
Direct FSS Constructions for Branching Programs and More

from PRGs with Encoded-Output Homomorphism

Elette Boyle ∗ Lisa Kohl † Zhe Li ‡ Peter Scholl §

Abstract

Function secret sharing (FSS) for a class F allows to split a secret function f ∈ F into (succinct)
secret shares f0, f1, such that for all x ∈ {0, 1}n it holds f0(x) − f1(x) = f(x). FSS has numerous
applications, including private database queries, nearest neighbour search, private heavy hitters and
secure computation in the preprocessing model, where the supported class F translates to richness
in the application. Unfortunately, concretely efficient FSS constructions are only known for very
limited function classes.

In this work we introduce the notion of pseudorandom generators with encoded-output homo-
morphism (EOH-PRGs), and give direct FSS constructions for branching programs and more based
on this primitive. Further, we give constructions of FSS for deterministic finite automatas (DFAs)
from a KDM secure variant of EOH-PRGs.

• New abstractions. Following the work of Alamati et al. (EUROCRYPT ’19), who classify
minicrypt primitives with algebraic structure and their applications, we capture the essence of
our FSS constructions in the notion of EOH-PRG, paving the road towards future efficiency
improvements via new instantiations of this primitive. The abstraction of EOH-PRG and its
instantiations may be of independent interest, as it is an approximate substitution of an ideal
homomorphic PRG.

• Better efficiency. We show that EOH-PRGs can be instantiated from LWE and a small-
exponent variant of the DCR assumption. A theoretical analysis of our instantiations suggest
efficiency improvements over the state of the art both in terms of key size and evaluation
time: We show that our FSS instantiations lead to smaller key sizes, improving over previous
constructions by a factor of 3.5 and more. For branching programs our FSS constructions show
considerably improved run time by avoiding the expensive generic transformation via universal
circuits, shaving off a factor of w and more in the number of abstract operations, where w
corresponds to an upper bound on the width of the underlying class of branching programs.

• New feasibility. We show that our instantiations of EOH-PRGs additionally support a form
of KDM-security, without requiring an additional circular-security assumption. Based on this,
we give the first FSS construction for DFAs which supports the evaluation of inputs of a-priori
unbounded length without relying on FHE.

• Applications. We outline applications of our FSS constructions including pattern matching
with wild cards, image matching, nearest neighbor search and regular expression matching.

∗Reichman University, Herzliya, Israel, and NTT Research, USA eboyle@alum.mit.edu
†Cryptology Group, CWI Amsterdam, lisa.kohl@cwi.nl
‡Cryptology Group, CWI Amsterdam, lizh0048@e.ntu.edu.sg
§Aarhus University, peter.scholl@cs.au.dk

mailto:eboyle@alum.mit.edu
mailto:lisa.kohl@cwi.nl
mailto:lizh0048@e.ntu.edu.sg
mailto:peter.scholl@cs.au.dk

Contents

1 Introduction 4
1.1 Our Contributions . 4
1.2 Discussion and Related Work . 9
1.3 Organization . 10

2 Technical Overview 10
2.1 Existing Constructions and Limitations . 11
2.2 Our Constructions . 13
2.3 Instantiating the EOH-PRG . 16

3 Preliminaries 17

4 FSS with Additional Properties and EOH-PRGs 18
4.1 PRG with Encoded-Output Homomorphism . 18

5 Tensor Product FSS for Arbitrary Predicates from EOH-PRGs 19

6 FSS for Branching Programs 20

7 FSS for DFAs 22

8 EOH-PRG Instantiated from LWE or DCR Assumption 22

A Supplementary Materials for Preliminaries 30
A.1 LWE and LWR . 30
A.2 Almost Homomorphic PRGs(AH-PRG) . 31
A.3 DCR Assumption . 31
A.4 Bit-fixing Predicates and CNF/DNF Formulae . 31
A.5 DFA . 32

B Tensor Product and FSS for Negation and Disjunction of Predicates 32
B.1 Proof of Theorem 5.1 . 32
B.2 FSS for Negation and Disjunction of Predicates . 34

C FSS for Bit-fixing Predicates from EOH-PRG 35

D Supplementary Materials for FSS for Branching Programs 36
D.1 Branching Programs . 36
D.2 Supplementary Constructions for FSS for Branching Programs 37
D.3 Proof of Lemma 6.2 . 37
D.4 Topology-Hiding FSS for Branching Programs . 38

E FSS for Approximate Matching Functions and Polynomials 38
E.1 FSS for Approximate Matching Functions . 38
E.2 FSS for Polynomials over a Ring . 39

F Supplementary Materials for EOH-PRG Instantiated from LWE or DCR 40
F.1 EOH-PRG from LWE . 40
F.2 EOH-PRG from DCR . 41

G FSS Applications 43
G.1 Private Image Matching on Public Data . 43
G.2 Private Partial Text Matching . 44
G.3 Nearest Neighbour Search . 44
G.4 FSS for t-CNF/t-DNF and CNF/DNF . 46
G.5 Other Applications . 47

2

H Comparisons 48
H.1 FSS for Bit-fixing Predicates from HSS vs. EOH-PRG . 48
H.2 FSS for Branching Programs from HSS vs. EOH-PRG . 50

3

1 Introduction

Boyle, Gilboa and Ishai [BGI15] introduced the notion of function secret sharing in 2015. Function secret
sharing for a class of functions F allows to split up a function f : {0, 1}n → G from F into secret shares
f0, f1, such that for all x ∈ {0, 1}n it holds f0(x) − f1(x) = f(x). If f : {0, 1}n → G is an arbitrary
function, its description size can in general scale with 2n, and thus there is no hope to get compact
secret shares. On the other hand, if f is from a class of functions with succinct description, one can
hope to split the function up into succinct secret shares. As shown in [BGI15], when relaxing the secrecy
condition to computational (i.e., requiring that no computationally bounded adversary holding only a
subset of the shares can derive information about the function within the function class), this can indeed
be achieved.

Function secret sharing schemes have been used in numerous applications, such as multi-server
private-information retrieval [GI14, BGI15], oblivious RAM [Ds17], anonymous broadcast messaging [CBM15],
private database queries [WYG+17], nearest neighbour search [SLD22], private heavy hitters [BBC+21],
private time-series database [DRPS22] and secure computation in the preprocessing model [BCGI18,
BGI19, BCG+19, BCG+21], showing significant speed-ups over previous approaches. In many of these
settings, the class F supported by the FSS scheme corresponds to richer applications; for example, more
sophisticated private database queries beyond private lookup.

Unfortunately, concretely efficient FSS constructions are only known for very limited function classes.
For example, efficient function secret sharing schemes are known to exist for the class of point functions
(i.e., functions that take a non-zero value only at a single input) and the class of comparison functions
(i.e., functions that take the same non-zero value for all inputs less than a given point) [BGI15, BGI16b,
BCG+21]. While these are already sufficient for many powerful applications, they do not allow to
support, for instance, complex database queries.

One way to obtain function secret sharing for richer classes of function is via homomorphic secret
sharing (HSS) [BGI16a], the dual notion of function secret sharing, with the role of function and input
reversed. HSS schemes for the class of polynomial-size branching programs (which in particular captures
logarithmic-depth circuits) are known from a number of assumptions, such as the decisional Diffie-
Hellman assumption [BGI16a], the DCR assumption [FGJS17, OSY21, RS21], and the Learning With
Errors assumption [DHRW16, BKS19].

As observed in [BGI16a], there exists a generic transformation from a homomorphic secret sharing
scheme to a function sharing scheme by relying on universal circuits. A universal circuit for a function
class F , is a circuit CF such that ∀f ∈ F ,∀x ∈ {0, 1}n it holds CF (f, x) = f(x). Given such a universal
circuit, one can transform the problem of constructing a function secret sharing scheme for F to the
problem of constructing a homomorphic secret sharing scheme for the class of functions CF := {CF (·, x) |
x ∈ {0, 1}n}.

For the class of branching programs, there exists a universal circuit that is itself a branching pro-
gram [BGI16a]. Any homomorphic secret sharing scheme for the class of branching programs thus implies
a function secret scheme for the same class. Unfortunately, the transformation introduces a high concrete
overhead, especially when the structure of the branching program is wished to be hidden. More precisely,
with the techniques given in [BGI16a], if w is an upper bound on the width of a binary branching pro-
gram, then the resulting universal branching program has a blow-up of w2 in depth, which leads to large
key size and running time. For branching programs over larger fields, this overhead gets even worse. In
fact, it is an open problem explicitly posed in a talk by Boyle [Boy22, Page 85] to improve the efficiency
of FSS over the universal branching program transformation.

We also consider deterministic finite automata (DFAs) in this work [RS59, Sip97]. A DFA is an
automaton with finitely many states that rejects or accepts a given string following a sequence of states,
where the next state is determined by the next symbol of the string. As observed, e.g., in [IP07], if
f is a function of input length n that is computed by a DFA with s states, it can be computed by a
branching program of length n and size s · n+ 1, an FSS for branching programs thus directly yields an
FSS for DFAs with bounded input-length. Note though that FSS for branching programs does not allow
to compute general classes of DFAs, since these can support inputs of a-priori unbounded length, while
yet having a succinct representation.

1.1 Our Contributions

In this work, we present constructions of function secret sharing schemes for the class of bit-fixing
predicates, branching programs and more from an abstract pseudorandom generator with encoded-output

4

Assumption Key Size Run time(No. of Mul./ Exp.)

LWE
HSS [BKS19] Ring-LWE 4ℓw2n log q 8ℓw2n log n

EOH-PRG(Ours) Ring-LWE 2ℓw(n+ w) log p ℓ(2 + ⌈ 2wn ⌉)n log n

DCR
HSS [OSY21] DCR 7ℓw2 logN2 14ℓw2

EOH-PRG(Ours) DCR 2ℓw(w + 1) logN2 ℓ(3w + 2)

Table 1: Comparison of FSS for branching programs constructed from EOH-PRG and from HSS via
universal branching programs. ℓ stands for the length of the branching program and w stands for the
width of the branching program. Assume fixed out-degree d = 2. For the LWE assumption, n stands for
the secret length, q the modulus of the LWE assumption, and p the output modulus of the PRG. The
number of multiplications is counted over Zq. For the DCR assumption, N stands for RSA modulus. For
the comparison with [OSY21], we use their most efficient instantiation, for which they have to assume
a DCR variant with circular security ([OSY21, Section 4.2]). The number of exponentiations is counted
over ZN2 .

homomorphism (EOH-PRG). We further show that if the EOH-PRG additionally satisfies a form of
KDM-security, we can construct FSS for deterministic finite automata supporting inputs of a-priori
unbounded length.

We give instantiations of the EOH-PRG from the standard learning with errors (LWE) assumption or
a binary-secret variant of ring-LWE, as well as from a small-exponent variant of the decisional composite
residuosity (DCR) assumption. We give an overview of the efficiency comparison of our concretely
efficient FSS constructions for branching programs to previous FSS constructions via universal branching
program transformations in Table 1. In terms of concrete efficiency, the run time is improved by at least
a factor of w, where w is the width of the branching program.

In some sense, our work can be viewed as an extension of the line of work on exploring minicrypt
primitives with algebraic structure and their applications, as started by Alamati et al. [AMPR19].

Our main results can be captured in a series of theorems. In the following, we will give a simplified
definition of our EOH-PRG, which is yet too demanding for our instantiations, but allows to present the
essence of our core theorems. For a full definition and more detailed explanation of our results, we refer
to the technical overview section.

1.1.1 EOH-PRG.

We start by introducing the concept of an EOH-PRG. Intuitively, an EOH PRG captures the functionality
of a homomorphic pseudorandom generator in the following sense: Given an encryption c = m+PRG(s),
a homomorphic PRG would allow to split the decryption key s into two shares s0 − s1 = s, s.t.,

(c0 − PRG(s0))− (c1 − PRG(s1)) = m,

where c0 − c1 = c. In other words, a homomorphic PRG would allow the distributed decryption of m,
where the size of the decryption keys s0, s1 are succinct (i.e., scale with the size of s, rather than PRG(s)).

Unfortunately, perfectly homomorphic PRGs with both the domain and image being additive groups
in the typical sense are not known to exist; one barrier is that any homomorphic PRG with an output
space that supports efficient linear algebra can be broken by Gaussian elimination.

In this paper, we observe that if we relax the above to require the equation only relative to “encoded”
messages m, it can be instantiated from standard assumptions.1 We formalize this requirement in
the following definition of pseudorandom generators with encoded output homomorphism. While this
definition might look somewhat complex at first glance, we would like to stress that the intuition behind
it is very simple: We leverage the observation that if we have some control over the message and PRG
seed, one can recover the functionality of a homomorphic PRG while being able to give instantiations
from standard assumptions.

Definition 1.1 (EOH-PRG, simplified). Let S,H, H̃ be finite abelian groups. A function PRG : S→ H̃ is
a PRG with encoded output homomorphism (EOH-PRG) relative to H if it is a pseudorandom generator

and there exists a deterministic polynomial-time encoding function Encode : H → H̃ and conversion (or

1Actually, for our instantiations we additionally have to restrict the seed s to be from a special subset S ⊂ S, and
our message from a special subset H ⊂ H, but for simplicity we start by presenting our results with the slightly simpler
definition.

5

“decoding”) function Conv : H̃→ H such that for all m ∈ H, for s ∈ S it holds

Conv(c0 − PRG(s0))− Conv(c1 − PRG(s1)) = m,

where c0 − c1 = PRG(s) + Encode(m) and s0, s1 ∈ S with s0 − s1 = s (except with negligible probability
over the random choice of the shares).

Note that given a truly homomorphic PRG, one could indeed instantiate the above definition of
EOH-PRG by setting H := H̃ and choosing Encode and Conv as identity functions.

We will show that the EOH-PRG can be instantiated with different paradigms: It can be instantiated
by an almost homomorphic PRG, in which Conv corrects introduced errors and transforms shares in H̃
back to shares in H based on learning with errors (similar to the rounding and lifting in [BKS19]),
as well as with a homomorphic PRG mapping additive shares to multiplicative shares, in which Conv
converts multiplicative shares back to additive shares based on a variant of the DCR assumption (similar
to the conversion procedure in [BGI16a, OSY21, RS21]), thereby presenting a way to unify these two
approaches to distributed decryption.

For our constructions, we further need the PRG to support a “tag-space” T. We will defer a formal
definition to later, but we observe that for our constructions one can simply set T = Zτ , where τ is the
order of H (which will also be satisfied by our instantiations).

1.1.2 Tensor product theorem.

With this EOH-PRG, we can state our main results. We start by giving our tensor product theorem,
which can be viewed as lifting the tensor product theorem of [BGI16b] for point predicates (i.e., the
family of predicates taking 1 exactly at one point) to arbitrary predicates. Below we present it for the
family of bit-predicates, we note though that it readily extends to any predicates with logarithmic-size
input space.2 For more detailed results we refer to the technical overview section and Section 5.

Theorem 1.2 (Tensor product FSS (simplified)). Let ℓ = ℓ(λ) be a polynomial. Let P be a family

of predicates {0, 1} → {0, 1}. Let S, H̃,T be finite abelian groups. Then, if there exists an EOH-PRG

PRG : S→ H̃ relative to H := (S× T)2 with tag space T, there exists an FSS for the function class

P⊗ :=

{
gP1,...,Pℓ

: {0, 1}ℓ → {0, 1}, x 7→
ℓ∧
i=1

Pi(xi)

∣∣∣∣ ∀i ∈ [ℓ] : Pi ∈ P

}
with polynomial key size.

By instantiating the above with the family of bit-fixing predicates, we obtain a FSS construction for
bit-fixing predicate. We capture this result in the following corollary.

Corollary 1.3 (FSS for bit-fixing predicates). Assume all parameters are as in Theorem 1.2 and

PRG : S → H̃ is a EOH-PRG relative to H := (S × T)2 with tag space T. Then, there exists an FSS for

ℓ-bit bit-fixing predicates with key size log |H|+ (ℓ− 1) log
∣∣∣H̃∣∣∣.

1.1.3 FSS for branching programs.

Next, we state our main theorem for branching programs. We remark that the FSS for branching
programs only hides the transition function whereas the topology of the branching program, i.e., the
number of nodes of each level, is revealed. It is easy to extend each level to w nodes via adding dummy
nodes and then construct an FSS for the extended branching program (note that the same has to be done
in order to apply the generic transformation from HSS to FSS, if the topology is wished to be hidden).
For more details on the FSS for branching programs, we refer to the technical overview section.

Theorem 1.4 (FSS for branching programs, simplified). Let P be an oblivious, layered branching pro-

gram with ℓ levels, width w and out-degree d. Let S, H̃,T be finite abelian groups. Then, if there exists
an EOH-PRG PRG : S→ H̃ relative to H := (S× Tw)d with tag space T, there exists an FSS for P with

key size log |H|+ (ℓ− 1) · w · log
∣∣∣H̃∣∣∣.

With FSS for branching programs, we present an FSS for the class of approximate matching functions
Section E.1. We further give an FSS for multivariate polynomials over polynomial size rings in Section
E.2.

2Note though that this assumes an EOH-PRG with an accordingly larger output space and thus results in larger key
sizes.

6

1.1.4 FSS for DFAs.

Finally, we give our construction of FSS for definite finite automata. Note that the construction of FSS
for branching programs would directly imply an FSS for DFA, but requires the input size to be a-priori
bounded as the FSS keys scale with the size of the input. Instead, we give a direct construction of a
DFA, which can accept inputs of a-priori unbounded size (and for which the key sizes are independent of
the size of the input). To that end, we introduce the notion of EOH-PRG with KDM-security. We stress
that the kind of KDM-security we require for our FSS construction comes “for free” in our instantiations
from LWE and DCR, without needing to assume a circular-security type assumption.

Definition 1.5 (KDM-secure EOH-PRG (simplified)). Let Ψ be a family of embeddings ψ : S→ H. Let

PRG : S → H̃ be an EOH-PRG relative to H. We say that PRG satisfies KDM-security relative to Ψ, if
for each ψ ∈ Ψ, PRGψ(s) := PRG(s) + Encode(ψ(s)) is a secure PRG.

With this we obtain the following theorem.

Theorem 1.6 (FSS for DFAs (simplified)). Let M be a DFA with state set Q and alphabet Σ. Let
µ := |Q ∪ {A,R}| = |Q| + 2, where A and R stand for the merged accept state and rejection state,

respectively. Let S, H̃,T be finite abelian groups. Then, if there exists a EOH-PRG PRG : S→ H̃ relative
to H := (S×Tµ)|Σ|+1 with tag space T which satisfies KDM-security relative to a suitable function family

Ψ, there exists an FSS for M with key size |H|+ |Q| · |H̃|.

It is worth to mention that the FSS for DFA is the first that allows key size independent of the length
of the input(except for the generic constructions from FHE).

1.1.5 Towards Instantiating the EOH-PRG.

In order to instantiate our constructions, we have to allow for a slightly more permissive notion of
EOH-PRG, for which it is rather straightforward to adapt the above theorems. Namely, we additionally
have to restrict the seed s to be from a special subset S ⊂ S (and require that the PRG restricted to
S is still a PRG), and the message m from a special subset H ⊂ H. With this relaxation, we show
that it is possible to instantiate the EOH-PRG from LWE and binary-secret ring-LWE building on
the techniques of [BKS19], and from a short exponent variant of the DCR assumption inspired by the
techniques of [OSY21, RS21]. More precisely, we obtain the following results.

Theorem 1.7 (EOH-PRG from LWE (simplified)). Let n, p, q, r, ℓ, w ∈ N such that r|p, p|q, 1≪ r ≪ p,3

and n log q < m log p, where m := ℓ(n + w). Further, let q > 2pB and let χ be a B-bounded error
distribution.4

Then, assuming learning with errors LWEn,m,q,χ is hard, there exists an EOH-PRG PRG : S → H̃
relative to (S,H,H) with tag space T, where S = {0, 1}n,S = Znp ,T = Zp, H = (S × {0, 1}w)ℓ = {0, 1}m

and H̃ = H = (S× Tw)ℓ = Zmp .

Recall that the DCR assumption states an N -th residue over Z∗
N2 is computationally indistinguishable

from a random element over Z∗
N2 . Based on the DCR assumption, Brakerski and Goldwasser [BG10]

showed that (g1 . . . gd, g
s
1 . . . g

s
d) is pseudorandom, where d ∈ N, each gi is a N -th residue over Z∗

N2 , and
s is random element in Zϕ(N). (Note that this can also be viewed as the DDH assumption over Z∗

N2 .)
We have to rely on a variant of this assumption, where the secret is chosen from a (sufficiently large)

bounded subspace [−B/2, B/2] ⊂ Zϕ(N). Note that similar flavors of small-exponent assumptions have
been used in [KK04, ADOS22, BCG+17]. With this, we obtain the following theorem.

Theorem 1.8 (EOH-PRG from DCR (simplified)). Let B be an integer such that B · 2λ ≤ N and
B > 2λ. Further, let ℓ, w ∈ N be arbitrary.

Then, assuming a small exponent variant of DCR holds relative to B, there exists an EOH-PRG
PRG : S→ H̃ relative to (S,H,H) with tag space T, where S = [−B/2, B/2],S = Zϕ(N2),T = Zϕ(N2), H =

(S × {0, 1}w)ℓ,H = (S× Tw)ℓ = (Zϕ(N2))
ℓ(1+w) and H̃ = (Z∗

N2)ℓ(1+w).

Note that in order for the DCR assumption to hold, the parties cannot know ϕ(N2). In our con-
struction, this will not be an issue. The computation mod ϕ(N2) or ϕ(N) in the exponent is automatic
because of the structure of the Paillier group, and to sample from Zϕ(N2), we can sample from ZN2

3Here, by ≪ we denote a super-polynomial gap between parameters.
4Note that this requirement on the error distribution is to ensure that LWE implies LWR [BGM+16].

7

instead, as the two distributions are statistically close. As we will explain in the technical overview, we
are able to generate secret shares of elements x mod ϕ(N2) whenever |x| is sufficiently small (following
the techniques of [OSY21]), and can otherwise perform operations simply over Z.

1.1.6 Comparisons.

We give the concrete comparisons between our FSS for branching programs from EOH-PRGs and the
previous FSS constructions via homomorphic secret sharing (HSS) in Table 1. Building on EOH-PRG
yields more efficient constructions in terms of key size and runtime. Most notably, the new FSS schemes
for branching programs provide significant improvements in run time over FSS from HSS for universal
branching programs, by avoiding the overhead of the generic transformation. For example, consider
the Multiply-Then-Truncate (MTT) operation [BCG+21], which is central for multiplying numbers in
fixed-point arithmetic. With FSS for NC1, the MTT operation can be implemented in one round. The
width for an oblivious BP for MTT is lower bounded by w = N/logN [WW05] with N the input number
length. For inputs of size N=64 bits as in [BGI19], we thus obtain a lower bound w = 10 for the width
of the BP. For the DCR-based instantiation we achieve an improvement of roughly a factor > 3.5 in the
key size and factor > 40 in the run time and for the Ring-LWE based instantiation we obtain a factor
around 20 improvement in the key size and a factor > 250 improvement in the run time. We want to
highlight that the run time improvement both for the DCR and the LWE based instantiations scales
with w (where w is the width of the BP), and thus is even more significant for wider branching programs.
For details on the efficiency comparison we refer to Section H.

1.1.7 Applications.

The central application of FSS schemes are forms of two-server private information retrieval [BGI16a].
Here, it is assumed that two (non-colluding) servers each hold a replication of a database DB with D
items, and a client wants to launch a query to the database while keeping the query hidden from both
servers individually. Given an FSS scheme supporting the query class, this can be achieved with succinct
communication, by having the client split its query into succinct shares, which can then be evaluated by
the server. By secrecy of the FSS, the servers do not learn anything about the query, as long as they are
non-colluding. In the following, we outline a number of applications, and how our construction can be
used towards boosting the applications in terms of expressiveness and/or efficiency.

