
Key Exchange in the Post-Snowden Era:

Universally Composable Subversion-Resilient PAKE*

Suvradip Chakraborty1, Lorenzo Magliocco�2, Bernardo Magri3, and Daniele Venturi�2

1VISA Research
suvradip1111@gmail.com

2Sapienza University of Rome
magliocco@di.uniroma1.it, venturi@di.uniroma1.it

3University of Manchester and Primev
bernardo.magri@manchester.ac.uk

November 24, 2024

Abstract

Password-Authenticated Key Exchange (PAKE) allows two parties to establish a common high-entropy
secret from a possibly low-entropy pre-shared secret such as a password. In this work, we provide the
first PAKE protocol with subversion resilience in the framework of universal composability (UC), where
the latter roughly means that UC security still holds even if one of the two parties is malicious and the
honest party’s code has been subverted (in an undetectable manner).

We achieve this result by sanitizing the PAKE protocol from oblivious transfer (OT) due to Canetti
et al. (PKC’12) via cryptographic reverse firewalls in the UC framework (Chakraborty et al., EU-
ROCRYPT’22). This requires new techniques, which help us uncover new cryptographic primitives
with sanitation-friendly properties along the way (such as OT, dual-mode cryptosystems, and signature
schemes).

As an additional contribution, we delve deeper in the backbone of communication required in the
subversion-resilient UC framework, extending it to the unauthenticated setting, in line with the work of
Barak et al. (CRYPTO’05).

Keywords: PAKE · subversion resilience · universal composability

*Full version of an extended abstract that will appear in Proceedings of Asiacrypt 2024, Springer-Verlag, 2024. Available
from the IACR Cryptology ePrint Archive as Report 2023/1827.

�Lorenzo Magliocco and Daniele Venturi were supported by project SERICS (PE00000014) and by project PARTHENON
(B53D23013000006), under the MUR National Recovery and Resilience Plan funded by the European Union—
NextGenerationEU. Daniele Venturi is member of the Gruppo Nazionale Calcolo Scientifico - Istituto Nazionale di Alta Matem-
atica (GNCS-INdAM).

1

mailto:suvradip1111@gmail.com
mailto:magliocco@di.uniroma1.it
mailto:venturi@di.uniroma1.it
mailto:bernardo.magri@manchester.ac.uk

1 Introduction

Authenticated Key Exchange (AKE) allows two parties to generate a shared high-entropy secret and mutually
authenticate by means of identifiers such as public keys, signatures or shared passwords. As such, AKE allows
two parties to establish a secure channel. Due to its sensitive nature, malicious actors may have a particular
interest in undermining the security of AKE protocols (e.g., by leaking the password of an honest party, or
by establishing a shared key without authentication). To this extent, AKE protocols are typically designed
in the setting of multi-party computation, where the adversary controls the communication channels and
can corrupt some of the parties. Corrupted parties either simply follow the protocol (so-called semi-honest
corruptions), or deviate arbitrarily from its intended execution (so-called malicious corruptions).

This threat model is widely adopted in the literature. However, it relies on the assumption of having
access to uncorrupted parties that run the protocol exactly as prescribed. Unfortunately, as shown by the
shocking Edward Snowden’s revelations, the latter assumption may not hold in practice, as the machine of
an honest party could have been compromised in an undetectable manner, both in the case of its hardware
(e.g., via backdoored components) or its software (e.g., via algorithm-substitution attacks, purposefully
designed leaky constructions, or mistakenly instantiated protocols). Such undetectable corruptions enable
an adversary to launch so-called subversion attacks, which may cause the target compromised machine to
covertly exfiltrate information or behave in an unexpected manner upon receiving a specific triggering input.

A possible mitigation consists in equipping parties with cryptographic reverse firewalls (RFs), as first
defined by Mironov and Stephens-Davidowitz [27]. These objects allow to sanitize inbound and outbound
messages of the party they are attached to, thus destroying any potential side-channel while preserving
functionality and security of the underlying protocol. The idea here is that protocol designers can instantiate
parties and their respective RF on different physical machines on the same local network in order to achieve
security in the presence of subversion attacks.

While the original formalism of [27] only accounted for standalone security, where each protocol is run in
isolation, the setting of RFs has recently been extended to the universal composability (UC) framework by
Chakraborty, Magri, Nielsen and Venturi [18]. The latter ensures that, once a designed protocol is proven to
be secure, subversion resilience holds even if that protocol is arbitrarily composed with other protocols. This
lifts the requirement of redoing the security analysis from scratch for each individual composition setting,
thus yielding a modular design of subversion-resilient cryptographic protocols.

1.1 Password-Authenticated Key Exchange

In this work, we focus on instantiating Password-Authenticated Key Exchange (PAKE) in the subversion-
resilient UC (srUC) framework [18], in which parties can derive a high-entropy secret key and verify their
identities by means of a shared password. Given that passwords are considered to be low-entropy, the
security definition of PAKE must take into account the fact that the adversary can guess the password with
non-negligible probability. Thus, a protocol realizing PAKE is secure if no adversary is able to break it with
probability better than guessing the password outright. Moreover, the PAKE functionality restricts the ideal
adversary to only perform online password guesses. In other words, the transcript of a PAKE protocol must
not help the adversary to perform a dictionary (i.e., offline) attack.

1.2 Our Results

Our main contribution consists in constructing the first UC PAKE protocol with security in the presence of
subversion attacks, via RFs. Following [18], we consider a setting where each party is split into a core (which
has secret inputs and is in charge of generating protocol messages) and a RF (which shares no secrets with
the core and sanitizes the outgoing/incoming communication from/to the core using random coins). Both
the core and the RF are subject to different flavours of corruption, modelling different kinds of subversion
attacks.

In order to avoid simple impossibility results, we follow [18] and only consider the so-called specious
subversions, in which a subverted core looks like an honest core to any efficient test, yet it may signal private

2

information to the subverter via subliminal channels, or trigger an unexpected behaviour whenever a specific
triggering message is received.

Our PAKE protocol is obtained by sanitizing the UC randomized equality protocol from oblivious transfer
(OT) by Canetti et al. [12]. As an added bonus, this construction allows us to introduce several building
blocks of independent interest in the srUC framework in a modular and natural manner. As we explain in the
next section, essential changes to the original building blocks’ design are needed, including the definition and
the realization of sanitizable variants of intermediate ideal functionalities, new sanitation-friendly properties
for cryptographic primitives, and extensions to the srUC model itself.

