
Onion Franking: Abuse Reports for
Mix-Based Private Messaging

Matthew Gregoire, Margaret Pierce, Saba Eskandarian
University of North Carolina at Chapel Hill

{mattyg, mapierce, saba}@cs.unc.edu

Abstract—The fast-paced development and deployment of
private messaging applications demands mechanisms to protect
against the concomitant potential for abuse. While widely used
end-to-end encrypted (E2EE) messaging systems have deployed
mechanisms for users to verifiably report abusive messages without
compromising the privacy of unreported messages, abuse reporting
schemes for systems that additionally protect message metadata
are still in their infancy. Existing solutions either focus on a
relatively small portion of the design space or incur much higher
communication and computation costs than their E2EE brethren.

This paper introduces new abuse reporting mechanisms that
work for any private messaging system based on onion encryption.
This includes low-latency systems that employ heuristic or
opportunistic mixing of user traffic, as well as schemes based
on mixnets. Along the way, we show that design decisions
and abstractions that are well-suited to the E2EE setting may
actually impede security and performance improvements in the
metadata-hiding setting. We also explore stronger threat models
for abuse reporting and moderation not explored in prior work,
showing where prior work falls short and how to strengthen both
our scheme and others’ – including deployed E2EE messaging
platforms – to achieve higher levels of security.

We implement a prototype of our scheme and find that it
outperforms the best known solutions in this setting by well over
an order of magnitude for each step of the message delivery
and reporting process, with overheads almost matching those of
message franking techniques used by E2EE encrypted messaging
apps today.

I. INTRODUCTION

Today’s widespread deployment of end-to-end encrypted
(E2EE) messaging applications is the fruit of decades of efforts
in cryptographic protocol development and science communi-
cation on the part of the security and privacy community. As
E2EE becomes a standard feature for popular messaging apps,
protecting metadata looms as the next goal on the horizon. This
heightened level of security, where the messaging platform sees
neither the contents of messages nor the identities of users’
conversation partners, is itself the subject of a decades-long
research effort originating in the early works of Chaum [9],
[10], and recent years have seen large strides in this space,
with a plethora of increasingly performant academic proposals.

While techniques for hiding conversation metadata have
seen limited deployment in widespread messaging apps – with
the notable exception of Signal’s efforts to hide metadata at
the application layer via Sealed Sender [1], [37] – anonymity
systems focused on web browsing have enjoyed much more
success. The most popular approaches for these systems,
including those used in Tor [19] and Apple’s iCloud Private

Relay [2], rely on onion encryption, where two or more
non-colluding servers remove layers of encryption from a
client-provided ciphertext, such that no server learns both the
identity of the client and the destination of the client’s message.
This is also the foundation of many proposed metadata-hiding
messaging systems, originating with mixnets [9] and including
recent systems that target a diverse array of security goals [45].

This rapid development of private communication technology
in academia and practice also creates a need for mechanisms to
address abuse of the protections provided by these systems by
bullies, harassers, etc. In an unencrypted messaging platform,
users can directly report abuse to a platform moderator who has
access to all relevant messages. When a platform is E2EE or
hides metadata, moderators do not have access to conversation
data (or metadata), so user reports need to additionally prove
that the reported content corresponds to actual conversations
that occurred on the platform. In response to this need, Meta
has developed a technique called Message Franking [39], [27],
[20] that allows users to verifiably report abusive messages to
the platform without compromising the privacy of unreported
messages.

Unfortunately, message franking does not work in the
metadata-hiding setting because it relies on the platform having
access to conversation metadata when processing messages.
Proposals to support message franking for metadata-hiding
communication systems include Asymmetric Message Franking
(AMF) [50], Hecate [28], and Shared Franking [22]. Unfor-
tunately, these schemes either incur 2-3 orders of magnitude
in computational overhead, or only apply to a narrow subset
of schemes, rendering them less than ideal for deployment
alongside many of the most promising approaches to metadata-
hiding messaging.

This paper shows how metadata-hiding schemes based on
onion encryption can support verifiable abuse reports while
maintaining performance akin to standard message franking.
Our scheme, which we refer to as onion franking, applies to
any system where multiple servers take turns processing onion-
encrypted messages, regardless of the network-layer techniques
used to sever the connection between sender and receiver. That
is, we equally support Tor-style solutions that rely on heuristic
mixing of traffic and true mixnets that shuffle messages in
batches, as well as options that fall between these two. We
believe that our techniques may be more broadly applicable in
other settings, which we describe in Appendix D.

Our approach takes advantage of the fact that these systems
share a common structure where users send their message to
one server who then passes it on to other server(s) during the
mixing process. We have the first server, who has a direct
connection with the message sender and can therefore learn
its identity, perform the role of the moderator. We present two
versions of our main scheme, both of which abstract away the
details of the underlying onion encryption packet format, but
in different ways. One uses the underlying onion-encrypted
ciphertext in a fully black-box way, allowing for compatibility
with messaging schemes that use variants of typical onion-
encryption approach, e.g., re-encryption mixnets. The other
modifies the onion encryption process in order to get even better
performance and further reduce communication overhead.

Along the way, we find that abstractions used for reasoning
about message franking in the E2EE setting may not be
the best fit for the metadata-hiding setting. We show that
breaking with abstractions used in prior work and relying
directly on the underlying cryptographic tools enables savings
in communication costs and allows for stronger confidentiality
goals than those considered in some prior works. Specifically,
we show that breaking the compactly committing authenticated
encryption (ccAE) abstraction [27], which very cleanly and
intuitively captures the properties required of a standard
message franking scheme, can allow us to support anonymous
abuse reports, whereas instantiating our scheme using ccAE
would necessarily compromise anonymity.

We also explore stronger notions of accountability, the
property that prevents a malicious message sender from
evading abuse reporting mechanisms. In addition to a standard
accountability definition that focuses only on a malicious user,
we develop a notion of strong accountability that captures the
compromise of a large portion of the message moderation and
delivery infrastructure. We show how to modify our scheme,
as well as prior work, to meet this definition. Our discussion of
strong accountability, as well as the constructions we present
to provide this property, apply to both the metadata-hiding and
plain E2EE settings, so our strong accountability schemes may
be of interest for strengthening the accountability of deployed
E2EE messaging platforms too.

We implement and evaluate our onion franking scheme, as
well as the extensions for strong accountability, and compare
their performance to abuse reporting mechanisms from prior
work, both for E2EE and metadata-hiding systems. We find
that onion franking achieves order of magnitude computation
overhead reductions compared to the most efficient prior work
that is applicable to onion encryption-based systems.

In summary, this paper makes the following contributions:
• Introduces the notion of onion franking, a broad ab-

straction that provides verifiable abuse reporting features
for any private communication platform based on onion
encryption.

• Presents two versions of a lightweight onion franking
scheme built from standard and widely-deployed crypto-
graphic tools.

• Explores the notion of strong accountability against
partially-compromised moderation infrastructure and
shows how to augment our scheme and other prior work
to be secure in this stronger threat model.

• Implements and evaluates onion franking, showing or-
der of magnitude performance improvements over prior
schemes applicable to onion-encrypted messaging, as well
as performance comparable to that of message franking
in the E2EE setting.

II. BACKGROUND: E2EE MESSAGE FRANKING

Before moving on, we briefly summarize standard message
franking as it is deployed in E2EE messaging apps deployed
today by Facebook and WhatsApp [39]. We refer to this scheme
as E2EE message franking in this paper.

E2EE message franking consists of the message sender
producing not only a ciphertext c1 on their message, but also
a commitment c2 to the same message. More concretely, to
send a message m, the message sender samples commitment
randomness kf and produces the ciphertext Enc(k, (m, kf)).
Additionally, the sender produces the commitment c2 ←
Commit(kf ,m). Grubbs et al. [27] introduce the abstraction
of compactly committing authenticated encryption (ccAE) to
elegantly merge the required message sending functionality
and security properties into a single primitive. Although we
follow this same pattern in our onion franking scheme, we do
not use the ccAE primitive, for reasons explained later.

When a message is sent through the messaging platform,
which also serves as the moderator, the moderator computes
a MAC tag σ ← MAC.Sign(km, (c2, ctx)), MACing the
commitment c2 and a context string ctx using a moderator
MAC key. The context string includes any information that will
be relevant to the moderator should the message be reported
later, e.g., sender identity and message timestamp. The tag σ
is delivered to the message recipient alongside c1, c2.

After decrypting and reading an abusive message, a message
recipient can report the message by sending the moderator
m, ctx, c2, kf , σ. The moderator checks the MAC and verifies
the commitment to make sure the report is legitimate before
adjudicating the user complaint according to platform policies.

Shortcomings of E2EE message franking. Unfortunately, the
E2EE message franking approach is designed for E2EE settings
and is not compatible with metadata-hiding settings. When
looking at metadata-hiding platforms generically, the platform
does not have access to the information needed to attach the
context string ctx to a user message. Indeed, preventing this is
exactly the stated security goal of metadata-hiding sytems.

A path forward. Looking ahead, we will show how to use an
E2EE message franking-style approach to build abuse reporting
schemes for any metadata-hiding messaging system based on
onion encryption. We use the broad term “onion encryption”
to mean the set of approaches where a message is protected by
many layers of encryption as it passes through the system. This
is inclusive of decryption and re-encryption mixnets, onion
routing, etc.

2

Crucially, a common characteristic of onion encryption-based
schemes is that the first server to receive the onion-encrypted
ciphertext can learn the identity of the message sender. The
system always breaks the connection between a message sender
and their message after this initial contact. This key observation
gives us hope for using an E2EE message franking-like protocol,
because the first server has an opportunity to know the necessary
context to assemble a useful context string ctx.

III. DESIGN GOALS

An onion franking scheme augments an onion-encrypted
ciphertext to support abuse reporting, allowing any recipient of
the encrypted message to verifiably report it to the moderator
running the communication platform. While any number of
different applications of onion encryption could benefit from
reporting features in principle, we will focus on the setting
where the underlying application is metadata-hiding messaging,
and the onion-encrypted message is a piece of text or media
sent from one user of a messaging platform to another.

Augmenting onion encryption. For our purposes, we model
onion encryption as a process consisting of two algorithms:
Onion.Encrypt produces an onion-encrypted ciphertext,
which is then decrypted in layers by a series of calls to
Onion.Peel. In practice Onion.Encrypt consists of
repeatedly encrypting a message under the public keys of
a number of servers, and each server runs Onion.Peel to
remove one layer of encryption while the message moves from
the sender to the recipient. This approach abstracts away details
like the specifics of the onion encrypted packet format and
separates encryption considerations from network-level mixing
strategies.

Onion franking augments this interface in a way that
incorporates additional information that a message recipient
can send to a moderator in the case that the recipient takes
issue with the message content. We add Send and Read
functions to be called by the sender and receiver of a message,
as well as a Process function to be called by each server
in parallel with running Onion.Peel. The first server to
receive an onion encrypted ciphertext serves as the moderator,
and this server runs an additional ModProcess function to
attach necessary metadata before processing the ciphertext.
Finally, the moderator uses a Moderate function to verify
reports and extract relevant information once a user reports
a message. Figure 1 shows how onion franking can work
alongside onion encryption, using the inputs and outputs of
the formal syntax introduced in Section IV. This is one of two
ways, discussed in Section V, to integrate onion franking into
an existing messaging scheme.

Security goals. An onion franking scheme must satisfy a
number of security requirements that ensure all messages can be
correctly reported, that malicious users cannot frame others, and
that the scheme cannot be abused to publicly shame users for
expressing their opinions. Most obviously, the onion franking
scheme must in no way compromise the confidentiality and
metadata protections that the unmodified messaging platform

provides to its users for unreported messages. These security
requirements can be summarized by the following list of
required properties.

• Unforgeability. No malicious client may submit a false
report that is then verified by the moderator. This guar-
antees that no malicious client, even if it colludes with
malicious servers, can blame another client for a message
it did not send.

• Accountability. Every message sent through the onion
franking scheme can be verified if reported, even if an
adversarial sender maliciously deviates from the protocol.

• Deniability. No server, client, or third party may inde-
pendently verify a message report, except the moderator.

• Confidentiality. The addition of onion franking func-
tionality must not compromise the confidentiality of
the underlying messaging system. More specifically, the
franking scheme must not affect the confidentiality and
metadata-hiding properties of the platform, except for
reported messages.

We discuss how to apply these high-level security goals to
onion franking in Section IV. While these security goals have
been considered by a number of works on abuse reporting
for private messaging, we additionally explore two previously
unaddressed aspects of security: accountability in the presence
of potentially compromised moderation infrastructure, and the
privacy provided to users by a franking scheme after a report
has been made.

