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Abstract. It is shown how bounds on exponential sums derived from
modern algebraic geometry, and ℓ-adic cohomology specifically, can be
used to upper bound the absolute correlations of linear approximations
for cryptographic constructions of low algebraic degree. This is illustrated
by applying results of Deligne, Denef and Loeser, and Rojas-León, to ob-
tain correlation bounds for a generalization of the Butterfly construction,
three-round Feistel ciphers, and a generalization of the Flystel construc-
tion. For each of these constructions, bounds obtained using other meth-
ods are significantly weaker. In the case of the Flystel construction, our
bounds resolve a conjecture by the designers.

Correlation bounds of this type are relevant for the development of se-
curity arguments against linear cryptanalysis, especially in the weak-key
setting or for primitives that do not involve a key. Since the methods used
in this paper are applicable to constructions defined over arbitrary finite
fields, the results are also relevant for arithmetization-oriented primitives
such as Anemoi, which uses S-boxes based on the Flystel construction.

Keywords: linear cryptanalysis · algebraic exponential sums · Butterfly
· Feistel · Flystel

1 Introduction

Linear cryptanalysis is one of a few general cryptanalytic techniques that define
the design space of symmetric-key primitives. Although contemporary designs
come with useful heuristic security arguments against linear cryptanalysis, rig-
orously proving that the correlations of all linear approximations are close to
zero is currently out of reach.

The most straightforward security argument consists of showing that the
absolute correlations of all linear trails are small. For primitives based on S-
boxes and a linear layer, the wide-trail design strategy [18] is often used to
achieve this goal: by carefully choosing the linear layer, one can guarantee that
all trails contain a large number of active S-boxes. This leads to bounds on the
correlations of trails, provided that the linearity of the S-boxes is known. From
the study of Boolean functions, several systematic constructions of S-boxes with
low linearity are known.
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Bounding the correlations of linear trails is necessary, but not sufficient. This
is because the correlation of a linear approximation is a sum of the correlations
of multiple trails, and a large number of small numbers may nonetheless add up
to a high correlation. In the context of block ciphers, stronger security arguments
can be obtained by upper bounding key-averaged squared correlations (variance
of the correlation). For example, for four rounds of the AES with independent
and uniform random round keys, such bounds were obtained by Hong et al. [26],
Park et al. [26] and Canteaut and Roué [16]. The exact maximum was computed
by Keliher and Sui [27].

Bounds on key-averaged squared correlations are still a far cry from a rigorous
security argument against linear cryptanalysis. At best one can deduce that the
correlation of individual linear approximations is low for many keys, but the
strength of the conclusions is inherently limited. For example, for the 16-bit
superbox of the block cipher Midori-64, the maximum variance of the correlation
is equal to 2−8 [6, §4.1.1]. Chebyshev’s inequality then shows that the correlation
of one linear approximation can be ±1 for at most one in 28 keys. It was shown
in [5] using nonlinear invariants that there indeed exists a linear approximation
with this behavior. In fact, the number of weak keys is larger because three
such approximations exist. All current key-averaged results also depend on using
independent round keys. Moreover, in the general study of vectorial Boolean
functions, constructions typically do not involve a key.

Using current techniques, upper bounding maximum absolute correlations is
not feasible for any practical cipher. Even for building blocks such as the AES
superbox, little is known despite the relevance of such results for cryptanalysis.
In particular, such bounds could be leveraged to improve trail or variance bounds
for larger constructions, and are of interest to the analysis of Boolean functions.
In fact, most known results originated in the study of vectorial Boolean func-
tions. For example, the AES S-box is based on inversion in a finite field of order
28. As first observed by Carlet and reported by Nyberg [29], its linearity follows
from estimates of Kloosterman sums. More recently, low-degree monomial func-
tions have been used in arithmetization-oriented primitives such as MiMC [2],
Rescue [3], Poseidon [24] and Anemoi [12]. The linearity of low-degree univariate
polynomials can be understood using Weil’s bound for exponential sums [33]. For
constructions based on low-degree multivariate polynomials, only the quadratic
case is well understood. For example, the analysis of the Butterfly construction
by Canteaut, Duval and Perrin [14] is based on the fact that, in characteristic
two, the function x 7→ x3 is quadratic as a multivariate polynomial over the
base field. The linearity of instances with non-quadratic functions is not known.
Similarly, for the Flystel construction (a variant of the Butterfly structure used
in Anemoi), determining the linearity is an open problem [11,13].

Contribution. This paper shows that results from modern algebraic geometry,
and ℓ-adic cohomology in particular, have applications in linear cryptanaly-
sis. Specifically, we use bounds for algebraic exponential sums deriving from
Grothendieck’s trace formula for ℓ-adic sheaves to upper bound the correlations
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of linear approximations for various cryptographic constructions that are not
amenable to other methods.

To illustrate how these results can be applied, we prove correlation bounds
for three important constructions, each defined over an arbitrary finite field Fq:
a generalization of the Butterfly structure, three-round Feistel ciphers, and a
generalization of the Flystel construction. The resulting bounds are of the order
O(1/q), which is optimal up to constants. In contrast, using linear trails and
Weil’s bound yields estimates of order at best O(1/

√
q). Despite the similarities

between these three constructions, each of our proofs is based on a different result
about algebraic exponential sums. Section 3 provides a high-level overview of the
results that we use, and their relation to ℓ-adic cohomology. Since this approach
is applicable to constructions over arbitrary finite fields, it is particularly relevant
for the analysis of arithmetization-oriented primitives.

In Section 4, we use a theorem of Deligne to prove correlation upper bounds
for a generalization of the (open and closed) Butterfly construction over arbitrary
finite fields. Deligne’s theorem [19] is probably the best known extension of Weil’s
bound to the multivariate setting. With some technical conditions, Theorem 4
establishes a correlation bound of (d−1)2/q for the degree-d generalized Butterfly
construction.

Deligne’s theorem is not sufficient to obtain correlation bounds for three-
round Feistel ciphers. Instead, we rely on a theorem of Denef and Loeser [22].
This result replaces a smoothness condition in Deligne’s theorem by the weaker
requirement of non-degeneracy with respect to a Newton polyhedron. Up to
technical conditions, Theorem 5 shows that the maximum absolute correlation
of linear approximations of three-round Feistel ciphers with round functions of
degree d is at most (d+ 1)(d− 1)2/q. Note that we focus on three round Feistel
networks because two rounds are not enough to ensure low correlations.

