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Abstract—A Trusted Execution Environment (TEE) is a security tech-
nology, implemented by CPU manufacturers, which guarantees integrity
and confidentiality on a restricted execution environment to any remote
verifier through attestation. TEEs are deployed on various consumer
and commercial hardware platforms, and have been widely adopted as a
component in the design of cryptographic protocols both theoretical and
practical.

Within the provable security community, the use of TEEs as a setup
assumption has converged to a standard ideal definition in the Universal
Composability setting (Gatt, defined by Pass et al., Eurocrypt ’17).
However, it is unclear whether any real TEE design can actually realise
such a level of security, or whether the diverse capabilities of today’s TEE
implementations will in fact converge to a single standard. Therefore, it
is necessary for cryptographers and protocol designers to specify what
assumptions are necessary for the TEE they are using to support the
correctness and security of their protocol.

To this end, this paper provides a more careful treatment of trusted
execution than the existing literature, focusing on the capabilities of
enclaves and adversaries. Our goal is to provide meaningful patterns
for comparing different classes of TEEs, particularly how a weaker
TEE functionality can implement a stronger one given an appropriate
mechanism to bridge the two. We introduce a new, “modular” definition
of TEEs that captures a broad range of pre-existing functionalities
defined in the literature while maintaining their high level of abstraction.
While our goal is not directly to model implementations of specific
commercial TEE providers, our modular definition provides a way to
capture more meaningful and realistic hardware capabilities. We propose
to characterise TEE capabilities along the following terms:

• the set of trusted features available to the enclave;
• the set of possible attacks on an enclave;
• the content of attestation signatures.
We then define various possible ideal modular Gatt functionality

instantiations that capture existing variants in the literature. Finally, we
conclude the paper by constructing a protocol template to realise stronger
Gatt setups from weaker ones, and provide an example of removing an
attack.

I. INTRODUCTION

In recent years, programmable hardware-based Trusted Execu-
tion Environments (TEEs) have been made available by computer
manufacturers for different market segments, including consumer
and server CPUs. Their introduction has led them to be considered
as a realistic component in the development of secure interactive
protocols, for a range of diverse use cases (surveyed in [66, 82]).
While actual real-world protocol deployments adopting TEEs have
been limited, despite being included in the offering of major cloud
vendors, there has been a large number of academic publications
exploring the feasibility of their use, both in the systems and
cryptographic literature. A popular approach within the provable
security community is to treat the existence of TEEs as a setup
assumption. Hardware setup assumptions had previously considered
simpler devices with limited computational power [42]. To capture
the flexibility of a full fledged TEE, Pass, Shi, and Tramèr [69]
(PST) formulate an ideal setup in the Generalised Universal Com-
posability [25] setting. Their global attested execution functionality
Gatt captures the two core security claims of Trusted Execution:
1) programs run in an isolated environment (a secure “enclave”)
maintain confidentiality and integrity in the presence of an otherwise
corrupted party; 2) the output of such a program is authenticated by
“attestation”. Gatt models attestation as a signature over the program
output and metadata, allowing any remote party to verify the value

of attestation through a (globally shared) public verification key,
regardless of their access to an enclave.

The PST functionality provides a clean abstraction for TEEs that
facilitates security proofs in the Universal Composability model [16].
It is a high level formulation that does not contain precise implemen-
tation details for any one TEE platform to allow generalisable proto-
cols. As a consequence, the functionality does not define a specific
programming model, leading to publications with various (sometimes
incompatible or unrealistic) assumptions about what features are
available to the enclave program e.g. whether they are able to access
the attestation service or establish secure channels to other enclaves
or external parties without explicitly performing key exchange. It is
also not clear whether the strong guarantees of the functionality can
be met by any real implementation of TEEs, given the vast number
of practical side-channels and physical attacks discovered since the
release of the technology. It is thus unclear whether the promised
guarantees can actually be delivered in the real world. This is an
issue that most protocol designers that incorporate TEEs in their
constructions conveniently choose to ignore by considering these
attacks as out of scope. While we agree it would be unreasonable
to ask cryptographers to become experts in the finer details of
computer architectures necessary to secure TEE implementations, a
more realistic model is warranted if we are to see actual deployment
of these protocols. Otherwise, replacing the idealisation of a TEE
with a specific instantiation is bound to invalidate any security claim.
A salient example is given by Bhatotia et al. [10], who show how
a weakened abstraction that allows malicious adversarial to interfere
with an enclave’s state can lead to loss of confidentiality, by mounting
a rollback attack on a protocol that would be secure in the Gatt-hybrid
model. On the other hand, other works [36, 78] have shown that, for
some protocols, a (significantly) weaker TEE implementation can
still provide meaningful guarantees. The existence of these protocols
suggests the need for cryptographers to articulate more precisely what
aspects of a TEE their design relies on. Articulation requires an
appropriate language; our goal for this work is to create one.

Our model: We augment the ideal PST functionality with three
extension points that can be modularly combined to characterise
a TEE instantiation with specific guarantees: features, attacks, and
attestation contents.

Features model the high level (trusted) interface available to
programs executed within a TEE to interact with a secure subroutine,
or an untrusted program running on the same machine or on a remote
party. The implementation of a feature might be realised through
specific hardware modifications to the CPU architecture, trusted
firmware, a cryptographic protocol between multiple enclaves and
remote parties, or a combination thereof. As such, we give the enclave
program access to “oracles” (an abstraction of a trusted interface)
for the available features. The goal of a feature oracle is to model
the guarantees of the untrusted boundary between the trusted code
running within the enclave and its access to the external (untrusted)
world. Feature oracles can also be used to simplify the design of
an enclave program, by abstracting commonly used subroutines for
which we have a provably secure implementation (as discussed later
in the paper).

Attacks are also represented as abstract oracles, available to the
adversary when interacting with the ideal TEE functionality. When
constructing protocols that interact with TEEs, the attacker is gen-
erally modelled as a malicious party that is executing an enclave
on their local machine. As such, we give the attacker the option
of passing additionally malicious control instruction along with any
input to the enclave, and explicitly state in the formulation how a
call to that oracle will affect the internal enclave state.

The values of Attestation that are transmitted to a remote verifier
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to certify the authenticity of the installed program are defined as a
function over the state of the enclave (its measurement) and is bound
to the TEE instance it runs on. The PST model has a rigid definition
of attestation, with its guarantees inspired by the earliest attestation
mechanism adopted by Intel SGX. Our formulation is more abstract
and allows us to adopt a wider class of measurements and attestation
properties.

Our modelling of these interfaces is presented in a modular fashion,
with a shared baseline abstraction that provides an interface to parties
interacting with TEEs. For each instantiation of a TEE, we capture
its unique combination of features, attacks and attestation through a
combination of UC “shells”, a modelling construct that allows us
to reason about the interface of the enclave without the need to
analyse the specific application code it is running. We provide several
examples of shells that capture pre-existing formulations of TEEs in
the literature, unifying all previous PST variants we are aware of.

By providing a modular functionality for TEEs, we let the security
proof for a protocol be independent from a concrete TEE instanti-
ation. The protocol designer simply needs to choose the minimum
set of features required by the enclave program, an upper bound
on how an attacker is allowed to tamper with enclaves, and how
much information about the enclave is provided to other parties (or
“leaked” to the environment) by the attestation. Despite this, we
do not want to dismiss the pre-existing work to prove protocols as
secure in the simpler PST model. As such we propose a technique
to bridge different versions of the functionality, either by adding
a new feature oracle, or by removing an attack oracle. We show
how to construct “wrapper” protocols which, combined with a less
powerful TEE abstraction, are functionally equivalent to a stronger
one, by implementing the missing features in runtime, or patching the
remaining attacks. Showing that a more realistic TEE formulation,
combined with the appropriate wrapper, is equivalent to PST allows
us to preserve pre-existing proofs under Universal Composability.
By repeatedly showing that the combination of a “weak” TEE with
a protocol implements a “stronger” TEE, we can provide a path
to realise a powerful abstraction such as PST from realistic TEE
implementations. We hope that our functionality will provide the
cryptographic community with a unifying abstraction to characterise
different versions of TEEs, including those that have already been
proposed in the literature, and will help analyse how they relate
to each other. We see this as an important step to enable a more
nuanced discussion on the security claims of TEE vendors and the
requirements for TEE-enabled protocols - but is ultimately still a
theoretical contribution. Constructing the next generation of practical
TEE will require a much more system-focused approach than what
is possible at this level of specificity.

The paper is structured as follows: in Section II, we provide an
overview of the existing TEE modelling from Pass, Shi, and Tramèr
[69] and follow-up works. We then propose, starting from Section III,
our framework for specifying Trusted Execution functionalities with
more granular interfaces. The key characteristic of our framework
is to provide three parameters for each TEE setup: the set of
features that an enclave running on the TEE can access; the set
of attacks the adversary is allow to mount; and what values are
included in the attestation measurement signed by each enclave. In
Section IV, we provide examples of enclave instantiations based on
this model, adapting pre-existing formulations of TEE setups, as well
as new capabilities that form useful building blocks for building
protocols. Our goal is to unify all pre-existing variants of Trusted
Execution setups based on the PST model.. Section V provides a
notion of equivalence between different classes of TEEs, based on
the difference between interfaces, and gives a template for showing
that a TEE setup that allows a particular adversarial attack can realise

a “stronger” setup without the same attack when combined with an
appropriate defensive protocol. We give a simplified version of our
technique for readability, with the full variant (and corresponding
template for feature addition) presented in Appendix B. We illustrate
how to realise this construction through a simple example protocol
that removes the adversarial ability to conduct rollback attacks on an
enclave through access to trusted storage.

II. BACKGROUND

A. Universal Composability

Universal Composability (UC), introduced by Canetti [16], is a
computational proof model that allows modular proofs of protocol
security under concurrent composition in the simulation setting. Due
to its flexible modelling of communication channels and adversarial
capabilities, UC can capture a broad variety of adversarial scenarios,
and a large number of protocols have been shown to be UC-
secure. Moreover, since its introduction, the framework has inspired
numerous extensions and variations [3, 14, 18, 44, 51, 61] including
different revisions to the original model (see [15, Appendix B]).

We now provide an overview of the essential components of UC
required for understanding the rest of the paper, with more precise
definitions, theorem statements and corresponding notation left to
Appendix A.

A UC protocol is an execution of a number of Interactive Turing
Machine Instances (ITIs). Each machine’s is identified by its code,
the party ID to which the machine belongs, and a shared session
ID (collectively, the extended identity). Machines can pass messages
to each other by writing to a number of communication tapes.
Additionally, an adversary can issue special corruption commands to
learn a machine’s internal state or control its behaviour. A structured
protocol facilitates distinguishing protocol operations from modelling
constructs by defining a nested ITI structure, with an external shell
handling modelling instructions (such as corruption commands or
message redirection) running an internal virtual ITI that represents
the actual code executed by the party (it is possible to nest multiple
levels of shells).

To model concurrent composition, a protocol has to be proven
secure in the presence of an additional polynomially-bounded ma-
chine, the environment. The environment schedules the order and
length of execution (through a mechanism called import) of protocol
ITIs, and is able to run additional protocols in any session, except
for a special test session. A protocol can be shown to be secure
if it UC-emulates an ideal functionality, an incorruptible trusted
third party that perfectly executes the protocol. The UC emulation
experiments sees the environment attempting to distinguish, for any
possible adversary, whether it is interacting (in the test session) with
the “real-world” protocol execution, or with the combination of the
ideal functionality and a simulator machine that acts as the adversary
while also injecting protocol-specific messages into the execution
transcript.

A UC protocol π can be used as a subroutine for another protocol
ρ. If protocol π UC-emulates an ideal functionality F , ρ UC-emulates
ρπ→F i.e. protocol ρ where all calls to π are replaced with calls to
F . This result (UC composition) can be used to prove the security of
protocols in a modular fashion by progressively replacing protocol
subroutines with the corresponding functionalities. If ρ calls ideal
functionality F , we say it is an F -hybrid protocol. In the standard
UC setting, protocols are limited to calling hybrid functionalities
from the same session. In later work, the introduction of global
functionalities (in the GUC framework of Canetti et al. [25], now
replaced by UCGS [6]) allows different protocol sessions to share
state through a single hybrid functionality.
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B. Trusted Execution Environments

Trusted Execution Environments have generally been the domain
of the system security research community. Costan and Devadas [32]
first attempted to bridge the knowledge gap to allow cryptographers
to understand the internals and guarantees of Intel SGX, the first
widely available and commercially successful TEE. We assume the
reader is familiar with the high level guarantees of a TEE, and refer
to that work for an in-depth explanation of the internals of one of its
most popular instantiation.

Since then, a variety of works have attempted to formalise TEEs
for the purposes of cryptographic protocol design [2, 8, 35, 38, 52,
56, 72–75, 80, 86].

Given the desirable composition guarantees of UC, we focus our
treatment of TEEs in that model. While various works exist to model
HSM-like functionality in UC (e.g. see [48]), and some initial work
has been proposed by Canetti et al. [26] to give a UC treatment of
validating the security guarantees of generic hardware constructions
(including protecting against side-channel attacks), Pass, Shi, and
Tramèr [69] provide the first UC formulation of TEEs. Their Gatt

functionality (fully reproduced in Figure 1) is a generic model for
TEEs that aims to capture architecture-independent properties. It
distills the essence of TEEs into attested execution i.e. evaluation
of a program with associated proof of execution. Gatt lets a pre-
established set of parties, with local access to a TEE, install and
execute arbitrary enclave programs, which produce anonymous at-
testation signature over the program output and enclave metadata.
While the environment is able to verify the authenticity of an attested
output and install their own programs through a corrupted party in any
session (through claimed session ID idx), they learn nothing about
the internal state of an enclave or the identity of the party executing
that program. Any implementation details of the trusted hardware or
concrete attestation protocol are abstracted away from the attested
execution formalism. A simple signature mechanism collapses local
and remote attestation into a single operation, which any party can
verify having obtained the relevant public key from Gatt. This is
the only meaningfully global shared state for the functionality, with
individual enclaves tied to session identifiers, and a unique (across
sessions) enclave identifier eid.

The role of the signature scheme is a simplification over the EPID
attestation protocol used in the original version of SGX [70], that
removes the key revocation phase. Attestation verification amounts
to simply verifying the output data structure as described through a
simple signature scheme with the globally available (both to machines
with and without enclave capabilities) public verification key. The
signing key is never released by the functionality, capturing the provi-
sioning mechanism of the SGX system enclaves. The inclusion of the
session ID in the attestation signature ensures that enclaves installed
in different sessions (for which the simulator has no visibility) can
not adversely interact with the protocol.

Since its publication, numerous cryptographic protocols that rely
on TEEs have been proven using Gatt in the (G)UC framework [9,
28–31, 40, 41, 43, 46, 49, 53–55, 58, 65, 83, 84, 87, 88] or as a
resource [57] in the Abstract Cryptography framework of [62]. Gatt

has also provided a basis for formalising TEE usage in property-based
security proofs [33, 37, 39, 59, 63, 76, 85].

