation we defined in Sec-
tion 3, we define the real chain addressing notation [α]◁C as follows.
Real blockchain addressing. Let [α]◁C = C[i] where work(C[:i]) < α ≤
work(C[:i+ 1]). If work(C) < α, then [α]◁C = ⊥. If α < 0, then [α]◁C = C[i]
where work(C[i:]) < −α ≤ work(C[i+ 1:]). Let [α:β]◁C = C[i:j], where i is
the index of [α]◁C and j is the index of [β]◁C in C. Let [α:]◁C = C[i:], and
[:β]◁C = C[:j], where i and j are defined with respect to α and β as above.

The following three chain virtues will be used as intermediate stepping stones
towards proving the security of the protocol.

Definition 11 (Entropic Growth). The Entropic Growth property of a PoEM
execution, parametrized by the growth interval s ∈ N and the entropic growth
velocity τ ∈ R+, states that for all honest parties P and all rounds r1 + s ≤ r2,
the chains C1, C2 of P at rounds r1, r2 respectively satisfy work(C2[|C1|:]) ≥ sτ .

Definition 12 (Existential Entropic Quality). The Existential Entropic
Quality property of a PoEM execution, parametrized by the entropic quality
chunk parameter ℓ ∈ N, states that for all honest parties P and all rounds
r, the chain C that P adopts at round r has the property that for every 0 ≤
α < work(C) − ℓ, there is at least one honestly generated block in the chain
[α:α+ ℓ]◁C.

Definition 13 (Entropic Common Prefix). The Entropic Common Prefix
property of a PoEM execution, parametrized by the common prefix parameter
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k ∈ N states that for all honest parties P1, P2 and all rounds r1 ≤ r2, the chains
C1, C2 that P1, P2 adopt at rounds r1, r2 respectively satisfy [:−k]◁C1 ≼ C2.

The above three properties are proven in Theorems 4, 5, and 6 in the ap-
pendix. From these three properties, the safety and liveness of the protocol follow
in the next two theorems, which are proven in the appendix.

Theorem 1 (PoEM is Safe). Typical executions of PoEM are safe.

Theorem 2 (PoEM is Live). Typical executions of PoEM are live with pa-
rameter u = max(

⌈
ℓ+2k
(1−ϵ)f ln 2

⌉
, s).

The security of the protocol follows from the above two theorems:

Corollary 1 (PoEM is Secure). PoEM is secure with overwhelming proba-
bility.

6 Conclusion

In this paper, we introduced PoEM, a new fork choice rule, in which each
block counts for work(B) = γ − lg H(B)

T instead of the usual work(B) = 1
T

(Section 3). We illustrated experimentally (Section 4) that PoEM achieves bet-
ter transaction confirmation latency (roughly 40% improvement). We formally
proved the security of PoEM (Corollary 1) in the Bitcoin Backbone model (Sec-
tion 5). In our proof, we introduced the novel real-valued random oracle model
(Section 2), which allowed us to use tools from the continuous domain such
as the exponential distribution. We showed this model to be closely related to
the discrete random oracle model (Lemma 5), and believe this new mathemati-
cal tooling may be independently useful for the analysis of other protocols. We
reported on the production-grade deployment of our protocol, which has an al-
ready deployed testnet (Section 4). Our protocol only changes the proof-of-work
inequality, and thus is composable with previously proposed improvements for
latency and throughput in proof-of-work blockchains. We are hopeful that our
modification will be adopted by existing and future proof-of-work protocols in
the community.
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A Security Analysis with Proofs

We now prove that PoEM is secure. We begin with our central assumption.

Definition 14 (Honest Majority Assumption). We say that an execution
has honest majority with honest advantage parameter 0 < δ ≤ 1, if the number
t of corrupted parties out of n parties satisfies t < (1− δ)(n− t).

Consider an execution of the PoEM protocol.
We define a random variable Ar,i,j as follows. If at round r, the j-th query

of (honest or adversarial) party Pi is a valid block B (i.e., H(B) < T ), then
Ar,i,j = work(H(B)). If no valid block is found, Ar,i,j = 0.

We define Xr = maxqj=1 maxn−t
i=1 Ar,i,j . If at round r at least one honest party

finds a valid block (Xr > 0), we say that round r is a successful round. We let
f = Pr[Xr > 0] = 1 − (1 − T )q(n−t) ≥ q(n − t)T . Solving for T we obtain
f = 1− (1− T )q(n−t) ⇒ 1− f = (1− T )q(n−t) ⇒ (1− f)

1
q(n−t) = 1− T ⇒ T =

1− (1− f)
1

q(n−t) .
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In our protocol parametrization, we are free to choose how quickly blocks are
produced by honest parties by adjusting the target T parameter, but only some
configurations will yield the desired security results. We will set T such that the
following condition is satisfied.

Definition 15 (Secure Configuration). Given an environment which affords
q(n − t) queries per round to the honest parties, the secure configuration f
of PoEM requires f = δ

6 . This is achieved by using the secure target value
T = 1− (1− δ

6 )
1

q(n−t) .

We will prove the PoEM protocol is secure if the above configuration is
followed.

We let Xr =
∑n−t

i=1

∑q
j=1 Ar,i,j and

Xr =

{
0, if there are no i, j with Ar,i,j > 0; otherwise,
Ar,i,j , where (i, j) are the minimum such (i, j).

Observe that Xr ≤ Xr ≤ Xr and E[Xr] ≤ E[Xr] ≤ E[Xr].
We define a random variable Yr as follows. If at round r exactly one hon-

est party obtains a valid block, then Yr = Xr, and we call r a convergence
opportunity. Otherwise, Yr = 0.

We define Zr as the sum of all real intrinsic work generated by all adversarial
party queries during round r, namely Zr =

∑n
i=n−t+1

∑q
j=1 Ar,i,j .

Given a set of rounds S, we define X(S) =
∑

r∈S Xr, X(S) =
∑

r∈S Xr,
X(S) =

∑
r∈S Xr, Y (S) =

∑
r∈S Yr and Z(S) =

∑
r∈S Zr. Observe X(S) ≤

X(S) ≤ X(S).

Lemma 1 (Expectation Bounds). The following bounds hold.

1. f
1−f > Tq(n− t)

2. E[Xr] =
1−(1−T )q(n−t)

ln 2 = f
ln 2 > (1−f)Tq(n−t)

ln 2

3. E[Xr] <
f

1−f
1

ln 2

4. E[Yr] >
(1− δ

3 )f

ln 2

5. E[Zr] =
tqT
ln 2 < t

n−t ·
f

1−f · 1
ln 2 <

(
1 + δ

2

)
t

n−t ·
f

ln 2

6. E[Zr] < E[Xr]

Proof. Observe that Ar,i,j can be expressed in the form Ar,i,j = Cr,i,jWr,i,j ,
with independent boolean random variable Cr,i,j ∼ Bern(T ) indicating whether
the query was successful and real random variable Wr,i,j ∼ Exp(ln 2) measuring
the real work of the block found. Concerning expectations, E[Wr,i,j ] = 1

ln 2 ,
and, furthermore, E[Ar,i,j ] = E[Ar,i,j |Cr,i,j = 0]Pr[Cr,i,j = 0] + E[Ar,i,j |Cr,i,j =
1]Pr[Cr,i,j = 1] = E[Ar,i,j |Cr,i,j = 1]Pr[Cr,i,j = 1] = T

ln 2 . The following bounds
are similar to [10].
Bounds for f . We note that f

1−f = 1−(1−T )q(n−t)

