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Abstract

In this paper, we study oblivious key-value stores (OKVS) that enable encoding n key-value
pairs into length m encodings while hiding the input keys. The goal is to obtain high rate, n/m,
with efficient encoding and decoding algorithms. We present RB-OKVS built on random band
matrices that obtains near-optimal rates as high as 0.97 whereas prior works could only achieve
rates up to 0.81 with similar encoding times.

Using RB-OKVS, we obtain state-of-the-art protocols for private set intersection (PSI) and
union (PSU). Our semi-honest PSI has up to 12% smaller communication and 13% reductions
in monetary cost with slightly larger computation. We also obtain similar improvements for
both malicious and circuit PSI. For PSU, our protocol obtains improvements of up to 22% in
communication, 40% in computation and 21% in monetary cost. In general, we obtain the most
communication- and cost-efficient protocols for all the above primitives.

Finally, we present the first connection between OKVS and volume-hiding encrypted multi-
maps (VH-EMM) where the goal is to outsource storage of multi-maps while hiding the number
of values associated with each key (i.e., volume). We present RB-MM with 16% smaller storage,
5x faster queries and 8x faster setup than prior works.

1 Introduction

In recent years, there is a growing interest in enabling independent parties to collaborate and jointly
perform computation to gain insights into their combined data. For many settings, the data sets
held by each party contain sensitive information and must be kept private. Therefore, the goal is
to ensure that each party only learns the desired, predetermined outputs and nothing else. Several
organizations such as Google [3], Meta [5] and Signal [1] actively work on these problems.

One important problem is computing the intersection between two data sets, denoted by private
set intersection (PSI). PSI is an important problem due to its numerous applications to real-
world problems such as ads attribution [45], contact discovery [32, 48, 51], contact tracing [35] and
password leak detection [72] to list some examples. In PSI, there are two parties that hold sets of
identifiers X and Y respectively with the goal of computing the intersection X ∩ Y (i.e., elements
appearing in both X and Y ). For privacy, each party should learn no other information beyond
the intersection, X ∩ Y , and the size of the other party’s set.
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Another key problem is private set union (PSU) that considers the same setting as PSI with two
parties holding sets X and Y respectively with the goal of computing their union, X ∪ Y . Privacy
remains identical where each party should learn only the output X ∪Y and nothing else except for
the size of the other party’s set. PSU is an essential component for multiple applications including
aggregation of network events [18], improving blocklist accuracy [66], security risk assessments [42]
and universal identifier generation [17].

It turns out that both PSI and PSU require the usage of a similar primitive known as oblivious
key-value stores (OKVS). Garimella et al. [38] first observed that many prior PSI protocols (such
as [34, 64, 28, 54, 62, 60]) implicitly relied upon similar properties. They abstracted out these
properties and defined them as an OKVS. Furthermore, recent PSI works [38, 65] explicitly build
PSI using OKVS. The usage of OKVS extends to other variants of PSI including circuit PSI [62,
68, 22] and multi-party PSI [54, 44, 76, 21, 57, 10] for more than two parties. Additionally, recent
PSU protocols also heavily rely upon OKVS constructions [55, 75].

In both PSI and PSU, the underlying OKVS constitutes a significant portion of the total
communication and computation costs. Therefore, it is important to study OKVS as any improved
OKVS constructions would have an immediate impact on the efficiency of PSI and PSU. In this
work, we present novel and improved OKVS schemes and uncover new applications of OKVS
including volume-hiding multi-maps.

1.1 Our Contributions

Oblivious Key-Value Stores (OKVS). As our main contribution, we present a novel OKVS
construction, RB-OKVS. At its core, RB-OKVS is built on top of a framework that embeds the input
key-value pairs in an efficiently solvable system of linear equations defined by a family of random
matrices. In particular, RB-OKVS relies upon random band matrices [33] where each row consists
of a single w-bit band of uniformly random bits. We note that RB-OKVS significantly deviates from
prior OKVS constructions built using novel modifications of cuckoo hashing [60, 38, 65]. We point
readers to Section 3 for the description of RB-OKVS.

RB-OKVS encodes n key-value pairs into encodings of size as small as 1.03n, obtaining nearly
optimal rates of 0.97. Prior works [38, 65] only obtained rates of 0.81 when restricted to O(nλ)
encoding time and 2−λ error probability. Furthermore, we show that RB-OKVS is highly parameter-
izable, enabling trade-offs between the rate and encoding times. For a variety of rates better than
all prior OKVS schemes, RB-OKVS still has the fastest encoding times. We present a comparison
with prior OKVS schemes in Figure 1 and point readers to Section 6.1 for experimental evaluation
and comparisons.

Private Set Intersection (PSI). By plugging RB-OKVS into known PSI frameworks, we imme-
diately obtain improved constructions for semi-honest, malicious and circuit PSI over prior state-
of-the-art [65]. For semi-honest, our protocol with RB-OKVS has 12% reductions in communication
and 13% reductions in monetary cost in exchange for slightly larger latencies. We also obtain 10%
less communication and 11% smaller costs for malicious PSI using RB-OKVS. Our circuit PSI also
enjoys 12% smaller communication and 9% less monetary cost with slightly more computation.
For all three variants, our PSI protocols also obtain the fastest latencies when considering more
network constrained settings due to the smaller communication requirements (see Section 6.2).

Private Set Union (PSU). A recent work by Zhang et al. [75] presented a new PSU protocol
with linear communication and computation costs. As a core component, this PSU protocol utilizes
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Rate Encoding Decoding

Polynomial 1 O(n log2 n) O(n)

Random Matrix [38] 1 O(n3) O(n)

Bloom Filter [34] O(1/λ) O(nλ) O(λ)

PaXoS [60] 0.4 O(nλ) O(λ)

3H-GCT [38] 0.77-0.81 O(nλ) O(λ)

RR22 [65] 0.78-0.81 O(nλ) O(λ)

Ours: RB-OKVS 0.91-0.97 O(nλ) O(λ)

Figure 1: OKVS constructions with error probability 2−λ and costs for encoding n key-value pairs
and decoding one value.

a slightly modified version of the 3H-GCT OKVS [38]. We show that, by plugging in RB-OKVS,
we can obtain a PSU protocol with up to 22% smaller communication and 37% less computation
(see Section 6.3).

Volume-Hiding Encrypted Multi-Maps (VH-EMM). Finally, we explore the utility of OKVS
beyond PSI and PSU. We show the first connection between OKVS and VH-EMM. A VH-EMM
enables outsourcing an encrypted multi-map to an untrusted server without revealing the number
of values (volume) corresponding to any key. Multiple important applications rely upon VH-EMM
including searchable encryption [71] and encrypted databases [49]. We present RB-MM that is
built directly from RB-OKVS. Compared to state-of-the-art constructions [74], RB-MM uses 16%
less storage, has 5x smaller query times and 8x smaller setup times while maintaining optimal
communication (see Section 5).

2 Preliminaries

Throughout the paper, we will denote any vector v as column vectors and its transpose v⊺ as
row vectors. Vectors written as [x1, . . . , xn] will be row vectors and its transpose [x1, . . . , xn]

⊺

will be column vectors. For two equal-length vectors u,v ∈ Fn, we denote the dot product as
u · v =

∑n
i=1 u[i] · v[i]. We denote a n × m matrix with n rows and m columns as M ∈ Fn×m.

For a matrix M ∈ Fn×m and a vector v ∈ Fm, we denote the matrix-vector product as M · v =
[M[1] · v, . . . ,M[n] · v]⊺ where M[i] ∈ Fm is the i-th row of M. We say that we solve the linear
system corresponding to matrix M ∈ Fn×m and vector u ∈ Fn if we can find a vector v ∈ Fm such
that M · v = u.

2.1 Oblivious Key-Value Stores (OKVS)

We define the notion of oblivous key-value stores (OKVS) introduced by Garimella et al. [38]. At
a high level, an OKVS enables encoding n pairs of key-value pairs such that an adversary is unable
to reverse engineer the original input keys when given the encoding, assuming the input values are
random. In other words, the encoding is oblivious to the input keys.

Definition 1 (Oblivious Key-Value Store). An oblivious key-value store (OKVS) is parameterized
by a key universe K and value universe V and consists of the two functions:
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• S ← Encode(I;R): The encode algorithm receives a set of n key-value pairs I = {(k1, v1),
. . . , (kn, vn)} ∈ (K × V)n with n distinct keys and randomness R and outputs the encoding
S ∈ Vm ∪ {⊥}.

• v ← Decode(S, k;R): The decode algorithm receives the encoding S ∈ Vm, a key k ∈ K and
randomness R and outputs the associated value v ∈ V.

An OKVS has error probability ϵ if, for all sets of n key-value pairs I = {(k1, v1), . . . , (kn, vn)} ⊆
(K × V)n with n distinct keys, the following holds for all i ∈ [n]:

Pr[Decode(S, ki) ̸= vi | S← Encode(I)] ≤ ϵ.

An OKV S is computationally oblivious, if for all pairs of sets of n distinct keys A = {k1, . . . , kn} ⊆
K and B = {k′1, . . . , k′n} ⊆ K and n values v1, . . . , vn each drawn uniformly at random from V, then
a computational adversary cannot distinguish between the following two encodings:

1. S← Encode({(k1, v1), . . . , (kn, vn)}).

2. S′ ← Encode({(k′1, v1), . . . , (k′n, vn)}).

As a note, there are no guarantees for the case of executing Decode on a key k that is not an
input key.

Efficiency Measures. When evaluating the efficiency of an OKVS, there are typically three
important measures: rate, encoding cost and decoding cost. The rate is computed as the number
of key-value pairs n divided by the size of the encoding m, that is, n/m. The best possible rate is 1
when the encoding has optimal size n. The encoding cost is the computational overhead required to
encode an input of n key-value pairs and the decoding cost is the computational overhead required
to decode the value associated to a single key.

Additional Properties. On top of correctness and obliviousness, it is convenient in many ap-
plications such as PSI and PSU for an OKVS to satisfy additional properties. We will build our
OKVS construction to satisfy all these properties to enable wide applicability to various problems.

The first property of linearity concerns the structure of the decode algorithm that was shown
to be useful for PSI [38]. An OKVS is linear if the decode algorithm is a linear combination of a
subset of the encoding entries.

Definition 2 (Linear). An OKVS is linear if there exists a function d : K → Vm such that for all
k ∈ K and S ∈ Vm

Decode(S, k) =
m∑
i=1

d(k)[i] · S[i].

A special case of linearity is a binary OKVS [38] that is useful for certain PSI protocols. In a
binary OKVS, the decode algorithm is just the sum of a subset of encoding entries (the function
d maps to a binary string, d : K → {0, 1}m). We do not rely on the binary property in our paper,
but note that our OKVS satisfies the property that may be useful in the future.

The next property is a strengthening of security denoted as being doubly oblivious where the
output of the encoding is required to be a uniformly random element from Vm. This was shown to
also be useful for circuit PSI in [65, 68]. Note that being doubly oblivious directly implies being
oblivious as, if the output encoding is an uniformly random element, no adversary may distinguish
two different output encodings.
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Definition 3 (Doubly Oblivious). An OKVS is doubly oblivious if, for all sets of n distinct keys
{k1, . . . , kn} ⊆ K and n values v1, . . . , vn each drawn uniformly at random from V, the encoding
Encode({(k1, v1), . . . , (kn, vn)}) is statistically indistinguishable from an uniformly random element
in Vm.