Additionally, some attempts have been made to relax the Gatt

functionality for the purposes of capturing TEE vulnerabilities.
Tramèr et al. [78] introduced the concept of transparent enclaves to
model confidentiality leaks in an enclave program (formalised under
GUC in [68, Section 8.1] ). The transparent enclave functionality
behaves exactly as Gatt, except that for each RESUME operation, the
functionality additionally leaks the randomness used by the enclave

Functionality Gatt[Σ, reg, λ]

State variables Description
vk Master verification key

msk Master secret key
T ← ∅ Table for installed programs

On message INITIALIZE from a party P :
let (vk,msk)← Σ.Gen(1λ)

On message GETPK from a party P :
return vk

On message (INSTALL, idx, prog) from P ∈ reg:
if P is honest then assert idx = P.sid

generate nonce eid
$← {0, 1}λ

store T [eid, P ]← (idx, prog, ∅)
return eid

On message (RESUME, eid, inp) from P ∈ reg:
let (idx, prog,mem)← T [eid, P ], abort if not found
let (output,mem′)← prog(inp,mem)
store T [eid, P ]← (idx, prog,mem′)
let σ ← Σ.Sign(msk, (idx, eid, prog, output))
return (output, σ)

Fig. 1. The Gatt functionality of [69]

(allowing the host to derive any secret created within the enclave).
This is perhaps an excessively strong model, as the use of side

channel attacks might only allow a portion of the memory or ran-
domness to be learned by the adversary. Dörre, Mechler, and Müller-
Quade [36] proposes both a weaker and a stronger variant. Since
the SGX quoting enclave that allows producing attestation does not
have any specific hardening mechanism compared to other enclaves
running on the machine, besides being carefully implemented with
side-effect free primitives, the authors argue that it is realistic to
model a class of TEEs where side channels do not affect certain
secure operations such as key exchange and symmetric encryption
(since the quoting enclave relies on them for attestation to be
successful). As such, they define almost-transparent enclaves as
transparent enclaves with access to side-channel free implementa-
tions of symmetric cryptography primitives and Diffie-Hellman key
exchange operation. On a RESUME operation, an almost transparent
enclave leaks the random bits used during its execution, the memory
of the enclave at the start of the RESUME call, and the return value of
the cryptographic operations, but crucially not the randomness used
to perform the cryptographic functions. This allows the adversary
(and the simulator) to learn any values that would have been leaked
through any intermediate computation on secrets the enclave had
access to. Additionally, they consider a semi-honest enclave, inspired
by the modelling of [56], where the adversary is able to adaptively
leak the list of operations executed by an enclave run by any party
regardless of their corruption status. A semi-honest enclave model
captures a scenario where the manufacturer of the TEE might have
introduced a backdoor that enables them to remotely instruct any
TEE-enabled machine to record and leak their data. Besides providing
the alternative attacker models, their global functionalities are realised
in UCGS, and allow any party to install an enclave (i.e. there is no
fixed registry set reg).

Bhatotia et al. [10] provides a further weakened UCGS version
of Gatt that allows an adversary to conduct rollback and forking
attacks. Their functionality keeps track of enclave states in a tree data
structure and allows a corrupted party to select an arbitrary node in
the tree to load the state from as part of a RESUME operation. This
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new weaker setup can be shown to no longer be sufficient to guarantee
the security of a protocol that includes stateful enclaves.

III. A MODULAR Gatt SETUP

As an ideal functionality, the Gatt formalisation described in the
previous section does not provide a detailed account of enclave
execution. This formulation of TEEs does not explicitly expose any
specific hardware or implementation details, beyond the abstract
interface that allows the local party to install a program and execute
it. When describing the components of Gatt, Pass, Shi, and Tramer
[68, Section 3.2] explicitly state that the functionality emerges from
a combination of the TEE features with some assumed firmware to
provide this type of confidential computing service. In particular,
they attribute the generation of unique per-enclave ids at installation,
which are not guaranteed by all TEE architectures, to this firmware
sampling a nonce from a unique key distributed to each TEE by the
manufacturer during provisioning.

This abstraction of TEEs as an isolated execution mechanism with
an easily verifiable proof of computation is a key insight of the
model, and its promise of using the abstraction as a block box
for constructing protocols a major selling point. The high level of
abstraction does however conceal how realistic hardware component
might fail, preventing protocol designers to take such scenarios
into account. A more careful approach would then consider the
functionality provided by Gatt as implementable by a combination
of hardware, trusted firmware, and system-defined enclaves. The
attestation signature guarantees that all of these components were
acting in concert at the time when an output was generated.

Examining these components in more detail provides two advan-
tages. First, it allows more meaningful relaxations of the security
guarantees, by allowing to distinguish which components of the
system can be compromised. Additionally, once we stop thinking
of the functionality as a monolithic hardware component, it becomes
natural to consider alternative features that the manufacturer or third
parties might augment the TEE with. In particular, we may think of
the combined hardware and software libraries an enclave has access to
during its execution “runtime” as providing a kind of API. While the
list of features provided by Gatt could be considered a “standard”
enclave interface, it is possible to imagine additional API calls
available to the enclaves, for example a trusted clock [27], monotonic
counters [27, 60], secure access to GPU compute resources [77,
79, 89] etc. Regardless of how these interfaces are implemented
(e.g. by modifying the architecture or trusted firmware, or running
the enclave through a “wrapper” library that interacts with a trusted
system enclave, or even through a distributed protocol between
multiple mutually untrusted enclaves), the attestation mechanism
should capture their presence. Beyond showing that an enclave is
running the correct program, a sound attestation mechanism also
needs to certify to the verifier that the TEE provides the correct
version of the API, otherwise the program code can not provide its
security guarantees. In other words, a TEE functionality attests to the
combination of (prog, runtime) rather than the mere application code
prog.

Features, Attacks, and Attestation: We now extend the Gatt

functionality from [68, 69] (henceforth referred to as GPST
att ) to allow

defining a larger class of TEE setups. Our goal is to capture the
runtime behaviour of enclaves, without delving into the specifics of
their implementation. To maintain this level of abstraction, we use a
number of idealised interfaces.

Within our new formalism, a TEE application developer can choose
to target a minimum set of features required by their applications.
A standard error will be returned if such a program is installed
on an instance of the TEE functionality that does not support the

feature set. For each possible modular instantiation of a TEE Gmod
att ,

we thus define a set of feature oracles O, which represent the library
of subroutines that are available to an enclave program. A feature
of this kind is a polynomial time algorithm, as implemented by the
runtime combination of hardware and software in that version of
Gmod

att , including any communication with external parties. We also
define a set of attack oracles A to capture adversarial behaviour. This
can be thought as a parameter chosen by a protocol designer that
captures “allowable” attacks in the current TEE setting under which
the target protocol can still be proven secure. Any cryptographic
protocol that wants to use TEE will therefore need to provide a lower
bound for the set of required features O, and an upper bound for the
set of tolerated attacks A, to parameterise their chosen version of
Gmod

att . Relationships between different versions of TEEs are captured
by the difference of these two sets, with equivalence statements made
possible by running some additional runtime along enclave programs
(either to increase the size of interfaces provided by O, or to reduce
the attacks available in A).

We also introduce modularity in the attestation procedure. This is
both to allow capturing a greater class of TEE architectures, as well as
being a technical requirement. A reader familiar with the simulation
framework will quickly realize that our programme of proving that,
given the right runtime, a weaker TEE setup Gmod

att can UC-emulate the
stronger Gmod′

att , is hindered by the usage of a fixed signature scheme to
model attestation. Since the two different TEE functionalities would
each sign different (prog, runtime) messages, it would be trivial for an
environment to distinguish whether it is communicating with the real
or ideal world, since the GPST

att attestation scheme would also include
the runtime as part of its code (thus signing two different programs in
the two worlds). We therefore abstract the attestation mechanism in
order to allow the UC simulator to “program” the signature scheme.

Our model ties attestation and its verification to the specific Gmod
att

functionality instance the user interacts with: the public parameters
of the functionality allow a verifier to directly assess the capabilities
of the attested enclave runtime and its adversary. It thus allows the
verifier to make an informed trust decision based on the feature and
vulnerability of the enclave they are communicating with.

The functionality: We now highlight the differences between
the new formulation of Gmod

att (Figure 2) and the original GPST
att

functionality (shown in Figure 1).
We iterate on the work of [10] to more carefully follow the

conventions and formality of modern UC versions compared to GPST
att .

In particular, we now model enclaves as structured ITI subrou-
tines to the Gmod

att functionality. On installation of an enclave, the
functionality spawns a new ITI subroutine with composite extended
identity (shO,A[prog], (eid||pid, “att”||idx)), encoding the program
prog, oracles O,A, the unique enclave ID eid, the identity pid for the
party that installed the enclave, and the claimed session identity idx.
The new subroutine is part of a UC structured protocol, where the top
level subroutine with code shO,A[prog] spawned by Gmod

att is known as
a shell, and a second subroutine with code prog created by the shell
is known as the body. We use the shell of our structured protocol
to capture modelling instructions related to the oracles, while the
body is instantiated with the unaltered program code for the enclave
(see Figure 3 for a graphical representation). Running enclaves as
separate subroutine ITIs is functionally equivalent to running the
input code within the global functionality as in the original treatment.
It does provide, however, a cleaner abstraction, in that we are able
to explicitly instantiate an ITI that runs the code of the enclave
program installed, rather than having the ideal functionality act as
an interpreter. In particular, our formalism now involves enclaves run
by different parties being executed as separate ITIs, which we believe
is a more natural model. Enclave programs are subroutine respecting
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Functionality Gmod
att [λ, reg,O,A, S]

State variables Description
vk← ϵ Master verification key

Sign← ϵ Attestation Signing algorithm
S ← ∅ Table for signed messages
T ← ∅ Table for installed programs

On message INITIALISE from a party P :
send INITIALISE to A and receive k, s ; vk← k,Sign← s

On message GETPK from a party P :
return vk

On message (VERIFY, σ,m) from a party P :

return m
?
∈ S[σ]

On message (INSTALL, idx, prog) from a party P where P.pid ∈ reg:
if pid is not corrupted then

assert idx = sid
for instruction i ∈ prog do

if i ̸∈ O then return MissingInstructionError

generate nonce eid
$← {0, 1}λ, store T [eid, pid] = (idx, prog)

send INSTALL to (shO,A[prog], (eid||pid, “att”||idx))
return eid

On message (RESUME, eid, inp, attack) from a party P where P.pid ∈ reg:
let (idx, prog)← T [eid, pid], abort if not found
if attack = ϵ ∨ pid is not corrupted then

send inp to (shO,A[prog], (eid||pid, “att”||idx)) and receive output
else

assert attack ∈ A
send (attack, inp) to (shO,A[prog], (eid||pid, “att”||idx)) and receive output, aux
if aux ̸= ϵ then

query A with (attack, aux) and receive the reply CONTINUE

let meas← S(configuration of shO,A[prog]ITI), σ ← Sign(meas)
S[σ]← S[σ] ∥ meas
return (output, σ)

Fig. 2. Global functionality Gmod
att

in that the shell rejects any input message not sent through the Gmod
att

functionality, and will only accept subroutine output messages from
machines in its extended session (i.e. all machines invoked by the
protocol’s main parties or one of their subroutines). When resuming
an enclave, the calling party might need to provide some additional
runtime import (see Appendix A), depending on how much work the
shell is required to carry out in addition to the enclave code execution
in itself (e.g. if an enclave calls a feature that involves significant
communication with external parties to be implemented, Gmod

att needs
to be activated with sufficient import to activate those subroutines).

We parameterise each instance of Gmod
att by the static sets O,A

which capture feature and adversarial oracles respectively. On instal-
lation of a new enclave, Gmod

att first checks that all instructions in the
proposed program code correspond to a call to one of the oracles in
O, and aborts with an error message if they are not. Both sets are
the basis for the definition of the shell for all enclave subroutine ITIs
installed by that instance of Gmod

att . We use the shell mechanism device
to help us capture a specification of how the enclave program and the
adversary can interact with the runtime. In particular, for each unique
combination of oracles, we have to give a specific shell definition.

The shell detects when its enclave calls a feature oracle at runtime,
and provides a return value. This can be derived through some local
computation conducted by the shell, potentially after communicat-
ing with the adversary or other parties; or delegated to a distinct
subroutine. When defining shell in this work we will generally use

ideal subroutines, but this can be implemented through a real protocol
without changing the definition (through UC-emulation).

A corrupted party is allowed to specify an auxiliary command
along with their resume instructions that is executed by the shell
in conjunction or instead of the normal program execution. The
adversarial oracle is allowed to send a message to the adversary after
the RESUME call has completed, and the adversary can in turn prevent
the output of the program from being released with an attestation. The
shell also handles any communication between enclaves that might
be prompted by an attacker or feature oracle.

Finally, we parameterise the functionality by S, a function that
defines the contents of the attestation message for each enclave’s exe-
cution. The original GPST

att models an anonymous attestation signature
scheme, and as such always produces an attestation signature tied
to the set of arguments (idx, eid, prog, output). This includes the
claimed session ID for the current protocol executing the enclave,
its unique enclave ID, the program code and the output of the most
recent computation. Replacing this fixed data structure with a function
allows us to model a broader range of attestation primitives, such as
non-anonymous attestation (e.g. by including the UC party ID as
one of the returned values, or a long-term public key tied to the
party identity, as outlined in [68, Section 8.4]). We further relax
the attestation mechanism of the GPST

att functionality by allowing
the adversary (through the simulator in the ideal world) to choose
the format of attestation signatures, to allow the addition of details
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Install 

Fig. 3. When a program with code P is installed on a Gmod
att enclave,

the functionality spawns a new structured protocol subroutine with shell
shO,A[] and body P . For some interfaces I ∈ O, the shell will outsource its
computation to some external functionality F . The adversary A can interact
with the enclave shell for any attacks A ∈ A through Gmod

att . Both shO,A[]
and F can leak additional information to A

lacking in the high-level abstraction. Rather than having a full-fledged
offline digital signature algorithm, the adversary provides (during
the INITIALISE phase of the setup) Gmod

att with a public key and
a signing algorithm. The algorithm is not required to be a well-
formed signature scheme or guarantee typical security properties
such as existential unforgeability. Instead, Gmod

att implements signature
verification by maintaining a map S of all signed strings and
corresponding signatures generated by Sign. Verifications require
sending a message to the setup, which checks whether it did produce
the signed output through an “ideal” table lookup, rather than running
a real verification algorithm as specified by the signature scheme.
We still allow fetching a verification key for interface compatibility
with GPST

att , but any environment party that has obtained the relevant
verification algorithm and key from the adversary will not have any
guarantees of existential unforgeability.

When showing UC-emulation between two TEE setups, the simu-
lator can provide a modified version of these algorithms to convince
the environment that the ideal world TEE shares its runtime with
the real-world TEE. Take an adversary, for instance, that selects a
signature scheme Σ, and initialises a Gmod

att instance with closure
s(meas) = Σ.Sign(sk,meas), such that on a RESUME call, Gmod

att

applies s to the value produced by function S over the configuration of
the enclave ITI, the enclave measurement. On receiving algorithm s
from the adversary, the ideal-world simulator can derive a new signing
algorithm s′(meas) = s(R(meas))). R is a transformation on the
measurement that preserves all of its information, except that, if the
measurement contains a public commitment to the program executed
in the enclave (such as a hash of its source code), and the real-world
Gmod

att functionality is running code of type prog = (app, runtime) for
a specific runtime library, R replaces the commitment to enclave code

app with a commitment to (app, runtime). This means that attesta-
tions in the ideal world will look like attestations to (app, runtime),
despite Gmod

att only installing and executing app as part of its enclave.
Of course, app still needs access to the interface offered by the
runtime, but in the ideal world it directly accesses the idealised
features in the O set.

It is easy to show that GPST
att UC-emulates Gmod

att for the sets of
oracles and measurement function that correspond to GPST

att (which
we describe in Section IV-A), by constructing a simulator that selects
the exact signature scheme specified in GPST

att . Note that the opposite
direction Gmod

att UC-emulates GPST
att is more subtle. In fact, it is clear

that the statement can not hold for all possible signature schemes
provided by an adversary. Consider the null signature scheme where
the signing algorithm Sign(ssk,m) = 0λ; the signature scheme is
still valid under the definition of Gmod

att , but it allows the environment
to learn whether an enclave has produced a specific message, without
having to communicate with it (by simply querying the ideal func-
tionality for verification of an arbitrary measurement produced by
S). This is not possible in GPST

att . A minimum entropy requirement for
signatures provided by the adversary would therefore be necessary
(but not sufficient) for the other direction of the equivalence.