In Section 6, we apply a different generalization of Deligne’s theorem, due to
Rojas-León [32], to prove correlation bounds for a generalization of the (open
and closed) Flystel construction. The result of Rojas-León avoids the smooth-
ness condition in Deligne’s theorem for special types of singularities. Theorem 6
establishes a correlation bound of (d − 1)2/q for generalized Flystel construc-
tions of degree d. This resolves the conjecture from [11, 13] on the linearity of
the Flystel construction.

Prior work by the authors. Deligne’s theorem was used by the first author
in the ePrint note [10, §3.2] from 2020. The result on the Flystel construction
first appeared in the authors’ joint ePrint note [9]. Neither of these notes have
been submitted elsewhere for publication. Part of the motivation of this paper
was to provide a more systematic treatment of these methods.

2 Linear cryptanalysis

We assume that the reader is familiar with ordinary linear cryptanalysis, i.e.
over groups of the form Fn2 . Since many applications of our results are relevant
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for primitives defined over finite fields of odd characteristic, we briefly review
linear cryptanalysis for groups of the form Fnq with q a power of a prime p.

A partial generalization of linear cryptanalysis to arbitrary finite Abelian
groups was given by Baignères, Stern and Vaudenay [4]. Since our results do not
depend on averaging with respect to a random key, we instead follow the de-
scription given in [7, §3.3] and [8, Chapter 3]. Concretely, a linear approximation
of a function F : Fnq → Fmq consists of a pair (ψ, χ) of characters of the groups
Fnq and Fmq respectively. The correlation of (ψ, χ) is defined as3

CF
χ,ψ =

1

qn

∑
x∈Fn

q

χ
(
F(x)

)
ψ(−x) .

For a uniform random function or permutation, the absolute values of the corre-
lations are close to 1/

√
qn with high probability. If there exists a linear approxi-

mation with absolute correlation c significantly larger than this, then this leads
to a distinguisher with data-complexity approximately 1/c2.

The matrix CF with coordinates CF
χ,ψ labeled by characters ψ and χ is called

the correlation matrix of F. If F = Fr ◦ · · · ◦F2 ◦F1, then C
F = CFr · · ·CF2CF1 [7,

Theorem 3.2] so that

CF
χr+1,χ1

=
∑

χ2,...,χr

CFr
χr+1,χr

· · ·CF2
χ3,χ2

CF1
χ2,χ1

,

where the sum is over all sequences of characters (χ1, χ2, . . . , χr+1) with the
endpoints χ1 and χr+1 fixed. These sequences are called linear trails and the
product

∏r
i=1 C

Fi
χi+1,χi

is called the correlation of the corresponding trail.

Up to an arbitrary choice of a primitive character ω : Fq → C× of Fq, such
as ω : x 7→ ζ

Tr(x)
p with ζp a primitive pth root of unity, the characters ψ and χ

can be written as ψ(x) = ω(uTx) and χ(x) = ω(vTx) with u and v vectors in
Fnq . Hence, the correlations of linear approximations can be expressed as

CF
χ,ψ =

1

qn

∑
x∈Fn

q

ω
(
vTF(x)− uTx

)
.

This is called a complete (algebraic) exponential sum. Since sums of this type
have many applications, several techniques have been developed to bound their
absolute value. The next section reviews a specific class of such methods which
will be used throughout this paper.

3 Estimates for algebraic exponential sums

Let f : Fnq → Fq be a function. As discussed in Section 2, bounding the abso-
lute correlation of a linear approximation over a function is equivalent to upper

3 Unlike [7], we include the minus sign in ψ rather than in χ. This corresponds to the
group action x 7→ x+t instead of x 7→ x−t. The motivation for this is that the former
convention works in a more general setting that includes integral cryptanalysis.
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bounding the absolute value of a certain exponential sum of the form

S(f) =
∑
x∈Fn

q

ω(f(x)) , (1)

with ω an additive character of Fq. In this section, we review several algebro-
geometric estimates for such sums when the algebraic degree of f is low. A first
example of such an estimate is Weil’s bound [33] for n = 1,

|S(f)| ≤ (d− 1)
√
q ,

for all f of degree d ≥ 2 coprime to the characteristic p of Fq. For n ≥ 2,
obtaining estimates close to qn/2 is more difficult and requires additional as-
sumptions on f . Nevertheless, comparable results do exist. These results arise
from a cohomological interpretation of (1), which we describe from a high level
in Section 3.1.

3.1 Cohomological framework

In pursuit of Weil’s conjectures on the number of points of algebraic varieties
over finite fields, Grothendieck and his collaborators developed ℓ-adic cohomol-
ogy theory [20,25]. In this framework, exponential sums such as S(f) can be ex-
pressed in terms of the traces of linear maps (the action of geometric Frobenius)
on certain vector spaces (ℓ-adic cohomology spaces) over an algebraic closure
Qℓ of the field of ℓ-adic numbers. Throughout, ℓ is a prime different from the
characteristic p of Fq.

A complete description of this approach would lead us too far and is not
necessary to apply the results, but we give a surface-level overview so that readers
unfamiliar with the theory can understand its advantages and limitations. For
an additive character ω of Fq and a function f : Fnq → Fq, one can construct
a certain object called an ℓ-adic sheaf L on the affine space An over Fq. The
stalk of L at a point x on An is a one-dimensional vector space Lx over Qℓ with
an action of the Frobenius automorphism x 7→ xq. The action is given by the
geometric Frobenius map σ and satisfies

Tr
(
σx | Lx

)
= ω(f(x)) .

Since the map σx on the stalk Lx corresponds to multiplication by a constant,
taking the trace is not doing a lot of work. However, the same formula holds
for more general sheaves with higher-dimensional stalks. For our purposes, the
importance of this fact is that S(f) can be expressed as

S(f) =
∑
x∈Fn

q

Tr
(
σx | Lx

)
. (2)

The sum (2) ranges over the points of An that are fixed under the Frobenius
map. In analogy with the Lefschetz fixed-point theorem from algebraic topology,
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Grothendieck [25, Exposé III] proved that (2) can be expressed in terms of the
traces of the global geometric Frobenius automorphism F on ℓ-adic cohomology:

S(f) =
∑
x∈Fn

q

Tr
(
σx | Lx

)
=

2n∑
i=0

(−1)i Tr
(
F | Hi

c(A
n,L)

)
. (3)

In particular, Hi
c(A

n,L) is the ith ℓ-adic cohomology group with compact sup-
ports. The precise definition of ℓ-adic cohomology would lead us too far. For
our discussion, it is enough to say that Hi

c(A
n,L) is a finite-dimensional vector

space over Qℓ and F is a linear operator. Hence, the trace of F on Hi
c(A

n,L)
is the sum of its eigenvalues λ1, λ2, . . .. The number of eigenvalues is equal to
dimHi

c(A
n,L). Suppose that, for all i, |λi| ≤ κ for some constant κ, then one

obtains the following bound on the absolute value of S(f):

|S(f)| ≤ κ

2n∑
i=0

dimHi
c(A

n,L) .