One difficulty in the realization of PAKE is that one cannot rely on authenticated channels. As shown
by Barak et al. [7], this difficulty can be tackled generically by first designing a PAKE protocol assuming
authenticated channels, and then compiling it into another protocol without authenticated channels using
the concept of “split functionalities”. Such functionalities basically allow the adversary to disconnect parties
completely, and engage in separate executions with each one of the two parties, where in each execution the
adversary plays the role of the other party. We follow a similar recipe in the design of our PAKE protocol. In
particular, we first realize subversion-resilient randomized equality, which is essentially PAKE with authenti-
cated channels, assuming the existence of a functionality for sanitizable authenticated communication (which
already appeared in [18], and is denoted by FSAT). Following [7], we then define a weaker split-authenticated
(sanitizable) variant sFSAT that allows the adversary to partition parties, and prove that a modification of
their transformation allows to lift any protocol that multi-realizes a functionality F assuming authenticated
channels to one that realizes the corresponding “split version” (i.e., sF) without any assumption on channels,
even in the presence of subversion.

In the process, we realize sFSAT by sanitizing the protocol of [7, Section 4.2], introducing a new notion
of key-sanitizable signature schemes with a matching security property. This improves on an open problem
from [18], where the authors were only able to realize FSAT assuming the presence of a PKI and by moving
to a “three-tier model” variant of the framework, in which each party has an additional operative component
that may only be honest or malicious. Even if used exclusively throughout the setup phase of the protocol,
providing access to an operative component that is immune to subversion is a strong assumption that
definitely weakens any result achieved in the framework: indeed, the three-tier model provides a trivial
solution to counteract specious corruptions of the core for any functionality, as the operative is in principle
allowed to run any protocol on behalf of the core. On the contrary, we realize the backbone of communication
among components in the two-tier model without assuming a PKI, although only for the unauthenticated
setting (i.e., sFSAT).

Finally, we apply the aforementioned transformation to our randomized equality protocol, and realize
subversion-resilient PAKE by constructing a protocol with access to the split version of the randomized
equality functionality.

1.3 Technical Overview

Below, we provide an overview of the technical contributions, explaining the main ideas and tools behind
our subversion-resilient PAKE protocol.

1.3.1 Sanitizing OT

Defining oblivious transfer in the presence of subversion attacks is a tricky task, as the (non-sanitized)
functionality would allow a (specious) receiver to obtain exactly one of the inputs of the sender, which may
act as a trigger if sampled maliciously. Similarly, it would allow a (specious) sender to sample the inputs
in a leaky manner and send them over to a corrupted party. For this reason, in our sanitizable OT ideal
functionality FsOT (depicted in Figure 1), both firewalls are allowed to blind the sender’s inputs by means of
a blinding operation. This way, the sender’s firewall can sanitize the sender’s randomly chosen inputs, and
the receiver’s firewall can sanitize the inbound inputs.
Here, we introduce a different technique compared to that of the seminal framework. Namely, the function-
ality allows firewalls to explicitly contribute to the sanitation, and disregard their contribution whenever the

3

Core Ci (x0, x1) Firewall Fi (r′0, r
′
1) Firewall Fj (r′′0 , r

′′
1) Core Cj (σ)

r′0, r
′
1

x0, x1 FsOT

σ

xσ ∗ r′σ ∗ r′′σ

r′′0 , r
′′
1

Figure 1: Our sanitizable OT functionality FsOT, with ∗ being an appropriate blinding operation for the input
domain.

overall party related to that firewall is malicious. From a formal standpoint this is allowed, as there exists a
corruption translation table that maps corruptions of individual components of a party to a corruption for
the entire party, and currently the srUC framework only supports static corruptions, so the functionality
knows in advance which parties are corrupted. This also makes sense for what concerns simulation: once
we have mapped components to a malicious party we shouldn’t simulate anything that occurs within that
malicious party. As an example, while handling a malicious sender in a protocol realizing FsOT, it suffices for
the simulator to only forward to FsOT the malicious sender’s input messages. Indeed, the notion of blinding
may not even be well-defined.

In order to instantiate FsOT, we start by considering dual-mode cryptosystems as in Peikert et al. [28].
Briefly, in these cryptosystems the party holding the secret key specifies a decryption branch upon gener-
ating the keypair, and the party holding the public key specifies an encryption branch for each ciphertext.
Decryption succeeds only for ciphertexts generated on the decryption branch. Moving to the subversion
setting, we introduce a new primitive that we call sanitizable homomorphic dual-mode cryptosystems that
extends dual-mode cryptosystems by additionally providing: (1) a procedure to carry out homomorphic
operations on ciphertexts (e.g., Enc(m1) ∗ Enc(m2) = Enc(m1 ∗m2)), (2) a procedure to maul an encryption

key pk to a different encryption key p̃k, and (3) a procedure to maul a ciphertext under encryption key p̃k
to a ciphertext of the same message under encryption key pk. Looking ahead, item (1) allows firewalls to
sanitize the messages input to the OT, and items (2, 3) allow to first blind a public key, introducing a layer of
sanitation, and align encryptions accordingly, stripping that layer of sanitation away to preserve correctness.
The construction from DDH of [28, Section 5] can be extended to verify our newly introduced properties in
a straight-forward manner.

Finally, we instantiate the functionality by proposing an appropriate sanitation of the protocol of [28,
Section 4], which unfolds as follows. The receiver produces a key pair that may only be used to decrypt
values on the encryption branch matching the choice bit σ and sends the public key towards the sender. This
key is sanitized once by each firewall. Upon receiving the (sanitized) key, the sender encrypts value xb on
encryption branch b, for b ∈ {0, 1}, and forwards these ciphertexts towards the receiver. Each firewall removes
one layer of sanitation from the ciphertexts, so that the receiver can successfully decrypt the ciphertext on
branch b = σ.

In the security proof, we first show that the construction is strongly sanitizing, i.e., a specious core
with a honest firewall is indistinguishable from an incorruptible core with a honest firewall, by using the
aforementioned properties. After that, the simulation becomes extremely close to the one of the original
protocol, as it leverages on the two (computationally indistinguishable) modes of the CRS to map the
behaviour of the adversary to consistent queries to FsOT.

We conclude the section by remarking that, exactly as in the original protocol of [28], it is possible to
re-use the same CRS across multiple protocol runs. Hence, we obtain a protocol that multi-realizes FsOT

(i.e., a protocol that realizes the the multi-session sanitizable OT functionality F̂sOT).