First of all, our improved FSS constructions for bit-fixing and branching programs yield direct appli-
cations to applications such as 2-server private counting queries and private payload computations, as
considered, e.g., in [BKS19], with better efficiency. In the following, we further outline applications of
our FSS constructions for approximate matching functions, DFAs and more.

Note that only in the private nearest neighbour search(Section G.3), the database privacy is required.
We do not pay much attention to server privacy, as we mainly use the applications to show the high
compatibability of our FSS schemes.

Private image matching. In private image matching protocols, a client wishes to perform an
image matching based on some similarity metric without the revealing the query image. Private image
matching protocols have many crucial applications, including patient CT image retrieval, logo patent
search and face detection. Most existing secure privacy-preserving image matching protocols [JB22]
rely on searchable encryption [SWP00] or homomorphic encryption [Pai99] to perform computation on
encrypted images, which incur large computation cost. Recently a private approximate membership
computation protocol with perceptual hash matching was proposed in [KM21], which can also be used
to perform image matching. However, the approximate membership computation protocol heavily relies
on fully homomorphic encryption. Our FSS allows to support approximate matching queries in the
Hamming metric, without the need for expensive ciphertext multiplication. Previous to our work, the
only way to achieve FSS for approximate matching required the expensive transformation of HSS for
branching programs via universal circuits, we thus expect significant efficiency improvements using our
FSS constructions for 2-server private image matching.

Private nearest neighbour search. In private nearest neighbour search, a client wants to find the
nearest neighbour to the query feature in a database of feature vectors based on some metric, e.g., the
Euclidean, Hamming, or ℓ1 metric, without revealing information on the query feature vector. In this
setting, typically also database privacy is required, i.e., that the client learn nothing on the database
beyond the query answer.

8

Most of the existing protocols for private nearest neighbor search rely on 2-party secure computa-
tion or fully homomorphic encryptions. For instance, the protocol SANNS [CCD+20] uses oblivious
RAM, garbled circuits and homomorphic encryptions. In the recent protocol [SLD22], distributed point
functions and locality sensitive hashing are used to achieve a 2-server private nearest neighbor search
protocol. Here, the local sensitive hashing leads to some accuracy loss. To achieve a good accuracy,
say > 95%, O(

√
D) queries to the database are necessary, which leads to an extra O(

√
D) factor to the

communication cost.
With our FSS construction, we can obtain direct construction of 2-server private nearest neighbor

search without relying on locality sensitive hashing, removing this extra factor of O(
√
D), albeit at the

cost of an increased run time.

Private partial text matching. In private partial text matching protocol, a client wants to run a
fuzzy pattern matching without leaking the query pattern. The like operator in SQL is a typical case
of such a partial text matching. This can be modeled as a DFA, and can thus be instantiated with our
FSS for DFA (although this potentially requires the addition of some dummy states, in order to hide
the number of states of the underlying DFA). Our FSS for DFA is the first that allows communication
complexity independent of the length of the inputted text (except for generic instantiations relying on
fully homomorphic encryption). Other interesting applications of FSS for DFA include private searching
on DNA sequences or pharmaceutical databases and malware detection.

Extension of Splinter via more expressive FSS for interval functions. The FSS construction
supporting constant dimension intervals presented in [BCG+21] has many practical applications such
as to Splinter [WYG+17], which provides a platform for private searching queries, e.g., for restaurant
reviews on Yelp. However, the key size of the construction of [BCG+21] scales with nd, where n is the
length of the PRG seed and d the number of dimensions, and is thus inherently bounded to constant.
Our tensor operation technique for FSS from EOH-PRGs, on the other hand, works for an arbitrary
polynomial number of dimensions, with key size scaling only linearly with the number of intervals,
and has thus direct applications to more expressive queries in Splinter. We leave it as an interesting
open direction to explore other applications of EOH-PRG, such as efficient 1-round secure evaluation of
multiply-then-truncate [BCG+21] .

1.2 Discussion and Related Work

1.2.1 Beyond the two-party case.

Note that the FSS constructions from one-way functions [GI14, BGI15, BGI16b] cannot be easily ex-
tended to more than two parties. Our FSS construction approach from EOH-PRGs, on the other hand,
naturally extends beyond the two-party setting. However, it is not known how to instantiate the EOH-
PRG from concrete assumptions for more than two parties. Our two-party instantiations from LWE and
the DCR variant heavily rely on the distributed rounding [BKS19] and distributed discrete logarithm
[OSY21], respectively, which were developed for two-party homomorphic secret sharing. To date, it is
unclear how to generalize the distributed rounding or distributed discrete logarithm to more than two
parties. In fact, [BDIR18] proved that there exists a barrier to directly generalize the share conversion
from two-party to multi-party. Any such progress may lead to significant improvements for efficient
multi-party FSS/HSS constructions.

1.2.2 On FSS from weaker assumptions.

While constructing FSS for function classes such as branching programs solely based on the assumption
of one-way functions would be a major breakthrough [BGI15], it seems a more tractable open question if
such FSS can be constructed for subclasses of AC0 such as bit-fixing predicates or t-CNF. In the technical
overview, we give some intuition why it seems unlikely that the techniques of the line of work on FSS
from one-way functions [GI14, BGI15, BGI16b] allow for this without relying on additional structure
(such as EOH-PRGs), due to an inherent exponential blow-up. An alternative route could be taken
following [DKN+20], who give constructions of privately constrained PRFs for t-CNFs from one-way
functions. Here, however, the problem is that de-randomizing the constrained points to fixed values
would again introduce an exponential blow-up. We leave it as an interesting open questions to either
give such candidates, or give barriers towards their construction.

9

1.2.3 Prior work.

As mentioned above, our constructions are inspired by the tensor production construction for point
functions of [BGI16b] based on one-way functions, which generalizes the previous constructions of DPFs
in [GI99] and in [BGI15]. Despite recent advances such as [BCG+21], this line of work yielding very
efficient FSS from one-way functions is restricted to very simple function classes, such as FSS for point
or comparison functions.

Our LWE-based instantiations of EOH-PRGs build on a series of works of PRGs and HSS from
lattices. Namely, the underlying PRG builds on the LWR which was introduced in [BPR12] and shown
to imply almost homomorphic PRGs and PRFs in [BLMR13]. The “distributed rounding operation” we
rely on towards instantiating our EOH-PRG was first used in [DHRW16] to support spooky relationships
for encryptions and used again in [BKS19] to construct homomorphic secret sharing. We further also
build on the “lifting operation”, which was proposed in [BKS19] to avoid a hierarchy of decreasing
moduli.

Our DCR-based instantiations of EOH-PRGs follow the line of work on group-based HSS. Boyle et
al. [BGI16a] were the first to propose the framework for HSS in group model based on DDH. Following the
framework of [BGI16a], [FGJS17] constructed a HSS based on the DCR assumption. However, they only
achieved polynomial correctness error and polynomial size plaintext space as in [BGI16a]. This was later
improved in [OSY21, RS21], both of which achieved negligible correctness error and super-polynomial
size plaintext space. Our work follows the techniques introduced by [OSY21].

1.2.4 Relation to secure branching program evaluation protocols.

There is a line of work on secure branching program evaluation (BPE) [BPSW07, BFK+09, BFL+11,
BPTG15, WFNL16, KNL+19, TKK19] relying on garbled circuits or homormorphic encryption. The
setting considered in their work is somewhat orthogonal to ours: They consider a branching program
(held by a sender) to be evaluated on a single input (held by a receiver), such that the result is learned by
the receiver, and such that both the branching program provided by the sender and receiver input remain
hidden. We, on the other hand, consider a branching program (held by a client) to be evaluated on a
database (held by two servers), such that a linear combination of the outputs is learned by the client, and
such that the branching program (i.e., database query) provided by the client remains hidden, as long
as the two servers are not colluding. With our approach, the communication cost scales with logN for a
database of sizeN , since the same branching program can be evaluated on all inputs. Except for the FHE-
based approach [BPTG15], the communication cost of all other protocols in the BPE line of work instead
scales with N to achieve the same functionality. This is even true for the protocols [WFNL16] relying
on additively homomorphic encryption, since they still require communication between the receiver and
sender per input to be evaluated. It is worth to point out that sublinear communication complexity in
the line of work on BPE (as achieved in [TKK19]) refers to sublinear in the size of the branching program,
whereas we consider settings where the size of the database N is the dominating cost.

1.3 Organization

Only the main results and techniques are presented in the body part. Section 2 presents an overview
of the central techniques, followed by preliminaries in Section 3. The EOH-PRG is formally defined in
Section 4. We show the constructions for tensor product, branching programs and DFAs in Section 5,6,7,
respectively. Finally, in Section 8 we present instantiations of the EOH-PRG.

2 Technical Overview

In the following we give an overview of the central techniques. We start by explaining the tensor product
FSS for point functions of Boyle, Gilboa and Ishai [BGI16b] (in the following refered to as BGI16), and
show how to extend their construction to a more general tensor product using an encoded-output PRG.
Then, we show how this yields FSS for the classes of bit-fixing predicates. Next, we explain how the
construction can be extended towards FSS for branching programs and for DFAs.

10

2.1 Existing Constructions and Limitations

2.1.1 Background [BGI15, BGI16b]

Before giving the construction, we recall some required preliminaries. Firstly, recall that a point function
is simply a function that takes a non-zero value only at one dedicated point. More precisely, the point
function fβα with input space {0, 1}n and output space R (for some group R) is defined as

fβα (x) :=

{
β if x = α

0 else
.

A function secret sharing scheme for a family of function F consists of tuple of PPT algorithms
(Gen,Eval), such that Gen takes as input the description f̂ of f and returns a tuple of keys (k0, k1) and
Eval takes as input a party index b, a key kb and an input value x and outputs an output value yb, such
that the following holds:

Correctness: For all x ∈ {0, 1}n. it holds Eval(0, k0, x)− Eval(1, k1, x) = f(x).

Secrecy: For b ∈ {0, 1}, kb computationally hides f̂ within F .

Note that an FSS for the class of point functions, is also refered to as distributed point function (DPF).

2.1.2 Tensor product FSS for point functions [BGI16 [BGI16b]]

Given a function secret sharing scheme for the class F◦ of point functions, and a function secret sharing
scheme for a function class F of arbitrary functions, BGI16 gives a construction for the tensor product
F◦ ⊗F , i.e., the class of functions

Fα,f (x1, x2) :=

{
f(x2) if x1 = α

0 else

for α ∈ {0, 1}n, f ∈ F , where the key size scales polynomially in the key sizes of the underlying FSS
schemes.5

In the following, we describe the construction of BGI16 in a number of steps, adding layers of secrecy
one-by-one. For the construction we assume that the FSS scheme (Gen,Eval) for F satisfies a symmetry
property, i.e., Eval(0, k, x) = Eval(1, k, x) for all inputs x and keys k. Further, we assume that keys
(k0, k1)← Gen(f) are individually pseudorandom over the same key space K.

First attempt: a construction with very limited secrecy: To get a construction where α is
hidden from P1, one can proceed as follows: To share Fα,f , one can generate keys (k0, k1)← Gen(f̂) and
set K0 := (α, k0, k1) and K1 := k1. To evaluate on point (x1, x2), party P0 outputs y0 := Eval(0, k0, x2)
if x1 = α and y0 := Eval(0, k1, x2) otherwise. Party P1 simply outputs y1 := Eval(1, k1, x2).

Correctness and very limited secrecy: Here, for x1 = α we have y0−y1 = Eval(0, k0, x2)−Eval(1, k1, x2) =
f(x2) by the correctness of (Gen,Eval). For x1 ̸= α, on the other hand, it holds y0−y1 = Eval(0, k1, x2)−
Eval(1, k1, x2) = 0 by symmetry, as required.6 This construction does obviously hide α from P1, but
otherwise does not provide any secrecy guarantees.

Second attempt: a construction with secret α. Towards hiding α also from P0, the trick is to
additionally use the FSS scheme (Gen◦,Eval◦) for F◦, and flipping the order of k0 and k1 with probability
1/2, thereby hide from the parties when they use the same keys. More precisely, assume to be given an
FSS for point functions with output space {0, 1} (i.e., the point function maps to 1 at the unique non-

zero point α, and otherwise to 0). Now, the idea is to generate keys (k◦0 , k
◦
1)← Gen◦(f̂1α), and compute

“tag” values τb ← Eval◦(b, k◦b , α) (i.e., τ0⊕ τ1 = 1 by construction) relative to these keys. The tag values

are used to hide if the parties use the same key kb, by defining cwτb := kb (where (k0, k1) ← Gen(f̂)
as before) and setting Kb := (k◦b , cw0, cw1). To evaluate at a point (x1, x2), party Pb first computes
tb ← Eval◦(b, k◦b , x1) and then outputs yb ← Eval(b, cwtb , x2).

5The resulting scheme actually satisfies a stronger notion of key compactness, namely the non-public part of the key
does not grow, allowing to apply the tensor product operation recursively a polynomial number of times.

6This construction would not actually require symmetry of the underlying FSS since P0 knows when x1 ̸= α and could
evaluate Eval(1, k1, x2)in this case, but this will no longer be possible in the subsequent constructions.

11

Correctness and secrecy of α: Now, for x1 = α, it holds cwtb = cwτb = kb. As before, the parties thus
obtain y0−y1 = Eval(0, k0, x2)−Eval(1, k1, x2) = f(x2) as required. If x1 ̸= α, on the other hand, it holds
t0 = t1 and thus kt0 = kt1 , implying y0 − y1 = Eval(0, kt0 , x2)− Eval(1, kt0 , x2) = 0, again by symmetry.
The construction hides α from both parties by the secrecy of (Gen◦,Eval◦) and the pseudorandomness
of keys for (Gen,Eval) (which prevents the parties from learning when they use the real key at position
α and when they use a “dummy key”), but still fully leaks f .

The construction of BGI16. The idea of BGI16 to overcome this, is to additionally use a pseudo-
random generator to blind the keys k0, k1, such that party P0 is only able to recover k0 and party P1

is only able to recover k1 at the dedicated point x1 = α (without being able to distinguish this from
the case where both parties recover the same ”dummy” key, to ensure that α remains hidden). To
this end, assume that FSS◦ is now an FSS for point functions with output space {0, 1}λ+1. The idea
of BGI16 is as follows: To generate a key for Fα,f , the key generation algorithm starts by choosing

s ←R {0, 1}λ at random and generating (k◦0 , k
◦
1) ← Gen◦(f̂s,1α). Further, the key generation algo-

rithm generates the corresponding “seed values” σb ∈ {0, 1}λ and, again, “tag values” τb ∈ {0, 1} as
(σb, τb)← Eval◦(b, k◦b , α) (i.e., σ0⊕σ1 = s and τ0⊕ τ1 = 1 by construction). Further, given a pseudoran-
dom generator PRG : {0, 1}λ → K, the full “correction words” are generated as CWτb := kb + PRG(σb)

(where (k0, k1)← Gen(f̂) as before) and the keys defined as Kb := (k◦0 , CW0, CW1). To evaluate on point
(x1, x2), the parties now compute (sb, tb)← Eval◦(b, k◦b , x1), “correct” their keys to κb := CWtb−PRG(sb)
and evaluate to yb ← Eval(b, κb, x2).

Correctness and secrecy of BGI16: If x1 = α, it holds κb = CWtb −PRG(sb) = CWτb −PRG(σb) = kb
and thus y0 − y1 = Eval(0, k0, x2) − Eval(1, k1, x2) = f(x2) as required. If x1 ̸= α, on the other hand,
then t0 = t1 and thus κ0 = κ1 (i.e., both parties recover the same “dummy” key), and y0 − y1 =
Eval(0, κ0, x2) − Eval(1, κ0, x2) = 0 by symmetry. Full secrecy holds by the above considerations and
because (Gen,Eval) satisfies secrecy and pseudorandomness of keys, which prevents the parties from
learning where the true FSS keys are embedded.

2.1.3 Limitation of BGI16 to tensoring with point functions

The issue with extending the above approach even slightly beyond point functions (e.g., to function
which take a non-zero value at two points) is that it would incur an exponential blow-up in the key size
(and run time of the key generation), since the parties have to recover different key pairs (K0,K1) and
(K ′

0,K
′
1) for different non-zero points α, α′ (as reusing a key would allow the parties to locally derive

information about the position of non-zero points). Note that this includes the “correction word” part
CW0, CW1 of the key, since keys with different first component require different correction words in
construction of BGI16. The key generation time and key length thus (at least) double at each tensoring.
Recursive tensoring is therefore limited to at most a logarithmic number of times, which is not sufficient
for most applications.

This issue could be overcome, if the keys could be “randomized” in order to hide that the same key
is reused. For additive secret sharing this is trivially the case: Namely, assume an output value is shared
as y = k0 − k1 ∈ K (for some additive group K). Then, for any ∆ ∈ K, the secret can be re-shared as
(k0 + ∆, k1 + ∆), which looks like perfectly fresh keys from the view of the adversary. Unfortunately,
the construction of BGI16 does not satisfy this property of “shift-invariance”, even if the underlying
FSS schemes F◦ and F were to satisfy these properties: Namely, even if σ0 − σ1 = σ′

0 − σ′
1 (where

σb ← Eval◦(b, kb, α) and σ′
b ← Eval◦(b, kb, α

′)), the PRG outputs PRG(σb) and PRG(σ′
b) are in general

uncorrelated.
This could be resolved by using an ideal homomorphic PRG, ensuring that the correlation is preserved

to PRG(σ0) − PRG(σ1) = PRG(σ′
0) − PRG(σ′

1). Unfortunately, perfectly homomorphic PRGs with both
the domain and image being additive groups in the typical sense are not known to exist. For simplicity,
we still start by outlining our tensor product construction assuming access to a perfectly homomorphic
PRG PRG : {0, 1}λ → K, before giving our full construction.

2.1.4 Overcoming the limitations via an ideal homomorphic PRG

We start by simplifying the construction of BGI16 assuming access to a perfectly homomorphic PRG
PRG : {0, 1}λ → K, and assuming a shift-invariant FSS FSS = (Gen,Eval) for F with key space K,7 i.e.,

7Note, that for correctness of the simplified construction outlined below, we would actually require (K,+) := ({0, 1}k,⊕),
for some k ∈ K. To be aligned with the general construction, we will still use th notation (K,+) in the following.

12

for (k0, k1) ← Gen(f̂), we assume that any shifted tuple (k0 +∆, k1 +∆) for ∆ ∈ K constitutes a valid
key pair for f . Then, the construction of BGI16 can be simplified to a construction requiring only one
correction word CW :

Again, to generate a key for Fα,f , the key generation algorithm samples s←R {0, 1}λ and generates
keys (k◦0 , k

◦
1) ← Gen◦(fs,1α). Instead of pre-computing the tag and seed values at position α, the key

generation algorithm simply generates (k0, k1) ← Gen(f̂), sets CW := k0 − k1 + PRG(s) and outputs
(K0,K1), where Kb := (k◦b , CW). To evaluate, the parties now compute (sb, tb) ← Eval◦(b, k◦b , x1) and
then obtain the “corrected” keys as κb := tb · CW − PRG(sb). (Note that tb ∈ {0, 1}, and thus the
multiplication simply corresponds to adding 0 or CW.)

Correctness holds, since at position α it holds s0 − s1 = s and t0 − t1 = 1, and thus

κ0 − κ1 = (t0 · CW − PRG(s0))− (t1 · CW − PRG(s1)) = CW − PRG(s) = k0 − k1.8

As FSS is shift-invariant, the above implies that (κ0, κ1) and (k0, k1) are functionally equivalent, and
thus y0 − y1 = Eval(0, κ0, x2) − Eval(1, κ1, x2) = f(x2) as required. If x1 ̸= α, on the other hand, we
obtain s0 = s1 and t0 = t1 and thus κ0 = κ1 as before, and correctness follows from the symmetry of
FSS. Secrecy holds by the secrecy of the underlying FSS schemes, together with the pseudorandomness
of PRG.

Note that this simplified scheme readily extends beyond point functions.

2.2 Our Constructions

2.2.1 EOH-PRG

In order to instantiate the above construction, we introduce the notion of PRG with encoded-output
homomorphism (EOH-PRG) and show that the above construction can be extended to support instanti-
ation from this weaker notion. Roughly, an EOH-PRG has “encoding” and “conversion” (or “decoding”)
functions Encode and Conv such that it satisfies the following: given additive secret shares (s0, s1) of
a seed s, and additive secret shares (y0, y1) of a blinded encoding PRG(s) + Encode(m), we require
Conv(y0 − PRG(s0)) − Conv(y1 − PRG(s1)) = m (except with negligible probability over the random
choice of the secret shares). Intuitively, this is sufficient to instantiate (a variant of) the tensor product
FSS above, by encoding the key difference k0 − k1 to Encode(k0 − k1) before adding PRG(s).

More formally, a EOH-PRG PRG : S→ H̃ as required for our tensor product construction is parametrized
by S,H,H, together with (efficiently computable) maps Encode : H → H̃ and Conv : H̃→ H such that:

• PRG : S→ H̃ is a PRG.

• S ⊂ S is such that PRG restricted to S is still a PRG and 0 ∈ S. Note that S will serve as the seed
space of our tensor product (recall that before S = {0, 1}λ). 0 has to be included in S to account
for the case where both parties recover the same “dummy” seed value s0 = s1, i.e., s0 − s1 = 0.

• H is a finite abelian group containing the set H ⊂ H. Note that H will correspond to the key space
K of the FSS FSS before encoding (i.e., recovery of the keys is relative to addition in K). H ⊂ H
will correspond to the set of actual key differences k0− k1 for (k0, k1)← Gen(f̂) for f ∈ F . Having
separate H ⊂ H stems from the intantiations of EOH-PRG – given a truly homomorphic PRG,
one could simply choose H = H = H̃.

• H̃ is a finite abelian group containing the image of the PRG.

Finally, Enc : H → H̃ and Conv : H̃→ H are such that for all s ∈ S, for allm ∈ H, for random secret shares
s0, s1 ←R S with s0−s1 = s, and for random secret shares y0, y1 ←R H̃ with y0−y1 = PRG(s)+Encode(m)
it holds

Conv(y0 − PRG(s0))− Conv(y1 − PRG(s1)) = m

in H except with negligible probability.
Further, we require a tag space which operates on H̃. More formally, we require the following:

• T is a finite abelian group containing {0, 1} ⊂ T. Note that T = {0, 1} will serve as the tag space
of our tensor product FSS, which is embedded in the group T, i.e., recovery of the tag will now be
additive over T, rather then additive over ({0, 1},⊕).

8Note that to obtain t0 ·CW − t1 ·CW = CW we use (K,+) = ({0, 1}k,⊕). We will later show how to generalize this.

13

• · : T× H̃→ H̃ is an efficiently computable non-trivial (left) homomorphic group operation of T on
H̃, i.e., ∀t0, t1 ∈ T and ∀h ∈ H̃, t0 ·h+ t1 ·h = (t0+ t1) ·h. Note that we need to define an operation
of T on H̃ in order to “correct” the keys based on the tag values. This allows to support more
general key spaces than K = {0, 1}k.

As mentioned above, In the following, we will assume this as part of the definition of an EOH-PRG and
simply add T to the parametrization.

2.2.2 A first step: tensor product FSS for arbitrary predicates from EOH-PRG

Our tensor product construction from a EOH-PRG is essentially the same as the one from a perfectly
homomorphic PRG (assuming the underlying FSS satisfy some additional properties), except that the
correction word is computed as CW := PRG(s) + Enc(k0 − k1), and the keys are recovered as κb :=
Conv(tb · CW − PRG(sb)).