(1−T )q(n−t) = (1 − T )−q(n−t) − 1 >

(1 + T )q(n−t) − 1 > Tq(n − t). Here, the penultimate inequality stems from



20 Zindros, Tzinas, Kreder, Shastry, and Vishwanath

(1 − T )−q(n−t) > (1 + T )q(n−t) ⇐ (1 − T )−1 > 1 + T ⇐ 1 − T 2 < 1 ⇐ T > 0.
The last inequality stems from Bernoulli’s inequality, namely (1 + x)r ≥ 1 + rx
for integer r ≥ 1 and real x ≥ −1.
Bounds for E[X]. The expectation E[Xr] = 1−(1−T )q(n−t)

ln 2 follows from fact
that Xr ∼ Bern(1 − (1 − T )q(n−t))Exp(ln 2). The bound on E[Xr] follows from
the previous bound on f . The expectation E[Xr] =

Tq(n−t)
ln 2 < f

1−f
1

ln 2 follows
from the fact that Xr is the sum of q(n − t) independent random variables
distributed as Bern(T )Exp(ln 2) and the above bounds on f .
Bounds for E[Y ]. The probability of a convergence opportunity is (n−t)(1−(1−
T )q)(1−T )q(n−t−1) ≥ Tq(n−t)(1−T )q(n−t)−1 > Tq(n−t)(1−(q(n−t)−1)T ) >
Tq(n − t)(1 − Tq(n − t)). The first expression is the binomial probability that
exactly one, among n− t, honest party is successful; the second is the binomial
probability that exactly one, among q(n − t), honest query is successful, which
implies that exactly one honest party was successful. The penultimate inequality
is by Bernoulli’s inequality, namely (1 + x)r ≥ 1 + rx for integer r ≥ 1 and real
x ≥ −1.

We have Yr ∼ Bern((n− t)(1− (1− T )q)(1− T )q(n−t−1))Exp(ln 2), therefore,
E[Yr] >

Tq(n−t)(1−Tq(n−t))
ln 2 ≥ f(1−f)

ln 2 >
(1− δ

3 )f

ln 2 . For the inequality concerning
E[Yr], the derivation is analogous to [10].
Bounds for E[Z]. The expectation E[Zr] =

tqT
ln 2 follows from the fact that Zr is

distributed as a sum of tq independent samples distributed as Bern(T )Exp(ln 2).
For the bound, we have E[Zr] <

t
n−t

f
1−f

1
ln 2 <

(
1 + δ

2

)
t

n−t ·
f

ln 2 using an analysis
completely analogous to the one in [10].

For E[Zr] < E[Xr], we have E[Zr] < E[Xr] ⇐ E[Zr] < E[Xr] ⇐ tqT
ln 2 <

(1−f)Tq(n−t)
ln 2 ⇐ t

n−t < 1 − f ⇐ 1 − δ < 1 − f ⇐ f < δ, which follows from the
secure configuration.

Definition 16 (Causality). An execution is causal if no block (directly or
indirectly) extends one which is computed at a later or the same random oracle
query.

Definition 17 (Hash Separation). An execution has Hash Separation if for
all two (adversarial or honest) chains C1, C2 appearing in the execution, if
work(C1) < work(C2), then work(C1) < work(C2).

Definition 18 (PoEM Typical Execution). An execution of PoEM is (ϵ, λ)-
typical (or just typical), for ϵ ∈ (0, 1) and integer λ > 4, if for any set S of at
least λ consecutive rounds, the following hold.

– (1− ϵ)E[X(S)] < X(S) < (1 + ϵ)E[X(S)] (1)
– (1− ϵ)E[Y (S)] < Y (S) (2)
– Z(S) < (1 + ϵ)E[Z(S)] (3)
– It is causal.
– It has hash separation.
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In our analysis, we will let ϵ = δ
6 . If the desired maximum probability of

failure is made concrete, this ϵ, together with the concrete probabilities later
calculated in Theorem 3, will determine the concrete value of λ, from which the
rest of the concrete protocol parameters follow. In particular, the value k for the
ledger stabilization rule is determined by λ and f , and λ can be calculated from
ϵ, whereas both f and ϵ can be determined from the desired acceptable honest
advantage δ.

We will now prove that typical executions occur with overwhelming proba-
bility. Towards this purpose, we will need a couple of auxiliary lemmas.

In the following arguments, we connect the real valued random oracle, eval-
uated using the work(H(B)) ∈ R+ function (an ideal quantity unobservable
by any Turing Machine, as it cannot process real-valued inputs), and its κ-bit
discrete approximation work(H(B)) (observable by a Turing Machine). We
show the difference between these two quantities is immaterial for polynomially
bound computations, namely they notably diverge only with negligible probabil-
ity. This connection between real-valued and discrete-valued random variables
will allow us to conduct our analysis using continuous random variables and,
in particular, random variables distributed according to the exponential distri-
bution. These distributions lend themselves to easier tools than conducting a
cumbersome analysis in the discrete domain; for instance, the sum of i.i.d. expo-
nentially distributed variables is the gamma distribution. The following lemmas
that translate between the continuous and discrete worlds will allow us to later
utilize our continuous results in the discrete realization of the protocol.

First, we make a few observations about the relationship between the real
and the discrete work of blocks and chains. Observe that for hash input A, we
have H(A) ≤ H(A) and for block B we have work(H(B)) ≥ work(H(B)), and
for blocks B1, B2 we have work(H(B1)) ≥ work(H(B2)) → work(H(B1)) ≥
work(H(B2)).

Furthermore, discretizing real works preserves the order of blocks in the fol-
lowing fashion.
Lemma 2. For all A,B ∈ (0, 1), it holds that work(A) ≥ work(B) →
work(A) ≥ work(B).
Proof.

work(A) ≥ work(B) ⇒ − lgA ≥ − lgB ⇒ lgA ≤ lgB

⇒A ≤ B ⇒ 2κA ≤ 2κB ⇒ ⌊2κA⌋ ≤ ⌊2κB⌋ ⇒ ⌊2κA⌋
2κ

≤ ⌊2κB⌋
2κ

⇒ lg
⌊2κA⌋
2κ

≤ lg
⌊2κB⌋
2κ

⇒ − lg
⌊2κA⌋
2κ

≥ − lg
⌊2κB⌋
2κ

⇒work(A) ≥ work(B)

⊓⊔
Showing that the order of chains is preserved under discretization is a bit

more involved, and we will work towards it next. Towards this, we observe that
the discrete work of a block is close to its real work.
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Lemma 3 (Block Work Approximation). In a PoEM execution, consider
the event CLOSE that all blocks B have work(B) − work(B) < 2−κ/2. The
probability Pr[CLOSE] is overwhelming in κ.

Proof. Consider the event E in which for all blocks B it holds that H(B) >
2−(κ/2−2). Let us calculate the probability of ¬E. For ¬E to happen, at least one
block must have H(B) ≤ 2−(κ/2−2). For any block B, it holds that Pr[H(B) ≤
2−(κ/2−2)] = 2−(κ/2−2) (from the uniform distribution of H(B) in the interval
(0, 1) due to it being a real-valued random oracle). Since there are at most nqL
blocks in the execution, by applying a union bound, we have Pr[¬E] = Pr[∃B :

H(B) ≤ 2−(κ/2−2)] ≤
∑

B Pr[H(B) ≤ 2−(κ/2−2)] ≤ nqL2−(κ/2−2), which is
negligible in κ, so E happens with overwhelming probability.