A recent work by Canetti et al. [24] shows, as a corollary of
the UCGS composition theorem, that if a global protocol G UC-
emulates G′ with respect to simulator S, then it is possible, in the
general case of any context protocol ρ, to replace any subroutine
call from ρ to G with a call to the combined subroutine of G′ and
S. This enables us to port any existing proofs that rely on GPST

att

(provided that the proof is valid under UCGS rather than GUC) into
our new model, by simply replacing GPST

att with the combination of
the Gmod

att instance with equivalent O,A oracles, and the simulator
that during initialisation chooses the precise GPST

att signature scheme
over the usual (idx, pid, prog, output) measurement produced by S.

IV. DEFINING A Gmod
att ZOO

We now provide the definition for several Gmod
att oracle instantia-

tions. As far as we are aware, our Gmod
att formulation can capture all

existing variants of GPST
att in the literature, as well as additional natural

extensions related to real-world TEE realisations and attacks.
Instantiating a shell for the functionality and adversarial oracles is a

required step for using a new Gmod
att variant, and we have made efforts

to write shells modularly so that they are easy to reuse. This does
not mean that we can directly apply clean-room UC composition, but
the structure of the shells makes it easy to mix and match them as
required to handle additional oracles. In particular, most shells are
structured around a loop that examines all instructions executed in
the enclave subroutine ITI. When the instruction matches a specific
oracle call, the shell shows how to implement it (in an ideal way).
Some shells (such as the one presented in Section IV-D), modify the
structure of ITIs created by the shell, but are still compatible with
the formulation of other shells.

We first highlight the basic structure of our shell construction,
which are shared across all instantiations. Intuitively, the shell acts
as a hypervisor for the virtual ITI running the enclave program,
interpreting each operation and dispatching external calls to the
appropriate functionalities.

The extended identity of the shell is defined as
(shO,A[prog], (eid||pid, “att”||idx)), where the PID is a concatenation
of the enclave identifier generated by Gmod

att and the PID of the
source machine which installed the enclave; the session SID is a
concatenation of string att and the session of the protocol under
which the enclave was installed. The enclave itself is a (virtual)
subroutine ITI with extended identity (prog, (eid, idx)), where the
party ID of the virtual ITI is the unique enclave identifier eid and
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the session is claimed session idx. The extended identity of the shell
includes the calling pid, as it might need to be aware of the calling
party for communicating with assisting functionalities; the virtual
ITI’s extended identity does not, as enclaves do not normally have
access to which party is executing them.

The shell is created by receiving message INSTALL from Gmod
att ,

after which it runs any necessary setup steps for the oracle function-
alities, and initialises the virtual ITI that will actually execute the
enclave program.

On input (RESUME, eid,inp), rather than passing on its arguments
to the virtual ITI’s input tape to execute program prog(inp) directly,
the shell enters a loop where for each step it observes the current
configuration of (prog, (eid, idx)), and each instruction i that would
be executed if it was activated with inp (we denote this as “step
through execution of (prog, (eid, idx)) on inp:”). Within the main
loop, a branch is defined for each type of instructions specified in the
set O. Each branch defines how the shell performs the computation
for a specific instruction, how to update the internal configuration of
the virtual ITI, and how to select the next instruction to execute. If an
instruction can be executed by any Interactive Turing Machine, the
shell activates the virtual ITI (prog, (eid, idx)) with input i and allows
it to execute it without modification (we say that such instructions are
part of the standard set Ostd). Additionally, the shell might contain
specific interfaces for processing adversarial messages, or perform
additional operations within its resume loop to allow modelling
current or future corruption.

Most shells include a special branch to process a return instruc-
tion. This will generally perform an external write request to Gmod

att

from the shell ITI, but might include additional behaviour depending
on the parametrisation of Gmod

att .
For the remainder of this work, we consider versions of Gmod

att that
use the same attestation signature function S as GPST

att i.e. anonymous
attestastions over (idx, eid, prog, output).

A. GPST
att

We begin by reformulating GPST
att in the language of Gmod

att . While
this is not made explicitly in the original work, GPST

att relies on a
number of implicit “features”:

• addressable instructions: enclave execution begins at arbitrary
instructions addressed through labels; in other words, the enclave
program defines some entrypoint as procedures that can be
called by the registered party that installed the enclave, along
with optional input arguments. On every execution, the enclave
returns some output with an associated attestation signature

• stateful resumes: each RESUME instruction is atomic, meaning
that the subroutine will execute perfectly without any possi-
bility for adversarial intervention. The state of the enclave is
maintained across each sequential RESUME execution, and the
adversary is not able to erase or otherwise tamper with it

• sample randomness: enclave programs are assumed to provide
a true source of randomness (of arbitrary lengths)

• unique enclave identifiers: a unique enclave ID is generated as
a cryptographic nonce during enclave installation. Enclave IDs
should be unique for all enclaves, regardless of which party
installed them

• attestation verification: attestation signatures can be verified
from within the enclave program, without having to trust the
external OS code to provide the attestation verification key as
an input.

The first three notions are usually considered standard for In-
teractive Turing Machines. We therefore define the standard oracle
set Ostd to capture all ITI instructions that are standard for local

computation. Although the operation of an Interactive Turing Ma-
chine are much more abstract, this can be thought of as the set
of microarchitectural instruction provided by the processing unit
executing the ITI. Attestation verification from within an enclave
is explicitly not allowed in the GPST

att paper [68, page 23], but we
include it because it is required by many GPST

att -hybrid protocols in
the literature. It could be argued that adding this capability makes the
functionality less composable than intended, due to the inability to
swap the fixed signature scheme with a call to an attestation service as
provided by Intel for SGX. Gmod

att resolves this by moving verification
to an abstract check in the functionality rather than verification of a
concrete signature scheme.

We also note that the GPST
att model forbids the enclave to have

access to the UC PID for the party that is running it. While this is
not explicitly stated, enclave programs with PID access could assist
the party to establish a secure channel with another enclave-enabled
party [68, Section 3.3], negating the need for doing this through a
protocol.

As for the adversarial powers, even in the scenario where a host
party is fully corrupted, adversarial interactions are limited when it
comes to the PST enclaves. For any fully corrupted party, a GPST

att

adversary is able to install programs with arbitrary sessions identifiers
under that host, honestly execute an enclave, and verify attestation
signatures. These behaviours are all captured by default in the Gmod

att

functionality, so no additional attack oracle is required.
For capturing GPST

att under Gmod
att , we thus define O to be the

union of Ostd and {AttestVerif}, and A = {}. We now give an
implementation for a UC shell that models enclave access to the
oracle sets as defined.

shO,A[prog]

The shell is defined for O = Ostd ∪ {AttestVerif} and A = {}
The extended identity of the shell is defined as
(shO,A[prog], (eid||pid, “att”||idx))

On message INSTALL from Gmod
att :

if virtual ITI (prog, (eid, idx)) does not exist then create

On message inp from Gmod
att :

step through execution of (prog, (eid, idx)) on inp:
for instruction i do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i = AttestVerif(σ,m) then
send (VERIFY, σ,m) to Gmod

att and receive v

write v to subroutine output of virtual ITI
else if i = (return v) then

return v with source (shO,A[prog], (eid||pid, “att”||idx))

The behaviour of this shell within the RESUME loop is fairly
simple: most program instructions it considers will be in the standard
oracle set Ostd. In this case, the shell activates (prog, (eid, idx)) with
input i; as this is a simple instruction that any ITI can compute, the
shell does not need to modify its behaviour, and it will allow the
virtual ITI to execute it (updating its work tape) and immediately
halt. The activation token now returns to the shell, which can select
the next instruction i from the updated configuration.

When the instruction is of type AttestVerif(·), the shell does not
activate (prog, (eid, idx)), but rather sends a message to Gmod

att to
verify the attestation signature. Once it receives a boolean response,
it writes it to the subroutine output tape of (prog, (eid, idx)), and
advances the location of the tape head on its work tape. This
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essentially convinces the enclave virtual ITI that on its last activation
it called the AttestVerif subroutine, and has just received its return
value. We use this mechanism extensively in the rest of the section,
as it allows modelling feature oracles so that the enclave program is
oblivious of how they are computed.

Finally, when the next instruction i for the enclave is to return
some value, the shell forwards it to Gmod

att , overwriting the sender-id
of the outgoing message with its own extended identity. The shell thus
yields activation back to Gmod

att , which proceeds with generating the
attestation by calling S on the configuration of (eid||pid, “att”||idx).

B. Accessing a Clock

A natural extension of GPST
att , which the original paper uses to

realise fair MPC [68, Section 7.2], is to give the enclave access to a
clock. The protocol is proven in a synchronous setting, where each
party is activated in a round-robin fashion and is therefore aware
of the round number. Enclaves are also equipped with round aware
capabilities, even if they are not activated every round.

We now show how to realise a new Gmod
att functionality that supports

feature oracles O = Ostd ∪ {ReadRound, IncRound} by giving it
access to a local functionality that any protocol participant is allowed
to interact with (both from within the enclave and outwith). Whenever
the enclave program tries to execute an instruction interacting with
the clock, the shell intervenes to forward the message to an ideal
functionality, and inserts the value back into the enclave virtual ITI
through the subroutine output tape.

shO,A[prog]

The shell is defined for O = Ostd ∪ {ReadRound, IncRound}
and A = {}
The extended identity of the shell is defined as
(shO,A[prog], (eid||pid, “att”||idx))

On message INSTALL from Gmod
att :

if virtual ITI (prog, (eid, idx)) does not exist then create
if ideal functionality (Fclock, (⊥, idx)) does not exist then create

send register to Fclock on behalf of pid

On message inp from Gmod
att :

step through execution of (prog, (eid, idx)) on inp:
for instruction i do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i = ReadRound then
send Read to Fclock, (⊥, idx)) through pid and receive v

write v to subroutine output of virtual ITI
else if i = IncRound then

send Inc to Fclock, (⊥, idx)) through pid and receive v

write v to subroutine output of virtual ITI
else if i =(return v) then

return v with source (prog, (eid, idx))

The INSTALL subroutine of this shell installs the virtual ITI for a
new enclave, and ensures that an instance of the ideal functionality for
the clock exists in this session (with a standard PID ⊥). It then sends
a registration message for the enclave to Fclock. For enclave RESUME

calls, the structure of the shell execution loop is the same as in the
shell from last section, with the instructions executed by the enclave
for either ReadRound, IncRound oracle calls forwarded to the ideal
functionality, and its return values returned to the enclave in the same
way that we added the return value for an attestation verification call

in the previous section. We now describe the behaviour of the clock
functionality

Functionality Fclock

The identity of the functionality is (⊥, sidF )

On message REGISTER from P(pid, sid):
if t = {} then r ← 0

if sid = sidF then
t[pid]← ⊥

On message READ:
return r

On message INC from P(pid, sid):
if sid = sidF then t[pid]← ⊤

if all values in t = ⊤ then
r++
reset all values in t to ⊥

return r

Fclock provides a per-session round counter functionality. A round
is increased when all registered parties consent to. Internally, it stores
the round counter as a monotonically increasing integer r, and records
whether a party has agreed to increase the round via dictionary t,
which records a boolean value for each party. Once a party sends
an INC message, they are not allowed to withdraw. After the last
registered party agrees to increase, r is incremented, and all values
in t are set to false. A new party can register at any point, and the
value of the round counter is publicly accessible.

C. Interrupting computation

We now model a version of Gmod
att that allows an enclave program

to explicitly control which objects in their memory can be saved
to confidential persistent storage. An enclave is able to preserve
state across enclave executions by storing arbitrary bitstrings in an
encrypted form, and later fetch them back into memory when next
resumed. Only the original enclave itself is able to access any data it
stored through the oracle call; the adversary only learns the size of
what was stored. In Intel SGX, these features are known as sealing
and unsealing.

As the enclave now interacts with the (untrusted) memory of the
host, the adversary will be notified of any store or fetch attempt, and
will have a chance to censor them. Given that the program integrity
relies on these external oracle calls completing, this is equivalent to
the adversary aborting the enclave program. We therefore provide
the adversary with oracles A = {Abort,Continue}. The adversary
can stop a memory access oracle from completing, but can not erase
or leak external memory that was already successfully stored. This
example oracle combination for Gmod

att is for illustrative purposes; a
more realistic oracle definition would both allow memory operations
return to the enclave with an error, allowing the program code to
handle the failure, and further allow the adversary to permanently
erase external memory.

We define the following shell:

shO,A[prog]

The shell is defined for O = Ostd ∪ {Store, Fetch} and
A = {Abort,Continue}
The extended identity of the shell is defined as
(shO,A[prog], (eid||pid, “att”||idx))
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State variables Description
mem← ϵ Persistent memory storage for the en-

clave

On message INSTALL from Gmod
att :

if virtual ITI (prog, (eid, idx)) does not exist then create
halt← ⊥

On message inp from Gmod
att :

if halt = ⊤ then abort
step through execution of (prog, (eid, idx)) on inp:
for instruction i do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i ∈ {Store(s),Fetch} then
if pid is corrupted then

halt← ⊤
if QUERYADV(i) = ⊥ then return

if i = Store(s) then
mem← s

else if i = Fetch then
write mem to subroutine output of (prog, (eid, idx))

else if i = (return v) then
return v with source (shO,A[prog], (eid||pid, “att”||idx))

let QUERYADV(m):
if m = Store(s) then

send (STORE, |s|) to A and await
else if m = Fetch then

send FETCH to A and await
while next message m′ on the input tape is not in A do

ignore
if m′ = Abort then

erase work tape of virtual ITI and return ⊥
else if m′ = Continue then

halt← ⊥
return ⊤

The execution loop of the above includes adversarial interactions
as part of the enclave operation. In particular, when an enclave run
by a corrupted party tries to interact with external memory by calling
a Store or Fetch instruction, the shell sets flag halt ← ⊤ and
triggers procedure QUERYADV, which notifies the adversary, and
relinquishes the activation token. On the shell’s next activation, if
it finds a message from the set A, it resumes execution from where
it last stopped. Otherwise, on any other input, it will abort (as long
as flag halt = ⊤): storing and fetching are blocking.

The adversary A only learns that enclave eid run by party pid in
session idx is either trying to read from external storage, or that is
writing some data and its size. A replies by sending a message of
type (RESUME, eid, ϵ, a ∈ A) from corrupted party pid to Gmod

att . If
a = Continue, the shell continues executing from where it left off,
storing bitstring s “ideally” (within its own internal variable mem).
Otherwise, if a = Abort, the enclave crashes, losing all memory
stored within the virtual ITI’s work tape. An Abort attack is not final:
depending on the code of prog, the enclave can be resumed later on,
and recover some partial state from the last value successfully stored
to mem, if any.

D. Rollback Attacks

While the previous version of Gmod
att describes an adversary that is

able to stop an enclave from storing any data to an external medium,
the integrity and freshness of a successfully stored message is always
guaranteed by a successful Fetch. We now explore a model with
a slightly stronger adversary, who controls the storage medium and
can overwrite the external memory location. Despite this, the enclave

will not accept arbitrary messages, but only ones that were produced
during a legitimate Store operation.

Bhatotia et al. [10] introduce Grollback
att , a new variant of Gatt that

allows state continuity attacks. We now want to provide an equivalent
attack as a Gmod

att adversarial oracle. The Grollback
att functionality tracks

enclave state updates in a tree-like structure, and allows the adversary
to specify an index for an arbitrary node in the tree to resume enclave
execution from a specific snapshot. The tree allows the adversary to
fork the enclave at an arbitrary state and maintain multiple copies
that can progress independently.

