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ABSTRACT
Blockchain applications in finance and identity management in-

creasingly require scalable and privacy-preserving solutions. Cryp-

tographic commitments secure sensitive data on-chain, but verify-

ing properties of these commitments efficiently remains challeng-

ing, particularly in large-scale scenarios. For multiple commitments,

CP-SNARKs, a family of zk-SNARKs, enhance prover efficiency

by shifting large-cost operations outside the circuit and verifying

linkages between commitments, but incur verifier-side overhead

due to linkage checks. Verification costs grow with the number of

commitments, leading to inefficiencies in key size, proof size, and

verification time.

We propose VECTIS, an efficient batching framework for prov-

ing multiple commitments. Our approach aggregates multiple com-

mitments into a single batched commitment, enabling the linking

proof system to operate on the aggregated commitment instead of

individual commitments, thereby significantly reducing the overall

verification cost.

Experimental results show meaningful efficiency gains. For 2
16

commitments,VECTIS reduces the verification time to 0.064s, achiev-

ing over 30× improvement compared to LegoSNARK’s 1.972s. These

results show VECTIS’s potential for enabling scalable and efficient

privacy-preserving solutions in blockchain applications.

1 INTRODUCTION
With the rise of blockchain-based applications across various do-

mains—ranging from finance (e.g., decentralized exchanges, lending

platforms, and asset tokenization) to identity (e.g., self-sovereign

identity solutions, credential management, and cross-border veri-

fication)—privacy concerns have emerged as a pressing issue that

must be addressed. One common strategy to preserve privacy is to

publish sensitive data on the ledger in the form of commitments,

cryptographic constructs that conceal the underlying information

while retaining its authenticity. However, commitments alone are

insufficient; an appropriate proof mechanism is required to verify

properties of the hidden data without revealing it. To address this,

zk-SNARKs have emerged as a powerful cryptographic tool, en-

abling efficient verification of statements—such as whether a user’s

assets are fully accounted for within an exchange’s total liabilities

or whether they meet multi-attribute eligibility requirements (e.g.,

a series of lending or insurance criteria)—without exposing the

underlying confidential details [12, 14, 17, 21, 22].

Despite the advantages of zk-SNARKs, significant challenges

arise when applying them to large-scale scenarios involving numer-

ous commitments. Generating proofs with zk-SNARKs typically

requires provers to perform computations that are orders of magni-

tude more expensive than executing the original code. While this

overhead is manageable for small-scale commitments, generating

proofs for a large number of commitments becomes computation-

ally impractical.

To address prover-side inefficiencies, Commit-and-Prove SNARKs

(CP-SNARKs) [2, 6], a class of zk-SNARKs, have been introduced.

They significantly reduce the complexity of generating proofs by

eliminating the need to compute complex commitment operations,

such as group exponentiations, within the proof circuit. In tradi-

tional zk-SNARKs, commitments are often handled as part of the

arithmetic circuit, increasing circuit size and computation costs

for the prover. CP-SNARKs bypass this issue by performing heavy

computations outside the circuit and treating commitments as ex-

ternal inputs to the proof. This approach minimizes the circuit size,

reduces proving time and memory usage, and improves efficiency

for large-scale commitments.

While CP-SNARKs optimize the proving process, this approach

requires an additional proof system, known as the linking proof sys-

tem. This system ensures the linkage between pre-committed values

and proof-dependent commitment, guaranteeing the consistency of

multiple commitments within a single proof. However, verification

cost in such systems is proportional to the number of commitments,

posing significant scalability challenges for the verifier, particularly

in blockchain environments. For example, when QA-NIZK [16] is

employed for the linking proof, verification involves 𝑂 (𝑙) pairing
operations with 𝑂 (𝑙)-sized verification key, where 𝑙 is the number

of commitments, although the proof size remains constant. Pairing

operations, which require computationally intensive elliptic curve

computations, are especially costly in blockchain systems. As a con-

crete example, verifying 2
10

commitments can cost approximately

135 USD, assuming an ETH price of 3,000 USD, a gas price of 1

Gwei, and an average pairing operation cost of 0.135 USD
1
.

1
On Ethereum, a single pairing operation consumes 45,000 gas, storing data in the

storage consumes 22,100 gas, and loading data from the storage consumes 2,100 gas.
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Compressed Σ-protocols [3, 4] aim to mitigate the verifier cost

by replacing pairing operations with lighter group exponentiations.

This approach reduces computational overhead for individual veri-

fications but retains linear scaling in verifier complexity because

each commitment must still be processed separately. Furthermore,

the logarithmic growth of proof size and the linear growth of verifi-

cation key size in these systems not only increases on-chain storage

costs but also affects transaction throughput and verification la-

tency, creating additional barriers for real-world deployments.

In this paper, we propose VECTIS, a novel batching framework

for CP-SNARKs that utilizes the homomorphic properties of group-

based commitments, such as Pedersen commitments, to signifi-

cantly reduce verifier overhead. Our approach aggregates multiple

commitments into a single aggregated commitment using a random

linear combination, ensuring the independence and separability

of each committed value. By enabling the linking proof system to

handle the aggregated commitment rather than individual commit-

ments, the number of verification operations is reduced from 𝑂 (𝑙)
to a constant. Consequently, the proof size and verification key size

are also reduced to constants, regardless of the batch size.

This aggregation eliminates the need for equality checks on indi-

vidual commitments within the linking proof system, significantly

reducing computational overhead. To construct the aggregated com-

mitment, a random linear combination of pre-committed values is

applied, preserving the independence of each witness. The same

randomness is then used to compute a proof-dependent commit-

ment for the aggregated witness, ensuring consistency between

the pre-committed and aggregated values. Instead of verifying𝑂 (𝑙)
individual witnesses, the linking proof system verifies only the

equality of two aggregated commitments, resulting in constant

verification time and key size.

The prover ensures the correctness of this aggregation process

by generating a proof within the SNARK circuit, which validates

that all individual commitments are correctly aggregated. This

additional proof relies on lightweight field operations within the

circuit, making the process efficient and minimizing computational

overhead for the prover. Furthermore, this design ensures that the

aggregated commitment maintains the integrity and independence

of individual messages, preventing fabrication during aggregation.

By replacing the verifier overhead of the linking proof system

with lightweight aggregation, our framework achieves significant

performance improvements. While aggregation introduces addi-

tional group computations for the verifier, these computations re-

main far lighter or fewer than those required in traditional link-

ing systems. When integrated with a QA-NIZK-based linking sys-

tem [16], pairing operations required for verification are reduced

from 𝑂 (𝑙) to a constant. Similarly, applying our aggregated com-

mitment to a compressed-Σ protocol [3, 4] reduces both the proof

size and the verification key size to constants, while also decreas-

ing the number of group operations performed by the verifier by

approximately threefold.

Table 1 presents a comparison of the linking costs, including ag-

gregation computations, incurred when constructing CP-SNARKs,

referred to as Lego. It highlights the significant efficiency improve-

ments achieved by our proposed scheme VECTIS over existing

linking proof systems. First, compared to the Lego scheme with

QA-NIZK [16], our approach eliminates 𝑙 − 1 pairing operations,

replacing themwith 𝑙+1 group exponentiations, which are computa-

tionally less expensive. Second, when compared to the compressed

Σ-protocol, the proposed scheme reduces approximately 2𝑙 + 4 log 𝑙

group exponentiations. These reductions significantly lower the

computational overhead for the verifier. Additionally, the proposed

scheme achieves a constant proof size, independent of 𝑙 , whereas

the compressed Σ-protocol requires a proof size of 𝑂 (log 𝑙). Simi-

larly, the verification key size is reduced from 𝑂 (𝑙) to a constant.

These improvements make the scheme more efficient and scalable

for large-scale applications, as reflected in Table 1.

1.1 Our Contributions
◦ A new batching framework for cc-SNARK. We propose a

new bathcing framework, called VECTIS, to commit-carrying

SNARK that efficiently proves multiple Pedersen commitments

with a single proof, significantly reducing the computational

overhead compared to the traditional approach (i.e. in-the-

circuit). Additionally, we enhance the efficiency of commit-and-

prove SNARKs by leveraging our batching technique, which

aggregates multiple commitments into a single commitment.

This approach significantly reduces the verification cost while

maintaining the integrity of the proof, providing a practical

advantage in scenarios requiring efficient verification of com-

mitments.

◦ Implementation and Evaluations. We have implemented

and empirically tested our scheme, demonstrating its practical

efficiency and scalability in handling large batches of commit-

ments. For 2
10

commitments, our approach can generate proofs

in just 59 ms, whereas the in-the-circuit method takes approx-

imately 57.203s (970x faster). In the comparison experiments,

LegoSNARK, at 2
16

with an empty relation, exhibits a prover

time of approximately 0.177s, while our system shows 1.413s,

making our system about 8 times slower. However, for the

verifier time, our system takes 0.064s compared to 1.972s for

LegoSNARK. From an application perspective, performance

metrics on the blockchain demonstrate that our system can ver-

ify 2
10

commitments at about 5.2 transactions per second (TPS),

offering more practical utility compared to LegoSNARK’s 0.5

TPS. Furthermore, we have conducted an experiment under an

age checking relation. Proving 2
13

commitments takes 14.85s

in our system, while LegoSNARK takes 16.11s. This highlights

our scheme’s efficiency when handling complex relations such

as non-arithmetic operations.

1.2 Applications
Commitment can be employed to validate confidential data while

preserving privacy. However, if numerous commitments are in-

volved, verifying each one can be inefficient. Motivated by this,

we propose a batching framework that enables simultaneous ver-

ification of multiple commitments. To emphasize the importance

of our framework, we present high-level use cases of batching

functionality in the following applications.

1.2.1 Proof of solvency. It is a fundamental concept in financial ap-

plications, providing a formal mechanism for institutions to demon-

strate their ability to meet all outstanding liabilities. It involves

2
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Table 1: Comparison of additional costs required for constructing CP-SNARKs [2, 6] under Pedersen engine using different
linking proof systems. We denote 𝑙 as the number of commitments, 𝐸 as group exponentiations, and 𝑃 as pairings. NIZK and
Comp-Σ correspond to QA-NIZK [16] and the compressed Σ-protocol [3, 4], respectively. P represents the prover computational
cost,V represents the verifier computational cost, |𝜋 | denotes the proof size, and |vk| denotes the verification key size. For the
prover, we analyze the computational cost assuming the Groth16 [11] as the underlying SNARK system.