4

1.3.2 Sanitizing Randomized Equality

Canetti et al. [12] instantiate the randomized equality functionality by proposing a protocol that relies on OT
and roughly unfolds as follows: for an n-bit password, each party runs FOT n-times as the sender, inputting
two random strings for each OT run, and n-times as the receiver, inputting the i-th bit of their password
in the i-th run. Intuitively, the sender of each batch of OTs is able to choose the same random strings that
were selected by the receiver only if the passwords are the same, and all these strings can be combined to
derive a common shared key.

After defining FsOT, designing a protocol that realizes the randomized equality ideal functionality FRE in
the subversion setting becomes immediate. In order to thwart information leakage originating from a biased
sampling of the random strings, as well as inbound input-triggering strings, both firewalls blind the sender’s
inputs in both OT batches with locally-sampled random strings. The trick to preserve correctness leverages
on the symmetrical structure of the protocol: namely, random strings used for the i-th OT in which a core
acts as the sender are re-used for the i-th OT in which the same core acts as the receiver.

1.3.3 Split functionalities in the srUC model

A PAKE protocol establishes (over an unauthenticated channel) a secret key among parties that share a
common password. Thus, it makes little sense to build a PAKE protocol in a setting that already assumes
the existence of authenticated channels.

The problem of achieving any form of secure computation (including protocols such as PAKE) in the UC
unauthenticated channel setting was first described by Barak et al. [7]. In their setting, all the messages sent
by parties can be tampered with and manipulated by the adversary unbeknownst to honest parties. The
authors show that, while in this model it is not possible to achieve the same guarantees as with authenticated
channels, meaningful security can still be provided: namely, the worst the adversary can do is split honest
parties into independent execution sets before the protocol run, and act on behalf of all (honest) parties
that are not within the same set. This way, even though honest parties can run the entire protocol with
the adversary without even noticing it, they can rest assured that they will complete the entire run of the
protocol interacting with the same set of parties since the start. In [7], this notion is captured in what
the authors call split functionalities. One central result of [7] consists of showing a generic transformation
for which any protocol UC n-realizing some n-party functionality F relying on authenticated channels can
be compiled into a similar protocol that UC-realizes the split functionality sF , but now just relying on
unauthenticated channels.

Given that [18] exclusively refers to authenticated channels, which are formalized with the “sanitizable
authenticated transmission” functionality FSAT, in this work we extend the notion of split functionalities to
the srUC model. More specifically, we show that the generic transformation of [7] for split protocols carries
over to our setting whenever the underlying unauthenticated channel is sanitizable. The latter notion is
captured by the split version of FSAT, that we call sFSAT. This functionality allows the adversary to split
parties in different authentication sets in a “link initialization” phase, before any message is exchanged. After
that, the behaviour is exactly the same as FSAT, except that the adversary may deliver arbitrary messages
to parties within different authentication sets.

A crucial component of the transformation is the construction of a protocol realizing sFSAT. For that,
we introduce a new primitive that we call key-sanitizable signatures that: (1) provides a procedure to maul

a verification key vk into ṽk, (2) a procedure to maul a signature under verification key vk into a signature

under verification key ṽk, and (3) is equipped with a function f such that f(vki, ṽkj) = f(ṽki, vkj), with

ṽki and ṽkj being verification keys mauled under the same randomness. We show that the BLS signature
scheme [10] is a key-sanitizable signature scheme, with f being a bilinear map. In our protocol for sFSAT,
parties exchange locally-generated keys, which are used to ”initialize the link” by determining a session ID
sid, and to sign messages that are exchanged through the link. Firewalls sanitize these keys and re-align
signatures accordingly to preserve correctness, and the bilinear map allows parties to recompute the same sid
in the presence of firewalls mauling the keys. We note however that the bilinear map restricts the protocol
to the 2-party setting, which in turn restricts the transformation to only capture 2-party functionalities in

5

the srUC model.
Once a protocol for sFSAT is in place, one can simply white-box inspect the proofs of [7] and adapt

them to the srUC setting. The core result is a lemma stating that any protocol 2-realizing a 2-party
functionality F in the wsrUC model assuming FSAT can be compiled into a protocol realizing sF in the
wsrUC model assuming sFSAT. Given that any n-party functionality F can be n-realized in the wsrUC
model by the subversion-resilient GMW compiler of [18], we also obtain a theorem stating that any 2-party
split functionality can be realized in the wsrUC model using only unauthenticated channels (in the sFSAT-
hybrid model), matching [7, Theorem 10]. As in traditional UC, a protocol poly-realizing a functionality
roughly means that polynomially-many instances of that protocol may re-use the same setup.

1.3.4 The final PAKE protocol

At last, we combine all our ingredients together to realize PAKE in the subversion setting. First, we apply
the split transformation to the protocol realizing FRE in the authenticated setting, obtaining a protocol that
realizes sFRE in the unauthenticated setting. Then, with a similar argument to that of Dupont et al. [22], we
argue that sFRE is sufficient to instantiate FPAKE. This can be shown by exhibiting a trivial protocol in the
sFRE-hybrid model that exclusively interacts with sFRE, and by showing that the power of splitting parties
in sFRE can be mapped to the power of performing password queries in FPAKE.

We observe that, as a corollary of the generic result of the previous paragraph, one also gets a protocol
realizing sFRE by relying on the srUC GMW compiler from [18], although with worse efficiency than our
concrete construction from DDH. For that, we provide a hand-wavy comparison of the two constructions by
considering communication and round complexity.

Importantly, in this work we consider a PAKE functionality that only provides implicit rather than
explicit authentication. This means that, while parties can be assured by the functionality that any other
party capable of deriving the same session key must possess the password, there is no direct assurance
that the counterpart has successfully computed the session key upon completion of the protocol. This
decision was made for two primary reasons: (1) it streamlines our results, as explicit mutual authentication
typically requires incorporating additional “key confirmation” steps at the protocol’s conclusion, which would
complicate our protocol with the need for further sanitation processes, and (2) in many practical scenarios,
such as secure channels, explicit authentication is not a requirement. Moreover, in our setting, mutual explicit
authentication is inherently provided by any higher-level protocol that utilizes our PAKE as a foundation.
For instance, in applications involving secure messaging, the act of successfully exchanging messages serves
as explicit confirmation that both parties share the same session key.