This approach allows one to bound the absolute correlations of linear approxi-
mations, provided that one has (i) a bound on the eigenvalues of F (ii) a bound
on the dimensions of the cohomology spaces. In certain cases, these bounds are
provided by the ‘vanishing and purity’ results in Sections 3.2 to 3.4.

3.2 Vanishing and purity from smoothness

Deligne proved a general result for ‘pure’ and ‘lisse’ ℓ-adic sheaves [21, Corollaire
3.3.4] that implies that the eigenvalues of F on Hi

c(A
n,L) are at most qi/2 in

absolute value. This is sometimes summarized by saying thatHi
c(A

n,L) is mixed
of weight i. If equality holds, the cohomology space is called pure of weight i.

More detailed results can be obtained with additional conditions on f . In
particular, for the applications in Sections 4 to 6, we will rely on results showing
that all cohomology spaces Hi

c(A
n,L) with i ̸= n vanish and that Hn

c (A
n,L)

is pure of weight n. A first example of such a result is the following theorem of
Deligne, which will be used in Section 4.

Theorem 1 (Deligne [19, Théorème 8.4]). Let f be a polynomial over Fq
in n variables and with degree d coprime to the characteristic of Fq. Let fd be
the degree d homogeneous component of f . If the projective hypersurface in Pn−1

defined by fd = 0 is smooth, then for the ℓ-adic sheaf L associated to (1),

1. For all i ̸= n, we have vanishing cohomology Hi
c(A

n,L) = 0.
2. Hn

c (A
n,L) is pure of weight n with dimension at most (d− 1)n.

Explicitly, the smoothness condition in Theorem 1 requires that the system of
equations fd = ∂fd/∂x1 = · · · = ∂fd/∂xn = 0 has no nonzero solutions. As
explained at the end of Section 3.1, Theorem 1 implies the estimate

|S(f)| ≤ (d− 1)n
√
qn .
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Weil’s bound is the special case of this inequality with n = 1, as the smoothness
condition is then automatically satisfied.

Deligne’s theorem requires that the maximum-degree homogeneous compo-
nent of f defines a smooth hypersurface in Pn−1, but this is often a problem for
applications in linear cryptanalysis. For example, in unpublished work [10, §3.2],
the first author applied Theorem 1 to two rounds of Rescue with mixed suc-
cess: it led to a good bound for most linear approximations, but for some it
was necessary to resort to other techniques – leading to suboptimal bounds.
This is problematic from a cryptanalytic point of view, since the worst case is
particularly important.

3.3 Vanishing and purity from Newton polyhedra

Adolphson and Sperber showed that the smoothness condition in Theorem 1 can
be replaced by a weaker non-degeneracy condition [1, Theorems 4.2 and 5.18].
The conditions of their result were relaxed as a consequence of subsequent work
by Denef and Loeser [22, Theorem 9.2]. The results of Adolphson-Sperber and
Denef-Loeser depend on the Newton polyhedron of f . Suppose that the algebraic
normal form of f is equal to

f(x1, . . . , xn) =
∑

e1,...,en

ce1,...,en
∏n
i=1 x

ei
i ,

where the exponents e1, . . . , en are in {0, . . . , q− 1} and the coefficients ce1,...,en
in Fq. The Newton polyhedron ∆(f) of f at infinity is equal to the convex hull
of the following set of points in Rn:{

(0, . . . , 0)
}
∪
{
(e1, . . . , en) | ce1,...,en ̸= 0

}
⊂ Rn .

The function f is called commode if there exist nonzero integers d1, . . . , dn so
that (d1, 0, 0, . . . , 0), (0, d2, 0, . . . , 0), . . . , (0, 0, . . . , 0, dn) ∈ ∆(f). Since ∆(f) is a
polyhedron, its boundary consists of faces. For a face τ of ∆(f), let

fτ (x1, . . . , xn) =
∑

(e1,...,en)∈τ

ce1,...,en
∏n
i=1 x

ei
i ,

where the sum is over all integer points of the face τ and ce1,...,en = 0 if
∏n
i=1 x

ei
i

is not a monomial in f . The function f is called non-degenerate with respect to
its Newton polyhedron if, for every face τ of ∆(f) not containing the origin,

∂fτ
∂x1

= · · · = ∂fτ
∂xn

= 0 ,

has no nonzero solutions. For a set of indices I, let VolI ∆(f) be the volume of
the intersection of ∆f and the hyperplanes defined by xi = 0 for all i in I. The
Newton number of ∆(f) is by definition equal to

ν(f) =
∑

I⊆{1,...,n}

(−1)|I|(n− |I|)! VolI ∆(f) .

Denef and Loeser provide the following theorem.
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Theorem 2 (Denef-Loeser [22, Theorem 9.2]). If f is a polynomial over
Fq in n variables that is commode and non-degenerate with respect to its Newton
polyhedron, then for the ℓ-adic sheaf L associated to (1),

1. For all i ̸= n, we have vanishing cohomology Hi
c(A

n,L) = 0.
2. Hn

c (A
n,L) is pure of weight n with dimension equal to ν(f).

Theorem 2 implies the following upper bound on |S(f)|:

|S(f)| ≤ ν(f)
√
qn .

This bound will be applied in Section 5. In some cases, such as for the Flystel
construction that we consider in Section 6, non-degeneracy is not satisfied and
more specialized results are necessary.

3.4 Vanishing and purity for isolated singularities

The following theorem due to Rojas-Léon [32, Theorem 2] shows that the con-
clusions of Theorem 1 are still true if the singularities of the hypersurface defined
by fd = 0 are well-behaved. In particular, the singularities should be of isolated
quasi-homogeneous type.