P V |𝜋 | |vk|

LegoNIZK 𝑂 (𝑙) 𝐸1 (𝑙 + 2) 𝑃 1 G1 (𝑙 + 2) 𝐺2

VECTISNIZK 𝑂 (𝑙) 𝐸1, 𝑂 (𝑙) 𝐸2 (𝑙 + 1) 𝐸1, 3𝑃 2 G1 4 𝐺2

LegoComp-Σ 𝑂 (𝑙) 𝐸1 (3𝑙 + 4 log 𝑙) 𝐸1 (4 log 𝑙 + 2) G1, 4 F (2𝑙 + 2) G1

VECTISComp-Σ 𝑂 (𝑙) 𝐸1, 𝑂 (𝑙) 𝐸2 (𝑙 + 7) 𝐸1 3 G1, 2 F 4 G1

verifying that an institution’s total assets exceed its liabilities with-

out disclosing sensitive financial information. In such scenarios,

each customer’s balance must remain confidential, and the indi-

vidual can check their balance against the institution’s reported

totals. To protect individual privacy, account-related commitments

are published on the blockchain. The batching technique enables

proving that each commitments has been properly formed using

a single proof. This functionality is essential for institutions that

manage numerous individual customer balances, providing a robust

and privacy-preserving solution in the financial sector.

1.2.2 Digital credentials. In scenarios where individuals or mem-

bers of organizations need to maintain anonymity while proving

ownership of credentials—such as digital certificates issued by au-

thorities—each user’s credentials are committed and stored by a

third-party service, enhancing privacy and reducing data storage

burdens on the individual. For instance, in settings where a service

provider frequently validates their users’ credentials against public

commitments, the batching technique simplifies the process. Instead

of generating a separate proof for each user, the service provider

can accumulate multiple requests and generate a single proof that

collectively validates all of them. This batching approach not only

ensures privacy but also significantly reduces the computational

and time costs associated with proof generation.

1.3 Related works
The approach on integrating different proof systems has progressed

with the goal of getting computational efficiency, as evidenced

by several studies [1, 2, 5–7, 9, 18, 20]. One important work of

these studies, Chase et al. [7], provides a method that combines

algebraic-based proofs, such as Σ-protocols, with garbled circuit

proofs. This technique efficiently computes algebraic operations

through algebraic-based proofs and handles non-algebraic opera-

tions using garbled circuit proofs. However, since this approach

leverages a private garbling scheme from JKO13 [13], the necessity

for private garbled circuits imposes limitations on the applicability

to proof systems that do not employ such circuits. LegoSNARK [6]

introduces a generic framework for constructing composite sys-

tems from different proof systems by linking different systems using

a generic compiler to build the generic integration of proof sys-

tems. In the paper, it shows a high-performance commit-and-prove

proof system for proving Pedersen commitment, instantiated in a

modular manner. This approach is more efficient than traditional

methods (i.e. the commitment is encoded in the circuit). Eclipse [2]

has crafted a compiler that transforms a proof system based on

algebraic holographic proof into CP-SNARK. Using compressed

Σ-protocols, the proof systems such as Plonk [10], Sonic [19], and

Marlin [8] can be instantiated into CP-SNARK with logarithmic

proof size. In the recent study detailed in [20], the authors provide

techniques for offloading non-native arithmetic operations from

zero-knowledge circuits. By employing Σ-protocols for proving
algebraic operations and SNARK for non-algebraic parts, the pa-

per reduces the computational burden typically associated with

embedding complex arithmetic in zero-knowledge circuits.

1.4 Organizations
Section 2 outlines the notations and informal definitions of the

building blocks used in this paper. Section 3 introduces our batching

framework, followed by the security proofs presented in Section 4.

Section 5 of our scheme, and Section 6 evaluates its performance.

Finally, Section 7 concludes the paper.

2 PRELIMINARIES
2.1 Notations
We use 𝒂 or {𝑎𝑖 } for the list of elements, which is equivalent to

a vector. We denote by 𝜆 a security parameter and by 𝜖 (·) as a
negligible function. Let F denote a finite field and G denote a group.

A bilinear group generator BG takes a security parameter as input

in unary and returns a bilinear group (𝑝,G1,G2,G𝑇 , 𝑒) consisting
of cyclic groups G1, G2, G𝑇 of prime order 𝑝 and a bilinear map 𝑒 :

G1 ×G2 → G𝑇 . Given a security parameter 1
𝜆
, a relation generator

RG returns a polynomial time decidable relation R ← RG(1𝜆).
For (𝒙,𝒘) ∈ R we say 𝒘 is a witness to the instance 𝒙 being in

the relation. We use the bracket for any bilinear group such as

[𝑎]𝑠 ≡ 𝑎 · 𝑔𝑠 ∈ G𝑠 .

2.2 Pedersen vector commitments
Pedersen vector commitment for vector𝒘 of size 𝑛 can be expressed

succinctly with the following algorithms:

• Ped.Setup(1𝜆): chooses 𝑔 $← G, 𝒉
$← G𝑛

from a domain D. It

outputs a commit key ck := (𝑔,𝒉).
3
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• Ped.Commit(ck,𝒎;𝑜): returns cm := (𝑜,𝒎)⊤ · ck.
• Ped.VerCom(ck, cm,𝒎, 𝑜) : returns true if cm = (𝑜,𝒎)⊤ · ck.

Otherwise, false.

Lemma 2.1. The Pedersen vector commitment is perfectly hiding
and computationally binding if the discrete logarithm assumption
holds.

2.3 Succinct Non-interactive arguments of
knowledge

Definition 2.2. A succinct non-interactive arguments of knowl-

edge (SNARK) for R is a tuple of algorithms Π = (Setup, Prove,
Verify) working as follows:
• crs := (ek, vk) ← Setup(R) : takes a relation R ← RG(1𝜆) as

input and returns a common reference string crs consisting of
an evaluation key ek and a verification key vk.

• 𝜋 ← Prove(ek, 𝒙 ;𝒘) : takes an evaluation key ek, a statement

𝒙 , and a witness𝒘 as inputs, and returns a proof 𝜋 .

• true/false ← Verify(vk, 𝒙, 𝜋) : takes a verification key vk, a
statement 𝒙 , and a proof 𝜋 as inputs and returns false (𝑟𝑒 𝑗𝑒𝑐𝑡)
or true (𝑎𝑐𝑐𝑒𝑝𝑡).
It satisfies the completeness, knowledge soundness, and succinct-

ness:

Completeness. Given a true statement 𝒙 , for all relation R and for

all (𝒙 ;𝒘) ∈ R,

Pr

[
crs← Setup(R),

𝜋 ← Prove(ek, 𝒙,𝒘) : Verify(crs, 𝒙, 𝜋) = 1

]
= 1

Knowledge Soundness. Knowledge soundness states that a prover
must know a witness and such knowledge can be efficiently ex-

tracted from 𝜋 by a knowledge extractor E. Formally, the following

is 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 for any PPT adversary A.

Pr


crs← Setup(R), Verify(crs, 𝒙∗, 𝜋∗) = true

(𝒙∗, 𝜋∗) ← A(crs), : ∧
𝒘 ← EA (𝑡𝑟𝑎𝑛𝑠A ), (𝒙∗;𝒘) ∉ R


Succinctness. Succinctness states that the argument generates the

proof of polynomial size in the security parameter, and the verifier’s

computation time is polynomial in the security parameter and in

statement size.

Remark. A SNARK may also satisfy zero-knowledge. It states that
the system does not leak any information besides the truth of the

statement. This is modeled by a simulator that does not know

the witness (but has some trapdoor information that enables it to

simulate proofs). We refer to it as a zk-SNARK in this scenario.

2.3.1 Commit-carrying SNARK. There exists a variant of commit-

and-prove SNARK (SNARKcp), referred to as a commit-carrying

SNARK(SNARKcc), which is a SNARK whose proof includes a com-

mitment to the portion of witnesses. A SNARKcc consists of a tuple

of algorithms as follows:

• crs := (ck, ek, vk) ← Setup(R) : takes a relation R as input,

and outputs a common reference string which includes a com-

mitment key ck, an evaluation key ek, and a verification key

vk.
• (c̃m, 𝜋 ; �̃�) ← Prove(ek, 𝒙;𝒘) : takes an evaluation key ek, a

statement 𝒙 and a witness𝒘 := (𝒖,𝝎) such that the relation R
holds as inputs, and outputs a proof 𝜋 , a proof-dependent com-

mitment c̃m and an opening �̃� such that VerCom(ck, c̃m, 𝒖, �̃�) =
true.

• true/false← Verify(vk, 𝒙, c̃m, 𝜋) : takes a verification key vk,
a statement 𝒙 , a proof-dependent commitment c̃m, a proof 𝜋 as

inputs, and outputs true if (𝒙, c̃m, 𝜋) ∈ R, or false otherwise.
The SNARKcc satisfies the properties of completeness, succinctness,

knowledge soundness, zero-knowledge, and binding.

2.4 Σ-protocols
With an arbitrary relationR(𝒙,𝒘), we briefly recapitulate Σ-protocols.
A Σ-protocol for the relation R is a three-round interactive proof

system between a prover (with 𝒙 and𝒘) and a verifier (with 𝒙). ΠΣ

consists of a tuple of efficient algorithms (Com, Chl, Res) run as

follows:

• P runs Com(𝒙,𝒘) → 𝑎: sends a commitment 𝑎

• V runs Chl(·) → 𝑐: chooses a challenge 𝑐 is distributed uni-

formly at random and sends 𝑐 to P.
• P runs Res(𝒙,𝒘, 𝑐) → 𝑧: returns some response value 𝑧.

• V runs Verify(𝒙 , (𝑎, 𝑐, 𝑧)) returns a bit 𝑏 ∈ {0, 1}. If 𝑏 = 1, the

verifier accepts the proof, otherwise rejects.

where (𝑎, 𝑐, 𝑧) is called transcript. A Σ-protocol satisfies completeness,
special soundness, (honest verifier) zero-knowledge.

Completeness. 𝛿-completeness is satisfied if honestly-generated

transcripts always verify, unless the prover aborts, which occurs

with a probability of 𝛿 . Formally, (𝒙,𝒘) ∈ R we have that, for all

honestly generated transcripts (𝑎, 𝑐, 𝑧)

Pr [ Verify(𝒙, 𝑎, 𝑐, 𝑧) = 1 | 𝑧 ≠ ⊥] = 1, and Pr [𝑧 = ⊥] = 𝛿

Special soundness. Special soundness is satisfied if there exists an
efficient extractor E that, for any PPT adversaryA, returns a state-

ment 𝒙 and two distinct accepting transcripts (𝑎, 𝑐0, 𝑧0), (𝑎, 𝑐1, 𝑧1)
where 𝑐0 ≠ 𝑐1 such that E(𝒙 , (𝑎, 𝑐0, 𝑧0), (𝑎, 𝑐1, 𝑧1)) extracts a valid
witness𝒘 with an exception probability 𝜖 , known as the knowledge
soundness error.