9

Note that for construction to satisfy correctness, it is now required that the FSS scheme FSS for F
satisfies k0−k1 ∈ H for all f ∈ F and (k0, k1) ∈ Gen(f̂) (since the encoding function Encode takes inputs
in H), but satisfies shift invariance relative to the additive group H (since the decoding function Conv
returns elements in H).

An example for such an FSS can be obtained by additively secret-sharing the truth table with values
in H over H if the function class is sufficiently small, this can be done efficiently.

With this we obtain the following theorem.

Theorem 2.1 (Theorem 5.1). Assume PRG : S → H̃ is a EOH-PRG parametrized by (S,T, H,H).

Further, let FSSP = (GenP ,EvalP) be an FSS for a function family fβP : {0, 1}n1 → S× T, where

fβP (x1) =

{
β if P (x1) = 1

0 else
,

for β ∈ S×{1} ⊆ S×T ⊆ S×T (i.e., recovery is additive in S×T) and P ∈ P, and let FSS = (Gen,Eval)
be a symmetric and shift-invariant FSS for some class of functions F of the form f : {0, 1}n2 → R with

key space K = H, such that for any pair of keys (k0, k1)← Gen(f̂) it holds k0 − k1 ∈ H.
Then, there exists an FSS FSS⊗ = (Gen⊗,Eval⊗) for the class FP ⊗F of functions

FP,f : {0, 1}n1+n2 → G, (x1, x2) 7→

{
f(x2) if P (x1) = 1

0 else
,

for P ∈ P, f ∈ F , where the resulting keys consist of a “secret” part corresponding to the key space in
FSSP and a “correction word” space H̃.

Theorem 2.1 yields the following corollary.

Corollary 2.2. Assume PRG : S → H̃ is a EOH-PRG relative to (S,T, H,H) with H = (S × T)2,H =
(S×T)2. Assume P is a family of predicates {0, 1} → {0, 1}. Then, there exists an FSS for the function
class

FP1∧···∧Pℓ
: {0, 1}ℓ → {0, 1}, x 7→

ℓ∧
i=1

Pi(x[i]),

where P1, . . . , Pℓ ∈ P.

2.2.3 FSS for branching programs

In general, a branching program can be described as a finite directed acyclic graph with one source
node and two sink nodes, accept and reject. In this section, we focus on giving an FSS construction for
oblivious ℓ-layered branching programs with out-degree 2, i.e., each width-w layer uses a fixed position

9A subtlety is that in the definition of EOH-PRG we only require correctness relative to random shifts, but here we
rely on correctness relative to shifts of the form tb ·CW −PRG(sb). This can be solved by having the parties re-randomize
their shares with random offset PRF(s, i) (where each time a fresh index i is used and both parties hold the key s). This
is necessary anyway for applying tensoring recursively, and allows for a simpler definition of EOH-PRG. Note though that
this requires us to settle with a form of “non-adaptive” correctness as used e.g. in [BKS19], where the inputs are assumed
to be chosen independently of the keys.

14

of the input, each non-sink node has two outgoing edges labeled by 0 and 1, and edges only go from one
level to the next level, as specified by a transition function f : [ℓ]× [w]× {0, 1} → [w].

Roughly, the idea to obtain an FSS for the class of such branching programs is to extend the tag
value t ∈ {0, 1} to a tag vector t ∈ {0, 1}w, allowing to pick the “right” correction word in going from
the i-th to the (i+ 1)-th level.

More precisely, for the i-th level, the key generation algorithm essentially chooses a seed si ∈ Sw,
i.e., the j-th node on the i-th level is “labelled” by a seed value si,j ∈ S together with a fixed tag vector
ej ∈ {0, 1}w, where ej corresponds to the j-th unit vector. Recall that each node has two outgoing edges,
0 and 1. In other words, for each node (si,j , ej) on level i, there exist two possible nodes j0 := f(i, j, 0) and
j1 := f(i, j, 1) that can be reached in level i+1 with corresponding labels (si+1,j0 , ej0) and (si+1,j1 , ej1).
To go from the i-th to the (i+1)-th level, the idea is now to encode the transitions into correction words.
More precisely, we define

CWi[j] := PRG (si,j) + Encode ((si+1,j0 , ej0), (si+1,j1 , ej1)) .

Thus, the correction word for each node can be computed in this way. The FSS key consists of a sharing
of the label of start node and correction words.

During evaluation, the tag vector allows to pick the right correction word to proceed to the next level.
Namely, given secret shares (sb, tb) such that

(s0, t0) + (s1, t1) = (si,j , ej)

the parties can compute

yb = Conv

(
w∑
k=1

tb[k] · CWi[k]− PRG(sb)

)
to obtain

y0 − y1 = Conv

(
w∑
k=1

t0[k] · CWi[k]− PRG(s0)

)

− Conv

 ∑
k∈[wi]

t1[k] · CWi[k]− PRG(s1)

= Conv(t0[j] · CWi[j]− PRG(s0)) + Conv(t1[j] · CWi[j]− PRG(s1))

= ((si+1,j0 , ej0), (si+1,j1 , ej1)) ,

by the property of the EOH-PRG. The parties can now continue the evaluation with the left or right
part of the output, depending on the i-th input bit.

Note that in the described inductive construction of FSS for branching programs, we assumed that
each level has exactly w nodes. This can be achieved by virtually adding dummy nodes, for which the
correction words for dummy nodes can be sampled uniformly at random, since these are never reached
during evaluation.

Comparison with FSS via universal branching programs. Previous constructions of FSS for
branching programs rely on homomorphic secret sharing (HSS) [BGI16a, Theorem 4.15] or FSS for all
functions from fully homomorphic encryption(FHE) [DHRW16, Section 6.3]. Given a branching program
P , the construction of [BGI16a] encodes P to P̂ and generates a universal branching program (UBP)
for P such that UBP (P̂ , x) = P (x) for arbitrary x. Next, P̂ is secret-shared via the underlying HSS to
hide the transition function of P . Note that the transformation via UBPs incurs a considerate efficiency
blow-up which is at least quadratic in the number of levels. Refer to Section H.2 for details.

In contrast, the evaluation of our FSS construction directly emulates the evaluation of the branching
program. For each level of the program P , the PRG needs to be evaluated once. Moreover, our FSS for
branching programs naturally supports multi-edges. For the FSS via universal branching programs, on
the other hand, the multi-edges need to be splitted into plain edges, incurring an additional blow-up.
Finally, for branching programs with polynomial out-degree, say d, our FSS construction only increases
the correction word for each node from two elements to d elements.

15

2.2.4 FSS for approximate matching functions

It is possible to merge the FSS for bit-fixing predicates and the FSS for branching programs to implement
an approximate matching function. The approximate matching function is defined as

fa,b(x) := (dist(x,a) < b)

where a ∈ {0, 1, ∗}ℓ,x ∈ {0, 1}ℓ, b ≤ ℓ and dist(x,a) =
∑
i∈[ℓ](a[i] ̸= ∗ ∧ a[i] ̸= x[i]). This can be viewed

as a generalization of the bit-fixing predicates, where the distance is compared. In fact, the bit-fixing
predicate is the special case dist(x,a) < 1. The underlying idea is essentially as follows: The key for each
level is sampled as in the key generation algorithm for bit-fixing predicates. The transition functions
between two consecutive levels are determined by the distance function, i.e., keeping the last distance
or increasing the distance by 1, depending on the special matching state for current level. In the last
level, the key are sampled according to the threshold value b, thereby allowing to recover either 0 or 1,
depending on the input.

2.2.5 FSS for DFAs

Given a DFAM := (Q,Σ, δ, q0, F), we first transform the set of accepting states F to a single accept state
A via appending a special symbol ϵ to the end of each input. Similarly, we can transfer the remaining
states to a rejection state R. The resulting DFA has alphabet Σ ∪ {ϵ} and states set Q ∪ {A,R}.

Similarly to the FSS for branching programs, the FSS for DFAs focuses on hiding the transition
function. For each state s ∈ Q, the label for s consists of a uniformly random seed and a tag vector
assigned according to a designated order of the states. The correction word for s hides the labels of
one-step reachable states from s. The key for the FSS is a random sharing of the label for q0 and the
correction word for every state in Q. Since a state may be transferred to itself via some symbols, a KDM
secure variant of EOH-PRG is necessary. With EOH-PRG, the key size of this FSS is independent of
the length of string to be evaluated by the DFA.

2.3 Instantiating the EOH-PRG

In the following we explain our instantiations of EOH-PRG from LWE and a small-exponent DCR
variant.

2.3.1 EOH-PRG from LWE

Recall that the LWE assumption naturally provides an almost-homomorphic PRG (AH-PRG). Let p, q ∈
N with p|q and let ⌈·⌋q→p be defined as ⌈·⌋q→p : Zq → Zp, x 7→ ⌈(p/q) · x⌋. Suppose A←R Zn×mq . Then,
PRGA : Znq → Zmp , s 7→ ⌈sA⌋q→p is an AH-PRG [BLMR13]. The security of PRGA follows from the
pseudorandomness of LWR distributions and the almost homomorphic property naturally follows from
the rounding operation. It is easy to verify that

PRGA(s0 + s1) = PRGA(s0) + PRGA(s1) + e

with ∥e∥∞ ≤ 1.
Note though that an AH-PRG is not sufficient to instantiate our construction, since the small error

vector would lead to correctness errors with too high probability. To overcome this problem and obtain
an EOH-PRG, we rely on the distributed rounding and lifting technique as introduced in [BKS19].
Concretely, let r ∈ N be an integer such that r|p and 1 ≪ r ≪ p. Then, [BKS19] observed that for
µ ∈ Zp the following holds. Given y = (p/r) · µ+ e mod p for small error e, and random additive secret
shares y0 − y1 = y mod p, it holds

⌈y0⌋p→r − ⌈y1⌋p→r = µ mod r,

except with negligible probability. Further, if |µ| ≪ r, then this secret sharing holds with overwhelming
probability over the integers and thus also modulo p:

⌈y0⌋p→r − ⌈y1⌋p→r = µ mod p.

Towards obtaining a EOH-PRG, our idea is thus to encode a vector x ∈ {0, 1}m as (p/r) · x, which
then allows to remove errors potentially introduced via the AH-PRG using the conversion function
y 7→ ⌈y⌋p→r. More precisely, we instantiate the EOH-PRG as in Theorem 8.1 and 8.2.

16

2.3.2 EOH-PRG from small-exponent DCR

Next, we outline our EOH-PRG instantiation from a variant of the DCR assumption. Recall that the
DCR assumption induces a homomorphic PRG mapping the additive group (Zϕ(N),+) to the multiplica-
tive group (Z∗

N2)4. Namely, assume g := (g0, g1, g2, g3) ∈ Z4
N2 , where each gi is uniformly sampled from

the N -th residue group mod N2. Then, based on the DCR assumption, PRGg : Zϕ(N2) → (Z∗
N2)4, r 7→

(gr0, g
r
1, g

r
2, g

r
3) defines a homomorphic PRG [BG10], for which it holds Gg(s0− s1) = Gg(s0)/Gg(s1) for

any s0, s1 ∈ Zϕ(N2). However, in order to use this recursively in our constructions, we need to be able
to recover a homomorphism over (Zϕ(N2),+) (while not revealing ϕ(N2)).

To that end, we follow the techniques of [OSY21], who showed that given z0 = z1 · (1+N)x mod N2

for x ∈ ZN , there exists an efficiently computable map DDLog : Z∗
N2 → ZN , which satisfies

DDLog(z0)− DDLog(z1) = x mod N.

Further, if |x| ≤ N
2λ
, then DDLog(z0)− DDLog(z1) = x over Z, and thus in particular it holds

DDLog(z0)− DDLog(z1) = x mod ϕ(N2),

allowing to recover the homomorphism over (Zϕ(N2),+). Note that this allows to generate secret shares
of a value x mod ϕ(N2) without knowing ϕ(N2), whenever |x| is sufficiently small.

Our idea is thus to build on a small-exponent variant of the DCR assumption which states that
PRGg(r) remains a PRG restricted to seeds r with |r| ≤ N

2λ
. It is pointed out in [ADOS22] that

this variant of the DCR assumption is reasonable as long as the domain of the small exponent is still
exponentially large. This kind of low exponent assumption dates back to [KK04].

With this we can state our EOH-PRG from small-exponent DCR as follows. Let B be an integer such
that B · 2λ ≤ N and B > 2λ. Let m := ℓ(1 + w) (where, again, ℓ, w are determined by the underlying
application). Assume the DCR variant assumption holds relative to exponents in B. Then, we can
instantiate the EOH-PRG as in Theorem 8.3.

We would like to point out though that to evaluate the PRG, it is not necessary to know ϕ(N2).
The computation mod ϕ(N2) or ϕ(N) in the exponent is automatic because of the structure of the
Paillier group, and to sample from Zϕ(N2), we can sample from ZN2 instead, as the two distributions are
statistically close.

3 Preliminaries

In this section, we recall the preliminaries for function secret sharing from [GI99, BGI15]. For the
remaining preliminaries we refer to Section A in the Supplementary Material. Here, we only consider
two-party function secret sharing as all of our constructions are in the two-party setting.

Definition 3.1 (Function Secret Sharing (FSS)). A function secret sharing scheme for function a func-
tion class F consists of two PPT algorithms (Gen,Eval):

− Gen(1λ, f) outputs a pair of keys (k0, k1) and correction word CW upon the security parameter and
f ∈ F .

− Eval(b, kb, CW, x) outputs the corresponding share of f(x) upon the party index b, kb and input x.

(Gen,Eval) is a secure function secret sharing if it satisfies the correctness and security requirements:

− Correctness For all f ∈ F and all x ∈ Df ,

Pr
[
Eval(0, k0, CW, x)− Eval(1, k1, CW, x) = f(x) : (k0, k1)← Gen(1λ, f)

]
≥ 1− negl(λ),

where Df is the domain of f .

− Security Assume party z is corrupted by an adversary A. Consider the following experiment.

1. The adversary A outputs (f0, f1)← A(1λ,F).
2. The challenger samples b← {0, 1} and computes (k0, k1, CW)← Gen(1λ, fb).

3. The adversary outputs b′ ← A(kz, CW).

17

Let Adv(1λ,A) be the advantages of A in guessing b′, i.e., Adv(1λ,A) :=
∣∣Pr[b = b′]− 1

2

∣∣. Then
(Gen,Eval) is a secure FSS if Adv(1λ,A) is negligible for every b ∈ {0, 1} and every PPT adversary
A.

We remark that the FSS definition differs from the FSS in [GI99, BGI15] in a formal sense, since here
the correction word is viewed as an independent part whereas in literature the correction word is part
of the party’s key.

4 FSS with Additional Properties and EOH-PRGs

In this section, we define shift-invariant FSS and symmetric FSS, which will serve as a basis for our
recursive constructions. We further introduce the notion of a PRG with encoded-output homomorphism
(EOH-PRG).

Shift-invariance essentially means that the keys remain functional when shifted by an arbitrary shift
s. Note that the shift-invariance does not affect the correction word space CW, which is thus listed
separately in Definition 4.1. Further, note that all of the FSS constructions in this work satisfy shift-
invariance.

Definition 4.1 (Shift-invariant FSS). Let (Gen,Eval) be an FSS for a function class F . Assume the key
space K of (Gen,Eval) is a finite abelian group and the correction word space is CW. For any f ∈ F ,
let Df be the domain of f . We say (Gen,Eval) is shift-invariant, if there exists a negligible function
negl : N→ R≥0 such that for all λ ∈ N, f ∈ F , x ∈ Df , (k0, k1, CW)← Gen(1λ, f), and s←R K,

Pr [Eval(0, k0 + s, CW, x)− Eval(1, k1 + s, CW, x) = f(x)] ≥ 1− negl(λ),

where the probability is taken over the randomness of Gen and s.

Next, we introduce the notion of symmetric FSS. Note that the FSS schemes for point functions in
[BGI15, BGI16b] are also symmetric.

Definition 4.2 (Symmetric FSS). An FSS is symmetric if for all k ∈ K, for all x ∈ Df ,

Eval(0, k, CW, x) = Eval(1, k, CW, x).

4.1 PRG with Encoded-Output Homomorphism

We now define the notion PRG with encoded-output homomorphism (EOH-PRG), which is central to our
work. EOH-PRG corresponds to an approximate substitution of ideal homomorphic PRG.

Note that in the following we consider all entities implicitly parametrized by λ (e.g., by a set S we
denote an ensemble of sets S = {Sλ}λ∈N). In Section 8, we show how to obtain EOH-PRGs from the
(ring)-LWE or DCR assumption.

Definition 4.3 (EOH-PRG). Let S,H be finite abelian additive groups, and H̃ a finite abelian group.

Let H ⊂ H and S ⊂ S be subsets such that 0 ∈ S. A function PRG : S → H̃ is a PRG with encoded-
output homomorphism (EOH-PRG) relative to (S,H,H) if it is a secure PRG relative to S and S, and
there exists a deterministic polynomial-time encoding function Encode : H → H̃ and a deterministic
polynomial-time conversion function Conv : H̃→ H such that for all m ∈ H, for s←R S and

y := PRG(s) + Encode(m),

s0 ←R S, y0 ←R H̃, s1 := s0 − s, y1 := y0 − y it holds that

Conv(y0 − PRG(s0))− Conv(y1 − PRG(s1)) = m

in H except with negligible probability over the choice of s0 and y0.
Note that for y0 = y1, s0 = s1, we have Conv(y0 − PRG(s0)) = Conv(y1 − PRG(s1)) as Conv is

deterministic.

Since for our instantiations we will typically have to work with a “tag space” T operating on H̃, we
will slightly extend the definition of EOH-PRG, and typically refer to the below when we talk about an
EOH-PRG.

Definition 4.4 (EOH-PRG with “tag-space” T). Let PRG : S→ H̃ be a EOH-PRG relative to (S,H,H).
We say that it is an EOH-PRG relative to (S,T, H,H), if T is an additive group such that T := {0, 1} ⊂ T
and there exists a (non-trivial)10 efficiently computable (left) group operation · : T× H̃→ H̃ of T on H̃.

10I.e., 1 · h ̸= 0 for h ̸= 0.

18

Definition 4.5 (EOH-PRG with KDM security). Let PRG : S→ H̃ be a EOH-PRG relative to (S,T, H,H).
Let Ψ a family of embeddings ψ : S → H. We say PRG is KDM secure relative to Ψ, if for all ψ ∈ Ψ,
PRGψ : s 7→ PRG(s) + Encode(ψ(s)) is a PRG relative to S and S.

Remark 4.6. Note that the share obtained from Conv for m may be not pseudorandom. In order to
ensure that the homomorphic property can be recursively applied, the two parties can use a PRF with
shared key to re-randomize the share of m.

Remark 4.7. For the tensor-product FSS, we need H = (S × T)2 and H = (S × T)2, for out-degree 2
branching programs we need H = (S×{ei}wi=1)

2 and H = (S×Tw)2 where w is the width of the branching
program and ei is the i-th standard basis of Tw.

Remark 4.8. We further need that operations over S,H and T are efficiently computable. While this is
trivially the case for our instantiation from LWE, this can be sufficiently emulated for our instantiation
with DCR (where S and T are additive modulo an unknown ϕ(N)), by building on techniques of [OSY21].

5 Tensor Product FSS for Arbitrary Predicates from EOH-
PRGs

In this section, we present our tensor product FSS, which allows to tensor FSS schemes for arbitrary
predicates, as long as the second FSS is symmetric and shift-invariant.

Theorem 5.1 (Tensor Product FSS). Let n1, n2 ∈ N, and S, T be two finite abelian groups. Let P1 be
a family of predicates mapping {0, 1}n1 to {0, 1} and P2 be a family of predicates mapping {0, 1}n2 to
{0, 1}. Let FP1 : {0, 1}n1 → S × T,FP2 : {0, 1}n2 → S × T be the function families induced by P1,P2 as

fP1,β : {0, 1}n1 → S × T, x 7→ P1(x) · β =

{
β if P1(x) = 1

0 else
,

fP2,γ : {0, 1}n2 → S × T, x 7→ P2(x) · γ =

{
γ if P2(x) = 1

0 else
,

respectively, with P1 ∈ P1, P2 ∈ P2 and β ∈ S × {1}, γ ∈ S × {1}.
Assume

1. PRG : S → H̃ is a EOH-PRG relative to (S,T, H,H) (as in Definition 4.4), where H := (S × T)2
and H := (S × {0, 1})2

2. FSSFP1 (GenFP1 ,EvalFP1) is an FSS for FP1
over key space K1, correction word space CW1 with

pseudorandom correction words and pseudorandom output shares.

3. FSSFP2 (GenFP2 ,EvalFP2) is a symmetric and shift-invariant FSS for FP2 over key space K2 := H,
such that for all (u0, u1) ← GenFP2 it holds u0 − u1 ∈ H, with correction word space CW2, and
with pseudorandom correction words and output shares.

4. PRF : {0, 1}λ × [N]→ H is a PRF (for N sufficiently large).

Then there exists FSS⊗(Gen⊗,Eval⊗) for G := FP1
⊗ FP2

= {gP1,P2,γ : {0, 1}n1 × {0, 1}n2 → S × T}
over key space K1, correction word space CW1 × CW2 × H̃, with pseudorandom correction words and
pseudorandom output shares, where

gP1,P2,γ(x1, x2) := P1(x1) · P2(x2) · γ =

{
γ if P1(x1) = 1 ∧ P2(x2) = 1

0 else
.

In particular, FSS⊗ is symmetric and shift-invariant if FSSFP1 is symmetric and shift-invariant.

The construction for (Gen⊗,Eval⊗) is shown in Figure 1. For the proof we refer to Section B in the
Supplementary Material. The FSS for bit-fixing predicates from EOH-PRG in Section C can be viewed
as the tensor product of FSS for length 1 predicates.

We further explain how to obtain FSS schemes for the for negation and disjunction of predicates in
Section B.2.

19

Function secret sharing scheme FSS⊗ = (Gen⊗,Eval⊗) from EOH-PRG:

Parameters: Let PRG : S → H̃ be a EOH-PRG relative to (S,T, H,H), where H := (S × T)2 and
H := (S × {0, 1})2, and corresponding functions Encode,Conv. Let FSSFP1 (GenFP1 ,EvalFP1) be an FSS
for FP1

over key space K1 and correction word space CW1. Let FSS
FP2 (GenFP2 ,EvalFP2) be a symmetric

shift-invariant FSS for FP2
over key space K2 = H and correction word space CW2 such that for any

two keys u0, u1 in the image of GenFP2 it holds u0 − u1 ∈ H. Further let N ∈ N (sufficiently large) and
PRF : {0, 1}λ × [N]→ H a PRF. We assume that both parties have access to a global key K ←R {0, 1}λ
and global state st ∈ [N].
Gen⊗(1λ, gP1,P2,γ) :

1: Sample s←R S and let β := (s, 1). Then β ∈ S × T ⊂ S× T. ▷ γ =: (σ, 1) ∈ S × T.
2: Let (k0, k1, CW1)← GenFP1 (1λ, fP1,β).

3: Let (u0, u1, CW2)← GenFP2 (1λ, fP2,γ). ▷ u0, u1 ∈ H s.t. u0 − u1 ∈ H.
4: CW ← PRG(s) + Encode(u0 − u1).
5: Let CW⊗ := (CW1, CW2, CW) be the new correction word.
6: Return (k0, k1, CW

⊗).