Since Gmod
att no longer tracks the state of an enclave in a table

T , an instance of Gmod
att that supports Rollback or Fork instructions

in A will require an alternative mechanism to maintain the state.
We implement this through an enclave shell that executes each
RESUME operation as a distinct virtual ITI. After the RESUME

returns, the shell instantiates a new ITI by copying the last active
configuration, and notifies the adversary of a unique pointer for that
execution through an ITER message. When the adversary calls for a
Rollback or Forking attack with a specific pointer, the shell can run
the provided input on with adequately stale state by activating the
older ITI that the pointer corresponds to.

shO,A[prog]

The shell is defined for O = Ostd and A = {Rollback,Fork}
The extended identity of the shell is defined as
(shO,A[prog], (eid||pid, “att”||idx))

On message INSTALL from Gmod
att :

generate nonce c
$← {0, 1}λ

create virtual ITIs (prog, (eid||∅, idx)), (prog, (eid||c, idx))
if pid is corrupted then send (ITER, ∅, c) to A

On message inp from Gmod
att :

let viti← virtual ITI (prog, (eid||c, idx))
execute inp on viti

generate nonce c′
$← {0, 1}λ

create new virtual ITI (prog, (eid||c′, idx))
copy work tape of viti into (prog, (eid||c′, idx))
if pid is corrupted then send (ITER, c, c′) to A
c← c′

On message (ROLLBACK, (i, inp)) from Gmod
att :

run (out, (FORK, i, i′))← FORK(i, inp)
c← i′

return (out, (ROLLBACK, i, i′))

On message (FORK, (i, inp)) from Gmod
att :

let viti← virtual ITI (prog, (eid||i, idx))
if viti exists then

out← ϵ
if inp ̸= ϵ then

execute inp on viti and read subroutine output into out

generate nonce i′
$← {0, 1}λ

create new virtual ITI (prog, (eid||i′, idx))
copy work tape of viti to (prog, (eid||i′, idx))
return (out, (FORK, i, i′))

The structure of each subroutine’s extended identity involves append-
ing a unique pointer nonce to the enclave id (the initial state is
denoted by special pointer ∅). Variable c holds the pointer to the latest
snapshot of the enclave accessible by a honest RESUME command.
After each honest execution, the enclave creates a new UC subroutine
by generating a new id and copies the execution tape of the subroutine
c points to into this new copy, which is where the new instructions
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will be executed. The adversary always learn the pointer generated
for each iteration. If the adversary conducts a Rollback (by sending
message (RESUME, eid, inp,Rollback) from corrupted party pid to
Gmod

att ), c is overwritten with the pointer for an ITI whose memory
state is copied from the one the adversary provided a pointer for. In
a fork, c is not affected, but the adversary learns the new pointer
i′ it can access. In both cases, the shell returns to Gmod

att with the
enclave output (if the attack also contained an instruction to execute)
and auxiliary information on the new ITI pointer. Since the attack
was successful, Gmod

att waits for the adversary to issue a CONTINUE

message to finalise the return value and produce attestation (otherwise
the RESUME call for Gmod

att never terminates).
It is clear from our formulation that a rollback is just a special

case of a fork, where one of the two fork branches is not used again
(in fact, on any ROLLBACK message, the shell executes the FORK

procedure with the appropriate parameters). Distinguishing the two
cases is primarily useful in the setting of a mobile adversary. While
corrupted, a party can always choose the index for an enclave copy
it wants to execute through the FORK command. When the party is
no longer corrupted, however, the only copy of the enclave that can
be executed is the one at index c. The adversary can thus use their
last ROLLBACK to force the post-compromise party to execute the
enclave from an arbitrary state, essentially erasing the access to any
state that might have succeeded it.

E. Transparent enclaves

As we have discussed in the Background section II-B, some
previous works in the literature have extended the GPST

att model
to capture additional types of side-channel attacks. We now adapt
those extensions into Gmod

att shells. Tramèr et al. [78] provide a
(local) UC functionality for attested execution with no confidentiality
guarantees, later extended in [68, Section 8] to the global setting.
Enclaves in this Transparent Enclave setting suffer from leakage of
all internal memory, except for the master signing key for attestation.
This allows integrating an enclave with such a leakage in protocols
that only require the integrity provided by enclaves. The modeling
of transparent enclave is a simple extension over that of GPST

att :
the output of each resume call is followed by the leakage of the
random bits sampled by the enclave program. Knowing the inputs,
randomness and the code of the program is sufficient to reconstruct its
operation and internal memory for any randomised program, whereas
deterministic programs are inherently transparent by default, since the
adversary knows the code of the enclave when they install it.

In the language of Gmod
att , we state that for any attested functionality

with RandomSample ∈ O (and therefore any functionality where
Ostd ⊂ O), we can realise a transparent version by including
TranspLeak in the adversarial oracles A. We recover the modelling
from [78] and [68, Section 8.1] by letting the shell leak produce
the entirety of the virtual ITI random tape to the adversary after
each execution. On installation, enclaves start in the default non-
transparent state, but once the adversary issues the TranspLeak
attack, all further values of the tape are leaked.

shO,A[prog]

The shell is defined for O = Ostd and A = {TranspLeak}
The extended identity of the shell is defined as
(shO,A[prog], (eid||pid, “att”||idx))

On message INSTALL from Gmod
att :

if virtual ITI (prog, (eid, idx)) does not exist, create
transparent← ⊥

On message inp from Gmod
att :

step through execution of (prog, (eid, idx)) on inp:
for instruction i do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i =(return v) then
if transparent = ⊤ ∧ pid is corrupted then

send (LEAK, random tape of (prog, (eid, idx))) to A
return v with source (shO,A[prog], (eid||pid, “att”||idx))

On message (TRANSPLEAK, inp) from Gmod
att :

set transparent← ⊤
return random tape of (prog, (eid, idx))

A stronger type of leakage would leak the entirety of the virtual
ITI’s work tape. This would allow the adversary to recover any shared
secret that predate the corruption attack. This can be implemented by
simply appending the work tape to the LEAK message, or allow the
adversary to apply standard UC passive corruption to the virtual ITI.

Almost-transparent and Semi-honest enclaves: Dörre, Mechler,
and Müller-Quade [36] introduce two relaxations over the Gatt

functionality that aim to capture a middle ground between the side-
channel free GPST

att and transparent enclaves. Their models provides
enclaves with access (in our language) to feature oracles for secure
key exchange and symmetric encryption.

We now provide in Figure 4 an implementation for a shell that
implement these cryptographic functions by outsourcing them to local
functionality Fcrypto as defined by Küsters and Rausch [50].

Most of the oracle calls in the shell are simply forwarded from the
enclave to the ideal functionality. KeyExchange is more interesting,
as it is our first oracle call that involves direct communication
between two enclaves. We implement a “synchronous” key exchange,
in that we expect both enclaves to call the respective KeyExchange
oracle to establish a channel. We do not provide a mechanism for
enclaves to discover enclave IDs, and assume that they are provided
by one of the other protocol inputs. The first enclave to call the oracle
will stop accepting any further activations until the key exchange
protocol completes (we refer to this enclave as the initiator). If the
other enclave’s shell receives a KEYEX message before its enclave
has reached the KeyExchange call, it will store the received share
in dictionary E to be retrieved at a later point. Once both parties have
communicated their shares to each other, the shared key is computed
by the Fcrypto functionality. Rather than returning it directly to the two
enclaves, our shell uses it to derive a new symmetric key, which is
what is obtained by both parties as the return value of KeyExchange
(this step is necessary because Fcrypto does not allow using keys of
type dh-key for symmetric operations). If either party running the
enclave is corrupted, the adversary can learn that the key exchange is
taking place and issue a HALT message. Additionally, the adversary
might learn any other information leaked by Fcrypto and its leakage
functions.

The addition of these oracles does not provide the enclave with
meaningful new capabilities on its own, since an enclave can imple-
ment these operations as part of a library with access to randomness
and attestation verification. However, it becomes significant once it
is combined with the TranspLeak attack: by executing the secure
operations “ideally” through oracles, the randomness needed to
compute them is not leaked as part of the transparent attack. Dörre,
Mechler, and Müller-Quade [36] define an enclave with access to both
{KeyExchange, SKEGen, SKEEnc, SKEDec,ReleaseKey} ⊂ O
and TranspLeak ∈ A to be a almost-transparent enclave, and show
that it is possible to realise one-sided PSI between two parties running
almost-transparent enclaves even if one of the parties is corrupted.
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shO,A[prog]

The shell is defined for O = Ostd ∪ {KeyExchange,SKEGen, SKEEnc, SKEDec,ReleaseKey} and A = {TranspLeak,Halt}
The extended identity of the shell is defined as (shO,A[prog], (eid||pid, “att”||idx))

State variables Description
E ← {} Stores Group elements received by other enclaves

On message INSTALL from Gmod
att :

if virtual ITI (prog, (eid, idx)) does not exist, create
if ideal functionality (Fcrypto, (idx,⊥)) does not exist, create
send GETDHGROUP to Fcrypto and receive (DHGROUP, G, n, g)

send (DHGROUP, G, n, g) to A
On message inp from Gmod

att :
if halt = ⊤ then abort
step through execution of (prog, (eid, idx)) on inp:
for instruction i do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i = KeyExchange(pid′, eid′) then
set halt← ⊤
send GENEXP to Fcrypto and receive (EXPOPOINTER, ptre, ge)
if pid is corrupted then

query A with (KEYEXTO, pid′, eid′) and receive the reply continue

if E[pid′, eid′] = ⊥ then
// no stored keyshare for eid′, we are the initiatior
send (KEYEX, ge) to (shO,A[prog], (eid

′||pid′, “att”||idx)) and await
while next message on the input tape is not (KEYEX,pid′, eid′, h) do ignore
send (BLOCKGROUPELEMENT, h) to Fcrypto and receive OK

else
// eid′ was the key exchange initiatior, we already have h

h← E[pid′, eid′]
send (GENDHKEY, ptre, h) to Fcrypto and receive (POINTER, ptrdhk)
send (DERIVE, ptrdhk,unauth-key) to Fcrypto and receive (POINTER, ptrsk)
set halt← ⊥
write ptrsk to subroutine output of virtual ITI (prog, (eid, idx))

else if i = SKEGen then
send (NEW,unauth-key) to Fcrypto and receive (POINTER, ptr)
write ptr to subroutine output of virtual ITI (prog, (eid, idx))

else if i = SKEEnc(ptr,m) then
send (ENC, ptr,m) to Fcrypto and receive (CIPHERTEXT, hdl)
write hdl to subroutine output of virtual ITI (prog, (eid, idx))

else if i = SKEDec(hdl, ct) then
send (DEC, ptr, ct) to Fcrypto and receive (PLAINTEXT,m)

write m to subroutine output of virtual ITI (prog, (eid, idx))
else if i = ReleaseKey(ptr) then

send (RETRIEVE, ptr) to Fcrypto and receive (KEY, k)
write k to subroutine output of virtual ITI (prog, (eid, idx))

else if i =(return v) then
return v with source (shO,A[prog], (eid||pid, “att”||idx))

On message HALT from Gmod
att :

set halt← ⊤
return

On message (KEYEX, h) from (shO,A[prog], (eid
′||pid′,“att”||idx)):

if halt = ⊥ then
// we are not waiting for key exchange to complete;
// eid′ is the initiator
send (BLOCKGROUPELEMENT, h) to Fcrypto and receive OK
E[pid′, eid′]← h

// if the enclave is halted, eid is the initiator; on message KEYEX, we exit the loop to
complete the key exchange

Fig. 4. Gmod
att shell implementing key exchange and symmetric encryption feature oracles
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Constructing a shell that realises the almost-transparent enclave can
be achieved through a combination of the previous two shells, with
the TranspLeak additionally leaking the state of the work tape of
the program before the command was executed, and the return value
of all secure operation oracles. Leaking these values is required
for compatibility with Transparent Enclaves, since the randomness
leakage is not sufficient to reconstruct deterministic computation that
includes values the enclave obtained through the secure operations.

There are some minor differences between our model and the one
in [36]: in their version of almost-transparent enclaves, once the
initiatior issues a KEYEXCHANGE command, the receiving enclave
is immediately notified and provided the symmetric key. Therefore,
the initiator program needs to be run first (a natural constraint in
their protocol). An additional difference from their model is our use
of the idealised Fcrypto for all operations, rather than using a mix of
ideal key exchange and concrete symmetric operations in their model.
Therefore, we have to do an additional step to derive a symmetric
key, rather than using the shared DH key directly.

The second relaxation, semi-honest enclaves, captures an adversar-
ial manufacturer who is able to adaptively break into enclaves and
extract historical transaction data. Note that in this setting, the party
running the enclave does not need to be corrupted for the leakage
to occur i.e. the adversary can cause leakage for any enclave run
by a honest party. Despite the extreme vulnerability of this type of
enclave to an adversarial manufacturer, it is still useful to construct
some classes of private set intersection (distinct from the ones in the
previous setting).

The shell for a Semi-honest enclave is defined as follows

shO,A[prog]

The shell is defined for O = Ostd and A = {CompleteLeak}
The extended identity of the shell is defined as
(shO,A[prog], (eid||pid, “att”||idx))

On message INSTALL from Gmod
att :

if virtual ITI (prog, (eid, idx)) does not exist, create
rec← []

On message (RESUME, inp) from Gmod
att :

step through execution of (prog, (eid, idx)) on inp:
for instruction i do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i =(return v) then
rec← rec ∥ (inp, args, virtual ITI work tape)
return v with source (shO,A[prog], (eid||pid, “att”||idx))

On message COMPLETELEAK from A:
return rec

The definition of the shell is quite simple, as it merely records the
output of each resume execution and returns it to the adversary when
it issues the CompleteLeak command. The message is sent directly
to the shell rather than through a corrupted resume call to represent
that it doesn’t have to be issued by the calling party.

F. Shared Registry

We now give a shell to implement a single-writer multi-reader
registry functionality for any subset of enclaves. The registry contains
a linearisable list of values that any enclave in the set can read, but
only one enclave can write into (in this case, the first enclave to
complete a write). We give the adversary the ability to temporarily

block or permanently censor corrupted parties, such that they can not
access the registry for reading. If the number of censored replicas
is greater than a certain quorum Q (a percentage of the registered
parties) the registry is no longer able to guarantee termination of
read/write operation, and will produce an error instead. If the writing
enclave is censored, all subsequent write calls will fail but read calls
from other enclaves can continue. The registry can be thought of
as a shared single-writer ledger whose storage is distributed between
enclaves, and is synchronised through a consensus mechanism; if less
than Q of the total enclaves return a value, there are not enough live
enclaves to establish consensus and thus the protocol terminates.

We define the following shell, where the adversarial oracle
CensorQ is parameterised by Q.

shO,A[prog]

The shell is defined for O = Ostd ∪ {Read,Write} and
A = {Block,CensorQ}
The extended identity of the shell is defined as
(shO,A[prog], (eid||pid, “att”||idx))

On message INSTALL from Gmod
att :

j ← ⊥
if virtual ITI (prog, (eid, idx)) does not exist, create
if ideal functionality (RegCoord[Q], (idx,⊥)) does not exist,
create

On message inp from Gmod
att :

let viti← virtual ITI (prog, (eid, idx))
step through execution of viti on inp:
for instruction i do

if i ∈ Ostd then
allow viti to execute i

else if i = {Read, (Write, v)} then
if j = ⊥ then

send JOIN to RegCoord[Q] on behalf of viti
j ← ⊤

send i to RegCoord[Q] through viti and receive v
write v to subroutine output of virtual ITI

else if i =(return v) then
return v with source (shO,A[prog], (eid||pid, “att”||idx))

On message (CENSOR, ϵ) from Gmod
att :

send (CENSOR, pid) to RegCoord[Q]

Functionality RegCoord[Q]

State variables Description
P ← [] List of enclaves participating in the reg-

istry
C ← [] List of censored enclaves
V ← [] List of registry values over time
w ← ⊥ identity of writer enclave

On message JOIN from (prog, (eid, idx)):
P ← P ∪ (prog, (eid, idx))
send (JOIN, (prog, (eid, idx))) to A

On message (cmd, v) from (prog, (eid, idx)):
if eid is running on a corrupted party then

query A with (READ, (prog, (eid, idx)))
receive b from A

if b ̸= ⊤ ∧ |C|
|P | < Q then

if cmd=WRITE then
if w = ⊥ then w ← P
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if w ̸= P ∨ P ∈ C then return Fail
V ← V ∥ v

send (CMD, V, (prog, (eid, idx))) to A
return V

else
return Fail

On message HEALTHCHECK from (prog, (eid, idx)):
return |P |, |C|

On message (CENSOR, (prog, (eid, idx))) from Gmod
att :

if eid is running on a corrupted enclave then
C ← C ∥ (prog, (eid, idx))

The above functionality allows any enclave shell to join the protocol
as a registry party. The first shell who writes to the registry is locked
in as w, the writer. Thereafter, only w can issue a new WRITE, which
appends the value to the end of the registry, and all other registered
parties receive the entirety of the registry on every READ1 On any
read and write, a corrupted party will query the adversary on whether
they are allowed to proceed. The adversary can also permanently
block an enclave by issuing a Censor message. If too many parties
have been censored (i.e. the ratio between the number of censored
parties and total registered parties is greater than Q), it is impossible
for the registry to guarantee that the registry value is still safe, and
the functionality fails.