Honest verifier zero-knowledge. Honest verifier zero-knowledge
is satisfied if there exists a simulator S such that for all (𝒙 ,𝒘) ∈ R
the following distributions are indistinguishable.

{(𝑎, 𝑧) |𝑐 ← Chl();𝑎, 𝑧 ← S(𝒙, 𝑐)}
{(𝑎, 𝑧) |𝑐 ← Chl();𝑎 ← Com(𝒙,𝒘); 𝑧 ← Res(𝒙,𝒘, 𝑐)}

3 A NEW BATCHING FRAMEWORK
3.1 Bifurcate commitment key
In the setup phase of cc-SNARK, a common reference string crs :=

(ck, ek, vk) is generated. Then we split the commitment key ck into

two parts, denoted as

ck := (ck1, ck2)
4
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Specifically, ck1 serves as the commitment key enabling the prover

to generate multiple commitments that the prover aims to prove,

while ck2 acts as a bridge by encapsulating the knowledge of these

commitments (e.g.,𝑚𝑖 , 𝑜𝑖 ) as committed witnesses within the cc-

SNARK. Each commitment cm𝑖 is constructed as:

(cm𝑖 , 𝑜𝑖 ) = Com(ck1,𝑚𝑖 )

We define Listcm as a commitment list where each cm𝑖 and 𝑜𝑖 is

generated by commitment scheme Com with commitment key ck1

and values of𝑚𝑖 , for 𝑖 ∈ [𝑙]. At this point, the committed witness

𝒖 consists of pairs (𝑚𝑖 , 𝑜𝑖 ) indexed by 𝑖 ∈ [𝑙], which is used to

compute a proof-dependent commitment c̃m under a commitment

key ck2:

𝒖 = {𝑚𝑖 , 𝑜𝑖 }𝑖∈[𝑙 ] c̃m = Com(ck2, 𝒖; �̃�)

The prover’s claim is that each commitment cm𝑖 is committed to

𝑚𝑖 , and the proof-dependent commitment c̃m is committed to the

committed witness 𝒖. It can be expressed as:

{VerCom(ck1, cm𝑖 ,𝑚𝑖 , 𝑜𝑖 )}𝑖∈[𝑙 ] ∧ VerCom(ck2, c̃m, 𝒖, �̃�)

3.2 Batched commitment with Σ-protocol
Recall that in the context of cc-SNARKs, each pair (𝑚𝑖 , 𝑜𝑖 ) of c̃m
can be viewed as a committed witness 𝒖. However, c̃m cannot be

considered as the proof-dependent commitment for the multiple

commitment relation R, since we must prove the knowledge of

each of commitment based on the 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 commitment key ck1.

In other words, the linking proof system must be required since

the existing cc-SNARK approach cannot prove the multiple com-

mitments as a whole. To improve this limitation and facilitate the

aggregation of multiple commitments into a single commitment,

we use a randomness 𝜏 to apply unique encoding to each message

and opening such as

agg𝑚 =

𝑙∑︁
𝑖=1

𝜏𝑖 ·𝑚𝑖 agg𝑜 =

𝑙∑︁
𝑖=1

𝜏𝑖 · 𝑜𝑖 .

By attaching a unique identifier through the linear combination

with the randomness, each element is independently encoded. Then

we add aggregated values (agg𝑚, agg𝑜 ) into committed witness 𝒖.
We can prove that accumulated values (agg𝑚, agg𝑜 ) are correctly
derived from the pairs (𝑚𝑖 , 𝑜𝑖 ) within the circuit, which requires

the prover to engage in only𝑂 (𝑙) field operations to evaluate agg𝑚
and agg𝑜 . The witness𝒘 can be expressed as follows.

𝒘 = (𝒖,𝝎) =
({

agg𝑚, agg𝑜 , {𝑚𝑖 , 𝑜𝑖 }𝑖∈[𝑙 ]
}
,𝝎

)
The prover sends a proof-dependent commitment c̃m along with

the proof 𝜋 to the verifier, who then checks the validity of 𝜋 using

the commitments cm𝑖 . However, there remains an issue to consider

in our protocol: while it is possible to combine the knowledge of

each commitment into a single value using randomness to ensure

knowledge integrity, the prover can compute a simulated proof-

dependent commitment c̃m. Our verifier knows the commitments

cm𝑖 but does not know the underlying knowledge for each commit-

ment. This means that if the prover does not fix the proof-dependent

commitment, it would be impossible to extract the knowledge of

each commitment. To prevent this, we employ a Σ-protocol. Rather

than simultaneously transmitting the proof-dependent commit-

ment c̃m and the proof, we first bind the knowledge within c̃m
and send it prior to the proof. Subsequently, the verifier sends a

challenge 𝜏 to the prover in the Chl phase. This procedure ensures
that the prover cannot generate the knowledge of cmagg before

receiving the challenge. Upon receiving 𝜏 , the prover constructs

cmagg, and then sends the proof 𝜋 for the SNARKcc, excluding the

proof-dependent commitment in the Res phase. The verifier can
verify the proof with Listcm.

3.3 Putting Together
Our protocol is also a three-move protocol between a prover P
and a verifier V with a triple of algorithms: Com,Chl,Res. We

present the interactive form of the protocol, as it can straight-

forwardly be converted to a non-interactive version by applying

the Fiat-Shamir transform, ensuring security in the random or-

acle model (ROM). Additionally, our protocol leverages commit-

carrying SNARK (SNARKcc) under Pedersen engines, which means

that proof is constructed as group linear encoding.

Protocol. By Πcc .Setup algorithm, the prover and verifier have

a common reference string crs := (ck, ek, vk) for the following

relation RBatch.

RBatch (𝒙 ; 𝒖) =


𝜏 ;

(agg𝑚, agg𝑜 ),
({𝑚𝑖 }𝑖∈[𝑙 ] , {𝑜𝑖 }𝑖∈[𝑙 ] )

:

agg𝑚 =

𝑙∑︁
𝑖=1

𝜏𝑖 ·𝑚𝑖

agg𝑜 =

𝑙∑︁
𝑖=1

𝜏𝑖 · 𝑜𝑖


In our protocol, the prover’s inputs are {𝑚𝑖 , 𝑜𝑖 }∈[𝑙 ] and a commit-

ment list Listcm := {cm𝑖 }𝑖∈[𝑙 ] committing to values𝑚𝑖 with the

opening 𝑜𝑖 under the partial commitment key ck1. The verifier’s

input to the protocol is a commitment list Listcm. In the committing

phase, the prover P computes a proof-dependent commitment c̃m
as Ped.Commit(ck2, {𝑚𝑖 , 𝑜𝑖 }𝑖∈[𝑙 ] ; �̃�) where �̃� is randomly chosen.

Then P sends a message c̃m to the verifier V . Given the proof-

dependent commitment c̃m, the verifier chooses a challenge 𝜏
$← F

and sends it to P. The prover runs Πcc .Prove(ek, 𝒙,𝒘) to generate

a proof 𝜋cc. The prover returns the proof 𝜋cc as a response to the

verifierV . The verifier, given the commitment list Listcm and the

challenge 𝜏 , verifies the proof. We formally describe the protocol

as an interactive Σ-protocol in Figure 1.

3.4 Extending to CP-SNARKs
Our protocol can be extended to a SNARKcp for multiple Pedersen

commitments. We assume the existence of an external commit-

ment scheme, denoted as ComExt, which satisfies the additively-

homomorphic property. The goal is to prove multiple pre-computed

𝑙-commitments, List
ˆcm, through a commit-and-prove framework.

Typically, a conventional commit-and-prove approach from SNARKcc
requires that all 𝑙-commitments be included in the relation. How-

ever, since we can prove multiple commitments within a single

proof by applying our protocol, we leverage this advantage in a

commit-and-prove manner. More specifically, if our protocol veri-

fies correctly, the verifier becomes aware of the validity of cmagg.

Assuming that the committed messages �̂�𝑖 of the 𝑙-commitments

5
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Initialization : A trusted party T , given a relation RBatch
and a security parameter 1

𝜆
, generates (ck, ek, vk) through

Πcc .Setup. The commmitment key ck can be split into

(ck1, ck2). We denote 𝑙-Pedersen commitments by Listcm :=

{cm𝑖 }𝑖∈[𝑙 ] , each based on the batching key ck1.

Prover and Verifier : A prover P knows the message 𝑚𝑖

and the opening 𝑜𝑖 corresponding to each commitment cm𝑖 ,

[cm𝑖 ]1, as well as an auxiliary instance 𝒙 and a witness 𝒘 .
P then follows the subsequent procedure to generate a zk-

SNARK proof 𝜋 . The prover and verifier run the following

Σ-protocol.

(1) P chooses a random �̃�
$← F. Then P computes a proof-

dependent commitment c̃m as follows, where𝑚𝑖 and 𝑜𝑖
refer to the message and opening of each commitment:

c̃m := Ped.Commit(ck2, {𝑚𝑖 , 𝑜𝑖 }𝑖∈[𝑙 ] ; �̃�)
(2) P sends the proof-dependent commitment c̃m toV .

(3) V chooses a random 𝜏
$← F, and returns it to P.

(4) P computes the aggregated message agg𝑚 and opening

agg𝑜 through the powers of 𝜏 as follows:

agg𝑚 :=

𝑙∑︁
𝑖=1

𝜏𝑖 ·𝑚𝑖 , agg𝑜 :=

𝑙∑︁
𝑖=1

𝜏𝑖 · 𝑜𝑖

(5) P runs Πcc .Prove(ek, 𝒙,𝒘), and generates a proof 𝜋cc
where𝒘 := (𝒖,𝝎) and 𝒖 :=

{
agg𝑚, agg𝑜 , {𝑚𝑖 , 𝑜𝑖 }𝑖∈[𝑙 ]

}
.

(6) Finally, P returns 𝜋cc toV .

(7) V runs the following algorithm to verify the proof 𝜋cc:

(a) V computes cmagg using the powers of 𝜏 .

(b) LastlyV runs

Πcc .Verify(vk, 𝒙, cmagg · c̃m, 𝜋cc)
where 𝒙 := 𝜏 .