Finally, the last property is random decodings where the decoded value for a non-input key
must be indistinguishable from an uniform random element from V. This property was shown to
be useful in building PSU protocols [75].

Definition 4 (Random Decodings). An OKVS satisfies random decodings if, for all sets of n
distinct keys A = {k1, . . . , kn} ⊆ K, n values v1, . . . , vn each drawn uniformly at random from V,
the output of Decode(S, k) for key k /∈ A is statistically indistinguishable from an uniformly random
element in V where S← Encode({(k1, v1), . . . , (kn, vn)}).

3 OKVS Construction

In this section, we present our construction of random band oblivious key-value stores (RB-OKVS)
that are inspired by the family of random band matrices [33]. Additionally, we show a general
connection between OKVS and families of random matrices that satisfy certain properties.

3.1 Construction

We start by presenting our construction of RB-OKVS that is parameterized by the number of input
keys n, the encoding size m = (1 + ϵ)n for some small constant ϵ > 0 and a width parameter w.
Furthermore, we will assume that the value universe is a field, V = F.

High-Level Overview. During the encoding process, RB-OKVS will receive an input of n key-
value pairs with n distinct keys, I = {(k1, v1), . . . , (kn, vn)} ∈ (K× F)n. At a high level, the goal is
to construct a matrix M ∈ {0, 1}n×m using the set of input keys {k1, . . . , kn}. The i-th row of M,
denoted by M[i] ∈ {0, 1}m, will be generated using the i-th input key, ki. More formally, we will
use a hash function r : K → {0, 1}m such that the matrix M is defined as

M =


r(k1)

⊺

r(k2)
⊺

. . .
r(kn)

⊺

 .

We will describe how each row of M is generated later. Before that, we show how to construct
the encoding s using M and the input set of key-value pairs I and nice properties we would like
to obtain when defining r. Going forward, we will interpret the encoding as a length m vector of
elements, Fm.

The goal of the encoding algorithm is to find s satisfying

M · s = [v1, v2, . . . , vn]
⊺

by solving the system of linear equations. For the decoding algorithm, consider any key k ∈ K
and the encoding s ∈ Fm that was produced by the above encoding. The decoding algorithm
first computes the row vector associated to k, r(k) ∈ {0, 1}m. Afterwards, the decoding algorithm
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computes and returns the dot product r(k) · s. By our choice of encoding such that M · s =
[v1, . . . , vn]

⊺, we know that if k = ki, then r(k) is the i-th row of M, M[i]. As a result,

r(k) · s = r(ki) · s = M[i] · s = vi

meaning the decoding algorithm correctly returns vi.
We chose the above structure for our OKVS construction as it is essentially required to satisfy

the linearity property needed in PSI applications. For linearity, we see that the decoding algorithm
is the dot product of a vector pseudorandomly generated from the query key r(k) and the encoding
s. In fact, we will later show that all linear OKVS schemes must satisfy the same structure as
RB-OKVS (see Section 3.2).

Choosing matrix M. Before describing our construction, we first describe the desirable properties
of the matrix M. First, we need that M has full row rank with high probability. Otherwise, it is
impossible to find an encoding s satisfying M · s = [v1, . . . , vn]

⊺. Additionally, we want that solving
for s such that M · s = [v1, . . . , vn]

⊺ is efficient. This is important as generic algorithms for solving
systems of equations require at least O(n2), and typically O(n3), time. In other words, we want to
construct random matrices M that are efficiently solvable except with very small probability.

To satisfy these requirements, we will construct our matrix M ∈ {0, 1}n×m using the random
band matrix constructions of Dietzfelbinger and Walzer [33]. Random band matrices are generated
by ensuring that each row consists of a short random band of width w. All entries outside of the
short band will be zero. In more detail, each row is generated by, first, choosing a random entry
for the start of the band. Afterwards, a uniformly random w-bit string from {0, 1}w is chosen and
embedded at the chosen starting entry. The remaining m− w entries are all set to be 0.

Random band matrices are special because they are equipped with a simple and efficient algo-
rithm that enables solving the system in O(nw+n log n) time. First, the system solving algorithm
sorts the rows of M by the location of the first non-zero entry in the row. Next, one can employ
Gaussian elimination with back substitution on the sorted matrix. The key insight is that, during
Gaussian elimination, the back substitution only needs to consider a small subset of columns for
each row that will be in or nearby the w-bit random band. Furthermore, any columns that do not
appear in any row’s random band will essentially be skipped as every entry in the column will be
zero. As a result, solving the linear system can be done extremely efficiently as we will show later.

With our choice of matrix M, we are now ready to formally present the encoding and decoding
algorithms for RB-OKVS.

Encoding. The encoding algorithm of RB-OKVS is formally presented in Algorithm 1 that uti-
lizes the structure of random band matrices described above. The encoding algorithm receives an
input set of n key-value pairs with n distinct keys, I = {(k1, v1), . . . , (kn, vn)} and randomness R.
Additionally, recall that RB-OKVS is parameterized by the encoding size m = (1 + ϵ)n and width
parameter w to generate matrix M.

First, the algorithm will use two random keys R1 and R2 from {0, 1}λ stored in the input
randomness R. These will be used for two random hash functions: H1 : {0, 1}λ×K → {1, 2, . . . ,m−
w} and H2 : {0, 1}λ × K → {0, 1}w. H1 will be used to generate the starting location of the band
and H2 will be used to generate the contents of the w-bit band. If H1 and H2 are random oracles,
we can forego the keys R1 and R2.

Next, we construct the function r : K → {0, 1}m as follows. To compute r(k), we first compute
H1(R1, k) ∈ {1, 2, . . . ,m − w} for the starting location and H2(R2, k) ∈ {0, 1}w for the contents
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Algorithm 1 RB-OKVS.Encode algorithm

Input: I = {(k1, v1), . . . , (kn, vn)}, R: n key-value pairs with n distinct keys and randomness.
Output: s: encoding of I.
Parse R = (R1, R2) ▷ R1, R2 ∈ {0, 1}λ are hash keys.
Initialize M as mapping from indices to non-zero entries.
for i = 1, . . . , n do

ai ← H1(R1, ki)
ui ← H2(R2, ki)
for j = 1, . . . , w do

M[i][ai + j − 1]← ui[j]
end for

end for
Sort rows of M according to first non-zero location.
Execute Gaussian elimination with back substitution to solve for s such that M ·s = [v1, . . . , vn]

⊺

(free variables are sampled at random for double obliviousness).
if s cannot be computed then

return s
$←− Fm ▷ Sample random encoding

end if
return s

of the random band. Then, we set r(k)[H1(R1, k) + i − 1] = H2(R2, k)[i] for all i ∈ [w] and set
r(k)[j] = 0 for all 1 ≤ j < H1(R1, k) and for all H1(R1, k) + w < j ≤ m. In other words, r(k) is a
row with a random w-bit band embedded in a random location.

For any n key-value pairs I = {(k1, v1), . . . , (kn, vn)}, we encode I in the following way. First,
we compute M by setting the i-th row as M[i] = r(ki) for all i ∈ [n]. Next, we solve for s satisfying
M · s = [v1, . . . , vn]

⊺ by, first, sorting the rows by the starting location of the first non-zero entry
in the row and, then, performing Gaussian elimination with back substitution. If the linear system
cannot be solved, then the encoding algorithm returns an uniformly random element from Fm.
Otherwise, the encoding algorithm returns s.

We note that the encoding algorithm will never store M explicitly. As only nw entries are
non-zero, we can store M as a map from indices to non-zero entries using O(nw) space.

Decoding. The decoding algorithm of RB-OKVS is formally defined in Algorithm 2. As input,
the decode algorithm receives the encoding s, the query key k ∈ K and the randomness R. Using
R = (R1, R2), the decoding algorithm can construct the same random functions H1 and H2.

To decode the value associated with query key k, we first compute H1(R1, k) and H2(R2, k).
Next, we compute the following dot product between the w-bit vector H2(R2, k) and a consecutive
w-bit subsequence of s as follows:

w∑
i=1

H2(R2,k)[i] · s[H1(R1, k) + i− 1].

Note, this computation is equivalent to computing r(k)·s as we know that, for all 1 ≤ j < H1(R1, k)
and H1(R1, k) + w < j ≤ m, the j-th entry of r(k) is zero, r(k)[j] = 0.

To see correctness, we note that if k = ki, then we know that r(k) = r(ki) = M[i]. The response
of the decoding algorithm is r(k) · s = M[i] · s. Assuming that the encoding algorithm returned s
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Algorithm 2 RB-OKVS.Decode algorithm

Input: s, k, R: encoding, key and randomness.
Output: v: value associated with k.

Parse R = (R1, R2) ▷ R1, R2 ∈ {0, 1}λ are hash keys.
a← H1(R1, k)
u← H2(R2, k)
v ← 0
for j = 1, . . . , w do

v ← v + (u[j] · s[a+ j − 1])
end for
return v

satisfying M · s = [v1, . . . , vn]
⊺, the decoding algorithm returns the right answer as M[i] · s = vi.

(Doubly) Obliviousness. One important property for circuit PSI is being doubly oblivious where
the output encoding must be indistinguishable from an uniformly random element of Fm. We show
that RB-OKVS is indeed doubly oblivious. Recall (from Section 2.1) also that doubly obliviousness
implies obliviousness.

Recall that while solving for s satisfying M ·s = [v1, . . . , vn]
⊺ in the encoding algorithm, the last

step is to perform Gaussian elimination with back substitution. In this process, since the number
of columns m is greater than the number of rows n, we are left with some free variables in s, whose
values we can choose arbitrarily. To obtain doubly obliviousness, we choose these values randomly
(whereas before, we could set them to, say, 0 for efficiency). Then, starting from row n to row 1, back
substitution solves for the lead variables si of each row j (i.e., the first non-zero entry in each row j)
in terms of previously chosen si′ , i

′ > i, and some subset {vj1 , . . . , vjk} ⊆ {v1, . . . , vn}, containing
vj . Since, vj is chosen uniformly at random according to the definition of double obliviousness, si
will be distributed uniformly, regardless of all other values si′ , i

′ > i, and vjl ̸= vj . Thus, it is clear
that this construction satisfies double obliviousness.

Analysis. We start by analyzing the correctness of RB-OKVS. The decoding algorithm works
correctly assuming that the matrix M is solvable. For w = O(log n), it was shown that M is
solvable in time O(nw) except with probability O(1/n) (see [33]). In Appendix A, we extend this
result to larger bands to show that for any w = O(λ), the matrix M is solvable in time O(nλ)
except with probability 2−λ. For concrete instantiations of parameters m and w, see Section 6.1.

