
Verifiable Oblivious Pseudorandom Functions
from Lattices: Practical-ish and Thresholdisable⋆

Martin R. Albrecht1 and Kamil Doruk Gur2⋆⋆

1 King’s College London and SandboxAQ
martin.albrecht@{kcl.ac.uk,sandboxaq.com}

2 Department of Computer Science, University of Maryland
dgur1@cs.umd.edu

Abstract. We revisit the lattice-based verifiable oblivious PRF construc-
tion from PKC’21 and remove or mitigate its central three sources of
inefficiency. First, applying Rényi divergence arguments, we eliminate
one superpolynomial factor from the ciphertext modulus q, allowing us
to reduce the overall bandwidth consumed by RLWE samples by about a
factor of four. This necessitates us introducing intermediate unpredictabil-
ity notions to argue PRF security of the final output in the Random
Oracle model. Second, we remove the reliance on the 1D-SIS assump-
tion, which reduces another superpolynomial factor, albeit to a factor
that is still superpolynomial. Third, by applying the state-of-the-art in
zero-knowledge proofs for lattice statements, we achieve a reduction in
bandwidth of several orders of magnitude for this material. Finally, we
give a t-out-of-n threshold variant of the VOPRF for constant t and with
trusted setup, based on a n-out-of-n distributed variant of the VOPRF
(and without trusted setup).

1 Introduction

An oblivious pseudorandom function (OPRF) is a two-party protocol between a
client and a server allowing the client to derive a pseudorandom output based on
their input. In particular, an OPRF allows a client to receive a pseudorandom
function (PRF) evaluation on an input x from a server with key k. The security
of the protocol then refers to (i) the server not learning anything about the input
x and (ii) the client not learning anything besides the PRF evaluation of x under
k. An OPRF is additionally verifiable if the client is guaranteed that the output
received is indeed evaluated under a committed key. (V)OPRFs recently gained
considerable popularity with important applications including but not limited
to secure keyword search [FIPR05], private set intersection [JL09], secure data
de-duplication [KBR13], password-protected secret sharing [JKK14,JKKX16],
and more popularly password-authenticated key exchange(PAKE) [JKX18] and
private lightweight authentication mechanisms [DGS+18]. A systematisation of
knowledge of OPRFs is given in [CHL22].

⋆ This is the full version of [AG24] which appeared in Asiacrypt 2024.
⋆⋆ Work partially done while working for SandboxAQ.

Unfortunately, while VOPRFs have useful practical applications and an
abundant number of constructions, these are insecure in the post-quantum setting,
i.e. in the presence of a quantum adversary, since they rely on classical assumptions.
Hence, it is required to design VOPRFs relying on plausibly quantum-resistant
assumptions so that the world of functionalities afforded by VOPRFs can also be
realised in this new era. Yet, like many other functionalities in a post-quantum
setting, post-quantum secure VOPRFs are scarce. We give an overview of the
current state of the art in Table 1, extending a table from [ADDG24].

Table 1: Post-quantum (V)OPRF candidates in the literature
work assumption r communication model

plain

[ADDS21] R(LWE), SIS 2 ≈ 2MB semi-honest, QROM
[SHB21] Legendre PRF 3 ≈ λ· 13K semi-honest, pp, ROM
[BKW20] CSIDH 3 424KB malicious client
[HMR23] CSIDH 2 21KB semi-honest, ts
[HMR23] CSIDH 4 35KB malicious client, ts
[HMR23] CSIDH 258 25KB semi-honest
[DGH+21] [BIP+18] 2 80B semi-honest, pp
[FOO23] AES ? 4746KB malicious client, pp
[ADDG24] lattices, [BIP+18] 2 2.5MB + 10KB malicious client, ROM
[ADDG24] lattices, [BIP+18] 2 15MB + 5.3KB malicious client, ROM
[APRR24] [APRR24] 2 4.8B + 114.5B semi-honest, pp, wPRF

verifiable

[ADDS21] R(LWE), SIS 2 > 128GB malicious, QROM
[ADDG24] lattices, [BIP+18] 2 2.8MB + 110KB malicious, ROM
[ADDG24] lattices, [BIP+18] 2 15MB + 60KB malicious, ROM
[BDFH24] Legendre PRF 9 911KB malicious, ROM
[Bas24] [Bas24] 2 28.9kB malicious, ROM
this work, Q = 216 R(LWE), SIS 2 108.3kB + 188.6kB malicious, ROM
this work, Q = 264 R(LWE), SIS 2 221.5kB + 315.9kB malicious, ROM

The column “r” gives the number of rounds. ROM is the random oracle model, QROM the quantum
random oracle model, “pp” stands for “preprocessing”, “ts” for “trusted setup”, “wPRF” for PRFs
that accept random inputs. When bandwidth is reported as a sum, this is for a one-time offline
cost and online costs per query respectively, where online costs are amortised over 64 queries for
[ADDG24]. See Table 2 for details on our parameters.

In particular, VOPRFs based on lattices have only a limited number of con-
structions. The first known round-optimal post-quantum VOPRF in [ADDS21]
is more of a feasibility result rather than a practical proposal due to the required
zero-knowledge proofs causing the communication to be in GBs. Even ignoring this
cost, bandwidth per query was estimated at about 2MB in the semi-honest setting.
More recently [ADDG24] adapted the “Crypto Dark Matter” PRF [BIP+18] to
the lattice setting using fully-homomorphic encryption [CGGI20]. The resulting
construction achieves practical sizes but is slow to evaluate for the server, and
rather complex to implement by relying on the full machinery of fully homomor-

2

Table 2: Example parameters
logQ λ (d, log q, log σ′) |c| |cx| |dx| size

4 100 (4096, 137, 35) (68.5, 36.1) (68.5, 73.2) (1.8, 38.8) (104.6, 182.3)
16 95 (4096, 143, 41) (71.5, 36.8) (71.5, 75.5) (1.8, 39.8) (108.3, 188.6)
32 90 (4096, 151, 49) (75.5, 38.0) (75.5, 79.4) (1.8, 41.0) (113.5, 197.7)
64 167 (8192, 169, 67) (169.0, 52.5) (169.0, 88.6) (1.8, 56.5) (221.5, 315.9)

Q is the number of queries supported, λ the dRLWE security level, d, q are dRLWE dimension and
modulus and σ′ the size of the drowning noise. All sizes are in kB, (x, y) means size of value and
proof except in the the last column which gives the offline and online sizes. We always target a
correctness error of 2−100.

phic encryption. Moreover, in addition to the PRF assumption in [BIP+18], the
construction relies on a heuristic argument for verifiability.

For the threshold setting, the concurrent work of [KCM24] is most similar
to ours. There, the authors propose four different distributed OPRFs based
on the Legendre PRF in a setting where client-server communication is round
optimal but servers communicate between client evaluations. Our construction
does not have this requirement after the initial setup. Similar to our construction,
the construction in [KCM24] is only efficient for small (t, n) pairs. Unlike our
constructions, however, [KCM24] requires n servers to be available for evaluation
for different settings whereas we only require t for security with aborts. The
constructions also have weaker security guarantees compared to ours. Out of the
four, only the last constructions promises security against malicious servers with
a dishonest majority, which relies on the security guarantees of the underlying
MPC operations. This causes issues with some security assumptions, as neither
client privacy nor verifiability is provided against ≥ t or n corrupted servers
respectively. Our construction provides these guarantees also when n servers are
corrupted. On other hand, [KCM24] achieves low bandwidth between clients and
servers of roughly n · λ2 bits, which is much smaller than our construction.

1.1 Technical Overview

To present our contributions, we begin with a high-level overview of the construc-
tion from [ADDS21] and highlight its main bottlenecks. The VOPRF construction
is based on the ring instantiation of the PRF by Banerjee and Peikert [BP14]

Fk(x) =

⌊
p

q
· aF (x) · k

⌉
(1)

where k ∈ Rq is the key with small coefficients represented in {−q/2, . . . , q/2}
and aF (x) is essentially a hash function processing the client input x. Security
of the construction can be reduced to the hardness of RLWE. The construction
in [ADDS21] instantiates this framework with uniformly random public vectors
a0,a1 ∈ R1×ℓ

q and a bit decomposition function G−1. Given a public a ∈ R1×ℓ
q

the high-level protocol is then:

1. The server publishes a commitment c := a · k + e to a small key k ∈ R.

3

2. For input x, the client chooses a small s ∈ R and eC ∈ R1×ℓ, and computes
cx := a · s+ eC + aF (x) mod q.

3. Using k, the server sends dx := cx · k + eS mod q for small eS ∈ R1×ℓ.

4. The client finally outputs y =
⌊
p
q · (dx − c · s)

⌉
.

Since dx = a·s·k+aF (x)·k+eC ·k+eS, if eS is chosen from a distribution that
hides the presence of additive terms eC ·k, e·s and the absence of the additive term
ex (which follow some narrow distribution Ea0,a1,x,σ) then it is indistinguishable
from d′

x = (a ·k+e) · s+eS+(aF (x) ·k+ex) = c · s+(aF (x) ·k+ex)+eS. Then
if ex is chosen from a proper distribution [BP14], aF (x) · k+ ex and consequently
dx leaks nothing about k by the RLWE assumption. Similarly, if s chosen from a
proper RLWE secret distribution and e is from a discrete Gaussian, the client
message cx = a · s+ e+ aF (x) is also indistinguishable from uniform by RLWE.

Correctness is satisfied with high probability regardless of the choice of k by the
one-dimensional short integer solution (1D-SIS) assumption [BV15]. Verifiability
is then achieved with the help of non-interactive zero-knowledge arguments of
knowledge showing c,cx, and dx are computed correctly.

The above construction is intuitive in following well-established pre-quantum
Diffie-Hellmann blueprints. Moreover, its simple algebraic nature (and instantia-
tion in the standard model, except potentially for zero-knowledge proofs) allows
for extensions such as threshold variants.

However, the concrete instantiation is highly inefficient due to three reasons.

First, the correctness of the PRF adds a superpolynomial factor to the modulus
q to ensure correct rounding which in the end results in large parameters. Indeed,
to thwart adversaries that maliciously sample k such that aF (x) · k produces a
rounding error for a target value x, [ADDS21] relies on the 1D-SIS assumption
as just mentioned. This assumption requires q ≫ 22λ, i.e. more than what we
would naively expect to have correct rounding with overwhelming probability.3

Second, to hide the additive terms eC · k, e · s and ex, the eS has to have
superpolynomial size in the norm of these terms. This allows for an argument
based on statistical distance to go through.

Third, the NIZKAoKs required for verifiability and to protect against malicious
clients add further overheads as these relations require non-trivial statements. In
particular, the proof that cx is correctly computed has to show cx indeed contains
aF (x) without revealing the secrets x, s, or eC. Since aF (x) is highly irregular
with calls to bit decompositions and two different public vectors, [ADDS21]
used the NIZKAoK construction from [YAZ+19] which proves rank-1 constraints
(R1CS) over Zq, breaking the native structure of the protocol. Combined with
large parameters this causes bandwidth in the GBs.

3 Concretely, [ADDS21] picks log(q) ≈ 256 and a ring dimension of 214 for the semi-
honest setting, i.e. without considering maliciously chosen k. This leads to a com-
munication cost of 2MB already; relying on the 1D-SIS assumption would require
log(q) ≈ 2048 based on SIS estimates provided by the lattice estimator [APS15].

4

1.2 Contributions

In this work, we resolve or reduce the above-mentioned sources of inefficiency.

First, we avoid relying on the 1D-SIS assumption, by borrowing a trick from
the non-interactive key exchange in [GdKQ+23]. Instead of defining the PRF
output as ⌊pq · (a

F (x) ·k)⌉, we define it as ⌊pq · (a
F (x) ·k+r)⌉ where r is the output

of some Random Oracle called on x and c: r := Hr(x, c). In the Random Oracle
model, r is independent of k and thus ⌊pq ·(a

F (x) ·k+r+eC ·k+eS)⌉ will round to

the correct value ⌊pq ·(a
F (x)·k+r)⌉ with a probability to ≈ 1−∥eC ·k+eS∥∞/(q/p).

This still requires a superpolynomial gap between q and ∥eC · k + eS∥∞ but this
gap is comparable to that in the semi-honest setting of [ADDS21].

Second, we change the way how we analyse eS and remove the superpolynomial
dependency on the norm of additive terms. To achieve this, we use a Rényi
divergence based approach instead of the statistical distance. However, for this, we
have to replace the simulation-based security in the standard model in [ADDS21]
with a game-based notion in the Random Oracle model. In more detail, except
in rather particular circumstances, we cannot apply Rényi divergence arguments
to decision problems [BLR+18]. To work around this, we first show that our
construction based on [ADDS21] achieves the notion of unpredictability, which we
then upgrade to PRF security. Overall, this leads to a bandwidth improvement of
roughly an order of magnitude when compared with the semi-honest parameters
of [ADDS21] (and without NIZKAoK).

Third, we replace the NIZKAoK [YAZ+19] with that from [LNP22] com-
pressed with LaBRADOR [BS23] and also work in larger rings Rq with lattice
statements. This improves bandwidth by several orders of magnitude.

Overall, we obtain the sizes reported in Table 2. Compared with [ADDS21],
our work allows for practical-ish parameters. Compared with [ADDG24], our
bandwidth requirements are smaller if few evaluations are required. In terms of
computational burden, we note that [ADDG24] has an expensive computation on
the server side (TFHE bootstrapping) whereas we have an expensive computation
on the client side (proving well-formedness with a complex statement).

Finally, we extend the functionality of the VOPRF and build multiparty
protocols. We use n-out-of-n and t-out-of-n threshold VOPRFs which consist
of n servers jointly evaluating the input x and n (respectively t) servers are
required to generate the output. The n-out-of-n construction is immediate from
the key-homomorphic properties of the VOPRF. To achieve the more interesting
t-out-of-n setting, we exploit that in the VOPRF setting, we expect t to be
quite small, i.e. constant. Moreover, we assume a trusted setup. While this is a
significant limitation of this work, we think this assumption is justified in the
VOPRF setting, where one entity may aim to avoid single points of failure, rather
than multiple parties coming together to, say, validate some statement, i.e. the
threshold signature setting. In our approach, we essentially output

(
n
t

)
copies

of the n-out-of-n setting. We use rejection sampling to enforce that these are
all well-distributed. To achieve verifiability in the t-out-of-n case we rely on an
additional cut-and-choose type argument to be able to use weaker NIZKAoKs.

5

2 Preliminaries

For integers a and b where a < b we use [a, b] to represent the set {a, a+1, . . . , b−
1, b}. If a = 0 and b = n − 1 we use the notation [n] instead. For a vector b
we use b[i] as the indexing operator. We denote the output of probabilistic
algorithms with ← and deterministic ones with :=. Similarly for a distribution
D or a bounded set S if an element x is sampled according to distribution D or
uniformly random from S we denote it as x← D and x← S respectively. For two
distributions, we use ≈c to denote they are computationally indistinguishable.
A PPT algorithm is a probabilistic algorithm with running time polynomial in
the security parameter λ. We say a function is negligible in λ if λ−ω(1) and write
r1 ≫ r2 as short-hand for r1 ≥ λω(1) · r2. We denote the ℓx norm of a vector with
∥·∥x. If x = 2 and clear from the context, we omit the subscript. A distribution
D is B bounded if Pr [∥x∥ ≥ B : x← D] < δ for a negligible δ. We also consider
the rounding operation ⌊·⌉ to the nearest integer (rounding down if there is a tie)
and ⌊x⌉q′ := ⌊q′/q · x⌉ from Zq to Zq′ for q

′ < q and x ∈ Zq. We use lowercase
letters to denote ring elements and boldface lowercase letters to denote vectors.

We use power of two cyclotomic rings in this work. For a modulus q ∈ Z,
we consider the polynomial ring R = Z[X]/⟨XN + 1⟩ and Rq := R/qR for a
power-of-two N . The set R≤c is then the set of all elements of R with coefficients
that have an absolute value of at most c. Norms of ring elements are defined over
the coefficient vectors of the said elements and norms of vectors of ring elements
are norms of the concantenation of the coefficient vectors.

Define G : Rℓ×ℓ
q → R1×ℓ

q to be the linear operation corresponding to left

multiplication by (1, 2, . . . , 2ℓ−1). Further, define G−1 : R1×ℓ
q → Rℓ×ℓ

q to be the

bit decomposition operation that essentially inverts G i.e. the ith column of
G−1(a) is the bit decomposition of ai ∈ Rq into binary polynomials.

For a0,a1 ∈ R1×ℓ
q , x ∈ {0, 1}L, and i ∈ [L] define

ax\i := G−1
(
axi+1 ·G−1

(
axi+2 ·G−1

(
· · ·
(
axL−2

·G−1
(
axL−1

))
· · ·
)))
∈ Rℓ×ℓ

q .

Now, for a client input x ∈ {0, 1}L, let Ea0,a1,x,σ be the distribution of all ex
computed as e =

∑L−2
i=0 ei · ax\i + eL−1 where ∀i ∈ [L] : ei ← R1×ℓ

χσ
.

2.1 Discrete Gaussian Distributions over Polynomial Rings

The discrete Gaussian distribution over R is defined as follows:

Definition 1. For x ∈ Rm let ρv,s(x) = exp(−π∥x− v∥22/s2) be the Gaus-
sian function of parameters v ∈ Rm and s ∈ R. Then the discrete Gaussian
distribution Dm

v,s centered at v is

Dm
v,s = ρv,s(x)/ρv,s(Rm) where ρv,s(Rm) =

∑
x∈Rm

ρv,s(x).

When there is only a single element in a vector, we omit the superscript and if
v is the zero-vector, we omit the subscript v. When s exceeds the smoothing

6

parameter ηε(Rm) ≤ ω(
√
log(mN)), Dm

s behaves like a continuous Gaussian
of standard deviation of σ = s/2π. The following lemmas will be useful when
we discuss our key generation algorithm for our threshold construction where
we need to argue about the distribution of key shares based on properties of
Gaussians.

Lemma 1. [MP13, Theorem 3.3] Let s be a parameter exceeding the smoothing
parameter by a factor of at least

√
2 and xi for i ∈ [n] be independent samples

from Dm
s . Then the distribution of x :=

∑
i

xi is statistically close to Dm
s
√
n
.

For our threshold construction, we rely on rejection sampling [Lyu12] to
guarantee each partial key adheres to a particular distribution. The following
lemma shows for a vector of ring elements x sampled from a Gaussian, the ℓ2
norm is bounded for all but negligible probability:

Lemma 2. [Lyu12, Lemma 4.4 adapted] For any γ > 1, we have

Pr
[
∥x∥2 > γ · σ ·

√
m ·N : x← Dm

s

]
< γmN · emN ·(1−γ2)/2.

To be able to argue that our key shares in the t-out-of-n setting are no different
compared with a key sampled from an independent Gaussian distribution, we
have the following lemma that allows us to decide on a σ and the expected
number of repetitions M in rejection sampling:

Lemma 3. [Lyu12, Lemma 4.5 adapted] For a V ⊆ Rm, let T = maxv∈V ∥v∥2.
For a fixed t with t = ω(

√
log(mN)) and t = o(log(mN)) if σ = α · T for any

positive α then:

Pr
[
M ≥ Dm

s (x)/Dm
v,s(x) : x← Dm

s

]
≥ 1− ϵ

where M = et/α+1/(2(α2)) and ϵ = 2e−t2/2.

For practical set of parameters, M grows slowly which is useful for arguing that
rejection sampling does not need too many trials to “clean up” a small centre v.
For the remainder of the work we use Rχσ

to denote distribution of elements in
Rq which have coefficients distributed according to the a discrete Gaussian with
parameter χσ.

2.2 Rényi Divergence

For any two discrete probability distributions ϕ and ϕ′ such that Supp(ϕ) ⊆
Supp(ϕ′) and an α ∈ (1,+∞). The Rényi divergence of order α can be defined
as:

Rα(ϕ∥ϕ′) :=

 ∑
x∈Supp(ϕ′)

ϕ(x)
α

ϕ′(x)α−1

 1
α−1

.

The Rényi divergence Rα has the following properties for probability distributions
ϕ, ϕ′, ϕ′′ with Supp(ϕ) ⊆ Supp(ϕ′) ⊆ Supp(ϕ′′):

7

– Log. Positivity: Rα(ϕ∥ϕ′) ≥ Rα(ϕ∥ϕ) = 1.
– Data Processing Inequality: Rα(ϕ

f∥ϕ′f) ≤ Rα(ϕ∥ϕ′) for any function f
where ϕf denotes the distribution of f(y) where y ← ϕ.

– Multiplicativity: Assume ϕ and ϕ′ are two distributions for a pair of random
variables (Y0, Y1). For i ∈ {0, 1}, let ϕi denote the marginal distribution of
Yi under ϕ, and let ϕ1|0(·|y0) denote the conditional distribution of Y1 given
Y0 = y0. Then
• Rα(ϕ∥ϕ′) = Rα(ϕ0∥ϕ′0) ·Rα(ϕ1∥ϕ′1) if Y0 and Y1 are independent for α
in given interval.