Eval⊗(b, kb, CW, (x1, x2)) :

1: Parse CW⊗ as CW⊗ =: (CW1, CW2, CW).
2: Let (sb, tb) = EvalFP1 (b, kb, CW1, x1). ▷ (sb, tb) ∈ S× T and (s0 − s1, t0 − t1) ∈ S × T .
3: Compute vb ← tb · CW − PRG(sb).
4: Compute wb ← Conv(vb) + PRF(K, st). ▷ wb ∈ H and w0 − w1 ∈ H.
5: Update the state st← st+ 1.
6: Return EvalFP2 (b, wb, CW2, x2).

Figure 1: FSS (Gen⊗,Eval⊗) for FP1
×FP2

from FSSFP1 , FSSFP2 and EOH-PRG.

Remark 5.2. As instantiations of the EOH-PRG for N -parties seem out of reach with current techniques
without relying on (multi-key) FHE, we did not give the details of the N -party tensor product construction.
Roughly, the requirement on shift-invariance of the underlying FSS would become that for

∑
i∈[N] si = 0

it holds
∑
i∈[N] Eval(i, ki + si, CW, x) = f(x) with overwhelming probability, and the requirement on

symmetry would become that for
∑
i∈[N] ki = 0, it holds

∑
i∈[N] Eval(i, ki, CW, x) = 0. To achieve

these properties, the N -party EOH-PRG has to satisfy that (i)
∑
i∈[N] Conv(ci − PRG(si)) = m for∑

i∈[N] ci = PRG(s) + Encode(m), as well as (ii) PRG(0) = 0 and Encode(0) = 0. Here, requirement

(i) is necessary to achieve shift invariance, and the additional requirement (ii) is necessary to achieve
symmetry (which is satisfied in both our LWE or DCR instantiation in the two-party case).

6 FSS for Branching Programs

In this section, we generalize the FSS for tensor products to FSS for branching programs. Concretely, the
one-bit tag is extended to a w-bit tag, which supports polynomially many possible choices (corresponding
to the number of nodes in one level of the branching program). We also generalize the FSS for branching
program to FSS for DFAs, approximate matching functions and multivariate polynomials. For details,
we refer to Section 7 and E.

Recall that given a branching program P , the size is the number of nodes in V , the length is ℓ, and the
width is the maximal number of nodes of every level. Note that every branching program can be converted
to a layered, input-oblivious branching program with polynomial blowup in size [Pip79, BGI16a].

Now, we start to construct an FSS for branching programs. Let P be a layered, oblivious branching
program of width w, and let Pi : {0, 1}n → [wi] be the function which evaluates P to level i (i.e., to the
state of the branching program at level i). We start by explaining how to obtain the FSS for the “first
level” function

fP1,γ=(γ0,γ1) : {0, 1}
n → (S × Tw1)2,x 7→ γx1

,

Note that there is one node in level 0 (the initial node) and two nodes in level 1 (one for the choice of 0
and 1 for the choice of 1), i.e., w1 = 2 and P1 considers only the first bit x1 of the input x ∈ {0, 1}n.

In order to be able to recurse, we set γb := (sb, tb), where sb ∈ S is some random seed and t0 = (1, 0)
and t1 = (0, 1) are the unit vectors over {0, 1}2. A function secret sharing scheme for fP1,γ=(γ0,γ1) which

20

satisfies shift-invariance over (S,Tw1)2 for some abelian groups S,T with S ⊂ S, T ⊂ T can be obtained
via a direct truth table sharing.

Lemma 6.1 (Base case). Let S and T be finite abelian groups, and let S ⊂ S, T ⊂ T be arbitrary subsets.
Then, there exists a shift-invariant FSS for the family of functions fP1,γ over key space (S× T2)2.

Next, we show an inductive lemma to construct an FSS for P which extends an FSS for Pi to an FSS
for Pi+1.

Lemma 6.2 (Inductive). Assume

1. FSSi = (Geni,Evali) is a shift-invariant FSS for Pi over key space (S×T2)2, correction word space
CWi with pseudorandom correction word and pseudorandom output share. FSSi maps the input x
with index set {τ(V0), τ(V1) . . . , τ(Vi−1)} to the Pi(x)-th position of a given array β.

2. PRGi : S → H̃i is a EOH-PRG relative to (S,T, Hi,Hi) as in Definition 4.4 where Hi = (S ×
Twi+1)2,Hi = (S× Twi+1)2.

Then, there exists a shift-invariant FSS for Pi+1 over key space (S×T2)2, correction word space CWi×H̃wi
i

with pseudorandom correction word and pseudorandom output share. Again, FSSi+1 maps the input x
with index set {τ(V0), τ(V1) . . . τ(Vi−1), τ(Vi)} to the Pi+1(x)-th position of a given array γ.

The FSS FSSi+1 = (Geni+1,Evali+1) for Pi+1 is shown in Figure 2. For the proof of this lemma we
refer to Section D.

Function secret sharing scheme FSSi+1 = (Geni+1,Evali+1) from EOH-PRG for Pi+1:

Parameters: Let PRGi : S → H̃i be a EOH-PRG relative to (S,T, (S × Twi+1)2, (S × Twi+1)2). Let
FSSi = (Geni,Evali) be a shift-invariant FSS for Pi over key space K and correction word space CW.
Further let N ∈ N (sufficiently large) and PRF : {0, 1}λ × [N] → H is a PRF. We assume that both
parties have access to a global key K ←R {0, 1}λ and global state st ∈ [N].
Geni+1(1λ, Pi+1, γ ∈ (S × Twi+1)wi+1) :

1: Parse γ as γ =: ((σ[1], e1), (σ[2], e2) . . . (σ[wi+1], ewi+1
)) with σ ∈ Swi+1 and ej ∈ Twi+1 the j-th

basis in Twi+1 . ▷ σ is the seed value for level i+ 1.
2: Sample s←R S

wi . ▷ s is the seed value for level i.
3: Let β ← ((s[1], e1), (s[2], e2) . . . (s[wi], ewi)) ∈ (S × Twi)wi with ej ∈ Twi the j-th basis in Twi .
4: Let (k0, k1, CWi)← Geni(1λ, Pi,β).

5: Let CW [1 : wi] ∈ H̃wi
i be the correction word for level i computed as follows.

6: for j ∈ [wi] do
7: Let uj ∈ (S × Twi+1)2 be the key for level i+ 1 with 2 elements.
8: Set uj [0]← γ[f(i, j, 0)] and uj [1]← γ[f(i, j, 1)]. ▷ Map 0 and 1 to the corresponding element of

level i+ 1 in the array γ.
9: Set CW [j]← PRG(s[j]) + Encode(uj).

10: end for
11: Let CWi+1 := (CWi, CW [1 : wi]) be the new correction word.
12: Return (k0, k1, CWi+1).

Evali+1(b, kb, CWi+1,x) :

1: Parse CWi+1 as CWi+1 =: (CWi, CW [1 : wi]).
2: Let (sb, tb) = Evali(b, kb, CWi,x). ▷ (sb, tb) ∈ S× Twi .
3: Compute vb ← Conv(

∑
j∈[w] tb[j] · CW [j]− PRG(sb)) + PRF(K, st). ▷ vb ∈ (S× Twi+1)2.

4: Update the state st← st+ 1.
5: Return vb[x[τ(Vi+1)]] ∈ S× Twi+1 . ▷ Use the input x[τ(Vi+1)] to choose the key for level i+ 1.

Figure 2: FSS (Geni+1,Evali+1) for Pi+1 from FSS (Geni,Evali) and EOH-PRG PRG.

With this, we can obtain an FSS for branching programs of arbitrarily polynomially-bounded width
and length, as captured in the following theorem.

Theorem 6.3 (FSS for BP from EOH-PRG). Let P be a branching program with width (w0, w1, . . . , wℓ)

for each level, where w0 = 1, w1 = 2, wℓ = 2, wi ≤ w for i ∈ [0, ℓ]. Assume PRGi : S→ H̃i is a EOH-PRG
relative to S,T, Hi = (S × Twi+1)2,Hi = (S× Twi+1)2 for i ∈ [1, ℓ].

21

Then, there exists an FSS for P over key space (S×T2)2 and correction word space H̃w1
1 × H̃w2

2 · · · ×
H̃wℓ−1

ℓ−1 , i.e., with key size bounded by 2(log |S|+ 2 log |T|) +
∑
i∈[1,ℓ−1] wi log

∣∣∣H̃i∣∣∣.
Note that the FSS construction for branching program in Theorem 6.3 only hides the transition

function f whereas the topology of the branching program, i.e., the number of nodes of each level, is
revealed. For a topology-hiding construction we refer to Section D.4 in the Supplementary Material.

7 FSS for DFAs

Similar to the FSS for branching programs, the FSS for DFAs mainly hides the transition function for
each state. Given a DFA M := (Q,Σ, δ, F, q0), the set of accepts states F could be transferred to one
accept state A via appending an empty string ϵ to the input whereas the set of other states is transferred
to one rejection state R. The transformation leads to a DFA with |Q| + 2 states and with alphabet
Σ ∪ {ϵ}. The construction relies on a KDM secure EOH-PRG.

Theorem 7.1 (FSS for DFAs). Let M := (Q,Σ, δ, q0, F) be a DFA. Let µ := |Q ∪ {A,R}| = |Q| + 2.

Assume PRG : S→ H̃ be a KDM secure EOH-PRG relative to (S,T, (S × Tµ)|Σ|+1, (S× Tµ)|Σ|+1).

There exists a FSS for M over key space S × Tµ and correction word space H̃|Q|. Futhermore, the

key size is bounded by log |S|+ µ log |T|+ |Q| log
∣∣∣H̃∣∣∣.

The FSS construction works as follows. Let PRG : S → H̃ be a KDM secure EOH-PRG relative
to (S,T, (S × Tµ)|Σ|+1, (S × Tµ)|Σ|+1). For each state s, there exists a uniformly sampled seed and an
assigned tag vector according to the order of the states. The correction word for state s hides the keys
of one-step reachable states from s according to the order of the alphabet specified by the transition
function. The key of the FSS consists of a random sharing of the key for q0 and the correction words for
all of the meaningful states, which are sorted according to the order of the states in the tag vector. Note
there are totally |Q| correction words and no correction words for {A,R} as the two states are two end
states.

Given an input x := (x1 . . . xℓ), the evaluation appends an empty string ϵ before evaluation. During
evaluation, the two-party will first obtain the shared correction word for current state, which is achieved
via the shared tag vector, the consistent orders of the tag vectors and the correction words. Next, the
two-party obtains the shared keys of the one-step reachable states from the shared correction word and
the shared seed for current state. Next, the two-party uses the current input to obtain the shared key
for next state and recursively evaluates the FSS for next symbol of the input until encounters the empty
string. The FSS for M is shown in Figure 3.

The correctness is easy to verify as the the tag vector is used in Lemma 6.2. The security follows from
the pseudorandomness of the KDM secure PRG. We explain why KDM secure EOH-PRG is required.
For a state s, it is possible that δ(s, α) = s for some input α ∈ Σ, which leads to the correction word
CW [s] ← PRG(σ[s]) + Encode(u) and σ[s] is also contained in the α-th entry of u. The KDM secure
EOH-PRG can be instantiated from LWE or DCR for free without assuming circular security(Remark
8.4). The running time of Eval relies on the input length as DFAs.

Remark 7.2. The FSS for DFAs could be viewed as one level of the FSS for branching programs and
there is no level change during the evaluation.

8 EOH-PRG Instantiated from LWE or DCR Assumption

In this section, we show EOH-PRG instantiated from LWE or a DCR variant assumption. As remarked
following Definition 4.4, if a PRG is homomorphic then the PRG itself is a EOH-PRG. The LWE
assumption implies an almost homomorphic PRG and the DCR assumption implies a homomorphic
PRG mapping an additive group to a multiplicative group. We show how the AH-PRG from LWE or
the H-PRG from DCR cooperate with other tools to implement the EOH-PRG.

Here we show the three instantiations from LWE, Ring-LWR and DCR. The preliminaries for the
assumption, proof of the instantiations and remarks appear in Section F.

Theorem 8.1 (EOH-PRG from LWE). Let n = n(λ), p = p(λ), q = q(λ), r = r(λ), B = B(λ) ∈ N such
that r|p, p|q, 2λω(1) ≤ r, 2Brλω(1) ≤ p and n log q ≤ ℓ(n+ w) log p. Let w, ℓ be parameters depending on
concrete applications.

22

Function secret sharing scheme for DFA from KDM secure EOH-PRG

Parameters: Let PRG : S → H̃ be a KDM secure EOH-PRG relative to (S,T, (S × Tµ)|Σ|+1, (S ×
Tµ)|Σ|+1) and µ := |Q ∪ {A,R}| = |Q|+2. Further letN ∈ N (sufficiently large) and PRF : {0, 1}λ×[N]→
H is a PRF. We assume that both parties have access to a global key K ←R {0, 1}λ and global state
st ∈ [N].
Gen(1λ,M) :

1: Assign a fixed order to Q ∪ {A,R} and Σ ∪ {ϵ}.
2: Sample σ ←R S

µ.
3: Let β ← ((σ[1], e1) . . . (σ[µ], eµ)) ∈ (S × Tµ)µ with ej ∈ Tµ the j-th basis in Tµ.
4: Let CW [1 : |Q|] be the correction words for meaningful states computed as follows.
5: for each state s ∈ Q do
6: Let u ∈ (S × Tµ)|Σ|+1 be the keys for one-step reachable states from s.
7: for symbol α ∈ Σ ∪ {ϵ} do
8: Let t← δ(s, α).
9: Set u[α]← β[t]. ▷ β[t] is the key for t.

10: end for
11: Set CW [s]← PRG(σ[s]) + Encode(u). ▷ No correction words for {A,R}.
12: end for
13: Sample k0, k1 ←R S× Tµ such that k0 − k1 = β[q0]. ▷ Share the key for q0.
14: Return (k0, k1, CW).

Eval(b, kb, CW,x, i) :

1: Return kb if i > len(x).
2: Parse kb as kb =: (sb, tb) ∈ S× Tµ.
3: Compute vb ← Conv(

∑
j∈[µ] tb[j] · CW [j]− PRG(sb)) + PRG(K, st) ∈ (S× Tµ)|Σ|+1.

4: Update the state st← st+ 1.
5: Return Eval(b, vb[x[i]], CW,x, i+ 1). ▷ Use the input x[i] to choose the key for next state.

Figure 3: FSS for a DFA from KDM secure EOH-PRG.

Assume LWEn,ℓ(n+w),q is hard. Let S = {0, 1}n, T = {0, 1},S = Znp ,T = Zp, H = (S × Tw)ℓ =

{0, 1}ℓ(n+w),H = (S×Tw)ℓ = Zℓ(n+w)
p , H̃ = Zℓ(n+w)

p and the corresponding functions for the instantiation
be

• The homomorphic group operation · : Zp × Zℓ(n+w)
p → Zℓ(n+w)

p , (t, s) 7→ t · s.

• PRG : Znp → Zℓ(n+w)
p , s 7→ ⌈sA⌋q→p , where A ∈ Zn×ℓ(n+w)

q and the vector-matrix multiplication sA
is performed modulo q;

• Encode : {0, 1}ℓ(n+w) → Zℓ(n+w)
p , s 7→ p

r · s;

• Conv : Zℓ(n+w)
p → Zℓ(n+w)

p , t 7→ ⌈t⌋p→r.

Then PRG is a EOH-PRG relative to (S,T, H,H).

Similarly, we show the EOH-PRG instantiation from Ring-LWE. As pointed out in Lemma A.6, to
work with a binary secret Module-LWE instances, the rank of the Module-LWE should be at least log q
(basing on the Ring-LWE pseudorandomness). However, small secret Module-LWR has been used in the
NIST post-quantum cryptography submissions including Saber [DKR+20], Kyber [SAB+22] for constant
rank. Based on this, we show the instantiation for good efficiency relying on the Ring-LWE assumption.

Note it is possible that the number ℓ(n+w) is not exactly a multiple of n. Assume ℓ·(n+w) = n·µ+γ
with 0 ≤ γ < n. The EOH-PRG from Ring-LWE output has µ elements from Rp and γ elements from
Zp.

Theorem 8.2 (EOH-PRG from Ring-LWR). Let n = n(λ), p = p(λ), q = q(λ), r = r(λ), B = B(λ) ∈ N
such that r|p, p|q, 2λω(1) ≤ r, 2Brλω(1) ≤ p and n log q ≤ ℓ(n+w) log p. Let w, ℓ be parameters depending
on concrete applications. Denote R as the algebraic ring with degree n.

Assume binary secret Ring-LWRR,ℓ+⌈ ℓw
n ⌉,q,p is hard. Let S = {0, 1}n, T = {0, 1},S = Rp,T =

Zp, H = (S × Tw)ℓ = {0, 1}ℓ(n+w),H = (S × Tw)ℓ = Rℓ+⌊
ℓw
n ⌋

p × Zℓw−n⌊ ℓw
n ⌋

p , H̃ = Rℓ+⌊
ℓw
n ⌋

p × Zℓw−n⌊ ℓw
n ⌋

p

and the corresponding functions for the instantiation be

23

• The homomorphic group operation · : Zp ×
(
Rℓp × Zℓw−n⌊ ℓw

n ⌋
p

)
→ Rℓp × Zℓw−n⌊ ℓw

n ⌋
p , (t, s) 7→ t · s,

where · is the scalar multiplication mod p.

• PRG : Rp → Rℓp × Zℓw−n⌊ ℓw
n ⌋

p , s 7→ ψ(⌈s · a⌋q→p), where a ∈ Rℓ+⌈ ℓw
n ⌉

q , the multiplication s · a is

performed modulo Rq, and ψ(·) takes the ring elements except the last one and the first ℓw−n
⌈
ℓw
n

⌋
coefficients of the last ring element;

• Encode : {0, 1}ℓ(n+w) → Rℓp × Zℓw−n⌊ ℓw
n ⌋

p , s 7→ p
r · s;

• Conv : Rℓp × Zℓw−n⌊ ℓw
n ⌋

p → Rℓp × Zℓw−n⌊ ℓw
n ⌋

p , t 7→ ⌈t⌋p→r.

Then PRG is a EOH-PRG relative to (S,T, H,H).

Next we show how the EOH-PRG is instantiated from the DCR variant assumption It is pointed out
in [ADOS22, Section 4.1], the DCR variant assumption is sound if the domain of the small exponent is
exponentially large. This kind of low exponent assumption dates back to [KK04] and was also used in
[BCG+17]. To enable the homomorphic group operation, here we use Zϕ(N2) instead of Zϕ(N) for the
additive group.

Theorem 8.3 (EOH-PRG from DCR). Let B be an integer such that B · 2λ ≤ N and B > 2λ.
Assume the DCR variant assumption holds. Let S = [−B2 ,

B
2], T = {0, 1},S = Zϕ(N2),T = Zϕ(N2), H =

(S × Tw)ℓ,H = (S× Tw)ℓ = Zℓ(1+w)
ϕ(N2) , H̃ = (Z∗

N2)ℓ(1+w) and the corresponding functions for the instanti-

ation be

• The homomorphic group operation · : Zϕ(N2) × (Z∗
N2)ℓ(1+w) → (Z∗

N2)ℓ(1+w), (t, s) 7→ st mod N2.

• PRG : Zϕ(N2) → (Z∗
N2)ℓ(1+w), s 7→ gs, where g ∈ (Z∗

N2)ℓ(1+w) and each entry of g is a N-th residue;

• Encode : ([−B/2, B/2]× {0, 1}w)ℓ → (Z∗
N2)ℓ(1+w),m 7→ (1 +N)m mod N2;

• Conv : (Z∗
N2)ℓ(1+w) → Zℓ(1+w)

ϕ(N2) , t 7→ DDLog(t).

Then PRG is a EOH-PRG relative to (S,T, H,H).

Note that the secret key ϕ(N) for Paillier encryption is not explicitly used in the operations of
instantiation of EOH-PRG from DCR. The computation mod ϕ(N2) or ϕ(N) in the exponent is automatic
because of the structure of the Paillier group, and to sample from Zϕ(N2), we can sample from ZN2 instead,
as the two distributions are statistically close.

Remark 8.4 (KDM Security). The FSS constructions for DFAs in Section 7 rely on the KDM security
of EOH-PRG. It is straightforward to prove the pseudorandomness for LWE or DCR following the method
to prove the KDM security in [ACPS09, Theorem 6] or [BHHO08, Section 3.2] as detailed in Remark
F.9.

Acknowledgements

E. Boyle’s research is supported in part by AFOSR Award FA9550-21-1-0046 and ERC Project HSS
(852952). L. Kohl is funded by NWO Talent Programme Veni (VI.Veni.222.348) and by NWO Gravita-
tion project QSC. Z. Li is funded by NWOGravitation project QSC and ERC ADGALGSTRONGCRYPTO
(740972). P. Scholl is funded by the Independent Research Fund Denmark under project number 0165-
00107B (C3PO).