For the efficiency of RB-OKVS, we start with the encoding. The first step of the encoding
algorithm is to sort the rows by the starting index of the random band that can be done in
O(n log n) time using radix sort. Note, the total time becomes O(nλ) as λ = ω(log n) to obtain
negligible error. Next, the encoding algorithm solves the system of equations defined by the matrix
M that requires O(n) time for sorting as all column indices are elements in [m] = [(1 + ϵ)n] and
O(nw) time for Gaussian elimination for a total of O(nw) time. Decoding requires time O(w) as
it computes a dot product of two w-length vectors.

For the additional properties, we already outlined why RB-OKVS is linear and doubly oblivious.
As M is binary, we note that RB-OKVS is also binary. For random decodings, we note that each
element in s is an uniformly random element from F since RB-OKVS is doubly oblivious. For any
key k, as long as r(k) contains at least one non-zero entry, then the decoding result is a random
element in F. We note that r(k) contains a w-bit random binary string that will be all 0 only with

8



probability 2−w.
We show that RB-OKVS satisfies the following:

Theorem 1. If w = O(λ/ϵ + log n) and m = (1 + ϵ)n for some ϵ > 0, then RB-OKVS is an
OKVS with error probability 2−λ, encoding time O(nw) and decoding time O(w). Assuming random
oracles, RB-OKVS is oblivious and doubly oblivious with random decodings except with probability
2−w. Finally, RB-OKVS is both binary and linear.

The full proof of this theorem may be found in Appendix A.

Word Operations. In practice, we note that w is quite small and can fit into a constant number
of words. As a result, we can utilize SIMD operations to perform row additions requiring O(w) time
using only O(1) word operations. The encoding and decoding times of RB-OKVS can be viewed as
linear, O(n), and constant, O(1), respectively in practical settings. We will utilize SIMD operations
for RB-OKVS in our implementations (see Section 6.1).

Cache Efficiency. As identified in [65], an important measure of efficiency for OKVS constructions
is the cache efficiency. For large amounts of data where the CPU cache can no longer store the
entirety of the data, the OKVS must retrieve missing data from slower main memory.

RB-OKVS was designed to be cache-friendly. Recall that the encoding algorithm requires sorting
and performing Gaussian elimination. For sorting, we choose a cache-friendly algorithm. For
Gaussian elimination, rows are processed in sequential order (without random access) meaning
that data can be fetched with the minimal number of main memory lookups. For decoding, only
a consecutive subsequence of w elements are required for decoding any key. These are key reasons
that the computational cost of RB-OKVS is small. See Section 6.1 for experimental evaluation.

Binary vs. Non-Binary. In our construction, we use random band matrices where entries are
either 0 or 1. A natural extension would be to consider bands where each entry is a random element
from a field F. In practice, binary random band matrices are more efficient as solving the linear
system will mainly use bit-wise operations (such as XOR) whereas band matrices with random field
elements will need to use field operations that are slower in practice.

3.2 Connection with Random Matrices

In this section, we show that one can generalize our above construction for general families of
random matrices. Additionally, we show that the structure of RB-OKVS that solves a linear system
of equations for some binary matrix M is required for any linear OKVS like RB-OKVS.

General Framework. We show that we can generalize the construction of RB-OKVS by replacing
random band matrices with random binary matrix families satisfying special properties. Let F =
{M1, . . . ,Mℓ} ⊆ {0, 1}n×m be a matrix family that is equipped with an algorithm AF that, given
Mi and v ∈ Fn, outputs AF (Mi,v) = s such that Mi · s = v. Additionally, suppose there is a
random mapping rF : K → {0, 1}m from keys to row vectors. Furthermore, for any set of n keys
{k1, . . . , kn}, the following matrix M is a member of F :

M =


rF (k1)

⊺

rF (k2)
⊺

. . .
rF (kn)

⊺

 .
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We can construct F-OKVS by essentially replacing the row generating function r and algorithm for
solving random band matrices in RB-OKVS with the above mapping rF and algorithm AF . Any
improved constructions of these matrix families would immediately imply better OKVS schemes.

Known Matrix Families. Beyond random band matrices, we note that there are other known
matrix families satisfying the requirements. Garimella et al. [38] used the framework above to
construct an OKVS with the family of uniformly random binary matrices. While random binary
matrices only require m = n + O(log n) to ensure solvability, the best known solving algorithm
requires O(n3) time in practice. Raghuraman and Rindal [65] constructed another such matrix
family for their OKVS scheme. To our knowledge, random band matrices [33] remain the most
efficient to date.

Optimality of Approach. An interesting question is whether the above framework of using these
random binary matrix families is optimal. For example, is it possible to construct better OKVS
using a different encoding algorithm? For the case of linear OKVS, we show that there is no such
better approach and that finding such matrix families is equivalent to building a linear OKVS.

To see why, we can analyze the properties of an OKVS being linear. For an input I =
{(k1, v1), . . . , (kn, vn)}, suppose a binary and linear OKVS outputs encoding s. Then, there ex-
ists some function d : K → Fm such that d(ki) · s = vi for all i ∈ [n]. Consider the matrix

M =


d(k1)

⊺

d(k2)
⊺

. . .
d(kn)

⊺

 ∈ Fn×m

and note that it satisfies M · s = [v1, . . . , vn]
⊺. Furthermore, the Encode algorithm immediately

provides an algorithm for solving linear systems associated with these matrices. In other words,
any linear OKVS immediately emits a family of random matrices that are efficiently solvable (see
Appendix B for more details). If we consider OKVS schemes that are both linear and binary, then
the same arguments holds for families of random binary matrices.

4 OKVS for Private Set Operations

In this section, we outline important applications of the OKVS primitive beyond volume-hiding
multi-maps. In particular, we will describe prior works that have used the OKVS primitive for
various private set operations.

Private Set Intersection (PSI). Prior works [38, 65] identified that OKVS are integral for
building efficient PSI protocols. In [38], it was shown that PSI with both semi-honest and malicious
security may be built using any linear OKVS. A technique from [68] can further improve this
maliciously secure protocol to have essentially no overhead compared to its semi-honest variant.
Finally, it was shown that circuit PSI protocols can be built from any doubly oblivious OKVS [65].

By plugging in RB-OKVS as the underlying OKVS to the above frameworks, we obtain our new
semi-honest, malicious and circuit PSI protocols reducing total communication and monetary cost
(see Section 6.2). Formal functionalities of cryptographic primitives related to PSI and descriptions
of the PSI constructions using an OKVS may be found in Appendix D.

Private Set Union (PSU). OKVS have also been shown to be important for building PSU
protocols [55, 75]. In particular, the state-of-the-art PSU protocol is built using OKVS with the
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Server Storage Request Response

DST [50] O(n) O(1) O(ℓ log n)

dprfMM [58] (2 + ϵ)n O(1) 2ℓ

S4 [73] 2n O(1) ℓ

XorMM [74] 1.23n O(1) ℓ

Ours: RB-MM 1.03n O(1) ℓ

Figure 2: Comparison of lossless VH-EMM constructions.

random decodings property [75]. Using RB-OKVS, we obtain our new PSU protocol with improved
communication, computation and monetary cost (see Section 6.3). A formal description of the PSU
functionality and construction from OKVS may be found in Appendix E.

Other Applications. We note that the above applications of intersection and union are two of the
simplest private set operations where OKVS are integral. We also expect that the OKVS primitive
will be important for more complex set operations that we leave to future work.

5 Volume-Hiding Encrypted Multi-Maps

We show that one can build a volume-hiding encrypted multi-map (VH-EMM) using any OKVS. To
our knowledge, this is the first connection between VH-EMM and OKVS. Plugging RB-OKVS into
our framework, we also obtain state-of-the-art volume-hiding encrypted multi-maps (see Figure 2).

Encrypted Multi-Maps (EMM). To start, we define encrypted multi-maps (EMM) that is a
form of structured encryption [24] where the goal is to outsource data to an untrusted server while
still being able to query the data. For privacy, all information about the data should be hidden
except some well-defined and sensible leakage function.

For an EMM, the data is represented as a multi-map consisting of pairs of keys and value tuples,
I = {(k1,v1), . . . , (kn,vn)} ∈ {K × V∗}n. Each key may be associated to multiple values unlike in
an OKVS. An EMM should also support querying the value tuple for any key k ∈ K.

The study of EMMs is important due to its use in several applications. An EMM may be used
as an encrypted index for searchable encryption [71] over corpora of encrypted documents and SQL
queries over encrypted databaes [49].

Volume-Hiding EMMs (VH-EMM). An important line of work is to understand the implica-
tions of leakage functions using attacks for specific leakage profiles [46]. To protect against these
attacks, the notion of a volume-hiding EMM, VH-EMM, was introduced [50] where the goal is to
guarantee that the number of values (volume) associated with any key is hidden from the server.
VH-EMM protect against any abuse attacks that rely on volume leakage. We point readers to
Section 7 for more discussion on related works.

5.1 Construction

We show that we can construct our VH-EMM, RB-MM, using RB-OKVS = (Encode,Decode). Al-
though, one can use any OKVS satisfying random decodings to replace RB-OKVS. The pseudocode
of our constructions for the setup and query algorithm are found in Algorithm 3 and 4 respectively.
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Algorithm 3 RB-MM.Setup algorithm

Input: I = {(k1,v1), . . . , (kn,vn)}: input multi-map
Output: st,EMM: client state and encrypted multi-map

Sample random keys KF and KE

I ′ ← []
for i = 1, . . . , n do

hi ← F(KF , ki)
for j = 1, . . . , |vi| do

ai,j ← hi || j
bi,j ← Enc(KE , hi || vi[j])
I ′ ← I ′ ∪ {(ai,j , bi,j)}

end for
end for
Sample random keys R← (R1, R2)
EMM← RB-OKVS.Encode(I ′, R)
st← (KF ,KE)
return (st, (EMM, R))

Setup. Given input I = {(k1,v1), . . . , (kn,vn)} with maximum volume ℓ, the setup algorithm
first samples PRF and encryption keys KF and KE . Next, all input keys are hashed and all value
tuples are encrypted. Finally, the input set is flattened such that each value is keyed by the original
key and the value’s index in the tuple. For example, the j-th value in the i-th pair, (ki,vi[j]) is
converted into the following pair:

(F(KF , ki) || j,Enc(KE ,vi[j]))

where Enc is an authenticated encryption scheme. Denote the flattened set I ′. Then, we encode
using the OKVS, EMM = RB-OKVS.Encode(I ′, R), that is sent to the server where R is randomness
generated by the client and also shared with the server.

Query. To query for a key k ∈ K, the client uploads the PRF evaluation F(KF , k) to the server.
The server executes the decoding algorithm of the OKVS ℓ times as follows:

{RB-OKVS.Decode(EMM,F(KF , k) || i, R) | i ∈ [ℓ]}

and returns the ℓ responses to the client. The client decrypts the ℓ responses and ignores all failed
decryptions.