• Rα(ϕ∥ϕ′) ≤ R∞(ϕ0∥ϕ′0) ·maxy0∈X Rα(ϕ1|0(·|y0)∥ϕ′1|0(·|y0))
– Probability Preservation: Let E ⊆ Supp(ϕ′) be an arbitrary event. For

given interval of α, ϕ′(E) ≥ ϕ(E)
α

α−1 /Rα(ϕ∥ϕ′). Furthermore

ϕ′(E) ≥ ϕ(E)/R∞(ϕ∥ϕ′).
Additionally, we rely on the following lemma to argue about the Rènyi divergence
between Gaussians with different centers.

Lemma 4. [LSS14] Let P and Q be distributions corresponding to Gaussians
Dm

c,s and Dm
c′,s with centers c and c′, and s ≥ η(Rm). Then for any α ∈ (1,+∞):

Rα(P ||Q) ≤ exp

(
α · π ·

∥c− c′∥22
s2

)
Remark 1. Note that the Rényi divergence grows exponentially with m, since
∥c− c′∥22 grows linearly with m. Similarly, the Rényi divergence for z samples
grows exponentially in z by the multiplicative property.

2.3 Hardness Assumptions

We rely on the standard decisional RLWE problem for the security of the VOPRF
function.

Definition 2 ([SSTX09,LPR10]). Let Rq,m, σs, σe > 0 depend on security
parameter λ for integers q, N and m and Rq := Zq[x]/(X

N + 1). The decision
Ring Learning with Errors (dRLWERq,m,σs,σe

for short) problem is to distinguish
between

(ai, ai · s+ ei)i∈[m] ∈ (Rq)
2
and (ai, ui)i∈[m] ∈ (Rq)

2

for ai, ui ← Rq; s,← Rχσs
ei ← Rχσe

.

When the number of samples m is implicit, we omit the subscript.

Remark 2. We note the trivial hierarchy that dRLWERq,m,σ0,σ is at least as hard

as dRLWERq,m,σ1,σ when σ0 =
√
k ·σ1 for any integer k > 1 and σ1 ≥

√
2 · ηε(R).

Given samples from the latter (ai, bi) submit (ai, bi + ai · δ) to the distinguisher
for the former, where δ ← Rχ√

k−1σ0
. By a simple corollary of Lemma 1, we

have that δ + s is correctly distributed if s← Rχσ0
. Since

∑k−1
i=0 χσ0

≈s χσ1
and∑k−2

i=0 χσ0 ≈s χ√
k−1·σ0

, we have χ0 + χ√
k−1 ≈s χσ1 . Here, “≈s” indicates that

two distributions are statistically close.

8

2.4 Non-Interactive Zero-Knowledge Arguments of Knowledge
(NIZKAoK)

We use the standard definitions regarding zero-knowledge (ZK) proof systems and
arguments of knowledge (AoK). Informally, a ZK proof system for a language L
allows a prover P to convince a verifier V some x is in L and not reveal anything
else. A ZKAoK then provides a stronger guarantee where P also convinces V that
they hold a witness w attesting to the fact. Formally the definition is as follows:

Definition 3. For a prover P, a verifier V, a language L with accompanying
predicate PL(·, ·), a witness set WL(·) such that for all x ∈ L and w ∈ WL
PL(x,w) = 1, a NIZKAoK is a tuple of algorithms (Setup,P,V) such that:

– Setup(1λ): On input 1λ outputs a common reference string crs.

– P(crs, x, w): On input of a common reference string crs, a statement x ∈ L,
and a witness w ∈ WL outputs a proof π ∈ {0, 1}∗ polynomial in λ.

– V(crs, x, π): On input of a common reference string crs, a statement x, and
a proof π ∈ {0, 1}∗ outputs b ∈ {0, 1}.

The security of a NIZKAoK holds as long as the following definitions hold

Definition 4 (Completeness). For x ∈ L, w ∈ WL(x) with PL(x,w,) = 1:

Pr

[
1← V(crs, x, π) : crs← Setup(1λ)

π ← P(crs, x, w)

]
≥ 1− ϵ

where ϵ is negligible in λ.

Definition 5 (Computational Knowledge Extraction (Extractability)).
The NIZKAoK is said to have computational knowledge extraction (or is ex-
tractable) with knowledge error ϵextr if for any malicious prover P∗ with auxiliary
information aux there exists an extraction algorithm Extract and a polynomial p
such that for any x:

Pr [1← PL(x,w
′) : w′ ← Extract(P∗(crs, x, aux))] ≥ ϵVfy − ϵextr

p(|x|)

where ϵVfy is the probability that V(crs, x,P∗(crs, x, aux)) outputs 1.

Definition 6 (Computational zero-knowledge). There exists a simulated
setup algorithm SimSetup which on input 1λ outputs crsSim and a trapdoor T
along with a PPT simulator Sim where for all x ∈ L and w ∈ WL(x):{

crs← Setup(1λ)
π ← P(crs, x, w)

}
≈c

{
crs′

πSim ← Sim(crs′, T , x) : (crs
′, T)← SimSetup(1λ)

}

9

2.5 Verifiable Oblivious Pseudorandom Functions

A verifiable oblivious pseudorandom function (VOPRF) for a keyed function F is
a two-party protocol between a client C and a server S consisting of the following
algorithms:

– InitS is a protocol run by S which on input 1λ outputs a secret key sk and
its public commitment pk.

– InitC is a protocol run by C which on input pk outputs a state indicating
acceptance/rejection of public commitment.

– QueryC is a protocol run by C which on input client input x and state outputs
a blinded message x̄ and a state ρ.

– QueryS is a protocol run by S which on input of client’s blinded message x̄
and a secret key sk outputs a blinded evaluation yx.

– Finalize is a protocol run by C which on input server’s blinded evaluation yx,
public commitment pk and a state ρ outputs the PRF output y.

We define security of VOPRF based on corresponding games. This is not
common for OPRF protocols and only a handful instantiations in literature use
game-based notion of security. A protocol PRF = (InitS, InitC,QueryC,QueryS,
Finalize) with inputs x ∈ {0, 1}∗ and sk ∈ K is a VOPRF protocol corresponding
to a keyed function F if the following hold:

Definition 7 (Correctness). For every pair of inputs x, sk:

Pr [PRF(x, sk) ̸= Fsk(x)] ≤ ϵ

where ϵ is negligible in security parameter λ.

Definition 8 (Obliviousness [Leh19]). PRF is said to be oblivious if for any
PPT adversary A the probability of the obliviousness experiment depicted in
Figure 1a outputting 1 is 1/2 + ϵ where ϵ negligible in λ.

In the obliviousness game of Definition 8 security is still based on an indistin-
guishability notion. For malicious C, since we will rely on Rènyi based argument,
we cannot use such an indistinguishability-based notion for security unless a
specific set of conditions are met [BLR+18]. We instead define a search-based se-
curity game and upgrade this to indistinguishability of the output in the Random
Oracle model (ROM).

Definition 9 (One-more unpredictability [ECS+15]). PRF is said to be
one-more unpredictable if for any PPT adversary A the probability of the one-
more unpredictability experiment depicted in Figure 1c outputting 1 is negligible
in λ.

Note that the queries to the oracle OPRF include receiving blinded inputs from
A as it is not guaranteed that A outputs a correctly computed x̄. The definition
is similar to unforgeability definitions for signature schemes. The intuition here
is once we can argue that the interaction between C and S has an unpredictable
output, the security of the VOPRF can be shown in the ROM. To achieve this
we use a different notion of security called one-more PRF security.

10

ExpOBV
PRF (A)

pk ← A(1λ); st← PRF.InitC(pk)

assert st ̸= abort

x0, x1 ∈ {0, 1}L, Γ ← A(st)
b← {0, 1}
x̄b, ρ← PRF.QueryC(pk, xb)

b′ ← A(Γ, x̄b)

return 1 if b = b′

(a) The experiment ExpOBV
PRF (A)

ExpVERPRF(A)

pk, sk ← A(1λ); st← PRF.InitC(pk)

assert st ̸= abort

x ∈ {0, 1}L, Γ ← A(st)
x̄, ρ← PRF.QueryC(pk, x)

yx ← A(Γ, x̄); y ← Fsk(x)

y′ ← PRF.Finalize(pk, yx, ρ)

return 1 if y′ ̸= ⊥ ∧ y ̸= y′

(b) The experiment ExpVERPRF(A)

Expom-UNPRED
PRF (A)

ctr := 0

pk, sk ← PRF.InitS(1
λ)

(x(0), y(0)), . . . , (x(Q), y(Q))← A(OPRF, pk)

if ∃ i ̸= j s.t. x(i) = x(j) return false

return ∧i(y
(i) = Fsk(x

(i))) ∧ (ctr ≤ Q)

OPRF(x̄)

ctr := ctr + 1

return PRF.QueryS(sk, x̄)

(c) The experiment Expom-UNPRED
PRF (A)

Fig. 1: Obliviousness, Verifiability and Unpredictability

Definition 10 (One-more PRF security [ECS+15]). A PRF is said to be
one-more pseudorandom if for any PPT adversary A the probability of the one-
more pseudorandomness depicted in Figure 2 outputting 1 is negligible in λ.

It is easy to see that unpredictability implies one-more PRF security in the
ROM when Finalize includes yx as an input to an oracle H.

Lemma 5. Let F be a keyed one-more unpredictable function and H be a hash
function modeled as a random oracle. Then the function PRF corresponding to F
has one-more PRF security.

Proof. We can construct an adversary A against unpredictability using an adver-
sary B against one-more PRF security as a subroutine. Let B be an adversary who
outputs a tuple (i1, . . . , iQ) and a bit b′. If B wins the one-more PRF security
game then B distinguished Q real or random PRF executions with ctr < Q
queries to the PRF oracle and q ≥ Q queries to the real or random oracle for
the specific input. Even if B submits all of its PRF oracle queries to the real or
random oracle, since q > ctr this means there exists at least one oracle answer

11

Expom-PRF
PRF,H (A)

ctr, q := 0, 0

pk, sk ← PRF.InitS(1
λ)

(i1, . . . , iQ, b
′)← A(H,OPRF,ORoR)

if ∃α s.t. iα /∈ [Q] return false

if Q > q or ctr ≥ Q return false

if ∃α ̸= β s.t. iα = iβ return false

return b′ :=
⊕Q

α=1 b[iα]

ORoR(xi)

q := q + 1, b[q]← {0, 1}
y0 ← {0, 1}∗

y1 ← H(xi, Fsk(xi))

return yb[q]

OPRF(x̄)

ctr := ctr + 1

return PRF.QueryS(sk, x̄)

Fig. 2: The experiment Expom-PRF
PRF,H (A)

xi′ , yi′ that has not been queried to the PRF oracle. The adversary A then can
use xi′ to find Fsk(xi′) such that yi′ = H(xi′ , Fsk(xi′)). The adversary A then
submits xi′ , Fsk(xi′) along with queried xi as the answer to the unpredictability
game. Since the queried xi have been generated by the PRF oracle, the answers
are valid. On the other hand, xi′ was never queried to the PRF oracle yet is a
valid answer which means A will win the unpredictability game.

It also has been shown in prior work that one-more PRF security is the strict
strengthening of the traditional PRF security [ECS+15].

Finally, we define the notion of verifiability which assures C the output y is
indeed Fsk(x).

Definition 11 (Verifiability [ADDG24]). PRF is said to be verifiable if for
any PPT adversary A the probability of the verifiability experiment depicted
in Figure 1b outputting 1 is negligible in λ.

2.6 Lattice (VO)PRFs

We use the construction from [ADDS21] which adapts the lattice PRF Fk(x) =
⌊pq · a

F (x) · k⌉ from [BP14] into ring setting. The construction can be thought of

an instantiation of Figure 3 where n = 1, Hr(·, ·) := 0 and H(·, yx) := yx.
4

Remark 3. We note that there is a generic transformation upgrading any VOPRF
to a partial VOPRF, where part of the client’s input is in the clear. The server
computes skt := HK(sk, t) for its master secret key sk and public client input
or tag t and then proceeds with skt [CHL22,JKR18]. In the verifiable case, the
server is also required to output a commitment to skt, to have something to verify
against. We forego discussing partial variants of (V)OPRFs for the remainder of
this work.
4 In [ADDS21] the protocol is defined for vectors of ring elements of length ℓ rather
than single ring elements. We give the variant here, already mentioned in [ADDS21],
that only considers a single ring element, for performance.

12

3 Construction

We first define the languages L0 ,L1, L2 with corresponding predicates PL,0, PL,1,
PL,2 for our NIZKAoKs:

L0 :=

{
PL,0(x,w) = 1

∣∣∣∣ x := (ci) ∧ w := (ki, ei) :
∥ki∥2, ∥ei∥2 ≤ B0 ∧ ci = a · ki + ei mod q

}

L1 :=

PL,1(x,w) = 1

∣∣∣∣∣∣∣∣
x := (cx) ∧ w := (x = (x0, . . . , xL−1), s, eC) :

∥s∥2, ∥eC∥ ≤ B1

∧ ax = ax0 ·G−1(. . . (axL−2
·G−1(axL−1

)) . . .)
∧ cx = a · s+ eC + ax[0] mod q

L2 :=

PL,2(x,w) = 1

∣∣∣∣∣∣∣∣
x := (ci, cx, dx,i) ∧ w := (ki, ei, eS,i) :
∥ki∥2, ∥ei∥2 ≤ B0 ∧ ∥eS,i∥2 ≤ B2

∧ ci = a · ki + ei mod q
∧ dx,i = cx · ki + eS,i mod q

for reference strings crs0 = (a,B0), crs1 = (a,a0,a1, B1), and crs2 = (a,B2).

5

Our construction, which is a mild variant of the construction given in [ADDS21],
is given in Figure 3 when n = 1. For the rest of this work, we set B0 = σ ·

√
N ,

B1 = σ ·
√
N , and B2 = σ′ ·

√
N .

We start by proving that the protocol is secure against a malicious S i.e. is
oblivious and verifiable. The first proof is almost exactly the same as the malicious
server proof of [ADDS21] and given for completeness; the second proof is similar
but drops the need for invoking the 1D-SIS assumption.

Theorem 1. Let σ and N be poly(λ). Let dRLWEq,N,σ,σ be hard. Let (P0,V0),
(P1,V1) be NIZKAoKs for languages L0,L1, then the protocol in Figure 3 with
n = 1 is oblivious against any PPT adversary A controlling S.

Proof. We show A controlling S∗ cannot distinguish client input cx through a
series of hybrids.

Hybrid0 This is the base obliviousness game where client C interacts with an
adversary A controlling S∗. The client C interacts with S∗ through the PRF
protocol after verifying server’s commitment and A outputs two inputs x0, x1 of
length L. The client C then chooses one of these inputs xb and continues with
PRF execution as before. In the end, if A finds b with non-negligible probability
then it wins the obliviousness game. The advantage of A is its advantage in the
obliviousness game.

Hybrid1 C now does not compute π1 honestly and uses the associated proof
simulator for P1,V1 and sends a simulated proof π′

1 instead. The rest proceeds
as before. We have that Hybrid0 and Hybrid1 are indistinguishable by the ZK
property of the underlying ZKAoK.

5 We discuss how to instantiate these proof systems in Section 5.

13

CRS SetUp:

– a0,a1 ← R1×ℓ
q .

– a← Rq, sample ¯crs0 for P0, crs0 := (¯crs0, a).
– Sample crs1, crs2 for P1,P2.

Initialisation:

– InitS: Server Si for i ∈ [n] executes
• Choose σi such that σi ≤ σ
• ki ← Rχσi

, ei ← Rχσ .
• ci ← a · ki + ei mod q.
• π0,i ← P0(ki, ei : crs0, ci)

and broadcasts ci, π0,i.
– InitC: C on input of {(ci, π0,i)}i∈[n] executes
• bi ← V0(crs0, ci, π0,i).
• Output abort with i if bi = 0, otherwise store ci.

Query:

1. QueryC: C executes the following with the input (x ∈ {0, 1}L, crs1, crs2)
– s← Rχσ , eC ← Rχσ .
– ax := ax0 ·G−1(. . . (axL−2 ·G

−1(axL−1)) . . .) mod q.
– cx ← a · s+ eC + ax[0] mod q.
– π1 ← P1(x, s, eC : crs1, cx, a,a0,a1).

and broadcasts (cx, π1) to all Si.
2. QueryS: Si executes the following after receiving (cx, π1)

– b← V1(crs1, cx,a0,a1, π1), output abort if b = 0.
– eS,i ← Rχσ′ .
– dx,i := cx · ki + eS,i mod q.
– π2,i ← P2(ki, eS,i, ei : crs2, ci, dx,i, cx, a).

and sends (dx,i, π2,i) to C and outputs ⊥.
3. Finalize: C finally executes the following after receiving (dx,i, π2,i) from

all Si.
– bi ← V2(crs0, crs2, ci, dx,i, cx, π2,i), output abort with i if bi = 0.
– dx :=

∑
i∈[n]

dx,i, c :=
∑

i∈[n]

ci.

– r ← Hr(x, c) ∈ Rq // Hr(·, ·) := 0 in [ADDS21]
– yx := ⌊dx + r − c · s⌉p.
– y ← H(x, yx) // H(·, yx) := yx in [ADDS21]

and outputs y.

Fig. 3: n-out-of-n VOPRF Construction.

14

Hybrid2 Instead of honestly computing cx, C now samples a uniformly random
ux ← Rq. The rest of the experiment proceeds as before. We have Hybrid1 and
Hybrid2 are then indistinguishable by the dRLWEq,N,σ,σ assumption.

In Hybrid2 C’s reply ux does not rely on A’s chosen values x0 or x1 anymore,
hence A’s advantage cannot be greater than 1/2. This concludes the proof ⊓⊔

.

Theorem 2. Let σ and N be poly(λ). Let β = 2σ2 ·N + σ′ ·
√
N and q/p≫ β.

Let (P0,V0), (P2,V2) be NIZKAoKs for languages L0,L2, Hr be a random oracle,
and QH be number of queries made to such oracle. Then the protocol in Figure 3
with n = 1 is verifiable against any PPT adversary A controlling S in the ROM.

Proof. We show A corrupting a server S∗ cannot have a significant advantage by
biasing the output derived by C and force an incorrect evaluation.

If S∗’s reply does not have a valid proof for the setup or the final round then
the client will abort. If not, we extract a key k∗ from π0 with ∥k∗∥∞ ≤ σ ·

√
N .

Let s and eC be sampled as it is in the protocol for an honest client therefore
∥s∥∞ ≤ ∥s∥2 ≤ σ ·

√
N and ∥eC∥∞ ≤ ∥eC∥2 ≤ σ ·

√
N . Observe that an honest

client has

p

q
·
(
dx + r − c · s

)
=
p

q
· ax[0] · k∗ +

p

q
· r + p

q
·
(
eC · k∗ − e · s+ eS

)
Each k∗, eS are correctly computed according to the protocol hence ∥k∗∥∞ ≤
∥k∗∥2 ≤ σ ·

√
N and ∥eS∥∞ ≤ ∥eS∥2 ≤ σ′ ·

√
N .

If every coefficient of p
q · ax[0] · k∗ + p

q · r is further away from Z+ 1/2 than∥∥∥p
q · (eC · k

∗ − e · s+ eS)
∥∥∥
∞
, the evaluation is correct. The adversary can query

Hr to find r∗ such that evaluation would be incorrect. Note that in the Random
Oracle Model r∗ is independent of k∗, since Hr takes a commitment to k∗ as
one of its inputs, therefore the only way A can find a satisfying r∗ is by finding
an x∗ such that r∗ := Hr(x

∗, c). This probability is negligible in the Random
Oracle Model as long as 2λ ≫ QH. It follows that A can only force an incorrect
evaluation with probability proportional to ∥eC · k∗− e · s+ eS∥∞/(q/p). We then
have

∥eC · k∗ − e · s+ eS∥∞/(q/p) ≤ (∥eC∥∞ · ∥k
∗∥∞ + ∥e∥∞ · ∥s∥∞ + ∥eS∥∞)/(q/p)

≤ (2σ2 ·N + σ′
√
N)/(q/p).

Since q/p≫ β with β = 2σ2 ·N +σ′ ·
√
N the probability above is negligible. ⊓⊔

4 Using Rènyi Divergence for Smaller Parameters

The security of [ADDS21] relies on eS chosen from a distribution R1×ℓ
χσ′ with

σ′ ≫ max(L · ℓ · σ ·N3/2, σ2 ·N2). This superpolynomial gap has a significant

15

impact on communication costs. In the malicious client proof of [ADDS21], the
security argument relies on the statistical distance between

c · s+ eC · k + ax · k + eS and c · s+ êS + (ax · k + ex)

where eC ← R1×ℓ
χσ

, eS, êS ← R1×ℓ
χσ′ , and ex ← Ea0,a1,x,σ.