Threat modeling assumptions. Our work focuses on assuring
the necessary security properties of users’ messages, but not on
the robustness of the platform against disruptive servers. That is,
we trust that servers will remain available to process messages,
even if they may maliciously deviate from the specified protocol
when doing so. Ultimately, honest clients can simply discard
messages that arrive without onion franking tags due to non-
cooperative servers.

We make no assumption about the behavior of clients, who
may be arbitrarily malicious and can collude with malicious
servers to compromise our various security goals. Our security
goals focus on security at the application layer, so we assume
the existence of pairwise secure connections between servers,
e.g., via TLS, which are often already in use by the underlying
communication protocol.

IV. FORMALIZING ONION FRANKING

This section formalizes the syntax for onion franking and
discusses the various security properties required of an onion
franking scheme in greater detail. We present formal definitions
in the appendices in cases where a clear and self-contained
security goal emerges, and we give a precise but informal
description of our goals in cases where the security definitions
depend on those of the underlying messaging system.

Notation. Before we continue, we pause here to briefly sum-
marize the notation used throughout this paper. By x← f(y)
we denote assignment to x of the value f(y), and by x←R S
we denote assignment to x of a value chosen uniformly at

3

Send

k r

m

pk
c1, c2, c3

Oni on. Encr ypt ct 0

ModPr ocess

km ct x

?, ?c

Pr ocess

sk1

st 0

Oni on. Peel

st 1 Pr ocess

sk2

st 2

Oni on. Peel ct 2

st N

Read

k r

m, ct x, r d, ?

Moder at e

km

0/ 1

Moder at or Ot her Ser ver (s)Sender

Recei ver

ct 1 ct N

Fig. 1: Illustration of how to integrate onion franking with a messaging system that uses onion encryption, e.g., mixnets, onion routers, etc.

random from a set S. Tables, denoted with capital letters and
initialized at T ← {}, act as key-value stores, where values
can be accessed by T [key]. Vectors, denoted v and initialized
as v← [], are ordered lists of values. Elements can be added
to vectors via v.add(val). A function negl(x) is negligible if,
for all c > 0, there exists an x0 such that, for all x > x0,
negl(x) < 1

xc . We use ⊥ as a special character indicating
protocol failure.

A. A formal syntax for onion franking

An onion franking scheme consists of the following algo-
rithms.

• ServerSetup(1λ) → (sk, pk): This function takes in a
security parameter λ and generates a key pair. It is run
by each server, and the public keys pk1, ..., pkn form the
vector pk.

• Send(pk, kr,m) → c1, c2, c3: This function takes a
vector of n server public keys pk = (pk1, . . . , pkn), the
receiver’s symmetric key kr ∈ Kr, and a message m. It
returns a symmetric ciphertext c1, a franking tag c2, and
a mixnet franking packet c3.

• ModProcess(km, c2, ctx) → σ, σc: This function, per-
formed by the moderator server, takes the moderator’s
MAC key km ∈ Km, franking tag c2, and message context
ctx. It returns a reporting tag σ, as well as a checksum
value σc used by the client to validate the integrity of σ.

• Process(ski, sti−1)→ sti: This function is performed by
each server Si. It takes Si’s secret key ski and masked
report state sti−1. It then outputs a re-masked report
state sti. In correct usage, the tuple (c3, c2, ctx, σ, σc)
is the initial st0 used by this function.

• Read(kr, c1, stN) → m, ctx, rd, σ or ⊥: This function
takes the receiver’s symmetric key kr, symmetric cipher-
text c1, and masked report state stN . It returns the message

m, the context ctx, additional reporting data rd, and a
tag σ. If reading fails, this function returns ⊥.

• Moderate(km,m, ctx, rd, σ)→ 0/1: this function is used
by the moderator at reporting time. It takes the moderator’s
MAC key km, a reported message m, associated context
ctx, report data rd, and a tag σ. The function outputs 1
if the report is valid, and 0 otherwise.

Correctness. Correctness for onion franking simply requires
that an honestly generated onion franking message can be
successfully read and reported after processing by the moderator
and other servers. Specifically, for all N = |pk|, all keys
kr ∈ Kr, km ∈ Km, λ ∈ N, i ∈ {0, ..., N − 1}, and for all
choices of m, ctx, after running

ski, pki ← ServerSetup(1λ)

for each server i ∈ {1, ..., N}, and then computing

c1, c2, c3 ← Send(pk, kr,m)

σ, σc ← ModProcess(km, c2, ctx)

st1 ← Process(sk0, (c3, c2, ctx, σ, σc))

followed by N − 1 iterated calls to

sti+1 ← Process(ski, sti) for i ∈ {1, ..., N − 1},

it must hold that

m′, ctx′, rd, σ′ ← Read(kr, c1, stN),

where m′ = m, ctx′ = ctx, and

Moderate(km,m′, ctx′, rd, σ′) = 1.

The remainder of this section addresses each of the security
requirements of an onion franking scheme – unforgeability,
accountabililty, deniability, and confidentiality.

4

B. Unforgeability

A key requirement of an abuse reporting scheme is that it
should not itself become a vector for abuse. In particular, a
malicious user should not be able to forge abuse reports to harm
someone else. We capture this requirement in our unforgeability
definition, which allows a malicious user(s) colluding with all
the servers except the moderator to send a number of messages
of its choosing through the moderator and receive its outputs.

The experiment includes an OnionFrank oracle that allows
the adversary to send potentially malformed ciphertexts to
the moderator. Since the adversary controls all the other
servers, the experiment does not need to explicitly model them,
allowing the adversary to choose the output of the final server.
However, the experiment does distinguish between messages
that are moderated and never delivered versus messages that
are successfully delivered after passing through the moderator.

Whenever the adversary wishes, it can send a forged report
to the Verify oracle. The adversary wins if this forged report
is accepted and the corresponding report tag σ has not already
been produced by OnionFrank, or if the tag σ was produced by
the moderator, but was delivered with a different message m,
context ctx, or report data rd than the ones being reported. This
second condition is why we need to keep track of delivered
messages and not just the ciphertexts that pass through the
moderator. This definition captures our unforgeability goal
because only messages that have been sent through OnionFrank
have been processed by the moderator, so messages not in this
list must be forgeries.

We formalize our unforgeability definition in Appendix A.

C. Accountability

Accountability is the property that prevents malicious users
from evading the abuse reporting mechanism and sending
messages that can be read by the recipient but fail verification
by the moderator. This is a slightly different property than
unforgeability: unforgeability prevents fake messages that are
accepted as valid, and accountabililty prevents real messages
that are not accepted as valid.

Our accountabililty definition allows a malicious user to send
ciphertexts of its choice through the system via an OnionFrank
protocol. In this protocol, the experiment processes messages as
the moderator, subsequent servers, eventual message recipient,
and report moderator. If the message is successfully read but
fails to be accepted by the Moderate function, or if the message
is successfully read but produces a different context than the
one used by the moderator, the adversary wins.

In the interest of keeping the onion franking security
definitions self-contained and independent of the properties of
the underlying messaging scheme, we avoid including calls to
Onion.Peel in the security definition by allowing the adversary
to directly specify the ciphertext ctN . This is a conservative
modeling of reality, where the adversary may only have partial
control over this value.

We state our accountabililty definition formally in Ap-
pendix A. Our standard accountabililty definition assumes that
the moderator and other platform servers follow the protocol

honestly. In Section VI we present a strong accountabililty
definition where any subset of the moderator and platform
servers can be malicious at message delivery time. This
captures the strong threat model where the message delivery
infrastructure, and even part of the moderation infrastructure,
are compromised by an attacker.

D. Deniability

Deniability preserves the ephemeral nature of real-world
communication. It requires that only the moderator is able
to verify reports, and that other parties cannot conclusively
show that a given user sent a given message. There are many
ways to define deniability, each of which comes with differing
tradeoffs between deniability and accountabililty [50]. Recent
works on abuse reporting focus on a similar family of security
goals [50], [28], [22] where a scheme must satisfy a handful of
deniability properties, each of which requires that there exists
a report forgery algorithm whose outputs are computationally
indistinguishable from those of the real reports generated by
the scheme. The differences between the properties arise from
the choice of what secrets are given to the forgery algorithm
and the distinguisher. Since the actual reports generated by our
onion franking scheme will be identical to reports generated
by conventional E2EE message franking (or its variants [27]),
we do not repeat an analysis of the deniability of this scheme,
which follows directly from the security properties of the
underlying tools [39].

Note that deniability definitions apply only to the abuse
reporting scheme itself, and that the remaining components
of a larger messaging system must also be deniable in order
for deniability to hold for the whole system. For example,
it doesn’t help for onion franking reports to be deniable if
the onion encryption ciphertexts or key exchange mechanisms
themselves are not.

E. Confidentiality

Finally, the most important and fundamental requirement
of an onion franking scheme is that it in no way compromise
the security properties of the underlying messaging scheme,
except when a user reports a message to the moderator. This
includes protecting the confidentiality of the message contents
themselves, as well as message metadata. Onion franking aims
to augment any scheme that uses onion encryption, rather
than targeting a given family of confidentiality goals. Thus,
rather than targeting one or another class of metadata-hiding
goals, we require that a scheme that has been augmented with
onion franking has the same confidentiality properties (for
unreported messages) as the underlying scheme. In practice,
the confidentiality of our schemes will depend almost entirely
on that of the encryption schemes employed. How best to
define privacy guarantees for onion encryption is itself the
subject of active research [15], [44], [17], [47], so we do not
introduce a new confidentiality definition here except to state
that the encryption scheme used for transmitting additional data
as part of our scheme must satisfy the necessary properties to

5

preserve any anonymity, in addition to the confidentiality and
integrity properties typically expected of encryption [25], [43].

Confidentiality for reported messages. Once a message has
been reported, its contents are no longer confidential because
the message receiver has voluntarily reported them to the
platform. In an E2EE platform, this is the end of the story.
However, hiding metadata introduces the possibility of retaining
some privacy requirements even after a message’s contents have
been reported. We consider two such cases.

• In some metadata-hiding platforms, e.g., in anonymous
broadcast systems, the sender of a message can be
anonymous even to the message receiver. In this case,
a platform may wish to maintain sender anonymity from
the receiver, even if a message is reported. We say that
a platform that satisfies this property has post-report
anonymity.

• If a messaging platform does not link message senders
and receivers, then message recipients may wish to make
anonymous reports. That is, they might want to reveal
to the platform that some user sent a particular abusive
message without revealing to the platform that they were
speaking to that user. We call this property anonymous
reporting.

Post-report anonymity and anonymous reporting are not
properties that can be provided by an onion franking scheme
alone, as they also depend on design and deployment choices
in the underlying messaging platform. However, it is possible
for an onion franking scheme to render a messaging scheme
incompatible with one or both of these properties, so we
will study the compatibility of our proposed schemes with
these properties. Interestingly, we will show in Section V
that abstractions used to elegantly and concisely capture the
properties required for message franking in the E2EE setting
actually impede the ability of an onion franking scheme to
support anonymous reporting.

V. ONION FRANKING CONSTRUCTION

This section introduces our main constructions of onion
franking. We adapt the tools used for E2EE message frank-
ing, with additional techniques to preserve metadata-hiding
properties while messages are being routed, and to prevent
malicious users from using the stronger privacy properties to
evade accountability.

A. Scheme Description

As mentioned in Section II, onion encryption is a setting
where the first server can learn the necessary context ctx to
make useful abuse reports. Thus E2EE message franking is a
plausible starting point for our scheme. Unfortunately, message
franking requires a commitment c2 to the message to be visible
to the moderator, and the moderator produces a MAC tag σ that
must be attached to the ciphertext when it is delivered. Simply
appending (c2, ctx, σ) to a ciphertext as it enters an onion
encryption-based messaging system will make the ciphertext
clearly identifiable and traceable to other servers in the system,
violating the confidentiality of the messaging system.

To maintain the anonymity of the message, we need to mask
(c2, ctx, σ) from the view of other servers. We achieve this
by giving each server a random mask value ri that it XORs
into these values. Since each server XORs in a random value
into this bit string, which we refer to as the state st, the state
will look independently random to each server. To ensure that
the message receiver can still read (c2, ctx, σ), we generate
the ri values from a PRG G on a sender-selected input s
that is encrypted alongside the message m in the ciphertext
c1. We send the ri values to the various servers in an onion-
encrypted ciphertext c3, the ith layer of which holds the value
ri and the ciphertext for the next server to decrypt. Thus, the
state actually consists of two sets of values. A masked tuple
(c2, ctx, σ) and an onion-encrypted ciphertext c3, the layers of
which are gradually removed to reveal random masks ri for
each server.