A singular point of a hypersurface will be called isolated if there exists a
Zariski neighborhood of the point that contains no other singular points. For
concreteness, we define ‘quasi-homogeneous singularity’ in the case of an affine
hypersurface, with a singularity that can be assumed to be in the origin by trans-
lation. The projective case follows by choosing an open affine set that contains
the singularity. If the affine hypersurface in An defined by h(x1, . . . , xn) = 0 has
an isolated singularity at the origin, then we say that it is quasi-homogeneous if
there exists a quasi-homogeneous polynomial g and an Fq-algebra isomorphism

Fq[[x1, . . . , xn]]

(h)
∼=

Fq[[x1, . . . , xn]]

(g)
,

with Fq[[x1, . . . , xn]] the ring of formal power series in x1, . . . , xn over Fq. A
polynomial g is called quasi-homogeneous of degree δ if there exist ‘weights’
w1, . . . , wn such that

g(λw1x1, . . . , λ
wnxn) = λδg(x1, . . . , xn) ,

for all λ in Fq. The Milnor number of the singularity is equal to
∏n
i=1(δ/wi− 1)

and it can be shown that this does not depend on g. Rojas-Léon has proven the
following refinement of Theorem 1.

Theorem 3 (Rojas-Léon [32, Theorem 2]). Let f be a degree-d polyno-
mial over Fq in n variables with f = fd + fd′ + · · · , where fd is the degree-d
homogeneous component of f and fd′ is its homogeneous component of degree
d′ = deg f − fd. Suppose that d and d′ are coprime to the characteristic p of
Fq and d′/d > p/(p + (p − 1)2). If the projective hypersurface in Pn−1 defined
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by fd = 0 has at worst quasi-homogeneous isolated hypersurface singularities of
degrees prime to p with Milnor numbers µ1, . . . , µs, and if the projective hyper-
surface in Pn−1 defined by fd′ = 0 contains none of these singularities, then for
the ℓ-adic sheaf L associated to (1),

1. For all i ̸= n, we have vanishing cohomology Hi
c(A

n,L) = 0.
2. Hn

c (A
n,L) is pure of weight n with dimension (d− 1)n − (d− d′)

∑s
i=1 µi.

Theorem 3 implies the following estimate for the exponential sum (1):

|S(f)| ≤
(
(d− 1)n − (d− d′)

∑s
i=1 µi

)√
qn .

This result will be used in Section 6.

4 Generalized Butterfly construction

The Butterfly construction was introduced by Perrin, Udovenko and Biryukov [31],
and was originally defined over F2

2n with n odd. Several generalizations were in-
vestigated in [11, 14, 15, 28]. In what follows we study a generalization of the
Butterfly construction that does not require the internal functions to be mono-
mials.

4.1 Definition

Let G : Fq → Fq be a permutation, H : Fq → Fq a function, and α in Fq. The
generalized closed Butterfly construction is depicted in Figure 1b. In terms of
polynomials, F : F2

q → F2
q is given by F(x1, x2) = (y1, y2), where

y1 = G(x1 + αx2) + H(x2)

y2 = G(x2 + αx1) + H(x1) .

For brevity, we introduce the notation F = Butterfly[G,H, α].
There is a variant of the closed Butterfly construction, called the open Butter-

fly construction, that resembles a Feistel construction. It is shown in Figure 1a.
In terms of polynomials, the open Butterfly construction is defined by the map
(x1, x2) 7→ (y1, y2), where

y1 = G(x2 + αy2) + H(y2)

y2 = G−1(x1 − H(x2))− αx2 .

The open and closed variants of the Butterfly construction are CCZ-equivalent [17],
meaning that there is an affine bijection between their graphs.

The proof of CCZ-equivalence for the general case follows from the observa-
tion that the proof for the original Butterfly construction [31, Lemma 2] only
uses the bijectivity of G. One consequence of the CCZ-equivalence between the
closed and open Butterfly constructions is that their correlation matrices are the
same up to sign and up to a permutation of their entries. Since the algebraic
degree of the closed Butterfly is guaranteed to be low if G and H have low degree,
in what follows we focus on the closed variant.
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R−1

R

x1 x2

⊟

⊟

⊞

⊞

y1 y2

H

G−1

×α

G

H

×α

(a) Open variant.

R

R

x1 x2

⊞

⊞

y1

G

H

×α

⊞

⊞

y2

G

H

×α

(b) Closed variant.

Fig. 1: The generalized Butterfly construction.

4.2 Related work

The original Butterfly construction corresponds to G(x) = x3 and H(x) = βx3,
with β a non-zero constant in Fq, defined on a field Fq of characteristic two.
Hence, to ensure that G is invertible, q = 2n with n odd. Canteaut, Duval and
Perrin proved in [14, Main Theorem] that for n > 3, the maximum absolute
correlation is 1/2n−1 unless β = (α + 1)3, in which case it is 1/2(n−1)/2. These
results have been generalized to G(x) = xd and H(x) = βxd for other exponents
d of Hamming weight two [23,28].

The reason that previous work has been concerned only with exponents of
Hamming weight two is that, in this case, the Butterfly construction is quadratic
as a multivariate polynomial over the base field F2. Up to a linear change of
variables, quadratic forms can be brought into a ‘block diagonal’ normal form.
From there, one can see that absolute correlations can be expressed in terms of
the rank of the form. Although the details may be technical, this approach is
generally workable. The same approach works for fields of odd characteristic.

The results below are applicable to instances of the generalized Butterfly con-
struction that are not quadratic over the base field Fp. This is worth mentioning,
because this case would be out of reach for the methods that have previously
been used in the literature.

4.3 Correlation bound

In this section, we upper bound the absolute correlations of linear approxima-
tions over the generalized Butterfly construction using Theorem 1. This requires
some conditions on G, H and α. In particular, we assume that degG ̸= degH and
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if degG > degH, then α ̸= ±1. As discussed below, some of these conditions can
be removed but this requires more sophisticated results such as Theorem 3.

Lemma 1. Let x1 and x2 be elements of Fq, and v in F×
q . If d ≥ 2 is an integer

indivisible by the characteristic p of Fq, then the projective hypersurface in P1

defined by xd1 + vxd2 = 0 is smooth.

Proof. Let f(x1, x2) = xd1 + vxd2. The locus of singular points is defined by the
equations f = 0, ∂f/∂x1 = 0 and ∂f/∂x2 = 0. Since d ̸≡ 0 (mod p) and v ̸= 0,
the latter two equations are equivalent to xd−1

1 = 0 and xd−1
2 = 0. Hence, the

projective hypersurface defined by f = 0 contains no singular points.

Theorem 4. Let F = Butterfly[G,H, α] be the generalized closed Butterfly
construction with G : Fq → Fq a permutation, H : Fq → Fq a function and
α in Fq. If either degG > degH > 1 with degG indivisible by p and α ̸=
±1 or degH > degG > 1 with degH indivisible by p, then for every linear
approximation (ψ, χ) of F with χ = (χ1, χ2) ̸= (1, 1),∣∣CF

χ,ψ

∣∣ ≤ 1

q

{
(degG− 1)(degH− 1) if χ1 = 1 or χ2 = 1 ,

(max{degG,degH} − 1)2 else .