Discussion about Prior Works. In the above, we showed that one can build an VH-EMM using
any OKVS. To our knowledge, this is the first connection between the two primitives. However,
we note that prior works have implicitly used similar ideas with close variants of known OKVS.
For example, XorMM [74] utilized a very close variant of 3H-GCT [38] from cuckoo hashing with
3 hash functions. In this work, we make this connection between VH-EMM and OKVS explicit.
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Algorithm 4 RB-MM.Query algorithm

Input: k, st,EMM, R: query key, client state, encrypted multi-map and randomness
Output: v: value tuple

Parse st = (KF ,KE) ▷ Executed by client
h← F(KF , k)
Send h to server

X ← [] ▷ Executed by server
for i = 1, . . . , ℓ do

xi ← RB-OKVS.Decode(EMM, h || i, R)
X ← X ∪ {xi}

end for
Send X to client

Parse X = (x1, . . . , xℓ) ▷ Executed by client
v← []
for i = 1, . . . , ℓ do

yi ← Dec(KE , xi)
If yi does not start with h, terminate loop.
v← v ∪ {yi}

end for
return v

5.2 Analysis

Efficiency. Consider an instantiation of RB-OKVS by setting w = O(λ) to obtain 2−λ error
probability. First, we note that the resulting EMM has size 1.03n that is a 16% improvement
over 1.23n of the best prior work [74]. For query communication, only a single PRF evaluation is
uploaded and exactly ℓ values are downloaded. The query time is O(ℓλ) as we perform ℓ decode
operations. See Figure 2 for comparisons.

Correctness. For correctness, we only need to rely on the random decodings property of RB-OKVS.
For any non-input key, we note that the decryption of the authenticated encryption scheme succeeds
only with negligible probability.

Security and Volume-Hiding. For volume-hiding, we note that RB-OKVS guarantees that the
server cannot learn the input keys for random values. As all values are encryptions, we know they
are computationally indistinguishable from random for the server. As a result, the server cannot
learn the input keys and, thus, the volumes associated with any key k ∈ K. We formalize the
security using the following leakage function L(I,Q) for any input I and query sequence Q ∈ K∗.
L(I) consists of the following:

1. Multi-map size: |I| = |v1|+ |v2|+ . . .+ |vn|

2. Maximum volume: ℓ

3. Key-equality matrix: M ∈ {0, 1}|Q|×|Q| such that M [i][j] = 1 if and only if Q[i] = Q[j].
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The first two are the outputs of LSetup while the last is output of LQuery. We note this is the
identical leakage as the VH-EMM in prior works including [50, 58, 73, 74].

We show that RB-MM is adaptively secure for this leakage and that this leakage function is
volume-hiding as defined in [58]. The formal proof can be found in Appendix C.

Theorem 2. Assuming random oracles, RB-MM is adaptively secure with respect to L and L is
volume-hiding.

6 Experimental Evaluation

In this section, we perform experiments to evaluate RB-OKVS as well as the application of RB-OKVS
to multiple cryptographic primitives including private set intersection (PSI), private set union
(PSU) and volume-hiding encrypted multi-maps (VH-EMM).

Experimental Setup. We conducted our experiments using Ubuntu PCs with 12 cores, 3.7
GHz Intel Xeon W-2135 and 64 GB of RAM 1. We use the AVX2 and AVX-512 instruction sets
with SIMD instructions enabled and only single-threaded execution. All reported results are the
average of at least 10 experimental trials with standard deviation less than 10% of the averages.
Monetary costs are computed using Amazon EC2 pricing of t2.2xlarge instances [2] of $0.09 per
GB of outbound traffic and $0.014 per CPU hour at the time.

Security Level and Error Probability. In our constructions and experiments, we will choose
parameters appropriately to ensure 40 bits of statistical security and 128 bits of computational
security (following [65]). Parameters will be chosen such that the OKVS error probability is at
most 2−40.

6.1 Oblivious Key-Value Stores

First, we perform experiments to pick concrete parameters for RB-OKVS to obtain the desired
security and error probabilities. Afterwards, we compare with prior OKVS schemes.

Concrete Instantiation. We evaluate the concrete failure probability guarantees provided by
RB-OKVS. Recall that RB-OKVS consists of two main parameters: the encoding size m = (1+ ϵ)n
and the band length w. For any choices of ϵ and w, we will aim to determine the statistical security
parameter λ such that the failure probability of RB-OKVS is at most 2−λ. Afterwards, we pick
parameters to obtain λ = 40.

To do this, we use an analytical evaluation similar to prior OKVS works (such as [65]). We will
consider choices of w for small security parameters λ. In particular, we verify our parameters by
seeing that the slope of security parameter to band length (λ/w) is consistent for smaller security
parameters giving us confidence that the slope will remain the same for larger security parameters
that we cannot verify. In Figure 3, we present the statistical security parameter λ as a function
of the band length w for various choices of ϵ ∈ {0.03, 0.05, 0.07, 0.1} resulting in rates of 0.91-0.97.
We also plot dotted lines representing extrapolated lines for larger security parameters. For a
fixed ϵ, the growth of λ with respect to ϵ seems to be the same for any n suggesting that the
slope depends only on ϵ. This corroborates with our theoretical analysis in Theorem 1 stating that

1The RB-OKVS code is open sourced at https://github.com/google/private-membership/tree/main/

research/okvs.
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Figure 3: Security parameters based on band lengths with extrapolated lines based on linear
regression on sampled data points.

w = O(λ/ϵ+log n) is required to obtain λ statistical security. In other words, we can re-arrange this
as λ = O(ϵ·w−log n) and the slope (λ/w) depends only on ϵ. We plot the slopes (λ/w) for various ϵ
and n in Figure 4. It can be observed that the plots for various choices of n ∈ {210, 214, 216, 218, 220}
are essentially the same further exhibiting that the slope depends exclusively on ϵ. In particular,
we can estimate the slope as being 2.751ϵ, and get the following formula to pick w for specific λ:

λ = 2.751ϵw + g(ϵ, n) :

Above, g is a function for the y-intercepts. To get an idea on how g behaves, we plot the y-intercepts
of the best fit lines in Figure 5. Looking at this plot, it’s not clear how we can approximate it as
a general function that will give us a pessimistic lower bound on λ. Instead, we take the following
approach: for fixed values of ϵ and n, we run the failure probability experiment to obtain (small)
λ for an arbitrary choice of the band width w. Then, we plug in these values to the equation
λ = 2.751ϵw + g(ϵ, n) to obtain the value of g(ϵ, n), and use this as our choice of the y-intercept.
We point out that for n = 224 in our experimental evaluation, we have precisely used this procedure
to compute the band width that gives us λ = 40 bits of security.

We provide the best fit lines from our experiments in Appendix F for reference and future
usage.
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Finally, we revisit the case of trying to choose both ϵ and w given fixed choices of input size
n and target statistical security λ. In general, ϵ is the main parameter that enables trade-offs
between the rate and encoding/decoding times of RB-OKVS. For small encoding sizes (i.e., high
rate), one should try to fix small choices of ϵ such as 0.03-0.05 and, then, run the strategy above to
pick a sufficient w for the target security level λ. In contrast, if one wishes for an instantiation of
RB-OKVS with fast encoding/decoding times, then one can pick larger values of ϵ such as 0.07-0.1.
We use this strategy to obtain various protocols that perform better in different network settings
for PSI in Section 6.2.

Comparison. Next, we compare RB-OKVS with prior constructions of OKVS: 3H-GCT [38] and
RR22 [65]. To evaluate our OKVS construction RB-OKVS, we consider four different choices of
ϵ ∈ {0.03, 0.05, 0.1, 0.15}. For 3H-GCT [38], we evaluate both their standalone construction as well
as one that amplifies security using their star architecture. For RR22 [65], we also evaluate two
constructions with different encoding sizes (rates) of 1.28n (0.78) and 1.23n (0.81). We denote
these two constructions as RR22 (fast) and RR22 (small) respectively. To our knowledge, RR22
(small) [65] is the best rate achievable by prior works with linear encoding times. All constructions
target 40 bits of statistical security. RB-OKVS and RR22 [65] consider 128-bit elements while
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Construction Encoding Size (Rate) Encode (ms) Batch Decode (ms) Total (ms)
216 220 224 216 220 224 216 220 224

3H-GCT [38] 1.3n (0.77) 383 9,009 166,734 203 3,573 63,547 586 12,582 230,281
3H-GCT [38] (star) 1.32n (0.76) 460 5,388 - 309 5,532 - 769 10,920 -
RR22 [65] (fast) 1.28n (0.78) 20 188 2,710 3 49 989 23 237 3,699
RR22 [65] (small) 1.23n (0.81) 24 540 9,874 2 50 782 26 590 10,464

Ours: RB-OKVS (ϵ = 0.03) 1.03n (0.97) 24 365 6,698 10 168 3,170 34 533 9,868
Ours: RB-OKVS (ϵ = 0.05) 1.05n (0.95) 14 232 3,911 7 115 2,311 21 347 6,222
Ours: RB-OKVS (ϵ = 0.1) 1.10n (0.91) 12 148 2,159 6 109 1,658 18 257 3,817
Ours: RB-OKVS (ϵ = 0.15) 1.15n (0.87) 12 133 1,958 5 103 1,557 17 236 3,515

Figure 6: Comparison of RB-OKVS and prior OKVS constructions with 40 bits of statistical
security. Elements are 128 bits for our constructions and RR22 [65] and 64 bits for 3H-GCT [38].
Total is the sum of the encode and batch decode times. Bolded numbers mark the best values.

3H-GCT [38] considers only 64-bit elements. All results are presented in Figure 6 including the
encoding size (rate) as well as the encoding, batch decoding and total times. By batch decoding,
we mean that all n input keys are decoded.

First, we see that the encoding size and rate of all four instantiations of RB-OKVS are better
than all instantiations of 3H-GCT [38] and RR22 [65]. The smallest instantiation of RB-OKVS with
ϵ = 0.03 achieves near-optimal rate of 0.97. Even with this significant size improvement, the total
running time of this instantiation is 17-23x faster than 3H-GCT. Compared to RR22 (small), the
total time of RB-OKVS (ϵ = 0.03) is slightly faster than RR22 (small), but slower than RR22 (fast).
In our opinion, this still seems like a reasonable trade-off given that this instantiation of RB-OKVS
(ϵ = 0.03) has 20% smaller encoding size than RR22 (fast).

Next, we also show the flexibility of RB-OKVS by presenting instantiations with larger rate but
faster running times. Instantiating RB-OKVS with larger ϵ will result in smaller running times.
This trade-off between rate and running time is achieved very efficiently by RB-OKVS. For any
desired rate of at most 0.97, RB-OKVS runs faster than any prior OKVS construction. This can
be seen by the fact that all four instantiations of RB-OKVS in Figure 6 have smaller total time
than the construction achieving the best rate of prior works, RR22 (small), even though all four
RB-OKVS instantiations achieve better rate than RR22 (small).

One drawback of RB-OKVS is that the decoding time is larger than RR22 [65]. This is inevitable
as decoding of RB-OKVS involves more entries compared to RR22 [65]. If one wishes for very fast
decoding, then RR22 remains better than RB-OKVS. However, we note that the encoding times
of RB-OKVS are significantly faster. The total time of all RB-OKVS instantiations remains faster
than RR22 (small).