Moreover, as a technical remark stemming from the srUC model, the PAKE functionality we realize
implicitly includes the wrapper of [18] that simply adds dummy firewall parties in order to prevent trivial
distinguishing from the environment. This also holds for FRE, but causes no differences in the behaviour of
both functionalities. For a cleaner presentation and following [18], we omit the wrapper when using hybrid
functionalities.

1.4 Related Work

Next, we discuss related works on the topics of reverse firewalls, subversion-resilient cryptography in general,
and PAKE.

1.4.1 Reverse firewalls and subversion

Reverse firewalls were introduced by Mironov and Stephens-Davidowitz [27], who showed how to construct
reverse firewalls for oblivious transfer (OT) and two-party computation with semi-honest security. Follow
up works showed how to construct reverse firewalls for many other cryptographic primitives and protocols
including: secure message transmission and key agreement [21, 19], interactive proof systems [24], and
maliciously secure MPC for both the case of static [16] and adaptive [17] corruptions. However, most of
these constructions lack modularity, as the security of each firewall is proven in isolation and does not extend

6

to larger protocols when combined with other firewalls. This was addressed by Chakraborty, Magri, Nielsen
and Venturi [18] with the proposal of the Subversion-Resilient Composability framework (srUC). The srUC
allowed for the first time to build and to analyse subversion-resilient protocols under composition. [18] shows
how to sanitize the classical GMW compiler [25] for MPC under subversion. Towards that, it also introduces
the concept of sanitizable commitment and sanitizable commit-and-prove.

More recently and concurrently to this work, an alternative framework for subversion-resilient UC was
put forward by Arnold et al. [4]. Compared to [18], this new framework captures reverse firewalls in the plain
UC model, but characterizes subversion by exclusively allowing an adversary to tamper with the function
generating the randomness of a protocol. This rules out simple subversion attacks which [18] (and our
paper) accounts for, such as having a specious core change its input to part of its secret state upon receiving
a specific triggering value.

Ringerud [29] explored the problem of achieving subversion-resilient AKE in a standalone fashion (i.e.,
without reverse firewalls or watchdogs), providing intuition on why realizing this primitive appears to be
hard in such an adversarial setting.

Additional work on subversion includes algorithm substitution attacks [9, 6, 20], parameter subversion [8,
2, 23, 3], Cliptography [5, 32, 31], subliminal channels [33, 34] to list a few. We refer to [27, 18] for further
related works, such as watchdogs and self-guarding.

1.4.2 PAKE

The seminal work by Canetti et al. [13] formalizes PAKE as an ideal functionality, and proposes an efficient
protocol securely realizing this functionality in the setting of malicious corruptions and under universal
composability [11], i.e., when protocols can be arbitrarily composed with other protocols. The description
was later extended to explicit mutual authentication in [26] and [12], in which parties are able to tell whether
they effectively authenticated or not. Our work is the first to achieve subversion-resilient PAKE in the UC
framework.

1.5 Organization

In Section 2, we give a concise introduction to the subversion-resilient UC framework of [18]. In Section 3,
we define and instantiate sanitizable oblivious transfer. In Section 4, we instantiate a subversion-resilient
protocol for the randomized equality ideal functionality. In Section 5, we define and instantiate the sanitizable
split-authenticated functionality, and port the transformation of Barak et al. [7] that allows to remove
authenticated channels from our reference framework. In Section 6, we combine the results of previous
sections to achieve subversion-resilient PAKE. Finally, in Section 7, we conclude the paper with a few
related open problems for further research. See Figure 2 for a visual representation of how our results are
linked to one another.

2 A Brief Recap of Subversion-resilient UC

We give a brief overview of subversion resilience in the UC framework (srUC for short). We refer the reader
to [18] for further details, and to [11] for a complete treatment of the UC framework. We give a succinct
introduction of the latter in Appendix B.

2.1 Corruption Types

Each party Pi in the protocol is modelled as two independent parties: a core Ci, which hosts the code
associated with the protocol (and may contain secrets), and a firewall Fi, which may intervene on all the
messages associated with their respective core (both inbound and outbound). Since cores and firewalls are
independent parties, they may also be corrupted independently. The model of [18] specifies that the relevant
corruption cases for the core are Honest, Malicious, or Specious, while the ones for the firewall are

7

Authenticated Communication (FSAT) Unauthenticated Communication (sFSAT)

DME from DDH [28]

Thm. 1

SHDME (Def. 4)

Thm. 2

(Multi-realizing) FsOT

Thm. 3

FRE
Thm. 7

BLS [10]

Thm. 5

KS-EUF-CMA +
IDComb (Def. 5, 6, 7)

Thm. 6

sFSAT

sFRE

Thm. 8

FPAKE

GMW (srUC) [18] Thm. 4 Any 2-party sF

Figure 2: A visual summary of the contributions of this paper. All the functionalities are realized in the srUC
framework of [18]. DME stands for Dual-Mode Encryption. SHDME stands for Sanitizable Homomorphic DME.
KS-EUF-CMA stands for Key-Sanitizable EUF-CMA. IDComb is a shorthand for Consistent Identity Combinability.

Honest, SemiHonest, or Malicious. Mapping the corruption possibilities for the parties Pi = (Ci,Fi) in
a regular UC functionality gives rise to the following corruption translation table:

2.1.1 Specious corruption

A specious corruption is a type of subversion where the subverted core looks indistinguishable from the
honest core to any efficient test. The main idea is that we consider corruptions where a core Ci has been
replaced by another implementation C̃i which cannot be distinguished from Ci by black-box access to C̃i or
Ci. Intuitively, a specious corruption can be thought of as a subversion that remains undetectable.

2.1.2 Isolate corruption

Isolate is a weaker type of corruption that models the setting where a malicious firewall simply cuts
the communication of an honest core with the outside world. This is typically modelled as a Malicious
corruption in the authenticated setting, and as a MITM attack in the unauthenticated setting, and can
therefore be safely dropped from the analysis.

8

Core C Firewall F Party P in F
Honest SemiHonest Honest
Specious Honest Honest
Honest Malicious Isolate

Malicious Malicious Malicious

Table 1: The corruption translation table of [18].

2.1.3 Strong sanitation

A firewall is strongly sanitizing if an adversary is unable to distinguish an execution of the protocol with a
specious core equipped with an honest firewall from an execution of the protocol with an honest core equipped
with an honest firewall. As shown in [18], whenever the firewalls are strongly sanitizing, the Specious core
and Honest firewall case is the same as considering an Honest core and an Honest firewall.