Proof. If χ1 = 1 or χ2 = 1, then there is at most one linear trail through the
generalized Butterfly construction. In particular, if ψ = (ψ1, ψ2) and χ1 = 1,
then the correlation is equal to

CF
χ,ψ = CG

χ2,ψ2
CH
χ2,ψ1/ψα

2
.

Since G and H correspond to univariate polynomials, Weil’s bound implies∣∣CF
χ,ψ

∣∣ ≤ (degG− 1)/
√
q × (degH− 1)/

√
q .

By symmetry, the case χ2 = 1 is analogous.
If χ1 ̸= 1 and χ2 ̸= 1, then let ψi(xi) = ω(uixi) and χi(xi) = ω(vixi) with v1

and v2 nonzero. Up to a factor 1/q2, the correlation of the linear approximation
(ψ, χ) is equal to an exponential sum of the form (1) with

f(x1, x2) = v1G(x1 +αx2) + v2G(x2 +αx1) + v1H(x2) + v2H(x1)− u1x1 − u2x2 .

If degH > degG, then up to scaling the maximal degree homogeneous component
of f is equal to xd1+(v1/v2)x

d
2 with d = degH. By Lemma 1 with v = v1/v2 ̸= 0,

this defines a smooth projective hypersurface. The bound then follows from
Theorem 1. If degG > degH, then the maximal degree homogeneous component
of f is equal to (x1 + αx2)

d + (v2/v1) (x2 + αx1)
d with d = degG. Up to the

linear transformation (x1, x2) 7→ (x1 + αx2, x2 + αx1), which is invertible if and
only if α ̸= ±1, this defines the same hypersurface as xd1+(v2/v1)x

d
2 = 0. Hence,

the bound again follows from Lemma 1 and Theorem 1.

The condition α ̸= ±1 in Theorem 4 can be relaxed using Theorem 3. The
analysis of this case is similar to that of the Flystel construction in Section 6.
Avoiding the assumption degG ̸= degH is more technical, and nontrivial con-
ditions on G and H must be imposed to obtain a bound of order O(1/q). In
principle, however, Theorem 3 is in many cases sufficient.
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(b) χ2 = 1.

Fig. 2: Linear trails for a Butterfly construction.

4.4 Experimental results

An experimental verification of the bound in Theorem 4 is presented in Figure 3,
for q a prime and G and H monomial functions. The gap between the theoretical
bound and the experimental observations may be due to a lack of tightness, or
due to the fact that the experiment is necessarily limited to a small number of
choices for G, H, α and q. For example, although the bound only depends on the
maximum of the degrees of G and H, Figure 3a suggests that the minimum of the
degrees also has some influence on the maximum absolute correlation – at least
for monomial functions. In particular, for degG = 5, the linearity is highest for
degH = 2. Similarly, Figure 3b shows that the value of α may affect the result.

In any case, even if the bound is not tight, we expect it would be quite
technical to improve over it using the same methods. Indeed, using Theorem 2,
one can show that the dimension of the cohomology space H1

c (A
2,L) matches

the bound provided by Deligne’s theorem. Hence, the only error introduced in the
estimate is due to the relative signs of the eigenvalues of the action of Frobenius
on H1

c (A
2,L).

5 Feistel construction

In this section we analyze three-round Feistel ciphers with low-degree round
functions. Although the generalized open Butterfly construction from Section 4
is closely related to the two-round Feistel construction, its analysis is different
because the round functions are not of low degree. In addition, as recalled in
Section 5.2, at least three rounds are necessary for the maximum absolute cor-
relation to be of the order of 1/q for traditional Feistel ciphers over Fq.
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Fig. 3: Experimental verification of correlation bounds from Theorem 4 for the
generalized Butterfly construction F = Butterfly[G,H, α] over a finite field Fq
of prime order, and with G and H monomial functions.
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5.1 Definition

Figure 4 depicts three rounds of a Feistel cipher with round functions F1, F2

and F3, with respective degrees d1, d2 and d3. This construction will be denoted
by Feistel[F1,F2,F3]. For the purpose of later calculations, we introduce inter-
mediate variables z1 and z2, as shown in Figure 4. This leads to the following
implicit equations for Feistel[F1,F2,F3]:

x1 = z1 − F1(z2)

x2 = z2

y1 = z1 + F3(z2 + F2(z1))

y2 = z2 + F2(z1) .

In the following, z1 and z2 will be considered to be the inputs of a function with
outputs x1, x2, y1 and y2. As we will discuss in Section 5.3, the correlations of
linear approximations over Feistel[F1,F2,F2] are equal to the correlations of
(some) linear approximations of the function (z1, z2) 7→ (x1, x2, y1, y2).

x1 x2

⊞

⊞

⊞

y1 y2

F1

F2

F3

z1

×

z2 ×

Fig. 4: A three-round Feistel construction.

5.2 Related work

For two-round Feistel ciphers, an upper bound on the absolute correlation follows
fromWeil’s bound. This is because, as illustrated in Figure 5, there is at most one
linear trail with nonzero correlation for every linear approximation. In particular,
the correlation of (ψ, χ) is equal to

CF1

ψ1,ψ2/χ2
CF2

χ2,ψ1/χ1
,
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with ψ = (ψ1, ψ2) and χ = (χ1, χ2). If neither ψ1 = 1 and ψ2 = χ2 nor χ2 = 1
and ψ1 = χ1, then Weil’s bound yields the upper bound (d1−1)(d2−1)/q. Oth-
erwise, only one round function is active and Weil’s bound gives the weak bound
(max{d1, d2} − 1)/

√
q. In fact, linear approximations with absolute correlation

of the order of 1/
√
q cannot be avoided for a two-round Feistel cipher. At least

three rounds are necessary to obtain a bound of the order of 1/q.

⊞

⊞

F1

F2

ψ1 ψ2

χ2ψ1

χ1 χ2

ψ2/χ2ψ1

ψ1/χ1 χ2

Fig. 5: Linear trail through a two-round Feistel cipher.

For three-round Feistel ciphers, little can be proven about the correlations of
linear approximations with techniques from the literature. Even the case with F1,
F2 and F3 quadratic as multivariate polynomials over the base field Fp appears
to be out of reach. At most, one can compute the variance of the correlations of
linear approximations with respect to independent and uniform random round
keys. This is comparable to the result of Nyberg and Knudsen [30] for the key-
averaged probability of differentials in Feistel ciphers. However, as discussed in
the introduction, such bounds are much weaker.