Discussion about Small ϵ. In our experiments, we considered ϵ as small as 0.03 that results
in rate 0.97. One may wonder what happens if we considered very small ϵ approaching 0 towards
optimal rates of 1. As evidenced by above, the band length w will continue to increase rapidly as ϵ
decreases. The encoding and decoding times are directly related to the band length w. Therefore,
smaller ϵ will result in less efficient encoding and decoding algorithms. In the extreme case, if ϵ
becomes so small, the band length w will become as large as each row. For this setting, the resulting
matrix is essentially a uniformly random binary matrix that requires cubic time to solve the linear
system in practice.
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Construction Comm. (MB) 1 Gbits/sec 260 Mbits/sec 33 Mbits/sec
216 220 224 216 220 224 216 220 224 216 220 224

Semi-Honest PSI
KKRT16 [53] 8.06 132.12 2,164.26 137 2,073 53,933 2,309 12,568 - 10,220 146,067 -
PaXoS [60] 9.90 166.20 2,703.05 763 4,998 123,800 1,395 11,935 - 8,448 60,159 -
RS21 [68] 7.49 55.84 834.67 499 4,580 113,994 - - - - - -
3H-GCT [38] (star) 6.39 103.28 1,686.11 180 2,268 - 1,343 9,504 - 9,491 34,870 -
RR22 [65] 2.25 32.44 530.96 123 950 14,046 173 1,716 26,227 646 8,741 142,483

RB-OKVS (ϵ = 0.05) 2.05 28.48 466.80 138 1,955 20,284 197 1,962 31,096 624 8,153 131,964
RB-OKVS (ϵ = 0.1) 2.10 29.32 480.22 108 1,162 16,599 185 1,857 27,481 640 8,246 132,228
Malicious PSI
PaXoS [60] 14.47 231.47 3,703.57 769 5,196 126,294 2,119 12,042 - 8,152 60,771 -
RS21 [68] 7.86 62.19 918.55 556 5,228 132,951 - - - - - -
3H-GCT [38] (star) 11.12 177.86 2,845.83 184 2,291 - 1,343 9,504 - 9,491 34,870 -
RR22 [65] 2.71 38.73 614.85 112 1,044 14,959 190 1,886 29,056 763 10,364 162,776

RB-OKVS (ϵ = 0.05) 2.51 34.77 550.69 121 2,131 21,087 207 2,140 33,751 746 9,657 153,070
RB-OKVS (ϵ = 0.1) 2.56 35.61 564.11 131 1,247 17,512 208 2,026 30,419 750 9,811 152,190
Circuit PSI
RS21 [68] (IKNP) 179.31 1,918.89 - 1,810 25,300 - - - - - - -
RS21 [68] (SilentOT) 22.13 290.46 - 5,021 112,421 - - - - - - -
CGS22 [23] (IKNP+) 68.58 1,160.77 - 2,851 28,723 - - - - - - -
RR22 [65] (Silver) 7.56 120.65 - 1,304 17,689 - 1,350 18,002 - 1,684 22,475 -

RB-OKVS (ϵ = 0.05) 6.66 105.86 - 1,320 19,387 - 1,378 18,514 - 1,667 21,978 -
RB-OKVS (ϵ = 0.1) 6.81 108.22 - 1,319 17,999 - 1,365 18,217 - 1,675 22,025 -

Figure 7: Comparison of PSI protocols with all times reported in milliseconds. Numbers for all
protocols except RR22 and our PSI protocols using RB-OKVS are from prior works (1 Gbits/sec
from [65] and 260 Mbits/sec and 33 Mbits/sec from [38]). Our circuit PSI schemes using RB-OKVS
are built using Silver as the underlying OT. Bolded numbers mark the best values.

6.2 Private Set Intersection

In this section, we present experimental evaluations for our PSI protocols and compare with prior
works. We evaluate all the constructions across three network settings: fast networks with 1
Gib/sec, a medium network with 260 Mib/sec and a slow network with 33 Mib/sec (following [38,
65]).

The results of our experimental evaluations may be found in Figure 7. All our PSI constructions
plug our implementation of RB-OKVS into the PSI implementation of [65] found at [6]. For more
details formal descriptions, we point readers to Section 4 and Appendix D. For prior constructions
except RR22 [65], we use reported results from prior works (fast network results from [65] and
medium/slow network results from [38]). For [65], we execute the implementation found at [6].
All reported results for our PSI protocols from RB-OKVS and RR22 [65] were executed in our
experimental setup described in Section 6.1. All our results are presented in Figure 7. In Figure 8,
we present the monetary costs for PSI protocols in the fast network setting.

Semi-Honest PSI from RB-OKVS. As can be seen in Figure 7, the communication costs of our
PSI protocols using RB-OKVS are 8-12% smaller than RR22 [65]. This is unsurpising given that
RB-OKVS has higher rate than prior OKVS schemes. In slow network settings (33 Mb/s), our
PSI protocols are up to 8% faster than prior works due to the smaller communication. For faster
networks, our PSI protocols are competitive but slower than RR22 [65]. We attribute the increase
computation due to multiple decodings of the OKVS as RB-OKVS has slower decoding than the
OKVS used in [65]. However, our PSI protocols are up to 13% more cost-efficient than RR22 [65]
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Construction Cost ($)
216 220 224

Semi-Honest PSI
RR22 [65] < 0.001 0.003 0.048

RB-OKVS (ϵ = 0.05) < 0.001 0.002 0.042
RB-OKVS (ϵ = 0.1) < 0.001 0.002 0.043
Malicious PSI
RR22 [65] < 0.001 0.003 0.055

RB-OKVS (ϵ = 0.05) < 0.001 0.003 0.049
RB-OKVS (ϵ = 0.1) < 0.001 0.003 0.051
Circuit PSI
RR22 [65] (Silver) < 0.001 0.011 -

RB-OKVS (ϵ = 0.05) < 0.001 0.010 -
RB-OKVS (ϵ = 0.1) < 0.001 0.010 -

Figure 8: Comparison of costs in 1 Gbits/sec network. Bolded numbers mark the best values.

even in fast networks due to the smaller communication costs (see Figure 8).

Malicious PSI from RB-OKVS. The same improvements in communication and costs can also
be seen in the malicious PSI setting. Our malicious PSI protocol with RB-OKVS use 10% less
communication than the malicious protocol in [65]. Furthermore, our PSI protocols are 6% faster
in slow network settings. For faster networks, our PSI protocols are slower than RR22 [65]. Our
malicious PSI protocols with RB-OKVS are 11% more cost-efficient than RR22 [65] even with fast
networks (1 Gib/s).

Circuit PSI from RB-OKVS. Finally, we also obtain similar improvements for circuit PSI using
RB-OKVS as the underlying OKVS. Our circuit PSI with RB-OKVS has 12% smaller communication
compared to RR22 [65]. Similarly, our protocol is faster in slow network settings, but slower in
medium and fast networks compared to [65] that is caused by the slower decoding of RB-OKVS.
Overall, our circuit PSI reduces monetary cost by 9% due to the smaller communication despite
the increase in computation.

6.3 Private Set Union

Next, we present experimental comparisons of our PSU protocols with RB-OKVS and prior instan-
tiations. We will compare with the PSU protocols in [75, 55, 37] and use the implementations
found at [4]. Recall that our PSU protocols are obtained by plugging RB-OKVS into the prior PSU
framework [75] (see Section 4 and Appendix E).

For our PSU implementations, we plug in our construction of RB-OKVS into the prior PSU
implementation found at [4] and compare with prior instantiations also found at [4]. For [75],
we consider their three instantiations SKE-PSU, PKE-PSU and PKE-PSU* using secret-key and
public-key operations respectively. The difference between PKE-PSU and PKE-PSU* is that PKE-
PSU* will not perform point compression. We configure RB-OKVS with ϵ = 0.03 and 40 bits of
statistical security and denote our new PSU protocols as RB-SKE-PSU, RB-PKE-PSU and RB-
PKE-PSU*.

All our reported results are presented in Figure 9 in the network setting of 1 Gbits/sec. We
note that the variants using RB-OKVS has both smaller online communication, less online time
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Construction Online Comm. (MB) Online Time (s) Offline Comm. (MB) Offline Time (s) Cost ($)
216 218 220 216 218 220 216 218 220 216 218 220 216 218 220

KRTW19 [55] 174.99 781.80 3,216.63 29.42 138.06 545.72 0.03 0.03 0.03 0.17 0.17 0.18 0.016 0.071 0.292
GMRSS21 [37] 68.06 292.70 1,525.42 12.70 50.36 286.52 0.03 0.03 0.03 0.28 0.27 0.29 0.006 0.027 0.138
JSZDG22 [47] 101.82 451.97 1,976.60 27.24 144.16 691.23 0.01 0.01 0.01 0.17 0.17 0.23 0.009 0.041 0.180
SKE-PSU [75] 27.73 110.64 - 10.96 36.11 - 11.71 25.58 - 475.11 1,581.52 - 0.005 0.019 -
PKE-PSU [75] 12.27 49.07 184.34 31.65 145.31 552.82 4.69 4.69 4.69 11.38 11.37 11.71 0.002 0.005 0.019
PKE-PSU* [75] 21.92 87.66 350.61 25.95 103.92 402.39 4.72 4.72 4.72 11.69 11.60 12.49 0.003 0.009 0.034

RB-SKE-PSU 27.08 108.02 - 9.98 34.01 - 11.71 25.58 - 453.46 1,538.18 - 0.005 0.018 -
RB-PKE-PSU 9.72 38.86 155.43 22.73 83.01 333.96 4.69 4.69 4.69 11.23 11.88 11.63 0.001 0.004 0.016
RB-PKE-PSU* 17.04 68.13 272.48 16.22 65.75 284.28 4.72 4.72 4.72 11.30 11.75 11.33 0.002 0.007 0.026

Figure 9: Comparison of PSU protocols with 64-bit inputs in 1 Gbits/sec network. Bolded numbers
mark the best values.

and lower costs compared to their counterparts. In particular, RB-PKE-PSU and RB-PKE-PSU*
obtain 16-22% improvements in online communication and 28-40% faster online times compared
to PKE-PSU and PKE-PSU* respectively. RB-SKE-PSU obtains more modest improvements of
2% in online communication and 6-9% in online time compared to SKE-PSU. These improvements
can be attributed to the fact that [75] utilized a variant of 3H-GCT [38] as their OKVS. As seen
in Figure 6, RB-OKVS significantly outperforms 3H-GCT in both rate and running time resulting
in our improved PSU protocols. We also expect our RB-OKVS variants of PSU to perform better
than prior constructions in more network constrained settings due to the smaller communication
costs. The offline communication and offline times remain the same as the OKVS schemes are only
used in the online phases of the PSU protocols.

Comparing to the PSU protocols in [55, 47, 37], our RB-OKVS variants obtain smaller commu-
nication and faster online times. In contrast, the protocols in [55, 47, 37] have more lightweight
offline phases. However, both the total communication and running time of our PSU protocols
using RB-OKVS remain smaller than [55, 47, 37]. This is expected as the PSU protocols in [75]
obtained more efficient online phases by using heavier offline phases.

To our knowledge, RB-PKE-PSU* is the PSU protocol with the smallest online communication
and total monetary cost. RB-SKE-PSU results in the PSU protocol with the smallest online time
to date. Unfortunately, the offline time of RB-SKE-PSU increases significantly for larger sets sizes.
As a result, RB-PKE-PSU* seems to be a better alternative for a PSU protocol with fast online
times for larger input sets.