The scheme as described so far works if message senders
follow the protocol honestly, but a malicious sender seeking
to evade the accountability of the scheme could simply pick
r1, ..., rN however it wants and choose s unrelated to these
values. Then, when the message recipient decrypts c1 to recover
(m, s) and uses s to unmask (c2, ctx, σ), the “unmasked” values
will be incorrect, resulting in the moderator rejecting the user’s
reports as inauthentic. We avoid this by including a checksum
value in the state st to detect when r1, ..., rN ̸= G(s). After
computing the MAC tag σ, the moderator also computes
a separate tag σc ← H(σ, c2, ctx) and includes σc in the
string that forms the masked state. Thus, when a message is
read, the recipient recovers (c2, ctx, σ, σc) and can check that
the appropriate relationship between these four variables is
maintained. We show in our security analysis, that this rules
out accountability attacks by a malicious message sender.

Anonymous reporting. Throughout this paper, we use the
c1, c2 notation for message franking that is used in compactly
committing authenticated encryption (ccAE) [27]. Abstractions
like ccAE and encryptment [20] provide concise and elegant
ways to capture the core requirements for message franking
ciphertexts. However, we do not adopt these abstractions in
their entirety because, while they very effectively capture the
requirements of E2EE message franking, they actually introduce
inefficiencies and weaken the privacy afforded to reporters in
the metadata-hiding setting.

To see why, suppose we had directly used the ccAE
abstraction. This abstraction takes in a message and produces
c1, c2 that are an encryption and commitment to the message,
respectively, very similar to what our scheme does. The message
we encrypt here is (m, s), where m is the actual message, and s
is the seed used to generate r1, ..., rN . The randomness rf used
to produce and open the commitment c2 is incorporated into
the ciphertext c1 and returned to the user when the ciphertext
is decrypted.

Avoiding using ccAE gives us a performance benefit because
the moderator doesn’t need to see s, but it would have to be sent
s in order to verify the commitment c2 to (m, s). Moreover, if
we’re already using G(s) to generate random masks, we can

6

Send(pk, kr,m)

s←R {0, 1}λ

kf , r1, . . . , rN ← G(s)

c1 ← Enc(kr, (m, s))

c2 ← Com.Commit(kf ,m)

c3,0 ← ϵ

for i ∈ {1, . . . , N} :
c3,i ← Enc(pki, (c3,i−1, ri))

c3 ← c3,N

return c1, c2, c3

ModProcess(km, c2, ctx)

σ ← MAC.Sign(km, (c2, ctx))

σc ← H(σ, c2, ctx)

return σ, σc

ServerSetup(1λ)

return KeyGen(1λ)

Process(ski, sti−1)

//st0 ← c3, c2, ctx, σ, σc

c3,mrt← sti−1

c′3, ri ← Dec(ski, c3)

mrt′ ← mrt⊕ ri

sti ← (c′3,mrt′)

return sti

Read(kr, c1, st)

m, s← Dec(kr, c1)

ϵ,mrt0 ← st

kf , r1, . . . , rN ← G(s)

for i ∈ {1, . . . , N} :
mrti ← mrti−1 ⊕ ri

c2, ctx, σ, σc ← mrtN

if Com.Open(c2,m, kf) = 0 : return ⊥
if σc ̸= H(c2, ctx, σ) : return ⊥
rd← (kf , c2)

return m, ctx, rd, σ

Moderate(km,m, ctx, rd, σ)

kf , c2 ← rd

validf ← Com.Open(c2,m, kf)

validr ← MAC.Verify(km, (c2, ctx), σ)

return validf ∧ validr

Fig. 2: Our onion franking scheme Π (Construction V.1).

also use it to generate rf , reducing the size of the ciphertext.
In practice, these changes save 16-32 bytes of communication
for each message and each report.

Much more importantly, while sending s to the moderator
may seem like just a minor inefficiency, it also has negative
ramifications for anonymous reporting. If a platform supports
anonymous reports, i.e. the reporting user can use the metadata-
hiding system itself to send reports to the moderator, then a
malicious moderator can use s to unmask the identity of the
recipient, circumventing all the protections of the anonymous
reporting feature. If the malicious moderator has s, it can
compute r1, ..., rN , meaning it has all the randomness that was
used to mask (c2, ctx, σ, σc) as it was passed from server to
server. By collecting traffic sent from the platform to users (or
colluding with the last server), the moderator can now trace
the path of these values from sender to receiver, revealing who
received and then reported this message. Thus while ccAE
provides excellent intuition for E2EE message franking, its
formalization does not quite fit with the new security goals of
the metadata-hiding setting.

B. Formal Description

We now formally describe the onion franking scheme
outlined above.

Construction V.1 (Onion Franking). Our N -server onion
franking scheme Π with security parameter λ appears in
Figure 2 and makes use of the following primitives:

• A PRG G : {0, 1}λ → {0, 1}(N+1)λ.
• A hash function H : {0, 1}∗ → {0, 1}λ′

modeled as a
random oracle. The parameter λ′ = poly(λ) is derived
from the security parameter.

• A MAC scheme MAC = (Sign,Verify) where the Sign
algorithm is also a PRF.

• A commitment scheme Com = (Commit,Open)
• A public-key encryption scheme PKE =
(KeyGen,Enc,Dec)

Before moving on to the security analysis, we briefly discuss
two potential optimizations that can be applied to our scheme.

Preprocessing client values. Very little of the computation
in Send depends on the message m in any way. The client
only needs to encrypt and commit to the message, the same
operations required in plain E2EE message franking. The
additional operations introduced for onion franking – computing
r1, ..., rN and encrypting them in the nested ciphertext c3 – can
be preprocessed before a user decides to send a message. Thus
the online computational cost of onion franking is identical to
that of standard message franking.

C. An Optimized Scheme

As an alternative to preprocessing client values, observe
that the ciphertext c3 is produced in parallel with the onion
encrypted ciphertext holding the message, and these two values
are sent into the messaging system alongside each other. This
design allows us to be fully agnostic with respect to the design

7

Send(pk, kr,m)

s←R {0, 1}λ

kf , r1, . . . , rN ← G(s)

ct0 ← Enc(kr, (m, s))

c2 ← Com.Commit(kf ,m)

for i ∈ {1, . . . , N} :
cti ← Enc(pki, (cti−1, ri))

return ctN , c2

Process(ski, cti−1, sti−1)

//st0 ← c2, ctx, σ, σc

cti, ri ← Dec(ski, cti−1)

sti ← sti−1 ⊕ ri

return cti, sti

Fig. 3: Onion franking scheme, optimized to integrate with decryption
mixes. Changes within each algorithm are shown in blue. Algorithms
not shown are unchanged.

of the onion encryption scheme, but we can merge the two
into one ciphertext by making slightly stronger assumptions
about the underlying messaging scheme.

If we assume that messages are encrypted by nesting layers
of encryption that are then decrypted by each subsequent server,
we can put each server’s value of ri inside the message cipher-
text that server decrypts, instead of producing another nested
ciphertext that is decrypted alongside it. This optimization
saves a great deal of computation and communication by only
incurring the overhead of encrypting and decrypting a ciphertext
once. It significantly reduces the portion of the scheme that
can be preprocessed (just generating r1, ..., rN), but in return
the overhead of sending messages and processing them drops
precipitously.

We show the changes that would be made to construction V.1
to merge the ciphertexts for the message and masks in
Figure 3. This optimization is compatible with many messaging
systems, but it can not be used with, e.g., systems that rely
on re-encryption mixnets because the optimization adds a
small plaintext in between the different layers that are being
decrypted.

Throughout this paper, we formalize, implement, and eval-
uate all our other variations of onion franking on top of
the general scheme formalized in construction V.1, but all
the variations can just as easily be implemented on top of
this optimized scheme. Looking ahead to our evaluation in
Section VII, the optimized scheme has the overall strongest
performance, only being beaten only by the online Send time
in the general scheme and plain E2EE message franking.

D. Security Analysis

We now analyze the security properties of our scheme.

Unforgeability. The unforgeabilty of the scheme follows from
the binding property of the commitment and the unforgeability
of the MAC. Intuitively, the moderator will only accept MACs
that have been passed through the moderator, which means
that any report sent to the moderator will have authentic
values of (σ, c2, ctx). But since c2 is a binding commitment to
the message, this means that the moderator will only accept
messages whose ciphertexts have honestly passed through

ModProcess. This intuition is formalized in the following
theorem, which we prove in Appendix B.

Theorem V.2 (Unforgeability). Assuming that MAC is an
existentially unforgeable MAC scheme, and that Com is a
binding commitment scheme, our onion franking scheme Π
(Construction V.1) satisfies unforgeability (Definition A.1).

In particular, for every unforgeability adversary A that
attacks our protocol Π, there exist unforgeability and binding
adversaries B and C such that for every λ,N ,

FORGAdv(A,Π, N, λ) ≤ MACAdv(B,MAC, λ)

+ BINDAdv(C,Com, λ) + negl(λ).

Accountability. Accountability follows from the pseudoran-
domness of the MAC outputs and the fact that we model H
as a random oracle. Since MAC.Sign is modeled as a PRF,
each value of (c2, ctx) is associated with an independent and
uniformly random value σ. But since σ is an input to H , each
(c2, ctx, σ) is associated with an independent and uniformly
random value σc. A malicious user breaks accountability by
causing a reader to accept the check of σc while the moderator
rejects σ. A malicious user has the power to maliciously
generate r1, ..., rn in an attempt to cause this bad event,
resulting in the moderator’s outputs being XORed by values of
the attacker’s choice. Thus the ability of the attacker to break
accountability is tied to the probability that it can guess the
offsets between the random values mentioned above and XOR
in values to cancel them out, a task that is only achieved with
negligible probability. We prove this formally in Appendix B,
where we prove the following theorem.

Theorem V.3 (Accountability). Assuming that we model H
as a random oracle, and that MAC is a correct MAC scheme
where MAC.Sign is also a PRF, our onion franking scheme Π
(Construction V.1) satisfies accountability (Definition A.2).

In particular, for every accountability adversary A that at-
tacks our protocol Π, there exists an accountability adversary B
such that for every λ,N ,

ACCTAdv(A,Π, N, λ) ≤ PRFAdv(B,MAC.Sign, λ)

+ negl(λ).

Confidentiality. The confidentiality of our scheme follows from
that of the encryption scheme used to encrypt the message and
ri values, as well as the hiding property of the commitment
scheme Com. Consider an adversary who controls all but the
ith server. The input to this server’s Process function is a
ciphertext and a bit string masked with the previous server’s
random ri−1. The output is another ciphertext and the same
bit string now masked with a new random ri. As long as the
encryption scheme (Enc,Dec) provides the necessary semantic
security and anonymity properties, confidentiality is preserved.
The exception to this pattern is the moderator, who receives
c2, unmasked and unencrypted, from the user, but here the
hiding property of the commitment scheme ensures that the
moderator learns nothing about the message from c2.

8

This scheme is compatible with post-report anonymity
because the only server who receives any information about the
sender identity is also the moderator, so as long as the context
string ctx does not reveal information about the sender identity,
e.g., if the sender identity is encrypted, the receiver cannot learn
anything about the sender identity from the onion franking
scheme, even if it colludes with other non-moderator servers.
This is true of any scheme using a layered mixing structure,
but it is not necessarily true for all abuse reporting schemes.
For example, schemes that rely on a third party moderator may
leak information to the receiver that allows it to collude with
the first server to reveal the sender’s identity, or schemes that
rely on secret-sharing may allow the receiver to collude with
non-moderator servers to do the same.

Finally, as already discussed, this scheme is compatible
with anonymous reporting because the secrets used to preserve
confidentiality remain hidden from the moderator, even after a
report is made. In this way, although onion franking breaks the
confidentiality of message contents and sender context, other
aspects of confidentiality remain intact post-reporting.

VI. RESILIENCE AGAINST COMPROMISED MODERATION
INFRASTRUCTURE

Having presented our main constructions of onion franking,
we now discuss a stronger threat model under which our scheme
and prior works may wish to achieve security: the case of
partially compromised moderation infrastructure. Although we
present our contributions in this setting as an extension to onion
franking, the techniques are equally applicable to standard end-
to-end encryption tools deployed today.

All abuse reporting schemes ultimately rely on the subjective
judgment of a moderator to make decisions regarding the
admissibility of content and appropriate ramifications for those
who violate platform content rules. Since our work (and other
work in this space [50], [28], [22]) aims for strong deniability
properties, this means that the moderator’s decisions about
the validity of a report and the objectionability of its contents
cannot be questioned. Thus it does not make sense to discuss
security against a moderator who behaves maliciously and lies
about the outputs of the Moderate function.