5.3 Correlation bound

Let F = Feistel[F1,F2,F3]. As discussed in Section 2, the correlation of a linear
approximation (ψ, χ) for F with ψ(x) = ω(vTx) and χ(x) = ω(uTx) is equal to

CF
χ,ψ =

1

q2

∑
x∈F2

q

ω
(
vTF(x1, x2)− u1x1 − u2x2

)
.

The substitution x1 = z1 − F1(x2) shows that C
F
χ,ψ is equal to

CF
χ,ψ =

1

q2

∑
z∈F2

q

ω
(
vTF(z1 − F1(z2), z2) + u1F1(z2)− u1z1 − u2z2

)
.

As pointed out in Section 5.1, the outputs (y1, y2) = F(z1 − F1(z2), z2) satisfy
y1 = z1 + F3(z2 + F2(z1)) and y2 = z2 + F2(z1). It follows that the correlations
can be rewritten as follows:

CF
χ,ψ =

1

q2

∑
x∈F2

q

ω
(
v1z1+v1F3(z2+F2(z1))+v2z2+v2F2(z1)+u1F1(z2)−u1z1−u2z2

)
.
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Up to a factor 1/q2, this is an exponential sum of the form (1) with f given by

f(z1, z2) = v1F3(z2+F2(z1))+v2F2(z1)+u1F1(z2)+(v1−u1)z1+(v2−u2)z2 . (4)

The proof of our upper bound on the absolute correlations of linear approxima-
tions for three-round Feistel ciphers is based on Theorem 2. This depends on the
non-degeneracy of f with respect to its Newton polyhedron. Lemma 2 verifies
this condition for most masks u1 and v1. For the remaining masks, an argument
based on linear trails will be used to complete the bound.

Lemma 2. Let F1, F2 and F3 be functions on Fq with degrees d1, d2 and d3 ≤ d1
respectively, all at least two and indivisible by the characteristic of Fq. If d1 = d3,
then suppose F1 and F3 have the same leading term. For all u1 ̸= 0, u2, v1 ̸= 0
and v2 such that u1 + v1 ̸= 0, the Newton polyhedron of f defined by (4) is
the triangle ∆(f) with vertices (0, 0), (d2d3, 0) and (0, d1) shown in Figure 6.
Furthermore, f is commode and non-degenerate with respect to ∆(f).

Proof. Let a1, a2 and a3 denote the leading coefficients of F1, F2 and F3 respec-
tively. If d1 = d3, then a1 = a3 by assumption. The Newton polyhedron of f is
determined by its extremal points. It is sufficient to determine the highest degree
terms in z1 and z2, and to show that all other exponents lie within the convex
hull of the corresponding two points and the origin.

Since v1 ̸= 0, the term of f with highest degree in z1 is equal to v1a2a3z
d2d3
1 .

The term with highest degree in z2 depends on the relative size of d1 and d3.
If d1 > d3, then since u1 ̸= 0, it is u1a1z

d1
2 . If d1 = d3, then the term is

(u1a1 + v1a3)z
d1
2 and this is nonzero because a1 = a3 and u1 + v1 ̸= 0. It follows

that the Newton polyhedron of f contains the points (d2d3, 0) and (0, d1). The
convex hull of these points, together with zero, is the triangle shown in Figure 6.
It suffices to verify that every monomial in f corresponds to a point within this
triangle. By the binomial formula, the monomials in f are contained in the set{
zi1

∣∣ 0 ≤ i ≤ d2

}
∪
{
zi2

∣∣ 0 ≤ i ≤ d1

}
∪
{
z
i(d3−j)
1 zj2

∣∣ 0 ≤ i ≤ d2, 0 ≤ j ≤ d3

}
.

These points, represented in blue in Figure 6, are indeed within the triangle.

The triangle in Figure 6 has only one face τ not containing the origin, and
the points on this face have coordinates equal to ((1 − e)d2d3, ed1) with e in
[0, 1]. If d1 > d3, then the only exponents of monomials that can occur in f and
that are on this face are equal to (d2d3, 0) and (0, d1). If d1 = d3, then the face
τ coincides with the blue line in Figure 6. The points on this line with integer
coordinates correspond to the exponents of monomials in (z2 + a2z

d2
1 )d3 . Hence,

fτ (z1, z2) = u1a1z
d1
2 +

{
v1
(
z2 + a2 z

d2
1

)d3
if d1 = d3 ,

v1a2a3z
d2d3
1 else .
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The non-degeneracy condition is quite different for the cases d1 > d3 and d1 = d3.
If d1 > d3, then the partial derivatives are given by

∂fτ
∂z1

= v1a2a3d2d3z
d2d3−1
1 ,

∂fτ
∂z2

= u1a1d1z
d1−1
2 .

It follows that z1 = z2 = 0 is the only solution of ∂fτ/∂z1 = 0 = ∂fτ/∂z2, so fτ
is non-degenerate with respect to its Newton polyhedron. If d1 = d3, then the
partial derivatives are

∂fτ
∂z1

= v1a2d2d3(z2 + a2z
d2
1 )d3−1zd2−1

1

∂fτ
∂z2

= v1d3(z2 + a2z
d2
1 )d3−1 + u1a1d1z

d1−1
2 .

Solutions to ∂fτ/∂z1 = 0 satisfy either z2 + a2z
d2
1 = 0 or z1 = 0. In the former

case, ∂fτ/∂z2 = 0 implies z2 = 0 whence z1 = 0. In the latter case, we get
v1d3z

d3−1
2 = 0 so that z2 = 0. It follows that f is non-degenerate.

z1

z2

d2d3

d1

d3

Fig. 6: Newton polyhedron of f .

The condition d1 ≥ d3 in Lemma 2 is necessary to ensure non-degeneracy.
Nevertheless, and although this is not stated, the bound in Theorem 5 is also
applicable to Feistel ciphers with d1 < d3. Indeed, one can apply Theorem 5 to
the inverse, which is the same but with F1 and F3 swapped. Since correlation
matrices are unitary, any bound for F−1 transfers to a bound for F.