Here, instead, we use a Rènyi divergence based argument to prove that the
protocol given in Figure 3 with n = 1, Hr(·, ·) := 0, and H(x, yx) := yx is
unpredictable. We note, though, that Theorem 3 requires a bound Q on the
permitted number of queries, this explains the four different rows in Table 2.

Theorem 3. Assume that σ and N are poly(λ), and p|q. Let dRLWEq,N,σ,σ hard

and q
2p ≫ σ′ ≥ (L ·

√
N + 2 · σ) · σ ·N ·

√
Q ·N for a number of queries made Q.

Let (P0,V0), (P1,V1), (P2,V2) be NIZKAoKs for languages L0,L1,L2, then the
VOPRF protocol defined in Figure 3 with n = 1, Hr(·, ·) := 0, and H(x, yx) := yx
is unpredictable against any PPT adversary A controlling C.

Proof. We show A controlling C∗ cannot find an unqueried request-response pair

(x(τ), y
(τ)
x) with all but negligible probability in λ.

Hybrid0: This is the real execution of the protocol where A makes Q queries to S.
The server S samples a key k and outputs a commitment c. For τ ∈ [Q], A sends

a query (c
(τ)
x , π

(τ)
1) based on x for which S computes (d

(τ)
x , π

(τ)
2) if π

(τ)
1 verifies

and aborts otherwise. The adversary A then computes y
(τ)
x based on d

(τ)
x and x(τ)

(resp. y
(τ)
x) is added to the set X (resp. Y). At the end, A outputs (x∗, y∗x) and

wins the game if x∗ /∈ X and c∗x generated on x∗ evaluates to y∗x. The advantage
of A is the probability of A winning in the unpredictability game.

Hybrid1: Hybrid1 is the same as Hybrid0 except how the proofs by the server
are computed. Instead of honestly generating crs0 and crs2, and computing π0
and π

(τ)
2 , S calls the simulator for the relative proof systems. Hybrid1 is then

indistinguishable from Hybrid0 by the ZK property of the underlying ZKAoKs.

Hybrid2: Hybrid2 is the same as Hybrid1 except that in the Query phase we have

that after S receives (c
(τ)
x , π

(τ)
1), it calls the extractor for the underlying ZKAoK

to obtain (x(τ), e
(τ)
C , s(τ)) and aborts if it fails to do so. By the extractability of

the underlying ZKAoK Hybrid1 is exactly like Hybrid2 as long as the extraction
does not fail. Then Hybrid1 and Hybrid2 are indistinguishable.

Hybrid3: S changes how d
(τ)
x are computed. Upon receiving c

(τ)
x , S samples

e′S ← Rχσ′ and e
(τ)
x ← Ea0,a1,x,σ based on the extracted x(τ). The server S then

sends d
(τ)
x := c

(τ)
x · k + e′S + e

(τ)
x − e(τ)C · k + e · s(τ).

Since (s(τ), e
(τ)
C , x(τ)) were extracted from π

(τ)
1 , it is possible for S to sample

e
(τ)
x based on x(τ) and compute e

(τ)
C · k and e · s(τ). To bound the probability of

the adversary winning when going from Hybrid2 to Hybrid3, we will show that

16

if A making Q queries can win the game in Hybrid2 with probability ρ then

its probability of winning in Hybrid3 is also polynomial in ρ. Let D(τ)
2 and D(τ)

3

denote the distributions of (d
(τ)
x , π

(τ)
2) in Hybrid2 and Hybrid3 respectively.

In both Hybrid2 and Hybrid3, (π
(τ)
2) are simulated and hence are distributed

exactly the same. In Hybrid2, d
(τ)
x is computed as d

(τ)
x = cτx · k + eS whereas in

Hybrid3 we have d
(τ)
x = c

(τ)
x · k+ e′S + e

(τ)
x − e(τ)C · k+ e · s(τ) for eS, e′S ∈ Rχσ′ The

distribution of d
(τ)
x in two hybrids can then be considered as two Gaussians with

different centres. Outside {(d(τ)x , π
(τ)
2)}τ∈Q, A’s view in both hybrids consists of

crs0, crs1, crs2, a,a1,a0, c
(τ)
x

and consequently c
(τ)
x . Here, we have that crs0, crs1, crs2, a,a1, a0 and c are sam-

pled independently from A, therefore are fixed in both views. x(τ) and conse-

quently c
(τ)
x however are chosen by adversary which means x(τ) (consequently

a
(τ)
x), s(τ), e

(τ)
C and therefore c

(τ)
x can be adaptively chosen. However, note that

each c
(τ)
x is associated with a proof π

(τ)
1 proving c

(τ)
x is correctly computed. Since

S does not abort, each π
(τ)
1 has to verify therefore each c

(τ)
x corresponds to the

same distribution.
The RD between D(τ)

2 and D(τ)
3 is then by Lemma 4:

Rα(D(τ)
2 ||D

(τ)
3) ≤ 1 · exp

(
α · π · ∥ex − eC · k + e · s∥22

σ′2

)

≤ exp

α · π ·
(√

N ∥eC∥2 · ∥k∥2 +
√
N ∥e∥2 · ∥s∥2 + ∥ex∥2

)2
σ′2

Since τ ∈ Q, we can define the distributions D2 and D3 for the distribution of

(d
(τ)
x , π

(τ)
2) for the entire hybrids. We have:

Rα(D2||D3) ≤ exp

α · π ·Q ·
(√

N ∥eC∥2 · ∥k∥2 +
√
N ∥e∥2 · ∥s∥2 + ∥ex∥2

)2
σ′2

Let ψ,ψ′ denote the views of A in Hybrid2 and Hybrid3 respectively. By data
processing inequality of RD we then have:

Rα(ψ||ψ′) ≤ Rα(D2||D3)

Let E be the event that A outputs a successful prediction. By our assumption
we then have D2(E) = ρ. Following the probability preservation property of RD:

ψ′(E) ≥ ρ
α

α−1

Rα(ψ||ψ′)

17

By assumption σ′ ≥ (L ·
√
N + 2 · σ) · σ · N ·

√
Q ·N , ∥e∥2, ∥eC∥2 ≤ σ

√
N ,

∥k∥2, ∥s∥2 ≤ σ
√
N , and ∥ex∥∞ ≤ L · σ ·N3/2 [ADDS21, Lemma 4]. This means

Rα(ψ||ψ′) ≤ exp(π · α) and consequently ψ′(E) ≥ ρ
α

α−1 · exp(−απ) which is
non-negligible if and only if ρ is non-negligible.

Hybrid4: S stops using key material k for replies to C∗. The server S maintains

a received list for (x(τ), yq). After receiving and verifying c
(τ)
x , it checks if the

extracted x(τ) has been queried before. If (x(τ), yq) exists in received, S retrieves

yq from the list, samples ēS
(τ) ← Rχσ′ and returns d̄

(τ)
x = c · s(τ) + ēS

(τ) + yq.

If x(τ) is queried for the first time, S first samples a PRF output y and then
uniformly samples a yq such that yq ← Rq∩(q/p ·y+R≤q/2p). S records (x(τ), yq)

and computes d̄
(τ)
x the same. First, note that we can rewrite d

(τ)
x in Hybrid3 as

d(τ)x = c(τ)x · k + e′S + e(τ)x − e(τ)C · k + e · s(τ)

= a · s(τ) · k + e
(τ)
C · k + a(τ)x [0] · k + e′S + e(τ)x − e(τ)C · k + e · s(τ)

= a · s(τ) · k + e · s(τ) + e
(τ)
C · k + a(τ)x [0] · k + e′S + e(τ)x − e(τ)C · k

= c · s(τ) + e(τ)x +
(
a(τ)x [0] · k + e′S

)

We have that a
(τ)
x [0] · k + e

(τ)
x is indistinguishable from some uniform u

(τ)
x by

opening up the proof of [ADDS21, Lemma 3].6 Said lemma holds under the

hardness of dRLWEq,N,σ,σ where a
(τ)
x [0] · k + e

(τ)
x can be decomposed as multiple

samples of the form ai · k + ei for uniform ai ∈ Rq and small ei ∈ Rq. Multiple

queries for a
(τ)
x [0] ·k+e(τ)x can then be considered as increased number of samples

for ai ·k+ei. Hence, by the hardness of dRLWEq,N,σ,σ, c ·s(τ)+a
(τ)
x [0] ·k+e(τ)x +e′S

is indistinguishable from d
(τ)
x = c · s(τ) + u

(τ)
x + e′S for some uniform u

(τ)
x . Since

y is a PRF output, yq is a uniformly chosen element of a uniformly chosen

interval, it is also indistinguishable from u
(τ)
x . Finally ēS

(τ) is sampled from

the same distribution as e′S, d
(τ)
x and d̄

(τ)
x therefore Hybrid3 and Hybrid4 are

indistinguishable.

Hybrid5: Now that the VOPRF answer does not rely on k, S stops sampling a k
altogether and samples a uniformly random c← Rq instead. By the hardness of
dRLWEq,N,σ,σ, c in Hybrid4 and Hybrid5 are indistinguishable.

Now that every reply to A is freshly generated and independent from any
secret material, they are unpredictable. This concludes the proof. ⊓⊔

From the unpredictable function, we can define a VOPRF. We first define
random oracles H : {0, 1}L × Rq → {0, 1}λ and Hr : {0, 1}L × Rq → Rq which

6 In [ADDS21], it is argued that a
(τ)
x [0] · k+ e

(τ)
x and u

(τ)
x are indistinguishable directly

by a lemma implicit in the underlying PRF [BP14]. This is incorrect as is because
the lemma does not consider multiple queries.

18

then are used to generate the VOPRF output on the client side. The new VOPRF
protocol is depicted in Figure 3 with n = 1, and new definitions of H and Hr.

The transformation is rather standard and we immediately follow that the
VOPRF protocol has one-more PRF security.

Corollary 1. Assume that σ and N are poly(λ), and p|q. Let H,Hr be hash
functions modeled as random oracles, and Q denote the number of queries made
to the VOPRF. Let dRLWEq,N,σ,σ hard and q

2p ≫ σ′ ≥ (L·
√
N+2·σ)·σ·N ·

√
Q ·N .

Let (P0,V0), (P1,V1), (P2,V2) be NIZKAoKs for languages L0,L1,L2. Then if
the VOPRF protocol defined in Figure 3 for n = 1 is unpredictable, it also has
one-more PRF security in random oracle model against any PPT adversary A
controlling C.

5 Efficient Lattice-Based NIZKAoK Instantiations

We discuss the required NIZKAoK constructions for instantiating P0,P1,P2.
The proof systems P0,P2 are similar in nature as both statements prove

the knowledge of short elements (x1, x2) such that y = a · x1 + x2 for public
a, y. For these types of relations we can still use the argument systems given
in [ADDS21] but we use more recent lattice-based NIZKs [LNP22]. Proof P0

shows that commitment c to the secret key k is correctly computed where
c := a · k + e, and ∥k∥2 ≤ σ

√
N and ∥e∥2 ≤ σ

√
N for public a, c. Similarly, P2

shows the S output dx is computed correctly with dx := cx · k + eS for public
cx, dx where ∥eS∥2 ≤ σ′

√
N . These relations can easily be instantiated with

proofs from [LNP22].
A major reason for [ADDS21] not being practical is the type of statements that

have to be proven as part of the protocol execution. In particular, P1 requires C
to show their message cx is well-formed, which includes non-standard arguments.
In [ADDS21], this is addressed using the NIZKAoK construction in [YAZ+19]
which proves generic rank-1 constraints over Zq. This breaks the element structure
in protocol therefore is highly inefficient. Here, we take a different approach and
try to prove relationships while preserving the structure of the elements used
throughout the protocol. Moreover, we prove these statements using more recent
lattice-based proof systems [BS23].

We start by looking at the type of relations we have to consider for P1

in [ADDS21]. The first client message cx is computed as:

ax := ax0 ·G−1(. . . (axL−1
·G−1(axL−1

)) . . .) mod q

cx ← a · s+ eC + ax[0] mod q.

The relations to be proven can then be broken down to

Bi = G−1(axi
·Bi+1) for i ∈ 0, . . . , L− 2

BL−1 = G−1(axL−1
)

cx = a · s+ eC + (G ·B0)[0]

19

where Bi ∈ Rℓ×ℓ
2 are ℓ× ℓ matrices of binary decompositions. For a gadget vector

g⊤ = (1, 2, . . . , 2ℓ−1) ∈ R1×ℓ
q the relations can be rewritten as :

g⊤ ·BL−1 = a0 · (1− xL−1) + a1 · xL−1

g⊤ ·Bi = a0 · (1− xi) ·Bi+1 + a1 · xi ·Bi+1 for i ∈ 0, . . . , L− 2

cx = a · s+ eC + (g⊤ ·B0)[0]

In [ADDS21] this is then broken down to be represented as R1CS constraints
over Zq. However, the relations above can be represented as dot products. We
then use LaBRADOR [BS23] which efficiently proves statements of the form

f(s) =
∑

1≤i,j≤r

ai,j⟨si, sj⟩+
r∑

i=1

⟨ψi, si⟩+ b = 0

where si, ψi ∈ Rn
q , ai,j , b ∈ Rq and the short solution s = s1, . . . , sr is the witness.

We then define the witness vector in our construction as the concatenation
of all the ring elements of the witness for the relation which includes C input
x = (x0, . . . , xL−1), matrices {Bi}i∈[L−1], client short secret s, and the error eC.
Each xi is an element in R2 and Bi is an ℓ× ℓ matrix in R2, all of which will be
treated as elements in Rq. Finally, s and eC are single elements in Rq. Note that
even though we truncate ax in favor of using the first ring element, the relations
we prove do not change until the final line. Thus the witness size is:

L+ L · ℓ · ℓ+ 2

All of these elements are over the ring Rq = Zq[X]/(XN + 1), whereas for
LaBRADOR we need elements of in the ring R′

q = Zq[X]/(X64 + 1). For com-
pleteness, we give details on how to prove statements in Rq using vectors over
R′

q in Appendix A. The effective witness vector size is then:

⌈N/64⌉ · (L+ L · ℓ · ℓ+ 2)

We also need the Euclidean norm bound on the witness vector for LaBRADOR.
Since xi, Bi are in R2, and ∥s∥2 ≤ σ

√
N and ∥eC∥2 ≤ σ

√
N the norm bound is:√

L+ L · ℓ · ℓ+ σ2 ·N + σ2 ·N =
√
(ℓ2 + 1) · L+ 2 · σ2 ·N

This results in π1 smaller than [ADDS21] in orders of magnitude. We discuss the
exact parameters and sizes in Section 6.

6 Bandwidth Estimate

We give rough bandwidth estimates in Table 2. We adapt the estimation scripts
from [ADDG24] and give our adapted scripts in Appendix B. Our size estimates
for ring elements are simply d · log q bits, except for dx where we use (a) that

20

we can drop lower order bits since those are drowned by σ′ anyway and (b) that
we only use dx additively when computing dx + r − c · s, allowing us to drop
many coefficients of dx since we only want to extract from λ many. It would be
possible to amortise the zero-knowledge proofs as in [ADDG24], but we forego
this optimisation here.

While these are somewhat rough estimates, they suffice to make good on our
claim that the parameters we obtain are practical-ish.

7 Threshold Lattice (V)OPRF

As a result of the nice homomorphic properties of [ADDS21], we give lattice-based
threshold/distributed VOPRFs for both n-out-of-n and t-out-of-n thresholds,
when t is constant.

7.1 Threshold Verifiable Oblivious Pseudorandom Functions

A (t, n) threshold VOPRF is an extension to VOPRFs where instead of having
a single server S, there are n servers S0, . . . ,Sn−1 where any t ≤ n servers can
collectively generate the PRF output. If t = n i.e. the threshold scheme is
n-out-of-n we call it a distributed scheme, but we may also call it full threshold so
that we can discuss n-out-of-n and t-out-of-n together as “threshold”. Based on
the setting, the initialisation phase can be done by either each Si individually or
by an outside trusted authority. A threshold verifiable oblivious pseudorandom
function (VOPRF) for a keyed function F is then an n+1 party protocol between
a client C and n servers S0, . . . ,Sn−1 consisting of following algorithms:

– InitS is a protocol run by each Si (or a trusted authority), which on input
1λ outputs a partial secret key ski and its public commitment pki (or the
combined commitment pk).

– InitC is a protocol run by C, which on input {pk}i∈[n] (respectively pk) outputs

a state indicating acceptance/rejection of the public commitment.
– QueryC is a protocol run by C, which on input client input x and state

outputs a blinded message x̄ and a state ρ.
– QueryS is a protocol run by Si which on input of client’s blinded message
x̄, a subset of participating users U and a partial key ski outputs a blinded
partial evaluation yx,i.

– Finalize is a protocol run by C which on input server’s blinded evaluation yx
and public commitments {pki}i∈U (or a single pk) and a state ρ outputs the
PRF output y.

Some definitions of VOPRF security are not sufficient for the threshold case
as A can corrupt a subset of servers C along with the client. Similarly A can
engage in concurrent queries for the same input. So we extend unpredictability
and one-more PRF security to accommodate a set of corrupted servers and
concurrent QueryC executions and again define the corresponding games. We also
introduce a new algorithm Comb that takes a set of partial output shares and
outputs a single combined output.

21

Expom-TUNPRED
PRF (A)

ctr := 0; C, Γ ← A(·); H := [n] \ C;

pk, {ski}i∈[n] ← PRF.InitS(1
λ); Γ ← A(Γ, pk)

∀i ∈ H : pki, ski ← PRF.InitS(1
λ); Γ, ∀i ∈ C : pki ← A(Γ, {pkj}j∈H)

(x(0), y(0)), . . . , (x(Q), y(Q))← A(Γ,OPRF, pk, {ski}i∈C)

(x(0), y(0)), . . . , (x(Q), y(Q))← A(Γ,OPRF, {pki}i∈[n], {ski}i∈C)

if |C| ≥ t return false; if ∃ i ̸= j s.t. x(i) = x(j) return false

return ∧i(y
(i) = Fsk(x

(i))) ∧ (ctr ≤ Q)

OPRF(x̄,U (τ))

if |U (τ)| < t return false

ctr := ctr + 1; HU := U (τ) ∩H; ∀i ∈ HU : yi := PRF.QueryS(ski, x̄)

return {yi}i∈HU

Fig. 4: The experiment Expom-TUNPRED
PRF (A). Lines in grey are executed if each Si

generates their own key. Lines in dashed boxes are executed if there is a trusted
authority setting up the keys.

Definition 12 (Threshold unpredictability). A threshold PRF is said to
be unpredictable if for any PPT adversary A the probability of the one-more
unpredictability depicted in Figure 4 outputting 1 is negligible in λ.

Definition 13 (Threshold one-more TPRF security). A threshold PRF
is said to be pseudorandom if for any PPT adversary A the probability of the
one-more pseudorandomness depicted in Figure 5 outputting 1 is negligible in λ.

For both unpredictability and pseudorandomness, we assume a rushing ad-
versary where honest parties send their messages first. The relationship between
unpredictability and one-more PRF security also translates into the threshold
setting where the unpredictable A controls the same parties as the PRF adversary
B. However, we must take that that unlike in the plain one-more PRF game,
here both adversaries have partial inside access to evaluating parties. However,
note that A is queried for its corrupt shares independent of the oracles decision
regarding real or random value which prevents A from trivially winning the game.

Since we are in a multiparty setting, we need NIZKAoKs that provide con-
current security as well as prevent exponential tightness loss as part of the
extractability. For which, we rely on NIZKAoKs that are straight-line extractable
i.e. can extract the witness without rewinding. For some systems, this can be
achieved by using the generic transform by Katsumata [Kat21]. However, while
the transform is straightforward to use for proofs of L0 and L2, this is not the

22

Expom-TPRF
PRF,H (A)

ctr, q := 0; C, Γ ← A(·); H ← [n] \ C

pk, {ski}i∈[n] ← PRF.InitS(1
λ); Γ ← A(Γ, pk)

∀i ∈ H : pki, ski ← PRF.InitS(1
λ)

Γ,∀i ∈ C : pki ← A(Γ, {pkj}j∈H)

(i1, . . . , iQ, b
′)←

A(Γ, pk, {ski}i∈C ,H,OPRF,ORoR)

A(Γ, {pki}i∈[n], {ski}i∈C ,H,OPRF,ORoR)

if |C| ≥ t return false

if ∃α s.t. iα /∈ [Q] return false

if Q > q or ctr ≥ Q return false

if ∃α ̸= β s.t. iα = iβ return false

return b′ :=
⊕Q

α=1 b[iα]

ORoR(x(τ),U (τ))

if |U (τ)| < t return false

q := q + 1, b[q]← {0, 1}

sk := Comb(U (τ), {ski}i∈U(τ))

y0 ← {0, 1}∗

y1 ← H(x(i), Fsk(x
(i)))

return yb[q]

OPRF(x̄,U (τ))

if |U (τ)| < t return false

ctr := ctr + 1; HU := U (τ) ∩H
∀i ∈ HU : yi := PRF.QueryS(ski, x̄)

return {yi}i∈HU

Fig. 5: The experiment Expom-TPRF
PRF,H (A)

case for L1 since we here we rely on LaBRADOR [BS23]. Thus, straight-line
extractability for client messages is open. We note that it seems plausible we can
apply the “encryption-to-the-sky” paradigm here, see e.g. [AKSY22], encrypting
only that small part of the witness that we need extract to avoid blowing up
bandwidth costs.