We assume the functionality has access to some directory ITI that
records whether enclaves are run by corrupted parties.

V. RELATIONSHIPS BETWEEN Gmod
att VARIANTS

Having defined examples of Gmod
att instantiations with different sets

O,A, we are now interested in exploring how they relate to each
other.

Given two versions of Gmod
att which sign over the same measurement

functions, a “weaker” setup Gatt that has either fewer features or more
attacks can UC-emulate the stronger one G′

att through a dedicated
“wrapper” protocol that reproduces the missing feature oracle, or
mitigate the attacks offered by the additional adversarial oracle.
Depending on the interfaces it is trying to bridge, an oracle or
protection mechanism can be implemented by just running some
additional computation within the enclave itself, by calling out to
a library running within an assisting enclave on the same party, or
by conducting an interactive protocol with multiple remote parties.
We can represent these type of runtime behavior as a UC protocol.

We now sketch how to design such a protocol for any two Gatt, G
′
att

setups. In this section, we show how to remove adversarial interfaces
that exist in Gatt to realise the stronger G′

att in a simplified setting,
where the protection mechanism can be implemented as additional
runtime code in the target enclave itself. In Appendix B, we consider
both the more general case where the protocol is distributed between
different enclaves or even between different parties, as well as
the equivalent protocol for adding a new feature to a Gmod

att setup
Our treatment aims to be generic and provide a universal compiler
protocol, but we can not prove security in this general setting, as it
might not be possible to create such a protocol for all Gmod

att pairings.
Instead, we give conjectures preconditioned on the existence of a
secondary protocol that, for a Gmod

att setup with specific parameters,
provides a mechanism to add the feature or removing the attack
from the starting setup (i.e. making the shell behaviour between two
Gmod

att instances indistinguishable). We also provide a matching proof
template that can be instantiated in the specific cases considered (as
we do later in this section).

1The functionality could be made more efficient by keeping track of what
values have been read by each group member, and only downloading the
difference on a read.

Given two (modular) implementations of attested executions
Gatt, G

′
att with adversarial interfaces A,A′ respectively, and shared O

and S, we define a wrapper protocolW that uses Gatt as a subroutine
and UC-realizes G′

att. W simply forwards all messages to Gatt, with
the exception of INSTALL commands, where it replaces the argument
prog with WA[prog]. Wrapper enclave WA[·] protects the execution
of prog by running the protocol that defends an enclave against
attacks A = A\A′, and must be defined for the specific combination
of O, A, and S. The wrapper enclave will run, on a RESUME call,
any combination of the prog code with additional local computation
and calls to oracles in O, provided that the distribution of outputs of
WA[prog] under Gatt is equal to that of prog under G′

att.
The protocol W only protects against the attacks in A; all other

attacks in A′ are still allowable in both worlds.

Protocol W[λ, reg,O,A′, S,WA[·]]

A is defined as A ∪ A′

On message (m ∈ {INITIALISE,GETPK,VERIFY,RESUME}, args):
send (m,args) to Gmod

att [λ, reg,O,A, S] and forward response
On message (INSTALL, idx, prog):

if prog = WA[prog′] then
send (INSTALL, idx, prog) to Gmod

att [λ, reg,O,A,S]
else

send (INSTALL, idx,WA[prog′]) to Gmod
att [λ, reg,O,A, S]

forward response

We now provide a conjecture that W in the presence of Gatt

is sufficient to securely realise G′
att.Without a precise definition of

which attack W is trying to defend against (based on the definition
of WA[·] for the specific O,A sets), it is difficult to provide a proof
(which is why we do not give a generic theorem). Instead, we will
provide some guidelines on how a simulator for theorems that are
special instances of this conjecture might be structured.

Conjecture 1

Let Gatt = Gmod
att [λ, reg,O,A, S] and G′

att = Gmod
att [λ, reg,O,A′, S]

such that A \ A′ = A. For any enclave wrapper WA[·] which
implements the difference in behaviour between the shells shO,A[·]
and shO,A′ [·], protocolW[λ, reg,O,A, S,WA[·]] in the presence of
Gatt UC-emulates G′

att

We give a graphical representation of the UC-emulation statement
in Figure 5. The simulator begins by observing, during the global
functionality initialisation phase, the signature algorithm s chosen by
the environment through the dummy adversary, and provides G′

att

with a new algorithm s′ which uses s to sign the transformation
F (meas). F () takes the measurement string produced by S that
contains an identifier for program prog, and replaces it with an
identifier for WA[prog], as discussed in Section III. Once G′

att has
been initialised, the simulator simply blocks the installation of any
unwrapped programs from protocol parties, and replaces installations
of wrapped programs with the corresponding unwrapped program
in G′

att. If the (local) adversary attempts to install an unwrapped
program to Gatt directly, the simulator can run the program “in its
head” without going through G′

att, and use the algorithm s provided
by the dummy adversary for the environment to produce plausible
attestation signatures for the unwrapped code.

The real and ideal world are indistinguishable due to the inability
of the adversary to perform attacks in A, and from all attestation
signatures containing references to the wrapped version of a program
(regardless of whether it is really wrapped or not). Since honest
parties in W do not install any unwrapped program, and no external
session will have direct access to Gatt since it is instantiated as a
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Install Install 

Install 

UC-emulates

Fig. 5. Protocol W can add a shell to GO,A,S
att enclaves to UC-emulate the behaviour of GO,A′,S

att by blocking any attacks in set A = A′ \ A

W subroutine, the only party to directly install unwrapped programs
on a Gmod

att functionality will be the corrupted parties, whose return
values to the environment is controlled by the simulator and can thus
be replaced by the simulated execution described above. Obtaining a
simulated signature does not provide the environment with additional
distinguishing powers, since they would not verify through either
world’s Gmod

att verification interface, but look like genuine signatures
to environment when running the local verification algorithm that
corresponds to s.

We believe our simulation template to be sufficient to prove
security for most natural comparisons of TEE setups. However,
depending on the nature of the programs installed, the wrapper
code, or the shared oracles between the two setups, a different
simulation strategy might be needed. For example, if the adversary
is able to directly observe (through an oracle) the source code
of an enclave while it is executing, the simulation will not work.
It might be possible for some of these cases where our simula-
tion strategy does not work to add some backdoor code in the
WI [·] description to give the simulator some additional powers (see
Bhatotia et al. [10] and Pass, Shi, and Tramèr [69]).

Before showing a concrete instantiation of the conjecture
that can be shown secure using this simulator template, we
first remark that the composition theorem holds for all possi-
ble combinations of Gatt, G

′
att (a non-trivial statement according

to Badertscher, Hesse, and Zikas [4]).

Theorem 1

Let Gatt, G
′
att,W be any Gmod

att setups and a wrapper protocol such
that Conjecture 1 holds. For any protocol ρ in the presence of G′

att

that UC-emulates F in the presence of G′
att, ρ in the presence ofW

UC-emulates F in the presence ofW .

The theorem holds because the adversarial interface is smaller in
the ideal world, so there is no additional attack used by the ρ to

F simulator which would no longer be available by replacing the
setup with the protocol. This is the inverse scenario from what [4]
are concerned with, where the real world global protocol includes
fewer attacks that the ideal world global functionality. Therefore, the
theorem holds due to the composition theorem of [4, Theorem 3.10],
as the ρ to F simulator is W \ A′-agnostic (i.e. the simulator does
not interact with W except for using adversarial interfaces in A′ -
that is, everything except for A). This is true because A is not a
valid adversarial interface in G′

att. Therefore, if simulator of the pre-
condition is able to simulate the protocol without using A, the same
simulator will equally apply to the statement where G′

att has been
replaced with W .

A. Rollback protection

We now outline our example instantiation of Conjecture 1 that
addresses the rollback attack techniques described in [10] and Sec-
tion IV-D by relying on the non-volatile storage feature of Sec-
tion IV-C to realise a record-then-execute trusted state digest (based
on a well known observation in the literature [64, 67]). Although
this protocol equally applies to the related class of forking attacks,
we do not explicitly address them in this section for simplicity.
More specifically, we present the simple wrapper protocol W , which
removes the Rollback interface from the hybrid attestation function-
ality Gatt, whose set A includes Abort. To construct the protocol,
we require our target enclave functionality Gatt to support the trusted
Store,Fetch interfaces described in Section IV-C, as well as an
oracle Meas, which returns a digest (such as a hash) over the state
of the enclave’s virtual ITI.

The intuition for the protocol is that for every instruction to install
an enclave with code prog, it can install an external wrapper enclave
with code WRollback[prog] instead. The wrapper will store the digest
of the latest copy of the internal enclave measurement in persistent
storage at the end of every RESUME. When enclave execution starts,
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the wrapper can fetch the stored measurement digest and compare it
with the measurement for the current state as returned by Meas. If
the two states match, the enclave can be safely executed; otherwise,
the state must have been tampered with, and the function aborts.
We denote this sequence of operations as procedure MEASEXEC. If
every resume operation uses MEASEXEC, the adversary is not able
to execute a rollback attack, but will effectively abort the enclave.
Defining a rollback protection protocol by relying on the usage of
safe memory might seem like a circular definition - if the enclave
has access to trustworthy Store,Fetch oracles, why not just store the
entirety of memory using this interface? We believe that the current
setting is still valuable, as it minimises the size of data stored in
trusted memory, but more importantly provides a clear example of
our theorem for expository purposes. Note that, there exist several
protocols that claim to resolve rollback attacks without access to
trusted storage (for example [1, 11, 34, 47, 60, 64, 81]). We leave
the formalisation of such a protocol to remove the adversarial rollback
interface as future work.

Shell WRollback[prog]

The identity of the shell is (eid ∥ c, idx)
The parent shell extended identity is (shO,A[W

Rollback[prog]],
(eid||pid, “att”||idx)) for {Fetch, Store,Meas} ⊂ O and
{Abort,Rollback} ⊂ A
On message INIT from (eid||pid,“att”||idx):

install virtual ITI (prog, (eid||c||“wrapped”, idx))
let m← Meas()

Store(m)

On message inp from (eid||pid,“att”||idx):
v ←MEASEXEC(inp)
if v = “abort′′ then

erase the virtual ITI work tape and abort
else return v

let MEASEXEC(inp):
m← Fetch(),m′ ← Meas()

if m ̸= m′ then return “abort′′

step through execution of (prog, (eid||c||“wrapped”, idx)) on inp:
for instruction i do

if i = (return v) then
b←Write(Meas())

assert b = OK
else allow (prog, (eid||c||“wrapped”, idx)) to execute i

Fig. 6. The WRollback[·] enclave shell installed by protocol W for rollback
iteration c of enclave eid installed by party pid for session idx

It is convenient for our purposes to model the code of WRollback[·]
using a UC shell (as presented in Figure 6), since its behaviour
is similar to some of the shells we constructed in the previous
section. The two types of shell are complementary: UC structured
protocols support nesting shells, so we instantiate the WRollback[·]
as a subroutine of shO,A[·]. TheW protocol is still instructing Gatt to
install the full code for WRollback[prog] but using the shell means that
we don’t have to define its full source code and how it instruments
the code of the inner enclave.

The shell runs with ID (eid||c, idx) as a subroutine to the top level
shell (eid||pid, “att”||idx), which implements the full oracle set, in-
cluding the attack Rollback ∈ A. Whenever the inner shell calls to a
feature oracle, its execution is paused by (eid||pid, “att”||idx), which
computes the oracle value and writes it on the subroutine output tape.
Shell (eid||c, idx) is oblivious to this mechanism, and can simply call
the oracles as if they were local subroutines. The identity of the shell

includes counter c because the shell is one of the copies created
by the shell (shO,A[prog], (eid||pid, “att”||idx)) from Section IV-D
to enable rollbacks. All shell copies created for new RESUME itera-
tions share the same storage interface for Store,Fetch. (eid||c, idx)
instantiates a subroutine (prog, (eid||c||“wrapped”, idx)) to execute
the code of prog. For most of the execution of prog, it allows the
internal subroutine to run. Since the execution of (eid||c, idx) is also
running within an execution loop of (eid||pid, “att”||idx), whenever
(prog, (eid||c||“wrapped”, idx)) calls an oracle, (eid||pid, “att”||idx)
will pause the execution of both subroutines to provide a re-
turn value. Likewise, if the adversary issues an Abort attack,
(eid||pid, “att”||idx) will handle it directly. We now give the formal
statement of UC emulation.
Theorem 2

Take Gatt = Gmod
att [λ, reg,O,A, S] such that {Rollback,

Abort} ⊂ A and {Store,Fetch,Meas} ⊂ O; and G′
att =

Gmod
att [λ, reg,O,A′, S] where A′ = A \ {Rollback}.
ProtocolW[λ, reg,O,A′, S,WRollback[prog]] in the presence of

Gatt UC-emulates G′
att.

We can show that the theorem holds by constructing a simulator for
the ideal world experiment, based on the simulator template presented
earlier in this Section. The intuition for the simulation strategy is
that, for any unwrapped enclave installed by the environment, the
simulator running the enclave in its head can turn any attempt to
conduct a rollback into the equivalent Abort attack in the ideal world
by detecting a digest mismatch. We give a full construction of the
simulator and proof of security in Appendix C.
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under concurrent composition.
UC is based on the computation model of Interactive Turing

Machines (ITM) A protocol is defined as a set of ITM instances (ITIs)
whose unique identities are composed of a party identifier (PID) and
a shared session identifier (SID). We generally refer to the ITIs that
represent the protocol principals as main parties, which can spawn
subroutine that represents portion of code executed by the principal.
To allow separating modelling artefacts from the code of the analysed
protocol, a “structured protocol” divides ITIs into a shell and body
component (introduced in [15, Version of 2018]). The body of the
protocol handles the cryptographic operations, and is not aware of
the shell, which is limited to handling modelling related instructions
and can read and modify the contents of the body appropriately. A
protocol is executed in the presence of a probabilistic polynomial time
(PPT) bound machine, the environment, that captures the influence
of any computation that might be taking place outwith the current
instance of the analysed protocol. The environment can be seen as
initialising the computation of the protocol, and providing input to
each of the protocol principals and the adversary. The adversary
is another PPT-bound machine that is able to instruct ITIs with
special corruption messages to modify their behaviour, through a
dedicated backdoor tape. For the rest of the paper, we assume the
convention that any adversary is a dummy adversary, where its
behaviour is to simply forward corruption messages originated by
the environment to protocol parties. Besides the adversarial backdoor
tape, ITIs are able to communicate with each other by writing
messages on some dedicated tapes. These mechanisms should not
be seen as equivalent to network communication but rather as a
modelling artefact, while the network model can be implemented
as an ideal functionality (allowing flexibility to model networks
with different properties). While the framework does not impose
general restrictions on which ITIs can communicate with each other,
there are certain communication topologies that can be considered
“better-formed”, and necessary for certain composition results (such
as subroutine respecting protocols, where all communications to
protocol subroutines have to originate from the protocol main parties
or one of their subroutines - the protocol’s extended session). To
allow composing our examined protocol, the environment represents
external communication by claiming an external machine’s identity
when sending an input to the protocol parties. An environment is
said to be ξ-identity-bounded if the set of identities it can claim is
restricted by ξ (expressed as a predicate over the system’s state at the
time the environment sends a message claiming an external machine’s
identity).