Theorem 5. Let F = Feistel[F1,F2,F3] with round functions F1, F2 and F3

of degrees d1, d2 and d3 ≤ d1 all greater than two and indivisible by the char-
acteristic of Fq. If d1 = d3, then suppose that F1 and F3 have the same leading
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coefficient. If F2 is a permutation, then for all characters ψ = (ψ1, ψ2) and
χ = (χ1, χ2) ̸= (1, 1),

∣∣CF
χ,ψ

∣∣ ≤ 1

q


(d1 − 1)(d2 − 1) if ψ1 ̸= 1 and χ1 = 1 ,

(d3 − 1)(d2 − 1) if ψ1 = 1 and χ1 ̸= 1 ,

(d1 − 1)(d3 − 1) if ψ1χ1 = 1 ,

(d1 − 1)(d2d3 − 1) else .

Proof. Lemma 2 is applicable when ψ1 ̸= 1, χ1 ̸= 1 and ψ1χ1 ̸= 1, which
corresponds to the ‘else’ case in the theorem statement. Let f be as in (4). The
lemma shows that f is commode and non-degenerate, so Theorem 2 is applicable.
The dimension of Hn

c (A
n,L) is equal to the Newton number ν(f) of ∆(f):

ν(f) =
∑

I⊆{1,2}

(−1)|I|(2− |I|)! VolI ∆(f)

= 2 · (d1d2d3/2)− d2d3 − d1 + 1

= (d2d3 − 1)(d1 − 1) .

This proves the bound for the ‘else’ case. In the first three cases, there is at most
one trail with nonzero correlation (see Figure 7). Hence, Weil’s bound can be
used. For the first two cases, this yields bounds (d1 − 1)/

√
q × (d2 − 1)/

√
q and

(d2 − 1)/
√
q × (d3 − 1)/

√
q. For the third case, the fact that there is at most

one trail with nonzero correlation depends on the fact that F2 is a permutation.
Weil’s bound gives (d1 − 1)/

√
q × (d3 − 1)/

√
q.
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(a) ψ1 ̸= 1 and χ1 = 1.
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(b) ψ1 = 1 and χ1 ̸= 1.

⊞

⊞

⊞

F1

F2

F3

ψ1 ψ2

1ψ1

χ1 1

χ2χ1

ψ2ψ1

1 1
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(c) ψ1χ1 = 1.

Fig. 7: Linear trails for a three-round Feistel construction.

In Theorem 5, the condition that F2 is a permutation cannot be dropped.
Indeed, as shown in Figure 8, if F2 is not a permutation then there exists a linear
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trail that only activates F2. Generically, this trail has absolute correlation on the
order of 1/

√
q. It follows that F2 must be a permutation to achieve a bound of

order 1/q.

⊞

⊞

⊞

F1

F2

F3

1 χ2

χ21

1 χ2

χ21

11

1 χ2

11

Fig. 8: Linear trail through a three-round Feistel cipher with non-bijective F2.

5.4 Experimental results

Experimental results for two Feistel constructions with round functions of de-
grees that lead to the same bound are presented in Figure 9. It is worth noting
that if F2 is not a permutation, then the linearity is indeed very far above the
bound from Theorem 5.

For Feistel[F1,F2,F3] with functions F1, F2 and F3 of degree similar to the
degree of the functions functions G and H in Butterfly[G,H, α], from Figures 3
and 9 the bound appears to be less tight in the case of the three-round Feistel
construction. The reason for this is that the overall degree of the construction is
higher, leading to a higher dimension of the cohomology space H1

c (A
2,L) and

hence more opportunities for eigenvalues to cancel.

6 Generalized Flystel construction

The Flystel construction was first introduced in [12] as the non-linear component
in the family of hash functions Anemoi. In this section we analyze a general-
ization of the Flystel construction. Despite the similarity with the generalized
Butterfly and Feistel constructions from Sections 4 and 5, a specific analysis is
necessary because Theorems 1 and 2 are not applicable.
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Fig. 9: Experimental verification of correlation bounds from Theorem 5 for the
three-round Feistel construction F = Feistel[F1,F2,F3] over a field Fq of prime
order and with F1, F2 and F3 monomials of degrees d1, d2 and d3 respectively.

6.1 Definition

Let H1 : Fq → Fq and H2 : Fq → Fq be two functions, and let G : Fq → Fq be
a permutation. The closed generalized Flystel construction (see Figure 10b) will
be denoted by F = Flystel[H1,G,H2]. Algebraically, the function F : F2

q → F2
q

is given by F(x1, x2) = (y1, y2), where

y1 = G(x1 − x2) + H1(x1)

y2 = G(x1 − x2) + H2(x2) .

The open generalized Flystel construction is shown in Figure 10a. It corresponds
to the map (x1, x2) 7→ (y1, y2), with

y1 = x1 − H1(x2) + H2(x2 − G−1(x1 − H1(x2)))

y2 = x2 − G−1(x1 − H1(x2)) .

For the original Flystel construction, G, H1 and H2 are given by G(x) = xd,
H1(x) = βx2 + γ and H2(x) = βx2 + δ with β a non-zero constant in Fq.

Like for the Flystel construction, for a given tuple (H1,G,H2), the corre-
sponding closed and open generalized Flystel constructions are CCZ-equivalent.
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(b) Closed variant.

Fig. 10: Generalized Flystel construction.

Indeed in [12, Proposition 1] the proof of CCZ-equivalence does not require G
to be a monomial permutation or H1 and H2 to be quadratic functions, hence
the arguments carry over to the generalized Flystel construction. Therefore, as
mentioned in Section 4.1, to study the linear properties of the Flystel construc-
tion, it is sufficient to consider the closed variant. The closed variant has the
advantage that it is of low degree if H1, G and H2 are of low degree.

6.2 Related work

The original Flystel construction over prime-order fields was first investigated
in [13], and it was conjectured that the absolute correlation of any nontrivial
linear approximation is at most (log q)/q. The same question was left as an open
problem in [11]. The conjecture has been verified experimentally for different
values of q and d. For small values of d, experiments have suggested even more
precise bounds such as 2/q for d = 3 and 3.5/q for d = 5.

In Section 6.3, we prove the bound (d − 1)/q. This proves the conjecture
from [11, 13] for d ≤ log q, and matches the experimental results for low values
of d. For applications such as Anemoi, these are the most relevant cases.

6.3 Correlation bound

As mentioned above, although the Flystel construction is derived from the But-
terfly and three-round Feistel constructions, none of the results used in Sec-
tion 4.3 and Section 5.3 apply here. Instead, we will use Theorem 3. To apply
this result to the Flystel construction, the following lemma will be useful.