7.2 Case 1: n-out-of-n

We start with the easy case where all n participants are required to generate the
pseudorandom output. The n-out-of-n distributed setting can be considered as a
multikey application of the base scheme. This is also the reason why we used the
n-out-of-n protocol with n = 1 in the previous sections. Instead of setting a single
σ however, we allow each party to choose σi ≤ σ for publicly known σ.7 We have
multiple servers S0, . . . ,Sn−1 interacting with single client C, Figure 3 depicts
the protocol. For the sake of simplicity of exposure, though, we assume σi = σ for
all i for the rest of this section. Correctness follows from the underlying protocol

7 We will expand on this idea when we discuss our t-out-of-n construction.

23

where ⌊r + dx − c · s⌉p

=
⌊
r +

∑
dx,i −

∑
ci · s

⌉
p

=
⌊
r + cx ·

∑
ki +

∑
eS,i − s ·

∑
(a · ki + ei)

⌉
p

=

⌊
r + a · s

∑
ki + eC

∑
ki + ax[0]

∑
ki +

∑
eS,i − a · s

∑
ki − s ·

∑
ei

⌉
p

=
⌊
r + ax[0]

∑
ki + eC

∑
ki +

∑
eS,i − s

∑
ei
⌉
p

=

⌊
r +

p

q
· ax[0] · k

⌉
p

with k =
∑

i∈[n]

ki. Correctness then follows from Theorem 2. Note however, since

k =
∑

i∈[n]

ki for ki ∈ Rχσi
we have to scale the combined parameter by a factor of

√
n. We then have the following lemma.

Lemma 6. Let ki ← Rχσi
, k =

∑
i∈[n]

ki, and q ≫ p · σ ·
√
L · n · N . Then the

function Fk(x) := ⌊ax[0] ·k+ r⌉p is a PRF under dRLWEq,N,σ
√
n,σ

√
n assumption.

Security against malicious servers i.e. obliviousness and verifiability is immediate.
Each Si receives the same client input, which is the same as in single party case.
For completeness we state them here:

Theorem 4. Let σ and N be poly(λ). Let dRLWEq,N,σ,σ be hard. Let (P0,V0),
(P1,V1) be straight-line extractable NIZKAoKs for languages L0,L1, then the
protocol in Figure 3 is oblivious against any PPT adversary A controlling all Si.

Theorem 5. Let σ and N be poly(λ). Let β = 2n·σ2·N+σ′·
√
n ·N and q/p≫ β.

Let (P0,V0), (P2,V2) be straight-line extractable NIZKAoKs for languages L0,L2,
Hr be a random oracle, and QH be number of queries made to such oracle. Then
the protocol in Figure 3 is verifiable against any PPT adversary A controlling all
Si.

The interesting security goal is threshold unpredictability when there is a
collusion between the malicious client and some subset of servers. We show how
the protocol given in Figure 3 is unpredictable. We note that we implicitly assume
that a malicious C sends the same message to honest servers. This assumption
can be removed with an initial round of consistency check among the servers
which we omit here.

Theorem 6. Let σ and N be poly(λ). Let dRLWEq,N,σ,σ be hard, and q
2p ≫ σ′ ≥

(L ·
√
N + (

√
n + 1) · σ) · σ · N ·

√
Q ·N for a number of queries made Q. Let

(P0,V0), (P1,V1), (P2,V2) be straight-line extractable NIZKAoKs for languages
L0,L1,L2, then the distributed VOPRF protocol defined in Figure 3 is threshold
unpredictable against malicious clients controlling up to n− 1 servers.

24

Proof. In the Random Oracle model, if the input of H at the end of the protocol
is unpredictable, then so is the output of the protocol. Hence, we show that the
client-derived input to H is unpredictable. Similar to the proof of Theorem 3,
we show A controlling C∗ and a subset of servers C cannot find an unqueried

request-response pair (x(τ), y
(τ)
x) with all but negligible probability in λ.

Hybrid0: This is the real execution of the protocol where the A makes Q queries
to servers. The adversary A first corrupts a set of servers C with fewer than
t = n elements and the rest of the servers denoted with H behave honestly. The
honest parties sample a key share ki and each party outputs a commitment ci
alongside a proof of correct computation. For τ ∈ [Q], A sends a query (c

(τ)
x , π

(τ)
1)

based on some x for which honest servers compute (d
(τ)
x , π

(τ)
2) if π

(τ)
1 verifies and

aborts otherwise. For corrupted servers, A can send arbitrary shares as long as

π
(τ)
2 verifies for each of them. The adversary A then computes y

(τ)
x based on

d
(τ)
x,i and x(τ) (resp. y

(τ)
x) is added to the set X (resp. Y). At the end, A outputs

(x∗, y∗x) and wins the game if x∗ /∈ X and c∗x generated on x∗ evaluates to y∗x. The
advantage of A is the probability of A winning in the threshold unpredictability
game where U are all n servers.

Hybrid1: Hybrid1 is exactly like Hybrid0 except how proofs by the server computed.

Instead of honestly generating crs0,j , crs2,j for j ∈ H, and computing and π0,j , π
(τ)
2,j

each honest server calls the simulator for relative proof systems. Hybrid Hybrid1
is then indistinguishable from Hybrid0 by the ZK property of the underlying
ZKAoKs.

Hybrid2: Hybrid2 is exactly like Hybrid1 except the honest parties try to extract
a witness for the corrupted parties. During InitS, after the honest parties extract
{ki, ei}i∈C from π0,i using the extractor for the underlying ZKAoK, aborts if the
extraction fails. Similarly during the Query phase after honest servers receive

c
(τ)
x , π

(τ)
1 , it calls the extractor to obtain (x(τ), e

(τ)
C , s(τ)). By the extractability

of the underlying ZKAoKs Hybrid1 is exactly like Hybrid2 unless the extraction
fails, and Hybrid1 and Hybrid2 are indistinguishable.

Hybrid3: Si′ changes how d
(τ)
x,i′ is computed for i′ ∈ H. Upon receiving c

(τ)
x , fix an

index i′. For every other honest party, the computation continues as before. The
server Si′ then derives the combined key k =

∑
i∈[n] ki and error e =

∑
i∈[n] ei

and samples e
(τ)
x ← Ea0,a1,x,σ based on the extracted x(τ). The server Si′ finally

computes d̄
(τ)
x,i′ = c

(τ)
x · ki′ + e

(τ)
S,i′ + e

(τ)
x − e(τ)C · k + e · s(τ) sends d̄(τ)x,i′ as its share.

The rest follows as before.

The difference between Hybrid2 and Hybrid3 is in the error term of Si′ ’s share
where there is an added term of e

(τ)
x − e(τ)C · k + e · s(τ). Using the same Rènyi

argument in Hybrid3 of Theorem 3, we conclude if A has a winning probability
in Hybrid2, it also does a winning probability polynomial of said probability in

25

Hybrid3. Since ∥k∥2 ≤ σ
√
n however, σ′ has an increased factor compared to the

single party case.8

Hybrid4: We stop using combined key k for deriving d̄
(τ)
x . Each honest server

maintains a received list for (x(τ), yq). After receiving and verifying c
(τ)
x checks

if the extracted x(τ) has been queried before. If (x(τ), yq) exists in received,

Si′ retrieves yq from the list and samples ē
(τ)
S,i′ ← Rχσ′ and returns d̄

(τ)
x,i′ =

c·s(τ)−c(τ)x ·
∑

j ̸=i′ kj+ē
′(τ)+yq. If x

(τ) is queried for the first time, Si′ first samples

an output y and then uniformly samples a yq such that yq ← Rq∩(q/p·y+R≤q/2p).

Each server records (x(τ), yq) and computes d̄
(τ)
x,i the same. In Hybrid3 d̄

(τ)
x,i′ can

be rewritten as:

d̄
(τ)

x,i′ = c(τ)x · ki′ + e
(τ)

S,i′ + e(τ)x − e
(τ)
C · k + e · s(τ)

= c(τ)x · k − c(τ)x ·
∑
j ̸=i′

kj + e
(τ)

S,i′ + e(τ)x − e
(τ)
C · k + e · s(τ)

= a · s(τ) · k + e
(τ)
C · k + a(τ)

x [0] · k − c(τ)x ·
∑
j ̸=i′

kj + e
(τ)

S,i′ + e(τ)x − e
(τ)
C · k + e · s(τ)

= c · s(τ) − c(τ)x ·
∑
j ̸=i′

kj + a(τ)
x [0] · k + e(τ)x + e

(τ)

S,i′

Using the same argument in Hybrid4 for Theorem 3, Hybrid3 and Hybrid4 are
indistinguishable.

Hybrid5: We modify honest parties’ shares so that each of them includes additional

error terms e
′(τ)
i ← Rχσ and e

′(τ)
x,i ← Ea0,a1,x,σ, and the adjusted share d̄

(τ)
x,i′

includes the substraction of these shares −
∑

i ̸=i′∈H(e
′(τ)
i +e

′(τ)
x,i). The rest follows

as before. In Hybrid4 each honest party outside i′ computes their share as d
(τ)
x,i =

c
(τ)
x ·ki+e(τ)S,i whereas in Hybrid5 d

(τ)
x,i = c

(τ)
x ·ki+e(τ)S,i +e

′(τ)
i +e

′(τ)
x,i . The difference

is then how error terms are distributed for two Gaussians of parameter σ′ with
two different centers. Using a similar argument to Hybrid3,

9 we conclude if A can
win in Hybrid4 with some probability, it also has a winning probability polynomial
in the said probability in Hybrid5.

Hybrid6: We remove the dependency on partial key shares for honest parties.

Except i′, each honest server samples a uniformly random u
(τ)
i ← Rq and

computes their share as d̄
(τ)
x,i := u

(τ)
i +e

(τ)
S,i instead. Similarly, Si′ defines its share as

d̄
(τ)
x,i′ = c·s(τ)−c(τ)x ·

∑
j∈C kj+ē

(τ)
S,i′+yq−

∑
i ̸=i′∈H u

(τ)
i . The rest proceeds as before.

8 Note that this hybrid also changes the combined d
(τ)
x since the additional error term

carries over. By Lemma 1 the error term is statistically close to a Gaussian with
parameter σ′√n using a similar Rènyi argument as above, but with easier to satisfy
parameters, already satisfied by the parameters considered in the main text.

9 Note that we do not need to consider the combined d
(τ)
x as Si′ adjusts its share based

on the added error terms.

26

In Hybrid5 after the addition of noise terms, each partial evaluation is d
(τ)
x,i =

c
(τ)
x ·ki+e(τ)S,i +e

′(τ)
i +e

′(τ)
x,i = (a·s(τ)+e(τ)C)·ki+e′(τ)i +a

(τ)
x [0]·ki+e′(τ)x,i +e

(τ)
S,i . Using

the same argument to Hybrid4 of Theorem 3, a
(τ)
x [0] ·ki+e′(τ)x,i is indistinguishable

from uniform. Replacing these terms with uniform ones, d
(τ)
x,i in Hybrid5 and

u
(τ)
i + e

(τ)
S,i , consequently Hybrid5 and Hybrid6 are indistinguishable.

Hybrid7: Now that the function evaluation does not rely on the combined key
honest servers stop deriving key shares kj altogether. During initialization each
server samples random ci ← Rq. Then by the hardness of dRLWEq,N,σ

√
n,σ

√
n, c

in Hybrid6 and Hybrid7 are indistinguishable.
Since every reply to A is freshly generated and independent from the secret

combined key k and the honest key shares, they are unpredictable. Thus we
conclude the proof. ⊓⊔

Now that the protocol is threshold unpredictable, we can also argue it has
threshold one-more PRF security.

Corollary 2. Let σ and N be poly(λ). Let dRLWEq,N,σ,σ be hard and q
2p ≫ σ′ ≥

(L ·
√
N + (

√
n + 1) · σ) · σ · N ·

√
Q ·N for a number of queries made Q. Let

(P0,V0), (P1,V1), (P2,V2) be straight-line extractable NIZKAoKs for languages
L0,L1,L2 and H,Hr be hash functions modeled as random oracles, then if the
distributed VOPRF protocol defined in Figure 6 is threshold unpredictable, it also
has threshold one-more PRF security against any PPT adversary A controlling
C and a subset of servers C of size at most t− 1.

7.3 Case 2: t-out-of-n

We now switch to the more interesting case of arbitrary thresholds i.e. t-out-of-n
with t ≤ n. We cannot directly use the additive homomorphism of the underlying
operation but tweak it to our setting. Dealing with t-out-of-n shares in a lattice
setting is not trivial against malicious adversaries, and we here work around
known issues by assuming a trusted setup. As mentioned above, we consider this
a realistic assumption for OPRFs as most use cases of threshold OPRFs utilise
the functionality to prevent a single point of failure during execution rather than
to achieve execution among untrusted parties. Still, this is a limitation of this
work.

Similarly, we assume that in the context of distributed OPRFs, neither n nor(
n
t

)
is large. Hence we can consider a separate set of keys for different thresholds

of servers since we only have
(
n
t

)
of such sets. However, trivially combining all

partial keys will result in
(
n
t

)
different combined keys and consequently public

commitments which now (i) requires the client to know which servers are replying
for correctness (ii) the client will receive different PRF outputs for the same
input for different threshold sets.

Instead, we make use of the setting we are in and consider a different way of
representing these

(
n
t

)
sets. We delegate key generation to a trusted authority

27

which in return allows us to use different additive shares of the same combined
key. On a high level, key generation proceeds as follows: The trusted authority
first samples a combined key from the combined distribution of individual keys.
For every threshold set T , the authority fixes indices ia and ib. For every server
i outside ia and ib in the set, it samples partial keys from a smaller distribution.
For ib, it samples a partial key from a wider distribution. The trusted authority
then computes the key of ia as the difference of the combined key and t − 1
partial keys and rejects the key with a certain probability. If rejected, the process
starts again for the threshold set. If not the trusted authority proceeds to the
next set.

The first key idea is that we can choose distributions of keys for differing
parameters as long as each of them are bounded from below for RLWE security
and above for correctness and noise drowning. Hence, choosing a key with some
σL > σ allows us to control the rejection probability. The second key idea is
that while the last share is not exactly the same as the sampled keys, if rejected
correctly it is statistically indistinguishable from the distribution of ib’s key and
thus still secure. This rejection is similar to the inefficient variant Dilithium-
G signature discussed in [DOTT22]. Since the last key share is computed as
k−

∑
i̸=ia

ki,T = k−
∑

i ̸=ia,ib
ki,T −kib,T , we can treat it as a Gaussian centered

around k −
∑

i̸=ia,ib
ki,T and use Lemmas 1 to 3 to find correct M, t, T to make

the last share within a negligible statistical distance of a sampled Gaussian with
parameter σL by Lemma 3. For σ = 3.2 and N = 4096, a threshold of 5 parties
can have σL = 1024 with M = 131 repetitions per key with all but negligible
probability 2−102. We emphasise that for large sizes of

(
n
t

)
this can result in

long key generation times but does not affect the actual PRF evaluation. For
security argument, we will assume

(
n
t

)
is poly(λ).

Remark 4. Our approach can be considered as a variant of replicated secret shar-
ing [ISN89] using qualified sets. Hence, we could consider algorithms such as
in [CDI05] for key generation instead. However, we highlight some key differences:
(a) Secret sharing is done for long term keys rather than online randomness
which renders the

(
n
t

)
overhead more acceptable. (b) Our final shares are with

overwhelming probability from specific Gaussian distributions rather than uni-
formly random in order to preserve the structure of the protocol. (c) Since
shares of Shamir secret sharing are arbitrarily large any advantage regarding
easy conversion into Shamir secret sharing is not relevant in our context.

One downside to this approach, we cannot show verifiability for individual
partial evaluations as public commitments ki,T for all subsets T of size t do not
exist. Hence it is not possible for Si to prove dx,i is computed correctly with
respect to a partial key ki,U . One solution to this for the trusted authority to
publish public commitments for each ki,T which however would require t ·

(
n
t

)
commitments to be published and for C to know which subset of users are
participating in PRF execution. This is worse than the trivial construction of
having

(
n
t

)
different combined keys.

Instead, we combine the cut-and-choose type of approach in [ADDS21] with
a weaker proof system. The intuition is while we cannot prove that correct ki,U

28

is used for generating dx,i, we can verify that a small ki,U is used consistently
across multiple evaluations. If one of these evaluations points can be checked with
respect to a publicly known value, we can argue that every evaluation used the
correct combined key. This does not guarantee each individual partial evaluation
is done correctly but assures C the final output is correct.

We change the protocol as follows. During setup there is a public fixed input
x′ and its evaluation yx′ (under the key k) known both to the client and the
servers. During QueryC, instead of a single input x, C blinds two inputs x0, x1.
To do that, the client first decides on a random bit b′. For i ̸= b′, the client uses
the private input xi = x for some x ∈ {0, 1}L and for i = b′, xi = x′. The client
C then runs the computation for two cx values and sends cx,i, π1,i pairs. Each
server Sj then runs partial evaluations on each of them and sends a proof π2,j
to prove that the same short kj,U have been used for computing all cx,i values.
During Finalize, C first verifies π2,i and then computes two different yx values
and checks if yx,b′ = yx′ . If everything verifies, C uses yx,i for i ̸= b′ as its output.

We depict this t-out-of-n VOPRF construction with a trusted setup in Figure 6.
Note that π2,i are computed with a different proof system P′

2,V′
2 for language

L′
2 since it’s slightly different from P2,V2. It can however still be initiated with

the same proof systems discussed in Section 5.

Correctness follows from the linearity of the additive secret sharing. Obliv-
iousness is once again immediate as the client’s input to the t servers do not
change. We first show that the protocol described has verifiability:

Theorem 7. Let σ, N , and
(
n
t

)
be poly(λ). Let β = 2 t · σ2 ·N + σ′ ·

√
t ·N and

q/p ≫ β. Let (P′
2,V′

2) be straight-line extractable NIZKAoK for language L′
2,

Hr be a random oracle, and QH be number of queries made to such oracle. Let

N ·
(
log q − log

(
σ ·
√
(t+ 1) ·N

)
− log

(
q

2p

))
> λ.

Then the protocol in Figure 6 is verifiable against any PPT adversary A controlling
a subset of servers C of size at most t− 1.

Proof. In verifiability game, the challenger will abort and A will trivially lose if
the checks during Finalize fail. For A to win, yx,i for i ̸= b′ derived by C must be
different from the actual PRF. Similar to Theorem 2, A can only find an x∗ that
would cause r∗ to force an incorrect evaluation only with negligible probability.
If π2,j verifies for each j ∈ U , then there exists short {kj,U}j∈U used in each of

the {dx,j,i}i∈{0,1},j∈U . Then if yx,b′ = yx′ each server Sj knows k∗j,U for some k⋆

where k⋆ =
∑

j∈U k
∗
j,U .

Since π2,j verifies, we have
∥∥k∗j,U∥∥∞ ≤

∥∥k∗j,U∥∥2 ≤ σ ·
√
N consequently

∥k∗∥∞ ≤ σ ·
√
t ·N , and ∥eS,j,i∥∞ ≤ ∥eS,j,i∥2 ≤ σ′ ·

√
N . Since q/p ≫ 2 t ·

29

CRS SetUp:

– a0,a1 ←R1×ℓ
q .

– a←R1×ℓ
q .

– Sample crs1, crs
′
2 for P1,P′

2.
– Fix an input x′ ∈ {0, 1}L

Initialisation:

– InitS: A trusted authority executes:
• k ←Rχσ , e← Rχσ .
• c← a · k + e mod q, r′ ← Hr(x

′, c) ∈ R1×ℓ
q .

• ax′ := ax0 ·G−1(. . . (axL−2 ·G
−1(axL−1)) . . .) mod q.

• yx′ := ax′ [0] · k + r′.
• For every threshold set T of size t:

∗ Fix indices ia, ib ∈ T .
∗ For i = ib, kib,T ←RχσL

∗ For i ∈ T \ {ia, ib}, ki,T ←Rχσ.
∗ kia,T := k −

∑
i ̸=ia∈T

ki,T

∗ With a probability 1−min(1, DσL(kia,T))/Dk−
∑

ki,T ,σL
(kia,T)

repeat the process for T .
Send ki,T to server Si for every T that Si is part of, broadcast c, yx′ .

Query:

1. QueryC: C executes the following with the input (x ∈ {0, 1}L, crs1, crs′2)
– b′ ← {0, 1}.
– For each index i ∈ {0, 1}:
• If i = b′, xi = x′ otherwise xi = x
• si ←Rχσ , eC,i ←R1×ℓ

χσ
.

• ax,i := ai,x0 ·G−1(. . . (ai,xL−2 ·G
−1(ai,xL−1)) . . .) mod q.