Consider a block B of the execution, conditioned on the event E. Then

work(B)− work(B) = − lgH(B)− (− lgH(B))

(i)
< lgH(B)− lg

(
H(B)− 2−κ

) (ii)
< lg 2−(κ/2−2) − lg

(
2−(κ/2−2) − 2−κ

)
=−

(κ
2
− 2

)
− lg(2−(κ/2−2)(1− 2−(κ/2+2)))

=−
(κ
2
− 2

)
+
(κ
2
− 2

)
− lg

(
1− 2−(κ/2+2)

)
= − lg

(
1− 2−(κ/2+2)

)
=− ln

(
1− 2−(κ/2+2)

)
· 1

ln 2

(iii)

≤ − −2−(κ/2+2)

1− 2−(κ/2+2)
· 1

ln 2

≤2−(κ/2+2)

1− 1
2

· 1

ln 2
= 2−(κ/2+1) · 1

ln 2
< 2−κ/2 .

Inequality (i) stems from the fact that H(B)−2−κ < H(B) ≤ H(B) and the
monotonicity of lg. Inequality (ii) stems from the fact that the function lg x −
lg (x− 2−κ) = lg x

x−2−κ is decreasing for x > 2−κ, remembering our conditioning
on H(B) > 2−(κ/2−2) > 2−κ. Inequality (iii) stems from the standard logarithm
inequality ln(1 + x) ≥ x

1+x for all x > −1. ⊓⊔

The discrete work of a chain is also close to the real work of a chain.

Corollary 2 (Chain Work Approximation). In a PoEM execution, the
probability that all subchains C∗ have work(C∗) − work(C∗) < Lqn2−κ/2

is overwhelming in κ.

Proof. Conditioned on the overwhelming event of Lemma 3, for all subchains
C∗ it holds that

work(C∗)− work(C∗) =
∑

B∈C∗

work(B)− work(B)

<
∑

B∈C∗

2−κ/2 = |C ∗ |2−κ/2 ≤ Lqn2−κ/2 .

⊓⊔
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We are now ready to prove a technical lemma which shows that works of
chains do not fall dangerously close to each other.

Lemma 4. Consider a PoEM execution E with n parties, q queries per round
per party, and total lifetime L. Consider the j-th random oracle query in this
execution. If the query is successful, let B indicate its produced block, let w =
work(B), w = work(B), and let C be the chain it extends, let w1 = work(C), w1 =
work(C), and w′

1 = work(CB), w′
1 = work(CB). Consider any other chain

Ci that appears in the execution, and let w2 = work(Ci), w2 = work(Ci).
Let BADRANGEj,i denote the event that both w1 < w2, and, furthermore,
either w2 − nqL

2κ/2 − 1
2κ/2 ≤ w1 + w < w2 or w2 < w1 + w ≤ w2 +

nqL
2κ/2 + 1

2κ/2 .
Let BADRANGE denote the event that there exists a random oracle query
j and a chain Ci in the execution such that BADRANGEj,i. The probability
Pr[BADRANGE] is negligible in κ.

Proof. If the j-th query does take place, its w is distributed as Exp(ln 2), so for
every other chain Ci in the execution for which w1 < w2 we have

Pr[w2 −
nqL

2κ/2
− 1

2κ/2
≤ w1 + w < w2|w1 < w2] =

Pr[w2 − w1 −
nqL

2κ/2
− 1

2κ/2
≤ w < w2 − w1|w1 < w2] =

(1− 2−(w2−w1))− (1− 2
−
(
w2−w1− nqL

2κ/2
− 1

2κ/2

)
) =

2
−
(
w2−w1− nqL

2κ/2
− 1

2κ/2

)
− 2−(w2−w1) =

2−(w2−w1)(2
nqL

2κ/2
+ 1

2κ/2 − 1) ≤ 2
nqL

2κ/2
+ 1

2κ/2 − 1 <
nqL

2κ/2
+

1

2κ/2
.

The second relation is from the cumulative distribution function of the ex-
ponential distribution; the fifth relation is from the conditioning on w1 < w2,
and the last relation is from Lemma 12, noting that 0 < nqL+1

2κ/2 < 1.
Similarly, for the other direction,

Pr[w2 < w1 + w ≤ w2 +
nqL

2κ/2
+

1

2κ/2
|w1 < w2] =

Pr[w2 − w1 < w ≤ w2 − w1 +
nqL

2κ/2
+

1

2κ/2
|w1 < w2] =

(1− 2
−
(
w2−w1+

nqL

2κ/2
+ 1

2κ/2

)
)− (1− 2−(w2−w1)) =

2−(w2−w1) − 2
−
(
w2−w1+

nqL

2κ/2
+ 1

2κ/2

)
=

2−(w2−w1)(1− 2
− nqL

2κ/2
− 1

2κ/2 ) ≤ 1− 2
− nqL

2κ/2
− 1

2κ/2 <
nqL

2κ/2
+

1

2κ/2
.
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Consequently,

Pr[BADRANGEj,i] = Pr[BADRANGEj,i|w1 < w2] Pr[w1 < w2]

≤Pr[BADRANGEj,i|w1 < w2]

=Pr[w2 −
nqL

2κ/2
− 1

2κ/2
≤ w1 + w < w2|w1 < w2]+

Pr[w2 < w1 + w ≤ w2 +
nqL

2κ/2
+

1

2κ/2
|w1 < w2]

=2
nqL+ 1

2κ/2

Applying a union bound over all the queries j and chains i of the execution,
we obtain Pr[BADRANGE] ≤ 2(nqL)2 · nqL+1

2κ/2 , which is negligible in κ. ⊓⊔

Lemma 5 (Hash Separation). A causal execution of PoEM has Hash Sepa-
ration except with negligible probability in κ.

Proof. Consider a causal execution of PoEM for which the event CLOSE of
Lemma 3 and the event ¬BADRANGE of Lemma 4 both hold. Observe that
the statement of Corollary 2 holds in this conditioning. From the two lemmas
we know Pr[CLOSE] and Pr[¬BADRANGE] are both overwhelming, therefore
Pr[CLOSE ∧ ¬BADRANGE] is overwhelming. Conditioned on this event, we
will show that the desired statement holds with probability 1.

Let HS be the event that Hash Separation holds. Let HSj denote the predi-
cate that HS holds for all chains appearing before, or at, the j-th random oracle
query, with j = 0 indicating the beginning of the execution. We will use induc-
tion on j to show that for all 0 ≤ j ≤ Lnq, HSj holds. We know that HS0 always
holds by definition.

Now, consider the j-th random oracle query and suppose HSj−1 holds. If the
query was unsuccessful, then HSj holds, and we are done. Otherwise, let C1 be
the chain that the j-th random oracle query extends, let B be the block mined
on it, let C ′

1 = C1B, and let w = work(B), w1 = work(C1), w
′
1 = work(C ′

1)
and w,w1, w

′
1 be the respective discrete works. Consider any other chain C2 with

work w2 = work(C2) and discrete work w2 that has already appeared in the
execution, and consider the undesirable event FLIPC1,C2 that w′

1 < w2∧w′
1 ≥ w2

or w′
1 > w2 ∧w′

1 ≤ w2. If w1 ≥ w2, then, because w > 0, therefore w1 +w > w2

and hence w′
1 > w2. Additionally, by HSj−1 we have w1 > w2, therefore w1+w >

w2, and w′
1 > w2. From this, it follows that w1 ≥ w2 yields ¬FLIPC1,C2

. Thus,
it suffices to only consider the situation where w1 < w2.