Figure 1: Our protocol for proving multiple Pedersen com-
mitments

List
ˆcm, computed by ComExt, are identical to the messages𝑚𝑖 com-

mitted in our protocol, we prove their coherence not by individually

proving each commitment corresponds to the same message, but

by employing the challenge used in our protocol. By leveraging

CP-Link (denoted in LegoSNARK [6]), which proves that two dis-

tinct Pedersen-like commitments under different keys open to the

same vector, we can efficiently design a CP-SNARK system using

a condensed form, represented as ˆcmagg and cmagg. The relation

RBatch
Eq can be expressed as follows:

RBatch
Eq (𝒙 ;𝒘) =

{
( ˆck, ck1 ) ;

( ˆcmagg, cmagg )
(agg𝑚 , agg𝑜 )

:

ˆcmagg = ComExt ( ˆck, agg𝑚 , agg𝑜 )
cmagg = Com(ck1, agg𝑚 , agg𝑜 )

}
We can prove the above relation RBatch

Eq using Σ-protocol, but sim-

ilar to LegoSNARK [6], we can also use several schemes such as

QA-NIZK [16] or compressed-Σ protocol [3]. The concrete construc-

tion is described in Figure 2.

We assume that there exists an external commitment scheme,

denoted by ComExt, which satisfies the additively-homomorphic

property. The algorithms ofComExt consists of a tuple of algorithms

(Setup, Com, VerCom). Setup outputs a commitment key ĉk and

the committing algorithm Com computes a commitment ĉm upon

receiving an input message𝑚 and a randomly chosen opening 𝑜 .

Note that we denote the CP-Link protocol as ΠLink, where ek =

(ekcc, ekLink), vk = (vkcc, vkLink), and ck = (ĉk, ck1, ck2).
In our commit-and-prove SNARK, we define the relation for

multiple Pedensen commitments as follows:

RBatch
cp (𝒙 ;𝒘) =

{
( ˆck), ({ ˆcm𝑖 }𝑖∈ [𝑙 ] ) ;
({𝑚𝑖 }𝑖∈ [𝑙 ] , {𝑜𝑖 }𝑖∈ [𝑙 ] )

: ˆcm𝑖 = ComExt ( ˆck,𝑚𝑖 , 𝑜𝑖 )
}

We note that RBatch
cp can be decomposed into two sub-relations,

RBatch and RBatch
Eq , such that

RBatch
cp (𝒙 ;𝒘) ⇐⇒ (RBatch (𝒙 ;𝒘) ∧ RBatch

Eq (𝒙 ;𝒘)).

i.e., RBatch
cp holds if and only if both RBatch and RBatch

Eq are satisfied.

4 SECURITY PROOFS
Theorem 4.1. Our protocol for the relation RBatch satisfies com-

pleteness, computational special soundness, and honest verifier zero-
knowledge.

Proof. We focus on special soundness and zero-knowledge in

priority since completeness is relatively straightforward.

Completeness. It reduces to the completeness of commit-carrying

SNARK. Therefore, the verification equation is always satisfied.

Special soundness. It reduces to the knowledge soundness of commit-

carrying SNARK and the binding property of Pedersen commit-

ments.

We define a knowledge extractor E that on input Listcm ∈
G𝑙

1
, and two accepting transcripts Tr0 := (c̃m, 𝜏∗, 𝜋∗cc) and Tr1 :=

(c̃m, 𝜏 ′, 𝜋 ′cc) we must recover {𝑚𝑖 , 𝑜𝑖 }𝑖∈[𝑙 ] such that

{cm𝑖 = Ped.Commit(ck1,𝑚𝑖 ;𝑜𝑖 ) | 𝑖 ∈ [𝑙]}
If given the proofs are valid, by leveraging the knowledge ex-

tractor for the commit-carrying SNARK proofs we can extract the

following with all but 𝜖cc which is the extractor failed error{
agg∗𝑚, agg∗𝑜 ,

{
𝑚∗𝑖 , 𝑜

∗
𝑖

}
𝑖∈[𝑙 ] , �̃�

∗
}
,

{
agg′𝑚, agg′𝑜 ,

{
𝑚′𝑖 , 𝑜

′
𝑖

}
𝑖∈[𝑙 ] , �̃�

′
}

such that

c̃m = Ped.Commit(ck2,
{
𝑚∗𝑖 , 𝑜

∗
𝑖

}
𝑖∈[𝑙 ] ; �̃�∗)

= Ped.Commit(ck2,
{
𝑚′𝑖 , 𝑜

′
𝑖

}
𝑖∈[𝑙 ] ; �̃�′)

However, by the binding of Lemma 2.1, the probability of hav-

ing two pairs of a Pedersen commitment is negligible. This means

that

{
𝑚∗
𝑖
, 𝑜∗

𝑖

}
=
{
𝑚′
𝑖
, 𝑜′

𝑖

}
with all but negligible probability 𝜖binding.

Therefore we have that

agg∗𝑚 =
∑︁
𝑖∈[𝑙 ]

𝜏∗
𝑖

·𝑚∗𝑖 , agg∗𝑜 =
∑︁
𝑖∈[𝑙 ]

𝜏∗
𝑖

· 𝑜∗𝑖 , (1)

agg′𝑚 =
∑︁
𝑖∈[𝑙 ]

𝜏 ′𝑖 ·𝑚∗𝑖 , agg′𝑜 =
∑︁
𝑖∈[𝑙 ]

𝜏 ′𝑖 · 𝑜∗𝑖 . (2)
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Protocol

P(ek, ck, 𝒙,𝝎, {𝑚𝑖 , 𝑜𝑖 }𝑖∈ [𝑙 ] , Listĉm ) V (vk, ck, 𝒙, Listĉm )

(c̃m, 𝑜 ) ← Com(ck2, {𝑚𝑖 , 𝑜𝑖 }𝑖∈ [𝑛] ;𝑜 ) c̃m

𝜏
$← Z∗𝑝

𝜏

agg𝑚 =

𝑛∑︁
𝑖=1

𝜏𝑖 ·𝑚𝑖 , agg𝑜 =

𝑛∑︁
𝑖=1

𝜏𝑖 · 𝑜𝑖

cmagg := Com(ck, agg𝑚 ; agg𝑜 )

ĉmagg := Com(ĉk, agg𝑚 ; agg𝑜 )
𝑢 :=

{
agg𝑚, agg𝑜 , {𝑚𝑖 , 𝑜𝑖 }𝑖∈ [𝑛]

}
𝒙cc := {𝜏, 𝒙 }
𝒙Link := {cmagg, ĉmagg}
𝝎Link := {agg𝑚, agg𝑜 }
𝜋Link ← ΠLink .Prove(ekLink, 𝒙Link;𝝎Link )

𝜋cc ← Πcc .Prove(ekcc, 𝒙cc; (𝑢,𝝎 ) ) 𝜋cc, 𝜋Link, cmagg

ĉmagg ←
𝑙∏

𝑖=1

ĉm𝜏𝑖

𝑖

𝒙Link := {cmagg, ĉmagg}
Πcc .Verify(vkcc, 𝒙cc, cmagg · c̃m, 𝜋cc )
ΠLink .Verify(vkLink, 𝒙Link, 𝜋Link )

Figure 2: A CP-SNARK applying our framework for multiple Pedersen commitments where Listĉm := {ĉm𝑖 }𝑖∈[𝑙 ]

From the verification equation, we can compute a batched com-

mitment cmagg using the randomized aggregation for Listcm and

the two challenges 𝜏∗, 𝜏 ′ under the commitment key ck1. For the leg-

ibility we denote these elements by cm∗agg and cm′agg respectively.

We can express these batched commitments as

cm∗agg = Ped.Commit(ck1, agg∗𝑚, agg∗𝑜 )
cm′agg = Ped.Commit(ck1, agg′𝑚, agg′𝑜 ).

where

agg∗𝑚 =
∑︁
𝑖∈[𝑙 ]

𝜏∗
𝑖

·𝑚𝑖 , agg∗𝑜 =
∑︁
𝑖∈[𝑙 ]

𝜏∗
𝑖

· 𝑜𝑖 , (3)

agg′𝑚 =
∑︁
𝑖∈[𝑙 ]

𝜏 ′𝑖 ·𝑚𝑖 , agg′𝑜 =
∑︁
𝑖∈[𝑙 ]

𝜏 ′𝑖 · 𝑜𝑖 . (4)

Since the proofs are verified, we can say that with all but 𝜖binding,

agg∗𝑚 = agg∗𝑚, agg∗𝑜 = agg∗𝑜 , agg′𝑚 = agg′𝑚, agg′𝑜 = agg′𝑜

Combining equations (1) to (4), we obtain the following result:∑︁
𝑖∈[𝑙 ]

(
𝜏∗

𝑖

− 𝜏 ′𝑖
) (
𝑚∗𝑖 −𝑚𝑖

)
= 0,∑︁

𝑖∈[𝑙 ]

(
𝜏∗

𝑖

− 𝜏 ′𝑖
) (
𝑜∗𝑖 − 𝑜𝑖

)
= 0

Since the challenges (𝜏∗, 𝜏 ′) are distinct,
(
𝜏∗

𝑖 − 𝜏 ′𝑖
)
terms cannot

be 0, and for all 𝑖 ∈ [𝑙]

𝑚∗𝑖 =𝑚′𝑖 =𝑚𝑖 , 𝑜∗𝑖 = 𝑜′𝑖 = 𝑜𝑖 .

ThereforeE extracts a validwitness for the commitment list (Listcm)
with error 𝜖 = 𝜖cc + 𝜖binding + 𝜖binding. □

Honest Verifier Zero-knowledge. We informally show that it is hard

for an adversary to distinguish simulated transcripts from real

transcripts generated by an honest prover via a hybrid argument

on the distribution of prover transcripts. Note that we denote a

simulator as S, which can choose c̃m, 𝜏 and simulate 𝜋cc for the

statement Listcm.

• Game0: An honestly-generated prover transcript is the following

tuple (c̃m, 𝜏, 𝜋cc).

• Game1: 𝜋
∗
cc is computed using S for (Listcm, c̃m, 𝜏). The two distri-

butions are indistinguishable by the zero-knowledge property of

𝜋cc.

Since the simulated transcript is indistinguishable from the real

transcript via hybrid argument, our protocol satisfies honest verifier

zero-knowledge.
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Theorem 4.2. Our protocol for the relation RBatch
cp satisfies com-

pleteness, computational special soundness, and honest verifier zero-
knowledge.

Proof. The proof of completeness, special soundness, and hon-

estly verifier zero-knowledge for RBatch
cp follows a similar structure

to the proof of Theorem 4.1.

Completeness. It reduces to the completeness of linking proof system

and commit-carrying SNARK. Therefore, the verification equation

is always satisfied.

Special soundness. It reduces to the knowledge soundness of linking
proof system, commit-carrying SNARK and the binding property

of Pedersen commitments.