2.2 Ideal Functionalities

There are two types of ideal functionalities in srUC: sanitizable functionalities and regular functionalities.
Sanitizable functionalities are the ones where cores and firewalls explicitly interact with the functionality. For
that, sanitizable functionalities expose, for each party Pi, an input-output interface IOi that interacts with
the core Ci, and a sanitation interface Si that interacts with the firewall Fi. Regular functionalities have the
same flavor of the functionalities used in the UC framework, where the functionality will only communicate
with parties and is not aware of cores and firewalls. The goal of considering regular functionalities is that
it is perfectly valid and desirable to be able to build protocols that realize a regular functionality (e.g., coin
tossing) under subversion attacks. However, since there is no support for sanitation interfaces in regular func-
tionalities, the model considers a wrapped version of the functionality F , denoted by Wrap(F), that handles
all the boilerplate code of translating the combinations of corruptions of cores and firewalls to corruptions
of parties in F . The wrapper also passes any message coming from the functionality and directed to party
Pi to the corresponding core Ci and firewall Fi, and it is needed to avoid trivial distinguishing attacks in the
UC framework, since the actual protocol will be implemented with cores and firewalls. For what concerns
security definitions, two separate notions are presented in [18], according to the type of functionality that
is being realized: subversion-resilient UC (srUC) security for sanitizable ideal functionalities, and wrapped
subversion-resilient UC (wsrUC) security for regular ideal functionalities. Definition 1 captures security of a
sanitizing protocol1 Π that instantiates cores and firewalls interacting with the interfaces exposed by a sani-
tizable ideal functionality G in order to UC-realize a wrapped regular functionality Wrap(F) in the G-hybrid
model. This yields wsrUC security. Definition 2 is essentially the same, but captures security for protocols
realizing a sanitizable ideal functionality, yielding srUC security.

Definition 1 (Wrapped subversion-resilient UC security [18]). Let F be an ideal functionality for n parties
P1, . . . ,Pn. Let Π be a sanitizing protocol with n cores C1, . . . ,Cn and n firewalls F1, . . . ,Fn. Let G be a
sanitizable ideal functionality which can be used by the sanitizing protocol Π. We say that Π wsrUC-realizes
F in the G-hybrid model if Π UC-realizes Wrap(F) in the G-hybrid model, with the restriction that we only
quantify over specious environments and specious adversaries.

Definition 2 (Subversion-resilient UC security [18]). Let F be an ideal functionality for n parties P1, . . . ,Pn.
Let Π be a sanitizing protocol with n cores CF

1 , . . . ,C
F
n and n firewalls FF

1 , . . . ,F
F
n . Let G be a sanitizable

ideal functionality which can be used by a protocol Π interacting on IO interfaces and sanitation interfaces.
We say that Π srUC-realizes F in the G-hybrid model if F can be written as a well-formed sanitizable ideal

1We use the terms “sanitizing protocol” and “sanitized protocol” interchangeably to refer to subversion-resilient protocols
realizing a regular UC functionality.

9

functionality2, and Π UC-realizes F in the G-hybrid model, with the restriction that we only quantify over
specious environments and specious adversaries.

2.3 Communication channels

In all the protocols of [18], communication is mediated by a sanitizable ideal functionality for authenticated
communication FSAT, which fundamentally embeds three capabilities:

• It allows to distribute a setup (e.g., a CRS) by means of a Setup algorithm.

• It provides secure channels between cores and their respective firewall.

• It provides authenticated channels between firewalls.

In what follows, we report a variant of the description of FSAT that does not include the first capability.
This is a design choice that allows to better separate setup and communication: indeed, the former may be
captured by a separate ideal functionality Fcrs.

Functionality FSAT

� On input (Send,Pi,Pj , a) on IOi, it forwards the tuple on Si. As in the original description, we assume that
a is sent at most once from honest parties.

� On input (Send,Pi,Pk, b) on Si, it leaks the tuple to the adversary S, and internally stores the tuple.

� On input (Deliver, (Send,Pi,Pk, b)) from the adversary, where the Send tuple is stored, it outputs
(Receive,Pi,Pk, b) on Sk and deletes the tuple.

� On input (Receive,Pi,Pm, c) on Sm, it outputs (Receive,Pi,Pm, c) on IOm.

An important observation is that FSAT induces a core-to-core authenticated channel. While this is an
acceptable backbone of communication for our protocols in Sections 3 and 4, it makes little sense to instantiate
PAKE by already assuming authenticated channels. In Section 5, we overcome this limitation by defining a
weaker functionality sFSAT that models the unauthenticated setting by allowing the adversary to partition
parties, in line with the work of Barak et al. [7].

3 Sanitizing Oblivious Transfer

In this section, we first propose a sanitizable ideal functionality for oblivious transfer that will be used
as a building block for the sanitation of randomized equality in Section 4. Secondly, we recap dual-mode
cryptosystems, define sanitizable homomorphic dual-mode cryptosystems, and exhibit an instantiation for
this new primitive from the DDH assumption. We use the latter notion to sanitize the generic framework
for OT of Peikert et al. [28], obtaining a protocol for the sanitizable oblivious transfer functionality FsOT.
Finally, we argue that, in line with the instantiation of [28], our protocol can reuse the same CRS across
multiple runs, thus realizing the multi-session extension of FsOT (also denoted by F̂sOT).

3.1 Sanitizable OT

Following the ideas presented in the technical overview in Section 1.3, we describe sanitizable ideal func-
tionality for oblivious transfer FsOT, in which both firewalls may intervene in the sanitation of the sender’s
inputs.

2A well-formed sanitizable ideal functionality can be decomposed into a central part that does the computation and interacts
with parties, and an outer layer exposing IO and sanitation interfaces, similarly to a wrapped ideal functionality.

10

Functionality FsOT

FsOT is a sanitizable ideal functionality that interacts with the sender S = (CS,FS) and the receiver
R = (CR,FR), parameterized by input domain I ⊆ {0, 1}n and a blinding operation ∗ : I2 → I.

Interface IOi:

Upon receiving a query (sender, sid, (x0, x1)) from CS on IOS:

Record (sender, sid, (x0, x1)) and forward the tuple on Si. Ignore subsequent commands of the form
(sender, sid, ·).

Upon receiving a query (receiver, sid, σ) from CR on IOR:

Check if a record (sender, sid, (x̂0, x̂1)) exists. If this is the case, check the following:

* The message (blind, sid, ·) was sent to FsOT on SS. If S is malicious according to the corruption
translation table, mark this check as passed.