Case 1: w1 +w < w2. From the conditioning on ¬BADRANGE, we have
w1+w < w2− nqL

2κ/2 − 1
2κ/2 , therefore w1− nqL

2κ/2 +w < w2− nqL
2κ/2 − 1

2κ/2 ⇒ w1+w <

w2− 1
2κ/2 ⇒ w1+w− 1

2κ/2 < w2− 1
2κ/2 ⇒ w1+w < w2 ⇒ w′

1 < w2 ≤ w2. The first
inequality is obtained from the conditioning on CLOSE, noting that w1− nqL

2κ/2 <

w1 follows from w1 − w1 < Lqn2−κ/2 (Corollary 2). The third inequality is also
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obtained from the conditioning on CLOSE, noting that w − 1
2κ/2 < w follows

from w − w < 2−κ/2 (Lemma 3). It follows that ¬FLIPC1,C2
.

Case 2: w1 +w > w2. From the conditioning on ¬BADRANGE, we have
w1 +w > w2 +

nqL
2κ/2 + 1

2κ/2 > w2 +
nqL
2κ/2 , therefore w1 +w > w2 − nqL

2κ/2 + nqL
2κ/2 ⇒

w1 + w > w2 ⇒ w1 + w > w2 ⇒ w′
1 > w2. Again, it follows that ¬FLIPC1,C2

.
From this and HSj−1 it follows that HSj holds. Therefore, by induction,

HSLnq holds, and hence HS holds. Since our conditioning was on an overwhelm-
ing event, the lemma follows. ⊓⊔

Corollary 3 (Approximate Fork Choice). In Hash Separated executions of
PoEM, for any two chains C1, C2 it holds that work(C1) < work(C2) →
work(C1) < work(C2).

Proof. Suppose towards a contradiction work(C1) < work(C2), but work(C1) ≥
work(C2). From Hash Separation, it follows that work(C1) ≥ work(C2),
which is a contradiction. ⊓⊔

Theorem 3 (Typicality). An execution of duration L of PoEM is (ϵ, λ)-typical
with probability 1− e−Ω(λ−logL) − e−Ω(κ−logL), namely, overwhelming in λ and
κ.

Proof. For each S with |S| = λ,

Pr[X(S) < (1− ϵ)E[X(S)]] ≤
Pr[X(S) < (1− ϵ)E[X(S)]] ≤ e−Ω(λ) .

Pr[X(S) > (1 + ϵ)E[X(S)]] ≤
Pr[X(S) > (1 + ϵ)E[X(S)]] ≤ e−Ω(λ) .

Pr[Y (S) < (1− ϵ)E[Y (S)]] ≤ e−Ω(λ) .

Pr[Z(S) > (1 + ϵ)E[Z(S)]] ≤ e−Ω(λ) .

The e−Ω(λ) bounds are obtained by applying Lemma 13 to each of the random
variables X(S), X(S), Y (S) and Z(S), each of which is the sum of Θ(λ) i.i.d.
random variables distributed according to Bern(p)×Exp(ln 2) for some respective
p ∈ (0, 1). Applying a union bound for all S (of which there are L− λ+ 1), we
obtain that typicality Eq. 1, Eq. 2 and Eq. 3 hold with probability 1−e−Ω(λ)+lnL.
If typicality bounds hold for all S with |S| = λ, then they hold for all S with
|S| ≥ λ.

The probability bound for causality follows from the stochastic nature of the
Random Oracle and is proven in [10].

Lastly, Hash Separation follows from Lemma 5. ⊓⊔

Definition 19 (Block Work Interval). A block B of chain C has work in-
terval I(B) = {ξ ≥ 0 : [ξ]◁C = B}.
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Lemma 6 (Entropic Pairing Lemma). Consider a typical execution of PoEM.
Suppose a block B of a chain C with work interval I(B) was computed by an
honest party in a convergence opportunity. For every ξ ∈ I(B) and every chain
C ′ of the execution, block B′ = [ξ] ◁ C ′ is either B or adversarial, as long as
B′ ̸= ⊥.

Proof. Consider an execution as in the statement and suppose, towards a contra-
diction, that block B′ is not B and is honestly computed. Since B was computed
in a convergence opportunity, B and B′ cannot have been computed in the same
round. Let r be the earliest round on which B or B′ was computed, and C be
the chain whose tip this block is. Since it was computed by an honest party, at
round r+ 1, every other honest party receives a chain with real work greater or
equal to ξ.

Claim: Every block computed after round r will be extending a chain with
real work at least ξ. To see this, consider a chain C∗ that an honest party is
extending after r. Since the party has adopted C∗, by the heaviest chain rule,
work(C∗) ≥ work(C). By Hash Separation, work(C∗) ≥ work(C) ≥ ξ.

If B is computed after round r, it holds that ξ ̸∈ I (noting that work(B) >
0). If B′ is computed after round r, it holds that B′ ̸= [ξ] ◁ C ′. Both lead to a
contradiction. ⊓⊔

Lemma 7 (Entropic Chain Growth Lemma). Suppose that at round r1 an
honest party P1 has a chain which has real work w. Then, at round r2 ≥ r1,
every honest party P2 adopts a chain which has real work at least w+

∑r2−1
r=r1

Xr.

Proof. By induction on r2. For the inductive base (r2 = r1), observe that if at
round r1 party P1 has a chain C of work w, then P1 broadcasted C at the end
or round r1 − 1. Party P2 receives C at round r1. Consider the chain C2 that P2

adopts at r1. Due to the heaviest chain rule, work(C2) ≥ work(C), therefore,
by Hash Separation, work(C2) ≥ w, and the statement follows.

For the inductive step, note that by the inductive hypothesis, every honest
party has adopted a chain of real work at least w′ = w +

∑r2−2
r=r1

Xr at round
r2 − 1. When Xr2−1 = 0 the statement follows directly, so assume Xr2−1 > 0.
Observe that an honest party P3 successfully queried the random oracle at round
r2−1 and obtained a chain C3 of real work at least w′+Xr2−1 and broadcasted
it to the network. At round r2, party P2 receives C3 and adopts a chain C2, with
work(C2) ≥ work(C3) due to the heaviest chain rule. By Hash Separation,
work(C2) ≥ work(C3) ≥ w′ +Xr2−1 = w +

∑r2−1
r=r1

Xr. ⊓⊔

Lemma 8 (Typical Bounds). In typical PoEM executions, for any set S of
at least λ consecutive rounds, it holds that:

1. Z(S) < t
n−t ·

f
1−f · |S|

ln 2 + ϵf |S|
ln 2 ≤ (1− 2δ

3 )f |S|
ln 2 .

2. Z(S) <
(
1 + δ

2

)
t

n−tX(S) + ϵf |S|
ln 2 .

3. Z(S) < Y (S).
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Proof. Proposition 1.

Z(S) < (1 + ϵ)E[Z(S)] = (1 + ϵ)E[Zr]|S|
= E[Zr]|S|+ ϵE[Zr]|S|

<
t

n− t
· f

1− f
· |S|
ln 2

+ ϵ
t

n− t
· f

1− f
· |S|
ln 2

<
t

n− t
· f

1− f
· |S|
ln 2

+ ϵf
|S|
ln 2

=

(
t

n− t
· 1

1− f
+ ϵ

)
f
|S|
ln 2

≤
(
1− 2δ

3

)
f
|S|
ln 2

.

The first relation follows from Definition 18 Eq. 3, the second from the inde-
pendence of Zr, the fourth from the bound in Lemma 1 Eq. 5, the fifth and the
last from the bounds in [32, Section 13.2.2].