However, the moderator also needs to be involved in the
processing of messages, i.e., when running the ModProcess
and Process functions. It is possible that these two moderator
functions – message processing and message moderation – take
place on different computing infrastructure because message
processing and content moderation are logically distinct tasks.
This raises the possibility that a compromised moderator
server behaves maliciously at message delivery time, causing
an honest moderator to get an incorrect output from the
Moderate function. The definition of accountability does
not rule out this possibility because it explicitly assumes the
moderator to be honest.

Stronger accountability. We consider a stronger notion of
accountability, named server accountability, which captures an
attacker who attempts to break accountability via compromised

moderation infrastructure at message delivery time, as well as
a strong accountability definition that captures both standard
accountability and server accountability. Unlike our standard
accountability definition, which did not allow the adversary
to control any of the platform servers, strong accountability
(and server accountability) allows the adversary to control any
subset of servers it chooses, including the moderator, during
message processing/delivery only. The strong accountability
security game is similar to the standard accountability one,
except that the adversary is allowed to pick which servers it
controls at the beginning of the experiment, and while running
the OnionFrank protocol, the adversary receives the inputs to
servers it controls and can choose their outputs. The definition
also includes a relaxed variant, 1/ℓ-strong accountability (or
1/ℓ-server accountability), which allows for schemes that catch
abuse with some constant but non-negligible probability ℓ−1

ℓ .
We formalize our strong accountability definition, the stronger
of the two notions, in Appendix A.

A. Vulnerability of Existing Schemes to Moderator Compromise

Almost all existing schemes for abuse reporting in both
the E2EE and metadata-hiding settings, including our own
schemes in Section V, fail to achieve server accountability, and
therefore strong accountability. The only exception is asymmet-
ric message franking (AMF) [50], the most computationally
expensive of the known schemes, which avoids the problem
entirely because the moderator plays no role in the message
delivery process prior to receiving reports. This section briefly
describes server/strong accountability attacks on prior work.
We will then show how to strengthen onion franking to defend
against strong accountability attackers.

At a high level, the issue is that existing schemes never
“check the work” of the moderator during message processing.
In plain E2EE franking [39] (deployed by Facebook and
WhatsApp), shared franking [22], and onion franking (this
work), the moderator at some point computes a MAC σ on
values c2 a ctx, so it can later identify messages that have
passed through the platform and detect forged reports. However,
since this is a symmetric key primitive, only the moderator
knows if the MAC has been computed correctly. A message
with a malformed MAC can be delivered with no apparent
problems until someone decides to report it.

Hecate [28] uses a signature scheme instead of a MAC in
the corresponding phase of its protocol, which can be done
during a preprocessing phase. This means that anyone can
verify the signature and detect if it is malformed. While at
first glance this might suggest that Hecate does not fall prey to
attacks based on moderator compromise, there is still an issue.
The Hecate moderator signs an encryption of a user identifier
corresponding to the user sending a message. That is, it signs
Enc(skmod, idsrc), an encryption under a moderator-held key of
the identifier of the message sender. So while the signature can
be checked, the ciphertext it contains may still be undetectably
malformed.

9

ModProcess(km, c2, ctx)

σ ← MAC.Sign(km, (c2, ctx))

π ← ZK.Prove(σ, c2, ctx)

rt← (σ, ctx)

return rt, π

Read(kr, c1, st, σk)

m, s, c2 ← Dec(kr, c1)

mrt0, ϵ← st

kf , r1, . . . , rN ← G(s)

if Com.Open(c2,m, kf) = 0 : return ⊥
for i ∈ {1, . . . , N} :

mrti ← mrti−1 ⊕ ri

rt, π ← mrtN

σ, ctx← rt

if ZK.Verify(σ, c2, ctx, π) = 0 : return ⊥
rd← (c2, kf)

return m, rt, rd

Fig. 4: High-level changes to our onion franking scheme to enable
strong accountability using zero-knowledge proofs. Omitted functions
are unchanged from Π (Figure 2). Changes are shown in blue.

B. Achieving Stronger Accountability

The rest of this section explores two high-level approaches
to achieving strong accountability and server accountability,
respectively: proving moderator honesty in zero knowledge and
catching malicious behavior with trap messages. Although we
formalize these schemes in the context of onion franking,
the exact same techniques can be applied to add strong
accountability or server accountability to plain E2EE message
franking, as they in no way depend on the fact that the scheme
is built on onion encryption.

Proving honesty. The most straightforward way to protect
against a malicious moderator is to have the moderator prove
that it is behaving fully honestly while doing its job, i.e.,
while running ModProcess. Generically, non-interactive zero-
knowledge proofs provide the tools needed to produce a proof π
that the moderator has correctly computed the MAC σ relative
to a publicly posted commitment to the MAC key km [26], [6].
Assuming the proof system used is non-malleable (which comes
for free in proofs made non-interactive via the Fiat-Shamir
transform [24], [23]), no servers between the moderator and
the message recipient can tamper with the proof to produce a
π′ that successfully verifies. The soundness of the proof system
means it won’t verify with incorrect inputs, so the proof π can
also replace the checksum σc because the proof will fail to
verify if the values of c2, ctx, σ differ from the ones seen at
moderation time. We summarize the changes needed to prove
and verify moderator honesty in the ModProcess and Read
algorithms in Figure 4.

Unfortunately, while zero-knowledge provides a ready-made

and drop-in solution for strong accountability, generically
applying zero-knowledge proofs can be quite expensive. Thus
the challenge in using such well-known tools is to identify
the right instantiation of the relevant cryptographic primitives
to attain reasonable performance. We commit to the key
km using a multi-commitment scheme based on Pedersen
commitments [41] and use a MAC scheme proven secure under
the DDH assumption [18] by Dodis et al. [21]. Given these
building blocks, our proof π consists of the moderator proving
that it knows the two-part MAC key (x0, x1) and commitment
randomness used to commit to the key, and that the same
(x0, x1) has been used to produce the MAC σ on (c2, ctx).
The proof is constructed as a sigma protocol for generic linear
relations [13], [7] made non-interactive via the Fiat-Shamir
transform [24]. Formal details of the commitment scheme,
MAC scheme, and the statement proved in zero knowledge
appear in Appendix C.

Trap messages. Our second approach to strengthening account-
ability achieves a degree of server accountability, but not strong
accountability. That is, it does not provide accountability if
message senders and servers collude, but it does separately
protect against malicious senders (via standard accountability)
and against malicious servers (via server accountability). To do
this, we use trap messages: empty messages sent with the sole
purpose of being reported in order to detect reporting failures.
Trap messages have the benefit of not using any cryptographic
tools beyond those already present in onion franking, and they
allow for a range performance/security tradeoffs. As such, trap
messages achieve 1/ℓ-server accountability, for a configurable
parameter ℓ. We begin by describing a naïve trap message
scheme to convey the intuition of the approach before showing
how we optimize it to significantly reduce the cost of this
technique.

A naïve trap message scheme would simply have each
message sender send ℓ messages in place of each message they
intend to send. One of the ℓ messages is the real message m,
and the others contain a fixed message z: a string of length
|m| consisting only of zeros. When the receiver gets the ℓ
messages, it immediately reports the ℓ−1 messages containing
z to the moderator. The moderator runs Moderate on each trap
message, and it returns 0 to the user if any fail, 1 otherwise,
indicating whether or not the user should discard the message
m as being malformed. Since accountability is the property
that an adversary cannot cause a message to be successfully
read but not moderated, trap messages only fail if the adversary
guesses which of the ℓ messages sent contains m and only
attacks that one. Thus choosing larger values of ℓ results in
stronger accountability, at the cost of sending more messages.

Such a trap message scheme would work in the E2EE
setting, but a metadata-hiding platform must also support
anonymous reporting. Otherwise, the moderator would be
able to link the message sender and receiver through the
trap message context strings, thereby breaking the metadata-
privacy of all messages, regardless of whether they are really
reported as abuse. Fortunately, onion franking is compatible

10

with anonymous reporting, as discussed in Section V.
Note that while we need the underlying platform to allow

for anonymous reporting to hide the identity of the message
sender, it is fine (and in fact necessary) for the moderator to
learn whether reports are traps or real reports at reporting time.
Trap messages are there to protect against malicious tampering
during message sending/delivery, not to protect anonymity
while reporting. In this way, trap messages are distinct from
noise or cover traffic techniques used in some works to hide
when users are sending real messages, e.g., [53], which could
be a feature of the underlying messaging system but has nothing
to do with the abuse reporting functionality.

Optimizing trap messages. Observe that the largest costs of
trap messages are the communication cost of sending ℓ − 1
copies of z and the computation cost of hashing ℓ− 1 copies
of z, e.g., to perform the commitment or MAC. Both of these
costs are in fact redundant because all parties involved know
the value of z, but trap messages, as described thus far, need to
send the message every time to hide which one of ℓ messages
is the real message m.

Our insight is that we don’t need to produce ℓ actual trap
messages. We only need to generate ℓ trap reports for the
moderator to check. We return to sending only a single message,
but now the message is accompanied by tags ℓ distinct tags
c2[1], ...c2[ℓ], setting up ℓ potential trap reports. One of these
is a real commitment to m, and the rest are commitments to
z. Since the length of c2 is independent of the message, this
significantly reduces the overhead of the scheme. Moreover,
since we’re sending all these together with one message, we
can use the same seed s to generate the randomness needed
to open all the commitments, further reducing communication
costs. The seed s is also used to pick the index rswap of the
real message, allowing the message recipient to separate the
real report data from the trap reports. When the moderator runs
ModProcess, it separately MACs each version of c2. Since
ModProcess does not depend on c1, the actual encryption of
the message, it does not matter that the moderator does not
have access to any encryptions of z.

We formalize this trap message design for onion franking in
Figure 5. The same changes, shown in blue in the figure,
can convert an E2EE message franking scheme into one
that uses trap messages for 1/ℓ-server accountability against
a potentially compromised message delivery server. Since
the actual franking being done is identical to our previous
onion franking scheme, the security analysis of the scheme
is identical for unforgeability, deniability, confidentiality, and
accountability adversaries who do not control malicious servers.
For accountability adversaries who do control malicious servers,
their violations of accountability are caught with probability
1/ℓ, as described above.

VII. IMPLEMENTATION AND EVALUATION

We implemented our general scheme and its optimized
variant as described in Section V, as well as the zero knowledge
and trap message schemes described in Section VI. Our

Send(pk, kr,m)

s←R {0, 1}λ

kf,1, . . . , kf,ℓ,

r1, . . . , rN , rswap ← G(s)

c1 ← Enc(kr, (m, s))

c2 ← []

c2.append(Com(kf,1,m))

for i ∈ {2, . . . , ℓ} :
c2.append(Com(kf,i, 0))

rsw ← rswap mod ℓ

swap(c2[1], c2[rsw])

c3,0 ← ϵ

for i ∈ {1, . . . , N} :
c3,i ← Enc(pki, (c3,i−1, ri))

c3 ← c3,N

return c1, c2, c3

ModProcess(km, c2, ctx)

c2,1, . . . , c2,ℓ ← c2

σ ← []

for i ∈ {1, . . . , ℓ} :
σi ← MAC.Sign(km, c2,i, ctx)

σ.append(σi)

σc ← H(σ, c2, ctx)

return σ, σc

Read(kr, c1, st)

m, s← Dec(kr, c1)

ϵ,mrt0 ← st

kf,1, . . . , kf,ℓ,

r1, . . . , rN , rswap ← G(s)

for i ∈ {1, . . . , N} :
mrti ← mrti−1 ⊕ ri

c2, ctx, σ, σc ← mrtN

if σc ̸= H(σ, c2, ctx) :

return ⊥
rsw ← rswap mod ℓ

swap(c2[1], c2[rsw])

c2,1, . . . , c2,ℓ ← c2

swap(σ[1], σ[rsw])

σ1, . . . , σℓ ← σ

if !Com.Open(c2,1,m, kf,1) :

return ⊥
rd1 ← (kf,1, c2,1)

output1 ← (m, ctx, rd1, σ1)

for i ∈ {2, . . . , ℓ} :
if !Com.Open(c2, 0, kfi) :

return ⊥
rdi ← (kf,i, c2,i)

reporti ← (0, ctx, rdi, σi,)

return report

Fig. 5: Changes to the mixnet franking scheme with trap messages
included. Here each message is accompanied by ℓ− 1 trap messages.
Changes from Construction V.1 are shown in blue. Functions not
shown remain unchanged from Figure 2.

implementation is in Rust, and we implement the group
operations necessary for the ZK proof scheme using the
curve25519_dalek Ristretto group [16]. Our implementa-
tion, evaluation, and results can be found at https://github.com
/MatthewGregoire42/message_franking_crypto.