* The message (blind, sid, ·) was sent to FsOT on SR. If R is malicious according to the corruption
translation table, mark this check as passed.

If the conditions above hold, output (sid, x̂σ) to R, sid to the adversary S, and halt. Otherwise, send
nothing to R but continue running.

Interface Si:

Upon receiving a query (blind, sid, (x′
0, x

′
1)) from FS on SS:

If S is malicious according to the corruption translation table, do nothing. Otherwise, check if a record
(sender, sid, (x0, x1)) exists. If so, update the tuple to (sender, sid, (x̃0, x̃1)), with x̃b = xb ∗ x′

b. Other-
wise, do nothing. Ignore future commands of the form (blind, sid, ·) on SS.

Upon receiving a query (blind, sid, (x′′
0 , x

′′
1)) from FR on SR:

If R is malicious according to the corruption translation table, do nothing. Otherwise, check the following:

* A record (sender, sid, (x̃0, x̃1)) exists.
* A message (blind, sid, ·) was sent to FsOT on SS. If S is malicious according to the corruption

translation table, mark this check as passed.

If the conditions above hold, update the tuple to (sender, sid, (x̂0, x̂1)), with x̂b = x̃b ∗ x′′
b . Otherwise,

do nothing. Ignore future commands of the form (blind, sid, ·) on SR.

The ideal functionality is parameterized by a blinding operation ∗, which may be tailored to the input
domain of choice (e.g., for additive blinding, x0 ∗ x′

0 = x0 ⊕ x′
0; for multiplicative blinding, x0 ∗ x′

0 = x0x
′
0).

Furthermore, the functionality disregards blinding inputs from firewalls of parties that, according to the
corruption translation table, are malicious. As discussed throughout the technical overview in Section 1.3,
this is reasonable: the corruption status of individual components can be determined in advance (as we are
in the static setting), and their combined behaviour can be considered as a single party by following the
corruption translation table. If the joint party is malicious, we do not have to simulate anything related to
messages internally exchanged by the adversary. In particular, the blinding operation may not be well-defined
at all.

3.2 Sanitizable Homomorphic Dual-Mode Encryption

Dual-mode cryptosystems operate like traditional public-key cryptosystems, except for the following differ-
ences. First, they introduce the notion of encryption branches, for which the key generation algorithm takes
as an additional input a branch σ ∈ {0, 1}. The party holding the public key can choose either branch
b ∈ {0, 1} over which to encrypt a message. The party holding the secret key is able to decrypt the cipher-
text successfully only if σ = b. Second, they rely on a common-reference string that may be setup either in
messy mode or decryption mode. These modes are computationally indistinguishable and induce different

11

algorithms for the generation of a trapdoor, yielding different security guarantees: in messy mode, the sender
has statistical security and the receiver has computational security, whereas in decryption mode the security
properties are mirrored. We report the formal definition of Dual-Mode Cryptosystems in what follows, and
refer the reader to [28] for further details.

Definition 3 (Dual-Mode Cryptosystems [28]). A dual-mode cryptosystem consists of a tuple of algorithms
(Setup,KeyGen,Enc,Dec,FindMessy,TrapKeyGen) with the following properties:

1. Completeness for decryptable branch: For every µ ∈ {mes, dec}, every (crs, t) ←$ Setup(1λ, µ),
every σ ∈ {0, 1}, every (pk, sk)←$ KeyGen(σ), and every m ∈ {0, 1}k, decryption is correct on branch
σ, i.e., Dec(sk,Enc(pk, σ,m)) = m. It also suffices for decryption to be correct with overwhelming
probability over the randomness of the entire experiment.

2. Indistinguishability of modes: Let SetupMessy(1λ) = Setup(1λ,mes) and SetupDec(1λ) = Setup(1λ, dec).

The first outputs of SetupMessy and SetupDec are computationally indistinguishable, i.e., SetupMessy1(1
λ)

c
≈

SetupDec1(1
λ).

3. (Messy mode) Trapdoor identification of a messy branch: For every (crs, t)←$ SetupMessy(1λ)
and every (possibly malformed) pk, FindMessy(t, pk) outputs a branch value b ∈ {0, 1} such that

Enc(pk, b, ·) is messy. Namely, for every m0,m1 ∈ {0, 1}k, Enc(pk, b,m0)
s
≈ Enc(pk, b,m1).

4. (Decryption mode) Trapdoor generation of keys decryptable on both branches: For ev-
ery (crs, t) ←$ SetupDec(1λ), TrapKeyGen(t) outputs (pk, sk0, sk1) such that for every σ ∈ {0, 1},
(pk, skσ)

s
≈ KeyGen(σ).

3.2.1 Sanitizable Homomorphic Dual-Mode Cryptosystems

Looking ahead, we need to augment dual-mode cryptosystems to allow the sanitation of public keys, cipher-
texts, and plaintexts related to ciphertexts. For that, we formally define sanitizable homomorphic dual-mode
cryptosystems in what follows.

Definition 4 (Sanitizable Homomorphic Dual-Mode Cryptosystems). A sanitizable homomorphic dual-mode
cryptosystem consists of a tuple of algorithms (Setup, KeyGen, Enc, Dec, FindMessy, TrapKeyGen, HomOp,
MaulPK, AlignEnc) with the following properties:

1. Dual-mode cryptosystem: The tuple of algorithms (Setup,KeyGen,Enc, Dec,FindMessy,TrapKeyGen)
constitutes a dual-mode cryptosystem.

2. Homomorphic ciphertexts: For every σ ∈ {0, 1}, for every (pk, sk) ←$ KeyGen(σ), for every
ci ←$ Enc(pk, σ,mi), with i ∈ {0, 1} and mi ∈ {0, 1}n, HomOp(m0,m1) produces a new ciphertext of
message m0 ∗m1, i.e., HomOp(c0, c1) = Enc(pk, σ, (m0 ∗m1)).

3. Consistent key sanitation: For every σ ∈ {0, 1}, for every (pk, sk) ←$ KeyGen(σ), for every

ρ ∈ {0, 1}n, MaulPK(pk, ρ) outputs a new encryption key p̃k with the following property. For every

c̃ ←$ Enc(p̃k, σ,m), with i ∈ {0, 1} and m ∈ {0, 1}n, AlignEnc(c, ρ) produces a new ciphertext c under
public key pk, i.e., AlignEnc(c̃, ρ) = c, where c = Enc(pk, σ,m).