Proposition 2. Z(S) < t
n−t ·

f
1−f · |S|

ln 2 + ϵf |S|
ln 2 <

(
1 + δ

2

)
· t
n−tX(S)+ ϵf |S|

ln 2 .
The first relation follows from part (1) of this proof, and the second from the
bound in [10, Lemma 11(c)].

Proposition 3. Y (S) > (1 − ϵ)E[Y (S)] >
(
1− δ

3

)
f |S|

ln 2 >
(
1− 2δ

3

)
f |S|

ln 2 >
Z(S). The first inequality follows from Definition 18 Eq. 2, the second from the
bound in Lemma 1 Eq. 4, and the last one from part (1) of this proof. ⊓⊔

Theorem 4 (Entropic Growth). Typical executions of PoEM satisfy the En-
tropic Growth property with s = λ and τ = (1− ϵ) f

ln 2 .

Proof. Consider a typical PoEM execution in which an honest party has a chain
C1 at round r1 and adopts a chain C2 at round r2 ≥ r1+s. Let S = {r1, . . . , r2−
1}. Then |S| ≥ s = λ and, applying Definition 18 we obtain X(S) > (1 −
ϵ)E[X(S)]. By Lemma 1, E[X(S)] ≥ f

ln 2 |S|. Hence, X(S) > (1 − ϵ) f
ln 2 |S|. By

Lemma 7, work(C2) ≥ work(C1) +X(S), as desired. ⊓⊔

Lemma 9 (Entropic Patience). In a typical execution, any chained real work
k ≥ 2λ f

1−f
1

ln 2 + 8 is computed in more than k−8
2 f

1−f
1

ln 2

≥ λ consecutive rounds.

Proof. Assume, towards a contradiction, there is a set of consecutive rounds S′

in which the chained real work k was computed and |S′| ≤ k−8
2 f

1−f
1

ln 2

. It holds
that X(S′) + Z(S′) ≥ k. Then, there is a set S ⊇ S′ of consecutive rounds with

|S| =
⌈

k−8
2 f

1−f
1

ln 2

⌉
+1 < k−8

2 f
1−f

1
ln 2

+2 such that X(S)+Z(S) ≥ X(S′)+Z(S′) ≥ k.

However, because |S| > λ, typicality applies and from Lemma 8 we obtain
X(S) < (1 + ϵ)E[X(S)] ≤ (1 + ϵ)E[Xr]|S| < (1 + ϵ) f

1−f
|S|
ln 2 and Z(S) < (1 +
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ϵ)E[Z(S)] ≤ (1+ ϵ)E[Zr]|S| < (1+ ϵ) t
n−t

f
1−f

|S|
ln 2 < (1+ ϵ)(1− δ) f

1−f
|S|
ln 2 . Hence,

X(S) + Z(S) < (1 + ϵ)
f

1− f

|S|
ln 2

(1 + 1− δ) < 2
f

1− f

|S|
ln 2

<

2
k − 8

2 f
1−f

1
ln 2

f

1− f

1

ln 2
+ 4

f

1− f

1

ln 2
=

k − 8 + 4
f

1− f

1

ln 2
= k − 4

(
2− f

1− f

1

ln 2

)
< k .

The second inequality follows from the fact that ϵ = δ
6 ⇒ (1+ ϵ)(2− δ) < 2. The

last inequality follows from f < 1
2 ⇒ 2− f

1−f
1

ln 2 < 0. ⊓⊔

Corollary 4. In a typical execution of PoEM, for any honest party P and any
round r it holds that work([:−k]◁ PCCCr) < 2k.

Proof. From Entropic Patience (Lemma 9), every block has less than k real work.
Therefore, work([−k]◁ PCCCr) < k. From the definition of the slicing notation
([:]◁) it holds that work(([−k:]◁ PCCCr)[1:]) ≤ k. Summing the two constituents,
we obtain

work([−k:]◁ PCCCr) =

work(([−k:]◁ PCCCr)[1:]) + work([−k]◁ PCCCr) < 2k .

⊓⊔

Lemma 10 (Entropic Common Prefix Lemma). For all rounds r, and
all honest parties P1, P2, where P1 has C1 and P2 adopts C2 at round r of a
typical PoEM execution, it holds that [:−k]◁C1 ≼ C2 and [:−k]◁C2 ≼ C1 for
k = 2λ f

1−f
1

ln 2 + 8.

Proof. Consider an execution as in the statement and suppose, towards a con-
tradiction, that [:−k]◁C1 ̸≼ C2 or [:−k]◁C2 ̸≼ C1. Consider the last block B∗

with index i∗ on the common prefix of C1 and C2 that was computed by an
honest party and let r∗ be the round at which it was computed; if no such block
exists let r∗ = 0. Define the set of rounds S = {i : r∗ < i < r}. We claim that
Z(S) ≥ Y (S).

We show this by pairing all real work of blocks computed by honest par-
ties during convergence opportunities in S with adversarial real work computed
during S. Let Y(S) be the set of honestly produced blocks in convergence op-
portunities during S, and Ξ =

⋃
{I(B) : B ∈ Y(S)}.

Note that, if Ξ ̸= ∅, then inf Ξ ≥ max I(B∗) because the chain ending
in block B∗ was diffused at round r∗, and all honestly produced blocks after
round r∗ are extending a chain with greater or equal real work. Also note that
work(C1) ≥ maxΞ and work(C2) ≥ maxΞ because the honest party that
computed the chain with work maxΞ diffused it and any chain adopted by
honest parties at any later round should have at least maxΞ work. Hence, for
every ξ ∈ Ξ it holds that [ξ]◁C1 ̸= ⊥ and [ξ]◁C2 ̸= ⊥.
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We now argue that for every ξ ∈ Ξ either block [ξ]◁C1 or block [ξ]◁C2

is adversarial. If the block lies on the common prefix of C1 and C2, namely
[ξ]◁C1 = [ξ]◁C2, then it is adversarial by the definition of B∗. Otherwise,
there is one block in C1 and another one in C2, and by Lemma 6, it holds that
[ξ]◁C1 and [ξ]◁C2 cannot both be honest. This completes the proof of the claim
Z(S) ≥ Y (S).

All the chained real work max(work(C1[i
∗:]),work(C2[i

∗:])) ≥ k was pro-
duced during S ∪{r∗}. Hence, from Lemma 9, |S ∪{r∗}| > λ ⇒ |S| ≥ λ and the
properties of a typical execution apply. Therefore, by Lemma 8, Z(S) < Y (S)
which contradicts the previous claim. ⊓⊔

Theorem 5 (Entropic Common Prefix). Typical executions of PoEM satisfy
Entropic Common Prefix with k = 2λ f

1−f
1

ln 2 + 8.