We instantiate our PRG with Rust’s StdRng, based on
the ChaCha stream cipher. We use HMAC-SHA256 for our
MAC and commitment schemes, AES256-GCM for symmetric
encryption, and Rust’s crypto_box abstraction for public key
encryption. Finally, we implement our hash function modeled
as a random oracle using SHA3-256.

A. Evaluation Results

We evaluated our implementation on an 11th Gen Intel Core
i7-11700K @ 3.6GHz processor running Ubuntu 22.04. We
varied message lengths from 0 to 1,000 bytes in 100-byte
increments, while varying the number of servers from 2 to
10. In addition, for the trap message scheme, we ran each of
these experiments while varying the number of trap messages
from 1 to 5 (ℓ = 2 to ℓ = 6), and we averaged each result
over 1,000 trials. For all Send operations, where applicable,
we separate the operations into offline and online computations.

11

https://github.com/MatthewGregoire42/message_franking_crypto
https://github.com/MatthewGregoire42/message_franking_crypto

Preprocessing Send ModProcess Process Read Moderate

Onion-General 117.2µs 0.9µs 0.5µs 58.4µs 1.5µs 0.4µs
Onion-Optimized — 1.6µs 0.6µs 1.6µs 1.5µs 0.5µs
Onion-zk 117.5µs 0.9µs 208.4µs 58.7µs 172.8µs 37.1µs
Onion-Trap 117.9µs 1.3µs 1.3µs 59.1µs 2.6µs 1.2µs

Hecate [28] 28.6µs 16.2µs — 15.4µs 100.1µs 101.8µs
AMF [50] — 233.1µs — — 225.1µs 225.2µs
Shared Franking [22] — 8.6µs 6.3µs 0.8µs 8.6µs 11.3µs
E2EE Franking — 0.9µs 0.2µs — 0.8µs 0.4µs

TABLE I: Measured computation times for each onion franking operation, compared to prior work. All measurements are with 100 byte
messages. For shared franking and all onion franking schemes, reported times are for two servers. Times for the trap message scheme are for
two trap messages (ℓ = 3). The reported preprocessing time for Hecate is the measured time for token generation (TGen) by the moderator.

Send Read Report

Onion-General 202 ·N + 138B 138B 96B
Onion-zk 338 ·N + 274B 274B 128B
Onion-Trap 138 ·N + 72 · (N + 1) · ℓ+ 210B 210 + 72 · ℓB 96B

Hecate [28] 380B 484B 380B
AMF [50] 489B 489B 489B
Shared Franking [22] 124B 204B 144B
E2EE Franking 92B 156B 128B

TABLE II: Communication overhead to implement each scheme. The communication-reducing optimization described in the text can reduce
all terms dependent on N to 80 ·N : 64 bytes of overhead for each layer of public key encryption, and 16 bytes for each PRG seed. Thus
onion franking can achieve communication costs comparable to, and sometimes even smaller than, prior works that add abuse reporting
features to metadata-hiding communication systems.

The exception is our optimized scheme (Figure 3), for which
this separation is not possible. For the rest of this section,
reported costs only refer to the additional overhead incurred by
adding onion franking to an existing system, and don’t include
the overhead of the onion encryption itself.

Computation overhead. Table I shows the concrete computa-
tion overhead for each of our schemes when sending 100 Byte
messages through 2 servers, and using ℓ = 3 for trap messages.
See Appendix E for additional evaluation data on a range of
parameters. Asymptotically, we find that almost all operations in
our scheme are constant or linear in number of servers, message
length, and number of trap messages. Moderator processing
times are all constant with the exception of the trap message
scheme, which needs to compute reporting tags for each trap
message. Because the additional moderation ciphertexts cti
contain one random mask per server, Process requires O(N)
work to decrypt these ciphertexts. In addition, by moving work
to the preprocessing phase, the Send operation has complexity
independent from the number of servers. The exception is for
the optimized scheme, which bundles this work within Send.
Since the trap message scheme requires making O(ℓ) reports
for each message, we record this variant’s Moderate complexity
as O(ℓ). For a more detailed view of asymptotic behavior in
our schemes and prior work, see Table III in Appendix E.

The majority of the computational costs of our scheme are
incurred by public key encryption or decryption. This includes
the preprocessing stage where c3 is prepared with server masks,
as well as the Process algorithm, where servers remove a
layer of encryption from c3. Since our optimized scheme puts

the additional data held by c3 inside of a ciphertext already
produced by the underlying scheme, the additional computation
incurred in this scheme is simply the overhead of computing a
few more blocks of a symmetric encryption or MAC, not that
of introducing additional public-key operations. This makes
our optimized scheme by far the most efficient overall. We
note that the same optimization can just as easily be applied
to the zero knowledge and trap schemes.

Communication overhead. We present the communication
costs of our schemes in Table II. Overheads are presented
abstractly in terms of N , the number of servers, and ℓ, the trap
message parameter, where applicable. Since Send produces
a mask ri for each server, the communication overhead of
this function depends on the number of servers. Concrete
communication costs are shown in Appendix E.

As presented in this paper, our scheme requires a few hundred
additional bytes of masking material ri for each server, resulting
in higher than necessary communication costs. We can avoid
this with a simple mask-shrinking optimization. Instead of
using ri directly as the mask, servers receive a short, 16-Byte
ri which they use as a seed in a PRG which generates the
longer mask.

B. Comparison to Prior Work

Tables I and II also compare the performance of onion
franking to prior work. These schemes are described in more
detail in Section VIII. We note that these comparisons are not
necessarily all apples to apples, as onion franking is specifically
tailored to schemes that use onion encryption, whereas our other

12

points of comparison are applicable in slightly different settings.
Hecate [28] and Asymmetric Message Franking (AMF) [50]
are generically applicable to any scheme and also support
third party moderation, shared franking [22] only applies to
schemes based on secret sharing, and E2EE franking is an
instantiation of standard message franking techniques for E2EE
messaging [39], [27]. Nonetheless we compare to these works
to show how onion franking compares in those settings where
they share applicability.

Hecate is the most relevant point of comparison for onion
franking because it is the most performant scheme that can
also be applied to systems that use onion encryption. Ignoring
Hecate’s additional preprocessing cost, which is over 10×
larger than any cost incurred by optimized onion franking,
optimized onion franking outperforms Hecate by 10× to send
messages or process them through a server (or 7× for the
moderator server), by 67× when reading a message, and by
204× when moderating one. Optimized onion franking also
comes within 2× the cost of message franking for E2EE when
sending and receiving messages, and more or less matches the
time required for moderating them.

When considering our schemes that achieve stronger ac-
countability, AMF becomes the most relevant point of com-
parison because it is the only prior work to achieve strong
accountability, in either the E2EE or metadata-hiding settings.
We use a Rust implementation of AMF as our point of
comparison [38]. We find that using trap messages to provide
1/ℓ-server accountability significantly outperforms AMF for
small to moderate values of ℓ, and the zero knowledge version
of onion franking provides the same strong accountability as
AMF with significantly reduced client costs, albeit at the cost
of additional overhead for the moderator’s message processing.
The time to moderate reports, however, is reduced by 6×.

Onion franking achieves large performance improvements
over prior work because it avoids the expensive signatures
in Hecate and the zero knowledge proofs in AMF. In fact,
the optimized onion franking scheme – as well as using trap
messages for server accountability – only adds symmetric
cryptographic operations on top of the underlying messaging
system. When we do augment onion franking with zero
knowledge proofs for strong accountability, we see performance
much closer to that of prior work, although there are still
improvements. By taking advantage of the fact that many
metadata-hiding messaging system designs make use of onion
encryption, we are able to achieve our goals using cryptographic
tools much more akin to E2EE message franking than prior,
more generic abuse reporting techniques like Hecate or AMF.

VIII. RELATED WORK

This section discusses prior work on abuse reporting for
private messaging as well as a small sampling of the myriad
systems that use onion encryption or mixnets to achieve
metadata-hiding messaging.

Abuse reporting for private messaging. Recent works explor-
ing how to support abuse reporting for private messaging begin

with Meta’s message franking scheme [39] and subsequent
analysis of this scheme [27], [20], [5]. Most relevant to
this work are extensions that support abuse reporting for
metadata-hiding communication settings, including AMF [50],
Hecate [28], and shared franking [22], to which we have
compared onion franking. AMF relies on ideas from designated
verifier signature schemes [29] to achieve message franking
in this setting for arbitrary messaging platforms, at the cost
of expensive, heavyweight zero-knowledge proofs. Hecate
improves upon the performance of AMF by allowing the
platform to create and distribute consumable tokens to clients.
Each message sent requires the use of one token and, if
necessary, the token can be passed back to the moderator at
moderation time. Shared franking, on the other hand, provides
a message franking solution for metadata-hiding messaging
systems based on secret sharing techniques [48]. Shared
franking achieves performance gains by taking advantage of
the messaging system architecture, similar in approach to the
onion franking systems we present in this paper.

Another related problem is that of reporting and identifying
the sources of misinformation. A body of work on message
traceback or source tracking uses sometimes overlapping
techniques to find the originator of misinformation messages
rather than the direct sender of such a message [51], [40], [36],
[4]. The Hecate scheme [28], examined here in the context of
abuse reporting for metadata-hiding messaging, can also be
used in the context of identifying the sources of misinformation.
Scheffler and Mayer include discussions of these and other
forms of content moderation for end-to-end encrypted platforms
in a recent SoK [46].

Metadata-hiding messaging via onion encryption. Onion
franking is designed to be integrated into messaging schemes
that make use of onion encryption. An enormous body of
work, beginning with Chaum’s pioneering mixnets [9], use
some form of onion encryption combined with mixing of
ciphertexts to privately communicate. These range from systems
that use low-latency mixing strategies like Loopix [42] to those
that provide differential privacy guarantees like Vuvuzela [53],
Alpenhorn [35], or Yodel [34], and to those that provide k-
anonymity type guarantees [49], [31], [32], [33]. A number of
systematization of knowledge papers [52], [45] explore various
aspects of the design of metadata-hiding messaging schemes
using mixnet-style approaches as well as other techniques, e.g.,
DC-nets [10]. The concept of trap messages used in our scheme
has precedent in trap messages used as part of prior metadata-
hiding communication schemes [30], [31]. In those works,
however, the goal of trap messages is to provide metadata-
privacy in the presence of malicious servers, not to support
abuse reporting.

Independent from the work on metadata-hiding messaging
are a number of works that explore the design and analysis
of onion routing schemes, such as Tor [19]. These include
both works that attempt to design more effective onion routing
systems for various use-cases [11], [12], [14] and analysis of
the cryptographic properties of onion-encrypted ciphertexts

13

intended to be used in such systems [15], [44], [17], [47].
These schemes are not directly related to messaging per se,
but they rely on the same fundamental approach to protect
anonymity in web browsing and other applications.

IX. CONCLUSION

We have presented onion franking, a mechanism by which
metadata-hiding messaging systems based on onion encryption
can support lightweight, verifiable abuse reports while main-
taining relevant anonymity properties for message senders and
receivers, even for reported messages. In addition to showing
two variants of an onion franking construction, we have shown
extensions that satisfy stronger accountability notions than
those achieved by most prior works, and which apply to E2EE
and metadata-hiding schemes alike. For each security level
targeted, our scheme is the most efficient in terms of both
computation and communication, making it an excellent choice
for incorporation into metadata-hiding messaging schemes
seeking to support abuse reporting features.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
helpful comments and feedback to improve this paper.

This material is based upon work supported by the National
Science Foundation under Grant No. 2234408, as well as a
gift from Cisco. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] “Technology preview: Sealed sender for signal,” https://signal.org/blog/
sealed-sender/, 2018, accessed 6/21/2024.

[2] “icloud private relay overview,” https://www.apple.com/icloud/docs/iClo
ud_Private_Relay_Overview_Dec2021.pdf, 2021, accessed 6/21/2024.
[Online]. Available: https://www.apple.com/icloud/docs/iCloud_Private
_Relay_Overview_Dec2021.pdf

[3] “I2P Anonymous Network — geti2p.net,” https://geti2p.net/en/, 2024.
[4] C. Bell and S. Eskandarian, “Anonymous complaint aggregation for

secure messaging,” Proc. Priv. Enhancing Technol., 2024.
[5] M. Bellare and V. T. Hoang, “Efficient schemes for committing

authenticated encryption,” EUROCRYPT, 2022.
[6] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge

and its applications (extended abstract),” in Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, J. Simon, Ed. ACM, 1988, pp. 103–112.