Intuitively, MaulPK and AlignEnc are defined as a (symmetric) tuple of algorithms as firewalls will first
sanitize the outbound encryption key by running MaulPK with some randomness. Then, upon receiving any
ciphertext encrypted under the new mauled public key, the firewall will “strip” the layer of sanitation by
using the same randomness used for MaulPK, outputting a ciphertext containing the same message for the
non-mauled public key pk.

Remark 1. The MaulPK, AlignEnc, HomOp algorithms are outputting keys and ciphertexts implicitly com-
bining the randomness of their inputs. This is essential in the context of sanitation, as it allows a firewall
to run these algorithms to combine their ”good randomness” to destroy subliminal channels stemming from
values with ”bad randomness” output by their core.

12

3.2.2 Instantiation from DDH

We briefly recap the instantiation of dual-mode cryptosystems from DDH of [28, Section 5]. In what follows,
we denote G as the group description on a cyclic group G of prime order p for which DDH is hard, with
generators g, h.

• The CRS is a tuple (g0, h0, g1, h1), with different trapdoors according to the mode of operation.

• KeyGen(σ) = ((grσ, h
r
σ), r) = ((pk1, pk2), sk) = (pk, sk).

• Enc(pk,m, b) = (gsbh
t
b, pk

s
1pk

t
2m) = (c1, c2).

• Dec(sk, c) = c2/c
r
1.

The DDH cryptosystem is compatible with all the additional interfaces we introduced in Definition 4, and
we define algorithms matching the newly introduced properties in a straight-forward manner:

• MaulPK(pk, ρ): Output pkρ.

• AlignEnc(c, ρ): Parse c = (c1, c2). Output c̃ = (cρ1, c2).

• HomOp(c0, c1): Output c0c1.

Theorem 1. The DDH cryptosystem of [28] with the additional algorithms specified above is a sanitizable
homomorphic dual-mode cryptosystem, assuming that DDH is hard for G.

The theorem follows by inspection of the newly-introduced algorithms. A formal proof is given in Ap-
pendix C.1.

3.3 A Generic Framework for Sanitizable OT

As shown in the generic framework of [28, Section 4], having access to a dual-mode cryptosystem allows the
instantiation of FOT in a natural manner: the receiver uses its choice bit σ as the selected decryption branch,
and the sender encrypts each of its inputs xb on a separate encryption branch b ∈ {0, 1}. The receiver will
only be able to decrypt the ciphertext on branch σ = b.

From a high-level perspective, our sanitized protocol leverages homomorphic ciphertexts to blind the
sender’s inputs and uses consistent key sanitation to sanitize the receiver’s outbound encryption key and
realign the inbound ciphertexts for decryption purposes. These operations also destroy any potential sublim-
inal channel linked to the original ciphertexts or to the keys. In Figure 3, we depict a protocol run showing
only the firewall of the sender, since the firewall of the receiver behaves exactly in the same way.

Theorem 2. The protocol in Figure 3, parameterized by mode ∈ {mes, dec}, realizes the sanitizable function-
ality FsOT in the (FSAT,Fcrs)-hybrid model under static corruptions. For mode = mes, the sender’s security
is statistical and the receiver’s security is computational; for mode = dec, the security properties are reversed.

Intuitively, we first show that the firewalls are able to thwart all subversion attacks (both inbound and
outbound). Then, we simulate similarly to the original proof, with the twist that we do not have to simulate
inputs of malicious parties (as per the considerations in the technical overview). We defer the formal proof
to Appendix C.2.

3.4 Multi-session FsOT

Informally, a multi-session ideal functionality in UC is an ideal functionality that allows “multiple runs” of
the functionality using the same setup. As a concrete example, the commitment functionality FCOM allows
a committer to commit to a single value; to produce another commitment a new and independent instance
of (the protocol realizing) FCOM must be spawned with a brand new setup. In contrast, the multi-session
functionality FMCOM allows a committer to perform poly-many commitments using the same setup. Hence,
using multiple instances of FMCOM has the same effect as using a single instance of FMCOM.

13

Core CS (x0, x1) Firewall FS (x′
0, x

′
1) Core CR (σ)

CRS = crs
(sk, pk)←$ KeyGen(crs, σ)

pk

ρS ←$ {0, 1}λ

p̃k = MaulPK(pk, ρS)

p̃k

ỹb ←$ Enc(p̃k, b, xb)

(ỹ0, ỹ1)

ỹ′b ←$ Enc(p̃k, b, x′
b)

ỹ′′b = HomOp(ỹb, ỹ
′
b)

yb = AlignEnc(ỹ′′b , ρ
S)

(y0, y1)

Output Dec(sk, yσ)

Figure 3: A sanitation of the generic framework of Peikert et al. [28], realizing FsOT. The receiver’s firewall is
omitted, as it runs the same code as FS.

Moving to our case, we note that the generic framework of [28] actually realizes the multi-session version
of FOT (also denoted as F̂OT). Given that our protocol in Figure 3 has the same structure as the protocol
of [28], we observe that we can reuse the same CRS across multiple runs, each with a distinct sub-session ID.
The presence of subverted cores does not impact this property, as the sanitation operated from the firewalls
uses independently-sampled random strings for each sub-protocol run.

4 Sanitizing Randomized Equality

In this section, we present our sanitized protocol for the (regular) randomized equality ideal functionality
FRE that relies on authenticated channels (i.e., FSAT) and FsOT, following the construction of Canetti et
al. [12].

4.1 Description of FRE

We describe a variation of the randomized equality ideal functionality FRE of [12], with technical improve-
ments from Dupont et al. [22].

Functionality FRE

The functionality FRE is parameterized by a security parameter λ. It interacts with an initiator I = (CI,FI), a
responder R = (CR,FR), and the adversary S via the following messages:

Upon receiving a query (NewSession, sid, I,R, wI), from I:

Record (I,R, wI) and send a message (sid, I,R) to S. Ignore all future messages from I.

Upon receiving a query (ok, sid) from S:

Send a message (wakeup, sid, I,R) to R. Ignore all future (ok) messages.

Upon receiving a query (Respond, sid, I,R, wR) from R:

• If wR = wI, choose skey←$ {0, 1}λ and store skeyI = skeyR = skey.
• If wR ̸= wI, then set skeyI ←$ {0, 1}λ, skeyR ←$ {0, 1}λ.

14

In both cases, ignore subsequent inputs from R.