Proof. Consider a typical execution and suppose, towards a contradiction, that
Common Prefix is violated, and let r2 be the first round during which it is
violated. At r2 there is an honest party P2 who adopts chain C2 inconsistent
with the chain C1 adopted by an honest party P1 at a round r1 ≤ r2, namely
[:−k]◁C1 ̸⪯ C2.
Case r1 < r2. At round r2, party P1 has a chain C, which it adopted at r2 − 1
(not excluding the case where C = C1). It holds that [:−k]◁C1 ⪯ C due to the
minimality of r2 (otherwise, the Common Prefix virtue would have been broken
at r2 − 1 by chains C1 and C). Furthermore, work(C) ≥ work(C1) due to
the heaviest chain rule followed by P1. Therefore, [:−k]◁C1 ⪯ [:−k]◁C. By the
Common Prefix lemma, we have [:−k]◁C ⪯ C2 (at r2, party P1 has C and party
P2 adopts C2). By transitivity of ⪯, we have [:−k]◁C1 ⪯ C2, which contradicts
the violation of Common Prefix.
Case r1 = r2. Let C be the chain that P1 adopts at r1 + 1 (not excluding the
case where C = C1). By the Common Prefix lemma, we have that [:−k]◁C1 ⪯ C
(at r1+1, party P1 adopts C and has C1). Furthermore, work(C) ≥ work(C1)
due to the heaviest chain rule followed by P1. Because work(C) ≥ work(C1),
therefore [:−k]◁C1 ⪯ [:−k]◁C. By the Common Prefix lemma, we have that
[:−k]◁C ⪯ C2 (at r1+1, party P1 adopts C and party P2 has C2). By transitivity
of ⪯, we have [:−k]◁C1 ⪯ C2, which contradicts the violation of Common Prefix.

⊓⊔

Theorem 6 (Entropic Quality). Typical executions of PoEM satisfy the En-
tropic Quality property with ℓ = 2λ f

1−f
1

ln 2 + 8 and µ = 1− (1 + δ
2 )

t
n−t −

ϵ
1−ϵ .

Proof. Suppose, towards a contradiction, that there is a chain quality violation
in a typical PoEM execution. Then there is an honest party P who adopts a
chain C3 at round r for which chain quality is violated. This means there are
u, v such that the chain C1 = C3[u:v] has work(C1) ≥ ℓ and quality lower than
µ, namely the sum x of works of all honestly generated blocks in C1 is less than
µwork(C1). Consider the minimum real work chain C2 = C3[u

′:v′] such that
C1 is fully included in C2 (i.e., u′ ≤ u and v′ ≥ v) with the following properties:
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1. C3[u
′] was computed by an honest party P1 (this will exist because C3[0]

is the genesis block, which is honestly generated) at some round r1 (letting
r1 = 0 if u′ = 0).

2. C3[v
′] was the tip of the adopted chain by an honest party P2 at some round

r2 (this will exist because P adopts C3).

Let L = work(C2) and S = {r1, . . . , r2 − 1}. Note that, by causality, all the
work L was computed in S. By the supposition, we have x < µℓ ≤ µL.

We have that Z(S) ≥ L−x. To see this, observe that, by the minimality of C2,
all the blocks with heights u′, . . . , u as well as the blocks with heights v, . . . , v′

were computed by the adversary, and so the only honest real work computed
within L is x.

Additionally, L ≥ X(S). To see this, note that at round r1, party P1 pro-
duced C3[u

′], and so every honest party adopts a chain of real work at least
work(C3[u

′:]) from round r1+1 onwards. Therefore, by Lemma 7, at round r2,
every honest party adopts a chain of real work at least work(C3[u

′:]) +X(S).
But we know that P2 adopts a chain of real work work(C3[u

′:]) + L, and so
L ≥ X(S).

Therefore,

Z(S) ≥ L− x > (1− µ)L ≥ (1− µ)X(S) ≥ ((1 +
δ

2
) · t

n− t
+

ϵ

1− ϵ
)X(S) .

The last inequality follows from replacing the value of µ from the state-
ment. By Lemma 9, |S| > λ and typical bounds apply. Therefore, X(S) >
(1− ϵ)E[X(S)] = (1− ϵ) f

ln 2 and, from this and the previous inequality, Z(S) ≥
(1 + δ

2 ) ·
t

n−tX(S) + ϵf |S|
ln 2 . However, this contradicts the bound in Lemma 8.

⊓⊔

Lemma 11 (Confirmation Separation). For any function k = k(κ), it holds
that, in a PoEM execution, Pr[∃C : [:−k]◁C ̸= [:−k]◁ C] is negligible in κ.

Proof. Consider the event that there exists a chain C with [:−k]◁C ̸= [:−k] ◁
C. Since the prefixes differ, the suffixes must also differ, namely [−k:]◁C ̸=
[−k:] ◁ C. Let C∗ = [−k:] ◁ C. By the slicing notation, it directly follows
that work(C∗) ≥ k. Additionally, we observe that k > work(C∗) (otherwise,
[−k:]◁C = [−k:]◁C). Define Borderline the bad event that there exists some
subchain C∗ in the execution such that work(C∗) ≥ k > work(C∗). We have
shown that ∃C : [:−k]◁C ̸= [:−k]◁ C → Borderline.

It suffices to show that Pr[Borderline] is negligible.
Let E1 be the event that there exists a subchain C∗ such that work(C∗)−

work(C∗) ≥ Lqn2κ/2, and let p1 = Pr[E1]. Let E2 be the event that there exists
a subchain C∗ such that k − Lqn2κ/2 ≤ work(C∗) < k, and let p2 = Pr[E2].
We observe that ¬E1 ∧ ¬E2 → ¬Borderline, hence Borderline → E1 ∨E2.
Therefore, from the union bound, we have

Pr[E1] + Pr[E2] = p1 + p2 ≥ Pr[E1 ∨ E2] ≥ Pr[Borderline].
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From Corollary 2, we have that p1 is negligible.
Let us calculate the probability p2. Consider all the, at most (nqL)2, sub-

chains C∗
1 , C

∗
2 , . . . , C

∗
(nqL)2 appearing in an execution, and consider an aribtrary

subchain C∗
i among them. Because the work of each block B in C∗

i is dis-
tributed as Exp(ln 2), the points (work(C∗

i [:1]),work(C∗
i [:2]), . . . ,work(C∗

i ))
correspond to the initial work(C∗

i ) segment of a Poisson stochastic process with
rate ln 2 (do not confuse the work between blocks, which exactly follows a Pois-
son process with rate ln 2, and the time between consecutive block generation).
We are interested in the number of Poisson points that fall within the interval
[k − Lqn2−κ/2, k). This is a random variable distributed as a Poisson distribu-
tion with rate Lqn2−κ/2λ. Let Fi be the bad event that the number of points
of the process corresponding to the subchain C∗

i that fall within the interval
[k−Lqn2−κ/2, k) is at least one. Using the probability mass function of the Pois-
son distribution evaluated at 0 we have Pr[Fi] = 1−Pr[¬Fi] = 1−e−λLqn2−κ/2

=

1 − 2−(lg e)λLqn2−κ/2

< (lg e)λLqn2−κ/2, where the last inequality follows from
Lemma 12. Taking a union bound over all subchains, we have p2 = Pr[E2] =

Pr[
⋃(nqL)2

i=1 Fi] ≤
∑(nqL)2

i=1 Pr[Fi] = (nqL)2 Pr[Fi] < (nqL)3(lg e)λ2−κ/2 which is
negligible. Therefore, Pr[Borderline] is negligible. ⊓⊔

Theorem 1 (PoEM is Safe). Typical executions of PoEM are safe.

Proof. Consider any two honest parties P1, P2 and any rounds r1, r2. Let C1, C2

be the chains that P1, P2 adopt at rounds r1, r2 respectively. From Entropic
Common Prefix (Theorem 5), it follows that if r1 ≤ r2, then [:−k]◁C1 ≼ C2;
and if r2 ≤ r1, then [:−k]◁C2 ≼ C1. In both cases, it follows that [:−k]◁C1 ∼
[:−k]◁C2. From Confirmation Separation (Lemma 11), it follows that [:−k] ◁
C1 ∼ [:−k]◁C2. Therefore, for the ledgers P1LLLr1 ,

P2LLLr2 returned when read is
invoked on parties P1, P2 after rounds r1, r2 respectively, it holds that P1LLLr1 ∼
P2LLLr2 .