• cx,i ← a · si + eC,i + ax,i[0] mod q.
• π1,i ← P1(xi, si, eC,i : crs1, cx,i, a,a0,a1).

and broadcasts {(cx,i, π1,i)}i∈{0,1} to every Sj .
2. QueryS: Sj ∈ U executes the following for each index i after receiving
{(cx,i, π1,i)}i∈{0,1}
– b← V1(crs1, cx,i,a0,a1, π1,i), output abort if b = 0.
– eS,j,i ←Rχσ′ , dx,j,i := cx · kj,U + eS,j,i mod q.
– π2,j ← P′

2(kj,U , eS,i, : crs
′
2, {dx,j,i, cx,i}i∈M , a).

and sends ({(dx,j,i)}i∈{0,1}, π2,j) to C and outputs ⊥.
3. Finalize: C finally executes the following after receiving ({(dx,j,i)}i∈{0,1})

from Sj ∈ U .
– bj ← V′

2(crs2, {dx,j,i, cx,i}i∈{0,1}, π2,j), output abort with i if bj = 0.
– dx,i :=

∑
j

dx,j,i, ri ← Hr(xi, c) ∈ R1×ℓ
q , yx,i := ⌊dx,i + ri − c · si⌉p.

– If yx,i ̸= yx′ for i = b′ abort.
– y ← H(xi, yx,i) for i ̸= b′.

and outputs y.

Fig. 6: t-out-of-n VOPRF Construction with Trusted Setup

30

σ2 ·N + σ′ ·
√
t ·N , we have:∑

j

dx,j,b′ + r′ − c · s

p

=

ax[0] · k∗ + r′ +

eC · k∗ − e · s+∑
j

eS,j,b′

p

= ⌊ax[0] · k∗ + r′⌉p

with overwhelming probability. Then, A can only win if it can find k∗ ̸= k
such that ⌊ax′ [0] · k∗ + r′⌉p = ⌊ax′ [0] · k + r′⌉p. Rearranging the terms we get

[ax′ [0] | 1] ·
[
k∗ − k
e′

]
= 0 mod q for some e′ ∈ Rq, ∥e′∥∞ ≤ q/(2p). By our

assumption we have that there are (2σ ·
√
t ·N)

N · (q/(2p))N possible choices for
(k∗ − k, e′) but over the randomness of a0[0],a1[0], the probability of obtaining
0 is 1/qN . Thus, with high probability such a k∗ does not exist. Hence if the
evaluation for i = b′ is correct, k∗ = k.

Since the same k∗j,U and consequently the same k∗ = k are used for computing
yx,i, i ̸= b′; the evaluation must also be correct if yx,b′ is correct. This concludes
the proof. ⊓⊔

Remark 5. Our proof above relies on the absences of any SIS solution to [ax′ | 1].
First, our bound is rather loose, by first extracting a worst-case ℓ∞ bound from
the ℓ2 bound established by the NIZKAoK and then constructing a box of
solutions with this ℓ∞ bound. A tighter approximation would be accomplished
by bounding the number of integer points inside the ℓ2 ball established by the
NIZKAoK directly. Moreover, an alternative approach, giving smaller parameters,
is to instead rely on a computational SIS assumption wrt the infinity norm
and with unbalanced entries. This problem was considered in [ZYF+20,ESZ22].
Indeed, even assuming an infinity norm bound of q/4 for all components, the
difficulty of the resulting SIS instance is comparable to λ as given in Table 2
according to the lattice estimator [APS15].

We now show how the protocol has threshold unpredictability.

Theorem 8. Let σ, N , and
(
n
t

)
be poly(λ). Let t′ = o(log(N)), T ≤ σ

√
(t− 1)N

and α = T/σL. Let M = exp(t′/α+ 1/2 · α−2). Let dRLWEq,N,σ,σ be hard, and
q
2p ≫ σ′ ≥ (L ·

√
N + 2 · σ) · σ ·N ·

√
Q ·N for the number of queries made Q.

Let (P1,V1), (P′
2,V′

2) be straight-line extractable NIZKAoKs for language L1,
L′
2. Then the (t, n) threshold OPRF protocol defined in Figure 6 is threshold

unpredictable against malicious clients controlling up to t− 1 servers.

Proof. We can think of our t-out-of-n construction as an n-out-of-n construction
with n = t, here we adapt the proof of Theorem 6 to our case. We once again
assume honest Si receive the same input. We discuss what we change in each
hybrid.

Hybrid0: Since U are a set of t users for each query, for each query we define
CU := U (τ) ∩ C and HU := U (τ) ∩H. The rest is the same.

31

Hybrid1: Since the keys are distributed by a trusted authority, and there is no

π0,j and only π
(τ)
2,j has to be simulated; Hybrid1 is exactly the same as Hybrid0 by

the zero knowledge property of the underlying NIZKAoK.

Hybrid2: Since the key setup is handled by a trusted authority (i) there is only a
single commitment and (ii) all key shares are accessible via the trusted authority.
Then the honest parties are not required to extract key shares of the corrupted
parties to access them. The input of C however still needs to be extracted from

π
(τ)
1 which has the same argument as Hybrid2 for n-out-of-n.

Hybrid3: To fix d
(τ)
x,i′ for i

′ ∈ HU (note that i′ is not necessarily the same as ia or
ib), instead of all corrupted partial keys only the ones in set U are used. The rest
is the same. Also note that since k is sampled from Rχσ , the bound for σ′ is the
same as the single party case.

Hybrid4: Again, we use the set specific partial keys for adjusting the share, the
rest is exactly the same as Hybrid4. Since the distribution of ax and ex are the
same, the argument is the same.

Hybrid5: Hybrid5 is exactly the same with the exact argument. Note however that
the honest parties can include ia and ib which requires the error to be sampled
with parameter σL.

Hybrid6: Hybrid6 is exactly the same with the exact argument. Again, since
honest parties can include ia and ib, we rely on the security of dRLWEq,N,σL,σL

and dRLWEq,N,σ,σ instead.

Hybrid7: Since there is only one commitment c to the combined key k we replace
it with a uniform value and give garbage key shares for each threshold C is part
of. The argument is the same except we use dRLWEN,q,σ,σ since k is sampled
from Rχσ

. Again, since every reply to A is freshly generated and independent
from the secret combined key k and the honest key shares, they are unpredictable.
Thus we conclude the proof. ⊓⊔

Finally, since the protocol is threshold unpredictable, we can also argue it
has threshold one-more PRF security.

Corollary 3. Let σ, N , and
(
n
t

)
be poly(λ). Let t′ = o(log(N)), T ≤ σ

√
(t− 1)N

and α = T/σL. Let M = exp(t′/α+ 1/2 · α−2). Let dRLWEq,N,σ,σ be hard, and
q
2p ≫ σ′ ≥ (L ·

√
N + 2 · σ) · σ ·N ·

√
Q ·N for the number of queries made Q.

Let (P1,V1), (P′
2,V′

2) be straight-line extractable NIZKAoKs for language L1,L′
2

and H,Hr be hash functions modeled as random oracles then if the (t, n) threshold
OPRF protocol defined in Figure 6 is threshold unpredictable, it also has threshold
one-more PRF security against any PPT adversary A controlling C and a subset
of servers C of size at most t− 1.

32

Acknowledgements

We thank reviewers for their valuable comments and pointing out the issue
with both [ADDS21] and our unpredictability proofs. This work was supported
in part by UKRI grant EP/Y02432X/1. Part of this work was done while
Kamil Doruk Gur was at SandboxAQ and supported in part by NSF award
CNS-2154705.

References

ADDG24. Martin R. Albrecht, Alex Davidson, Amit Deo, and Daniel Gardham.
Crypto dark matter on the torus - oblivious PRFs from shallow PRFs and
TFHE. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part VI, volume 14656 of LNCS, pages 447–476. Springer, Cham, May 2024.
1, 1, 1, 1.2, 11, 6

ADDS21. Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-
optimal verifiable oblivious pseudorandom functions from ideal lattices.
In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages
261–289. Springer, Cham, May 2021. 1, 1, 1.1, 1.1, 1.1, 3, 1.2, 2.6, 4, 3, 3,
3, 4, 4, 4, 6, 5, 7, 7.3, 7.3

AG24. Martin R. Albrecht and Kamil Doruk Gür. Verifiable oblivious pseudoran-
dom functions from lattices: Practical-ish and thresholdisable. In Kai-Min
Chung and Yu Sasaki, editors, ASIACRYPT 2024, Part IV, volume 15487
of LNCS, pages 205–237. Springer, Singapore, December 2024. ⋆

AKSY22. Shweta Agrawal, Elena Kirshanova, Damien Stehlé, and Anshu Yadav.
Practical, round-optimal lattice-based blind signatures. In Heng Yin,
Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022,
pages 39–53. ACM Press, November 2022. 7.1

APRR24. Navid Alamati, Guru-Vamsi Policharla, Srinivasan Raghuraman, and Peter
Rindal. Improved alternating-moduli PRFs and post-quantum signatures.
Cryptology ePrint Archive, Report 2024/582, 2024. 1

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of Learning with Errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015. 3, 5

Bas24. Andrea Basso. POKE: A framework for efficient PKEs, split KEMs, and
OPRFs from higher-dimensional isogenies. Cryptology ePrint Archive,
Report 2024/624, 2024. 1

BDFH24. Ward Beullens, Lucas Dodgson, Sebastian Faller, and Julia Hesse. The
2Hash OPRF framework and efficient post-quantum instantiations. Cryp-
tology ePrint Archive, Report 2024/450, 2024. 1

BIP+18. Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu.
Exploring crypto dark matter: New simple PRF candidates and their
applications. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part II, volume 11240 of LNCS, pages 699–729. Springer, Cham, November
2018. 1, 1

BKW20. Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudorandom
functions from isogenies. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part II, volume 12492 of LNCS, pages 520–550. Springer,
Cham, December 2020. 1

33

BLR+18. Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien
Stehlé, and Ron Steinfeld. Improved security proofs in lattice-based cryp-
tography: Using the Rényi divergence rather than the statistical distance.
Journal of Cryptology, 31(2):610–640, April 2018. 1.2, 2.5

BP14. Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic
pseudorandom functions. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 353–370. Springer,
Berlin, Heidelberg, August 2014. 1.1, 1.1, 2.6, 6

BS23. Ward Beullens and Gregor Seiler. LaBRADOR: Compact proofs for R1CS
from module-SIS. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part V, volume 14085 of LNCS, pages 518–548. Springer,
Cham, August 2023. 1.2, 5, 7.1

BV15. Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic
PRFs from standard lattice assumptions - or: How to secretly embed a
circuit in your PRF. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 1–30. Springer, Berlin,
Heidelberg, March 2015. 1.1

CDI05. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseu-
dorandom secret-sharing and applications to secure computation. In Joe
Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 342–362. Springer,
Berlin, Heidelberg, February 2005. 4

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of
Cryptology, 33(1):34–91, January 2020. 1

CHL22. Śılvia Casacuberta, Julia Hesse, and Anja Lehmann. SoK: Oblivious
pseudorandom functions. In 2022 IEEE European Symposium on Security
and Privacy, pages 625–646. IEEE Computer Society Press, June 2022. 1, 3

DGH+21. Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna Kelkar,
Vivek Sharma, and Greg Zaverucha. MPC-friendly symmetric cryptography
from alternating moduli: Candidates, protocols, and applications. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828
of LNCS, pages 517–547, Virtual Event, August 2021. Springer, Cham. 1

DGS+18. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Fil-
ippo Valsorda. Privacy pass: Bypassing internet challenges anonymously.
PoPETs, 2018(3):164–180, July 2018. 1

DOTT22. Ivan Damg̊ard, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi.
Two-round n-out-of-n and multi-signatures and trapdoor commitment from
lattices. Journal of Cryptology, 35(2):14, April 2022. 7.3

ECS+15. Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas
Ristenpart. The pythia PRF service. In Jaeyeon Jung and Thorsten
Holz, editors, USENIX Security 2015, pages 547–562. USENIX Association,
August 2015. 9, 10, 2.5

ESZ22. Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. MatRiCT+:
More efficient post-quantum private blockchain payments. In 2022 IEEE
Symposium on Security and Privacy, pages 1281–1298. IEEE Computer
Society Press, May 2022. 5

FIPR05. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold.
Keyword search and oblivious pseudorandom functions. In Joe Kilian,
editor, TCC 2005, volume 3378 of LNCS, pages 303–324. Springer, Berlin,
Heidelberg, February 2005. 1

34

FOO23. Sebastian Faller, Astrid Ottenhues, and Johannes Ottenhues. Composable
oblivious pseudo-random functions via garbled circuits. Cryptology ePrint
Archive, Report 2023/1176, 2023. 1

GdKQ+23. Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and Pe-
ter Schwabe. Swoosh: Practical lattice-based non-interactive key exchange.
Cryptology ePrint Archive, Report 2023/271, 2023. 1.2

HMR23. Lena Heimberger, Fredrik Meisingseth, and Christian Rechberger. Oprfs
from isogenies: Designs and analysis. Cryptology ePrint Archive, Paper
2023/639, 2023. https://eprint.iacr.org/2023/639. 1

ISN89. Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme
realizing general access structure. Electronics and Communications in
Japan (Part III: Fundamental Electronic Science), 72(9):56–64, 1989. 4

JKK14. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only model.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, vol-
ume 8874 of LNCS, pages 233–253. Springer, Berlin, Heidelberg, December
2014. 1

JKKX16. Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-
efficient and composable password-protected secret sharing (or: How to
protect your bitcoin wallet online). In 2016 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 276–291, 2016. 1

JKR18. Stanislaw Jarecki, Hugo Krawczyk, and Jason Resch. Threshold partially-
oblivious PRFs with applications to key management. Cryptology ePrint
Archive, Report 2018/733, 2018. 3

JKX18. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmet-
ric PAKE protocol secure against pre-computation attacks. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume
10822 of LNCS, pages 456–486. Springer, Cham, April / May 2018. 1

JL09. Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom
function with applications to adaptive OT and secure computation of set
intersection. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS,
pages 577–594. Springer, Berlin, Heidelberg, March 2009. 1

Kat21. Shuichi Katsumata. A new simple technique to bootstrap various lattice
zero-knowledge proofs to QROM secure NIZKs. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages
580–610, Virtual Event, August 2021. Springer, Cham. 7.1

KBR13. Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. DupLESS:
Server-aided encryption for deduplicated storage. In Samuel T. King, editor,
USENIX Security 2013, pages 179–194. USENIX Association, August 2013.
1

KCM24. Novak Kaluderovic, Nan Cheng, and Katerina Mitrokotsa. A post-quantum
distributed OPRF from the legendre PRF. Cryptology ePrint Archive,
Report 2024/544, 2024. 1

Leh19. Anja Lehmann. ScrambleDB: Oblivious (chameleon) pseudonymization-as-
a-service. PoPETs, 2019(3):289–309, July 2019. 8

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Planccon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and more
general. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 71–101. Springer, Cham, August
2022. 1.2, 5, B.3

35

https://eprint.iacr.org/2023/639

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 1–23. Springer, Berlin, Heidelberg, May / June
2010. 2

LSS14. Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More
efficient multilinear maps from ideal lattices. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 239–256. Springer, Berlin, Heidelberg, May 2014. 4

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 738–755. Springer, Berlin, Heidelberg, April 2012. 2.1,
2, 3

MP13. Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small
parameters. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 21–39. Springer, Berlin, Heidelberg,
August 2013. 1

S+23. William Stein et al. Sage Mathematics Software Version 10.2. The Sage De-
velopment Team, 2023. http://www.sagemath.org. A

SHB21. István András Seres, Máté Horváth, and Péter Burcsi. The legendre
pseudorandom function as a multivariate quadratic cryptosystem: Security
and applications. Cryptology ePrint Archive, Report 2021/182, 2021. 1

SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient
public key encryption based on ideal lattices. In Mitsuru Matsui, editor,
ASIACRYPT 2009, volume 5912 of LNCS, pages 617–635. Springer, Berlin,
Heidelberg, December 2009. 2

YAZ+19. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and
William Whyte. Efficient lattice-based zero-knowledge arguments with
standard soundness: Construction and applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of
LNCS, pages 147–175. Springer, Cham, August 2019. 1.1, 1.2, 5

ZYF+20. Jiang Zhang, Yu Yu, Shuqin Fan, Zhenfeng Zhang, and Kang Yang. Tweak-
ing the asymmetry of asymmetric-key cryptography on lattices: KEMs and
signatures of smaller sizes. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of
LNCS, pages 37–65. Springer, Cham, May 2020. 5

36

http://www.sagemath.org

A Proving Statements in Zq[X]/(XN + 1) using
Zq[X]/(X64 + 1)

We would like to prove statements in some ring Rq := Zq[X]/(Xd + 1) using
LaBRADOR where we would like to use R′

q := Zq[X]/(Xz + 1) for z = 64. We
thus have to express c = a · b for a, b ∈ Rq as arithmetic over R′

q. Additions are

immediate. We write a :=
∑
ai ·Xi as a vector of dimension d/z, i.e. ∈ R′

q
d/z

by setting:

ai =

z−1∑
j=0

aj· dz+i ·X
j .

We also define functions performing (negacyclic) ring rotr : R′
q → R′

q and

vector rotv : (R′
q)

d/z → (R′
q)

d/z
rotations as

rotr(a) := X · a mod Xz + 1 ≡ az−1 +

z−2∑
i=0

ai ·Xi+1.

and

rotv(a) := (rotr(ad/z−1),a0, . . . ,ad/z−2).

Finally, we define the multiplication matrix ∈ (R′
q)

d/z×d/z
of a ∈ Rq as the

matrix where the first column is a, the second column is rotv(a), the third column
in rotv(rotv(a)) etc. Then it holds that A · b ≡ c mod q. We given an example
implemented in SageMath [S+23] below.

def tovec(a, d, z):
r = [sum(a[j*d//z+i]*X^j for j in range(z)) for i in range(d//z)]
return vector(R, r)

def rotr(e, z):
return -e[z-1] + sum(e[i]*X^(i+1) for i in range(z-1))

def rotv(v, d, z):
return vector ([rotr(v[-1], z)] + list(v[: -1]))

def tomat(a, d, z):
avec = tovec(a, d, z)
amat = matrix(R, d//z, d//z)
for i in range(d//z):

amat[i,:] = avec
avec = rotv(avec , d, z)

return amat.T

d = 128
z = 8
P = PolynomialRing(QQ, ["a%d"%i for i in range(d)] + ["b%d"%i for i in range(d)])
R.<X> = PolynomialRing(P)

a = sum(P.gens ()[:d][i]*X^i for i in range(d))
b = sum(P.gens ()[d:][i]*X^i for i in range(d))
c = a*b % (X^d + 1)

cres = (tomat(a, d, z)*tovec(b, d, z)) % (X^z + 1)
tovec(c, d, z) - cres == 0

37

B Code

B.1 Parameter Selection

The script is also .