[7] D. Boneh and V. Shoup, A Graduate Course in Applied Cryptography
(version 0.5, Chapter 9), 2017, https://cryptobook.us.

[8] J. Camenisch and M. Stadler, “Efficient group signature schemes for
large groups (extended abstract),” in Advances in Cryptology - CRYPTO

’97, 17th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 1997, Proceedings, 1997, pp. 410–424.

[9] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–88, 1981.

[10] ——, “The dining cryptographers problem: Unconditional sender and
recipient untraceability,” J. Cryptology, vol. 1, no. 1, pp. 65–75, 1988.

[11] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig, “HORNET:
high-speed onion routing at the network layer,” in ACM CCS, 2015.

[12] C. Chen, D. E. Asoni, A. Perrig, D. Barrera, G. Danezis, and C. Troncoso,
“TARANET: traffic-analysis resistant anonymity at the network layer,” in
IEEE European Symposium on Security and Privacy, EuroS&P, 2018.

[13] R. Cramer, “Modular design of secure yet practical cryptographic
protocols,” Ph.D. dissertation, Jan. 1997.

[14] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of a
type III anonymous remailer protocol,” in IEEE Symposium on Security
and Privacy, 2003.

[15] G. Danezis and I. Goldberg, “Sphinx: A compact and provably secure
mix format,” in IEEE Symposium on Security and Privacy, 2009.

[16] H. de Valence and I. A. Lovecruft, “curve25519-dalek (version
3.2.1),” 2023. [Online]. Available: https://docs.rs/curve25519-
dalek/latest/curve25519_dalek/ristretto/index.html

[17] J. P. Degabriele and M. Stam, “Untagging tor: A formal treatment of
onion encryption,” in EUROCRYPT, J. B. Nielsen and V. Rijmen, Eds.,
2018.

[18] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, 1976.

[19] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in USENIX Security Symposium, 2004.

[20] Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage, “Fast message
franking: From invisible salamanders to encryptment,” in CRYPTO, 2018.

[21] Y. Dodis, E. Kiltz, K. Pietrzak, and D. Wichs, “Message authentication,
revisited,” in EUROCRYPT, 2012.

[22] S. Eskandarian, “Abuse reporting for metadata-hiding communication
based on secret sharing,” USENIX Security, 2024.

[23] S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi, “On the non-
malleability of the fiat-shamir transform,” in Progress in Cryptology
- INDOCRYPT 2012, 13th International Conference on Cryptology in
India, Kolkata, India, December 9-12, 2012. Proceedings, ser. Lecture
Notes in Computer Science, S. D. Galbraith and M. Nandi, Eds., vol.
7668. Springer, 2012, pp. 60–79.

[24] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in CRYPTO, 1986.

[25] S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comput. Syst.
Sci., vol. 28, no. 2, pp. 270–299, 1984.

[26] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of
interactive proof systems,” SIAM J. Comput., vol. 18, no. 1, pp. 186–208,
1989.

[27] P. Grubbs, J. Lu, and T. Ristenpart, “Message franking via committing
authenticated encryption,” in CRYPTO, 2017.

[28] R. Issa, N. Alhaddad, and M. Varia, “Hecate: Abuse reporting in secure
messengers with sealed sender,” USENIX Security, 2022.

[29] M. Jakobsson, K. Sako, and R. Impagliazzo, “Designated verifier proofs
and their applications,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1996, pp. 143–154.

[30] S. Khazaei, T. Moran, and D. Wikström, “A mix-net from any CCA2
secure cryptosystem,” in ASIACRYPT, 2012.

[31] A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford, “Atom: Hori-
zontally scaling strong anonymity,” in SOSP, 2017.

[32] A. Kwon, D. Lu, and S. Devadas, “XRD: scalable messaging system
with cryptographic privacy,” 2020.

[33] D. Lazar, Y. Gilad, and N. Zeldovich, “Karaoke: Distributed private
messaging immune to passive traffic analysis,” in OSDI, 2018.

[34] ——, “Yodel: strong metadata security for voice calls,” in SOSP, 2019.
[35] D. Lazar and N. Zeldovich, “Alpenhorn: Bootstrapping secure communi-

cation without leaking metadata,” in OSDI, 2016.
[36] L. Liu, D. S. Roche, A. Theriault, and A. Yerukhimovich, “Fighting fake

news in encrypted messaging with the fuzzy anonymous complaint tally
system (FACTS),” in NDSS, 2022.

[37] I. Martiny, G. Kaptchuk, A. J. Aviv, D. S. Roche, and E. Wustrow,
“Improving signal’s sealed sender,” in NDSS, 2021.

[38] S. Menda and M. Rosenberg, “amaze,” https://github.com/sgmenda/amaze,
2022.

[39] Meta, “Messenger end-to-end encryption overview,” https://engineering.
fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionO
verview_12-6-2023.pdf, December 2023.

[40] C. Peale, S. Eskandarian, and D. Boneh, “Secure complaint-enabled
source-tracking for encrypted messaging,” in ACM CCS, 2021.

[41] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1991, Proceedings, ser. Lecture Notes in Computer
Science, J. Feigenbaum, Ed., vol. 576. Springer, 1991, pp. 129–140.

[42] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis, “The
loopix anonymity system,” in USENIX Security, 2017.

[43] P. Rogaway, “Authenticated-encryption with associated-data,” in ACM
CCS, 2002.

14

https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://geti2p.net/en/
https://cryptobook.us
https://docs.rs/curve25519-dalek/latest/curve25519_dalek/ristretto/index.html
https://docs.rs/curve25519-dalek/latest/curve25519_dalek/ristretto/index.html
https://github.com/sgmenda/amaze
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf

[44] P. Rogaway and Y. Zhang, “Onion-ae: Foundations of nested encryption,”
Proc. Priv. Enhancing Technol., vol. 2018, no. 2, pp. 85–104, 2018.

[45] S. Sasy and I. Goldberg, “Sok: Metadata-protecting communication
systems,” Proc. Priv. Enhancing Technol., vol. 2024, no. 1, pp. 509–524,
2024.

[46] S. Scheffler and J. R. Mayer, “Sok: Content moderation for end-to-
end encryption,” Proc. Priv. Enhancing Technol., vol. 2023, no. 2, pp.
403–429, 2023.

[47] P. Scherer, C. Weis, and T. Strufe, “A framework for provably secure
onion routing against a global adversary,” Proc. Priv. Enhancing Technol.,
vol. 2024, no. 2, pp. 141–159, 2024.

[48] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp.
612–613, 1979.

[49] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zeldovich, “Stadium:
A distributed metadata-private messaging system,” in SOSP, 2017.

[50] N. Tyagi, P. Grubbs, J. Len, I. Miers, and T. Ristenpart, “Asymmetric
message franking: Content moderation for metadata-private end-to-end
encryption,” in CRYPTO, 2019.

[51] N. Tyagi, I. Miers, and T. Ristenpart, “Traceback for end-to-end encrypted
messaging,” in ACM CCS, 2019.

[52] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and
M. Smith, “Sok: Secure messaging,” in 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, 2015.

[53] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vuvuzela:
scalable private messaging resistant to traffic analysis,” in SOSP, 2015.

APPENDIX A
DEFERRED DEFINITIONS

Definition A.1 (Unforgeability). We define the onion franking
unforgeability experiment FORG[A,F , N, λ] in Figure 6 with
respect to an efficient adversary A, an onion franking scheme
F , a number of servers N , and a security parameter λ.

We define the unforgeability advantage of A as

FORGAdv(A,F , N, λ) = Pr
[
FORG[A,F , N, λ] = 1

]
.

We say that a scheme F has unforgeability if, for all efficient
adversaries A, and all N ∈ N,

FORGAdv(A,F , N, λ) ≤ negl(λ).

Definition A.2 (Accountability). We define the onion franking
accountability experiment ACCT[A,F , N, λ] in Figure 7 with
respect to an efficient adversary A, an onion franking scheme
F , a number of servers N , and a security parameter λ.

We define the accountability advantage of A as

ACCTAdv(A,F , N, λ) = Pr
[
ACCT[A,F , N, λ] = 1

]
We say that a scheme F has accountability if, for all efficient

adversaries A, and all N ∈ N,

ACCTAdv(A,F , N, λ) ≤ negl(λ).

Definition A.3 (Strong Accountability). We define
the onion franking strong accountability experiment
STRACCT[A,F , N, λ] in Figure 7 with respect to an efficient
adversary A, an onion franking scheme F , a number of
servers N , and a security parameter λ.

We define the strong accountability advantage of A as

STRACCTAdv(A,F , N, λ) = Pr
[
STRACCT[A,F , N, λ] = 1

]
We say that a scheme F has 1/ℓ-strong accountability if,

for all efficient adversaries A, and all N ∈ N,

STRACCTAdv(A,F , N, λ) ≤ 1/k + negl(λ).

Moreover, we say that a scheme F has strong accountability
if, for all efficient adversaries A, and all N ∈ N,

STRACCTAdv(A,F , N, λ) ≤ negl(λ).

APPENDIX B
DEFERRED PROOFS

Proof of Theorem V.2 (Unforgeability).

Proof. The proof proceeds through a short series of hybrids.
• Hyb0 : This hybrid corresponds to the unforgeability

experiment FORG[A,Π, N, λ].
• Hyb1 : This hybrid is identical to the preceding one, except

we add an additional abort criterion to the experiment. The
experiment will abort and output 0 if, in a call to OVerify,
MAC.Verify(km, (c2, ctx), σ) = 1, and at least one of the
following conditions are met:
– (ctx, σ) /∈ TFrank

– (·, ·, ·, σ) ∈ TRead ∧ (·, ctx, (·, c2), σ) /∈ TRead

In Lemma B.1, we show that this hybrid is indistin-
guishable from the preceding one by the existential
unforgeability of MAC.

• Hyb2 : This hybrid is identical to the preceding one, except
we add an additional abort criterion to the experiment. The
experiment will abort and output 0 if, in a call to OVerify,
Com.Open(c2,m, kf) = 1, and there exists an element
(m′, ·, (k′f , c2), ·) ∈ TRead where m′ ̸= m or k′f ̸= kf .
In Lemma B.2, we show that this hybrid is indistinguish-
able from the preceding one by the binding property of
Com.

We now show that in Hyb2, the adversary has unforgeability
advantage 0. Suppose toward contradiction that at some
point in the experiment, OVerify outputs 1. This means that
Moderate(km,m, ctx, (kf , c2), σ) = 1 and that one of the
following conditions is met:
(1) (ctx, σ) /∈ TFrank

(2) (·, ·, ·, σ) ∈ TRead ∧ (m, ctx, (kf , c2), σ) /∈ TRead

Suppose OVerify outputs 1 because condition (1) is met.
In order for Moderate to output 1, it must be that
MAC.Verify(km, (c2, ctx), σ) = 1. But then the experiment
will abort and output 0 by the abort criterion introduced in
Hyb1. This is a contradiction, so the adversary cannot win by
meeting condition (1).

Now suppose OVerify outputs 1 because condition (2)
is met. In order for Moderate to output 1, it must be
that MAC.Verify(km, (c2, ctx), σ) = 1, which means that
(·, ctx, (·, c2), σ) ∈ TRead or else there is a contradiction of the
abort criterion introduced in Hyb1. In order for Moderate to out-
put 1, it must also hold that Com.Open(c2,m, kf) = 1. By the
abort criterion introduced in Hyb2, this implies that there is no
element (m′, ·, (k′f , c2), ·) ∈ TRead where m′ ̸= m or k′f ̸= kf .
Since we know there is an element in (·, ctx, (·, c2), σ) ∈ TRead,
this means that the same entry must contain m and kf . Ergo
(m, ctx, (kf , c2), σ) ∈ TRead. But this contradicts condition (2).

Since neither condition for OVerify outputting 1 can be met,
the adversary must have no advantage. As we have shown

15

FORG[A,F , N, λ]

km ←R Km; win← 0

TFrank ← {}; TRead ← {}
sk1, pk1 ← ServerSetup(1λ)

AOOnionFrank,OVerify(pk1, λ)

outputwin

OOnionFrank(kr, c2, c3, ctx)

σ, σc ← ModProcess(km, c2, ctx)

TFrank ← TFrank ∪ {(ctx, σ)}
st1 ← Process(sk1, (c3, ctx, σ, σc))

c1, stN ← A(st1)
m, ctx′, rd, σ′ ← Read(kr, c1, stN)

if m, ctx′, rd, σ′ ̸= ⊥ :

TRead ← TRead ∪ {(m, ctx′, rd, σ′)}

OVerify(m, ctx, rd, σ)

if (ctx, σ) /∈ TFrank

∨
(
(·, ·, ·, σ) ∈ TRead ∧ (m, ctx, rd, σ) /∈ TRead

)
:

win← Moderate(km,m, ctx, rd, σ)

return win

Fig. 6: Onion franking unforgeability security experiment (Definition A.1).