Theorem 2 (PoEM is Live). Typical executions of PoEM are live with pa-
rameter u = max(

⌈
ℓ+2k
(1−ϵ)f ln 2

⌉
, s).

Proof. Consider any round r. Because u ≥ s, invoking Entropic Growth(s, τ)
(Theorem 4), we conclude that for all honest parties P and all rounds r′ ≥ r+u,
it holds that work(PCCCr′ [|

PCCCr|:]) ≥ uτ ≥ ℓ + 2k. From Corollary 4, it follows
that work([:−k]◁ PCCCr′ [|

PCCCr|:]) ≥ ℓ. Invoking Entropic Quality (Theorem 6),
it holds that in the chain segment [:−k]◁ PCCCr′ [|

PCCCr|:], there is at least one
honestly generated block that was produced after round r.

Now, consider that an honest party attempts to inject a transaction tx at
round r. At the beginning of round r + 1, all honest parties receive tx and
include it in their mempool [32, Section 5.7]. Hence, all honest blocks produced
after round r will either include, or extend a chain that includes transaction tx.
Because of this and the above, for all honest parties P and rounds r′ ≥ r + u,
we conclude that tx ∈ PLLLr′ . ⊓⊔
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Fig. 4: Fixing β = 0.2 and γ = 0, we plot the latency of PoEM parameterized
under different block production rates g. The results were obtained by running
100,000 Monte Carlo iterations per point.

Corollary 1 (PoEM is Secure). PoEM is secure with overwhelming proba-
bility.
Proof. Executions are typical with overwhelming probability (Theorem 3). Typ-
ical executions are safe (Theorem 1), and live (Theorem 2), from which security
follows. ⊓⊔

B Further Experimental Results
B.1 The Block Production Rate
As expected, the confirmation latency of PoEM behaves convexly as the block
production rate g is varied. This is illustrated in Figure 4 for fixed values of β
and γ. The simulation methodology is the same as in Section 4. For small block
production rates, close to zero, we get high latency because blocks are produced
very slowly. For large block production rates, we get high latency because honest
blocks effect many forks, whereas the adversarial blocks are all chained in series,
and a large confirmation parameter k is required for safety. We get optimal
latency somewhere in the middle.

B.2 The Bias Parameter
In our analysis, we assumed γ = 0 for simplicity, but the γ parameter seems to be
a promising knob to tune the performance of PoEM. While we leave the analytic
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treatment of the optimal γ for future work, we note here that, for given values
of g and β, the delay of the system behaves as illustrated in Figure 5 for varying
values of γ. It is convex, and for γ → ∞, the delay asymptotically approaches
a value smaller than Bitcoin’s. Indeed, if γ is made sufficiently large, the bias
parameter dominates against the − lg H(B)

T term, and the system behaves as if
each block counts the same. However, even with γ → ∞, PoEM provides a tie-
breaker which helps with latency. In this regime, this tie-breaker is as good as
any.

C Discussion & Future Work

Composability. Because PoEM changes only the proof-of-work inequality, it
can be composed with other previously proposed improvements upon PoW
to give cumulative benefits. Such examples are different block topologies like
Bitcoin-NG [7], FruitChains [25], Prism [1], Parallel Chains [8], PHANTOM [29],
SPECTRE [26], GhostDAG [27], GHOST [28], Ledger Combiners [9] and HLCR [13].
A formal proof of the composability of PoEM with these protocols is left for fu-
ture work.
Bias. Whereas our security analysis was conducted for γ = 0, the real-world
PoEM deployment uses positive values for γ. We also used (among others) posi-
tive values for γ when conducting our experiments in Section 4. We have experi-
mentally observed that increasing γ improves the rate at which the sum of inde-
pendent random variables each distributed as Bern(·)(γ + Exp( 1

ln 2 )) converges,
but the expectations deteriorate as far as security is concerned. We suspect that,
for a given acceptable probability of failure given by the security parameter κ,
there is an optimal configuration (g, γ) (and a corresponding k) that minimizes
the confirmation delay. This is supported by our experimental evidence in Sec-
tion B. Can this optimal configuration be found analytically?

Additionally, we know that, at the operating limit of γ → ∞, the protocol
is exactly Bitcoin with an arbitrary tie-breaker, so we have proofs of security
for both γ = 0 and γ → ∞, but not for 0 < γ < ∞. We leave the full formal
analysis of these questions for future work, although we note that the relevant
Chernoff bounds for non-negative biases γ are well-behaved, as we analytically
prove in Lemma 13.
Work functions. We used the function work(B) = γ − lg H(B)

T . This defini-
tion corresponds to the intuitive idea that each successful query to the random
oracle reduces the number of possible evolutionary paths of the system, thus
reducing its “entropy” (hence the name PoEM, Proof of Entropy Minima). An
open question is whether this function is optimal, or whether a different function
optimizes confirmation latency.
Tight bounds. In our proofs, we have used the conservative configuration f =
δ
6 , which yields a small value for the honest block production rate g, following
the model of Backbone [10]. Follow up works in Bitcoin [5,12] have shown tighter
operating limits for Bitcoin, and we expect that similar results can be obtained
for PoEM. We have experimentally demonstrated that consensus is achieved
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with higher values of g when the honest parties play against a private mining
adversary. This instills confidence, because we know from the work in [5] that
this private mining attack is indeed the best possible attack against Bitcoin
in the continuous-time domain [14]. However, no such result exists for PoEM.
Showing that PoEM is secure for high values of g against any adversary, or that
indeed the private mining attack is also the best possible attack against PoEM,
is left for future work. Such an analysis poses technical challenges because, even
though PoEM might have better behavior of expected values, the concentration
of the random variables is worse than in Bitcoin.
Difficulty adjustment. In our security proof, we assumed a static population
in accordance with the Bitcoin Backbone analysis [10]. The practical deploy-
ments of both Bitcoin and PoEM adjust their difficulty in response to changes
in the miner population. Bitcoin was proven secure in this variable difficulty
setting [11]. One of the technical challenges in this analysis is to also consider
whether the value γ should be adjusted in response to changes in the miner
population. We leave the variable difficulty analysis of PoEM for future work.
DAGs. Some engineering work in our real-world deployment has indicated that
using PoEM’s fork choice rule in a DAG-based blockchain with a particular
topology may be beneficial. More research is needed to explore this direction.

D Mathematical Background

Lemma 12. For all 0 < y < 1, it holds that 2y − 1 < y and 1− 2−y < y.

Proof. For the first part, it suffices to show that (y + 1)1/y > 2, as this implies
that 2y < y + 1 and, ultimately, 2y − 1 < y. The inequality (y + 1)1/y > 2 holds
due to Bernoulli’s inequality ((1 + x)r > 1 + rx for all x > 0 and r > 1), when
setting x = y and r = 1

y .
For the second part, it suffices to show that (1 − y)1/y < 1

2 . Let f(y) =

(1− y)1/y and

d

dy
f(y) =

d

dy
(1− y)1/y =

d

dy
e

1
y ln(1−y) =

(1− y)1/y
(
− 1

y(1− y)
− ln(1− y)

y2

)
=

(1− y)1/y
(
y − (y − 1) ln(1− y)

y2(y − 1)

)
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Letting ϕ(y) = y − (y − 1) ln(1 − y), we have d
dyf(y) = (1 − y)1/y

(
ϕ(y)

y2(y−1)

)
.