The model of execution of ITIs is inherently single-threaded, but
allows flexibility in describing the granularity of operations and how
they interleave. Runtime constraints are satisfied by maintaining a
runtime budget for each machine (known as import). Import can
be shared with a machine’s subroutine, allowing arbitrary dynamical
subroutine nesting without running the risk of exceeding the remain-
ing runtime. The minimum import considered by UC protocols is the
length of the security parameter. A balanced environment ensures
that at any point during the execution of a protocol, the adversarial
import is at least as large as the sum of imports for all other ITIs in
the protocol.

Like other simulation proofs, the basic mechanism for showing
UC-security is to define an ideal functionality, which captures the
essential properties of the desired protocol as being run by a trusted
party, and show it to be computationally indistinguishable from
an execution of the real protocol (UC-emulation). EXECπ,A,Z is
the random variable representing the output of environment Z for
an execution of π in the presence of adversary A (conversely
EXECϕ,S,Z is for the execution of the ideal functionality ϕ in the

presence of simulator S).

Theorem 3 (UC emulation)
For any PPT protocols π, ϕ and identity predicate ξ, we say that
π ξ-UC-emulates ϕ (or simply π UC-emulates ϕ if the identity
bound allows any identity) if for any PPT adversary A there exists
a corresponding PPT adversary S (the simulator), such that for
any balanced PPT ξ-identity-bounded environment Z , it holds that
EXECπ,A,Z ≈ EXECϕ,S,Z

UC-emulation can be used to show that, if we have a protocol π
that realises an ideal functionality F, the security analysis of a new
protocol ρ that has π as a subroutine can be carried out by replacing
all of ρ’s call to subroutines running π with calls to ideal functionality
F, which we denote as ρπ→F . This new version of ρ is said to be in
the hybrid model, since its ITIs interact with both other real ITIs and
ideal functionalities. For the replacement to be successful, we require
that any party in ρ that calls to a subroutine in π or F satisfies ξ
and does not call instances of π and F in the same session (we say
that the protocol ρ is (π, ϕ, ξ)-compliant). Additionally, the adversary
should be able to determine whether an ITI in a certain session is
part of the protocol (the protocol is subroutine exposing).

Theorem 4 (UC Composition Theorem)
For any PPT protocols ρ, π, ϕ and predicate ξ, if ρ is (π, ϕ, ξ)-

compliant, ϕ, π are both subroutine respecting and subroutine ex-
posing, and π ξ-UC-emulates ϕ, then ρπ→ϕ UC-emulates ρ.

Unfortunately, many interesting protocols, such as commitment
schemes [19], secure two-party computation [20] or even authenti-
cated channels [17], are not easily provable in UC in the plain model.
We therefore need to add some ideal subroutine that can represent the
cryptographic assumptions required as a block box ideal subroutine.
The next section will discuss how hybrid functionalities that share
state among sessions can also be used composably through some
tweaks to the UC framework.

1) Globality: While UC provides a powerful paradigm for
reusable cryptographic proofs, composition imposes many restrictions
over the base model as outlined in Theorem 4. To address the
limitation of the UC theorem of subroutine-respecting interactions,
Canetti and Rabin [21] introduce Universal Composition with Joint-
State, a new composition theorem that allows a single protocol session
to be a subroutine of different protocols. This can be used, for
example, to prove the security of different protocols that use an
authenticated channel, where all sessions interacting with the same
party share the signing key. This composition theorem is, however,
only valid for static protocols (where the number of shared sessions
is already well defined). Canetti et al. [25] formulate two new
variants of Universal Composition, Extended UC and Generalised
2 UC, that allow composition when arbitrary protocol interact with
the shared subroutine. The formulation of GUC has been widely
used in the literature, allowing modelling of protocols that were
previously impossible to prove in plain UC, such as those that
provide deniability. Canetti, Shahaf, and Vald [22] later extended
the GUC composition theorem to allow the replacement of global
functionalities with protocols. Despite its popularity, proving security
in GUC is more difficult than in the incompatible plain UC setting,
as it requires arguing about all possible protocols rather than just the
one being analysed. Moreover, as basic UC has received multiple
updates and fixes over time, those have not percolated to the GUC
formalisation, and the equivalence between GUC and the simpler
EUC theorem (which most security proofs in the global setting are

2commonly misattributed as Global UC
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actually using) has been called into question due to some components
of the framework being underspecified [7].

Universal Composability with Global Subroutines [6] aims to
rectify some of these issues by embedding UC emulation in the
presence of a global protocol within the standard UC framework.

To achieve this, a protocol π with access to subroutine γ is
replaced by a new structured protocol µ = M [π, γ], known as the
management protocol. The management protocol is designed to be
subroutine-respecting to preserve composition, while allowing the
external protocol ρ to access a single instance of π and multiple
of γ. µ is a shell only protocol that uses a directory ITI to redirect
external communication from ρ to the appropriate machines in π
or γ (and conversely to the external machine that should receive a
response). The following definition roughly corresponds to the EUC
formulation of global functionalities:

Definition 1
For protocols π, ϕ, γ, we say that π ξ-UC-emulates ϕ in the pres-
ence of (global subroutine) γ if M [π, γ] ξ-UC-emulates M [ϕ, γ]

As in the basic UC framework, the composition theorem follows,
with some additional restrictions: π and ϕ are allowed to break
their subroutine-respecting behaviour to use the global subroutine
γ (we say they are γ-subroutine respecting), and γ itself does not
depend on ϕ as one of its subroutines (we say that γ is ϕ-regular).
These requirements allow the use of the shared state subroutine
without provoking circular dependencies that would prevent a clean
cut replacement 3.

Theorem 5 (Universal Composition with Global Subroutines)
For any subroutine-exposing protocols ρ, ϕ, π, γ where

• γ is subroutine respecting and ϕ-regular,
• π, ϕ are γ-subroutine respecting,
• ρ is (π, ϕ, ξ)-compliant, (π,M [ϕ, γ], ξ)-compliant and

(π,M [π, γ], ξ)-compliant;
if π ξ-UC-emulates ϕ in the presence of γ (per Definition 1), then
ρϕ→π UC-emulates ρ.

The above theorems can be used to recover EUC statements in
the literature by formulating an appropriate identity bound. While
most of the existing work focus on ideal functionalities as global
subroutine, Badertscher, Hesse, and Zikas [5] show that UCGS
does not universally preserve the composition theorem from [22]
to replace the setup with a potentially interactive protocol using
a different setup. In particular, when replacing a particularly weak
global setup G (where adversarial capabilities are more extensive
than the proposed protocol γ that realises it), the simulator S in the
emulation of a G-hybrid functionality F by some protocol π might
no longer be possible in the γ-hybrid world, as it can no longer use
the attacks allowed by G. Their work then provides some guidelines
on which global setups can be successfully replaced by a protocol.
Namely, an equivalent setup (where protocol γ UC-emulates ideal
functionality G, and G UC-emulates γ) can always be replaced,
regardless of the context protocols which use it as a global subroutine.
Additionally, replacement is possible if the simulation strategy of S
either avoids using any of the adversarial capabilities of G (S is an
agnostic simulator), or that the adversarial capabilities it does interact
with will be preserved by γ (S is an admissible simulator).

Canetti et al. [24] later observe that the replacement statement also
holds if protocol γ replaces the protocol that combines G with the

3This type of recursive composition is implemented in multi-protocol
UC [13]; however the composition theorem of that work is not compatible
with Theorem 4, and therefore Theorem 1 does not apply either

simulator from the γ UC-emulates G experiment, and thus any F
using that combined protocol as a global subroutine can be replaced
with γ.

Camenisch, Drijvers, and Tackmann [13] also show that neither
the UC or GUC composition theorems allow proving that a protocol
ρπ→F can UC-emulate ρ if π is a subroutine of both ρ and of another
distinct ideal subroutine of ρ. They therefore propose a new recursive
composition theorem for jointly subroutine respecting functionalities,
multi-protocol UC. The model of Hofheinz and Shoup [45], which is
partially compatible with UC, also includes a more restricted model
of composition with shared subroutines.

To conclude this section, we note that in the rest of this work,
whenever an ideal functionality calls another (global) ideal subroutine
(e.g. provides some input to the global subroutine on behalf of a
specific party), the underlying operation relies on the intermediary
dummy party convention of [6, Definition 4].

2) Notation: We now list additional convention taken by our
pseudocode for the remainder of this work. We hope our notation
is generally self-explanatory, but in case of ambiguity we refer
the reader to the following explanation. We might refer to UC
terminology beyond what was described above; any such usage is
self-contained to this section, but we refer the reader to [15, Section
3.1] for additional context.

Our notation defines ITIs in terms of their behaviour when they
are activated and find a new message on their input tape. We define
the code executed when such a message is received as a procedure.
Some procedures definitions are not meant to be triggered by external
parties writing on the input tape, but are simply used to extract some
shared code that the ITI might need to execute multiple times. In
that case, we use the keyword “run” followed by the procedure name
to denote that the same ITI is executing it. The ITI is understood
to choose which procedure to execute by pattern matching on the
program definition as specified in the pseudocode, starting from the
earliest procedure definition i.e. if there are multiple commands that
start with the same keyword, it will try to find the one with the correct
arguments starting from the earlier definition. When font cmd is used
in this context, it is taken to be a variable, such that the procedure
executed is not literally the one named CMD but rather the value held
in that named variable.

Our message-passing treatment tends to stay at a higher level
than the underlying UC execution. As such, we omit many de-
tails of the ITI behaviour in our protocol descriptions. We gen-
erally describe a procedure by using the notation “On message
(PROCEDURENAME,list of procedure arguments) from party P :”
followed by high-level pseudo code for the ITI execution, in the
style of an imperative programming language. This notation is short
for indicating that the machine we are describing on activation
reads from its input type a message of type (P, (PROCEDURENAME,
list of procedure arguments)), where P is an object that contains
fields pid, sid for the party and session identifiers (respectively) of
the sender ITI; and PROCEDURENAME corresponds to some code
in its program it can execute with the inputs from the argument
list. Conversely, the notation return (MSG, args), as part of the
description of procedure pseudocode for an ITI M , denotes the end
of the execution of the current procedure with the issuing an external
write request (f,M ′, t, r,M,m), where destination ITI M ′ is the
same machine from which it received input, and m = (MSG, args).
In this case, we always set f , the forced-write flag, to 1; t,
the destination tape, to subroutine-output (unless the pseudocode
describes an adversarial machine, in which case t=backdoor); and
r, the reveal-sender-id flag, also set to 1. Keyword abort,
or return with no arguments indicate the end of execution for the
current procedure without issuing a corresponding subroutine output
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message.
If M wants to issue an external write request for a destination ITI

that is not the same that initiated the current procedure execution by
passing input to M , we use “Send (MSG,args) to M ′” to issue a
the same message as described above, except for setting t to input.
If the Send instructions is not the last one in the current procedure
description, the external write request is not issued immediately, but
rather queued in the outgoing message tape for M until the end of the
procedure, or when M next relinquishes the activation token. On the
other hand, when we use “Send (MSG,args) to M ′ and receive (MSG′,
args′)”, M yields activation immediately, and resumes execution the
pseudocode from the same instruction when it next receives message
(MSG’, args′) on its subroutine output tape from the sender. When
this happens, the ITI stores its current execution context (i.e. any
intermediate computation on the work tape) somewhere in memory
in a way that it can be restored when re-activated by the response
message. Between sending and receiving the response, the ITI can be
activated with any other message on any tape, although if our current
program can not tolerate such concurrency, the ITI might abort by
checking some internal flag. If multiple outgoing messages were sent
to the same M ′, we assume that the response includes some unique
identifier to allow M to restore the correct context for which it is
responding to4. When M issues an outgoing message, and expects
the corresponding response to come from a different party, we use
the keyword await followed by a full description of the behaviour
on next activation.

A variable assigned as part of a procedure does not guarantee
that it will be available to other procedures, unless it is defined in
the State variables table at the start of the definition. When the same
program uses the same identifier across different procedures, they are
generally taken to be distinct values, especially if received as part of
a message. Variables first defined within a loop or if branch have their
scope local to that block. Protocol parameters are generally taken to
be globally readable to all protocol parties and their procedures.

Our formulations in this work rely on structured protocols, as
defined in [15, Section 5.1]. A structured protocol is a series of
nested ITIs, on which a higher level ITI (generally referred to as
shell) has full access to read or overwrite the tapes of any lower
level subroutine ITI (which we refer to interchangeably as the virtual
ITI, or by their extended identities). ITIs have access to a number of
tapes to store their identity, code, running memory, and communicate
with other machines. Although the description of an ITI is not
precise or prescriptive in terms of how it implements the computation,
we assume that the program description uses some well-defined
language, perhaps similar to a low level programming language or
assembly. We represent each individual instruction as a command
with optional arguments, which we represent using function call no-
tation command(argument) sometimes with optional parenthesis
(e.g. for the case where command = return). We overload the
set membership operator ∈ to verify that the command component
of the instruction belongs to the set. The code of an enclave can
be seen as a list of ITI instructions of this type, and the notation
“for instruction i ∈ prog do” can be interpreted as iterating over
the list of instructions for program prog (including command and
arguments) without executing them (i.e. by advancing only the head
of the shell over the tape). Conversely, when an ITI ρ in a structured
protocol contains pseudocode

begin executing inp on π

for next instruction i on π do f(i)

4This is not a universally safe assumption to make for any UC protocol,
but it is sufficently safe for the ones analysed in this work

it should be read as ρ iterating through the code of a subroutine with
extended identity π, and for each instruction i, ρ executes subroutine
f(i) to advance the state of π (updating its tapes and advancing π’s
head), while performing any additional operations in ρ’s code.

B. Defining Generic Transformation Protocols

We now provide an equivalent protocol to the one outlined in
Section V to address feature addition to a trusted hardware setup.
Unlike the attack removal protocol in that section, we consider a
more generalised class of protocol topologies that relies on additional
enclaves. The technique introduced in this section can also be used
to extend the attack removal protocol and corresponding simulation
template.

1) Adding a Feature oracle: To fully capture the modular power
of our new formalisation, we show how to add a new feature to a
TEE instance, increasing the size of its feature oracle set. We want
to show that a TEE that has native access to that feature (through
an oracle) is indistinguishable from one that does not and has to
implement it through runtime code. An oracle can be implemented
through a UC protocol that realises the ideal oracle interface.

More formally, we consider two instantiations of attested execution
Gatt and G′

att (both modular), with feature oracles O,O′, respectively,
where O ⊂ O′. Let I = O′ \ O. The adversarial oracles A and
attestation signature function S are shared between Gatt and G′

att.
We now define a new “wrapper” protocol W which uses Gatt as a
subroutine and UC-realises G′

att by implementing the interface for I
in the Gatt-hybrid real world.
W takes the same parameters as Gmod

att , and in addition the two
functions mapL,mapR, and the code of enclave program WI [·].
Function mapR takes the set of Gmod

att -enabled parties, and chooses
a subset to run remote assisting enclaves that any party can rely on
(the parties chosen by mapR do not have to be honest). mapL returns a
set of local assisting enclave programs the party should install locally
(on the same machine), and a next message function for WI [·].