"""
OPRF Parameter Selection.
"""

from sage.all import ceil , log , sqrt

from utils import lwe_security_level

class HashableDict(dict):
def __hash__(self):

return hash(frozenset(self.items ()))

base_sigma = 3.2

class OPRFParams:
def __init__(

self ,
d=4096 ,
sigma_s=base_sigma ,
sigma_e=base_sigma ,
Other
L=128,
epsilon =100,
Q=2**32 ,

):
"""
:param d: RLWE dimension (power of two)
:param sigma_s: secret standard deviation
:param sigma_e: error standard deviation
:param L: PRF value length
:param epsilon: statistical correctness: 1-2^-ε
:param Q: number of permitted queries

"""

self.d = d
self.sigma_s = sigma_s
self.sigma_e = sigma_e
self.L = L
we aim for 1-2^-ε overall
self.Q = Q
self.epsilon = epsilon

self.ell = self.epsilon # temporary

self.sigma_ = (
(self.L * sqrt(self.d) + 2 * sigma_e)
* sigma_s
* self.d
* sqrt(self.Q * self.d)

)

q//4 > σ’ · 2^ε
self.ell = ceil(log(self.sigma_ , 2) + self.epsilon + 2)
self.q = 2** self.ell

def __call__(
self ,

38

"""
OPRF Parameter Selection.
"""

from sage.all import ceil, log, sqrt

from utils import lwe_security_level

class HashableDict(dict):
 def __hash__(self):
 return hash(frozenset(self.items()))

base_sigma = 3.2

class OPRFParams:
 def __init__(
 self,
 d=4096,
 sigma_s=base_sigma,
 sigma_e=base_sigma,
 # Other
 L=128,
 epsilon=100,
 Q=2**32,
):
 """
 :param d: RLWE dimension (power of two)
 :param sigma_s: secret standard deviation
 :param sigma_e: error standard deviation
 :param L: PRF value length
 :param epsilon: statistical correctness: 1-2^-ε
 :param Q: number of permitted queries

 """

 self.d = d
 self.sigma_s = sigma_s
 self.sigma_e = sigma_e
 self.L = L
 # we aim for 1-2^-ε overall
 self.Q = Q
 self.epsilon = epsilon

 self.ell = self.epsilon # temporary

 self.sigma_ = (
 (self.L * sqrt(self.d) + 2 * sigma_e)
 * sigma_s
 * self.d
 * sqrt(self.Q * self.d)
)

 # q//4 > σ' ⋅ 2^ε
 self.ell = ceil(log(self.sigma_, 2) + self.epsilon + 2)
 self.q = 2**self.ell

 def __call__(
 self,
 verbose=False,
 check_security=True,
):
 if check_security:
 level = self.check_assumptions(verbose=verbose)
 return level
 else:
 print(self.list_assumptions())
 return None

 def __repr__(self):
 return (
 f"OPRF(d={self.d}, q=2^{self.ell}, "
 + "Q=2^{float(log(self.Q,2.)):.1f})"
)

 def check_assumptions(self, verbose=False):
 from estimator.estimator import LWE, ND, SIS

 Xs = ND.DiscreteGaussian(self.sigma_s)
 Xe = ND.DiscreteGaussian(self.sigma_e)

 lwe = LWE.Parameters(n=self.d, q=self.q, Xs=Xs, Xe=Xe)
 lwe_level = lwe_security_level(
 lwe,
 verbose=verbose,
)

 return lwe_level

 def list_assumptions(self):
 s = []
 s.append(
 f"LWE.Parameters(n={self.d}, q=2^{float(log(self.q,2)):.0f}, "
 + f" Xs=ND.DiscreteGaussian(2^{float(log(self.sigma_s,2)):.1f}))"
 + f" Xe=ND.DiscreteGaussian(2^{float(log(self.sigma_e,2)):.1f}))"
)
 return "\n".join(s)

verbose=False ,
check_security=True ,

):
if check_security:

level = self.check_assumptions(verbose=verbose)
return level

else:
print(self.list_assumptions ())
return None

def __repr__(self):
return (

f"OPRF(d={self.d}, q=2^{ self.ell}, "
+ "Q=2^{ float(log(self.Q ,2.)):.1f})"

)

def check_assumptions(self , verbose=False):
from estimator.estimator import LWE , ND, SIS

Xs = ND.DiscreteGaussian(self.sigma_s)
Xe = ND.DiscreteGaussian(self.sigma_e)

lwe = LWE.Parameters(n=self.d, q=self.q, Xs=Xs , Xe=Xe)
lwe_level = lwe_security_level(

lwe ,
verbose=verbose ,

)

return lwe_level

def list_assumptions(self):
s = []
s.append(

f"LWE.Parameters(n={self.d}, q=2^{ float(log(self.q ,2)):.0f}, "
+ f" Xs=ND.DiscreteGaussian (2^{ float(log(self.sigma_s ,2)):.1f}))"
+ f" Xe=ND.DiscreteGaussian (2^{ float(log(self.sigma_e ,2)):.1f}))"

)
return "\n".join(s)

39

B.2 Size Estimates

The script is also .

"""
OPRF Size Estimates.
"""

from sage.all import sqrt , ceil , log , cached_function , round
from lnp import LNP
from labrador import LaBRADOR
from parameters import OPRFParams as Parameters

OPRF_Signal = Parameters(d=4096 , Q=2**4)
OPRF_4096_16 = Parameters(d=4096, Q=2**16)
OPRF_4096_32 = Parameters(d=4096, Q=2**32)
OPRF_8192_64 = Parameters(d=8192, Q=2**64)

argsv = [
(OPRF_Signal , "-Signal"),
(OPRF_4096_16 , " -4096-16"),
(OPRF_4096_32 , " -4096-32"),
(OPRF_8192_64 , " -8192-64"),

]

def _kb(v):
"""
Convert bits to kilobytes.
"""
return round(float(v / 8.0 / 1024.0) , 1)

def _mb(v):
"""
Convert bits to megabytes.
"""
return round(float(v / 8.0 / 1024.0 / 1024.0) , 1)

def oprf_com_sizekb(params):
"""
The size of the OPRF commitment in KB.

:param params: OPRF parameters

"""

size of ‘c‘
return _kb(params.d * params.ell)

@cached_function
def oprf_com_proof_sizekb(params , lnp_params=None , labrador_params=False):

"""
Well -formedness proof of the OPRF commitment using LNP22.

:param params: OPRF parameters
:param lnp_params: Parameters passed to LNP22 proof system
:param labrador_params: Parameters passed to LaBRADOR proof system

"""
if lnp_params is None:

lnp_params = {"logq1": params.ell , "d": 32}
lnp = LNP (** lnp_params)

sigma = max(params.sigma_s , params.sigma_e)

40

"""
OPRF Size Estimates.
"""

from sage.all import sqrt, ceil, log, cached_function, round
from lnp import LNP
from labrador import LaBRADOR
from parameters import OPRFParams as Parameters

OPRF_Signal = Parameters(d=4096, Q=2**4)
OPRF_4096_16 = Parameters(d=4096, Q=2**16)
OPRF_4096_32 = Parameters(d=4096, Q=2**32)
OPRF_8192_64 = Parameters(d=8192, Q=2**64)

argsv = [
 (OPRF_Signal, "-Signal"),
 (OPRF_4096_16, "-4096-16"),
 (OPRF_4096_32, "-4096-32"),
 (OPRF_8192_64, "-8192-64"),
]

def _kb(v):
 """
 Convert bits to kilobytes.
 """
 return round(float(v / 8.0 / 1024.0), 1)

def _mb(v):
 """
 Convert bits to megabytes.
 """
 return round(float(v / 8.0 / 1024.0 / 1024.0), 1)

def oprf_com_sizekb(params):
 """
 The size of the OPRF commitment in KB.

 :param params: OPRF parameters

 """

 # size of `c`
 return _kb(params.d * params.ell)

@cached_function
def oprf_com_proof_sizekb(params, lnp_params=None, labrador_params=False):
 """
 Well-formedness proof of the OPRF commitment using LNP22.

 :param params: OPRF parameters
 :param lnp_params: Parameters passed to LNP22 proof system
 :param labrador_params: Parameters passed to LaBRADOR proof system

 """
 if lnp_params is None:
 lnp_params = {"logq1": params.ell, "d": 32}
 lnp = LNP(**lnp_params)

 sigma = max(params.sigma_s, params.sigma_e)

 sizekb, q, b_d = lnp(
 alpha=params.sigma_s * sqrt(params.d),
 alpha_e=sqrt(
 params.sigma_s**2 * params.d
 + params.sigma_e**2 * params.d * params.ell
 + params.d
),
 alpha_d=1,
 ell=0,
 m1=params.d / lnp.d,
 ce=(params.ell + 1) * params.d / lnp.d + 1,
 k_bin=0,
 bounds_to_prove=[
 sqrt(sigma**2 * params.d + sigma**2 * params.d * params.ell)
],
 do_labrador=labrador_params,
 approximate_norm_proof=False,
)

 return sizekb

def oprf_ct0_sizekb(params):
 """
 OPRF request size in kilobytes.
 """

 # size of `c_x`
 return _kb(params.d * params.ell)

@cached_function
def oprf_ct0_proof_sizekb(
 params, lnp_params=None, labrador_params=(True, 10, 4), labrador_only=False
):
 """
 Well-formedness proof of OPRF request per req. with LNP22 and LaBRADOR.

 :param params: OPRF parameters
 :param labrador_params: Parameters passed to LaBRADOR proof system

 """
 L = params.L
 ell = params.ell
 d = params.d
 sigma = max(params.sigma_s, params.sigma_e)

 if labrador_only:
 greedy, base, length = labrador_params
 labrador = LaBRADOR(logq=params.ell, d=1)
 beta = sqrt(L + L * ell**2 + 2 * sigma**2 * d)

 n = d / labrador.d * (L + L * ell * ell + 2)

 if greedy:
 f = labrador.greedy
 else:
 f = labrador

 sizekb, recursion = f(
 n=n,
 r=d / labrador.d,
 beta=beta,
 base=base,
 length=length,
 verbose=None,
)
 return round(sizekb, 1)
 else:
 if lnp_params is None:
 lnp_params = {"logq1": params.ell, "d": 128}
 lnp = LNP(**lnp_params)

 # Exact norm bounds we need to prove
 ve = L + L * ell * ell + 2

 # Treating the entire x_0, ..., x_L, B_0, ..., B_{L-1}, s, e_\C, and the quadratic
 # terms x_0 B_1, ..., x_{L-2} B_{L-1}
 alpha = sqrt(
 L
 + L * ell * ell
 + sigma**2 * d
 + sigma**2 * d * ell
 + (L - 1) * ell * ell
)

 alpha_e = sqrt(
 L
 + L * ell * ell
 + sigma**2 * d
 + sigma**2 * d * ell
 + (L - 1) * ell * ell
 + lnp.d * ve
 + sigma**2 * d
)

 sizekb, q, b_d = lnp(
 alpha=alpha,
 alpha_e=alpha_e,
 alpha_d=1,
 ell=0,
 # same as Labrador witness size + the quadratic terms
 m1=d / lnp.d * (L + L * ell * ell + 2 + 2 * ell * ell),
 ce=(L + L * ell * ell + 2 + (L - 1) * ell * ell) * d / lnp.d + ve,
 k_bin=0,
 bounds_to_prove=[
 1, # L + L* params.ell * params.ell times
 sigma * sqrt(d), # for s
 sigma * sqrt(d), # for e_client
],
 do_labrador=labrador_params,
 approximate_norm_proof=False,
)
 return round(sizekb, 1)

def oprf_ct1_sizekb(params, compress_ct1=True):
 """
 Response size in kilobytes.
 """

 # size of `d_x`

 # there's not much point in sending anything but the top 10 bits of the
 # noise σ'

 # we use `d_x` additively only, so we may simply send the first `L`
 # components
 if compress_ct1:
 return _kb(params.L * (params.ell - (log(params.sigma_, 2) - 10)))
 else:
 return _kb(params.d * params.ell)

@cached_function
def oprf_ct1_proof_sizekb(params, lnp_params=None, labrador_params=False):
 """
 Well-formedness proof of c1 [LNP22].

 :param params: OPRF parameters
 :param lnp_params: Parameters passed to LNP22 proof system
 :param labrador_params: Parameters passed to LaBRADOR proof system

 """
 if lnp_params is None:
 lnp_params = {"logq1": 12 + params.ell, "d": 32}
 lnp = LNP(**lnp_params)

 sigma = max(params.sigma_s, params.sigma_e)

 sizekb, q, b_d = lnp(
 alpha=params.sigma_s * sqrt(params.d),
 alpha_e=sqrt(
 sigma**2 * params.d
 + params.sigma_**2 * params.d * params.ell
 + params.d
),
 alpha_d=1,
 ell=0,
 m1=params.d / lnp.d,
 ce=(params.ell + 1) * params.d / lnp.d + 1,
 k_bin=0,
 bounds_to_prove=[
 sqrt(sigma**2 * params.d + params.sigma_**2 * params.d * params.ell)
],
 do_labrador=labrador_params,
 approximate_norm_proof=False,
)

 return sizekb

def oprf_online_sizekb(params):
 """

 :param params: OPRF parameters
 :param amortise:

 """
 r = oprf_ct0_sizekb(params)
 r += oprf_ct0_proof_sizekb(params)
 r += oprf_ct1_sizekb(params)
 r += oprf_ct1_proof_sizekb(params)
 return round(r, 1)

def oprf_offline_sizekb(params):
 r = oprf_com_sizekb(params)
 r += oprf_com_proof_sizekb(params)
 return round(r, 1)

def oprf(params, suffix="", queue=None):
 """

 :param params: OPRF parameters
 :param suffix: Suffix for printing

 """

 ret = f"""% OPRF{suffix} SIZES
 /oprf{suffix}/logq/.initial={params.ell},
 /oprf{suffix}/d/.initial={params.d},
 /oprf{suffix}/epsilon/.initial={params.epsilon},
 /oprf{suffix}/logQ/.initial={ceil(log(params.Q,2.))},
 /oprf{suffix}/logsigmaprime/.initial={ceil(log(params.sigma_,2.))},
 /oprf{suffix}/secpar/.initial={params()},
 /oprf{suffix}/com/sizekb/.initial={oprf_com_sizekb(params)},
 /oprf{suffix}/com/proof/sizekb/.initial={oprf_com_proof_sizekb(params)},
 /oprf{suffix}/ct0/sizekb/.initial={oprf_ct0_sizekb(params)},
 /oprf{suffix}/ct0/proof/sizekb/.initial={oprf_ct0_proof_sizekb(params)},
 /oprf{suffix}/ct1/sizekb/.initial={oprf_ct1_sizekb(params)},
 /oprf{suffix}/ct1/proof/sizekb/.initial={oprf_ct1_proof_sizekb(params)},
 /oprf{suffix}/online/sizekb/.initial={oprf_online_sizekb(params)},
 /oprf{suffix}/offline/sizekb/.initial={oprf_offline_sizekb(params)},"""

 if queue is not None:
 queue.put(ret)
 return ret

def print_all(parallel=True):
 from multiprocessing import Process, Queue

 resv = []

 if not parallel:
 for args in argsv:
 resv.append(oprf(args))
 for res in resv:
 print(res)
 else:
 for args in argsv:
 q = Queue()
 p = Process(target=oprf, args=args + (q,))
 p.start()
 resv.append((p, q))
 for p, q in resv:
 p.join()
 print(q.get())

sizekb , q, b_d = lnp(
alpha=params.sigma_s * sqrt(params.d),
alpha_e=sqrt(

params.sigma_s **2 * params.d
+ params.sigma_e **2 * params.d * params.ell
+ params.d

),
alpha_d=1,
ell=0,
m1=params.d / lnp.d,
ce=(params.ell + 1) * params.d / lnp.d + 1,
k_bin=0,
bounds_to_prove =[

sqrt(sigma **2 * params.d + sigma **2 * params.d * params.ell)
],
do_labrador=labrador_params ,
approximate_norm_proof=False ,

)

return sizekb

def oprf_ct0_sizekb(params):
"""
OPRF request size in kilobytes.
"""

size of ‘c_x ‘
return _kb(params.d * params.ell)

@cached_function
def oprf_ct0_proof_sizekb(

params , lnp_params=None , labrador_params =(True , 10, 4), labrador_only=False
):

"""
Well -formedness proof of OPRF request per req. with LNP22 and LaBRADOR.

:param params: OPRF parameters
:param labrador_params: Parameters passed to LaBRADOR proof system

"""
L = params.L
ell = params.ell
d = params.d
sigma = max(params.sigma_s , params.sigma_e)

if labrador_only:
greedy , base , length = labrador_params
labrador = LaBRADOR(logq=params.ell , d=1)
beta = sqrt(L + L * ell **2 + 2 * sigma **2 * d)

n = d / labrador.d * (L + L * ell * ell + 2)

if greedy:
f = labrador.greedy

else:
f = labrador

sizekb , recursion = f(
n=n,
r=d / labrador.d,
beta=beta ,
base=base ,
length=length ,
verbose=None ,

)
return round(sizekb , 1)

41

else:
if lnp_params is None:

lnp_params = {"logq1": params.ell , "d": 128}
lnp = LNP (** lnp_params)

Exact norm bounds we need to prove
ve = L + L * ell * ell + 2

Treating the entire x_0 , ..., x_L , B_0 , ..., B_{L-1}, s, e_\C, and the quadratic
terms x_0 B_1 , ..., x_{L-2} B_{L-1}
alpha = sqrt(

L
+ L * ell * ell
+ sigma **2 * d
+ sigma **2 * d * ell
+ (L - 1) * ell * ell

)

alpha_e = sqrt(
L
+ L * ell * ell
+ sigma **2 * d
+ sigma **2 * d * ell
+ (L - 1) * ell * ell
+ lnp.d * ve
+ sigma **2 * d

)

sizekb , q, b_d = lnp(
alpha=alpha ,
alpha_e=alpha_e ,
alpha_d=1,
ell=0,
same as Labrador witness size + the quadratic terms
m1=d / lnp.d * (L + L * ell * ell + 2 + 2 * ell * ell),
ce=(L + L * ell * ell + 2 + (L - 1) * ell * ell) * d / lnp.d + ve,
k_bin=0,
bounds_to_prove =[

1, # L + L* params.ell * params.ell times
sigma * sqrt(d), # for s
sigma * sqrt(d), # for e_client

],
do_labrador=labrador_params ,
approximate_norm_proof=False ,

)
return round(sizekb , 1)

def oprf_ct1_sizekb(params , compress_ct1=True):
"""
Response size in kilobytes.
"""

size of ‘d_x ‘

there ’s not much point in sending anything but the top 10 bits of the
noise σ’

we use ‘d_x ‘ additively only , so we may simply send the first ‘L‘
components
if compress_ct1:

return _kb(params.L * (params.ell - (log(params.sigma_ , 2) - 10)))
else:

return _kb(params.d * params.ell)

@cached_function
def oprf_ct1_proof_sizekb(params , lnp_params=None , labrador_params=False):

42

"""
Well -formedness proof of c1 [LNP22].

:param params: OPRF parameters
:param lnp_params: Parameters passed to LNP22 proof system
:param labrador_params: Parameters passed to LaBRADOR proof system

"""
if lnp_params is None:

lnp_params = {"logq1": 12 + params.ell , "d": 32}
lnp = LNP (** lnp_params)

sigma = max(params.sigma_s , params.sigma_e)

sizekb , q, b_d = lnp(
alpha=params.sigma_s * sqrt(params.d),
alpha_e=sqrt(

sigma **2 * params.d
+ params.sigma_ **2 * params.d * params.ell
+ params.d

),
alpha_d=1,
ell=0,
m1=params.d / lnp.d,
ce=(params.ell + 1) * params.d / lnp.d + 1,
k_bin=0,
bounds_to_prove =[

sqrt(sigma **2 * params.d + params.sigma_ **2 * params.d * params.ell)
],
do_labrador=labrador_params ,
approximate_norm_proof=False ,

)

return sizekb

def oprf_online_sizekb(params):
"""

:param params: OPRF parameters
:param amortise:

"""
r = oprf_ct0_sizekb(params)
r += oprf_ct0_proof_sizekb(params)
r += oprf_ct1_sizekb(params)
r += oprf_ct1_proof_sizekb(params)
return round(r, 1)

def oprf_offline_sizekb(params):
r = oprf_com_sizekb(params)
r += oprf_com_proof_sizekb(params)
return round(r, 1)

def oprf(params , suffix="", queue=None):
"""

:param params: OPRF parameters
:param suffix: Suffix for printing

"""

ret = f"""% OPRF{suffix} SIZES
/oprf{suffix }/logq/. initial ={ params.ell},
/oprf{suffix }/d/. initial ={ params.d},
/oprf{suffix }/ epsilon /. initial ={ params.epsilon},

43

/oprf{suffix }/logQ/. initial ={ceil(log(params.Q,2.))} ,
/oprf{suffix }/ logsigmaprime /. initial ={ceil(log(params.sigma_ ,2.))} ,
/oprf{suffix }/ secpar /. initial ={ params ()},
/oprf{suffix }/com/sizekb /. initial ={ oprf_com_sizekb(params)},
/oprf{suffix }/com/proof/sizekb /. initial ={ oprf_com_proof_sizekb(params)},
/oprf{suffix }/ct0/sizekb /. initial ={ oprf_ct0_sizekb(params)},
/oprf{suffix }/ct0/proof/sizekb /. initial ={ oprf_ct0_proof_sizekb(params)},
/oprf{suffix }/ct1/sizekb /. initial ={ oprf_ct1_sizekb(params)},
/oprf{suffix }/ct1/proof/sizekb /. initial ={ oprf_ct1_proof_sizekb(params)},
/oprf{suffix }/ online/sizekb /. initial ={ oprf_online_sizekb(params)},
/oprf{suffix }/ offline/sizekb /. initial ={ oprf_offline_sizekb(params)},"""

if queue is not None:
queue.put(ret)

return ret

def print_all(parallel=True):
from multiprocessing import Process , Queue

resv = []

if not parallel:
for args in argsv:

resv.append(oprf(args))
for res in resv:

print(res)
else:

for args in argsv:
q = Queue()
p = Process(target=oprf , args=args + (q,))
p.start()
resv.append ((p, q))

for p, q in resv:
p.join()
print(q.get ())

44

B.3 Size Estimates for [LNP22]

The script is also .

from sage.all import (
log ,
ceil ,
sqrt ,
is_prime ,
divisors ,
is_even ,
exp ,
get_verbose ,

)

from utils import find_mlwe_level , sis_delta , _kb
from labrador import LaBRADOR , LABRADOR_SLACK

class LNP:
def __init__(

self ,
secpar =128,
logq1=66,
logq=None ,
nbofdiv=1,
d=128,
l=2,
kappa=2,
eta=59,

):
"""
:param secpar: Security parameter

Defining the log of the proof system modulus ,
finding true values will come later:

:param logq1: log of the smallest prime divisor of q
:param logq: log of the proof system modulus q
:param nbofdiv: Number of prime divisors of q, usually 1 or 2