Lemma 3. Let d ≥ 2 be an integer indivisible by the characteristic of Fq. The
projective hypersurface in P1 defined by (x1−x2)d = 0 contains a unique singular
point [1 : 1]. It is of quasi-homogeneous type with Milnor number equal to d− 1.
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Proof. Every singular point on the hypersurface defined by (x1 − x2)
d = 0 sat-

isfies x1 = x2. Hence, projectively, [1 : 1] is the only such point. To compute
the Milnor number of this isolated singularity, we restrict to the open affine
set defined by x2 = 1. The affine hypersurface in A1 defined by h(x − 1) = 0
with h(x) = xd has x = 1 as its only singular point. Up to translation, we may
consider the affine hypersurface defined by h = 0 with singularity in the origin.
Since h is homogeneous, and therefore quasi-homogeneous, the Milnor number
of the singularity is equal to d− 1 (see Section 3.4).

Using Theorem 3, together with Lemma 3 and an analysis of linear trails, we
now prove the following bound for the correlations of linear approximations of
the generalized Flystel construction. In Theorem 6, we focus on the case degG ≥
max{degH1,degH2} because this corresponds to the Flystel construction as used
in Anemoi.

Theorem 6. Let F = Flystel[H1,G,H2] with H1, H2 and G functions on
Fq of degree at least two and coprime to the characteristic p of Fq. Suppose
that degG ≥ max{degH1,degH2}, and that the degree of the second-highest-
degree term of G is strictly less than max{degH1,degH2}. Furthermore, suppose
that if degH1 = degH2, then H1 and H2 have the same leading coefficient. If
max{degH1,degH2}/ degG > p/(p + (p − 1)2), then for all linear approxima-
tions (ψ, χ) of F with χ = (χ1, χ2) ̸= (1, 1),

∣∣CF
χ,ψ

∣∣ ≤ 1

q


(degG− 1)(degH2 − 1) if χ1 = 1 ,

(degG− 1)(degH1 − 1) if χ2 = 1 ,

(degH1 − 1)(degH2 − 1) if χ1χ2 = 1 ,

(degG− 1)(max{degH1,degH2} − 1) otherwise .

Proof. Let ψ = (ψ1, ψ2) and χ = (χ1, χ2). If χ1 = 1, χ2 = 1 or χ1χ2 = 1,
then there is at most one linear trail with nonzero correlation. These trails are
shown in Figure 11. Hence, for the first three cases, the result follows from Weil’s
bound. For example, for the third case, we have∣∣CF

χ,ψ

∣∣ = ∣∣CH1

χ1,ψ1

∣∣ ∣∣CH2

χ2,ψ2

∣∣ ≤ (degH1 − 1)/
√
q × (degH2 − 1)/

√
q .

The first two cases are analogous. For the remaining case, we rely on Theorem 3.
The correlation CF

χ,ψ is equal to S(f)/q2, with S(f) as in (1) and

f(x1, x2) = (v1 + v2)G(x1 − x2) + v1H1(x1) + v2H2(x2)− u1x1 − u2x2 ,

assuming ψi(xi) = ω(vixi) and χi(xi) = ω(uixi). The function f is of degree
d = degG and, up to a nonzero multiple, its degree-d homogeneous component
is equal to fd(x1, x2) = (v1 + v2)(x1 − x2)

d with v1 + v2 ̸= 0. By Lemma 3,
the projective hypersurface defined by (x1 − x2)

d = 0 has a unique isolated
quasi-homogeneous singularity at [1 : 1] with Milnor number d− 1.

Furthermore, the projective hypersurface defined by fd′(x1, x2) = 0 with
d′ = deg f − fd does not contain the point [1 : 1]. Indeed, if degH1 > degH2 or
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degH2 > degH1 then fd′ is given by (up to scaling)

fd′(x1, x2) = vix
degHi

i .

This depends on the fact that the second-highest degree term in G is of degree
strictly less than degHi. Hence, fd′(1, 1) ̸= 0. Otherwise, if degH1 = degH2,
then up to scaling (since H1 and H2 have the same leading coefficient)

fd′(x1, x2) = v1x
degH1

1 + v2x
degH2

2 .

Hence, fd′(1, 1) = v1 + v2 ̸= 0. Theorem 3 implies that H2
c (A

2,L) is pure of
weight two and of dimension

(d−1)2− (d−max{degH1,degH2}) (d−1) = (d−1)(max{degH1,degH2}−1) .

It follows that the exponential sum S(f) satisfies the bound

|S(f)| ≤ (degG− 1)(max{degH1,degH2} − 1) q ,

and this implies the result.
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Fig. 11: Linear trails for the Flystel construction.

In particular, this means that for the Flystel construction used in Anemoi,
we solve Conjecture 1 in [13] and open problem 7.1 in [11]. Explicitly, we have
the following corollary.

Corollary 1. Let F = Flystel[H1,G,H2], where G(x) = xd, H1(x) = βx2 + γ
and H2(x) = βx2+δ with d ≥ 2 indivisible by the characteristic of Fq, γ and δ in
Fq, and β in F×

q . For all linear approximations (ψ, χ) with χ = (χ1, χ2) ̸= (1, 1),

∣∣CF
χ,ψ

∣∣ ≤ 1

q

{
1 if χ1χ2 = 1 or χ1 = 1 or χ2 = 1 ,

d− 1 otherwise .
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6.4 Experimental results

An experimental verification of Theorem 6 is shown in Figure 12. For simplicity,
only results for monomial functions H1, G and H2 are shown. Like in Sections 4
and 5, Figure 12a suggests that for functions H1, G and H1 of low degree our
bound is tighter than if the degree is higher.

Note that Theorem 6 is valid regardless of whether or not G is a permutation.
This is confirmed by Figure 12b, but the experimental results also suggest that
the bound may be refined – at least for the case of monomial functions – if G is
a permutation, which is the case for the generalized Flystel construction.

7 Conclusions

The main message of this work is that bounds on exponential sums derived from
purity and vanishing theorems for ℓ-adic cohomology have direct applications
to linear cryptanalysis. To demonstrate the potential of this approach, we have
applied three different results (Theorem 1 due to Deligne, Theorem 2 due to
Denef and Loeser, and Theorem 3 due to Rojas-León) to obtain correlation
bounds for several important constructions that could not be dealt with using
other methods. We expect that the same results will be useful to analyze many
other constructions beyond those considered here.

Although Theorems 1 to 3 all impose some conditions that usually do not
hold for all choices of the masks, in our examples these edge cases generally
coincided with linear approximations for which there is at most one linear trail
with nonzero correlation. It would be of interest to understand this, and other
aspects of linear cryptanalysis, from the point of view of ℓ-adic cohomology. In
addition, detailed calculations of the cohomology spaces might allow refining our
bounds.
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