ACCT[A,F , N, λ]

km ←R Km

for i ∈ {1, . . . N} :
ski, pki ← ServerSetup(1λ)

pk← (pk1, ..., pkN)

win← 0

AOOnionFrank(pk, λ)

outputwin

STRACCT[A,F , N,NM , λ]

M ⊂ {1, . . . , N} ← A(N,NM , λ)

if 1 ∈M :

km ← A(λ)
else :

km ←R Km

for i ∈ {1, . . . N} :
if i ∈M : pki ← A(λ)
else : ski, pki ← ServerSetup(1λ)

pk← (pk1, ..., pkN)

win← 0

AOOnionFrank(pk, λ)

outputwin

OOnionFrank(kr, ctN , c2, c3, ctx)

if 1 ∈M :

σ, σc ← A()
else :

σ, σc ← ModProcess(km, c2, ctx)

st0 ← (c3, ctx, σ, σc)

for i ∈ {1, . . . , N} :
if i ∈M :

sti ← A(sti−1)

else :

sti ← Process(ski, sti−1)

m, ctx′, rd, σ′ ← Read(kr, ctN , stN)

if m, ctx′, rd, σ′ = ⊥ : return ⊥
res← Moderate(km,m, ctx′, rd, σ′)

if ctx′ ̸= ctx ∨ res = 0 : win← 1

return win

Fig. 7: The onion franking accountability security experiment (Definition A.2), and corresponding OnionFrank oracle, is shown in black.
Additions and changes necessary to achieve strong accountability (Definition A.3) are shown in blue.

that the adversary has no advantage in Hyb2, the proof of the
theorem follows from the proofs of the lemmas and the triangle
inequality.

Lemma B.1. Suppose that for every adversary B attacking
MAC, the advantage of B in breaking the existential unforge-
ability of MAC is at most MACAdv(B,MAC, λ) ≤ negl(λ).
Then for all adversaries A,∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]

∣∣
≤ MACAdv(B,MAC, λ) ≤ negl(λ).

Proof. We show how to use an adversary A who distinguishes
between the hybrids to build an adversary B who breaks the
unforgeability of the MAC scheme. For simplicity, we use the
(equivalent) variant of the standard MAC definition where the
adversary is given access to verification queries [7]. We note
that this choice asymptotically makes no difference, but it does
make a difference in terms of the resulting concrete security
bound because the version of the definition with verification

queries adds a factor of Qv , the number of verification queries,
to the adversary’s advantage in the security analysis. Since our
reduction requires O(Q2

OF) MAC verification queries, where
QOF is the number of queries to the OOnionFrank oracle, the
choice of definition hides a O(Q2

OF) factor in the concrete
security analysis.

Adversary B plays the role of the adversary in the MAC
scheme, and the role of the challenger in the unforgeability
experiment, perfectly simulating expriment Hyb1 except when-
ever a call is made to MAC.Sign or MAC.Verify, B forwards
the inputs to the MAC challenger to get the tag σ or verification
response 1/0. Moreover, B keeps track of the list (σ1, ..., σQOF

)
of tags returned by the MAC challenger, and before requesting
a tag on the ith MAC input (c2, ctx)i, it queries the MAC veri-
fication oracle with inputs ((c2, ctx)i, σ1), ..., ((c2, ctx)i, σi−1),
which we call the collision queries. If there is ever a case where
one of the collision queries results in acceptance (assuming
without loss of generality that MAC signing queries are distinct),
B has successfully produced a MAC forgery. If at any point in
the experiment, the abort criterion introduced in Hyb1 is met,

16

B forwards the values (c2, ctx), σ that triggered the criterion
as a MAC forgery.

We will prove that B breaks the existential unforgeability
of MAC with at least the same probability that A triggers the
abort criterion. Since the abort criterion is the only difference
between hybrids Hyb0 and Hyb1, this completes the proof of
the lemma.

Suppose that the abort criterion is met because (ctx, σ) /∈
TFrank. Since elements are added to TFrank immediately after
ModProcess, the only function where MAC tags are produced,
this means that for each entry ((·, ctx), σ) ∈ TMAC in the table
of MAC tags produced by the MAC challenger, there is an
entry (ctx, σ) ∈ TFrank. The contrapositive of this statement
is that if (ctx, σ) /∈ TFrank, then ((·, ctx), σ) /∈ TMAC. But then
if Moderate outputs 1 for (ctx, σ) /∈ TFrank, this implies that
MAC.Verify accepts a tuple ((·, ctx), σ) /∈ TMAC, meaning that
B wins the MAC experiment.

Alternatively, suppose that the abort criterion is met be-
cause (·, ·, ·, σ) ∈ TRead ∧ (·, ctx, (·, c2), σ) /∈ TRead. Since
(·, ·, ·, σ) ∈ TRead, there exists some (·, ctx′′, (·, c′′2), σ) ∈ TRead.
If ((c′′2 , ctx

′′), σ) /∈ TMAC, this means that B wins the MAC
experiment. On the other hand, if ((c′′2 , ctx

′′), σ) ∈ TMAC, then
we have two distinct MAC inputs (c2, ctx) and (c′′2 , ctx

′′) with
the same σ, so B would have won the MAC experiment with
one of the collision queries. Note that (c′′2 , ctx

′′) ̸= (c2, ctx)
because one pair appears in TRead while the other does not.

Thus whenever A triggers the abort criterion, B wins the
MAC security experiment. Since we assume that the advantage
of any B in breaking MAC security is at most negligible, the
same applies to the advantage of A in distinguishing between
the hybrids.

Lemma B.2. Suppose that for every adversary B attacking
COM, the advantage of B in breaking the binding property of
Com is at most BINDAdv(B,Com, λ) ≤ negl(λ). Then for all
adversaries A,∣∣Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]

∣∣
≤ BINDAdv(B,Com, λ) ≤ negl(λ).

Proof. We show how to use an adversary A who distinguishes
between the hybrids to build an adversary B who breaks the
binding property of the commitment scheme. Adversary B
plays the role of the binding adversary for the commitment
scheme while playing the role of the challenger in the
Hyb2 unforgeability experiment. If, during the course of the
experiment, the abort criterion introduced in Hyb2 is triggered,
B submits c2, (m, kf), (m

′, k′f) to the binding challenger.
We prove that B breaks the binding of the commitment

scheme with the same probability that A triggers the Hyb2
abort criterion. Since this abort criterion is the only dif-
ference between the two hybrids, this suffices to prove
the lemma. The criterion requires that in a call to OVerify

where Com.Open(c2,m, kf) = 1,, there exists an element
(m′, ·, (k′f , c2), ·) ∈ TRead with m′ ̸= m or k′f ̸= kf . Since
(m′, ·, (k′f , c2), ·) ∈ TRead, this means that m′, k′f , c2 were
the outputs of a call to Read() in the OOnionFrank oracle,

which requires that Com.Open(c2,m
′, k′f) = 1. But this means

that we have c2, (m, kf), (m
′, k′f) where (m, kf) ̸= (m′, k′f),

Com.Open(c2,m, kf) = 1, and Com.Open(c2,m
′, k′f) = 1,

which is exactly the criteria for breaking the binding of Com.
Thus whenever A triggers the abort criterion, B wins

the binding security experiment. Since we assume that the
advantage of any B in breaking binding is at most negligible, the
same applies to the advantage of A in distinguishing between
the hybrids.

Proof of Theorem V.3 (Accountability).

Proof. The proof proceeds through a short series of hybrids.

• Hyb0 : This hybrid corresponds to the accountability
experiment ACCT[A,Π, N, λ].

• Hyb1 : This hybrid is identical to the preceding one, except
that we replace the outputs of MAC.Sign with uniformly
random strings of the same length. The correctness of the
MAC is maintained by keeping a table TMAC of MAC
inputs/outputs, and MAC.Verify accepts all inputs that
appear in TMAC.
Recall that we built our scheme with a MAC scheme
where MAC.Sign also functions as a PRF. In Lemma B.3,
we show that this hybrid is indistinguishable from the
preceding one by the PRF security of MAC.Sign.

• Hyb2 : This hybrid is identical to the preceding one, except
we add an additional abort condition to the execution of
the experiment. The experiment aborts and outputs 0 if
during a call to OOnionFrank, the outputs c′2, ctx

′, σ′ of
Read (if they are not ⊥) differ from the values c2, ctx, σ
that are inputs/outputs of ModProcess.
In Lemma B.4, we show that this hybrid is indistinguish-
able from the preceding one, relying on the fact that
the function H is modeled as a random oracle (without
programming the random oracle).

We now show that the adversary has no advantage in Hyb2.
Combined with the proofs of the lemmas below and the triangle
inequality, this completes the proof of the theorem.

Observe that since Read and Moderate make calls to
Com.Open on the exact same inputs, this call will always
have the same output in the two functions. Moreover, since
(c2, ctx, σ) = (c′2, ctx

′, σ′), or else the experiment aborts, and
σ = MAC.Sign(km, (c2, ctx)), the correctness of MAC ensures
that MAC.Verify(km, (c′2, ctx

′), σ′) = 1. Thus whenever Read
outputs something other than ⊥, it follows that Moderate will
output 1, so res = 1. Finally, since (c2, ctx, σ) = (c′2, ctx

′, σ′),
it follows that ctx = ctx′. But this means that it is never
possible for win← 1 to be reached.

Lemma B.3. Suppose that MAC.Sign is a correct MAC,
and that for every adversary B attacking MAC.Sign, the
advantage of B in breaking the PRF security of MAC.Sign

17

is at most PRFAdv(B,MAC.Sign, λ) ≤ negl(λ). Then for all
adversaries A,∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]

∣∣
≤ PRFAdv(B,MAC.Sign, λ) ≤ negl(λ).

Proof. We show how to use A to build an adversary B who
breaks the PRF security of MAC.Sign with the same advantage
that A distinguishes between the two hybrids.

Adversary B plays the role of the PRF adversary for
MAC.Sign and simulates the Hyb1 challenger for A. It provides
a perfect simulation of Hyb1, except that whenever a call is
made to MAC.Sign, it forwards the input to the PRF challenger
and passes on the challenger’s response as σ. At the end of
the experiment, B passes on the output of the accountability
experiment as its own output.

Observe that if the PRF challenger is providing B with
evaluations of a PRF, then B is providing A a perfect simulation
of Hyb0. The additional bookkeeping used to maintain TMAC

has no impact on the view of the adversary because the
correctness of MAC ensures that replacing verification of
known MAC inputs with table lookups has the same output
behavior. On the other hand, if the PRF challenger is providing
B with random strings, then B is providing A with a perfect
simulation of Hyb1. Thus B distinguishes between PRF outputs
and random strings with the same advantage that the outputs
of A distinguish between Hyb0 and Hyb1.

Lemma B.4. Assuming that the hash function H is modeled
as a random oracle, then for all adversaries A,∣∣Pr[Hyb1(A) = 1] − Pr[Hyb2(A) = 1]

∣∣ ≤ negl(λ).

Proof. Observe that the values c2, ctx, σ, σc that are inputs and
outputs for ModProcess are passed through a number of calls
to Process, wherein they are XORed with values ri chosen
by the adversary. This means that the values c′2, ctx

′, σ′, σ′
c

output by Read are the results of XORing some adversary
chosen values a, b with the values σc, (c2, ctx, σ). Note that
σc = H(c2, ctx, σ) and that σ is a uniformly random value for
each (c2, ctx) tuple. Since H is modeled as a random oracle,
this means that for each input (c2, ctx), there is an independent
and uniformly random (σ, σc). While the adversary may make
multiple queries to OOnionFrank with the same (c2, ctx), it is
never shown the corresponding values of (σ, σc).