Honest Verifier Zero-knowledge. Our protocol achieves honest ver-
ifier zero-knowledge (HVZK) since both the underlying linking

proof system and the commit-carrying SNARK guarantee HVZK.

This ensures that a simulated transcript is indistinguishable from a

real transcript generated by an honest prover. □

5 CONCRETE INSTANTIATIONS
This section provides a description of specific instantiations built

upon two zk-SNARK schemes, Groth16 [11] and Plonk [10].

5.1 Instantiation based on Groth16 [11]
LegoSNARK [6] introduces the commit-carrying SNARK version

(ccGro16) based on the SNARK of Gro16. The scheme is constructed

from the Non-Interactive Linear Proof (NILP), a cryptograhpic prim-

itive of Gro16.

Non-Interactive Linear Proof (NILP). A NILP comprises a tu-

ple of algorithms (Setup, PrfMtx, Test) operating in the following

manner:

• Setup: takes a relationR (e.g., QAP) as input, and returns vectors

𝝈 := (𝝈1,𝝈2) ∈ F𝜅1 × F𝜅2
.

• PrfMtx: given a relation R and a pair (𝒙,𝒘), outputs two matri-

ces (Π1,Π2) ∈ F𝑚1×𝜅1 × F𝑚2×𝜅2
. This facilitates the computa-

tion of a proof (𝝅1, 𝝅2) as (Π1 · 𝝈1,Π2 · 𝝈2).
• Test: upon receiving a relation R and a statement 𝒙 , yields a set

of matrices𝑇1, . . . ,𝑇𝜇 ∈ 𝐹 (𝑚1+𝜅1 )×(𝑚2+𝜅2 )
, with the acceptance

condition for a proof (𝝅1, 𝝅2) being (𝝈⊤
1
, 𝝅⊤

1
) ·𝑇𝑖 · (𝝈⊤

2
, 𝝅⊤

2
) = 0

for all 𝑖 = {1, . . . , 𝜇}.
Also, NILP satisfies completeness, statistical knowledge soundness,

and zero-knowledge properties.

Here is a brief overview of how commit-carrying SNARK is de-

rived from Groth16, as described in Figure 3. This construction aims

to design a commit-carrying SNARK that provides double binding

when proving the satisfiability of QAP relations s.t. R(𝒙, (𝒖,𝒘)).
This scheme includes a binding commitment to a portion 𝒖 of the

witness, with the public input being void (i.e. 𝒙 = ⊥). LegoSNARK
leverages the fact that witness-encoded polynomials are linearly

independent, and its structure can be seen as linear group encoding

(e.g., Pedersen commitment). Therefore, LegoSNARK adds a blind-

ing factor, reconstructs the common reference string crs, and gen-

erates a new term [𝐷]1, which is a proof-dependent commitment.

The term [𝐷]1 is structurally similar to a Pedersen commitment

NILP.Setup(R) → 𝝈

𝛼, 𝛽,𝛾, 𝛿, 𝜂 , 𝑥
$← F, and define 𝑦𝑖 (𝑥 ) := 𝛽𝑎𝑖 (𝑥 ) + 𝛼𝑏𝑖 (𝑥 ) + 𝑐𝑖 (𝑥 )

𝝈1 ←
©«

1, 𝛼, 𝛽, 𝛿,
{
𝑥𝑖
}𝑑−1

𝑖=1
,{

𝑦𝑖 (𝑥 )
𝛾

}𝑙
𝑖=1

,

{
𝑦𝑖 (𝑥 )
𝛿

}𝑛
𝑖=𝑙+1

,

{
𝑥𝑖𝑡 (𝑥 )

𝛿

}𝑑−2

𝑖=0

,
𝜂

𝛾
,
𝜂

𝛿

ª®®¬
𝝈2 ←

(
1, 𝛽,𝛾, 𝛿,

{
𝑥𝑖
}𝑑−1

𝑖=1

)
return 𝝈 := (𝝈1,𝝈2 ) ∈ F(𝑚+2𝑑+6) × F𝑑+4

NILP.PrfMtx(R,𝝈 ,𝒘 ) → (Π1,Π2 )

parse 𝒘 as (𝒖,𝝎 ),𝝈 as (𝝈1,𝝈2 ) , and 𝑟, 𝑠, 𝑣
$← F

Π1 ∈ F3×(𝑚+2𝑑+6) ,Π2 ∈ F1×(𝑑+4)

s.t. (𝐴,𝐶,𝐷 )⊤ = Π1 · 𝝈1, 𝐵 = Π2 · 𝝈2

𝐴← 𝛼 +
𝑛∑︁
𝑖=0

𝑤𝑖𝑎𝑖 + 𝑟𝛿 ; 𝐵 ← 𝛽 +
𝑛∑︁
𝑖=0

𝑤𝑖𝑏𝑖 (𝑥 ) + 𝑠𝛿

𝐶 ←
𝑛∑︁

𝑖=𝑙+1
𝑤𝑖

𝑦𝑖 (𝑥 )
𝛿
+
𝑑−2∑︁
𝑖=0

ℎ𝑖𝑥
𝑖𝑡 (𝑥 )
𝛿

+𝐴𝑠 + 𝐵𝑟 − 𝑟𝑠𝛿 − 𝑣𝜂

𝛿

𝐷 ←
𝑙∑︁

𝑖=0

𝑤𝑖𝑦𝑖 (𝑥 )
𝛾

+ 𝑣𝜂

𝛾

NILP.Test(R) → true/false

check 𝐴 · 𝐵 = 𝛼 · 𝛽 +𝐶 · 𝛿 +𝐷 · 𝛾

Figure 3: A NILP tailored for an augmented QAP relation,
underpinning the ccGro16 [6]. The boxed elements indicate
terms introduced in the modification from Gro16 [11] to the
construction of ccGro16.

and is verified through the following verification equation as

Ped.VerCom(ck, [𝐷]1, 𝒖, 𝑣)
?

= true/false

5.1.1 Our instantiation. We introduce VECTISGro16 described in

Figure 4, which is designed from ccGro16 by applying our Σ-protocol.
The commitment key ck generated during Setup can be viewed as{
𝑦𝑖 (𝑥 )
𝛾 ,

𝜂
𝛾

}
. Without loss of generality, assume the public input con-

sists solely of 𝜏 and the non-committed witness is empty. We denote

the starting indices for ck1 and ck2 as pfx
1
and pfx

2
, respectively.

Thus ck1 and ck2 are represented as follows:

ck1 :=

{
𝑦pfx

1
+𝑖 (𝑥)
𝛾

}
, ck2 :=

𝜂

𝛾
,

{
𝑦pfx

2
+𝑖 (𝑥)
𝛾

}
Each commitment cm𝑖 in Listcm is computed under ck1. The proof-

dependent commitment c̃m is computed as c̃m = Ped.Commit
(ck2, {𝑚𝑖 , 𝑜𝑖 } ; 𝑣) where 𝑣 is an opening chosen by ccGro16. In the

verification, the final proof-dependent commitment [𝐷]1 can be

computed by computing cmagg and performing a group addition

of three group elements: [cmagg]1, [c̃m]1, and [𝑃𝐼 ]1, where [𝑃𝐼 ]1
represents the result of the linear encoding of the public input.
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Initialization A trusted party T , given an arbitrary rela-

tion RBatch and a security parameter 1
𝜆
, generates (ck, ek, vk)

through ΠccGro16 .Setup where ck consists of (ck1, ck2).

Prover and Verifier The prover and verifier execute the Σ-
protocol described in Figure 1, applying the specific procedures

outlined below, with all other remaining processes the same.

(1) In committing phase, P computes a proof-dependent

commitment c̃m by mapping each commitment’s message 𝒖
and opening 𝑜 as follows:

c̃m := 𝑣 · 𝜂
𝛾
+

𝑙−1∑︁
𝑖=0

(
𝑚𝑖 ·

𝑦pfx+2𝑖 (𝑥 )
𝛾

+ 𝑜𝑖 ·
𝑦pfx+2𝑖+1 (𝑥 )

𝛾

)
where pfx refers to the prefix index related to the committed

witness for each of cm.

(2) In proving phase, P runs ΠccGro16 .Prove(ek, 𝒙;𝒘), and
generates a proof 𝜋cc := ( [𝐴]1, [𝐵]2, [𝐶]1) in which P uses

the chosen opening 𝑣 in committing phase.

(3) In verification phase, the verifierV computes cmagg, and

thenV generates a [𝐷]1 such that

[𝐷]1 := [cmagg]1 · [c̃m]1 · [𝑃𝐼 ]1
Lastly,V runs the following verification as

𝑒 ( [𝐴]1, [𝐵]2)
?

= 𝑒 ( [𝑎]1, [𝑏]2) · ( [𝐷]1, [𝑑]2) · ( [𝐶]1, [𝑐]2)
where [𝑎]1, [𝑏]2, [𝑐]1, [𝑑]1 denote the group elements within

the verification key vk of Gro16.

Figure 4: Our construction based on ccGro16

5.2 Instantiation based on Plonk [10]
Plonk [10] is a universal SNARK, which uses a polynomial com-

mitment scheme to prove knowledge of any arbitrary relation R.
A polynomial commitment scheme (PCS) enables a prover to gen-

erate a commitment for a polynomial, valid at any given point of

evaluation. Subsequently, the prover sends an opening proof for the

verifier’s evaluation. If the used PC is under group linear encoding

for the public parameters such as KZG commitment [15], our batch

commit-carrying SNARK scheme can also be applied in Plonk.

In the Plonk protocol, the prover proves knowledge of fan-in 2

and fan-out 1 gate values for each of the 𝑁 gates. The constraint

verification within Plonk is divided into gate constraints and copy
constraints. PC is used to prove the validity of two constraints. We

briefly describe Plonk [10] protocol.

Constraint system. Plonk designs its constraint system that re-

quires satisfying the following equation through the use of selector
vectors (𝒒𝑙 , 𝒒𝑟 , 𝒒𝑜 , 𝒒𝑚, 𝒒𝑐 ) and wire vectors (𝒂, 𝒃, 𝒄)

𝑞𝑙,𝑖 · 𝑎𝑖 + 𝑞𝑟,𝑖 · 𝑏𝑖 + 𝑞𝑜,𝑖 · 𝑐𝑖 + 𝑞𝑚,𝑖 · (𝑎𝑖𝑏𝑖 ) + 𝑞𝑐,𝑖 = 0

where we denote the left, right, and output wire as 𝒂, 𝒃, 𝒄 .