References

[AB06] Shai Avidan and Moshe Butman. Efficient methods for privacy preserving face detection. In
NIPS 2006, 2006. 43

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, USA, 1st edition, 2009. 47

24

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primi-
tives and circular-secure encryption based on hard learning problems. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 595–618, August 2009. 24, 42

[ADOS22] Damiano Abram, Ivan Damg̊ard, Claudio Orlandi, and Peter Scholl. An algebraic framework
for silent preprocessing with trustless setup and active security. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 421–
452, August 2022. 7, 17, 24, 42

[AHLR18] Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. Privacy-preserving search of
similar patients in genomic data. PoPETs, 2018(4):104–124, October 2018. 45

[AMPR19] Navid Alamati, Hart Montgomery, Sikhar Patranabis, and Arnab Roy. Minicrypt primitives
with algebraic structure and applications. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 55–82, May 2019. 5

[BBC+21] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight
techniques for private heavy hitters. In 2021 IEEE Symposium on Security and Privacy,
pages 762–776. IEEE Computer Society Press, May 2021. 4

[BCG+17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homomor-
phic secret sharing: Optimizations and applications. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2105–2122. ACM Press,
October / November 2017. 7, 24, 42

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Ef-
ficient pseudorandom correlation generators: Silent OT extension and more. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 489–518, August 2019. 4

[BCG+21] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant Kumar,
and Mayank Rathee. Function secret sharing for mixed-mode and fixed-point secure com-
putation. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part II, volume 12697 of LNCS, pages 871–900, October 2021. 4, 8, 9, 10, 48

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018, pages 896–912. ACM Press, October 2018. 4

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local leakage
resilience of linear secret sharing schemes. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 531–561, August 2018. 9

[BFK+09] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-Reza
Sadeghi, and Thomas Schneider. Secure evaluation of private linear branching programs
with medical applications. In Michael Backes and Peng Ning, editors, ESORICS 2009, vol-
ume 5789 of LNCS, pages 424–439, September 2009. 10

[BFL+11] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and Thomas
Schneider. Privacy-preserving ECG classification with branching programs and neural net-
works. IEEE Trans. Inf. Forensics Secur., 6(2):452–468, 2011. 10

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In Tal Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 1–20, August 2010. 7, 17, 42

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 337–367,
April 2015. 4, 9, 10, 11, 17, 18, 39, 47, 48

[BGI16a] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure
computation under DDH. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 509–539, August 2016. 4, 6, 8, 10, 15, 20, 36, 43, 47,
48, 50

25

[BGI16b] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and
extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303. ACM Press, October
2016. 4, 6, 9, 10, 11, 18, 36, 47, 48

[BGI19] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocessing via
function secret sharing. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I,
volume 11891 of LNCS, pages 341–371, December 2019. 4, 8

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the
hardness of learning with rounding over small modulus. In Eyal Kushilevitz and Tal Malkin,
editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 209–224, January 2016. 7, 30

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption
from decision Diffie-Hellman. In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 108–125, August 2008. 24, 42

[BJRW23] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang Wen. On the
hardness of module learning with errors with short distributions. Journal of Cryptology,
36(1):1, January 2023. 30

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices without
FHE. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477
of LNCS, pages 3–33, May 2019. 4, 5, 6, 7, 8, 9, 10, 14, 16, 40, 41, 47, 48, 49, 50

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key ho-
momorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428, August 2013. 10, 16, 31

[Boy22] Elette Boyle. Function Secret Sharing, 2022. The 12th BIU Winter School on cryptography
- Advances in Secure Computation. 4

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 719–737, April 2012. 10, 30

[BPSW07] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel. Privacy-
preserving remote diagnostics. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM CCS 2007, pages 498–507. ACM Press, October 2007. 10

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning
classification over encrypted data. In NDSS 2015. The Internet Society, February 2015. 10

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging
system handling millions of users. In 2015 IEEE Symposium on Security and Privacy, pages
321–338. IEEE Computer Society Press, May 2015. 4

[CCD+20] Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya P. Razenshteyn, and
M. Sadegh Riazi. SANNS: Scaling up secure approximate k-nearest neighbors search. In
Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020, pages 2111–2128.
USENIX Association, August 2020. 9, 45

[CLSF10] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. BRIEF: binary
robust independent elementary features. In Kostas Daniilidis, Petros Maragos, and Nikos
Paragios, editors, Computer Vision - ECCV 2010, 11th European Conference on Computer
Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV, volume 6314
of Lecture Notes in Computer Science, pages 778–792. Springer, 2010. 43

[CZZM07] Rui Cai, Chao Zhang, Lei Zhang, and Wei-Ying Ma. Scalable music recommendation by
search. In Rainer Lienhart, Anand R. Prasad, Alan Hanjalic, Sunghyun Choi, Brian P. Bailey,
and Nicu Sebe, editors, Proceedings of the 15th International Conference on Multimedia 2007,
Augsburg, Germany, September 24-29, 2007, pages 1065–1074. ACM, 2007. 44

26

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and
its applications. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 93–122, August 2016. 4, 10, 15

[DKN+20] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Adaptively secure constrained pseudorandom functions in the standard model. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS,
pages 559–589, August 2020. 9

[DKR+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Ver-
cauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea Basso.
SABER. Technical report, National Institute of Standards and Technology, 2020.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions. 23

[DRPS22] Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica. Waldo: A private
time-series database from function secret sharing. In SP 2022, pages 2450–2468. IEEE, 2022.
4

[Ds17] Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
523–535. ACM Press, October / November 2017. 4

[EFG+09] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald Lagendijk, and
Tomas Toft. Privacy-preserving face recognition. In Ian Goldberg and Mikhail J. Atallah,
editors, PETS 2009, volume 5672 of LNCS, pages 235–253, August 2009. 44

[FGJS17] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith III. Homomorphic
secret sharing from paillier encryption. In Tatsuaki Okamoto, Yong Yu, Man Ho Au, and
Yannan Li, editors, ProvSec 2017, volume 10592 of LNCS, pages 381–399, October 2017. 4,
10

[GHS16] Rosario Gennaro, Carmit Hazay, and Jeffrey S. Sorensen. Automata evaluation and text
search protocols with simulation-based security. Journal of Cryptology, 29(2):243–282, April
2016. 44

[GI99] Niv Gilboa and Yuval Ishai. Compressing cryptographic resources. In Michael J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 591–608, August 1999. 10, 17, 18

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
640–658, May 2014. 4, 9

[glo] glob – Linux Programmer’s Manual – Library Functions. https://man7.org/linux/

man-pages/man3/glob.3.html. Accessed: 2023-01-16. 44

[HMEK11] Yan Huang, Lior Malka, David Evans, and Jonathan Katz. Efficient privacy-preserving
biometric identification. In NDSS 2011. The Internet Society, February 2011. 45

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In 30th ACM STOC, pages 604–613. ACM Press, May 1998. 45

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In Salil P.
Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 575–594, February 2007. 4

[JB22] T. Janani and M. Brindha. Secure similar image matching (SESIM): an improved privacy
preserving image retrieval protocol over encrypted cloud database. IEEE Trans. Multim.,
24:3794–3806, 2022. 8, 44

[KG09] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image
search. In ICCV, 2009. 44

[KK04] Takeshi Koshiba and Kaoru Kurosawa. Short exponent Diffie-Hellman problems. In Feng
Bao, Robert Deng, and Jianying Zhou, editors, PKC 2004, volume 2947 of LNCS, pages
173–186, March 2004. 7, 17, 24, 42

27

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://man7.org/linux/man-pages/man3/glob.3.html
https://man7.org/linux/man-pages/man3/glob.3.html

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition.
CRC Press, 2014. 31

[KM21] Anunay Kulshrestha and Jonathan R. Mayer. Identifying harmful media in end-to-end
encrypted communication: Efficient private membership computation. In Michael Bailey and
Rachel Greenstadt, editors, USENIX Security 2021, pages 893–910. USENIX Association,
August 2021. 8, 44

[KNL+19] Ágnes Kiss, Masoud Naderpour, Jian Liu, N. Asokan, and Thomas Schneider. SoK: Modular
and efficient private decision tree evaluation. PoPETs, 2019(2):187–208, April 2019. 10

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proc. IEEE, 86(11):2278–2324, 1998. 45

[LLR94] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of
its algorithmic applications. In 35th FOCS, pages 577–591. IEEE Computer Society Press,
November 1994. 45

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
1–23, May / June 2010. 30

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module
lattices. 75(3):565–599, 2015. 30

[MJF+21] Jiayi Ma, Xingyu Jiang, Aoxiang Fan, Junjun Jiang, and Junchi Yan. Image matching from
handcrafted to deep features: A survey. Int. J. Comput. Vis., 129(1):23–79, 2021. 43

[MNSS12] Payman Mohassel, Salman Niksefat, Seyed Saeed Sadeghian, and Babak Sadeghiyan. An
efficient protocol for oblivious DFA evaluation and applications. In Orr Dunkelman, editor,
CT-RSA 2012, volume 7178 of LNCS, pages 398–415, February / March 2012. 44

[MyS] MySQL 8.0 Reference Manual: 3.3.4.7 Pattern Matching. https://dev.mysql.com/doc/

refman/8.0/en/pattern-matching.html. Accessed: 2023-01-16. 44

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homomorphic
secret sharing and public-key silent OT. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 678–708, October 2021.
4, 5, 6, 7, 8, 9, 10, 17, 19, 41, 48, 49, 50, 51

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238, May 1999.
8, 31, 44

[PAM22] Kittiphop Phalakarn, Nuttapong Attrapadung, and Kanta Matsuura. Efficient oblivious
evaluation protocol and conditional disclosure of secrets for DFA. In Giuseppe Ateniese and
Daniele Venturi, editors, ACNS 22, volume 13269 of LNCS, pages 605–625, June 2022. 44

[Pip79] Nicholas Pippenger. On simultaneous resource bounds (preliminary version). In FOCS,
pages 307–311. IEEE Computer Society, 1979. 20, 36

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005. 30

[RPH05] Deepak Ravichandran, Patrick Pantel, and Eduard H. Hovy. Randomized algorithms and
NLP: using locality sensitive hash functions for high speed noun clustering. In ACL 2005,
2005. 45

[RRKB11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R. Bradski. ORB: an efficient
alternative to SIFT or SURF. In Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu, and
Luc Van Gool, editors, IEEE International Conference on Computer Vision, ICCV 2011,
Barcelona, Spain, November 6-13, 2011, pages 2564–2571. IEEE Computer Society, 2011. 43

28

https://dev.mysql.com/doc/refman/8.0/en/pattern-matching.html
https://dev.mysql.com/doc/refman/8.0/en/pattern-matching.html

[RS59] Michael O Rabin and Dana Scott. Finite automata and their decision problems. IBM journal
of research and development, 3(2):114–125, 1959. 4

[RS21] Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing from DCR and
applications. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume
12827 of LNCS, pages 687–717, Virtual Event, August 2021. 4, 6, 7, 10, 50

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding.
CRYSTALS-KYBER. Technical report, National Institute of Standards and Technol-
ogy, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022. 23

[Sip97] Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.
4, 32

[SKSJ08a] Jagarlamudi Shashank, Palivela Kowshik, Kannan Srinathan, and C. V. Jawahar. Private
content based image retrieval. In CVPR 2008. IEEE Computer Society, 2008. 43

[SKSJ08b] Jagarlamudi Shashank, Palivela Kowshik, Kannan Srinathan, and C. V. Jawahar. Private
content based image retrieval. In CVPR. IEEE Computer Society, 2008. 44

[SLD22] Sacha Servan-Schreiber, Simon Langowski, and Srinivas Devadas. Private approximate near-
est neighbor search with sublinear communication. In SP, pages 911–929. IEEE, 2022. 4, 9,
45, 46

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches
on encrypted data. In 2000 IEEE Symposium on Security and Privacy, pages 44–55. IEEE
Computer Society Press, May 2000. 8, 44

[Tcl] New Regular Expression Features in Tcl 8.1. https://www.tcl.tk/doc/howto/regexp81.
tml. Accessed: 2023-01-16. 44

[TKK19] Anselme Tueno, Florian Kerschbaum, and Stefan Katzenbeisser. Private evaluation of deci-
sion trees using sublinear cost. PoPETs, 2019(1):266–286, January 2019. 10

[WFNL16] David J. Wu, Tony Feng, Michael Naehrig, and Kristin E. Lauter. Privately evaluating
decision trees and random forests. PoPETs, 2016(4):335–355, October 2016. 10

[WW05] Ingo Wegener and Philipp Woelfel. New results on the complexity of the middle bit of
multiplication. In CCC, pages 100–110. IEEE Computer Society, 2005. 8

[WYG+17] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan, and Matei Zaharia.
Splinter: Practical private queries on public data. In NSDI 2017, 2017. 4, 9, 43, 44, 48

29

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.tcl.tk/doc/howto/regexp81.tml
https://www.tcl.tk/doc/howto/regexp81.tml

A Supplementary Materials for Preliminaries

Notations. We use λ to denote the security parameter. For integers p < q, the rounding function ⌈·⌋q→p

is defined as ⌈·⌋q→p : Zq → Zp, x 7→ ⌈(p/q) · x⌋.

A.1 LWE and LWR

Definition A.1 (LWE). [Reg05] Let n,m, q ∈ N and χ be a noise distribution over Z. Assume s←R Znq .
Let m = poly(n), A←R Zn×mq and e← χm. Given

(A, sA+ e),

the LWEn,m,q,χ problem is to output the vector s.

Recall that LWEn,m,q,χ problem is exactly the search LWE problem. Denote η-LWE as the LWE
instance with secret sampled from {−η . . . 0 . . . η}n.

Definition A.2 (LWR). [BPR12] Let n,m, q, p ∈ N. The LWRn,m,q,p problem is to distinguish between
the following two distributions:

(A, ⌈sA⌋q→p) and (A, ⌈u⌋q→p),

where s←R Znq ,m = poly(n), A←R Zn×mq and u←R Zmq .

For super-polynomial ratio q/p, [BPR12] proved that LWR is as hard as LWE. Bogdanov et al.
[BGM+16] established the hardness of binary secret LWR for polynomial ratio q/p. A similar result can
be directly achieved via applying the reduction of [BPR12] to binary secret LWE.

Lemma A.3. [BGM+16, Theorem 3] Assume s is sampled from {0, 1}n. For polynomial ratio q/p,
the LWRn,m,q,p distribution is pseudorandom under the assumption that the corresponding LWEn,m,q,χ is
hard.

If each entry of the matrix and the vector is sampled from Rq := Zq[X]/(Xn + 1) rather than Zq,
then the problem is Module-LWE.

Definition A.4 (Module-LWE). [LS15] Let n,m, q, d ∈ N. Let Rq := Zq[X]/(Xn+1) and χ be a noise
distribution over R. Assume s←R Rdq . Let m = poly(n, d), A←R Rd×mq and e← χd. Given

(A, sA+ e),

the Module-LWEd,m,q,χ problem is to output the vector s.

Here d is the rank of Module-LWE problem. If d = 1, then it is Ring-LWE problem [LPR10].

Definition A.5 (Module-LWR). Let d, n,m, q, p ∈ N. Let Rq := Zq[X]/(Xn+1). The Module-LWRn,m,q,p
problem is to distinguish between the following two distributions:

(A, ⌈sA⌋q→p) and (A, ⌈u⌋q→p),

where s←R Rdq ,m = poly(n), A←R Rd×mq and u←R Rmq .

Boudgoust et al. [BJRW23] proved the small secret Module-LWE with larger rank is at least as hard
as random secret Module-LWE with smaller rank.

Lemma A.6. [BJRW23, Theorem 3.2] For any cyclotomic field of degree n, there exists a PPT reduction
from the decisional Module-LWEk,m,q,Dα

assumption to decisional η-Module-LWEd,m,q,Dβ
assumption,

where d · log2 (2η + 1) ≥ (k+1) · log2 q+ω(log2 n), d ≤ m ≤ poly(n), α ≥
√
n/q ·

√
ln (2nm(1 + ϵ−1))/π,

β ≥ α · nη
√
2d
√
4n2η2 + 1 and Dα is a Gaussian distribution with s.d. α.

30

A.2 Almost Homomorphic PRGs(AH-PRG)

Definition A.7 (Homomorphic PRGs). Let G0,G1 be two finite abelian additive groups. A function
G : G0 → G1 is a homomorphic PRG if it is a secure PRG and for all x0, x1 ∈ G0,

G(x0 + x1) = G(x0) +G(x1).

There are no known PRGs such that both G0 and G1 are additive groups in the typical sense. Thus,
the definition is relaxed to almost homomorphic.

Definition A.8 (Almost Homomorphic PRGs(B-AH-PRG)). Let G0,G1 be two finite abelian additive
groups where G2 is equipped with norm ∥·∥. Let B ∈ N. A function G : G0 → G1 is B-AH-PRG if for
all x0, x1 ∈ G0,

G(x0 + x1) = G(x0) +G(x1) + e,

where e ∈ G2 and ∥e∥ ≤ B.

Next we show an instantiation of 1-AH-PRG from LWR problem [BLMR13].

Example A.9 (AH-PRG from LWR). Assume A←R Zn×mq . Then

GA(s) := ⌈sA⌋q→p

is an 1-AH-PRG under the assumption that LWEn,m,q is hard relative to ∥·∥∞.

The security of GA follows from the pseudorandomness of LWR distributions and the almost homo-
morphic property naturally follows from the rounding operation. Note that here almost-homomorphic
property does not require the super-polynomial ratio q/p.

A.3 DCR Assumption

Definition A.10 (DCR Assumption [Pai99]). Let N = PQ be an RSA modulus [KL14]. The DCR
assumption is that for any PPT adversary there is no advantage to distinguish between an N -th residue
over Z∗

N2 and an arbitrary element of Z∗
N2 .

A.4 Bit-fixing Predicates and CNF/DNF Formulae

Definition A.11 (Bit-fixing Predicates). Given a vector v ∈ {0, 1, ∗}ℓ, the bit-fixing predicates PBF
v :

{0, 1}ℓ → {0, 1} specified by the vector v is defined as

PBF
v (x) :=

∧
i∈[ℓ]

(v[i] = x[i] ∨ v[i] = ∗) .

The family of bit-fixing predicates specified by length ℓ predicates is defined as

PBF
ℓ := {PBF

v : v ∈ {0, 1, ∗}ℓ}.

Definition A.12 (CNF/DNF formulae). Given a set of n variables {u1, . . . , un}, a conjunctive normal
form(CNF) formula is an AND of ORs of literals, e.g., a CNF formula φ is defined as

φ :=
∧
i

∨
j

vij ,

where each vij is either a variable uk or its negation ¬uk. Each
∨
j vij is called a clause of φ. A CNF

formula φ is called k-CNF if every clause of φ has at most k literals.
A disjunctive normal form (DNF) formula is an OR of ANDs of literals, i.e., a DNF formula ϕ is defined
as

ϕ :=
∨
i

∧
j

wij .

Similarly, a DNF formula is called k-DNF if every clause of ϕ has at most k literals.

31

A.5 DFA

Definition A.13 (Deterministic Finite Automata (DFA)). [Sip97, Definition 1.15] A DFA M is defined
by (Q,Σ, δ, q0, F) where

• Q is the state set,

• Σ is the alphabet,

• δ : Q× Σ→ Q a transition function,

• q0 ∈ Q is the start state,

• F ⊂ Q is the set of accept states.

A DFA M accepts a string x = (x1 . . . xℓ) ∈ Σℓ if there exists a sequence of states (s0 . . . sℓ) such that

1. s0 = q0,

2. δ(si, xi+1) = si+1 for i ∈ {0, 1 . . . ℓ− 1},

3. sℓ ∈ F .

DFAs recognize the set of regular languages [Sip97, Definition 1.16].

B Tensor Product and FSS for Negation and Disjunction of
Predicates

In this section, we present the missing proofs of Section 5 and the FSS for negation and disjunction of
predicates.

B.1 Proof of Theorem 5.1

Proof. We directly prove FSS⊗ is symmetric and shift-invariant if FSSFP1 is symmetric and shift-
invariant. We first prove correctness and shift-invariance. Let σ ∈ K1 be an arbitrary random shift
for the key of the two-party. Thus, the target is to prove that for all P1 ∈ P1, P2 ∈ P2, x,

Pr[Eval⊗(0, k0 + σ,CW⊗, x)− Eval⊗(1, k1 + σ,CW⊗, x) = gP1,P2(x) · γ :

(k0, k1, CW
⊗)← Gen⊗(1λ, gP1,P2

)] ≥ 1− negl(λ).

Recall that in GenFP1 , it is set to output β := (s, 1) if P1(x) = 1 whereas to output (0, 0) if P1(x1) = 0.
We continue the proof by distinguish between two cases depending on x1.

Case P1(x1) = 1: Recall that in Eval⊗, we use (sb, tb) to denote the intermediate evaluation result
according to the input x1. Because FSSFP1 is shift-invariant, thus (s0, t0) − (s1, t1) = (s, 1) over (S,T)
with overwhelming probability. That the share (sb, tb) is pseudorandom follows from the definition of
FSSFP1 . Recall that CW ← PRG(s) + Encode(u0 − u1). From the definition of EOH-PRG, as (s0, s1) is
a random sharing of s, the key (w0, w1) for FSS

P2 satisfies

w0 − w1 = (Conv(t0 · CW − PRG(s0)) + PRG(K, st))

− (Conv(t1 · CW − PRG(s1)) + PRF(K, st))

= u0 − u1

except with negligible probability. Recall that (u0, u1) is the key for the shift-invariant FSS (GenFP2 ,EvalFP2).
Thus, for P1(x1) = 1,

Pr[EvalFP2 (b, w0, CW2, x2)− EvalFP2 (b, w1, CW2, x2) = P2(x2) · γ] ≥ 1− negl(λ).

Hence, for P1(x1) = 1, the FSS satisfies shift-invariance and correctness holds with probability 1−negl(λ).
Case P1(x1) = 0: Then (s0, t0) = (s1, t1) with overwhelming probability. Thus, the key (w0, w1) for

FSSP2 satisfies

w0 − w1 = Conv(t0 · CW − PRG(s0))− Conv(t1 · CW − PRG(s1)) = 0.

32

as Conv is deterministic. Therefore for P1(x1) = 0,

Pr[EvalFP2 (0, w0, CW2, x2)− EvalFP2 (1, w1, CW2, x2) = 0] ≥ 1− negl(λ)

as FSSFP2 is symmetric.
Hence, with overwhelming probability, the resulting FSS satisfies correctness and shift-invariance.
Next we show that the FSS also satisfies symmetry. If FSSFP1 is symmetric, for identical keys the

two-party obtains identical (sb, tb) on arbitrary input x1 and identical (vb, wb) as PRG and Conv are both
deterministic. Hence, the two-party finally obtains same value as also FSSFP2 is symmetric.

Next we prove that the final output share is pseudorandom. From the assumption that FSSFP2 has
pseudorandom output share, once the evaluation for FSS⊗ is correct, the FSSFP2 leads to pseudorandom
final output share.

The security of FSS⊗ follows the security of FSSFP1 , the security of FSSFP2 and the pseudorandomness
of PRG via a series of games. It is formally proved in Lemma B.1.

Lemma B.1 (Security). If PRG is a PRG with encoded-output homomorphism, (GenFP1 ,EvalFP1) is a
secure FSS for FP1

, and (GenFP2 ,EvalFP2) is a secure FSS for FP2
then (Gen⊗,Eval⊗) is a secure FSS

for FP1 ×FP2 .
Furthermore, the correction word CW⊗ is pseudorandom.

Proof of Lemma B.1. We prove the security via a series of hybrid games. Concretely, for any two func-
tions gP1,P2,γ and gQ1,Q2,γ′ with P1, Q1 ∈ P1 and P2, Q2 ∈ P2, we transfer the key distribution of gP1,P2

to the key distribution of gQ1,Q2 step-by-step. For each party index b, the party key consists of kb
and CW⊗. Now we define the hybrid distributions. The changed part of each distribution is explicitly
represented with boxes.

H0 : The key distribution for gP1,P2,γ .

H0(b, gP1,P2,γ) :=

(kb, CW
⊗) :

s←R S

(k0, k1, CW1)← GenFP1 (1λ, fP1,(s,1))

(u0, u1, CW2)← GenFP2 (1λ, fP2,γ)

CW ← PRG(s) + Encode(u0 − u1) ∈ H̃
CW⊗ := (CW1, CW2, CW)

H1 : (Security of FSSFP1) Change the key for P1 to Q1. Note that the correction word CW is still

computed with respect to the seed s for gP1,P2,γ .

H1(b, gP1,P2,γ , gQ1,Q2,γ′) :=

(kb, CW

⊗) :

s, s′ ←R S

(k0, k1, CW1)← GenFP1 (1λ, fQ1,(s′,1))

(u0, u1, CW2)← GenFP2 (1λ, fP2,γ)

CW ← PRG(s) + Encode(u0 − u1) ∈ H̃
CW⊗ := (CW1, CW2, CW)

From the security of FSSFP1 , the key distributions for P1 and Q1 are identical. Thus the two
distributions H0(b, gP1,P2,γ) and H1(b, gP1,P2,γ , gQ1,Q2,γ′) are identical.

H2 : (PRG security) Change PRG(s) to random S. Note that s is not used in the remaining part.

H2(b, gP1,P2,γ , gQ1,Q2,γ′) :=

(kb, CW

⊗) :

S ←R H̃
s′ ←R S

(k0, k1, CW1)← GenFP1 (1λ, fQ1,(s′,1))

(u0, u1, CW2)← GenFP2 (1λ, fP2,γ)

CW ← S + Encode(u0 − u1) ∈ H̃
CW⊗ := (CW1, CW2, CW)

By the pseudorandomness of the output of PRG, the two distributions H1(b, gP1,P2,γ , gQ1,Q2,γ′) and
H2(b, gP1,P2,γ , gQ1,Q2,γ′) are computational indistinguishable.

33

H3 : (Security of FSSFP2) Change CW2 for P2 to Q2.

H3(b, gP1,P2,γ , gQ1,Q2,γ′) :=

(kb, CW

⊗) :

S ′ ←R H̃
s′ ←R S

(k0, k1, CW1)← GenFP1 (1λ, fQ1,(s′,1))

(u0, u1, CW2)← GenFP2 (1λ, fQ2,γ′)

CW ← S ′ ∈ H̃
CW⊗ := (CW1, CW2, CW)

The two distributions H2(b, gP1,P2,γ , gQ1,Q2,γ′) and H3(b, gP1,P2,γ , gQ1,Q2,γ′) are computational in-

distinguishable from the security of FSSFP2 . Actually, the distribution H3 is completely inde-
pendent of gP1,P2 . Moreover, CW2 is pseudorandom as FSSFP2 outputs pseudorandom correction
words. Next we can apply the first two steps via an reversed order to obtain the key distribution
for gQ1,Q2,γ′ .