WI [prog, nextmsg] is a “wrapper” enclave that instruments prog
with additional code such that, when prog attempts to use interface I ,
the next message function begins executing I as a protocol. Function
nextmsg observes the current state of the enclave, and chooses the
command required to start the I-protocol execution. The command
issued by nextmsg will either be run as a local subroutine in the
enclave wrapper code itself, by another enclave installed locally (as
instructed by mapL), or by a remote party (in an enclave created
through mapR). nextmsg is aware of the details of each assisting
enclave, such as their enclave ID or what party they are installed on,
through these functions.

If the next command issued by nextmsg is received by the
assisting enclave it is destined for (a corrupted party could diverge
from the protocol and choose not to deliver the message), it executes
the requested subroutine, produces its own next command, and
forwards it to the party that should execute it. Eventually, the original
WI [prog, nextmsg] will receive a final message, and return the result
value of I to the prog oracle call. Essentially, the program that
implements I is compiled into a multi-party computation between
the enclaves. We do not require a full-fledged secure MPC protocol
to execute I , however, due to the integrity guarantees of attestation,
as the only possible malicious behaviour of a participant is dropping
messages (known as the omission corruption adversarial model in
MPC [12]). Within the execution of the next message functions,
enclaves are able to construct an authenticated or secure channel
through attestation. We do not give a description of how this is done,
and refer the reader back to the construction of the secure channel
from [68]
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Fig. 7. Protocol W can add a shell to GO,A,S
att enclaves to UC-emulate the missing feature oracles I from GO′,A,S

att

The W protocol (Figure 8) proceeds as follows. During initial-
isation, it calls the mapR function to produce a list of supporting
enclaves ER

i run by a subset of reg parties, initialises Gmod
att with the

appropriate parameters, and requests each selected party to install the
wrapped ER

i . It then returns a public list of all assisting parties and
the associated enclave IDs.

On a call from pidi to install some program progi, if progi does
not include any call to I , it installs a wrapped version with dummy
next message function ϵ. Otherwise, it runs mapL() to produce a
list of local assisting enclave programs to be installed by the same
party, and a next message function nextmsg∅. The party installs all
such enclaves, runs their initialisation subroutine, and creates a new
message function nextmsg that is a wrapper around nextmsg∅ aware
of the assisting parties enclave IDs. mapL makes nextmsg and all
EL

i programs aware of the enclave IDs for any ER parties, and assists
WI [·] in generating the appropriate next commands to implement I
along with the assisting protocols.

On a resume call from its local party pidi to execute command
cmd on arguments args for enclave WI [progi, nextmsg], the enclave
wrapper (described in Figure 9) begins executing the code of progi
with those inputs. Once the program makes a subroutine call to I , the
wrapper stops the internal program execution and calls the nextmsg
function, which returns the PID, Enclave ID and some command that
needs to be executed to begin computing the value for the subroutine
call. The enclave returns these to its local party with the special
keyword RESUMEREQUEST, and waits for a next activation. When
the party receives this return value, it knows that cmd(args) did not
terminate. Instead, it passes the RESUMEREQUEST and associated
command on to the appropriate party, or, if the destination PID is pidi,
activates one of its local enclaves, including WI [progi, nextmsg]
itself. When resuming an enclave as part of the I computation, the
local party can set input flag ⊤ as part of the RESUME arguments to
indicate that the command being executed is not part of the normal

progi code. pidi waits to receive the next message, and once again
passes it on to one of its local enclaves, and forwards the resulting
RESUMEREQUEST. Eventually, when the PID and EID returned by
nextmsg for the enclave that initiated the call to I are both ⊥, the
computation of I has terminated, and the wrapper can pass back v
as its return value to the internal execution of progi. Whenever the
enclave returns with an intermediate message, the latest attestation
signature should always be bundled with the next message input for
the receiver party. Attestation validation logic is defined in the code of
W[·] for all appropriate messages, and interacts directly with the Gmod

att

verification request through a call to the AttestVerif interface. When
a user requests verification of one of these intermediate attestation
signatures from outside one of the participating enclaves, the protocol
always returns ⊥.

We now provide the following conjecture:

Conjecture 2

Let Gatt = Gmod
att [λ, reg,O,A, S] and G′

att =
Gmod

att [λ, reg,O′,A, S], such that O′ \ O = I . For any enclave
wrapper WI [·] which, combined with functions mapL,mapR

implements the difference in behaviour between the shells
shO,A[·] and shO′,A[·], it is possible to show that protocol
W[λ, reg,O,A, S,mapR,mapL,WI [·]] in the presence of Gatt

UC-emulates G′
att

Like in Section V, we provide a generic template for simulation
without being able to make more general statements that are valid
for all combinations of feature and adversarial oracles.

We describe simulation for the three possible protocol topologies
implementing I:

1) We begin our simulation sketch for the case of a wrapper
protocol W where neither mapR or mapL functions returns
any additional enclave i.e. the wrapper WI [·] can implement I
without relying on any external assistance i.e. using a combina-
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Protocol W[λ,Gmod
att , reg,O,A, S,mapR,mapL,WI [·]]

On message INITIALISE from a party P :
[(ER

1 , pid1), . . . , (E
R
n , pidm)]← mapR(reg)

send INITIALISE to Gmod
att [λ, reg,O,A,S]

let ĒR ← []

for i ∈ {0, . . . , n} do
send (INSTALLREQUEST,ER

i ) to pidi and receive eidi, output, σ
send (VERIFY, σ, output) to Gmod

att and receive v

assert that output is a valid return value for ER
i (init) and v = ⊤

ĒR ← ĒR ∥ pidi, eidi
return ĒR

On message GETPK from a party P :
send GETPK to Gmod

att and receive vk
return vk

On message (VERIFY, σ,m) from a party P :
if m is an attestation measurement that contains a commitment to some program with code ER

i or EL
i then

return ⊥
else

send (VERIFY, σ,m) to Gmod
att and receive v and return v

On message (INSTALL, prog) from a party P where P.pid ∈ reg:
if I ∈ prog then

(nextmsg∅, (E
L
1 , . . . ,E

L
n))← mapL(ĒR)

let ĒL ← []

for i ∈ {1, . . . , n} do
send (INSTALL,EL

i ) to Gmod
att and receive eidi

send (RESUME, eidi, INIT) to Gatt

ĒL ← ĒL ∥ eidi
let nextmsg(x)← nextmsg∅(x, Ē

L)

send (INSTALL,WI [prog, nextmsg]) to Gatt and receive eidprog
else

send (INSTALL, sid,WI [prog, ϵ]) to Gatt and receive eidprog
return eidprog

On message (RESUME, eid, inp) from a party P with pidi:
send (RESUME, eid, inp) to Gmod

att and receive out, σ
σprev ← σ
while out = (RESUMEREQUEST, pid, eid′, v) do

if pid = pidi then
(out, σ′)← RESUME(eid′, (v, σprev,⊤)))

else
send (RESUMEREQUEST, eid′, (v, σprev)) to pid and await
if next message m,σ′ on input tape does not start with RESUMEREQUEST then ignore
else out← m,σ′

σprev ← σ′

return out, σprev

On message (INSTALLREQUEST, prog) from a party P ∈ reg:
run eid ← (INSTALL, prog)
send (RESUME, eid, init)) to Gmod

att and receive output, σ
return eid, output, σ

On message (RESUMEREQUEST, eid, inp) from a party P ∈ reg:
run output, σ ← (RESUME, eid, inp)
return (output, σ)

Fig. 8. The wrapper protocol to implement interface I for a Gmod
att setup with oracle sets O,A
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Shell WI [prog, nextmsg] (Template)

The identity of the shell is (eid, idx)
The parent shell extended identity is (shO,A[W

I[prog]], (eid||pid, “att”||idx))

On message (cmd, args, r) from (eid||pid,“att”||idx):
if virtual ITI (prog, (eid||“wrapped”, idx)) does not exist then create
if r = ⊥ then

let inp← (cmd, args)

step through execution of (prog, (eid||“wrapped”, idx)) on inp:
for instruction i do

if i ̸∈ I then
// Execution of i is delegated to the higher order shell
allow (prog, (eid||“wrapped”, idx)) to execute i

else
r ← ⊤
(pidj, eidj, v)← nextmsg(tapes of virtual ITI)
while (pidj , eidj) ̸= (⊥,⊥) do

send (RESUMEREQUEST, (pidj, eidj, v)) to (eid||pid, “att”||idx) and await
if next message on the input tape is (cmd′, args′,⊤) then

execute (pidj, eidj, v)← cmd′(args′,⊤)
else

ignore
// The loop terminates when nextmsg() returns (⊥,⊥, v)
write v to subroutine output of (prog, (eid||“wrapped”, idx))
r ← ⊥

else
// r = ⊤ as the result of an I computation, execute code in subroutine cmd

execute cmd(args)
return nextmsg(tapes of virtual ITI)

Fig. 9. Template for the internal wrapper shell. A complete definition of the shell requires an implementation for any additional CMD that might be requested
by the next message functions

tion of local computation and the feature oracles it already has
access to. During the global functionality initialisation phase,
the simulator observes the signature algorithm s chosen by the
environment through the dummy adversary, and provides G′

att

with a new algorithm s′ which applies s over the transformation
F (meas). F takes a measurement string that contains an
identifier for program prog, and replaces it with an identifier
for WI [prog, nextmsg] (for an appropriate value of nextmsg),
as discussed in Section III. Attestations produced by an enclave
prog in the G′

att-hybrid world are thus indistinguishable from
those produced by the equivalent wrapped enclave in the Gatt-
hybrid world. Therefore, the simulator can simply block any
installations of an un-wrapped program that requires access
to I with MissingInstructionError, and replace installations
of wrapped programs with the unwrapped version on the G′

att

functionality. Honest parties in protocol W do not install any
unwrapped program, and no external session will have direct
access to Gatt since it is installed as a W subroutine. If the
(local) adversary attempts to install an unwrapped program
to Gatt directly, the simulator can run the program “in its
head” without going through G′

att, and use the algorithm s
provided by the dummy adversary for the environment to
produce plausible attestation signatures for the unwrapped
code. The signatures will not verify through any calls to the
ideal verification subroutine, as they wouldn’t for honest parties
of W , but they will look legitimate to environment through
running the local verification algorithm that corresponds to s.

2) When mapR does not install any assisting enclaves, but mapL

does, the simulator instantiates the same signature scheme as

in the previous case (by adding the F transformation for an
appropriate value of nextmsg).
When it receives a request to install any enclave with code
EL

i , it generates a plausible enclave ID and returns it, without
actually installing the enclave in Gmod

att . While we do not
explicitly define an enclave ID generation algorithm for Gmod

att ,
we assume that the probability of sampling the same ID is
negligible. The simulator then ensures that, before a corrupted
party requests to install some enclave WI [prog, nextmsg], it
has requested to install all necessary EL

i enclaves produced by
mapL(), and has given a value of nextmsg with the appropriate
enclave IDs, otherwise WI [prog, nextmsg] would not be able
to verify them for attestation.
Whenever the adversary resumes the program enclave, the
simulator runs the input in its head to determine whether it
contains any calls to I . If it does, it calls the next message
function nextmsg on the partial result, and uses the signing
key generated during initialisation by the adversary to produce
signing algorithm s, and uses it to sign a RESUMEREQUEST

message. If the adversary then tries to resume the receiver
enclave, the simulator executes the related command in its head
and returns the next RESUMEREQUEST message. Any attempts
from the adversary to verify one of the intermediate attestation
messages directly is dropped, since the protocol does not let
parties verify these attestations either (they are however likely
to be verified by the code of the wrapper enclave as part of its
next command execution). Once it is satisfied that the adversary
has provided the appropriate sequence of messages to fully
compute I , it sends the initial original input to the unwrapped
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program in G′
att. If the feature shell triggers any adversarial

interaction, it uses the values provided by the adversary through
RESUMEREQUEST messages to maintain a consistent state with
theW interactions. Any interactions with the adversary through
attacks or feature requests unrelated to I are captured by the
ideal shell run by Gatt, so no additional simulation is required
for them.

3) Finally, in the case of the mapR function requesting multiple
enclaves across a variety of parties, the simulator initialises
Gmod

att with the same signature algorithm as before. It then calls
the mapR function and sends the resulting resume requests to
corrupted parties, but installs the assisting enclaves for honest
parties on a machine it controls, and produces the appropriate
list of assisting enclave IDs, ĒR.
Like in the previous case, on an enclave installation request,
it installs a non-wrapped copy of any enclaves requested by
corrupted parties, as long as they have installed all the related
local assisting enclaves. Simulation proceeds as in the previous
case, except that the simulator also ensures that any remote
RESUMEREQUEST message is delivered (i.e. the appropriate
messages on the network are not censored). When a next
command is sent to a remote assisting party run by some honest
user, the simulator does not pass it on, and runs the command
on its local copy to find out the next message location, using its
copy of the s algorithm to sign plausible attestations (includ-
ing faking the party ID if using non-anonymous attestation).
Finally, if the computation succeeds, it calls the unwrapped
enclave in G′

att as before. Any attempts by a corrupted party
to send a RESUMEREQUEST to honest enclaves outside of the
correct sequence of events is dropped.

General replacement of global setups: As we discussed in
Appendix A1, it is not possible to prove, in the general case,
that a protocol UC-emulates a global subroutine. A well formed
replacement statement needs to account for the context emulation
statement the global subroutine is being invoked in.

Intuitively, since the adversarial oracle sets for the Gatt, G
′
att func-

tionalities considered are the same, replacing the global functionality
G′

att with a Gatt-hybrid protocol W to provide the missing feature
interface I should generally be safe, as a higher level simulator that
interacts with TEEs as part of a protocol subroutine will have the
same interface for attacks. However, given the general nature of our
conjecture, we can not conclusively say that the implementation of
I provided by W communicates with the adversary in the same
manner as the ideal implementation of I provided by the G′

att shell.
Indeed, the role of theW to G′

att simulator is to reconciling any such
difference. We therefore have to analyse two distinctive cases.

Theorem 6

Let Gatt, G
′
att,W be any Gmod

att setups and a wrapper protocol such
that Conjecture 2 holds, and additionally G′

att UC-emulatesW . For
any protocol ρ in the presence of G′

att that UC-emulates some F in
the presence of G′

att, ρ in the presence ofW UC-emulates F in the
presence ofW .

The statement follows from the composition theorem of [4, Theo-
rem 3.3]. Showing that G′

att UC-emulatesW (i.e. in conjunction with
Conjecture 2, W and G′

att are UC-equivalent) involves constructing
a new simulator S ′ such that EXECG′

att,A,Z ≈ EXECW,S′,Z .
During the setup phase, S ′ instantiates Gmod

att with the inverse
transformation F−1for attestation signatures described in the proof
guidelines for Conjecture 2 i.e. for any attestation measurement that
includes an identifier for some program with code WI [prog, ·] and
replaces it with an identifier for prog. Thereafter, the behaviour of

S ′ consists of simply forwarding any input from the environment
to the protocol W (including allowable attacks in A), and after a
RESUME, execute any associated RESUMEREQUEST for corrupted
parties without modifying their inputs or showing the result to the
environment, except for any adversarial leakage consistent with what
would be produced by the shell implementation for G′

att. When W
returns the output of the RESUME and associated attestation message,
S ′ only forwards this result and its attestation (with the wrapper code
removed by the F−1 transformation).

If the shell implementing feature I in the G′
att world includes

direct communication with the adversary that is not fully equivalent
by the messages produced by the supporting enclaves in W , the
simulation will fail. For such protocols we need to consider a weaker
setting, where we fix the feature simulator within the ideal subroutine
available to the higher level protocols.

Theorem 7

Let Gatt, G
′
att,W be any Gmod

att setups and a wrapper protocol such
that Conjecture 2 holds for some simulator S. Let GS

att be the
combination of G′

att and S; for any protocol ρ in the presence of
GS

att that UC-emulates some F in the presence of GS
att, ρ in the

presence ofW UC-emulates F in the presence ofW .