6.4 Volume-Hiding Encrypted Multi-Maps

We implement RB-MM and perform experimental evaluation to compare with the implementations
of dprfMM [58] and XorMM [74] in [7] using same experimental setup as specified in Section 6.1.
To instantiate the underlying RB-OKVS, we choose ϵ = 0.03 and the necessary band length to
obtain λ = 40 statistical security. For the multi-map, we use 8 byte strings as keys and values
following the real-world parameters chosen in prior works [58, 74]. We use SHA256 as the PRF
and AES-128-GCM as the encryption scheme.

The comparisons of storage size, query times and setup times can be found in Figure 10. Our
experiments confirm that RB-MM results in 16% smaller storage than XorMM. Furthermore, we
see that the setup time for RB-MM is significantly faster than XorMM. As an example, RB-MM
requires less than 5 seconds for n = 222 whereas XorMM requires almost 8x more time for the
same input size. To explain this improvement, we note that XorMM uses algorithms similar to the
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Figure 10: Experiments for storage, query time and setup times for VH-EMMs.

3H-GCT OKVS construction [38]. As seen from Figure 6, RB-OKVS is significantly faster during
encoding compared to 3H-GCT. The same improvements can also be seen when comparing the
setup times of RB-MM and XorMM.

Next, we analyze the query time. Like prior works [58, 74], the query time is indepen-
dent of the multi-map size n and only depends on the maximum volume ℓ. RB-MM has 5x
smaller query times than XorMM that can be seen by the query times for varying volumes of
ℓ ∈ {210, 211, 212, 213, 214, 215} for a fixed multi-map size of n = 220. Once again, this can be ex-
plained due to the efficiency of the decoding of the underlying OKVS. The decoding algorithm
of RB-OKVS is much faster than 3H-GCT of which a very close variant is used in XorMM (see
Figure 6 for comparisons of decoding times).

The experimental evaluation shows that RB-MM results in the state-of-the-art VH-EMM con-
struction with 16% less storage as well as 5x faster querying and 8x faster setup.

7 Related Work

Oblivious Key-Value Stores. The notion of oblivious key-value stores was introduced by
Gamirella et al. [38]. However, many prior works such as [34, 64, 28, 54, 62, 60] implicitly con-
structed and used OKVS schemes. Recent works [65, 75] have explicitly built OKVS schemes with
additional properties.

Private Set Intersection. PSI was introduced by Meadows [56] and has been heavily studied in
recent years. For some examples, see [25, 34, 64, 28, 54, 62, 60, 38, 65, 39, 53, 52, 59, 61, 67, 51] as
well as references therein. PSI variants studied include circuit PSI [62, 68, 22, 43, 63] , multi-party
PSI [54, 44, 76, 21, 57, 10], threshold PSI [40, 9, 16] and unbalanced PSI [27, 26, 29].

Private Set Union. Kissner and Song [52] presented the first PSU protocol based on polynomials
and public-key operation with several follow-ups [36, 41, 31]. PSU using only symmetric-key op-
erations was studied in [11, 55, 37] leading to a linear scheme [47, 75]. Further PSU variants were
studied including multi-party [70] and with a third-party helper [19].

Volume-Hiding Encrypted Multi-Maps. The notion of volume-hiding was introduced by
Kamara and Moataz [50] and formal definitions were first presented by Patel et al. [58]. Several
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other papers studied VH-EMM including [73, 74]. Volume-hiding with differential privacy was
studied in [58] where response size could be independent of maximum volume. Dynamic VH-EMM
were studied in [73, 8, 77] where the underlying multi-map may be modified. Finally, verifiable
VH-EMM were studied by Wang et al. [74].

8 Conclusions

In this work, we present a state-of-the-art OKVS construction, RB-OKVS, that achieves near-
optimal rates as high as 0.97 while maintaining efficient encoding and decoding algorithms. Prior
works were only able to achieve rates of 0.81 with similar or slower encoding times. Furthermore,
RB-OKVS is highly tunable to enable trade-offs between rate and encoding times necessary for
various applications. For a variety of rates better than all prior OKVS schemes, RB-OKVS still has
the fastest encoding times. Using RB-OKVS, we obtain improved constructions for semi-honest,
malicious and circuit PSI, semi-honest PSU and volume-hiding encrypted multi-maps.
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A RB-OKVS Analysis

A.1 Random Band Matrix Proof

It remains to show that RB-OKVS has small error probability and that the solving of random band
matrices in the encoding algorithm runs in time O(nw). To do this, we will extend the analysis of
random band matrices in [33] for general values of the width parameter w.

As an aside, we note that this proof provides theoretical justification of the low failure probability
of RB-OKVS. In practice, we use experimental evaluation to determine the values of m = (1 + ϵ)n
and w in our concrete instantiations. See Section 6.1 for our strategies to instantiate RB-OKVS.
Below, we extend the proof in [33] necessary to prove the bound for general values of w.

Lemma 1. If m = (1 + ϵ)n for some constant ϵ > 0 and w = O(λ/ϵ + log n), then RB-OKVS
is an OKVS with error probability at most 2−λ with encoding time O(nw) for sufficiently large
n = Ω(λ/ϵ).

To prove this, we will use the following series of lemmas following the same proof strategy as
outlined in [33]. Recall that the encoding algorithm consists of sorting the starting band locations
of each row before executing Gaussian elimination on the sorted random band matrix. First, we
relate the success probability of the encoding algorithm of RB-OKVS to a variant of hashing that
is denoted as coin-flipping Robin Hood hashing (CFRH). In CFRH, we suppose there are n items
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that are hashed into one of m bins. As a note, we use n items corresponding to the n rows of
the random band matrix and the m bins corresponding to the m columns. Each of the n items
are assigned to a random bin. The n items are inserted by performing linear probing. That is,
checking if a bin is occupied and, if so, moving to the next bin. The main difference in CRFH is
that an item is inserted into an empty bin with probability 50% depending on a random coin flip.
Otherwise, the item moves onto the next bin in the linear probing process.

First, we define some notation. In the encoding of RB-OKVS, we note that we obtain a se-
quence of starting band locations a1, . . . , an ∈ [m] that yield a sequence of pivots during Gaussian
elimination piv1, . . . , pivn ∈ [m]. For CFRH, we obtain a sequence of randomly assigned bins
b1, . . . , bn ∈ [m] as well as the final positions of each item pos1, . . . , posn ∈ [m]. Finally, we can
define heights of each of the m bins in the CFRH as Hi = |{j ∈ [n] | bj ≤ i < posj}. In words, Hi

represents the number of items that actually probe the number of the i-th bin without being placed
into the bin. This will be useful to bound the total running time of the encoding time of RB-OKVS.

Immediately, we can see that the starting band locations and pivots correspond to the random
bin assignments and final positions. In particular, we can obtain a modified version of the following
lemma from [33]:

Lemma 2. The following three properties are true:

• RB-OKVS encoding succeeds if and only if CFRH succeeds. On success, we get that pivi = posi
for all i ∈ [n].

• A successful run of RB-OKVS encoding performs at most
∑

j∈[m]Hj row additions.

• Conditioned on maxj∈[m]Hj ≤ w−2λ− log n being true, the encoding algorithm of RB-OKVS

succeeds except with probability 2−2λ.

Proof. The first two properties follow immediately from Lemma 3 in [33]. Therefore, we only prove
the final property. Consider the i-th item that is inserted. Note that all items are inserted in
increasing choices of bins bi. As Hi ≤ w−2λ− log n, we know that at least 2λ+log n of the next w
bins are unoccupied. Therefore, the probability that the i-th item is not inserted into any of these
bins is 2−2λ−logn. By a Union bound over all n items, we see the probability that one item is not
inserted into any of the m bins is 2−2λ.

Next, we consider a Poisson approximation. At a high level, the goal is to replace the real
CFRH process with an approximation where the number of items that are assigned to the i-th
bin is drawn from a Poisson distribution. Formally, we draw zi from the Poisson distribution with
parameter (1 + ϵ). Note, this is expected to be larger than the standard process where each bin
will be assigned n/m ≤ 1 items in expectation. Let H ′

i be the resulting heights of the Poisson
approximated version of CFRH. Then, we prove the following:

Lemma 3. There is a coupling between an ordinary run of CFRH (with Hi) and a Poissonised
run with (H ′

i) such that we have H ′
i ≥ Hi for all i ∈ [m] except with probability 2−2λ for sufficiently

large n = Ω(λ/ϵ).

Proof. The coupling proof follows identically from Lemma 4 in [33]. The only difference is that we
need to prove that the coupling succeeds with probability exponentially small in λ. To do this, we
must bound the probability of the event that the sum of the Poisson variables is less than m. For
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this, we can use known concentration bounds for Poisson distributions. In particular, we use the
following bound in [20]:

Pr[X ≤ µ− x] ≤ e
− x2

2(µ+x)

where X is a Poisson variable with parameter µ. It suffices to plug in x = ϵ ·n to get that the event
occurs with probability at most e−(ϵ2·n)/(2+6ϵ). Therefore, if 2λ ≤ ϵ2 ·n/(2+ 6ϵ), we get this occurs
with probability at most 2−2λ.

The benefit of the above coupling is that we can model the heights of each bin as a Markov
chain. In particular, consider the i-th bin. Then, the height is H ′

i = H ′
i−1+zi−1 assuming an item

is placed into the i-th bin. We can use a variable gi that is a random variable from a Geometric
distribution with probability 1/2. We define bi = 1gi>H′

i−1+ki to determine whether no item is

placed into the i-th bin and get that H ′
i = H ′

i−1 + zi − 1 + bi.
Afterwards, we utilize another coupling where we replace the geometrically distributed random

indicator bi by using a Poission random variable with slightly larger mean. In particular, we use
the following:

X0 = 0 and Xi = max(0, Xi−1 + z′i − 1)

where z′i is a Poisson variable with parameter (1 + 2ϵ). We obtain the coupling following directly
from Lemma 5 in [33].

Lemma 4. There is a coupling between {Xi}i∈[m] and {Hi}i∈[m] such that Xi + log(4/ϵ) ≥ H ′
i.

Finally, we use facts from queuing theory to complete the proof. In particular, one can view the
Markov chain above as a M/D/1 queue. Using known facts about M/D/1 queues, we can complete
the proof of the main lemma.

Proof of Lemma 1. First, we use Lemma 4 to analyze the success of RB-OKVS encoding using the
heights Xi that stochastically dominate the original heights Hi except with probability 2−2λ. By
Fact 1(ii) in [33], we know that Pr[Xi > w/2] ≤ 2−2λ ·m−1 assuming w = Θ(λ/ϵ+ log n) and using
the fact that m = Θ(n). By a Union bound over all m heights, we get that all heights {Xi}i∈[m]

are at most w/2 except with probability 2−2λ. Finally, we can plug this into Lemma 2 to get that
the encoding algorithm of RB-OKVS succeeds with probability at most 3 · 2−2λ ≤ 2−λ. Therefore,
the error probability of RB-OKVS is at most 2−λ.