As CW is random, we can change it to a value relying on the key (u0, u1) without changing the
distribution.

H3(b, gQ1,Q2,γ′) :=

(kb, CW

⊗) :

S ′ ←R H̃
s′ ←R S

(k0, k1, CW1)← GenFP1 (1λ, fQ1,(s′,1))

(u0, u1, CW2)← GenFP2 (1λ, fQ2,γ′)

CW ← S ′ + Encode(u0 − u1) ∈ H̃
CW⊗ := (CW1, CW2, CW)

H4 : (PRG security) Change S ′ to PRG(s′).

H4(b, gQ1,Q2,γ′) :=

(kb, CW

⊗) :

s′ ←R S

(k0, k1, CW1)← GenFP1 (1λ, fQ1,(s′,1))

(u0, u1, CW2)← GenFP2 (1λ, fQ2,γ′)

CW ← PRG(s′) + Encode(u0 − u1) ∈ H̃
CW⊗ := (CW1, CW2, CW)

Now the distributionH4(b, gQ1,Q2,γ′) is exactly the key distribution for gQ1,Q2,γ′ , namely,H4(b, gQ1,Q2,γ′) =
H0(b, gQ1,Q2,γ′).

By combining the distributions from H0 to H4, for each party index b, the key distribution for gP1,P2,γ

and gQ1,Q2,γ′ are computational indistinguishable.

B.2 FSS for Negation and Disjunction of Predicates

In this section, we show some basic FSS constructions for negation and disjunction of predicates. The
tensor product construction can be viewed as the conjunction of predicates. Before the FSS construction
for negation and disjunction, we first define the notion anti-symmetric FSS.

Definition B.2 (Anti-symmetric FSS). An FSS is anti-symmetric if for k0 = k1, for all x ∈ Df ,

Eval(0, k0, CW, x)− Eval(1, k1, CW, x) ̸= 0.

If the anti-symmetric FSS is for a predicate, then Eval(0, k0, CW, x)− Eval(1, k1, CW, x) = 1 for k0 = k1
and Eval(0, k0, CW, x)− Eval(1, k1, CW, x) = 0 for k0 ̸= k1.

Note that the tensor operation does not work for anti-symmetric FSS.

Lemma B.3 (FSS for Negation of Predicates). Let P be a family of predicates mapping {0, 1}n to {0, 1}.
Let FP : {0, 1}n → S × T be the function family induced by P as

fP,β : {0, 1}n → S × T, x 7→ β · P (x) =

{
β if P (x) = 1

0 else
.

34

with P ∈ P and β ∈ S × {1} ⊆ S × T . Similarly, let F¬P : {0, 1}n → S × T be the function family
induced by ¬P as

f¬P,β : {0, 1}n → S × T, x 7→ β · (1− P (x)) =

{
β if P (x) = 0

0 else
.

Assume there exists a shift-invariant FSS for FP over key space K and correction word space CW.
Then there exists a shift-invariant FSS for F¬P over key space K× (S×T) and correction word space

CW. In particular, if the FSS for FP is symmetric, then the FSS for F¬P is anti-symmetric.

The FSS for F¬P can be obtained by adding an extra step to FP to switch the between value β and
0. Concretely, assume (β0, β1) is a random sharing of β, namely β0 − β1 = β. Let (k0, k1, CW) be the
key output by FSSFP for P . Then the key output by FSSF¬P for ¬P is ((k0, β0), (k1, β1), CW). The
evaluation for FSSF¬P becomes βb − Eval(b, kb, CW, x). It is easy to verify that

(β0 − Eval(0, k0, CW, x))− (β1 − Eval(1, k1, CW, x))

=(β0 − β1)− (Eval(0, k0, CW, x)− Eval(1, k1, CW, x))

=β − β · P (x) = β · (1− P (x)).

Hence, the correctness holds. Because (β0, β1) is a random sharing of β, the security holds as well.

Lemma B.4 (FSS for Disjunction of Predicates). Given an anti-symmetric and shift-invariant FSS for
P1, an anti-symmetric and shift-invariant FSS for P2 and a EOH-PRG, there exists anti-symmetric and
shift-invariant FSS construction for P1 ∨ P2.

Proof. Given P1 ∨P2, the FSS first takes negation to P1 ∨P2 to obtain ¬P1 ∧¬P2, then run the FSS for
tensor products of ¬P1 and ¬P2 and finally take negation to the FSS to obtain an FSS for P1 ∨ P2.

C FSS for Bit-fixing Predicates from EOH-PRG

In this section, we show function secret sharing (FSS) schemes for bit-fixing predicates from EOH-PRG.
We first construct a symmetric and shift-invariant FSS for one-bit predicate

PBF
α : {0, 1} → {0, 1}, x 7→

{
1 if x = α or α = ∗
0 else

.

For this, we use a naive secret sharing of the truth table. The construction is shown in Figure 4.

Function secret sharing scheme FSS1 = (Gen1,Eval1)

Parameters: Let S,T be two finite abelian groups such that S ⊆ S.
Gen1(1λ, α):

1: Sample s←R S.
2: Sample s00, s

1
0, s

0
1, s

1
1 ←R S and t00, t

1
0, t

0
1, t

1
1 ←R T according to the following three cases:

3: case α = ∗: s00 − s10 = s01 − s11 = s and t00 − t10 = t01 − t11 = 1.

4: case α = 0: s00 − s10 = s, s01 − s11 = 0, and t00 − t10 = 1, t01 − t11 = 0.

5: case α = 1: s00 − s10 = 0, s01 − s11 = s, and t00 − t10 = 0, t01 − t11 = 1.

6: Return kb := (sb0, s
b
1, t

b
0, t

b
1) ∈ S2 × T2 for b ∈ {0, 1}.

Eval1(b, kb, x):

1: Parse kb as kb = (sb0, s
b
1, t

b
0, t

b
1).

2: Return (sbx, t
b
x).

Figure 4: One-bit FSS FSS1. Superscripts b for s and t represent the party id.

Lemma C.1 (One-bit FSS). Let S,T be two finite abelian groups. Then (Gen1,Eval1) is a symmetric
and shift-invariant FSS over key space K := S2 × T2.

35

Proof. Security is straightforward as the key kb for Party Pb is fully uniform. Correctness and the shift-
invariant property directly follow from the nature of additive sharing of seed and tag. Symmetry follows
from the evaluation.

Remark C.2. From the construction, it is obvious that the tag part indicates the output of the one-bit
FSS. To keep consistent with the tensor operation, we keep the seed part and the tag part for each bit.
Furthermore, it is natural to map the matched output s to a prior value β via an extra operation as in
[BGI16b].

Theorem C.3 (FSS from EOH-PRG). Assume PRG : S → H̃ is a EOH-PRG relative to (S,T, (S ×
T)2, (S× T)2).

There exists a symmetric and shift-invariant FSS for the family of bit-fixing predicates of length ℓ
with key space S2 × T2 and correction word space H̃ℓ−1. Moreover, the key size is 2(log |S| + log |T|) +
(ℓ− 1) log

∣∣∣H̃∣∣∣.
Proof. Iteratively applying Theorem 5.1 to Lemma C.1, i.e., tensoring the one-bit FSS to itself, ℓ − 2
times, yields FSS for bit-fixing predicates. The correctness and security follow from Theorem 5.1 and
Lemma C.1. The correction word consists of ℓ − 1 elements from H̃ and the key kb is an element of

S2 × T2. Thus the key size is exactly 2(log |S|+ log |T|) + (ℓ− 1) log
∣∣∣H̃∣∣∣.

Remark C.4. Note that the key size is a polynomial of the security parameter and the input length ℓ
whereas the naive sharing of the truth table of bit-fixing predicates is of exponential size.

As presented in Section 8, the EOH-PRG could be instantiated from the LWE assumption or the
DCR variant assumption. The comparsions of the resulting FSS schemes from EOH-PRG and FSS for
bit-fixing predicates from HSS are shown in Table 2. It is clear that whatever for instantiations from
LWE or from DCR, our FSS from EOH-PRG has better key size and running time.

D Supplementary Materials for FSS for Branching Programs

In this section, we show the missing preliminaries, constructions, proofs and remarks of Section 6.

D.1 Branching Programs

We start by recalling the definition of branching programs.

Definition D.1 (Oblivious, layered branching program). A layered branching program P for a function
g : {0, 1}n → {0, 1} is a directed acyclic graph (V,E), where V is divided into ℓ + 1 disjoint levels
V0, V1, . . . , Vℓ such that every node u ∈ Vi, i < ℓ has out-degree 2, and such that edges only points from
nodes in level Vi to nodes in level Vi+1. Further, we assume that level i consists of wi nodes, upper
bounded by the width w of the branching program. Further, there are two adjoint functions τ, f such that

• V0 = {v0} contains the only initial node.

• Vℓ = {va, vr} contains the accept node va and the rejection node vr.

• τ : V \Vℓ → [n] is the index-to-input map which maps all the non-sink nodes to the input of P .

• f : [ℓ]× [w]×{0, 1} → [w], fi(i, j,x[τ(i)]) 7→ k is the transition function, which maps the j-node in
level i to the k-th node in level i + 1 upon the input x[τ(i)]. (Note that here we actually consider
maps fi : [wi]× {0, 1} → [wi+1], since different levels might have a different amount of nodes, but
for simplicity we use f as above, where we assume w to be an upper bound on the number of nodes.)

The branching program is called input-oblivious if every level i node v ∈ Vi is mapped to the same input
index via the index-to-input map τ .

Each branching program can be converted to a layered, input-oblivious branching program with
polynomial blowup in size [Pip79, BGI16a].

36

D.2 Supplementary Constructions for FSS for Branching Programs

The FSS for P1 is show in Figure 5. It is a naive sharing of the labels of the nodes in level 1. Each
label for the two nodes in level 1 consists of a seed s and a standard basis of T2 as the tag vector t. The
two labels for the two nodes are rearranged according to the transition function for the root node. In
the FSS1, Gen1 directly shares the rearranged labels and Eval1 chooses the shared label according to the
input x[τ(V0)]. The transition function for the root node is hidden in the rearrangement of the labels.
Correctness and security naturally follow from the random sharing of the reordered labels.

Function secret sharing scheme FSS1 = (Gen1,Eval1) for P1:

Parameters: Let S,T be two finite abelian groups.
Gen1(1λ, P1, γ ∈ (S × T 2)2) :

1: Parse γ as γ =: ((σ[1], e1), (σ[2], e2)) with σ ∈ S2 and (e1, e2) ∈ T 2 the standard basis of T2. ▷ σ is
the seed value for level 1.

2: Set u← (γ[f(0, 1, 0)], γ[f(0, 1, 1)]) ∈ (S × T 2)2. ▷ Map 0 and 1 to the corresponding element of
level 1 in the array γ.

3: Sample u0,u1 ←R (S× T2)2 such that u0 − u1 = u.
4: Return kb ← ub for b ∈ {0, 1}.

Eval1(b, kb,x) :

1: Return kb[x[τ(V0)]] ∈ S× T2. ▷ Use input x[τ(V0)] to choose the label for level 1.

Figure 5: FSS (Gen1,Eval1) for P1. Superscripts for k, s, t, v represent the party id.

We omit the proof of Lemma 6.1 as it is straightforward.

D.3 Proof of Lemma 6.2

Proof. We first address the correctness of (Geni+1,Evali+1). For correctness, the target is to show that
for all x ∈ {0, 1}n,

Pr[Evali+1(0, k0, CWi+1,x)− Evali+1(1, k1, CWi+1,x) = γ[Pi+1(x)] :

(k0, k1, CWi+1)← Geni+1(1λ, Pi+1, γ)] = 1− negl(λ).

From the definition of Pi and Pi+1, Pi+1(x) = f(i, Pi(x),x[τ(Vi)]). From the correctness of (Geni,Evali),
we have that

Pr[Evali(0, k0, CWi,x)− Evali(1, k1, CWi,x) = β[Pi(x)] :

(k0, k1, CWi)← Geni(1λ, Pi, β)] = 1− negl(λ).

It is exactly that
s0 − s1 = s[Pi(x)] and t0 − t1 = ePi(x) ∈ T

wi .

In particular, t0[Pi(x)]− t1[Pi(x)] = 1 and t0[j]− t1[j] = 0 for j ̸= Pi(x). It is easy to verify that∑
j∈[wi]

t0[j] · CW [j]−
∑
j∈[wi]

t1[j] · CW [j] = CW [Pi(x)].

Recall that CW [j]← PRG(s[j])+Encode(u[j]). From the definition of EOH-PRG, as (s0, s1) is a random
sharing of s[Pi(x)], the key (v0, v1) for level i+ 1 satisfies

v0 − v1 = Conv

 ∑
j∈[wi]

t0[j] · CW [j]− PRG(s0)

− Conv

 ∑
j∈[wi]

t1[j] · CW [j]− PRG(s1)

= uPi(x)

with overwhelming probability. Thus, (v0, v1) is a pseudorandom sharing of uPi(x) as each vb is re-

randomized by the PRF. From the Geni+1, v0 − v1 = uPi(x) = (γ[f(i, Pi(x), 0)], γ[f(i, Pi(x), 1)]). Thus,
(v0[x[τ(Vi+1)]], v1[x[τ(Vi+1)]]) is exactly a share of γ[Pi+1(x)] = γ[f(i, Pi(x),x[τ(Vi+1)])].

37

Because FSSi is shift-invariant, arbitrary random shift to the key (k0, k1) will lead to the same value
β[Pi(x)], i.e., ((s0, t0), (s1, t1)) is a sharing of β[Pi(x)]. Hence, FSSi+1 is also shift-invariant.

The security follows from the security of FSSi and the pseudorandomness of PRG. The security can
be formally proved as in the security proof of Lemma B.1 via hybrid games. We omit the details here.

D.4 Topology-Hiding FSS for Branching Programs

It is easy to extend each level to w nodes via adding dummy nodes and then construct an FSS for the
extended branching program. Concretely, level 1 and level ℓ inherently have 2 nodes for every out-degree
2 branching program. We only add dummy nodes from level 2 to level ℓ− 1. (In fact, note that for any
out-degree 2 branching programs, the i-th level has at most 2i nodes, and thus we could only add small
number of dummy nodes for the first ⌊logw⌋ levels. For simplicity, here we consider a simpler padding
though, where we add dummy nodes to level i for i ∈ [2, ℓ− 1] such that level i has exactly w nodes.)

Formally, we obtain the following theorem.

Theorem D.2 (Topology Hiding FSS for BP from EOH-PRG). Let P be a branching program with

length ℓ and width w. Assume PRG : S→ H̃ and PRGℓ−1 : S→ H̃ℓ−1 are EOH-PRGs.
Then, there exists a topology-hiding FSS for P over key space (S × T2)2 and correction word space

H̃w(ℓ−2)×H̃wℓ−1. Moreover, the key size is bounded by 2(log |S|+2 log |T|)+w(ℓ−2) log
∣∣∣H̃∣∣∣+w log

∣∣∣H̃ℓ−1

∣∣∣.
Note that here dummy nodes are used to hide the level width spectrum of the branching program.

Correction words for dummy nodes can be uniformly sampled, since these nodes will never be reached
during evaluation. This allows to achieve topology hiding at little extra cost.

E FSS for Approximate Matching Functions and Polynomials

In this section, we present the the FSS for approximate matching functions and polynomials.

E.1 FSS for Approximate Matching Functions

In this section, we show an FSS for approximate matching function using the tag vector technique
introduced for branching programs. Concretely the approximate matching function is defined as

fa,b(x) := (dist(x,a) < b)

where a ∈ {0, 1, ∗}ℓ,x ∈ {0, 1}ℓ, b ≤ ℓ and dist(x,a) =
∑
i∈[ℓ](a[i] ̸= ∗ ∧ a[i] ̸= x[i]).

The approximate matching function first counts the number of unmatched bits and then compare with
a threshold value b. It is a distance comparing generalization of the bit-fixing predicate. Consequently,
the bit-fixing predicate is the special case dist(x,a) < 1.

We construct a branching program for fa,b first and then run the FSS for branching program to build
an FSS for fa,b. Now we sketch the branching program for fa,b. The branching program consists of ℓ+1
levels i.e., {V0, V1, . . . Vℓ}, and for i < ℓ, level i has i + 1 nodes, which correspond to the possible i + 1
distance values. For level i < ℓ−1, assume the distance for the current node is j. If a[i] = ∗, the distance
is still j for level i + 1, which implies the both edge 0 and edge 1 point to the distance j node in level
i + 1. If a[i] = 0, edge 0 points to the distance j node in level i + 1 and edge 1 points to the distance
j + 1 node in level i + 1 whereas if a[i] = 1 the two edges for 0 and 1 are exchanged. In the last level,
from level ℓ − 1 to level ℓ, the matching for a[ℓ] and the comparison operation are merged. Therefore
level ℓ has only two nodes. If the node in level ℓ − 1 stands for the distance ≥ b, whatever a[ℓ] is, the
node points to the 0 node in level ℓ. If the node in level ℓ− 1 stands for the distance ≤ b− 1, whatever
a[ℓ] is, the node points to the 1 node in level ℓ. Only if the node in level ℓ − 1 exactly stands for the
distance b− 1, the unmatched a[ℓ] will change the distance from b− 1 to b, which points to the 0 node
in level ℓ. In summary, the branching program has ℓ+ 1 levels. For i ∈ [0, ℓ− 1], level i has i+ 1 nodes
and level ℓ has only two nodes.

With the branching program for fa,b, we construct an FSS for it.

Theorem E.1. Given a ∈ {0, 1, ∗}ℓ and b < ℓ, let fa,b be an approximate matching function. Let
Pfa,b be the corresponding branching program of fa,b and {1, 2, . . . , ℓ − 1, ℓ, 2} the level width spectrum

of Pfa,b . Assume that for i ∈ [1, ℓ − 2],PRGi : S → H̃i relative to (S,T, (S × T i+2)2, (S × Ti+2)2) and

PRGℓ−1 : S→ H̃ relative to (S,T, (S × T 2)2, (S× T2)2) are EOH-PRGs.

38

There exists an FSS for fa,b over key space (S×T2)2 and correction word space
∏
i∈[1,ℓ−2] H̃

i+1
i × H̃ℓ.

Moreover, the key size is bounded by 2 log |S|+ 4 log |T|+
∑
i∈[1,ℓ−2](i+ 1) log

∣∣∣H̃i∣∣∣+ ℓ log
∣∣∣H̃∣∣∣.

Remark E.2. Note that although the construction reveals the topology structure of the branching program
Pfa,b , the bit-fixing predicate a and the threshold value b are still hidden. In fact, for length ℓ predicates,
the approximate matching functions share the same topology structure.

Note that the approximate matching function is a little different from the distributed comparison
function(DCF) in [BGI15]. In DCF, the operand to compare is explicitly given as input and the DCF
only hides the threshold value b. In our approximate matching function, the value to be compared
is a shared result of another FSS, which also explains the reason that DCF enables super-polynomial
possible threshold values whereas our approximate matching function only supports polynomially possible
threshold values because we need to use a branching program to record the distance of each step and
map the distance to the comparison result in the final step.

The FSS for branching program is readily to extend to out-degree q to support q-ary string.

Remark E.3. • The distance comparison condition can also be changed to an equality condition,
which only changes the operation of the branching program of last level.

• For q-ary strings, the distance for each position can be defined for approximate equality, for instance,
the two numbers are viewed as equal if the difference is less than some bound B.

E.2 FSS for Polynomials over a Ring

In this section, FSS schemes for polynomials over a ring are presented and the working ring has polynomial
size. Before the FSS constructions for polynomials, we recall some definitions for polynomials over a
ring.

Definition E.4 (Total Degree). Let k,w ∈ N. Let R be a ring with w elements. For a monomial
xd = xd11 ·x

d2
2 . . . xdkk , the total degree of xd is defined as d1+d2+ . . . dk. The total degree of a polynomial

P (x) =
∑
i cix

di with ci ∈ R is the maximal total degree of monomials with ci ̸= 0.

Given a polynomial P (x) =
∑
i∈[m] cix

di , the FSS securely shares each monomial cix
di and sums

up all the local shares of the monomials after evaluation. The FSS for a monomial is built upon the
branching program induced by the monomial. Given cxd, the first level of the FSS corresponds to cxd11 ,
the second level xd22 , and the i-th level xdii , etc. Given an input y ∈ Rk, the shared value of the FSS
for P (y) corresponds to the seed and tag for P (y) in level k. Assume the ring R has a set of element
{0, 1, . . . , w − 1}. Then ⟨tP (y), (0, 1, . . . , w − 1)⟩ is exactly the value P (y). After the evaluation of each
monomial, the two-party locally sums up the shares for the monomials.

We briefly sketch the branching program from a monomial.The monomial cxd can be viewed as an
out-degree w branching program with k levels and w nodes in each level. The level 1 nodes are rearranged
according to c · xd11 , i.e., the order of the elements (c · 0d1 , c · 1d1 . . . c · (w− 1)d1). Inductively, for a node
j in level i, assuming vj being the corresponding value of node j in ring R, the edges to next level from

node j is rearranged according to vj · xdi+1

i+1 , i.e., (vj · 0di+1 , vj · 1di+1 . . . vj · (w − 1)di+1).
Thus, we have an FSS for a monomial.

Lemma E.5 (FSS for a Monomial). Let k,w ∈ N. Assume R is a ring with w elements. Let PRG : S→ H̃
be a EOH-PRG relative to (S,T, (S × Tw)w, (S × Tw)w). Let c · xd be a monomial defined over ring R
and k variables.

There exists an FSS for c · xd over key space (S× Tw)w and correction word space H̃(k−1)w with key

size w(log |S|+ w log |T|) + (k − 1)w log
∣∣∣H̃∣∣∣.

Remark E.6. Note that the coefficient c is embedded into level 1 of the induced branching program and
thus is hidden by the FSS. Similarly, the degree di is embedded into level i of the branching program
and thus is hidden by the FSS. For di = 0, xi does not appear in c · xd, the branching program directly
multiplies the previous value by 1 to hide this di as x

di
i is exactly 1.

Remark E.7. Note that there is no real multiplication happened during the FSS evaluation. Each
multiplication is essentially a move from one node to another node in the induced branching program.
For the same reason, the multiplication over the ring R can be non-commutative.

39

Remark E.8. Different from the t-CNF/t-DNF cases, the FSS for polynomials of constant total degree
can be achieved via directly sharing the coefficient of each possible monomial. It is an information-
theoretic FSS.

Theorem E.9 (FSS for Polynomials). Let k,w ∈ N. Assume R is a ring with w elements. Let PRG :

S → H̃ be a EOH-PRG relative to (S,T, (S × Tw)w, (S × Tw)w). Let P (x) be a polynomial with m
monomials defined over R and k variables.

There exists a shift-invariant FSS for P (x) over key space (S × Tw)mw and correction word space

H̃mw(k−1) with key size mw(k − 1) log
∣∣∣H̃∣∣∣+mw(log |S|+ w log |T|).

The FSS construction is obtained via sharing each monomial according to Lemma E.5 and the Eval
sums up all the tag values.

Remark E.10. The FSS for polynomials (c1x
d1
1 + c2x

d2
2 + · · ·+ ckx

dk
k)d of this form is not captured by

Theorem E.9. By following the same idea as in Lemma E.5, the FSS for (c1x
d1
1 + c2x

d2
2 + · · ·+ ckx

dk
k)d

is straightforward to obtain, which computes the power d in the last level. The FSS for this type of
polynomials can be combined with the FSS in Theorem E.9.