Lagrange basis. Given a characteristic 𝑞 of F and 𝑛 satisfying

𝑞 ≡ 1 mod 𝑛, the multiplicative group of F∗ reduces a subgroup
H =

{
𝜁 , 𝜁 2, . . . , 𝜁𝑛

}
generated by an 𝑛-th primitive root of unity

𝜁 ∈ F∗. By H, we can construct a zero-polynomial 𝑧H (𝑋 ) = 𝑋𝑛 − 1,

which can be expressed as 𝑋𝑛 − 1 =
∏𝑛

𝑖=1
(𝑋 − 𝜁 𝑖 ). There exists a

Lagrange basis Ł𝑖 (𝑋 ) for each 𝑖 ∈ [𝑛] such that:

𝐿𝑖 (𝑋 ) =
𝜁 𝑖 (𝑋𝑛 − 1)
𝑛(𝑋 − 𝜁 𝑖 )

where

𝐿𝑖 (𝜁 𝑖 ) = 1 ∧ 𝐿𝑖 (𝜁 𝑗 ) = 0 (𝑖 ≠ 𝑗)

Copy constraint. Let multiple polynomials be𝒇 = (𝑓1, 𝑓2, . . . , 𝑓ℓ ) ∈
F[𝑋 ]ℓ and 𝜎 : ℓ𝑛 → ℓ𝑛 be a permutation. For 𝒈 = (𝑔1, 𝑔2, . . . , 𝑔ℓ ) ∈
F[𝑋 ]ℓ , we say that𝒇 = 𝜎 (𝒈) if for each 𝑖 ∈ [𝑛], 𝑗 ∈ [ℓ] the following
holds for all 𝑙 ∈ [ℓ𝑛],

𝑓( ( 𝑗−1) ·𝑛+𝑖 ) := 𝑓 (𝜁 𝑖 ) 𝑗 𝑔( ( 𝑗−1) ·𝑛+𝑖 ) := 𝑔 𝑗 (𝜁 𝑖 ) : 𝑔𝑙 = 𝑓𝜎 (𝑙 )

Initialization A trusted party T , given a security parameter

1
𝜆
, generates a commitment key ck through Π𝑃𝐶 .Setup where

ck consists of (ck1, ck2).

Prover and Verifier The prover and verifier execute the Σ-
protocol described in Figure 1, applying the specific procedures

outlined below, with all other remaining processes the same.

• In committing phase, P computes a proof-dependent com-

mitment c̃m by mapping each commitment’s message 𝒖
and opening 𝑣1, 𝑣2 as follows:

c̃m := (𝑣1𝑋 + 𝑣2)𝑧H (𝑋 )

+
𝑙−1∑︁
𝑖=0

(
𝑚𝑖 · 𝐿pfx

2,2𝑖
(𝑋 ) + 𝑜𝑖 · 𝐿pfx

2,2𝑖+1
(𝑋 )

)
where pfx refers to the position related to the committed

witness for each of cm.

• During the proving phase, the prover P runs

ΠPlonk .Prove(ek, 𝒙,𝒘) to generate a Plonk proof 𝜋

using a commitment and an evaluation to the polynomial

defined as

𝑓𝑢 (𝑋 ) := (𝑣1𝑋 + 𝑣2)𝑧H (𝑋 ) +
∑︁
𝑖∈[𝑙 ]
−𝑢𝑖𝐿𝑖 (𝑋 )

Here, P utilizes the chosen opening 𝑣 during the commit-

ting phase.

• In verification phase, the verifierV computes a batched

commitment [𝑢agg]1, and thenV generates a [𝑢]1 such

that

[𝑢]1 := [𝑢agg]1 · [c̃m]1
Lastly,V verifies the proof with [𝑢]1.

Figure 5: Our construction based on ccPlonk

5.2.1 Our instantiation. Plonk leverages a polynomial commit-

ment scheme (PCS). If the PCS employs the [15] scheme, which

uses a discrete log-based group encoding of polynomial, a polyno-

mial 𝑝 (𝑋 ) can be represented as follows, with a commitment key

9
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ck :=

{
𝑔𝑥

𝑖
}
𝑖∈[𝑛]

:

PCS.Com(ck, 𝑝 (𝑋 )) :=

𝑛−1∏
𝑖=0

𝑔𝑝𝑖 ·𝑥
𝑖

In the Plonk protocol, there exist the wire polynomials, which

can be shortly expressed as follows, with random blinding scalars

(𝑣1, 𝑣2, . . . , 𝑣6) ∈ F

𝑓𝐿 (𝑋 ) = (𝑣1𝑋 + 𝑣2)𝑧H (𝑋 ) +
∑︁
𝑖∈[𝑛]

𝑤𝑖𝐿𝑖 (𝑋 ),

𝑓𝑅 (𝑋 ) = (𝑣3𝑋 + 𝑣4)𝑧H (𝑋 ) +
∑︁
𝑖∈[𝑛]

𝑤𝑛+𝑖𝐿𝑖 (𝑋 ),

𝑓𝑂 (𝑋 ) = (𝑣5𝑋 + 𝑣6)𝑧H (𝑋 ) +
∑︁
𝑖∈[𝑛]

𝑤2𝑖+𝑖𝐿𝑖 (𝑋 )

For the public input polynomial 𝑓𝑝𝑖 (𝑋 ), we can separate the pub-

lic input 𝒑𝒊 ∈ F𝑙 into two parts (𝒙, 𝒖), where we regard 𝒖 as a

committed witness. As in previous descriptions, assume that the

public input consists solely of 𝜏 , and the non-committed witness

is empty. We denote the starting indices for ck1 and ck2 as pfx
1

and pfx
2
, respectively. By integrating blinding factors (𝑣1, 𝑣2) into

the committed witness encoded polynomial 𝑓𝑢 (𝑋 ) to ensure zero-

knowledge, its form aligns with that of wire polynomials such as

𝑓𝑢 (𝑋 ) = (𝑣1𝑋 + 𝑣2)𝑧H (𝑋 ) +
∑︁
𝑖∈[𝑙 ]
−𝑢𝑖𝐿𝑖 (𝑋 )

If we employ the KZG10 scheme, the polynomial commitment

of 𝑓𝑢 (𝑋 ) can be recast as a Pedersen vector commitment using a

specific commitment key ck as{
[𝑧H (𝑋 )], [𝑧H (𝑋 )𝑋 ], [(𝐿𝑖 (𝑋 ))𝑖∈[𝑛] ]

}
We can split the commitment key into (ck1, ck2) as

ck1 := [𝐿pfx
1,𝑖
(𝑋 )], ck2 := [𝑧H (𝑋 )], [𝑧H (𝑋 )𝑋 ],

{
[𝐿pfx

2,𝑖
(𝑋 )]

}
Hence we can construct a proof-dependent commitment for the

committedwitness𝑢, as c̃m := Ped.Commit(ck2, {𝑚𝑖 , 𝑜𝑖 } ; �̃�) where
the opening �̃� consists of (𝑠1, 𝑠2).

6 EXPERIMENTS
We implement our system on top of the Rust Arkworks library

2
,

which provides useful cryptographic primitives such as finite fields

and elliptic curves. We adopted BN254 and BLS12-381, which are

pairing-friendly elliptic curves offering 128 bits of security. BN254

is used to compare linking proof systems and to demonstrate prac-

ticality on a smart contract by comparing TPS and gas costs. Mean-

while, BLS12-381 is utilized to compare the proving time with the

naive approach. We implement and evaluate our scheme based on

Groth16 [11] , denoted as VECTISGro16. We evaluate the perfor-

mance on an Apple M1 Pro with 32GB of RAM.

2
https://github.com/arkworks-rs

6.1 Microbenchmark

Execution time. Figure 6 illustrates the performance for varying

batch sizes, showing an increase in execution time as the batch size

grows. Tomore explicitly demonstrate our performance, we also add

results measured using a naive approach (i.e., in-the-circuit) within

Groth16 [11]. In the scheme, although the number of constraints

grows linearly with each exponential increment in batch size, the

operations (e.g., group scalar exponentiation) in the naive approach

are more expensive than the constraints required in our system.

Specifically, for Groth16 [11], we can prove commitments for 2
20

batches in approximately 33.024s, whereas the estimated time for

the naive approach, which could not be measured in our device,

would be around 98, 000s showing a high-performance improve-

ment. The dashed line in the graph represents estimated values.
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VECTISGro16
Gro16

(a) Prover time for Groth16 [11] and VECTISGro16

Figure 6: Prover time for varying batch sizes, where the 𝑥-axis
represents the batch size in log and the dashed line represents
the estimated value.

6.2 Comparison
Our framework efficiently supports the construction and batch veri-

fication of multiple commitments by commit-carrying SNARKs. For

a more concrete analysis, we also provide a detailed examination of

the commit-and-prove SNARK. To better demonstrate the practical-

ity of our system, we have conducted a comparative analysis with

the widely recognized LegoSNARK in Figure 7, Table 2, and Table 3.

We have combined commit-carrying SNARKs based onGroth16 [11]

with linking proof systems—the QA-NIZK [16] and the compressed-

Σ-protocol—resulting in VECTISNIZK
Gro16, VECTISComp-Σ

Gro16 , LegoNIZK
Gro16,

and LegoComp-Σ
Gro16 . We do not present the performance of each link-

ing proof system unless there is significant performance difference

using our scheme.

Prover and Verifier time. When comparing prover times in the

Figure 9a, LegoNIZK
Gro16 outperforms our scheme due to the absence

of additional operations required to generate aggregated elements

for a batched commitment in our approach. Interestingly, in P’s
time, LegoComp-Σ

Gro16 has asymptotically fewer computations than our

10
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scheme, but it is slower. This is because the aggregation of com-

mitments can be computed more quickly using multi-scalar ex-

ponentiation. Specifically, at 2
16
, our prover time is 1.413s, but

LegoNIZK
Gro16 achieves a performance of 0.177s while LegoComp-Σ

Gro16 re-

quires 2.476s. Since the linking system is independent of the batch

size, our scheme exhibits superior performance in verifier time as

shown in Figure 7b.

10 15 20

0

10

20

30

40

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
)

VECTISGro16

LegoNIZK
Gro16

LegoComp-Σ
Gro16

(a) Prover time

10 15 20

0

20

40

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
)

(b) Verifier time

Figure 7: Comparison of prover time and verifier time be-
tween LegoGro16 and VECTISGro16 for varying batch sizes in
log scale

Key size. Examining the key sizes fromTable 2 and 3, the evaluation

key sizes generated by Gro16 are 4× to 6× bigger in our scheme,

which necessitates additional keys due to the nature of aggregating

commitments in the circuit. However, evaluation and verification

key for linkable proof system in our scheme increased less than

1 KB. The verification key size in our scheme could be reduced to

a constant if there is no need to maintain the committing key. In

contrast, the sizes of both LegoNIZK
Gro16 and LegoComp-Σ

Gro16 scale linearly

with the batch size in the linking proof system.