Next, we analyze the running time of the encoding algorithm of RB-OKVS. We use Lemma 2
where we know that the number of row additions of the encoding algorithm of RB-OKVS is exactly
E[H1+H2+ . . .+Hm]. By linearity of expectation, it suffices to analyze the expectation of a single
height as E[Hi] ≤ E[Xi+log(4/ϵ)] = 1+2ϵ+log(4/ϵ) = O(1). Therefore, the total expected running
time is O(nw) as each row addition requires O(w) time.

A.2 RB-OKVS Proof

Finally, we use the prior section’s results to complete the proof of Theorem 1 about RB-OKVS.

Proof of Theorem 1. From Lemma 1, we immediately get the claims that RB-OKVS has error prob-
ability at most 2−λ and encoding time at most O(nw). We note that decoding requires performing
a dot product where one vector has at most w non-zero entries using only O(w) time.
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Secondly, we prove that RB-OKVS satisfies the oblivious and doubly oblivious properties. To do
this, we first prove that RB-OKVS is doubly oblivious. Recall that all free variables during Gaussian
elimination are chosen uniformly at random. Back substitution solves for the lead variables si of
each row j (i.e., the first non-zero entry in each row j) in terms of previously chosen si′ , i

′ > i, and
some subset {vj1 , . . . , vjk} ⊆ {v1, . . . , vn}, containing vj . Since, vj is chosen uniformly at random, si
will be distributed uniformly, regardless of all other values si′ , i

′ > i, and vjl ̸= vj . Thus, it is clear
that this construction satisfies double obliviousness. Finally, we note that RB-OKVS being doubly
oblivious immediately implies that RB-OKVS is oblivious. As the output encoding is a uniformly
random element, no adversary can distinguish between two different output encodings.

Next, we show that RB-OKVS satisfies the random decodings properties. First, we leverage the
fact that RB-OKVS is already doubly oblivious. Therefore, each output of the encoding is already
a uniformly random field element. For decoding any single key, we note that we are taking the dot
product of a random w-bit binary string and a subset of w uniformly random field elements from
the encoding. As long as the binary string is not all zero, then the output is a uniformly random
element. Therefore, we get that decoding outputs are random decodings except with probability
2−w, which is the probability that the random w-bit string is all zero.

Finally, we prove that RB-OKVS satisfies the additional OKVS properties needed by various
applications of being binary and linear. We note that the decoding algorithm consists of taking
the sum of at most w elements of the encoding satisfying the binary property. In particular, this
also immediately implies that RB-OKVS is also linear as the binary property is a special case of the
linearity property.

B Equivalence of OKVS and Solvable Random Matrix Families

Recall that, in Section 3.2, we presented a general framework for constructing an OKVS using spe-
cial families of random matrices. Furthermore, we sketched an argument showing that constructing
such special families of random matrices is equivalent to building an OKVS. We now formally com-
plete this argument showing that any linear OKVS emits the these binary matrix families satisfying
the same properties.

Theorem 3. Suppose there exists OKVS = (Encode,Decode) that is a linear OKVS that encodes n
key-value pairs into encodings of length m with encoding time t(n) and error probability ϵ. Then.
there exists a binary matrix family F ⊆ Fn×m with an algorithm A that successfully solves the
system of equations associated with matrices in F in time t(n) except with probability n · ϵ.

Proof. As OKVS is linear, there exists some function d : K → Fm with the following property. Let
s = Encode(I) for any I = {(k1, v1), . . . , (kn, vn)} with n distinct keys. Then, for any i ∈ [n], we
know that

Pr[d(ki) · s = vi | s← Encode(I)] ≥ 1− ϵ.

We define the family of matrices F as follows. For any set of n keys A = {k1, . . . , kn} ⊆ K, define
the matrix M(A) as follows:

M(A) =


d(k1)

⊺

d(k2)
⊺

. . .
d(kn)

⊺

 ∈ Fn×m.
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Then, we define the matrix family as

F = {M(A) | A ⊆ K, |A| = n}

and we let the algorithm for solving the system of linear equations for matrices in F as Encode. Note
that Encode outputs an encoding s satisfying correctness for a single key except with probability
at most ϵ. By a Union bound, Encode solves the system correctly except with probability at most
n · ϵ.

Binary and Linear OKVS. If we did the above proof for an OKVS that is both linear and
binary, then we can construct a matrix family F ∈ {0, 1}n×m. Therefore, the general framework in
Section 3.2 remains optimal for linear and binary OKVS restricting the matrices to be binary.

Error Probability. In our reduction, the error probability of the new algorithm increases by a
multiplicative factor of n. While this seems large, we note that the error probability ϵ for an OKVS
must be negligible in n for most cryptographic applications. Therefore, the new error probability
for the matrix family F using the above reduction remains small.

Matrix Famililes from Prior OKVS. As the above theorem claims, any prior (binary) linear
OKVS construction can be used to derive a (binary) matrix family the special properties. In other
words, following the reduction done in the proof, one can obtain matrix families that are efficiently
solvable from prior OKVS constructions including [60, 38, 65].

C Supplementary Material for Volume-Hiding Encrypted Multi-
Maps

C.1 Definitions

We omit standard definitions of non-interactive encrypted multi-maps and adaptive security with
respect to a leakage function. We point readers to prior work (such as Section 2.1 in [58]) for full
and formal definitions.

We present the definition of volume-hiding leakage functions as done in [58] using the following
game VHGame parameterized by an adversary A, leakage function L and bit η ∈ {0, 1}.

VHGameA,L
η (n, ℓ):

1. AdversaryA picks two challenge multi-map signatures, S0 = {k, ℓ0(k)}k∈K and S1 = {k, ℓ1(k)}k∈K
satisfying

•
∑

k∈K ℓ0(k) =
∑

k∈K ℓ1(k) = n

• maxk∈K ℓ0(k) = maxk∈K ℓ1(k) = ℓ

2. Challenger generates input multi-map I by picking ℓη(k) random values for each k ∈ K.

3. Challenger sends LSetup(I) to adversary A.

4. AdversaryA picks query sequence k1, . . . , kt. For each ki, the challenger returns LQuery(I, k1, . . . , ki).

5. Adversary A outputs bit b ∈ {0, 1}.
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We define pA,L
η (n, ℓ) as the probability that A outputs 1 when playing VHGameA,L

η (n, ℓ).

Definition 5 (Volume-Hiding Leakage Functions). A leakage function L = (LSetup,LQuery) is
volume-hiding if, for all adversary A and for all values n ≥ ℓ ≥ 1, the following holds

pA,L
0 (n, ℓ) = pA,L

1 (n, ℓ).

C.2 Security Analysis

First, we prove that RB-MM is adaptively secure with respect to the leakage function L(I,Q) for
any input multi-map I and query sequence Q ∈ K∗ as defined in Section 5.2. For convenience to
the reader, we repeat the leakage function L(I) here. In particular, L(I) consists of the following:

1. Multi-map size: |I| = |v1|+ |v2|+ . . .+ |vn|

2. Maximum volume: ℓ

3. Key-equality matrix: M ∈ {0, 1}|Q|×|Q| such that M [i][j] = 1 if and only if Q[i] = Q[j].

Lemma 5. Assuming random oracles, RB-MM is adaptively secure with respect to L.

Proof. We show there exists a stateful, efficient simulator that can replicate the server’s view using
only the output of L.

For RB-MM.Setup, we note that LSetup contains |I|. The simulator outputs an uniformly random
string that is the same length as the output of RB-OKVS.Encode(I). Note, determining this length
requires only knowing |I|.

For RB-MM.Query, the simulator keeps a list of random values for each previous query. For
example, if we are processing the i-th query, then the simulator has h1, . . . , hi−1. The simulator
ensures that these random values satisfy the key-equality matrix returned by LQuery. For the i-th
query, suppose we are given the key-equality matrix M . If this query key is not equal to any prior
query, we generate a random new value as hi. Otherwise, if the i-th query key is equal to the j-th
query key for some j < i, we set hi = hj . Finally, hj is sent to the adversary.

We use a series of hybrids to show that the simulator’s output and the server’s view are com-
putationally indistinguishable.

• Hybrid 0 is identical to the real adversary’s view.

• Hybrid 1 replaces the output of RB-OKVS.Encode with an uniformly random string.

• Hybrid 2 replaces the IND-CPA encryption with uniformly random strings.

• Hybrid 3 replaces the outputs of the PRF with a random function.

As RB-OKVS is doubly oblivious, we note that the output of RB-OKVS.Encode is computa-
tionally indistinguishable from an uniformly random string. Thus, hybrid 0 and hybrid 1 are
computationally indistinguishable. The remaining hybrids follow from the standard security of
IND-CPA encryption and PRFs. Finally, it can be shown that hybrid 3 is identical to the output
of the simulator.

Next, we prove that RB-MM is a VH-EMM by showing that L is a volume-hiding leakage
function.
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Parameters: There are two parties, a sender with set Y ⊆ F and a receiver with set X ⊆ F.
Let nY, nX, n

′
X ∈ Z be public parameters where nX ≤ n′

X.

Functionality: Upon receiving (sender, sid, Y ) from the sender and (receiver, sid, X) from the
receiver: If |Y | > nY, abort. If the receiver is malicious and |X| > n′

X, then abort. If the
receiver is honest and |X| > nX, then abort.
The functionality outputs X ∩ Y to the receiver.

Figure 11: Ideal Functionality Fpsi of Private Set Intersection.

Parameters: There are two parties, a sender and a receiver. Let F be an extension field over
base field B. Let m denote the size of the output vectors.

Functionality: Upon receiving (sender, sid) from the sender and (receiver, sid) from the re-
ceiver:

• If the receiver is malicious, wait for them to send C ∈ Fm,A ∈ Bm. Sample ∆← F and
compute B← C−∆ ·A. Otherwise,

• If the sender is malicious, wait for them to send B ∈ Fm,∆ ∈ F. Sample A ← Bm and
compute C← ∆ ·A+B. Otherwise,

• Sample A← Bm,B← Fm,∆← F and compute C← ∆ ·A+B.

The functionality sends ∆,B to the sender and C,A to the receiver.

Figure 12: Ideal Functionality Fsub-vole of subfield Vector Oblivious Linear Evaluation.

Lemma 6. RB-MM is volume-hiding.

Proof. First, we note that the key-equality matrix in L does not depend on either the challenge
multi-maps or the volumes of keys. Therefore, the only two parts of leakage that are useful are the
multi-map size n and the maximum volume ℓ. However, as the two challenge multi-maps have the
same size and maximum volume, the adversary will be unable to ever distinguish between the two
possible multi-maps.

Finally, we put the above two lemmata together to prove the main theorem about the security
of RB-MM:

Proof of Theorem 2. The proof follows directly from applying Lemma 5 and Lemma 6.

D Supplementary Material for PSI

Prior works such as [38, 65] have presented frameworks that enable building semi-honest, malicious
and circuit PSI protocols using OKVS constructions with certain properties. In this section, we
recall these frameworks. Afterwards, we will plug in RB-OKVS as the underlying OKVS to obtain
our new PSI protocols.
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Formal Functionality of PSI. The formal functionality of PSI and subfield VOLE are presented
in Figure 11 and Figure 12 respectively.