F Supplementary Materials for EOH-PRG Instantiated from
LWE or DCR

We show the missing preliminaries, proofs and remarks of Section 8.

F.1 EOH-PRG from LWE

Before presenting the proof of EOH-PRG instantiated from LWE, we recall some basic results from
[BKS19].

Lemma F.1 (Distributed Rounding). [BKS19, Lemma 1] Let p, q, B ∈ N with p|q and 2Bpλω(1) ≤ q.
Assume

s =
q

p
m+ e mod q

for some m ∈ Zp with |e|∞ ≤ B. Assume s = s0 − s1 for random s0, s1 ∈ Zq. Then

Pr
[
m = ⌈s⌋q→p = ⌈s0⌋q→p − ⌈s1⌋q→p mod p

]
≥ 1− 2Bp

q
≥ 1− 1

λω(1)
.

The probability is over the randomness of s0 and s1.

Lemma F.2 (Lifting). [BKS19, Lemma 2] Let B, p ∈ N such that Bλω(1) ≤ p. Given z ∈ Z with
|z|∞ ≤ B and z being additively shared as z = z0 − z1 mod p, then

Pr [z = z0 − z1 over Z] ≥ 1− B

p
≥ 1− 1

λω(1)
,

where the probability is taken over the randomness of z0, z1.
Moreover, for any q ∈ N, Pr [z = z0 − z1 (mod q)] ≥ 1 − 1

λω(1) . Note that here q is completely inde-
pendent of B, p.

With the two lemmas, we show the proof of the instantiation from LWE.

Proof of Theorem 8.1. We first verify that · : Zp × Zℓ(n+w)
p → Zℓ(n+w)

p is indeed a homomorphic group

operation. ∀t0, t1 ∈ Zp and ∀h ∈ Zℓ(n+w)
p , t0 ·h+t1 ·h = (t0+t1)·h as H̃ = Zℓ(n+w)

p is an additive group of
order p. That PRG is a secure PRG relative to S = {0, 1}n follows from the assumption of LWEn,ℓ(n+w),q

from Lemma A.3. Next, we prove PRG is a EOH-PRG relative to (S,T, H,H). For all m ∈ H, for
s ←R S, let y := PRG(s) + Encode(m). Assume y is uniformly randomly shared as (y0, y1) and s is

uniformly randomly shared as (s0, s1), i.e., y0 ←R H̃, s0 ←R S, y1 := y0 − y over H̃, s1 = s0 − s over S.

40

The target is to prove that Conv(y0 − PRG(s0)) − Conv(y1 − PRG(s1)) = m mod p with overwhelming
probability. Thus,

Conv(y0 − PRG(s0))− Conv(y1 − PRG(s1))

= ⌈y0 − PRG(s0)⌋p→r − ⌈y1 − PRG(s1)⌋p→r

= ⌈y + y1 − PRG(s0)⌋p→r − ⌈y1 − PRG(s1)⌋p→r

= ⌈PRG(s) + Encode(m) + y1 − PRG(s0)⌋p→r − ⌈y1 − PRG(s1)⌋p→r

= ⌈Encode(m) + e+ y1 − PRG(s1)⌋p→r − ⌈y1 − PRG(s1)⌋p→r

=m mod r

where |e|∞ ≤ 1. The last two steps follow the AH-PRG property of PRG and the distributed rounding
lemma, respectively. Let m0 := Conv(y0 − PRG(s0)),m1 := Conv(y0 − PRG(s0)). Then m0 −m1 = m
over Z with overwhelming probability from the lifting lemma and thus m0 −m1 = m mod p.

For the EOH-PRG instantiation from Ring-LWR, we show the following Ring-LWR assumption.

Definition F.3 (Assumption). Let n = n(λ), p = p(λ), q = q(λ), r = r(λ), B = B(λ),m = ℓ+ ⌈ ℓwn ⌉ ∈ N
such that r|p, p|q, 2λω(1) ≤ r, 2Brλω(1) ≤ p and n log q ≤ ℓ(n+ w) log p.

Assume the binary secret Ring-LWRR,m,q,p is pseudorandom, i.e., (a, ⌈s · a⌋q→p) is pseudorandom,
where s←R {0, 1}n,a←R Rmq .

Note the function ψ(·) is additively homomorphic as it only operates on coefficients. Therefore the
PRG is still a AH-PRG as only the rounding operation leads to errors and the other operations are
homomorphic. The proof of Theorem 8.2 is very similar to the proof of Theorem 8.1. We omit the
details here.

A few remarks follow.

Remark F.4. • It is possible to sample each entry of S from a larger domain rather than {0, 1}.
The only consequence is to adjust the parameter (p, r) such that the distributed rounding lemma
and lifting lemma hold.

• The EOH-PRG can be reused for concrete applications like FSS for bit-fixing predicates, for branch-
ing programs and for DFAs.

• For instantiatation from Ring-LWE, the computation maybe become more efficient because of the
NTT optimization.

• In the parameter setting, we require n log q ≤ ℓ(n + w) log p rather than pλω(1) ≤ q as the HSS
instantiated from LWE [BKS19].

• Although the PRG is performed over Zq and the LWE assumption is over Zq, the FSS key is still
shared over Zp.

F.2 EOH-PRG from DCR

Before showing the proof for EOH-PRG from DCR assumption, we first recall some basic results for the
DCR assumption.

Lemma F.5 (Distributed DLog). [OSY21, Lemma 3.3] Let N = PQ be an RSA modulus. Assume
z0, z1 are sampled from ZN2 such that z0

z1
= (1 + N)x mod N2 for some x ∈ ZN . Then there exists a

PPT DDLog : Z∗
N2 → ZN such that

DDLog(z0)− DDLog(z1) = x mod N.

Moreover, if |x| ≤ N
2λ
, then

DDLog(z0)− DDLog(z1) = x over Z

with probability at least 1− 1
2λ
, where the probability is over the randomness of z0, z1.

41

Definition F.6 (DCR Variant Assumption). [BG10, Lemma B.1] Let µ ∈ N. Assume g := (g0, . . . , gµ) ∈
ZµN2 and every entry of g is uniformly sampled from the N -th residue group mod N2. For a random
r ∈ [N], (gr0 . . . g

r
µ) ∈ ZµN2 is pseudorandom if the DCR assumption over ZN2 holds.

In particular, we use the assumption that for r ∈ [N
2λ
], gr is still pseudorandom for any PPT adver-

sary.

It is pointed out in [ADOS22, Section 4.1], the DCR variant assumption is sound if the domain of
the small exponent is exponentially large. This kind of low exponent assumption dates back to [KK04]
and was also used in [BCG+17].

Remark F.7. From the DCR variant assumption, the PRG maps additive group to multiplicative group.
With the DDLog operation, the multiplicative group is converted back to the additive group again.

The proof of Theorem 8.3 is very similar to the proof of Theorem 8.1. As the group H̃ is multiplicative
group, we briefly show the techniques.

Proof. We first verify that · : Zϕ(N2) × (Z∗
N2)ℓ(1+w) → (Z∗

N2)ℓ(1+w) is indeed a homomorphic group

operation. ∀t0, t1 ∈ Zϕ(N2) and ∀h ∈ (Z∗
N2)ℓ(1+w), it holds that ht0 ×ht1 = ht0+t1 as each Z∗

N2 is exactly
a multiplicative group of order ϕ(N2). PRG being a secure PRG relative to S = [−B/2, B/2] follows
from the DCR variant assumption. Next, we prove PRG is a EOH-PRG relative to (S,T, H,H). For all

m ∈ Hℓ, for s←R S, let y := PRG(s)×Encode(m). Assume y0 ←R H̃, s0 ←R S, y1 := y0÷y, s1 = s0−s.
The target is to prove that Conv(y0÷PRG(s0)−Conv(y1÷PRG(s1)) = m mod ϕ(N2) with overwhelming
probability. Thus,

Conv(y0 ÷ PRG(s0))− Conv(y1 ÷ PRG(s1))

=DDLog(y0 ÷ PRG(s0))− DDLog(y1 ÷ PRG(s1))

=DDLog(y1 × y ÷ PRG(s+ s1))− DDLog(y1 ÷ PRG(s1))

=DDLog(y1 × Encode(m)÷ PRG(s1))− DDLog(y1 ÷ PRG(s1))

=m.

The last two steps follow from the lifting operation and the distributed DLog lemma, respectively. Let
m0 := Conv(y0 ÷ PRG(s0)),m1 := Conv(y0 ÷ PRG(s0)). Then m0 −m1 = m over Z with overwhelming
probability from the lifting operation and thus m0 −m1 = m mod ϕ(N2).

A few remarks follow.

Remark F.8. Note that for LWE or DCR instantiations, (m0,m1) output by Conv is not a pseudoran-
dom sharing of m over Zp. In our FSS construction for tensor products, for branching programs, and
for DFAs, the Conv output is re-randomized by a PRF.

Remark F.9 (KDM Security). The FSS constructions for DFAs in Section 7 rely on the KDM security
of EOH-PRG. It is straightforward to prove the pseudorandomness for LWE or DCR following the method
to prove the KDM security in [ACPS09, Theorem 6] or [BHHO08, Section 3.2]. We briefly shows the
steps to prove the KDM security of PRG for LWE and DCR, repsectively.

LWE : Suppose si is used in the encoding part. The goal is to prove if there exists an adversary A
breaking the pseudorandnomness of (A, ⌈sA⌋q→p +

p
r (0 . . . si . . . 0)), then there exists an adversary

B breaking the pseudorandomness of PRG. Given an instance (A, ⌈sA⌋q→p) of PRG, B transforms
it to (A− q

rB, ⌈sA⌋q→p) where B is a public matrix mapping s to the vector (0 . . . si . . . 0), and then
feeds it to A. It is easy to verify (A − q

rB, ⌈sA⌋q→p) is indeed an instance of the KDM security
game. B uses the advantage of A to distinguish PRG from uniform distribution.

DCR : According to the DCR assumption, the distribution (g,gs) is computationally indistinguishable
from the distribution (h,hs), where g := (g1 . . . gµ),h := (h1 . . . hi/(1+N) . . . , hµ), and each entry
of {gi, hi}i∈[µ] is sampled from the N -th residue group. Given an instance of EOH-PRG instantiated
from DCR, one is able to convert it to an instance of the KDM instance. If there exists an adversary
breaking the KDM security game, then one is able to use that adversary distinguishing the EOH-
PRG instantiated from DCR and the uniform distribution.

42

G FSS Applications

In this section, we present some applications of the FSS for tensor operation, bit-fixing predicates,
branching programs, DFAs and more. The general framework follows the model of the 2-server PIR
applications of FSS [BGI16a]. There are two roles in the applications, clients and 2-server. Each server
holds a replication of a database DB with N items. A client starts a query to the database while keeping
the query hidden from the 2-server. The protocol with FSS works as follows. First, a client splits a private
query into shares via FSS and sends each share to the corresponding server. Next, the servers use the
FSS share to run the FSS evaluation and sends the result to the client. Finally, the client combines the
responses from the two servers to get the final result of the query. Servers learn nothing on the query as
long as the two servers do not collude. Note that only in the private nearest neighbour search(Section
G.3), the server privacy is required. As our main intention was to show the direct applicability of our
FSS constructions in various application scenarios, we do not focus on server privacy for the most part.

Lots of online sites provide query services to customers, for instance online shopping sites and travel
sites. However, the query maybe reveals the privacy information of customers. The service provider
is able to collect the user information and acts immorally or maliciously via making use of the col-
lected information. For example, travel sites count the frequencies of searched flights and increase the
prices for frequently searched flights. Splinter [WYG+17] is a system designed to protect the query
privacy and provides a subset of SQL queries capturing most useful applications with good perfor-
mance. Splinter employs FSS to split each query into shares and sends the shares to the servers, re-
spectively. Non-colluding servers are unable to obtain useful information of the query. Splinter provides
{sum, count,min,max, top-k} queries for various conditions.

As pointed out in Section H, for bit-fixing predicates and Ring-LWE instantiation, the direct FSS
constructions have key size reduced by a factor around 4 and comparable running time comparing with
the previous FSS constructions from HSS. For bit-fixing preidates and DCR instantiation, the direct
FSS constructions have key size reduced by a factor of 3.5 and running time reduced by a factor of 1.75
comparing with the previous FSS constructions from HSS.

The direct FSS constructions for branching programs avoid the heavy universal branching program
transformation. Concretely, assuming n is the secret length of LWE instance and w the width of the
branching program. For branching programs and Ring-LWE instantation, the direct FSS constructions
have key size reduced from a factor 2w × n to w + n and running time reduced from a factor 8w2 to
2 + ⌈ 2wn ⌉ comparing with the existing FSS for branching programs from HSS. For branching programs
and DCR instantiation, the direct FSS constructions have key size around 0.28 of the key size of the FSS
from HSS and running time reduced from a factor 14w2 to 3w + 2. Hence, the resulting applications
have smaller key size and better running time.

It is worth to mention that the FSS for DFA is the first that allows key size independent of the length
of the input(except for the generic constructions from FHE).

G.1 Private Image Matching on Public Data

It is mentioned that image matching is not covered by Splinter. Privacy-preserving image matching
protocol has many critical applications, including face detection [AB06], logo patent search, patient CT
image retrieval [SKSJ08a] as these types of query images contain sensitive information and thus leakage
of the query images leads to severe impact. We use our FSS from EOH-PRG to design a protocol for
image matching supporting {sum, count,min, top-k} queries.

There are many image matching algorithms such as SIFT, SURF, BRIEF, ORB, etc [MJF+21].
Each of the image matching algorithms consists of three steps, key point detection, feature descriptor
construction, and feature matching. The BRIEF [CLSF10] and ORB [RRKB11] use Hamming distance
to perform feature matching over binary strings. Actually, there are algorithms to convert the float point
SIFT or SURF descriptors to binary string with Hamming distance to speed up the matching algorithm
[CLSF10]. The FSS for approximate matching function for Hamming distance from Section E.1 can be
exactly used here to do the image matching.

The private image matching algorithm works as follows. Before the protocol, the two servers pre-
process the image database to obtain the binary feature descriptors for each image according to the
corresponding matching algorithm. Given a query image, a client extracts the binary feature descriptor
for the query image. Next, the client generates the FSS keys for the query image according to the FSS
for approximate matching function and sends the FSS keys to the two servers, respectively. Next, the
two servers run the FSS evaluation algorithm to obtain the share of the response and send the share

43

to the client. Finally, the client receives the responses from the two servers to obtain the matching
results. Next, the client and the two servers run the FSS for approximate matching function following
the aforementioned framework to perform the query.

That the binary descriptor of the query image is hidden follows the security of the FSS scheme.
Thus, the secrecy of the query image follows. Let ℓ be the length of binary feature descriptor. The
computational complexity of the FSS evaluation is O(ℓN) PRG evaluations and the communication cost
for the FSS share scales with O(ℓ2) and the cost for the FSS response is logN as it only contains the ID
of the fetched image.

Most existing secure privacy-preserving image matching protocols [JB22] rely on the searchable en-
cryption [SWP00] or homomorphic encryption [Pai99] to perform computation on encrypted images,
which incur huge computation cost. Recently a private approximate membership computation protocol
with perceptual hash matching was proposed in [KM21], which can also be used to perform image match-
ing. However, the approximate membership computation protocol heavily relies on fully homomorphic
encryption (FHE). It is worth to mention that PIR is used in [SKSJ08b] to protect the privacy of the
query image. However, the similarity computation is not supported in the protocol with PIR.

The protocol naturally integrates with the Splinter system to enable {sum, count,min, top-k} query
for images. The {count, sum} query only takes one round whereas the {min, top-k} query takes log ℓ
rounds of communication.

G.2 Private Partial Text Matching

In private partial text matching protocol, the two servers hold a database of strings and a client would
like to run the fuzzy pattern matching without leaking the query pattern. It was also pointed out
that Splinter [WYG+17] does not support partial text matching. The like operator in SQL is a typical
case of the partial text matching. Although there are many optimizations for the like operator in real
SQL engines for instance MySQL [MyS], DFA is still used in partial text matching for not indexed
fields. DFA is also used in the pattern matching in Tcl programming language library [Tcl](Henry
Spencer’s implementation) and in the filename glob syntax [glo]. Private DFA evaluation has many
interesting applications, for example private searching on DNA sequences, pharmaceutical databases
and malware detection. With the FSS for DFA in Section 7, it is natural to support the like operator or
DFA evaluations. Furthermore, the FSS for DFA can be used to support regular expressions as DFAs
recognize regular languages.

The private partial text matching protocol works as follows. Given a pattern string, a client first
creates a DFA for the pattern string. Next, the client and the the two servers run the FSS for DFAs
following the above-mentioned framework to execute the matching.

Remark G.1. Following the security of the FSS scheme, the pattern string is hidden. However, the FSS
construction reveals the number of states of the DFA which presumably reveals some information on the
regular expression. This could be fixed by adding some dummy states at the expense of inflated key size
and running time as in the FSS for branching programs.

Previous protocols employ oblivious automation evaluation both hiding the DFA and the input text.
For our FSS, we only care the DFA secrecy. However, the communication complexity of existing oblivious
automation evaluation suffers an extra factor of the input text length whatever the constructions relying
on garbled circuits and oblivious transfer [MNSS12], homomorphic encryption [GHS16] with several
rounds of interactions, or conditional disclosure of secrets [PAM22]. The keysize of the FSS for is
independent of the input length.

The protocol can also be integrated with the system Splinter [WYG+17] to enable {sum, count} query
for fuzzy pattern.

G.3 Nearest Neighbour Search

In private nearest neighbour search protocol, the two servers hold a database of feature vectors and a
client wants to find the nearest neighbour to the query feature based on some metrics, e.g., Euclidean,
Hamming, ℓ1, without revealing information on the query feature vector. For nearest neighbour search,
database privacy is also required, which says the client learns nothing on the database beyond the query
answer after the interactions.

The private nearest neighbour search(NNS) protocol has many applications such as online mu-
sic recommendation [CZZM07], image search [KG09], face recognition [EFG+09], biometric identifica-

44

tion [HMEK11], image recognition especially for handwriting recognition [LBBH98], clustering in NLP
[RPH05], patient genomic or data search [AHLR18] and so on.

There are many secure privacy-preserving protocols for nearest neighbour search, which behaves
with high running time and large bandwidth. Most of the existing protocols rely on two-party secure
computation or fully homomorphic encryptions. For instance, the protocol SANNS [CCD+20] uses
oblivious RAM, garbled circuits and homomorphic encryptions. In the recent more efficient protocol
[SLD22], locality sensitive hashing(LSH) is heavily involved, which incurs some accuracy loss. To achieve
a good accuracy, say > 95%, O(

√
N) number of queries to the database is necessary, which leads to an

extra O(
√
N) factor to the communication cost.

For ease of exposition, assume there exists only one nearest neighbour for the query vector. Assume
the query vector has dimension d, namely from {0, 1}d and the protocol only returns the identifier(ID)
of the nearest neighbour. Our privacy-preseving protcol for NNS only supports Hamming distance
and the ℓ1 distance as the ℓ1 distance can be embedded into Hamming space with a small distortion
[LLR94, IM98]. The Hamming distance based NSS is used in iamge search, biometric identification,
clustering in NLP, patient genomic data search and so on. It is easy to observe that Euclidean distance
computation is captured by NC1. To naturally and efficiently support Euclidean distance, it requires
further future work.

Our protocol follows from the framework of the protocol in [SLD22] without relying on LSH and
behaves with improved communication cost. In fact, both LSH and DPF are replaced by the approximate
matching function in our protocol. For a query vector q, a client sends out d queries for the distance
{1, 2 . . . d}, respectively via the FSS for approximate matching function from Section E.1. The two
servers run the FSS evaluation algorithm to obtain the result for each distance. Assume the nearest
neighbour vector has distance z with identifier id. Note that the two servers obtain a sharing of the
vector v := [0 . . . 0, id, . . .], where id appears exactly in the z-th position of v. To suppress the information
leakage from the answer vector v, oblivious masking is employed [SLD22, Section 5.1], which maps each
v[i] for i < z to 0, to a uniformly random element for i > z, and keeps the v[z]. The full protocol is
shown in Figure 6. The correctness of the protocol is easy to verify. The client privacy follows from the

Private Nearest Neighbour Search Protocol

Server input: DB = (DB[1], . . . ,DB[N])
Client input: query q
Preprocessing(server computation):

1: Output a common random string K and a PRF.

Step 1(client computation):

1: for i ∈ {1 . . . d} do
2: (k0,i, k1,i)← FSS.Gen(q, i) ▷ The FSS for the exact distance i.
3: end for
4: Let kb ← (kb,1 . . . kb,d)
5: Send kb to server b, respectively.

Step 2(server b computation):

1: Let IDb, ĨDb be two arrays of length d.
2: for i ∈ {1 . . . d} do
3: IDb[i]←

∑
j∈[N] DB[j].id · FSS.Eval(b,kb[i],DB[j])

4: ri ← PRG(K, i)

5: ĨDb[i]← IDb[i] + ri ·
∑
j∈[i−1] IDb[j] ▷ Oblivious masking

6: end for
7: Send ĨDb to client.

Step 3(client computation):

1: Receive ĨDb from Server b.
2: Let ĨD := ĨD0 + ĨD1

3: Output the first non-zero entry of ĨD.

Figure 6: Private nearest neighbour search protocol involving FSS for approximate matching function
and oblivious masking.

security of the FSS scheme and the server privacy follows from the in-depth analysis of [SLD22, Section

45

7.2], which achieves asymptotically optimal leakage. The communication cost from the client has a d
factor for FSS key as there are d FSS keys and the communication cost from the servers is O(d logN) as
each masked id is of size O(logN). The computational cost for the server has a d ·N factor of a single
FSS evaluation and the computation cost for oblivious masking is O(d). Note that the computation cost
almost matches the computational cost of the protocol in [SLD22] with LSH and the communication
cost is significantly improved over the

√
N factor especially for d ∈ polylog(N) as in [SLD22, Table 6].

G.4 FSS for t-CNF/t-DNF and CNF/DNF

For the ease of exposition, we mainly show the FSS constructions for exact t-CNF formulae. Recall that
in exact t-CNF formula, each clause contains exactly t literals. An FSS for t-CNF can be conjuncted
from FSS for exact j-CNF for j ∈ [t].

Assume the t-CNF/t-DNF formula through this section has k variables and m clauses.

Theorem G.2 (FSS for exact t-CNF). Assume PRG : S → H̃ is a EOH-PRG relative to (S,T, (S ×
T)2, (S× T)2).

There exists a symmetric and shift-invariant FSS for the family of exact t-CNF formulae with key

space S2 × T2 and correction word space H̃2t(kt)−1.

To derive the FSS scheme, the given exact t-CNF formula φ is first transformed to an equivalent
bit-fixing predicate a of length 2t ·

(
k
t

)
and then the FSS scheme for the bit-fixing predicate a leads to

an FSS scheme for φ. The construction is presented in Figure 7. Let f be a public canonical function
that maps the clause of exactly t literals out of k variables to a number in range {1 . . . 2t ·

(
k
t

)
}.

Function secret sharing scheme FSSt-CNF for exact t-CNF:

Parameters: Let PRG : S→ H̃ be a EOH-PRG relative to (S,T, (S × T)2, (S× T)2). Let K = 2t ·
(
k
t

)
.

Gent-CNF(1λ, φ) :

1: Construct a bit-fixing predicate a of length K s.t. PBF
a is equivalent to φ as follows.

2: for clause φi of φ do
3: Set a[f(φi)] = 1.
4: end for
5: Set other entries of a to ∗.
6: Return GenK(1λ,a). ▷ Run the bit-fixing Gen.