:param d: Dimension of ‘R = Z[X]/(X^d + 1)‘

:param l: Number of irreducible factors of ‘X^d + 1‘ modulo each ‘q_i ‘,
we assume each ‘q_i = 2l+1 (mod 4l)‘

:param kappa: Maximum coefficient of a challenge. We want
‘|\\chal| = (2κ+1)^(d/2) >= 2^secpar ‘

:param eta: Heur. bound on ‘\\sqrt[2k](∥ σ_{-1}(c^k) · c^k ∥_1)‘ for ‘k = 32‘
"""
self.secpar = secpar
self.target_rhf = 1.00436 # TODO compute from secpar
self.nbofdiv = nbofdiv
self.logq1 = logq1
self.logq = self.logq1 if logq is None else logq
number of repetitions for boosting soundness , we assume lambda is even
self.repetitions = 2 * ceil(self.secpar / (2 * self.logq1))

self.d = d
self.l = l
self.kappa = kappa
self.eta = eta

def __call__(
self ,
alpha ,
alpha_e ,
alpha_d ,
ell ,

45

from sage.all import (
 log,
 ceil,
 sqrt,
 is_prime,
 divisors,
 is_even,
 exp,
 get_verbose,
)

from utils import find_mlwe_level, sis_delta, _kb
from labrador import LaBRADOR, LABRADOR_SLACK

class LNP:
 def __init__(
 self,
 secpar=128,
 logq1=66,
 logq=None,
 nbofdiv=1,
 d=128,
 l=2,
 kappa=2,
 eta=59,
):
 """
 :param secpar: Security parameter

 Defining the log of the proof system modulus,
 finding true values will come later:

 :param logq1: log of the smallest prime divisor of q
 :param logq: log of the proof system modulus q
 :param nbofdiv: Number of prime divisors of q, usually 1 or 2

 :param d: Dimension of `R = Z[X]/(X^d + 1)`

 :param l: Number of irreducible factors of `X^d + 1` modulo each `q_i`,
 we assume each `q_i = 2l+1 (mod 4l)`
 :param kappa: Maximum coefficient of a challenge. We want
 `|\\chal| = (2κ+1)^(d/2) >= 2^secpar`
 :param eta: Heur. bound on `\\sqrt[2k](‖ σ_{-1}(c^k)⋅c^k ‖_1)` for `k = 32`
 """
 self.secpar = secpar
 self.target_rhf = 1.00436 # TODO compute from secpar
 self.nbofdiv = nbofdiv
 self.logq1 = logq1
 self.logq = self.logq1 if logq is None else logq
 # number of repetitions for boosting soundness, we assume lambda is even
 self.repetitions = 2 * ceil(self.secpar / (2 * self.logq1))

 self.d = d
 self.l = l
 self.kappa = kappa
 self.eta = eta

 def __call__(
 self,
 alpha,
 alpha_e,
 alpha_d,
 ell,
 m1,
 ce,
 k_bin,
 bounds_to_prove,
 gamma_1=41,
 gamma_2=1.1,
 gamma_e=16,
 gamma_d=1,
 approximate_norm_proof=True,
 do_labrador=(4, 5),
):
 """
 TODO describe function

 :param alpha:
 :param alpha_e:
 :param alpha_d:
 :param ell:
 :param m1:
 :param ce:
 :param k_bin:
 :param bounds_to_prove:
 :param gamma_1: Rejection sampling for s1
 :param gamma_2: Rejection sampling for s2
 :param gamma_e: Rejection sampling for Rs^(e)
 :param gamma_d: Rejection sampling for R's^(d),
 ignored when approximate_norm_proof=0
 :param approximate_norm_proof: Boolean
 :param do_labrador: Run LaBRADOR with this base, length or not if False

 """

 approximate_norm_proof = int(approximate_norm_proof)
 ve = len(bounds_to_prove)

 # Setting the standard deviations, apart from stddev_2
 stddev_1 = gamma_1 * self.eta * sqrt(alpha**2 + ve * self.d)
 stddev_e = gamma_e * sqrt(337) * alpha_e
 stddev_d = gamma_d * sqrt(337) * alpha_d

 nu = 1 # randomness vector s2 with coefficients between -nu and nu

 hardness, dim_mlwe = find_mlwe_level(
 nu,
 self.d,
 self.logq,
 secpar=self.secpar,
 verbose=get_verbose() >= 2,
)
 if get_verbose():
 print(f"Security level for MLWE: {hardness}")

 # Finding an appropriate Module-SIS dimension dim_sis
 dim_sis = 0 # dimension of the Module-SIS problem
 D = 0 # dropping low-order bits of t_A
 gamma = 0 # dropping low-order bits of w

 # bound on bar{z}_1
 bound_1 = 2 * stddev_1 * sqrt(2 * (m1 + ve) * self.d) * LABRADOR_SLACK

 def sis_okay(m2, gamma=0, D=0):
 # set stddev_2 with the current candidate for dim_sis
 stddev_2 = gamma_2 * self.eta * nu * sqrt(m2 * self.d)

 # bound on bar{z}_2 = (bar{z}_{2,1},bar{z}_{2,2})
 bound_2 = (
 2 * stddev_2 * sqrt(2 * m2 * self.d)
 + 2**D * self.eta * sqrt(dim_sis * self.d)
 + gamma * sqrt(dim_sis * self.d)
)
 # bound on the extracted MSIS solution
 bound = 4 * self.eta * sqrt(bound_1**2 + bound_2**2)
 return (
 bound < 2**self.logq
 and sis_delta(dim_sis * self.d, 2**self.logq, bound)
 < self.target_rhf
)

 # 1/ Search for dim_sis
 while True:
 dim_sis += 1
 # we use the packing optimisation from Section 5.3
 m2 = (
 dim_mlwe
 + dim_sis
 + ell
 + self.repetitions / 2
 + 256 / self.d
 + 1
 + approximate_norm_proof * 256 / self.d
 + 1
)
 if sis_okay(m2):
 break

 # 2/ Given dim_sis, find the largest possible γ
 gamma = 2**self.logq # initialisation
 while True: # searching for right gamma
 gamma /= 2 # decrease the value of gamma
 if sis_okay(m2, gamma):
 break

 q, q1 = self.qf(gamma)

 # 3/ Given dim_sis and γ, find the largest possible D
 D = self.logq # initialisation
 while True: # searching for right D
 D -= 1 # decrease the value of D
 if (
 sis_okay(m2, gamma, D)
 and 2 ** (D - 1) * self.kappa * self.d < gamma
):
 break

 # Checking knowledge soundness conditions from Theorem 5.3
 t = 1.64 # TODO magic constants!
 b_e = 2 * sqrt(256 / 26) * t * stddev_e * LABRADOR_SLACK

 if q < 41 * ce * self.d * b_e:
 raise ValueError("Cannot use Lemma 2.9.")

 if q <= b_e**2 + b_e * sqrt(k_bin * self.d):
 raise ValueError(
 "Cannot prove E_bin*s + v_bin has binary coefficients."
)

 if q <= b_e**2 + b_e * sqrt(ve * self.d):
 raise ValueError("Cannot prove all x_i have binary coefficients.")

 for i, bound in enumerate(bounds_to_prove):
 if q <= 3 * bound**2 + b_e**2:
 raise ValueError(f"Cannot prove ‖E_i*s - v_i‖ ≤ β_{i}")

 rep_rate = (
 2
 * exp(14 / gamma_1 + 1 / (2 * gamma_1**2))
 * exp(1 / (2 * gamma_2**2))
 * exp(1 / (2 * gamma_e**2))
 * (
 (1 - approximate_norm_proof)
 + approximate_norm_proof * exp(1 / (2 * gamma_d**2))
)
)

 b_d = 2 * 14 * stddev_d # TODO: magic constants 2 and 14

 # Knowledge soundness error from Theorem 5.3
 soundness_error = (
 2 * 1 / (2 * self.kappa + 1) ** (self.d / 2)
 + q1 ** (-self.d / self.l)
 + q1 ** (-self.repetitions)
 + 2 ** (-128)
 + approximate_norm_proof * 2 ** (-256)
)

 full_size = (
 dim_sis * self.d * (self.logq - D)
 + (
 ell
 + 256 / self.d
 + 1
 + approximate_norm_proof * 256 / self.d
 + 2 * self.repetitions
 + 2
)
 * self.d
 * self.logq
)

 stddev_2 = gamma_2 * self.eta * nu * sqrt(m2 * self.d)
 challenge = ceil(log(2 * self.kappa + 1, 2)) * self.d
 short_size1 = (m1 + ve) * self.d * (ceil(log(stddev_1, 2) + 2.57)) + (
 m2 - dim_sis
) * self.d * (ceil(log(stddev_2, 2) + 2.57))
 short_size2 = 256 * (
 ceil(log(stddev_e, 2) + 2.57)
) + approximate_norm_proof * 256 * (ceil(log(stddev_d, 2) + 2.57))
 hint = 2.25 * dim_sis * self.d

 sizekb = _kb(full_size + challenge + short_size1 + short_size2 + hint)

 if do_labrador:
 labrador = LaBRADOR(logq=self.logq, d=1)
 greedy, base, length = do_labrador
 if greedy:
 f = labrador.greedy
 else:
 f = labrador
 labrador_size, recursion = f(
 n=m1 + ve,
 r=self.d / labrador.d,
 beta=bound_1 / (2 * LABRADOR_SLACK),
 base=base,
 length=length,
 verbose=get_verbose() >= 2,
)
 labrador_saving = (
 _kb((m1 + ve) * self.d * (ceil(log(stddev_1, 2) + 2.57)))
 - labrador_size
)
 sizekb = (
 _kb(full_size + challenge + short_size1 + short_size2 + hint)
 - labrador_saving
)

 if get_verbose() >= 1:
 print(f"Proof system modulus q: {q}")
 print(f"Smallest prime divisor q_1 of q: {q1}")
 print(f"Parameter γ for dropping low-order bits of w: {gamma}")
 print(f"Parameter D for dropping low-order bits of t_A : {D}")
 print(f"Module-SIS dimension: {dim_sis}")
 print(f"Module-LWE dimension: {dim_mlwe}")
 print(f"Length of the randomness vector s2: {m2}")
 print(
 f"Standard deviation stddev_1: 2^{float(log(stddev_1, 2)):.2f}"
)
 print(
 f"Standard deviation stddev_2: 2^{float(log(stddev_2, 2)):.2f}"
)
 print(
 f"Standard deviation stddev_e: 2^{float(log(stddev_e, 2)):.2f}"
)
 print(
 f"Standard deviation stddev_d: 2^{float(log(stddev_d, 2)):.2f}"
)

 print(f"Repetition rate: {rep_rate:2}")
 print(
 f"Knowledge soundness error: 2^{ceil(log(soundness_error, 2))}"
)

 print(f"Full-sized polynomials {_kb(full_size)}kB.")
 print(f"Challenge c in {_kb(challenge)}kB")
 print(
 f"Short polynomials: {_kb((short_size1 + short_size2 + hint))}kB"
)

 return sizekb, q, b_d

 def qf(self, gamma):
 # we need q1 to be congruent to 2l+1 modulo 4l
 q1 = 4 * self.l * int(2**self.logq1 / (4 * self.l)) + (2 * self.l + 1)
 while True:
 q1 = q1 - 4 * self.l
 while not is_prime(q1): # we need q1 to be prime
 q1 -= 4 * self.l
 if (
 self.nbofdiv == 1
): # if number of divisors of q is 1, then q = q1
 q = q1
 else:
 # we need q2 to be congruent to 2l+1 modulo 4l
 q2 = (
 4 * self.l * int(2 ** (self.logq) / (4 * self.l * q1))
 + 2 * self.l
 + 1
)
 while not is_prime(q2): # we need q2 to be prime
 q2 -= 4 * self.l
 q = q1 * q2 # if number of divisors of q is 2, then q = q1*q2
 Div_q = divisors(q - 1) # consider divisors of q-1
 for i in Div_q:
 # find a divisor which is close to gamma
 if gamma * 4 / 5 < i and i <= gamma and is_even(i):
 gamma = i # we found a good candidate for gamma
 return q, q1

m1,
ce,
k_bin ,
bounds_to_prove ,
gamma_1 =41,
gamma_2 =1.1,
gamma_e =16,
gamma_d=1,
approximate_norm_proof=True ,
do_labrador =(4, 5),

):
"""
TODO describe function

:param alpha:
:param alpha_e:
:param alpha_d:
:param ell:
:param m1:
:param ce:
:param k_bin:
:param bounds_to_prove:
:param gamma_1: Rejection sampling for s1
:param gamma_2: Rejection sampling for s2
:param gamma_e: Rejection sampling for Rs^(e)
:param gamma_d: Rejection sampling for R’s^(d),

ignored when approximate_norm_proof =0
:param approximate_norm_proof: Boolean
:param do_labrador: Run LaBRADOR with this base , length or not if False

"""

approximate_norm_proof = int(approximate_norm_proof)
ve = len(bounds_to_prove)

Setting the standard deviations , apart from stddev_2
stddev_1 = gamma_1 * self.eta * sqrt(alpha **2 + ve * self.d)
stddev_e = gamma_e * sqrt (337) * alpha_e
stddev_d = gamma_d * sqrt (337) * alpha_d

nu = 1 # randomness vector s2 with coefficients between -nu and nu

hardness , dim_mlwe = find_mlwe_level(
nu,
self.d,
self.logq ,
secpar=self.secpar ,
verbose=get_verbose () >= 2,

)
if get_verbose ():

print(f"Security level for MLWE: {hardness}")

Finding an appropriate Module -SIS dimension dim_sis
dim_sis = 0 # dimension of the Module -SIS problem
D = 0 # dropping low -order bits of t_A
gamma = 0 # dropping low -order bits of w

bound on bar{z}_1
bound_1 = 2 * stddev_1 * sqrt(2 * (m1 + ve) * self.d) * LABRADOR_SLACK

def sis_okay(m2, gamma=0, D=0):
set stddev_2 with the current candidate for dim_sis
stddev_2 = gamma_2 * self.eta * nu * sqrt(m2 * self.d)

bound on bar{z}_2 = (bar{z}_{2,1},bar{z}_{2 ,2})
bound_2 = (

2 * stddev_2 * sqrt(2 * m2 * self.d)
+ 2**D * self.eta * sqrt(dim_sis * self.d)

46

+ gamma * sqrt(dim_sis * self.d)
)
bound on the extracted MSIS solution
bound = 4 * self.eta * sqrt(bound_1 **2 + bound_2 **2)
return (

bound < 2** self.logq
and sis_delta(dim_sis * self.d, 2** self.logq , bound)
< self.target_rhf

)

1/ Search for dim_sis
while True:

dim_sis += 1
we use the packing optimisation from Section 5.3
m2 = (

dim_mlwe
+ dim_sis
+ ell
+ self.repetitions / 2
+ 256 / self.d
+ 1
+ approximate_norm_proof * 256 / self.d
+ 1

)
if sis_okay(m2):

break

2/ Given dim_sis , find the largest possible γ
gamma = 2** self.logq # initialisation
while True: # searching for right gamma

gamma /= 2 # decrease the value of gamma
if sis_okay(m2 , gamma):

break

q, q1 = self.qf(gamma)

3/ Given dim_sis and γ, find the largest possible D
D = self.logq # initialisation
while True: # searching for right D

D -= 1 # decrease the value of D
if (

sis_okay(m2, gamma , D)
and 2 ** (D - 1) * self.kappa * self.d < gamma

):
break

Checking knowledge soundness conditions from Theorem 5.3
t = 1.64 # TODO magic constants!
b_e = 2 * sqrt (256 / 26) * t * stddev_e * LABRADOR_SLACK

if q < 41 * ce * self.d * b_e:
raise ValueError("Cannot use Lemma 2.9.")

if q <= b_e**2 + b_e * sqrt(k_bin * self.d):
raise ValueError(

"Cannot prove E_bin*s + v_bin has binary coefficients."
)

if q <= b_e**2 + b_e * sqrt(ve * self.d):
raise ValueError("Cannot prove all x_i have binary coefficients.")

for i, bound in enumerate(bounds_to_prove):
if q <= 3 * bound **2 + b_e **2:

raise ValueError(f"Cannot prove ∥E_i*s - v_i∥ ≤ β_{i}")

rep_rate = (
2
* exp(14 / gamma_1 + 1 / (2 * gamma_1 **2))

47

* exp(1 / (2 * gamma_2 **2))
* exp(1 / (2 * gamma_e **2))
* (

(1 - approximate_norm_proof)
+ approximate_norm_proof * exp(1 / (2 * gamma_d **2))

)
)

b_d = 2 * 14 * stddev_d # TODO: magic constants 2 and 14

Knowledge soundness error from Theorem 5.3
soundness_error = (

2 * 1 / (2 * self.kappa + 1) ** (self.d / 2)
+ q1 ** (-self.d / self.l)
+ q1 ** (-self.repetitions)
+ 2 ** (-128)
+ approximate_norm_proof * 2 ** (-256)

)

full_size = (
dim_sis * self.d * (self.logq - D)
+ (

ell
+ 256 / self.d
+ 1
+ approximate_norm_proof * 256 / self.d
+ 2 * self.repetitions
+ 2

)
* self.d
* self.logq

)

stddev_2 = gamma_2 * self.eta * nu * sqrt(m2 * self.d)
challenge = ceil(log(2 * self.kappa + 1, 2)) * self.d
short_size1 = (m1 + ve) * self.d * (ceil(log(stddev_1 , 2) + 2.57)) + (

m2 - dim_sis
) * self.d * (ceil(log(stddev_2 , 2) + 2.57))
short_size2 = 256 * (

ceil(log(stddev_e , 2) + 2.57)
) + approximate_norm_proof * 256 * (ceil(log(stddev_d , 2) + 2.57))
hint = 2.25 * dim_sis * self.d

sizekb = _kb(full_size + challenge + short_size1 + short_size2 + hint)

if do_labrador:
labrador = LaBRADOR(logq=self.logq , d=1)
greedy , base , length = do_labrador
if greedy:

f = labrador.greedy
else:

f = labrador
labrador_size , recursion = f(

n=m1 + ve ,
r=self.d / labrador.d,
beta=bound_1 / (2 * LABRADOR_SLACK),
base=base ,
length=length ,
verbose=get_verbose () >= 2,

)
labrador_saving = (

_kb((m1 + ve) * self.d * (ceil(log(stddev_1 , 2) + 2.57)))
- labrador_size

)
sizekb = (

_kb(full_size + challenge + short_size1 + short_size2 + hint)
- labrador_saving

)

48

if get_verbose () >= 1:
print(f"Proof system modulus q: {q}")
print(f"Smallest prime divisor q_1 of q: {q1}")
print(f"Parameter γ for dropping low -order bits of w: {gamma}")
print(f"Parameter D for dropping low -order bits of t_A : {D}")
print(f"Module -SIS dimension: {dim_sis}")
print(f"Module -LWE dimension: {dim_mlwe}")
print(f"Length of the randomness vector s2: {m2}")
print(

f"Standard deviation stddev_1: 2^{ float(log(stddev_1 , 2)):.2f}"
)
print(

f"Standard deviation stddev_2: 2^{ float(log(stddev_2 , 2)):.2f}"
)
print(

f"Standard deviation stddev_e: 2^{ float(log(stddev_e , 2)):.2f}"
)
print(

f"Standard deviation stddev_d: 2^{ float(log(stddev_d , 2)):.2f}"
)

print(f"Repetition rate: {rep_rate :2}")
print(

f"Knowledge soundness error: 2^{ ceil(log(soundness_error , 2))}"
)

print(f"Full -sized polynomials {_kb(full_size)}kB.")
print(f"Challenge c in {_kb(challenge)}kB")
print(

f"Short polynomials: {_kb((short_size1 + short_size2 + hint))}kB"
)

return sizekb , q, b_d

def qf(self , gamma):
we need q1 to be congruent to 2l+1 modulo 4l
q1 = 4 * self.l * int (2** self.logq1 / (4 * self.l)) + (2 * self.l + 1)
while True:

q1 = q1 - 4 * self.l
while not is_prime(q1): # we need q1 to be prime

q1 -= 4 * self.l
if (

self.nbofdiv == 1
): # if number of divisors of q is 1, then q = q1

q = q1
else:

we need q2 to be congruent to 2l+1 modulo 4l
q2 = (

4 * self.l * int(2 ** (self.logq) / (4 * self.l * q1))
+ 2 * self.l
+ 1

)
while not is_prime(q2): # we need q2 to be prime

q2 -= 4 * self.l
q = q1 * q2 # if number of divisors of q is 2, then q = q1*q2

Div_q = divisors(q - 1) # consider divisors of q-1
for i in Div_q:

find a divisor which is close to gamma
if gamma * 4 / 5 < i and i <= gamma and is_even(i):

gamma = i # we found a good candidate for gamma
return q, q1

49

B.4 Size Estimates for LaBRADOR

The script is also .