6.3 Application
We provide detailed performance metrics in applications such as

verifying proofs on blockchain platforms. We consider a scenario

within smart contracts on the blockchain where users’ commit-

ments are stored, and a prover (e.g., bank, authority, etc.) must

Table 2: Comparison of evaluation key sizes for varying batch
sizes

Batch Size VECTISGro16 LegoNIZK
Gro16 LegoComp-Σ

Gro16
(log) ek (KB) ek (KB) ek (KB)
7 130 34 21

8 259 66 42

9 517 132 83

10 1,033 264 164

11 2,065 526 328

12 4,129 1,050 656

13 8,258 2,099 1,311

14 16,516 4,196 2,622

15 33,031 8,390 5,244

16 66,061 16,779 10,486

demonstrate the validity of these commitments by including proofs

in transactions. This scenario aligns with simplified versions of

applications such as proof of solvency or digital credentials. To

compare the performance, we have measured the transactions per

second (TPS) and gas costs for each system. Specifically, we generate

1, 000 transactions and measure the time taken for these transac-

tions to be confirmed on the network. Additionally, in this exper-

iment, we utilize the BN254 curve, which is particularly advanta-

geous as it is supported by precompiled functions in smart contract.

TPS is computed by dividing the total number of transactions by

the total time.

Figure 8 shows the performance comparison between LegoGro16
and our scheme (VECTISGro16). As batch sizes increase, the differ-

ence in TPS becomes more pronounced. For instance, at a batch

size of 2
10
, LegoNIZK

Gro16 and LegoComp-Σ
Gro16 can handle approximately

0.51 and 2.533 transactions per second respectively, whereas our

scheme can process about 5.19 transactions per second, which

indicates that we can verify about 5,300 commitments per sec-

ond. This notable performance discrepancy is due to the compu-

tational overhead. LegoNIZK
Gro16 needs 𝑂 (𝑙) pairings and LegoComp-Σ

Gro16
needs𝑂 (𝑙) 𝐸1 to rescale commitment keys, whereas in our scheme,

𝑂 (𝑙) 𝐸1 with a smaller constant factor is needed to aggregate com-

mitments. Additionally, concerning verification key (vk), LegoNIZK
Gro16

and LegoComp-Σ
Gro16 require the number ofG1 andG2 elements to scale

linearly with 𝑙 .

Relation with age checking. To evaluate the practicality of our

scheme, we assume simple application with age-checking relation

as an example. Figure 9 presents the measured prover time com-

pared to the baseline CP-SNARK approach. While our prover time

appeared significantly slower when measured with an empty re-

lation in Figure 7, the inclusion of actual relations shows that our

scheme achieves comparable prover time performance.

In our scheme, the circuit involves a simple random linear com-

bination, resulting in a complexity of 𝑂 (𝑙), where 𝑙 is the number

of witnesses. This introduces only 𝑂 (𝑙) additional field operations.

For instance, in a 254-bit field, this overhead accounts for less than

1% of the total computational cost for the age-checking relation.

Specifically, for proving 2
13

commitments, our scheme requires only
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Table 3: Comparison of verification key sizes for varying batch sizes

Batch Size VECTISGro16 LegoNIZK
Gro16 LegoComp-Σ

Gro16cc NIZK Comp-Σ
(log) vk (B) vk (B) vk (B) ck (KB) vk (KB) ck (KB) vk (KB)
7

296 560 360

8 9 4 5

8 17 17 8 9

9 33 33 16 17

10 66 66 33 33

11 131 131 66 66

12 262 263 131 131

13 524 525 262 263

14 1,049 1,049 524 525

15 2,097 2,098 1,049 1,049

16 4,194 4,195 2,097 2,098
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VECTISGro16
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LegoComp-Σ
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(a) TPS for LegoGro16 and VECTISGro16

Batch size VECTISGro16 LegoNIZK
Gro16 LegoComp-Σ

Gro16(log)

1 294K 488K 429K

2 309K 583K 527K

3 340K 773K 678K

4 403K 1,161K 932K

5 527K 1,918K 1,397K

6 777K 3,440K 2,277K

7 1,283K 6,485K 3,997K

8 2,282K 12,579K 7,389K

9 4,308K 24,779K 14,145K

10 8,323K 49,214K 27,648K

(b) Gas costs for LegoGro16 and VECTISGro16

Figure 8: Performance for varying batch sizes.

14.85s, outperforming LegoNIZK
Gro16 by 6.64% (16.11s) and LegoComp-Σ

Gro16
by 10.4% (16.57 s) Moreover, the performance gap widens as the

number of commitments increases. These results highlight that
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Figure 9: Comparison of prover time between LegoGro16 and
VECTISGro16 for varying batch sized in log scale, with age
check constraints

our scheme efficiently handles practical applications with minimal

overhead.

7 CONCLUSION
Our paper proposes a batching framework VECTIS, which can ef-

ficiently prove and verify multiple commitments. As batch sizes

increase, our performance surpasses that of other works in terms of

verifier efficiency (i.e., time, key size) and proof size, although the

proving time is slightly longer than in other works. Our work has

significant potential for applications that demand efficient proving

and verification, particularly when dealing with numerous com-

mitments. It offers a far more efficient approach compared to the

traditional method of verifying each commitment individually. Con-

sequently, our scheme proves to be highly effective in applications

that heavily rely on the use of commitments.
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A QUASI-ADAPTIVE NIZK ARGUMENTS FOR
LINEAR SPACES

Intuitively, a QA-NIZK argument, as defined by Jutla and Roy, allows

proving the membership of an instance 𝒙 with a witness 𝒘 in a

languageL, defined by a relationR(𝒙,𝒘). The QA-NIZK arguments

consist of a set of PPT algorithms Π.QA-NIZK = (KeyGen, Prove,
Verify, Sim).

Kiltz and Wee [16] introduce constructions for QA-NIZK argu-

ments for linear spaces. The linear space language L𝐿𝑆 can be

represented as,

L𝐿𝑆 =
{
[𝒙]1 ∈ G𝑛

1
: ∃𝒘 ∈ Z𝑝 s.t. 𝒙 = 𝑀 ·𝒘

}
, where the relation R is defined as

R𝑀 (𝒙 ;𝒘) =
{
(𝒙 ;𝒘) ∈ G𝑛

1
× Z𝑚𝑝 : 𝒙 = 𝑀 ·𝒘

}
We provide the construction of the Kiltz-Wee’s QA-NIZK arguments

for linear subspaces in the CRS model, described in Figure 10.

KeyGen( [𝑀 ]1 ∈ G𝑛×𝑚
1

) → crs, td

𝑲
$← Z𝑛×

ˆ𝑘
𝑝 , 𝑎

$← Z𝑝 ,𝑪 ← 𝑲 · 𝑎

𝑷 ← [𝑀 ]⊤
1
· 𝑲 ∈ G𝑛× ˆ𝑘

1

ek := 𝑷 , vk := ( [𝑪 ]2, [𝑎]2 ), td := 𝑲

return crs := (ek, vk), td

Prove(ek, 𝒙,𝒘 ) → [𝜋 ]1
𝜋1 ← 𝒘⊤ · 𝑃 ∈ G1

return [𝜋 ]1 ∈ G
ˆ𝑘
1

Verify(vk, 𝒙, [𝜋 ]1 ) → (true/false)

Check that [𝒙 ]⊤
1
⊙ [𝑪 ]2

?

= [𝜋 ]1 ⊙ [𝑎]2

Sim( [𝑀 ]1, td, 𝒙 ) → [𝜋 ]1

𝜋1 ← 𝑲⊤ · [𝒙 ]1 ∈ G
ˆ𝑘
1

Figure 10: KW15 [16] QA-NIZK ΠQA-NIZK

Similar to the approach in LegoSNARK, we set
ˆ𝑘 = 1. In LegoS-

NARK, it is demonstrated that when
ˆ𝑘 = 1, knowledge soundness

is achieved under the discrete logarithm assumption within the

algebraic group model (AGM). A comparable proof for the applica-

tion of this scheme in a non-falsifiable setting is also provided in

KW15 [16]. We recall the proof from LegoSNARK and describe it

simply as follows:

Theorem A.1. Assuming that D is a witness-sampleable matrix
distribution, under the discrete logarithm assumption in AGM, the QA-
NIZK ΠQA-NIZK from KW15 [16] (with ˆ𝑘 = 1) is a knowledge-sound
SNARK for the relation R𝐿𝑆 with matrices from D.

Proof. Let A be an algebraic adversary against the knowl-

edge soundness of ΠQA-NIZK. The adversary takes the matrix 𝑀 ,

the CRS (i.e., 𝑷 , 𝑪), and the auxiliary input (𝑎𝑢𝑥) as inputs (i.e.

A([𝑀, 𝑷 ]1, [𝑎, 𝑪]). Consider [𝒛]1, a vector comprising𝑀 , elements
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from 𝑎𝑢𝑥 in the group G1, and the generator of G1. Then the adver-

sary A outputs a pair ([𝒙]1, [𝜋]1) and coefficients𝒘 that express

these elements as linear combinations of its input in G1. We denote

the coefficients for 𝒙 and 𝜋 by (𝑿0,𝑿1) and (𝝅0, 𝝅1) respectively,

[𝒙]1 = 𝑿0 [𝑀⊤𝑲 ]1 + 𝑿1 [𝒛]1
[𝜋]1 = 𝝅⊤

0
[𝑀⊤𝑲 ]1 + 𝝅⊤1 [𝒛]1

Now, we define the extractor E that extracts the witness 𝝅0.

Then we prove that the following probability is negligible:

Pr [Verify(vk, [𝒙]1, [𝜋]1) = true ∧ [𝒙]1 ≠ [𝑀] ·𝒘]
If A returns such a tuple with non-negligible probability, we

construct an algorithm B that, on input ([𝑲 ]1, [𝑲 ]2), outputs the
elements (𝒂, 𝒃, 𝑐) such that:

𝑲⊤ · 𝒂 · 𝑲 + 𝑲⊤ · 𝒃 + 𝑐 = 0

The algorithm B proceeds as follows,

(1) it usesD to sample ([𝑀]1, 𝑎𝑢𝑥 ) along with its witness over

G1, which is a vector 𝒛 where each element of 𝒛 is an entry

from Z𝑝 .

(2) it samples 𝑎
$← Z𝑝 and runs A([𝒛, 𝑷 ]1, [𝑎, 𝑎 · 𝑲 ]2).