In order to trigger the abort condition introduced in Hyb2,
the only case where the behavior of the two experiments differs,
the adversary must find (c2, ctx, a, b) with nonzero (a, b) for
which σc⊕a = H((c2, ctx, σ)⊕ b). Define event Ex to be the
event that the adversary triggers the condition with a query
where a = x. Then Pr[Ex] is the probability that the adversary
makes a query with (c2, ctx, x, b) where H(c2, ctx, σ)⊕ x =
H((c2, ctx, σ) ⊕ b). This is at most the probability of the
adversary finding a collision in H and is therefore a negligible
value ϵcoll. Now an adversary that makes at most QOF calls to
OOnionFrank can only try QOF distinct values of a. We call the

ith value queried ai, so the adversary’s probability of success
in triggering the abort is, by union bound, ΣQOF

i=1Pr[Eai] =
QOF · ϵcoll ≤ negl(λ).

APPENDIX C
STRONG ACCOUNTABILITY ZERO KNOWLEDGE DETAILS

Figure 8 presents the formal details of the commitment
scheme, MAC scheme, and zero knowledge proof used to
achieve strong accountability by proving honesty. We use the
Camenisch-Stadler notation [8] to describe the statement to be
proved. The commitment is a variation of the Pedersen com-
mitment [41], and the MAC scheme is due to Dodis et al. [21].
The figure describes the statement to be proved and directly
assigns that value to π as a shorthand for the generic linear
Σ-protocol used in our implementation.

APPENDIX D
OTHER APPLICATIONS OF ONION FRANKING

We propose onion franking as a mechanism for support-
ing verifiable abuse reporting on metadata-hiding messaging
platforms. However, these same techniques can potentially be
applied in other areas where there is anonymous communication
accompanied by potential for abuse. For example, many
distributed systems rely on onion encryption to anonymize
network traffic, such as Tor [19] and i2p [3]. For these systems,
our “message sender” is an end user, and the “message receiver”
is a web server or other service provider. These service
providers have no recourse against users spamming the system,
since the users’ identities are hidden. Onion franking would
enable such systems to allow websites receiving anonymized
traffic to verifiably report abusive content to servers providing
the anonymity service. This can be most easily envisioned in a
more centralized scheme like Apple’s iCloud Private Relay [2].
This application of onion franking fundamentally changes the
nature of the security properties the anonymity service provides
for users, so we urge caution in considering the consequences
of a broader deployment in this setting. Nonetheless, this serves
as one other example of where onion franking could be used.

Moving further away from the messaging use case, ap-
plications in a number of scenarios can be thought of as
special cases of the private messaging problem. For example,
private transactions in payment apps or accumulation of data
from sensor networks, with privacy constraints on where
each piece of data comes from, can both be thought of
as cases of a platform passing messages between various
parties, where the messages must satisfy certain syntactical and
semantic constraints in addition to the privacy requirements
of private messaging. Whenever potential for abuse arises in
these settings (e.g., fraudulent charges, maliciously misreported
data), an abuse reporting mechanism like onion franking could
be deployed to allow an authority operating the system to
intervene.

18

Preprocessing Send ModProcess Process Read Moderate

Onion-General O(N) O(m) O(1) O(N) O(N +m) O(1)
Onion-Optimized — O(N ·m) O(1) O(N) O(N +m) O(1)
Onion-zk O(N) O(m) O(1) O(N) O(N +m) O(1)
Onion-Trap O(N · ℓ) O(ℓ+m) O(ℓ) O(N · ℓ) O(N · ℓ+m) O(ℓ)
Hecate [28] O(1) O(m) — O(1) O(m) O(1)
AMF [50] — O(m) — — O(m) O(1)
Shared Franking [22] — O(N ·m) O(1) O(1) O(N ·m) O(N ·m)
E2EE Franking — O(m) O(1) — O(m) O(1)

TABLE III: Asymptotic performance overhead. N is the number of servers, ℓ is the number of trap messages, and m is the message length.

Com.Commit(r,m)

x0, x1 ← m

return gx0
0 gx1

1 hr

Com.Open(c,m, r)

x0, x1 ← m

if c = gx0
0 gx1

1 hr :

return 1

else :

return 0

MAC.KeyGen(λ)

x0, x1 ←R F2
p

k ← (x0, x1)

return k

MAC.Sign(k,m)

x0, x1 ← k

u←R G \ {1}
u′ ← ux0+H(m)x1

σ ← (u, u′)

return σ

MAC.Verify(k,m, σ)

u, u′ ← σ

if u ̸= 1 ∧ u′ = ux0+H(m)x1 :

return 1

else :

return 0

ZK.Prove(σ, c2, ctx)

x0, x1 ← km

u, u′ ← σ

v ← uH(c2,ctx)

π ← {(x0, x1, r) :

σk = gx0
0 gx1

1 hr ∧ u′ = ux0vx1}
return π

Fig. 8: Implementation details of the MAC, commitment, and zero-
knowledge proof schemes used in our zero knowledge construction
for strong accountability. We omit the ZK.Verify procedure which
verifies the proof π output by ZK.Prove. Here σk, g0, g1, and h are
public parameters of the scheme published beforehand. G is a cyclic
group with prime order p, and H is a hash function which takes
arbitrary strings from {0, 1}∗ to Fp.

APPENDIX E
ADDITIONAL EVALUATION DATA

In this appendix, we include a variety of graphs to demon-
strate relationships between our schemes’ overheads and various

parameters: message length, number of servers, and number
of trap messages. We also include a complete analysis of each
algorithm’s asymptotic complexity, as well as the complexity
of operations in prior work, reported in Table III.

Our evaluation shows that increasing message length gradu-
ally increases computation costs as we encrypt or MAC longer
strings, as can be seen in Figures 9i and 9h, but has little
effect on communication overhead, as seen in Figure 9g. We
can see that message length only has a modest effect on our
schemes’ performance. For example, our optimized scheme
with 10 servers requires 19.4µs to send and 1.8µs to receive a
100 byte message, as opposed to 22.8µs to send and 3.5µs to
receive a 1000 byte message.

Increasing the number of servers increases the number
of public key operations invoked in Send preprocessing,
as well as in Process. As these public key operations are
relatively expensive, increasing the number of servers has the
largest impact on our schemes’ performance. This can be
seen in Figures 9a, 9b, and 9c. Each additional server adds
approximately 60µs of client-side preprocessing overhead for
all but our optimized scheme.

Additionally, incrementing ℓ by 1 requires more bits of
random mask, incurring an extra 0.5µs in pre-processing time.
It also linearly increases the number of symmetric primitives
computed in Send, ModProcess, Read, and Moderate, result-
ing in extra running time of approximately 0.2µs, 0.4µs, 0.6µs,
and 0.4µs, respectively. This can be seen in Figures 9e, 9d,
and 9f. In all other schemes, ModProcess runs in constant
time.

APPENDIX F
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: Our artifact can be accessed at DOI
https://doi.org/10.5281/zenodo.14225977. Prior work which
we compare to can be accessed as follows:

• Asymmetric message franking: https://github.com/initsec
ret/amaze

• Hecate: https://github.com/Ra1issa/hecate
• Shared franking: https://github.com/SabaEskandarian/Sha

red_Franking/tree/main

2) Hardware dependencies: None.

19

https://doi.org/10.5281/zenodo.14225977
https://github.com/initsecret/amaze
https://github.com/initsecret/amaze
https://github.com/Ra1issa/hecate
https://github.com/SabaEskandarian/Shared_Franking/tree/main
https://github.com/SabaEskandarian/Shared_Franking/tree/main

2 4 6 8 10

100

101

102

103

Number of servers

Ti
m

e
(µ

s)

2 4 6 8 10
0

0.5

1

1.5

2

Number of servers

Ti
m

e
(µ

s)

2 4 6 8 10
0

200

400

600

Number of servers

Ti
m

e
(µ

s)

1 2 3 4 5
117

118

119

120

Number of trap messages

Ti
m

e
(µ

s)

1 2 3 4 5
0

2

4

Number of trap messages

Ti
m

e
(µ

s)

1 2 3 4 5
0

500

1,000

Number of trap messages

O
ve

rh
ea

d
(b

yt
es

)

0 200 400 600 800 1,000
0

500

1,000

1,500

Message size (bytes)

O
ve

rh
ea

d
(b

yt
es

)

0 200 400 600 800 1,000
0

2

4

Message size (bytes)

Ti
m

e
(µ

s)

0 200 400 600 800 1,000
50

100

150

200

250

Message size (bytes)

Ti
m

e
(µ

s)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Gen. Preprocess Gen. Send Gen. ModProcess Gen. Process Gen. Read Gen. Moderate
ZK Preprocess ZK Send ZK ModProcess ZK Process ZK Read ZK Moderate
Trap Preprocess Trap Send Trap ModProcess Trap Process Trap Read Trap Moderate
Opt. Send Opt. ModProcess Opt. Process Opt. Read Opt. Moderate E2EE Send
E2EE ModProcess E2EE Read E2EE Moderate Gen. Send (bytes) Gen. Read (bytes) Gen. Rep (bytes)
ZK Send (bytes) ZK Read (bytes) ZK Rep (bytes) Trap Send (bytes) Trap Read (bytes) Trap Rep (bytes)
Opt. Send (bytes) Opt. Read (bytes) Opt. Rep (bytes)

Fig. 9: Combined performance analysis showing the impact of different parameters on our scheme. The first row shows the effect of varying
server numbers, the second row shows the impact of trap messages, and the third row shows the effect of message size on computation and
communication overheads. Here “Gen” refers to our general onion franking scheme (Figure 2), and “Opt” refers to the optimized scheme
(Figure 3).

20

3) Software dependencies: The artifact requires Rust to be
installed. All Rust crate dependencies are handled automatically
by cargo.

4) Benchmarks: None.

B. Artifact Installation & Configuration

This artifact requires no configuration. Once the repository
is cloned, navigate to the project directory and run cargo
run --release to install and execute the artifact. To run
comparisons to prior work, follow their respective installation
and experiment instructions.

C. Experiment Workflow

Please see section F-E.

D. Major Claims

• (C1): Compared to prior work, onion franking and its
variants (with the exception of Onion-zk) provide one to
two orders of magnitude of speed improvement for various
message franking operations. Specifically, all operations
except Process on Onion-General, Onion-ZK, and Onion-
Trap This is proven by experiment (E1) whose results are
demonstrated in Table I.

• (C2): Onion franking has communication overhead that’s
comparable to prior work for message reading and report-
ing operations, and higher message sending overhead.
These overheads increase as a linear function of the
number of servers (and the number of trap messages in
the trap message scheme). This is proven by experiment
(E1) and demonstrated by Table II.

E. Evaluation

1) Experiment (E1): [20 minutes compute]: Obtain compu-
tation and communication overheads for onion franking ran
with different message sizes and differing numbers of servers
and trap messages.

[How to] Run the code in the execution section below.
[Preparation] To run the included unit tests on the code,

run cargo test. You should see output saying that all tests
pass.

[Execution] Run the command cargo run --release.
The results will be printed to stdout, or can be redirected into
a file.

[Results] Each line of the output will show computation
overheads (in nanoseconds) and communication overheads (in
bytes) for a unique choice of (scheme variant, number of
servers, message size, number of trap messages) parameters,
averaged over (by default) 1000 trials. Numbers of trap
messages are only varied for the trap message scheme. And
because plain E2EE message franking does not have any
parameters other than message size, no parameters other than
message size are varied.

For most operations, for a given message size, the onion
franking computation overhead is very similar to that of plain
franking, and much lower than for prior work. This supports
claim (C1) and data in Table I comes directly from running
(E1).

In addition, we can see that communication size overhead
follows the formulas as described in Table II, with size
increasing as functions of the number of servers (N) and
the number of trap messages (ℓ), supporting claim (C2).
Visualizations of the data supporting claims (C1) and (C2)
can be seen in Figure 9.

F. Customization

To increase performance or, alternatively, to increase the
amount of detail provided, the constants on lines 17-19 in
main.rs can be modified. This enables varying the number
of trials each line of output performs, the maximum number
of servers, and the maximum number of trap messages.

21

	Introduction
	Background: E2EE Message Franking
	Design Goals
	Formalizing Onion Franking
	A formal syntax for onion franking
	Unforgeability
	Accountability
	Deniability
	Confidentiality

	Onion Franking Construction
	Scheme Description
	Formal Description
	An Optimized Scheme
	Security Analysis

	Resilience Against Compromised Moderation Infrastructure
	Vulnerability of Existing Schemes to Moderator Compromise
	Achieving Stronger Accountability

	Implementation and Evaluation
	Evaluation Results
	Comparison to Prior Work

	Related Work
	Conclusion
	References
	Appendix A: Deferred Definitions
	Appendix B: Deferred Proofs
	Appendix C: Strong Accountability Zero Knowledge Details
	Appendix D: Other Applications of Onion Franking
	Appendix E: Additional Evaluation Data
	Appendix F: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)

	Customization