Evalt-CNF(b, kb,x) :

1: Map x to a length K binary string y according to f .
2: for all clause ρ with t literals do
3: Evaluate ρ(x) and set y[f(ρ)] = ρ(x).
4: end for
5: Return EvalK(b, kb,y). ▷ Run the bit-fixing Eval.

Figure 7: FSS (Gent-CNF,Evalt-DNF) for exact t-CNF formula.

Proof. For the correctness part, we show that the exact t-CNF formula φ is equivalent to the bit-fixing
predicate PBF

a induced by a. From Gent-CNF, we have a[f(φi)] = 1 and other entries of a are set to ∗.
Recall that PBF

a (y) = 1 if ∧
j∈[K]

(y[j] = a[j] or a[j] = ∗) .

Thus, for the entry a[j] of a not corresponding to any clause of φ, a[j] is matched. For the clauses
contained by φ, all matched y[j] lead to the matched state. It suffices to only consider the evaluations
of the clauses contained by φ.

Let x be a satisfying assignment of φ. Thus, each clause φi of φ evaluated under x is satisfied, i.e.,
φi(x) = 1, then the corresponding y[f(φi)] = φi(x) = 1 and thus y[f(φi)] = a[f(φi)] = 1. Hence, y
matches the predicate a.

Let x be an unsatisfying assignment of φ. There exists at least one clause of φ evaluated under
x being unsatisfied. WLOG, let the φi be one of the unsatisfied clauses, i.e., φi(x) = 0 and thus
y[f(φi)] = φi(x) = 0. From Gent-CNF, a[f(φi)] is set to 1. Thus, y[f(φi)] ̸= a[f(φi)]. Therefore, y

46

does not match the predicate a. We have proved that the exact t-CNF formula φ is equivalent to the
bit-fixing predicate PBF

a .
Correctness of FSSt-CNF follows from the transformation and the correctness of FSS for bit-fixing

predicates. Security follows from the security of FSS for bit-fixing predicates.

Corollary G.3. Assume PRG : S→ H̃ is a EOH-PRG relative to (S,T, (S × T)2, (S× T)2).
There exists a symmetric and shift-invariant FSS for the family of t-CNF formulae.

Given the FSS constructions for exact t-CNF, one can take the tensor product operation to the FSS
for exact j-CNF for j ∈ [t] to obtain an FSS for t-CNF via Theorem 5.1.

Theorem G.4 (FSS for t-DNF). Assume PRG : S→ H̃ is a EOH-PRG relative to (S,T, (S × T)2, (S×
T)2).

There exists an anti-symmetric and shift-invariant FSS for the family of exact t-DNF formulae.

Given a t-DNF formula ϕ, we first take an negation to ϕ to obtain a t-CNF formula ¬ϕ. Next we call
the FSS for t-CNF to obtain an FSS for ¬ϕ and then take the negation to the FSS to obtain an FSS for
ϕ according to Lemma B.3.

Remark G.5. Note that in the FSS construction for t-CNF and t-DNF formulae, the key size is com-
pletely independent of the clause number m. The key size only relies on (k, t) and the EOH-PRG.

Remark G.6. As shown in Table 2, our direct FSS constructions for t-CNF/t-DNF from bit-fixing
predicates instantiated from Ring-LWR have key size around a quarter of the previous FSS from HSS
instantiated from Ring-LWE and comparable running time. For DCR assumptions, the direct FSS con-
structions for t-CNF/t-DNF have key size reduced by a factor of 3.5 and running time improved by a
factor of 1.75 comparing with the previous FSS for bit-fixing predicates from HSS.

FSS for CNF/DNF It is obvious that we can not directly construct FSS for CNF as for t-CNF
because each clause of a CNF formula has wide-ranging literals. However, there exists a polynomial time
algorithm to transform a CNF formula to an equivalent t-CNF [AB09, Lemma 2.14] via adding variables
and splitting long clauses to smaller clauses. Concretely, assume the given formula has k variables and
m clauses. In the transformed t-CNF formula, there are at most kn

2(t−1) +k variables. It is still poly(k,m)

and thus the FSS is of key size poly(k,m) · log∥H̃∥. Although the resulting FSS construction does not
reveal the clauses of the induced t-CNF, the FSS still reveals the number of new variables, which perhaps
leaks the shapes of the clauses of the original CNF formula.

It is straightforward to transform a CNF/DNF formula to a branching program such that each level
of the branching program has width 3 and the length km, where k is the variable number and m the
clause number. The FSS for resulting branching programs does not reveals the shapes of each clause.

Remark G.7. As shown in Table 3, the FSS constructions for width 3 branching programs directly from
EOH-PRG instantiated from Ring-LWR have key size around one-sixth and running time improved by a
factor of 24 comparing with the FSS for branching programs from HSS instantiated from Ring-LWE. For
DCR assumptions, the direct FSS constructions for width 3 branching programs have key size reduced by
a factor of 2.625 and running time reduced by a factor around 11.45 comparing with the FSS for width
3 branching programs from HSS.

G.5 Other Applications

Multi-server PIR The counting query or retrieval matches or payload computing are the typical
applications of FSS for 2-server PIR as in [BGI15, BGI16b, BKS19]. With the new FSS constructions
for bit-fixing predicates, pattern matching with wildcards becomes more efficient comparing with existing
schemes from HSS as indicated in Section H. The direct FSS constructions for branching programs avoid
the overheads in the previous FSS for branching programs from HSS [BGI16a]. Thus, any queries
expressed by branching programs can also be efficiently implemented by the new FSS for branching
programs.

47

Polynomial number of conjunctions of intervals [BGI15] proposed an FSS scheme for the interval
function, which is improved from one dimension interval to constant dimension intervals in [BGI16b].
The FSS for constant dimension intervals has many practical applications such as Splinter [WYG+17],
which provides private searching queries on Yelp clone of restaurant reviews, ticket search, etc. However,
the key size for constant dimension intervals scales with nd, where n is the length of the PRG seed and d
the number of dimensions. Hence for super-constant dimension intervals the key size increases to super-
polynomial. The tensor product from EOH-PRG works for arbitrary polynomial number of intervals via
replacing the PRG by EOH-PRG and tensoring by EOH-PRG. The key size of tensor product FSS only
scales linearly with the number of intervals. [BCG+21] pointed out that the conjunctions of FSS from
one-way function as a barrier to 1-round secure evaluation of multiply-then-truncate. As mentioned in
introduction, the multiply-then-truncate operation can be implemented by a NC1 circuit. We leave this
as future research to use EOH-PRG to concretely improve the efficiency of 1-round secure evaluation of
multiply-then-truncate.

SQL query Splinter [WYG+17] proposed using FSS to efficiently implement private SQL queries,
especially focusing on hiding the where conditions as pointed out in Section G.1 and G.2. The FSS for
bit-fixing predicates, for approximate matching functions and for DFAs from EOH-PRG greatly enriches
the expressiveness of where conditions. Actually any where condition captured by NC1 can be efficiently
hidden by our FSS for branching programs. Moreover, the polynomial number of conjunctions of intervals
can also be used to support polynomial number of range conditions.

Decision Tree Theorem D.2 gives an FSS for branching program without revealing the topology of
the branching program via adding dummy nodes. Boyle et al. [BGI16b, Section 3.3] presented a FSS for
decision tree from one-way function, which reveals the topology of the decision tree. The same method
could also be used to implement an FSS for decision tree without leaking the topology of the decision
tree at the cost of increased key size via adding dummy nodes.

H Comparisons

In this section, we present comparisons for FSS instantiated from concrete assumptions and the FSS
constructed from HSS. We focus on the FSS for bit-fixing predicates and FSS for branching programs,
respectively.

There are also FSS constructions from homomorphic secret sharing (HSS) [BKS19, OSY21]. HSS can
be viewed as the dual of FSS. In particular, for HSS the input is hidden and the circuit is public, whereas
for FSS, the circuit is private and the input is shared by all parties. [BKS19, OSY21] constructed HSS for
RMS programs with super-polynomial plaintext space and negligible correctness error based on LWE or
DCR assumptions. [BGI16a] proposed a general framework to construct an FSS for arbitrary branching
program from HSS for branching programs. However, this makes the resulting FSS cumbersome. We
compare our direct FSS constructions for branching programs with the FSS for branching programs
from HSS. The FSS constructions in Section G.4 for t-CNF/t-DNF are based on the FSS for bit-fixing
predicates from EOH-PRG

The comparison results in this section indicate our FSS for bit-fixing predicates, branching programs
and DFAs from EOH-PRG are very efficient.

H.1 FSS for Bit-fixing Predicates from HSS vs. EOH-PRG

There is a novel idea to implement an FSS for bit-fixing predicates from HSS. In this section, we compare
the FSS for bit-fixing predicates built directly from EOH-PRG with FSS from HSS.

We first present the idea to construct FSS for bit-fixing predicates from HSS, and then compare the
two FSS schemes constructed from the two methods.

Lemma H.1. Let HSS = (Setup, Input,Eval) be a secure HSS scheme. Let a ∈ {0, 1, ∗}ℓ be a bit-fixing
predicate. Then there exists an FSS scheme for a and the FSS key consists of at least 2ℓ ciphertexts.

Proof. We first create a matrix B ∈ {0, 1}2×ℓ corresponding to a. The converting rule works as follows.

Case a[i] = ∗: B[0, i] = B[1, i] = 1.

Case a[i] = 0: B[0, i] = 1, B[1, i] = 0.

48

Case a[i] = 1: B[0, i] = 0, B[1, i] = 1.

Next, we use Input to encrypt each entry of B times sk to obtain a matrix C of ciphertexts, i.e., C[j, i] =
HSS.Input(B[j, i] · sk) for i ∈ [ℓ], j ∈ {0, 1}. Assume (ek0, ek1) := HSS.Setup(1λ). Then (ek0, ek1, C) is
the key of the FSS for PBF

a .
Given an input x, the FSS evaluation is performed by the multiplication specified by the input x.

After first multiplication, x[1] · sk is shared by the two-party as sk is additively shared in HSS.Setup.
Each party runs the multiplication

Mul(C[x[i+ 1], i+ 1],Mi · sk)

for i ∈ [ℓ−1] to do the evaluation, whereMi is the memory multiplication value, i.e.,Mi =
∏i
j=1B[x[j], j].

In this construction, the memory value becomes 0 once the input x[i] is not matched. It is straight-
forward to prove that the resulting FSS exactly implements the bit-fixing predicate PBF

a . The security
follows from the security of HSS and the CPA security of the encryption scheme. Note that the FSS key
for Pb consists of ekb and C with 2ℓ ciphertexts.

As [BKS19, OSY21] instantiated HSS from LWE and DCR assumption, we compare the FSS for
bit-fixing predicates from HSS and from EOH-PRG instantiated from LWE and DCR assumptions.

We only consider the HSS instantiated from Ring-LWE [BKS19, Figure 8] rather than from LWE
because the HSS instantiated from LWE incurs larger ciphertext size. Recall the HSS instantiated from
Ring-LWE, each ciphertext contains four Rq elements and the key is a sharing of one ring element.
The most costing operation is the Mul operation. Each Mul costs exactly four multiplications over the
ring Rq and each multiplication takes n log n multiplications over Zq assume the parameters are chosen
permitting the NTT optimizations. There are total ℓ Mul operations during FSS evaluation. Hence, the
key size for bit-fixing predicates FSS from HSS instantiated from Ring-LWE is about 8ℓn log q as each
HSS ciphertext contains exactly four Rq elements. The key size of ekb is omited here. The evaluation
cost is 4ℓn log n multiplications over Zq. The PRF key used to re-randomize the intermediate memory
values is not taken into account here.

As for the FSS for bit-fixing predicates from EOH-PRG instantiated from (Ring-)LWE, we consider
instantiations from both of the LWE assumption and the Ring-LWE assumption. Recall that in Section
8, for EOH-PRG instantiated from LWE, each correction word has size 2(n+1) log p and the key size for
the first bit is still 2(n+1) log p. There are ℓ−1 correction words. Thus the total key size is 2ℓ(n+1) log p.
The size for the PRG matrix is not taken into account because it can be instantiated from a PRG or
a random oracle. During evaluation, the most expensive operation is the PRG evaluation. Each PRG
evaluation takes 2n(n+1) multiplications over Zq. Hence, the total computation cost is 2(ℓ− 1)n(n+1)
multiplications over Zq.

For EOH-PRG instantiated from Ring-LWR, the PRG becomes PRG : Rq → R2
p × Z2

p. Thus each
correction word consists of 2 elements ofRp and 2 elements of Zp. Hence the total key size is 2ℓ(n+1) log p.
During evaluation, the most costing operation is still the PRG evaluation. Each PRG evaluation takes
4 multiplications over Rq as the PRG evaluation takes multiplications over Rq before applies the ψ(·)
function. Thus total number of multiplications of FSS evaluation over Zq is bounded by 4ℓn log n. The
comparison is shown in Table 2.

Next, we consider the instantiations from DCR assumption. Recall the HSS instantiated from DCR
assumption [OSY21, Section 4.2], each ciphertext contains seven ZN2 elements(six elements suffice for the
KDM security and each HSS ciphertext contains exactly seven elements). Thus, the key size for bit-fixing
FSS from HSS is around 14ℓ logN2. For the DCR assumption, the most costing is the exponentiation
operation. Each Mul takes seven exponentiation operations. Thus, the FSS evaluation takes in total 7ℓ
exponentiation operations. For the EOH-PRG instantiated from DCR variant assumption, recall that
the PRG is PRG : ZN → Z4

N2 and each correction word contains 4 ZN2 elements and thus the key size is
bounded by 4ℓ logN2. During evaluation, each PRG evaluation takes 4 exponentiation operations and
thus the FSS evaluation totally takes at most 4ℓ exponentiation operations. The comparison is shown
in Table 2.

In summary,

• the direct FSS from EOH-PRG instantiated from LWE provides a quarter of the key size of the
FSS from HSS instantiated from Ring-LWE whereas the running time is amplified by a factor of
n

logn .

• the Ring-LWR instantiation of EOH-PRG provides a quarter of the key size of the HSS from
Ring-LWE and comparable running time.

49

Security Assumption Key Size No. of Mul. or Exp.

LWE
HSS [BKS19] Ring-LWE 8ℓn log q 4ℓn log n
EOH-PRG LWE 2ℓ(n+ 1) log p 2(ℓ− 1)n(n+ 1)
EOH-PRG Ring-LWR 2ℓ(n+ 1) log p 4ℓn log n

DCR
HSS [OSY21, RS21] KDM security 14ℓ logN2 7ℓ

EOH-PRG DCR variant 4ℓ logN2 4ℓ

Table 2: The comparison of FSS for bit-fixing predicates constructed from EOH-PRG and from HSS.
ℓ stands for bit-fixing predicate length. For LWE assumption, n stands for the secret length, q the
modulus of the LWE assumption, and p the output modulus of the PRG. The number of multiplications
is counted over Zq. For DCR assumption, N stands for RSA modulus. Here we assume six ciphertexts
suffice to achieve KDM security for the HSS from DCR assumption as in [OSY21, Section 4.2]. The
number of exponentiations is counted over ZN2 .

• the direct FSS from EOH-PRG instantiated from DCR variant assumption provides significant
improvements over the HSS from DCR assumption in key size and the number of exponentiations.
Concretely, the key size is reduced by a factor of 3.5 and the running time reduced by a factor a
1.75.

Remark H.2. There is no encryption operation involved in the FSS construction from EOH-PRG. If the
HSS is instantiated from the LWE assumption, there exists an HSS from symmetric encryption scheme.
The decryption is just an linear operation. However, if HSS is instantiated from the DCR assumption,
there is an explicit decryption procedure involved. In our FSS construction from EOH-PRG, there is
definitely no decryption operation and even there is no secret key derived in the Gen procedure.

H.2 FSS for Branching Programs from HSS vs. EOH-PRG

In this section, we only consider the branching programs with out-degree 2 as in Section D.1. Given a
layered oblivious branching program P , [BGI16a, Theorem A.5] provided a general method to construct
an FSS for P from HSS. The construction encodes P into P̂ and a universal branching program UBP
such that for any x,UBP(P̂ , x) = P (x), and runs the HSS for UBP(P̂ , x) to hide P̂ to obtain an FSS for
P .

We roughly recall the structure of UBP and P̂ to show the key size and the efficiency of the FSS.
The encoding P̂ contains every pair of nodes in adjacent levels of P . If the pair of nodes corresponds to
an edge in P , then it is 1 in P̂ . Otherwise, it is 0. Thus, the size of P̂ is

∑
i∈[1,ℓ−1] wi · wi+1 ≤ ℓ · w2.

The UBP contains ℓ + 1 blocks of levels W0,W1 . . .Wℓ. The number of levels of Wi is 2wi · wi+1 for
i < ℓ. In UBP evaluation, the input to level Um for 1 ≤ m < wiwi+1, where m = jwi+1 + k, 1 ≤ j ≤
wi, 1 ≤ k ≤ wi+1, is yα0 ∈ P̂ for α0 = (j, k) and the input to level Um for wiwi+1 ≤ m < 2wiwi+1, where
m = wiwi+1 + jwi+1 + k, 1 ≤ j ≤ wi, 1 ≤ k ≤ wi+1 is yα1 ∈ P̂ for α1 = (j, k). In summary, the input for
each Um for 1 ≤ m < 2wiwi+1 is a value in P̂ only depending on m. The input to level U2wiwi+1

is xi.

The FSS for P from HSS encrypts every element of P̂ . There are roughly ℓ · w2 HSS ciphertexts.
During the evaluation, for each block except for the last level, the input is in encryption form and thus
for each block Ui there are 2wiwi+1 − 1 Mul operations of HSS. There are totally at most 2ℓw2 number
of Mul operations for the FSS evaluation.

For HSS from Ring-LWE, the key contains 4ℓ · w2 Rq elements as each ciphertext consists of four
Rq elements. Thus the key size is 4ℓw2n log q. There are 8ℓw2 multiplications over Rq and thus totally
8ℓw2n log n multiplications over Zq.

For HSS from DCR assumption, the key contains around 7ℓ · w2 ZN2 elements as each ciphertext
contains seven ZN2 elements. Thus the key size is 7ℓw2 logN2. There are total 14ℓw2 exponentiations
operations during evaluation as each Mul takes 6 exponentiations.

Now we show the key size and runtime of the FSS from EOH-PRG. For EOH-PRG instantiated from

LWE, the PRG is PRG : Znq → Z2(n+w)
p . The size of each level correction word is 2w(n + w) log p and

as each level has at most w correction words. Thus the total key size is bounded by 2ℓw(n + w) log p.
During PRG evaluation, there are 2n(n+w) multiplications over Zq in each level. Thus, there are totally
2ℓn(n+ w) multiplications.

For EOH-PRG instantiated from Ring-LWE, the PRG becomes PRG : Rq → R
2+⌊ 2w

n ⌋
p ×Z2w−n⌊ 2w

n ⌋
p as

multiple tag bits are compressed to ring elements. The size of each level correction word is 2w(n+w) log p

50

and thus the total key size is bounded by 2ℓw(n+ w) log p. During PRG evaluation, there are 2 + ⌈ 2wn ⌉
multiplications over Rq each level. Hence, there are totally ℓ(2 + ⌈ 2wn ⌉)n log n multiplications over Zq.

For EOH-PRG instantiated from DCR variant assumption, the PRG is PRG : ZN → Z2+2w
N2 . The

size of each level correction word is 2w(w + 1) logN2 and thus the total key size is 2ℓw(w + 1) logN2.
During PRG evaluation, there are 3w+2 exponentiations in each level as each tag bit is used to compute
the exponentiation of corresponding correction word. Thus, there are totally ℓ(3w + 2) exponentiation
operations.

The key size and efficiency is summarized in Table 3.

Security Assumption Key Size No. of Mul. or Exp.

LWE
HSS Ring-LWE 4ℓw2n log q 8ℓw2n log n

EOH-PRG LWE 2ℓw(n+ w) log p 2ℓn(n+ w)
EOH-PRG Ring-LWR 2ℓw(n+ w) log p ℓ(2 + ⌈ 2wn ⌉)n log n

DCR
HSS KDM security 7ℓw2 logN2 14ℓw2

EOH-PRG DCR variant 2ℓw(w + 1) logN2 ℓ(3w + 2)

Table 3: The comparison of FSS for branching programs constructed from EOH-PRG and from HSS. w
stands for the branching program width and ℓ for the branching program length. For branching programs
we assume fixed out-degree d = 2. For LWE assumption, n stands for the secret length, q the modulus of
the LWE assumption, and p the output modulus of the PRG. The number of multiplications is counted
over Zq. For DCR assumption, N stands for RSA modulus. Here we assume six ciphertexts suffice to
achieve KDM security for the HSS from DCR assumption as in [OSY21, Section 4.2]. The number of
exponentiations is counted over ZN2 .

In summary,

• for LWE related assumption, the key size of the FSS from EOH-PRG instantiated from LWE and
Ring-LWR are equal. The key size is improved from a factor of 4wn to 2(n+w) comparing to the
FSS for branching programs from HSS Ring-LWE. As for the running time, the the FSS from EOH-
PRG from LWE is very inefficient. The running time of the FSS from EOH-PRG from Ring-LWR
is improved from a factor 8w to 2 + ⌈ 2wn ⌉.

• for DCR related assumption, the key size of FSS from EOH-PRG is improved by a factor around 3
of the the key size of the FSS from HSS and the number of exponentiation operations of FSS from
EOH-PRG is a w of magnitude less than the FSS from HSS.

Remark H.3. It is worth to mention that our FSS for branching programs from EOH-PRG naturally
generalize to branching programs with multi-edge as in Section E.1 and with polynomial out-degree as in
Section E.2. However, for the FSS from HSS, the universal branching program needs to split the multi-
edge at the cost of increasing edges because in the encoding P̂ of P each two nodes and the edge value
form a point in P̂ and the polynomial out-degree of P causes worse blow-up for the universal branching
programs for the number of levels of each block, which leads to worse running time.

51

	Introduction
	Our Contributions
	Discussion and Related Work
	Organization

	Technical Overview
	Existing Constructions and Limitations
	Our Constructions
	Instantiating the EOH-PRG

	Preliminaries
	FSS with Additional Properties and EOH-PRGs
	PRG with Encoded-Output Homomorphism

	Tensor Product FSS for Arbitrary Predicates from EOH-PRGs
	FSS for Branching Programs
	FSS for DFAs
	EOH-PRG Instantiated from LWE or DCR Assumption
	Supplementary Materials for Preliminaries
	LWE and LWR
	Almost Homomorphic PRGs(AH-PRG)
	DCR Assumption
	Bit-fixing Predicates and CNF/DNF Formulae
	DFA

	Tensor Product and FSS for Negation and Disjunction of Predicates
	Proof of Theorem 5.1
	FSS for Negation and Disjunction of Predicates

	FSS for Bit-fixing Predicates from EOH-PRG
	Supplementary Materials for FSS for Branching Programs
	Branching Programs
	Supplementary Constructions for FSS for Branching Programs
	Proof of Lemma 6.2
	Topology-Hiding FSS for Branching Programs

	FSS for Approximate Matching Functions and Polynomials
	FSS for Approximate Matching Functions
	FSS for Polynomials over a Ring

	Supplementary Materials for EOH-PRG Instantiated from LWE or DCR
	EOH-PRG from LWE
	EOH-PRG from DCR

	FSS Applications
	Private Image Matching on Public Data
	Private Partial Text Matching
	Nearest Neighbour Search
	FSS for t-CNF/t-DNF and CNF/DNF
	Other Applications

	Comparisons
	FSS for Bit-fixing Predicates from HSS vs. EOH-PRG
	FSS for Branching Programs from HSS vs. EOH-PRG