D.1 Semi-Honest and Malicious PSI

In two-party PSI, there exists a receiver and a sender holding sets X and Y , respectively. The
two parties wish to interact with each other to learn the intersection of the sets (and nothing else
except for the size of the other party’s set).

Raghuraman and Rindal [65] show how to construct PSI from subfield Vector Oblivious Linear
Evaluation (VOLE) [14, 12, 69, 30, 13, 15] and any linear OKVS. In our PSI protocol, we will use
RB-OKVS as the underlying linear OKVS.

We recall the construction in [65] here. In the setup, it is assumed that the two parties share
two random oracles H and H′ and have knowledge of F that is an extensions of B. This construction
utilizes the subfield VOLE functionality where the sender outputs random ∆ ∈ F,B ∈ Fm while
the receiver outputs random vectors A ∈ Bm,C ∈ Fm. The values are chosen such that

C−B = ∆ ·A.

To obtain PSI, the intuitive idea is to derandomize the VOLE correlation (A,B,C,∆) to
(S,B′,C,∆), where C−B′ = ∆ · S) and S is a linear OKVS which decodes to H(x) for all x ∈ X
(H is a random oracle). This derandomization is the main communication overhead and requires
the receiver to send A− S. By the linearity of the OKVS, we see that

C−B′ = ∆ · S
Decode(C, x)− Decode(B′, x) = ∆ · Decode(S, x) = ∆ · H(x)

Decode(C, x) = ∆ · H(x) + Decode(B′, x).

The sender with ∆,B′ can compute the right hand side, while the receiver with C can compute the
left hand side. Indeed, the receiver computesX ′ := {F (x)|x ∈ X}, where F (x) := H′(Decode(C, x)),
while the sender computes Y ′ := {F (y)|y ∈ Y }, where F (y) := H′(∆ ·H(y) +Decode(B′, y)). Here,
H′ is another random oracle. The PSI protocol finishes by having the sender send a random
permutation of the set Y ′ to the receiver, who can then infer the intersection, X ∩Y , from X ′ ∩Y ′

using the identity above.
The above achieves semi-honest security. The sender learns nothing about S (and thus X)

from A−S as a result of the security of subfield VOLE, while the receiver learns nothing about Y
(beyond the intersection) from Y ′ as a result of the security of subfield VOLE and random oracles
H,H′. We use the small modifications in [68] to obtain malicious security.

D.2 Circuit PSI

Circuit PSI is an extension of PSI which outputs the result of the PSI, secret shared between the
two parties. This allows the two parties to perform further computation over the shares afterwards.
It has been shown in [38, 68] that circuit PSI can be built from a primitive called an oblivious
programmable PRF (OPPRF). OPPRF can in turn be constructed using a doubly oblivious OKVS.
We use the circuit PSI protocol from [68] that builds OPPRFs from doubly oblivious OKVS that
we will overview below. To obtain our circuit PSI protocol, we will utilize RB-OKVS as the doubly
oblivious OKVS.
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Parameters: There are two parties, a sender and a receiver, with respective sets X of size
nX and Y of size nY .

Functionality: Upon receiving (receiver, sid, X) from the receiver and (sender, sid, Y ) from the
sender, output X ∪ Y to the receiver.

Figure 13: Ideal Functionality Fpsu of semi-honest PSU.

Parameters: There are two parties, a sender and a receiver, with respective sets X of size
nX and Y of size nY .

Functionality: Upon receiving (sender, sid, Y ) from the sender and (receiver, sid, X) from the
receiver, set bi = 1 if and only if yi ∈ X and bi = 0 otherwise for i ∈ [nY ]. Output b ∈ {0, 1}nY

to the receiver.

Figure 14: Ideal Functionality Fmq-rpmt of Multi-Query Reverse Private Membership Test.

OPPRF. In an OPPRF, the sender has a collection of n pairs of the form xi 7→ yi, and the
receiver has a list of x′j values. The functionality chooses a pseudorandom function R, conditioned
on R(xi) = yi for all i. It gives (a description of) R to the sender and it gives R(x′j) to the receiver,
for each j. To build OPPRF, the parties first invoke a (plain) oblivious PRF protocol, where the
sender learns a PRF seed s and the receiver learns PRF (s, x′j) for each j. Then the sender uses
a doubly oblivious OKVS to encode pairs {(x1, y1 − PRF (s, x1)), . . . , (xn, yn − PRF (s, xn))}, and
sends the resulting encoding S to the receiver. Finally, both parties define the function R(x) :=
PRF (s, x) + Decode(S, x), which indeed agrees with the xi 7→ yi mappings of the sender but
is otherwise pseudorandom. The doubly obliviousness of the OKVS reveals nothing about the
sender’s input to the receiver.

E Supplementary Material for PSU

In private set union (PSU), a receiver and sender hold sets X and Y , respectively, and interact with
each other to learn the union of the sets. Prior work [75] presented a framework for building PSU
from any OKVS with random decodings. We obtain our PSU protocols by plugging RB-OKVS into
this framework. Afterwards, we perform experimental evaluation to compare our PSU construction
with prior works.

E.1 PSU Protocol of [75]

Formal Functionality of PSU. The formal functionality of PSU, multi-query reverse private
membership test (mq-RPMT), vector oblivious decryption-then-matching (VODM) and obliivous
transfer (OT) are presented in Figure 13, Figure 14, Figure 15 and Figure 16 respectively.

Zhang et al. [75] recently proposed the state-of-the-art protocol for semi-honest PSU. The con-
struction of [75] is based on oblivious transfer (OT) and a functionality called multi-query reverse
private membership test (mq-RPMT). They build mq-RPMT using any OKVS with random decod-
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Parameters: Let E = (Enc,Dec) be some encryption scheme with (secret) keys k. There are
two parties, a receiver with set S of size n and a sender with a string s and key k.

Functionality:

• Wait for input (receiver, sid, (k, s)) from the receiver.

• Wait for input (sender, sid, S = {s∗1, . . . , s∗n}) from the sender.

• For i ∈ [n]: compute s′i = Dec(k, s∗i ) and if s′i = s, set bi = 1; otherwise bi = 0.

• Output b ∈ {0, 1}n to the receiver.

Figure 15: Ideal Functionality Fvodm of Vector Oblivious Decryption-then-Matching.

Parameters: Let the message length be κ. There are two parties, a sender with strings
r0, r1 ∈ {0, 1}κ and a receiver with bit b ∈ {0, 1}.

Functionality: Upon receiving input (receiver, sid, b) from the receiver and input
(sender, sid, (r0, r1)) from the sender, output rb to the receiver.

Figure 16: Ideal Functionality Fot of Oblivious Transfer.

ings, an encryption scheme, and a functionality called vector oblivious decryption-then-matching
(VODM). We overview this PSU construction below.

mq-RPMT. In mq-RPMT, a sender with set Y of size nY and receiver with set X of size nX

interact so that the receiver receives a bit string b ∈ {0, 1}nY . For each i ∈ [ny], bi = 1 if and only
if the i-th element yi ∈ Y is also in X. Otherwise, it will be the case that bi = 0.

Before we describe the mq-RPMT protocol from [75], we recall their VODM functionality. This
functionality is parameterized by some encryption scheme E . It takes as input from the receiver an
encryption key k and string s, and from the sender n strings s∗1, . . . , s

∗
n. For i ∈ [n], the functionality

decrypts s∗i to s′i using k and sets bit bi = 1 if s′i = s; otherwise bi = 0. Finally, the functionality
returns b ∈ {0, 1}n to the receiver. We refer to [75] for two different instantiations of VODM: one
based on re-randomizable public-key encryption and another based on symmetric-key encryption
using generic two-party computation.

The protocol for mq-RPMT from [75] is as follows. In the setup, it is assumed the two parties
share a collision-resistant hash function H and the receiver generates a key for an encryption scheme
that may be used to generate multiple ciphertexts for a single message. First, the receiver picks
some arbitrary string s. Then, they encrypt s under key k nX times, resulting in (s∗1, . . . , s

∗
nX

).
Next, the receiver computes an OKVS

S← Encode((H(x1), s
∗
1), . . . , (H(xnX ), s

∗
nX

))

using the collision-resistant hash function H and sends S to the sender. Then, the sender computes
s∗i ← Decode(S,H(yi)) for i ∈ [nY ]. Finally, the sender and receiver invoke the VODM functionality
with their inputs (s∗1, . . . , s

∗
nX

) and (k, s). As a result, the sender receives nothing and the receiver
receives b ∈ {0, 1}nY satisfying bi = 1 if and only if s∗i decrypts to s.
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For correctness, if some yi = xj ∈ X, then s∗i ← Decode(S,H(yi)) = Decode(S,H(xj)) so that s∗i
decrypts to s and thus bi = 1. Otherwise, if yi ̸∈ X, then with all but negligible probability, there
is no xj ∈ X such that H(yi) = H(xj) and so s∗i ← Decode(S,H(yi)) is a random ciphertext (due
to the random decodings property of the OKVS). This will not decrypt to s except with negligible
probability. Therefore, bi = 0, and the scheme is correct.

Security follows from the guarantees of the OKVS since S reveals nothing about X or the
correspondence between the decryption of ciphertexts s∗i and whether the corresponding elements
yi are members of X or not.

PSU from mq-RPMT and OT. OT allows a receiver with bit b ∈ {0, 1} and a sender with
strings r0, r1 to interact so that the receiver learns rb and the sender learns nothing. Building
PSU from mq-RPMT and OT is straightforward. In the setup, the two parties first run the setup
protocols for the underlying primitives mq-RPMT and OT. Next, the parties input their respective
sets to the mq-RPMT protocol and the receiver learns b ∈ {0, 1}nY such that bi = 1 if and only if
yi ∈ X. Next, for i ∈ [nY ], the sender and receiver invoke the OT functionality on inputs (yi,⊥)
and bi, respectively. If bi = 0, the receiver adds the returned element yi to set Z. Finally, the
receiver outputs the union Z ∪X.

F Best Fit Lines for RB-OKVS

We present the best fit lines that we obtained using linear regression from our experimental evalu-
ation in Section 6.1 for reference and future usage. See Figure 17 for best fit lines.
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Parameters Best fit line λ = aw + b

ϵ = 0.03

n = 210 0.08047w − 3.464

n = 214 0.08253w − 5.751

n = 216 0.08241w − 7.023

n = 218 0.08192w − 8.569

n = 220 0.08313w − 10.880

n = 224 0.08253w − 14.671

ϵ = 0.05

n = 210 0.1388w − 4.424

n = 214 0.1389w − 6.976

n = 216 0.1399w − 8.942

n = 218 0.1388w − 10.710

n = 220 0.1407w − 12.920

n = 224 0.1376w − 16.741

ϵ = 0.07

n = 210 0.1947w − 5.383

n = 214 0.1926w − 8.150

n = 216 0.1961w − 10.430

n = 218 0.1955w − 12.300

n = 220 0.1939w − 14.100

ϵ = 0.1

n = 210 0.2747w − 6.296

n = 214 0.2685w − 9.339

n = 216 0.2740w − 11.610

n = 218 0.2715w − 13.390

n = 220 0.2691w − 15.210

n = 224 0.2751w − 19.830

Figure 17: Best fit lines generated in the experimental evaluation from different values of ϵ and n.
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