Observe that ϕ(y) is continuous and differentiable for y ∈ (0, 1). It holds that

d

dy
ϕ(y) =

d

dy
(y − (y − 1) ln(1− y)) =

d

dy
(y − y ln(1− y) + ln(1− y)) =

1− ln(1− y) +
y

1− y
− 1

1− y
=

1− ln(1− y)− 1− y

1− y
= − ln(1− y)

Hence, for y ∈ (0, 1), it holds that d
dyϕ(y) > 0 and ϕ(y) is increasing. Because

ϕ(0) = 0, it holds that ϕ(y) > 0 for y ∈ (0, 1). Therefore, for y ∈ (0, 1), it holds
that d

dyf(y) < 0 and f(y) is decreasing.
Setting ω = − 1

y , we have

lim
y→0

f(y) = lim
y→0

(1− y)
1
y = lim

ω→−∞

(
1 +

1

ω

)−ω

=

1

limω→−∞
(
1 + 1

ω

)ω =
1

e

Pick an arbitrary 0 < ϵ < 1
2 −

1
e . By the definition of the limit, there exists a

δ > 0 such that for all y ∈ (0, δ), it holds that |f(y)− 1
e | < ϵ ⇔ f(y) < 1

2 . Hence,
for y ∈ (0, 1), because f(y) is continuous and decreasing, it holds that f(y) < 1

2 .
⊓⊔

Lemma 13 (Concentration of Bern × Exp). Let {Ai}i∈[n] and {Bi}i∈[n] be
two families of i.i.d. random variables, all mutually independent, with Ai dis-
tributed as Bern(p) and Bi distributed as γ + Exp(λ), the exponential distri-
bution shifted by a constant γ ≥ 0. Let Xi = AiBi, and X =

∑n
i=1 Xi.

Then for any 0 < ϵ < 1, it holds that Pr[X > (1 + ϵ)E[X]] < e−Ω(n) and
Pr[X < (1− ϵ)E[X]] < e−Ω(n), which is negligible in n.

Proof. E[Xi] = E[AiBi] = E[Ai]E[Bi] = p(γ + 1
λ ), therefore E[X] = np(γ + 1

λ ).
For the moment generating functions we have

E[etXi ] = E[etAiBi ] =

E[etAiBi |Ai = 0]Pr[Ai = 0]

+E[etAiBi |Ai = 1]Pr[Ai = 1] =

E[etAiBi |Ai = 0](1− p)+E[etAiBi |Ai = 1]p =

(1− p) + pE[etBi ] = (1− p) + petγ
λ

λ− t
.
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E[etX ] = E[et
∑n

i=1 Xi ] = E[
n∏

i=1

etXi ] =

n∏
i=1

E[etXi ] =

E[etAiBi ]n =

[
(1− p) + petγ

λ

λ− t

]n
= en ln[(1−p)+petγ λ

λ−t ] .

For all 0 < t < λ:

Pr[X > (1 + ϵ)E[X]] = Pr[X > (1 + ϵ)np(γ +
1

λ
)] = Pr[etX > et(1+ϵ)np(γ+ 1

λ )]

≤ E[etX ]e−t(1+ϵ)np(γ+ 1
λ ) = en ln[(1−p)+petγ λ

λ−t ]−nt(1+ϵ)p(γ+ 1
λ ) .

Consider the factor f(t) = ln
[
(1− p) + petγ λ

λ−t

]
− t(1 + ϵ)p(γ + 1

λ ) in front
of n in the exponent. Taking its derivative with respect to t:

d

dt

(
ln

[
(1− p) + petγ

λ

λ− t

]
− t(1 + ϵ)p

(
γ +

1

λ

))
=

1

(1− p) + petγ λ
λ−t

d

dt

[
(1− p) + petγ

λ

λ− t

]
− (1 + ϵ)p

(
γ +

1

λ

)
=

petγ λ
λ−t (γ + 1

λ−t )

(1− p) + petγ λ
λ−t

− (1 + ϵ)p

(
γ +

1

λ

)
At t = 0 we have f(0) = 0 and

d

dt
f(0) =

p(γ + 1
λ )

1− p+ p
− (1 + ϵ)p

(
γ +

1

λ

)
=

p

(
γ +

1

λ

)
− (1 + ϵ)p

(
γ +

1

λ

)
= −ϵp

(
γ +

1

λ

)
< 0 .

Since d
dtf is continuous at 0 and d

dtf(0) < 0, there must exist some 0 < t∗ < λ

such that for all 0 < t < t∗ it holds that d
dtf(t) < 0. Because f is continuous

and differentiable in [0, t∗], by the Mean Value Theorem, there must exist some
ξ ∈ (0, t∗) such that d

dtf(ξ) =
f(t∗)−f(0)

t∗−0 = f(t∗)
t∗ . Since t∗ > 0 and d

dtf(ξ) < 0,
therefore f(t∗) < 0. This t∗ makes the factor in front of n in the exponent
negative, and therefore gives us a bound for which Pr[X > (1+ϵ)E[X]] < e−Ω(n).

For all t < 0:

Pr[X < (1− ϵ)E[X]] = Pr

[
X < (1− ϵ)np(γ +

1

λ
)

]
= Pr[etX > et(1−ϵ)np(γ+ 1

λ )]

≤ E[etX ]e−t(1−ϵ)np(γ+ 1
λ )

= en ln[(1−p)+petγ λ
λ−t ]−t(1−ϵ)np(γ+ 1

λ )
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Consider the factor f(t) = ln
[
(1− p) + petγ λ

λ−t

]
− t(1− ϵ)p(γ + 1

λ ) in front
of n in the exponent. Taking its derivative with respect to t:

d

dt

(
ln

[
(1− p) + petγ

λ

λ− t

]
− t(1− ϵ)p(γ +

1

λ
)

)
=

1

(1− p) + petγ λ
λ−t

d

dt

[
(1− p) + petγ

λ

λ− t

]
− (1− ϵ)p(γ +

1

λ
) =

petγ λ
λ−t (γ + 1

λ−t )

(1− p) + petγ λ
λ−t

− (1− ϵ)p(γ +
1

λ
)

At t = 0 we have f(0) = 0 and

d

dt
f(0) =

p(γ + 1
λ )

(1− p) + p
− (1− ϵ)p(γ +

1

λ
) =

p(γ +
1

λ
)− (1− ϵ)p(γ +

1

λ
) = ϵp(γ +

1

λ
) > 0 .

Since d
dtf is continuous at 0 and d

dtf(0) > 0, there must exist some t∗ < 0

such that for all t∗ < t < 0 it holds that d
dtf(t) > 0. Because f is continuous

and differentiable in [t∗, 0], by the Mean Value Theorem, there must exist some
ξ ∈ (t∗, 0) such that d

dtf(ξ) =
f(0)−f(t∗)

0−t∗ = f(t∗)
t∗ . Since t∗ < 0 and d

dtf(ξ) > 0,
therefore f(t∗) < 0. This t∗ makes the factor in front of n in the exponent
negative, and therefore gives us a bound for which Pr[X < (1−ϵ)E[X]] < e−Ω(n).

⊓⊔
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Fig. 5: Fixing β and g, we compare Bitcoin’s latency against PoEM’s parameter-
ized under different γ values (denser around the points of interest). We observe
the plot is convex and for large γ, the latency approaches a value lower than
Bitcoin’s. The results were obtained by running 100,000 simulations per point.
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