The statement above directly follows from [23, Lemma 1].
2) Generalising Adversarial Interfaces removal: The protocol and

simulation strategy for feature addition can be used to extend the
original attack removal protocol of Section V to cover protective
protocol topologies that use multiple enclaves. A core difference from
the oracle interface implementation of that section, however, is that,
rather than interrupting the execution of a normal enclave program
for a specific instruction to run a protocol between supplementary
enclaves, it is necessary to run the defensive protocol from the start
of the execution.

More formally, the wrapper protocol W is defined in the same
way as the one in the previous section to implement missing
features, but installing wrapper enclave WA[·] rather than WI [·]
(for some A, I). The only difference between the two protocols
is that WA[prog, nextmsg] never executes the internal protocol
prog directly. Instead, the nextmsg() function now takes the code
prog as an additional argument, and compiles it into the code
for local enclaves EL

i∈{1,...,n}. When the party installs all enclaves
{WA[prog, nextmsg],EL

1 . . . ,ER
n }, it immediately resumes all of

them, in sequence, with message INIT, which allows the enclaves
to conduce any necessary setup operations. Thereafter, on a RE-
SUME call to prog, WA[prog,nextmsg] always begins its execution
by running nextmsg first. The function returns a tuple (pidi, eidi, v),
indicating that W[·] should send an authenticated message (through
attestation) with payload v to enclave eidi running on party pidi (on
the same party if the first element of the tuple is ⊥). Each assisting
enclave will also run their own copy of the next message functions
to forward the intermediate computation results to the next enclave.
When nextmsg returns (⊥,⊥, v), this indicates that the RESUME call
has completed, and the wrapper enclave can return v to the calling
party.

We now restate Conjecture 1 for the full version of protocol W .

Conjecture 3

Let Gatt = Gmod
att [λ, reg,O,A, S] and G′

att = Gmod
att [λ, reg,O,A′, S]

such that A \ A′ = A. For any enclave wrapper WA[·] which,
combined with functions mapL,mapR implements the difference
in behaviour between the shells shO,A[·] and shO,A′ [·], protocol
W[λ, reg,O,A, S,mapR,mapL,WA[·]] in the presence of Gatt

UC-emulates G′
att
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3) Interactions Between Features and Attacks: When defining the
transformation between two versions of Gatt, it is important to think
carefully about specifying the necessary requirements. Introducing a
new attacker oracle to a TEE might not allow any sensible protection
mechanism without the enclave having access to certain feature
oracles.

Additionally, in some cases the addition of a new feature will also
imply the expansion of adversarial attacks. Consider the addition of
explicit storage and fetching capabilities described in Section IV-C.
By adding those external oracle calls, we are also forced to provide an
adversarial oracle to abort the program. While it would be possible
to consider a version of Gmod

att where only the new interfaces were
added, it would be hard to justify as the natural implementation of
that feature requires handing off control of the memory to untrusted
permanent storage. Of course, a novel TEE architecture could allow a
more secure way to implement storage and fetching without exposing
the enclaves to adversarial crashes. Our goal for Gmod

att is not to be
prescriptive with what kind of (ideal) TEE objects should be used
as assumptions in cryptographic protocols; however we recommend
caution when designing a new variant of Gmod

att with complex or
unrealistic features.

Another illustrative example could be the introduction of enclave
cloning [52] to a Gmod

att setup. This feature allows efficient enclave
creation, as it instantiates a second copy of an enclave including its
memory (equivalent to normal process forking in operating systems).
Depending on the implementation, the addition of this feature might
however give the adversary additional power, as it could now be able
to swap memory regions for each of the two versions of the enclave
interactively, effectively executing a forking attack not tied to rollback
(where the remote party is not able to distinguish which of the two
enclaves it is communicating with, and the adversary can interactively
swap and censor messages between the two). While this specific
attack can be easily mitigated with another wrapper protocol that
augments sealing with freshness values, it will require an additional
explicit transformation and corresponding level of shells.

Our theorems in this section only show a single step Gmod
att oracle

change (through feature addition and attack removal). Unlike the
oracle shells in our Zoo, which have to be manually integrated to
provide the appropriate functionality for the set of oracles chosen
(although in many cases the shell changes are trivial), it should
be easy for some oracle combinations, where they don’t negatively
interact with each other, to repeatedly apply Conjectures 2 and 1
without modifying the protocols.

We note that in some cases the oracle transformation protocols
given above might not be simulatable for all possible enclave pro-
grams. In those cases, it is still possible for a program designed to
run in G′

att to run in the Gatt-hybrid world where the oracle feature is
not available, or be secure even if Gatt allows an attack not in G′

att.
Such substitution require to be shown as valid on a case by case
basis, but the observation is consistent with the state of the art of
TEE program design, where mitigations for certain attacks exist only
if the program is “well-written” (e.g. memory safe or using oblivious
primitives) or does not use certain functions (see [71, Table 1]).

C. Rollback protection Proof of Security

We now give a proof of security for Theorem 2 (with the full
protocol W defined in Appendix B) by defining the appropriate
simulator. First, we show that the theorem is an instantiation of
Conjecture 3 by showing how the protocol described in Section V is a
special case of the more general protocol described in the Appendix.
In particular, the protocol can be implemented through a pair of
functions mapR() and mapL() that produce no supporting enclaves.

Shell WA[prog, nextmsgmeas]

The identity of the shell is (eid ∥ c, idx)
The parent shell extended identity is (shO,A[W

I[prog]],
(eid||pid, “att”||idx))

On message INIT from (eid||pid,“att”||idx):
if Fetch() ̸= ϵ then

return ABORT
install virtual ITI (prog, (eid||c||“wrapped”, idx))
let m← Meas()

Store(m)

On message inp from (eid||pid,“att”||idx):
while ⊤ do

out← nextmsgmeas(tapes of virtual ITI)
if out = (pid, eid,(MEASEXEC, inp)) then

run MEASEXEC(inp)
else if out = (⊥,⊥, v) ∧ v ̸= “abort′′ then

return v
else

erase the virtual ITI work tape
abort

let MEASEXEC(inp):
m← Fetch(),m′ ← Meas()
if m ̸= m′ then abort
step through execution of (prog, (eid||c||“wrapped”, idx)) on
inp:
for instruction i do

if i = (return v) then
b←Write(Meas())

assert b = OK

else allow (prog, (eid||c||“wrapped”, idx)) to execute i

Fig. 10. The WA[·] enclave shell installed by protocol W for rollback
iteration c of enclave eid installed by party pid for session idx (full version
using the next message function)

Function mapL() defines a next message function nextmsgmeas(),
which determines how to execute the wrapped program. When the
enclave state is at the beginning of executing a RESUME instruction,
nextmsgmeas runs the MEASEXEC subroutine of WA[·]. Subroutine
MEASEXEC checks that the current measurement of the enclave’s
state corresponds to the last state saved in storage, before executing
the input subroutine, and updating the storage with the resulting new
state. If MEASEXEC aborts, nextmsgmeas returns (⊥,⊥, “abort”),
while if it terminates successfully with value v, it returns ⊥,⊥, v; in
both cases, the enclave returns the values to its caller. A definition
of the wrapper shell that uses this next message function is shown
in Figure 10.

We now define a simulator for the wrapper protocol in Figure 10
. The simulator roughly follows the sketch outlined in the first
case of the proof strategy for Conjecture 2, although we modify it
appropriately for the adversarial case.

Assume the simulator has access to the same parameters as W .
The simulation translates all requests to install a wrapped enclave
from corrupted parties into requests to install the unwrapped en-
clave in G′

att; any attempt to install an unwrapped enclave will
be simulated “in its head”. Thereafter, whenever the party resumes
one of the wrapped enclaves, the simulator fakes an access to
the Fetch oracle, to reproduce the behaviour of the MEASEXEC

subroutine in wrapper WA[·] to check that the enclave was not
previously rolled back. If the check succeeds, the enclave begins
executing the program ideally through running its non-wrapped
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version through the G′
att functionality. During its execution, the shell

(shO,A′ [progw], (eid||pid, “att”||idx)) might send messages on the
backdoor tape related to some attacks in A′ unrelated to rollback
(therefore present in both real and ideal world). In that case, the
simulator forwards it to the adversary and returns its response back
to the shell without modification. After the execution of the enclave
program has terminated, the simulator fakes a call to the Store oracle,
with the length of the hash function used for measuring enclave states
(m) as its leakage.

If at any point during the simulation the adversary aborts a
simulated oracle call, or if the simulator has recorded (in dictionary
P) that the adversary has issued a rollback attack against that enclave,
it will issue an abort message through the adversarial interface of
G′

att, and halt its own execution. Otherwise, if all the checks succeed,
it returns the output value and attestation signatures produced by G′

att.
Additionally, the simulator produces an ITER message to signal that
the RESUME execution has been successful, and the creation of a
new copy for the ITI state (as if the enclave was running on Gatt).
Attestation verification requests are forwarded to G′

att if they are for
the wrapped version of an enclave (where it will succeed only if the
unwrapped version of the same enclave issued that message, before
being transformed by F ). Any request to verify a message where the
attestation contains the unwrapped code (which is what is actually
running on G′

att) is rejected.
Calls to install, resume, or verify the attestation of any unwrapped

enclaves are not allowed by the protocol, but a corrupted party might
try to get around this by directly writing to the tapes of real world
Gatt subroutine - this is allowed by the identity bound. In that case,
the simulator lets the message through to its local simulated Gatt

subroutine, which can produce a convincing attestation signature
for any message by using the original s algorithm. To denote this,
we adopt the convention of forwarding adversarial messages for
unwrapped enclaves to a “fake” copy of the hybrid functionality
GF

att. It is possible to think of GF
att as simply shorthand for the book

keeping operations inlined by the simulator’s code, similar to the
roles of the dictionary G in the Steel simulator of [10]. Alternatively,
it is possible to see GF

att as a bona-fide instance of Gmod
att run by the

simulator as a local subroutine, and therefore granting no access to
machines in other sessions. Adopting this view is only possible in
our modular setting: while the Steel simulator, in the presence of
GPST

att , was required to keep a separate record of all messages signed
by adversarial enclaves, this is the default for Gmod

att , and therefore
we do not require keeping track of any additional operations. GF

att

is taken to be initialised with the same arguments as the real world
Gatt emulated by the protocol, such that any attempts to access an
attack in A is reproduced by its (simulated) shells.

The pseudocode for the simulator described above is as follows:

Simulator S

F (a, f) is the function that transforms an attestation measurement
a so that it replaces the code of an enclave program p with code
WA[p, f ]. M is the standard uniform length for the output of
Meas() oracle calls

State variables Description
P← {} Dictionary of state pointers for rollback

protected enclaves

On message INITIALISE from G′
att:

send INITIALISE to A through Gatt and receive pk, s

nextmsgmeas ← mapL(ĒR)
let s′(x)← s(F (x,nextmsgmeas)
send (pk, s′)) to G′

att on behalf of A

send INITIALISE to GF
att through Z and receive INITIALISE

send Σ to GF
att on behalf of A

On message (INSTALL, idx, prog) from corrupted party P :
if prog = WA[progw, nextmsgmeas] then

send (INSTALL, progw) to G′
att through P and receive eid

P[P, eid]← (idx, progw, ∅, ∅)
else

send (INSTALL, prog) to GF
att through P and receive eid

return eid

On message (RESUME, eid, (i, inp),Rollback) from
corrupted party P :
if P[P, eid] = (sid, prog, c, clatest) then

P[P, eid]← (sid, prog, i, clatest)
if inp ̸= ϵ then

run out, σ ←RESUME(eid, inp, ϵ),
else

send (ITER, c, i) to A on behalf of enclave shell
else

send (RESUME, eid, (i, inp),Rollback) to GF
att on behalf of P

On message (RESUME, eid, ·,Abort) from corrupted party P :
if P[P, eid] ̸= ⊥ then

send (RESUME, eid, ϵ,Abort) to G′
att on behalf of P

else send (RESUME, eid, ϵ,Abort) to GF
att on behalf of P

On message (RESUME, eid, inp, a) from corrupted party P :
if (sid, progw, c, clatest) ∈ P[P, eid] then

assert a = ϵ ∨ a ∈ A′

let shEID ← (shO,A′ [progw], (eid||pid, “att”||idx))
send FETCH to A through shEID and receive b
if b ̸= Continue ∨ c ̸= clatest then

send (RESUME, eid, ϵ,Abort) to G′
att and return

send (RESUME, eid, inp, a) to G′
att on behalf of P and

while receive (msg, args) from shEID do
send (msg, args) to A on behalf of shEID

forward adversarial response to shEID
if response = Abort then return

receive out, σ from G′
att

send (STORE, 1M) to A through shEID and receive b′

if b′ ̸= Continue then
send (RESUME, eid, ϵ,Abort) to G′

att and return
generate nonce c′

$← {0, 1}λ
P[P, ·, eid, progw]← (c′, c′)
send (ITER, c, c′) to A on behalf of shEID

else
send (RESUME, eid, inp, ϵ) to GF

att and receive out, σ

return out, σ

On message (VERIFY, σ,m) from corrupted party P :
if m is a measurement for an enclave with program
WA[progw, nextmsgmeas] then

send (VERIFY, σ, F (m, nextmsgmeas)) to G′
att and receive v

else if m is a measurement for an “unwrapped” program with
enclave ID eid installed by some party P ′, and P[P ′, eid] ̸= ⊥]
then return ⊥
else send (VERIFY, σ,m)) to GF

att and receive v

return v

For any protocol that adopts the standard identity bound, preventing
the environment from sending messages on behalf of corrupted parties
outside of the test session, the environment can not distinguish the
real or ideal world, due to the simulator constructing a perfect
transcript for the execution of W with the attestation signatures in
the ideal world verifying for a real world WA[·] program.

Consider the case where the adversary does not conduct a rollback
attack. For every RESUME operation from the corrupted party, the
simulator activates the adversary with message FETCH, allowing it
to interrupt the computation. If this happens, the simulator mounts
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the equivalent ABORT attack on G′
att. If FETCH is allowed, the

measurement stored will be the same as from the previous execution,
and therefore the simulator runs the program in G′

att. The behaviour
of this execution is equivalent to the real world setup, since the shells
of Gatt and G′

att implement the same (non-rollback) oracles, and
the simulator lets through any such adversarial access. Finally, the
adversary receives a final STORE for a message of the same length
as a MEAS value. Since the storage oracle does not leak the message
contents but only their size, the adversary can not distinguish it from
a state storage as executed during the MEASEXEC subroutine. If it
chooses to abort, the real world wrapper would never terminate, so
the simulator does the same for the ideal world enclave (by issuing
its own ABORT), otherwise it returns the (ideally computed) value.
The distribution of the return value for the enclave as executed in
Gatt and G′

att is equivalent (given they have the same feature oracles
implementation), and the modified signature scheme attests to code
WA[prog, f ] in both worlds, thanks to the transformation F .

We now describe the case of an adversary who, after some
sequence of successful resumes, issues a rollback attack to an earlier
state. The code of subroutine WA[·] does not allow executing any
further RESUME, since the assertion that the measurement stored is
equal to the current one will fail with non-negligible probability (as
long as the measurement computed by oracle MEAS is collision-
resistant, and the code of the enclave program iterates through
a sufficiently diverse state distribution5). The simulator perfectly
reproduces this behaviour, by issuing an ABORT to the ideal enclave,
after having issued the preceding FETCH. The environment can not
distinguish real and ideal world, as in neither cases the interrupted
enclave will be able to proceed.

5If the enclave is running a program with a very limited set of states, such
as a small finite state automaton, it is possible to artificially expand the state
space by augmenting the program with a monotonically increasing counter
for each resume. This will ensure that every measurement is distinct.
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