(3) Upon receiving the output from A, B sets:

𝒂 := 𝑿0 ·𝑀⊤, 𝒃 = 𝑿1𝒛 −𝑀 · 𝝅0, 𝒄 = −𝝅⊤1 · 𝒛
At least one of 𝒂, 𝒃 , or 𝒄 must be nonzero. If all are zero, then

𝑿1𝒛 − 𝑀𝝅0 = 0, which implies 𝒙 = 𝑀 · 𝝅0 since 𝑿0 · 𝑀⊤ = 0,

contradicting our assumption about A’s output.

Using algorithm B, we construct an algorithm B′ that deals
with the discrete logarithm problem. On input ( [𝑦]1, [𝑦]2), the
algorithm B′ chooses 𝒓, 𝒔 ∈ Z𝑛𝑝 and sets 𝑲 := 𝑦 · 𝒓 + 𝒔. It can
be shown that ( [𝑲 ]1, [𝑲 ]2) can be simulated with a distribution

identical to the one expected by B. Given a solution (𝒂, 𝒃, 𝒄), one
can find (𝑎0, 𝑏0, 𝑐0) such that:

0 = (𝑦𝒓 + 𝒔)⊤ · 𝒂 · (𝑦 · 𝒓 + 𝒔) + (𝑦 · 𝒓 + 𝒔)⊤ · 𝒃 + 𝒄
= 𝑎0 · 𝑦2 + 𝑏0 · 𝑦 + 𝑐0

With high probability, 𝑐0 ≠ 0. From this B′ can extract 𝑦.

B COMPRESSED-Σ PROTOCOL
Compressed-Σ protocols are interactive protocols that maintain

the same functionality and remain honest-verifier zero-knowledge

proofs of knowledge for a given relation R. These protocols achieve
succinct communication complexity, reducing from linear to loga-

rithmic size.

In this section, we introduce a protocol for proving the equality

of committed vectors. By the protocols proposed in [3] and [4], the

proposed protocol can serve the same role as 𝐶𝑃𝑙𝑖𝑛𝑘 , providing a

proof for 𝑁 Pedersen commitments with a size of 𝑂 (log𝑁 ). Ref-
erencing the relation described in Eclipse [2], the relation RBatch

Eq
that we aim to prove can be described as follows:

RBatch
Eq (𝒙 ;𝒘) =


(𝒈,𝒉, �̃�, ˜𝒉, 𝑛,𝑑,𝑑1, 𝑑2 ),
(𝐶, {𝐷𝑖 }𝑖∈ [𝑛] ) ;
(𝒎, 𝒐, {𝒐𝑖 }𝑖∈𝑛 )

:

𝐶 = 𝒈𝒎 · 𝒉𝒐 , 𝐷𝑖 = �̃�𝒎𝑖 · ˜𝒉𝒐𝑖 ,

𝒈 ∈ Z𝑛𝑑𝑞 , �̃� ∈ Z𝑑𝑞 ,

𝒉 ∈ Z𝑑1

𝑞 , ˜𝒉 ∈ Z𝑑2

𝑞 ,

𝒎 = {𝒎𝑖 }𝑖∈ [𝑛] ,

𝒐 ∈ Z𝑑1

𝑞 , 𝒐𝑖 ∈ Z
𝑑

2

𝑞



The compressed version of Σ-protocol for the above relation

RBatch
Eq is described as follows.

(1) The verifier V samples a random challenge 𝛿 ∈ Z𝑞 , and sends it

to the prover P. Then both parties scale out �̃� as follows:

�̃� :=

{
�̃�𝛿

𝑖
}𝑛−1

𝑖=0

∈ G𝑛𝑑

(2) The prover P chooses random 𝜶 , 𝜷,𝜸 ∈ Z𝑛𝑑×𝑑1×𝑑2

𝑞 , and sends

the following elements to the verifier V
𝑋 = 𝒈𝜶 · 𝒉𝜷 , �̃� = �̃�𝜶 · ˜𝒉𝜸

(3) The verifier samples a challenge 𝑒 ∈ Z𝑞 and sends it to the prover

P.
(4) The prover P computes

𝒛 = 𝜶 + 𝑒 ·𝒎, 𝒌 = 𝜷 + 𝑒 · 𝒐, 𝝎 = 𝜸 + 𝑒 ·
𝑛∑︁
𝑖=1

𝒐𝑖 · 𝛿𝑖−1

(5) Let

𝒈 = 𝒈𝐿 ∥𝒈𝑅, �̃� = �̃�𝐿 ∥�̃�𝑅, 𝒛 = 𝒛𝐿 ∥𝒛𝑅
and

𝑌 = 𝑋 · 𝐶𝑒 · 𝒉−𝒌 , �̃� = �̃� · (
𝑛∏
𝑖=1

𝐷𝛿𝑖−1

𝑖 )𝑒 · ˜𝒉−𝝎

(6) The prover P sends

𝐿 = 𝒈
𝒛𝐿
𝑅

, 𝑅 = 𝒈
𝒛𝑅
𝐿

�̂� = �̃�
𝒛𝐿
𝑅

, �̃� = �̃�
𝒛𝑅
𝐿

(7) The verifier V sends a challenge 𝑐 ∈ Z𝑞
(8) The prover P computes

𝒛′ = 𝒛𝐿 + 𝑐 · 𝒛𝑅
and both parties compute

𝑌 ′ = 𝐿 · 𝑌𝑐 · 𝑅𝑐2

, �̃� ′ = �̃� · �̃�𝑐 · �̃�𝑐2

𝒈′ = 𝒈𝑐𝐿 ⊙ 𝒈𝑅, �̃�′ = �̃�𝑐𝐿 ⊙ �̃�𝑅
where ⊙ is an element-wise product.

(9) If 𝑛 > 2, then both parties execute the above step (5)-(8) with

( (𝒈, �̃�′, 𝑛/2), (𝑌 ′, �̃� ′ ), 𝒛′ )
Otherwise, the verifier V checks

𝒈′𝒛
′ ?

= 𝑌 ′, �̃�𝒛′ ?

= �̃� ′

Figure 11: Compressed Σ version for the relation RBatch
Eq

Theorem B.1. The protocol described in Fig.11 is a (2𝜅 + 4) protocol
for the relation RBatch

Eq where 𝜅 = ⌈log𝑛𝑑⌉ - 1. It satisfies completeness,
computationally (𝑛, 2, {𝑡𝑖 }𝑖∈[𝜅 ] )-special sound if finding discrete-
logarithm, and special honest verifier zero-knowledge where 𝑡𝑖 = 3 for
all 𝑖 ∈ [𝜅].

Proof. Since completeness is straightforward, we omit the de-

scription.

(𝑛, 2, {𝑡𝑖 }𝑖∈[𝜅 ] )-special soundness. To simplify, we assume a sin-

gle recursive step execution. Specifically, we analyze the 4-move

protocol, where the prover sends the response 𝒛′ irrespective of it
14
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dimension, and proves that this protocol is 4-special sound. Then

𝑡𝑖 -special soundness can then be derived through an inductive ar-

gument, the details of which are omitted here (i.e. omit 𝑗 ).

First of all, we denote the transcript as Tr, which consists of

(𝐿, 𝑅, �̃�, �̃�, 𝑌 , �̃� ′, 𝑐𝑖 , 𝒛𝑖 ). Given three accepting transcripts (Tr0, Tr1,

Tr2) for the same challenge 𝛿 but the distinct challenge 𝑐𝑖 ∈ {0, 1, 2},
we can show that there exists an efficient algorithm 𝜒 that outputs

a valid witness. Given these transcripts, Since

∏
0≤𝑖<𝑘≤2

(𝑐𝑘 − 𝑐𝑖 )
≠ 0, we define (𝑣0, 𝑣1, 𝑣2) such that

2∑︁
𝑖=0

𝑣𝑖 = 0,

2∑︁
𝑖=0

𝑣𝑖 · 𝑐𝑖 = 1,

2∑︁
𝑖=0

𝑣𝑖 · 𝑐2

𝑖 = 0

Define 𝒛𝑖 = (𝑣𝑖𝑐𝑖𝒛𝑖 ∥𝑣𝑖𝒛𝑖 ). Then let 𝒘 =

∑
2

𝑖=0
𝒛𝑖 be the extracted

value. We show the correctness of the extracted value as follows:

𝒈𝒘 = 𝒈 (
∑

2

𝑖=0
𝑣𝑖𝑐𝑖𝒛𝑖 ) ∥ (

∑
2

𝑖=0
𝑣𝑖𝒛𝑖 )

= 𝒈𝑣0𝑐0𝒛0

𝐿
· 𝒈𝑣1𝑐1𝒛1

𝐿
· 𝒈𝑣2𝑐2𝒛2

𝐿
· 𝒈𝑣0𝒛0

𝑅
· 𝒈𝑣1𝒛1

𝑅
· 𝒈𝑣2𝒛2

𝑅

=

2∏
𝑖=0

(
(𝒈𝑐𝑖

𝐿
⊙ 𝒈𝑅)�̄�𝑖,𝐿+𝑐𝑖 �̄�𝑖,𝑅

)𝑣𝑖
=

2∏
𝑖=0

(𝒈𝑐𝑖 �̄�𝑖,𝐿
𝐿

· 𝒈𝑐
2

𝑖 �̄�𝑖,𝑅
𝐿

· 𝒈�̄�𝑖,𝐿
𝑅
· 𝒈𝑐𝑖 �̄�𝑖,𝑅

𝑅
)𝑣𝑖

=

2∏
𝑖=0

(
(𝒈�̄�𝑖 )𝑐𝑖 · 𝒈�̄�𝑖,𝐿

𝑅
· (𝒈�̄�𝑖,𝑅

𝐿
)𝑐

2

𝑖

)𝑣𝑖
=

2∏
𝑖=0

(𝑌𝑐𝑖 · 𝐿 · 𝑅𝑐
2

𝑖 )𝑣𝑖

= 𝑌

where ⊙ denotes the element-wise product. In a similar vein, ex-

traction can also be performed for �̃�.

Special honest verifier zero-knowledge. With the challenge 𝑥

and 𝑒 provided, the simulator randomly samples 𝒛, 𝒌 , and 𝝎, subse-

quently using these to perfectly simulate the remaining messages

as follows:

𝑋 := 𝒈𝒛 · 𝒉𝒌 ·𝐶−𝑒 , �̃� := �̃�𝒛 · ˜𝒉𝒌 · (
𝑙∏

𝑖=1

𝐷𝑥𝑖−1

𝑖 )−𝑒
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