"""
LaBRADOR Pari/GP Code in Sage.
"""

from sage.all import (
log ,
ceil ,
sqrt ,
vector ,
round ,
floor ,
exp ,
ZZ,
RR,
pi,
cached_function ,
cached_method ,
Infinity ,
get_verbose ,

)

LABRADOR_SLACK = float(sqrt (128 / 30))

def gaussian_entropy(sigma):
if sigma >= 4:

a = floor(sigma / 2)
sigma /= a

else:
a = 1

d = 1 / (2 * sigma **2)
n = sum(exp(-(i**2) * d) for i in range(-ceil (15 * sigma), 0))
n = 2 * n + 1
logn = log(n)
e = 0
for i in range(-ceil (15 * sigma), 0):

f = exp(-(i**2) * d)
e += f * (log(f) - logn)

e = (-2 * e + logn) / (n * log (2))

return float(e + log(a, 2))

def deltaf(b):
"""
Compute root Hermite factor for block size ‘‘b‘‘.
"""
small = (

(2, 1.02190) ,
(5, 1.01862) ,
(10, 1.01616) ,
(15, 1.01485) ,
(20, 1.01420) ,
(25, 1.01342) ,
(28, 1.01331) ,
(40, 1.01295) ,

)

if b <= 2:
return 1.0219

elif b < 40:
for i in range(1, len(small)):

if small[i][0] > b:

50

"""
LaBRADOR Pari/GP Code in Sage.
"""

from sage.all import (
 log,
 ceil,
 sqrt,
 vector,
 round,
 floor,
 exp,
 ZZ,
 RR,
 pi,
 cached_function,
 cached_method,
 Infinity,
 get_verbose,
)

LABRADOR_SLACK = float(sqrt(128 / 30))

def gaussian_entropy(sigma):
 if sigma >= 4:
 a = floor(sigma / 2)
 sigma /= a
 else:
 a = 1

 d = 1 / (2 * sigma**2)
 n = sum(exp(-(i**2) * d) for i in range(-ceil(15 * sigma), 0))
 n = 2 * n + 1
 logn = log(n)
 e = 0
 for i in range(-ceil(15 * sigma), 0):
 f = exp(-(i**2) * d)
 e += f * (log(f) - logn)
 e = (-2 * e + logn) / (n * log(2))

 return float(e + log(a, 2))

def deltaf(b):
 """
 Compute root Hermite factor for block size ``b``.
 """
 small = (
 (2, 1.02190),
 (5, 1.01862),
 (10, 1.01616),
 (15, 1.01485),
 (20, 1.01420),
 (25, 1.01342),
 (28, 1.01331),
 (40, 1.01295),
)

 if b <= 2:
 return 1.0219
 elif b < 40:
 for i in range(1, len(small)):
 if small[i][0] > b:
 return small[i - 1][1]
 elif b == 40:
 return small[-1][1]
 else:
 return float(b / (2 * pi * exp(1)) * (pi * b) ** (1.0 / b)) ** (
 1.0 / (2 * b - 2.0)
)

def block_sizef(delta):
 b = 40
 while deltaf(2 * b) > delta:
 b *= 2
 while deltaf(b + 10) > delta:
 b += 10
 while deltaf(b) >= delta:
 b += 1

 return b

def adps16(block_size):
 return block_size * log(sqrt(3.0 / 2.0), 2.0)

default_costf = adps16

@cached_function
def sis_hard_enough(kappa, eta, b, q):
 """
 Return `i` such that for `n = i ⋅ η` and a sufficiently big `m` SIS_β on
 `ZZ_q^{n × m}` requires block size `κ`.
 """
 if b > q:
 raise ValueError(f"Size bound {b} > modulus {q}.")

 i = 1
 while True:
 n = i * eta
 delta = deltaf(kappa - 1)
 d = sqrt(n * log(q) / log(delta))
 if delta ** (d - 1) * q ** (n / d) > b:
 return i
 i += 1

class LaBRADOR:
 def __init__(
 self,
 d: int = 64,
 logq: int = 32,
 tau: int = 71,
 T: int = 15,
 slack: float = LABRADOR_SLACK,
 max_beta: int = 0,
 secpar: int = 100,
 costf=default_costf,
):
 self.d = d
 self.logq = logq
 self.tau = tau
 self.T = T
 self.slack = slack
 self.max_beta = max_beta
 self.secpar = secpar
 self.costf = default_costf

 block_size = None
 for block_size in range(self.secpar, 2048, 32):
 if self.costf(block_size) >= self.secpar:
 break

 for block_size in range(block_size - 32, block_size + 1):
 if self.costf(block_size) >= self.secpar:
 self.block_size = block_size
 break

 def sis_rank(self, beta):
 self.max_beta = max(self.max_beta, beta)

 # we round to a nearby value to allow for caching which improves
 # performance
 # beta = 1.2 ** ceil(log(beta, 1.2))

 try:
 return sis_hard_enough(
 self.block_size, self.d, ceil(beta), 2**self.logq
)
 except ValueError:
 return Infinity

 def main(self, n, r, beta, nu, decompose):
 old_beta = vector(beta).norm(2).n()
 # NOTE: this hardcodes secpar=128
 size = 256 * gaussian_entropy(
 float(old_beta / sqrt(2.0))
) # JL projection
 size += ceil(128 / self.logq) * self.d * self.logq # JL proof

 sigs = [float(beta[i] / sqrt(r[i] * n * self.d)) for i in range(len(r))]
 sigz = sqrt(
 sigs[0] ** 2 * (1 + (r[0] - 1) * self.tau)
 + sum([sigs[i] ** 2 * r[i] * self.tau for i in range(1, len(r))])
)
 sigh = float(sqrt(2 * n * self.d) * max(sigs) ** 2)

 if decompose:
 t = 2
 b = round(sqrt(sqrt(12) * sigz))
 else:
 t = 1
 b = 1

 t1 = round(self.logq / log(sqrt(12) * sigz / b, 2))
 t1 = max(2, t1)
 t1 = min(14, t1)

 b1 = ceil(2 ** (self.logq / t1))
 t2 = round(log(sqrt(12) * sigh) / log(sqrt(12) * sigz / b))
 t2 = max(1, t2)
 b2 = ceil((sqrt(12) * sigh) ** (1 / t2))

 r = sum(r)
 beta = [0, 0]
 beta[0] = float(sigz / float(b) * sqrt(t * n * self.d))
 for i in range(16):
 kappa = i + 1
 beta[1] = float(
 sqrt(
 b1**2 / 12.0 * t1 * r * kappa * self.d
 + (b1**2 * t1 + b2**2 * t2)
 / 12.0
 * (r**2 + r)
 / 2.0
 * self.d
)
)
 new_beta = vector(beta).norm(2).n()
 if (
 self.sis_rank(
 max(
 6 * self.T * b * self.slack * new_beta,
 2 * b * self.slack * new_beta
 + 4 * self.T * self.slack * old_beta,
)
)
 <= kappa
):
 break

 kappa1 = self.sis_rank(2 * self.slack * new_beta)
 size += 2 * kappa1 * self.d * self.logq
 # outer commitments
 m = t1 * r * kappa + (t1 + t2) * (r**2 + r) / 2
 mu = round(m / ceil(n / nu))
 mu = max(1, mu)
 n = ceil(n / nu)
 m = ceil(m / mu)
 n = max(n, m)
 r = [t * nu, mu]

 if get_verbose() >= 3:
 print("Main:")
 print(
 "Commitments: kappa = %d; kappa1 = kappa2 = %.2f"
 % (kappa, kappa1)
)
 print("Decomposition bases: b = %d; b1 = %d; b2 = %d" % (b, b1, b2))
 print("Expansion factors: t = %d; t1 = %d; t2 = %d" % (t, t1, t2))
 print("Target relation: n = %d; r = %s; b = %s" % (n, r, b))
 print(
 "Norm balance: %.2f%%"
 % ((beta[1] - beta[0]) / max(beta[0], beta[1]) * 100)
)

 return size, n, r, beta

 def tail(self, n, r, beta):
 old_beta = vector(beta).norm(2).n()
 size = 256 * gaussian_entropy(
 float(old_beta / sqrt(2.0))
) # JL projection
 size += ceil(128 / self.logq) * self.d * self.logq # JL proof
 size += 128 # challenges

 sigs = [float(beta[i] / sqrt(r[i] * n * self.d)) for i in range(len(r))]
 sigh = float(sqrt(2 * n * self.d) * max(sigs) ** 2)

 t1 = round(self.logq / log(sqrt(12) * sum(sigs) / len(sigs), 2))
 t1 = max(2, t1)
 t1 = min(14, t1)
 b1 = ceil(2 ** (self.logq / t1))
 t2 = round(log(sqrt(12) * sigh) / log(sqrt(12) * sum(sigs) / len(sigs)))
 t2 = max(1, t2)
 b2 = ceil((sqrt(12) * sigh) ** (1 / t2))

 for i in range(16):
 kappa = i + 1
 x = sum(r)
 n2 = x * kappa * t1 + (x**2 + x) / 2 * t2
 r2 = round(n2 / n)
 r2 = max(1, r2)

 sigz = sqrt(
 sigs[0] ** 2 * (1 + (r[0] - 1) * self.tau)
 + sum([sigs[i] ** 2 * r[i] for i in range(1, len(r))])
 * self.tau
 + r2 * max(b1, b2) ** 2 / 12.0 * self.tau
)

 beta = sigz * sqrt(max(n, ceil(n2 / r2)) * self.d)
 if self.sis_rank(6 * self.T * beta) <= kappa:
 break

 r = sum(r)
 n = max(n, ceil(n2 / r2))

 size += r2 * kappa * self.d * self.logq # outer commitments
 size += (
 2 * r2 * self.d * gaussian_entropy(sigh)
) # quadratic garbage polys
 size += (
 (2 * (r - 1) + 2 * r2) * self.d * self.logq
) # linear garbage polys
 size += n * self.d * float(gaussian_entropy(sigz)) # masked opening

 if get_verbose() >= 3:
 print("Tail:")
 print("Outer Commitments: kappa = %d" % kappa)
 print("Additional multiplicity: r2 = %d" % r2)
 print("Decomposition bases: b1 = %d b2 = %d" % (b1, b2))
 print("Expansion factors: t1 = %d t2 = %d" % (t1, t2))
 print("Final relation: n = %d β = %s" % (n, beta))
 return size

 def size(self, n, r, beta, nuvec):
 """
 Size in kilobytes
 """
 s = 0
 r, beta = [r], [RR(beta)]
 for i in range(len(nuvec)):
 size, n, r, beta = self.main(
 n, r, beta, nuvec[i], i < len(nuvec) - 1
)
 s += size

 s += self.tail(n, r, beta)

 return round(s / 2**13, 2)

 @cached_method
 def __call__(self, n, r, beta, base, length, verbose=None):
 if verbose is None:
 verbose = get_verbose() > 1

 def i2v(i):
 return vector(ZZ(i).digits(base, padto=length)) + vector(
 ZZ, length, [1] * length
)

 best = self.size(n, r, beta, i2v(0)), 0

 for i in range(base**length):
 current = self.size(n, r, beta, i2v(i)), i
 if current[0] < best[0]:
 best = current
 if verbose:
 print(f"{best[0]:.2f}kB, {i2v(best[1])}")

 return best[0], i2v(best[1])

 @cached_method
 def greedy(self, n, r, beta, base, length, verbose=None):
 if verbose is None:
 verbose = get_verbose() > 1
 best = self.size(n, r, beta, [base] * length), length

 while True:
 length += 1
 current = self.size(n, r, beta, [base] * length), length
 if current[0] < best[0]:
 best = current
 if verbose:
 print(f"{best[0]:.2f}kB, {length}")
 else:
 break

 return best[0], tuple([base] * best[1])

return small[i - 1][1]
elif b == 40:

return small [-1][1]
else:

return float(b / (2 * pi * exp (1)) * (pi * b) ** (1.0 / b)) ** (
1.0 / (2 * b - 2.0)

)

def block_sizef(delta):
b = 40
while deltaf (2 * b) > delta:

b *= 2
while deltaf(b + 10) > delta:

b += 10
while deltaf(b) >= delta:

b += 1

return b

def adps16(block_size):
return block_size * log(sqrt (3.0 / 2.0), 2.0)

default_costf = adps16

@cached_function
def sis_hard_enough(kappa , eta , b, q):

"""
Return ‘i‘ such that for ‘n = i · η‘ and a sufficiently big ‘m‘ SIS_β on
‘ZZ_q^{n × m}‘ requires block size ‘κ‘.
"""
if b > q:

raise ValueError(f"Size bound {b} > modulus {q}.")

i = 1
while True:

n = i * eta
delta = deltaf(kappa - 1)
d = sqrt(n * log(q) / log(delta))
if delta ** (d - 1) * q ** (n / d) > b:

return i
i += 1

class LaBRADOR:
def __init__(

self ,
d: int = 64,
logq: int = 32,
tau: int = 71,
T: int = 15,
slack: float = LABRADOR_SLACK ,
max_beta: int = 0,
secpar: int = 100,
costf=default_costf ,

):
self.d = d
self.logq = logq
self.tau = tau
self.T = T
self.slack = slack
self.max_beta = max_beta
self.secpar = secpar
self.costf = default_costf

51

block_size = None
for block_size in range(self.secpar , 2048, 32):

if self.costf(block_size) >= self.secpar:
break

for block_size in range(block_size - 32, block_size + 1):
if self.costf(block_size) >= self.secpar:

self.block_size = block_size
break

def sis_rank(self , beta):
self.max_beta = max(self.max_beta , beta)

we round to a nearby value to allow for caching which improves
performance
beta = 1.2 ** ceil(log(beta , 1.2))

try:
return sis_hard_enough(

self.block_size , self.d, ceil(beta), 2** self.logq
)

except ValueError:
return Infinity

def main(self , n, r, beta , nu, decompose):
old_beta = vector(beta).norm (2).n()
NOTE: this hardcodes secpar =128
size = 256 * gaussian_entropy(

float(old_beta / sqrt (2.0))
) # JL projection
size += ceil (128 / self.logq) * self.d * self.logq # JL proof

sigs = [float(beta[i] / sqrt(r[i] * n * self.d)) for i in range(len(r))]
sigz = sqrt(

sigs [0] ** 2 * (1 + (r[0] - 1) * self.tau)
+ sum([sigs[i] ** 2 * r[i] * self.tau for i in range(1, len(r))])

)
sigh = float(sqrt(2 * n * self.d) * max(sigs) ** 2)

if decompose:
t = 2
b = round(sqrt(sqrt (12) * sigz))

else:
t = 1
b = 1

t1 = round(self.logq / log(sqrt (12) * sigz / b, 2))
t1 = max(2, t1)
t1 = min(14, t1)

b1 = ceil(2 ** (self.logq / t1))
t2 = round(log(sqrt (12) * sigh) / log(sqrt (12) * sigz / b))
t2 = max(1, t2)
b2 = ceil((sqrt (12) * sigh) ** (1 / t2))

r = sum(r)
beta = [0, 0]
beta [0] = float(sigz / float(b) * sqrt(t * n * self.d))
for i in range (16):

kappa = i + 1
beta [1] = float(

sqrt(
b1**2 / 12.0 * t1 * r * kappa * self.d
+ (b1**2 * t1 + b2**2 * t2)
/ 12.0
* (r**2 + r)
/ 2.0
* self.d

52

)
)
new_beta = vector(beta).norm (2).n()
if (

self.sis_rank(
max(

6 * self.T * b * self.slack * new_beta ,
2 * b * self.slack * new_beta
+ 4 * self.T * self.slack * old_beta ,

)
)
<= kappa

):
break

kappa1 = self.sis_rank (2 * self.slack * new_beta)
size += 2 * kappa1 * self.d * self.logq
outer commitments
m = t1 * r * kappa + (t1 + t2) * (r**2 + r) / 2
mu = round(m / ceil(n / nu))
mu = max(1, mu)
n = ceil(n / nu)
m = ceil(m / mu)
n = max(n, m)
r = [t * nu , mu]

if get_verbose () >= 3:
print("Main:")
print(

"Commitments: kappa = %d; kappa1 = kappa2 = %.2f"
% (kappa , kappa1)

)
print("Decomposition bases: b = %d; b1 = %d; b2 = %d" % (b, b1, b2))
print("Expansion factors: t = %d; t1 = %d; t2 = %d" % (t, t1 , t2))
print("Target relation: n = %d; r = %s; b = %s" % (n, r, b))
print(

"Norm balance: %.2f%%"
% ((beta [1] - beta [0]) / max(beta[0], beta [1]) * 100)

)

return size , n, r, beta

def tail(self , n, r, beta):
old_beta = vector(beta).norm (2).n()
size = 256 * gaussian_entropy(

float(old_beta / sqrt (2.0))
) # JL projection
size += ceil (128 / self.logq) * self.d * self.logq # JL proof
size += 128 # challenges

sigs = [float(beta[i] / sqrt(r[i] * n * self.d)) for i in range(len(r))]
sigh = float(sqrt(2 * n * self.d) * max(sigs) ** 2)

t1 = round(self.logq / log(sqrt (12) * sum(sigs) / len(sigs), 2))
t1 = max(2, t1)
t1 = min(14, t1)
b1 = ceil(2 ** (self.logq / t1))
t2 = round(log(sqrt (12) * sigh) / log(sqrt (12) * sum(sigs) / len(sigs)))
t2 = max(1, t2)
b2 = ceil((sqrt (12) * sigh) ** (1 / t2))

for i in range (16):
kappa = i + 1
x = sum(r)
n2 = x * kappa * t1 + (x**2 + x) / 2 * t2
r2 = round(n2 / n)
r2 = max(1, r2)

53

sigz = sqrt(
sigs [0] ** 2 * (1 + (r[0] - 1) * self.tau)
+ sum([sigs[i] ** 2 * r[i] for i in range(1, len(r))])
* self.tau
+ r2 * max(b1 , b2) ** 2 / 12.0 * self.tau

)

beta = sigz * sqrt(max(n, ceil(n2 / r2)) * self.d)
if self.sis_rank (6 * self.T * beta) <= kappa:

break

r = sum(r)
n = max(n, ceil(n2 / r2))

size += r2 * kappa * self.d * self.logq # outer commitments
size += (

2 * r2 * self.d * gaussian_entropy(sigh)
) # quadratic garbage polys
size += (

(2 * (r - 1) + 2 * r2) * self.d * self.logq
) # linear garbage polys
size += n * self.d * float(gaussian_entropy(sigz)) # masked opening

if get_verbose () >= 3:
print("Tail:")
print("Outer Commitments: kappa = %d" % kappa)
print("Additional multiplicity: r2 = %d" % r2)
print("Decomposition bases: b1 = %d b2 = %d" % (b1, b2))
print("Expansion factors: t1 = %d t2 = %d" % (t1 , t2))
print("Final relation: n = %d β = %s" % (n, beta))

return size

def size(self , n, r, beta , nuvec):
"""
Size in kilobytes
"""
s = 0
r, beta = [r], [RR(beta)]
for i in range(len(nuvec)):

size , n, r, beta = self.main(
n, r, beta , nuvec[i], i < len(nuvec) - 1

)
s += size

s += self.tail(n, r, beta)

return round(s / 2**13, 2)

@cached_method
def __call__(self , n, r, beta , base , length , verbose=None):

if verbose is None:
verbose = get_verbose () > 1

def i2v(i):
return vector(ZZ(i). digits(base , padto=length)) + vector(

ZZ, length , [1] * length
)

best = self.size(n, r, beta , i2v(0)), 0

for i in range(base** length):
current = self.size(n, r, beta , i2v(i)), i
if current [0] < best [0]:

best = current
if verbose:

print(f"{best [0]:.2f}kB , {i2v(best [1])}")

return best[0], i2v(best [1])

54

@cached_method
def greedy(self , n, r, beta , base , length , verbose=None):

if verbose is None:
verbose = get_verbose () > 1

best = self.size(n, r, beta , [base] * length), length

while True:
length += 1
current = self.size(n, r, beta , [base] * length), length
if current [0] < best [0]:

best = current
if verbose:

print(f"{best [0]:.2f}kB , {length}")
else:

break

return best[0], tuple([base] * best [1])

55

	Verifiable Oblivious Pseudorandom Functions from Lattices: Practical-ish and Thresholdisable
	Introduction
	Technical Overview
	Contributions

	Preliminaries
	Discrete Gaussian Distributions over Polynomial Rings
	Rényi Divergence
	Hardness Assumptions
	Non-Interactive Zero-Knowledge Arguments of Knowledge (NIZKAoK)
	Verifiable Oblivious Pseudorandom Functions
	Lattice (VO)PRFs

	Construction
	Using Rènyi Divergence for Smaller Parameters
	Efficient Lattice-Based NIZKAoK Instantiations
	Bandwidth Estimate
	Threshold Lattice (V)OPRF
	Threshold Verifiable Oblivious Pseudorandom Functions
	Case 1: n-out-of-n
	Case 2: t-out-of-n

	Proving Statements in Zq[X]/(XN + 1) using Zq[X]/(X64 + 1)
	Code
	Parameter Selection
	Size Estimates
	Size Estimates for C:LyuNguPla22
	Size Estimates for LaBRADOR