Upon receiving a query (NewKey, sid,P,K), P ∈ {I,R} from S:

• If any of the following conditions hold, output (sid,K) to party P:

− P is corrupted.
− wI = wR, and the peer of P is corrupted.

• Otherwise, output (sid, skeyP) to party P.

Ignore all subsequent (NewKey,P) queries for the same party P.

FRE features an initiator I and a responder R who obtain the same random high-entropy value skey only
if they have input the same passwords. More specifically, the initiator declares its intention to run the
functionality with the responder by means of a NewSession query with password wI. The adversary S
is notified of this interaction, and controls the delivery timing of the initialization message destined to the
receiver. Whenever this occurs, the responder inputs its own password wR with a Respond query, and the
functionality prepares the output for both parties depending on whether wR = wI or not. In the former case,
the output will be the same random key skey for both parties; in the latter, two keys sampled independently
at random.

Finally, the adversary controls the delivery of the output of the functionality separately for each party,
by means of a NewKey query, in which it also specifies a key K. If either party P is corrupted, or the
adversary had input party P’s password on behalf of its corrupted peer (i.e., it has successfully guessed the
password of honest P), P receives the adversarially-generated key K. In any other case, party P receives
whatever has been stored in skeyP.

4.2 Randomized Equality from OT

We sanitize the RE from OT protocol of [12, Section 2.2] by using FsOT, restricting to implicit mutual
authentication as per the considerations in the technical overview. Compared to the non-sanitized protocol,
we parameterize the input domain I and the respective blinding operation ∗, in line with the description
of FsOT. For ease of exposition, we depict the protocol in Figure 4 assuming 1-bit passwords. The n-bit
password case runs exactly in the same way except that (i) it uses n OTs within the multi-session sanitizable
OT functionality F̂sOT, and (ii) it computes keys using operator ∗ with n random strings rather than only
one.
In order to preserve correctness, we leverage the symmetry of the protocol. In particular, the values each
party retrieves from the batch of OTs in which they act as receivers embeds the random strings that are
used by both firewalls, and these strings are the same also for the other OT batch. This also thwarts both
input triggering attacks, as well as information leakage.

Theorem 3. The protocol in Figure 4 wsrUC-realizes the FRE ideal functionality in the (FsOT,FSAT)-hybrid
model under static corruptions.

Within the proof, we first show strong sanitation of firewalls, and then proceed similarly to [12]. We defer
the formal proof and an explicit analysis of correctness to Appendix C.3.

5 Subversion-Resilient Split Functionalities

In this section, we extend the notion of split functionalities of Barak et al. [7] to the srUC framework.
Informally, we want to show that, for any well-formed3 regular 2-party4 ideal functionality F , there exists a

3The “well-formed” property is to rule out unrealistic functionalities as explained in [15, 7].
4We restrict our attention to 2-party functionalities (in contrast to [7]) as the theorem relies on the sanitizable sFSAT

functionality that we only show how to realize for the 2-party setting.

15

Core CI (wI) Firewall FI Firewall FR Core CR (wR)

(rI0, r
I
1)←$ I2λ (ρI0, ρ

I
1)←$ I2λ (ρR0 , ρ

R
1)←$ I2λ (rR0 , r

R
1)←$ I2λ

(ρR0 , ρ
R
1)

wI

r̃′′ = rRwI ∗ ρRwI ∗ ρIwI
FsOT

(rR0 , r
R
1)

(ρI0, ρ
I
1)

(ρI0, ρ
I
1)

(rI0, r
I
1) FsOT

wR

r̃′ = rIwR ∗ ρIwR ∗ ρRwR

(ρR0 , ρ
R
1)

KI = rIwI K̃ ′ = r̃′

K̃ ′′ = r̃′′ KR = rRwR

skey = KI ∗K ′′ skey′ = K ′ ∗KR

Output skey. Output skey′.

Figure 4: A sanitizing protocol for FRE from sanitizable OT with a 1-bit password.

protocol that realizes the 2-party sF functionality with wsrUC-security in the CRS model. More formally,
the goal of this section consists in proving an adaptation of [7, Theorem 10] to our setting, i.e.:

Theorem 4. Let F be a (regular) 2-party UC functionality. Then, assuming key-sanitizable signatures with
consistent identity combinability, there exists a protocol that securely realizes the 2-party split functionality
sF in the wsrUC model.

Towards that, we follow the same strategy as [7] and proceed in the following three stages:

� Link initialization: The first step consists in building the sanitizable split-authenticated functionality
sFSAT that parties will use to communicate on. The sFSAT functionality can be seen as the split version
of the FSAT functionality.

� Multi-session security : As the second step, we show that when authenticated channels are available,
any functionality can be “poly-realized” in the wsrUC model. Here, poly-realizing a functionality
informally means that security of the protocol implementing the functionality still holds even when
multiple (i.e., poly-many) instances of the protocol share the same setup. For that, we show that the
subversion-resilient GMW protocol from [18] poly-realizes any functionality in the wsrUC model.

� Unauthenticated channels: Finally, we adapt the generic transformation of [7] that transforms any
protocol π that 2-realizes a 2-party functionality F given authenticated channels (i.e., FSAT) in the
wsrUC model into a protocol that realizes sF given access to sFSAT in the wsrUC model.

Next, we look at each of these stages individually towards demonstrating Theorem 4.

5.1 Building Link Initialization

In this section we formally define sFSAT (i.e., the split version of the sanitizable authenticated channel
functionality FSAT of [18]) and build a protocol that realizes it in the 2-party setting in the srUC model.
For that, we introduce the notion of key-sanitizable signatures and show that it can be instantiated with the
BLS signature scheme [10].

16

5.1.1 Description of sFSAT

The sFSAT functionality has a similar structure to FSAT, with the addition of having a link initialization
phase. In contrast with FSAT, the only guarantee provided by the functionality is that each party will be
interacting with the same entity throughout the entire protocol run, but that entity could either be the
expected party or the adversary itself. We describe sFSAT next.

Functionality sFSAT

sFSAT is a sanitizable ideal functionality that interacts with an adversary S and a set of parties, each composed
of a core C and a firewall F. The functionality consists of the following communication interfaces.

Initialization

� Upon activation with input (Init, sid) from party P: Parse sid = (P, sid′) where P is a set of parties that
includes P. Forward (Init, sid,P) to the adversary S.

� Upon receiving the message (Init, sid,P, H, sidH), from S: Verify that H ⊆ P, that the list H of party
identities includes P = (C,F), and that for all recorded sets H ′ either (i) H ∩H ′ contains only corrupted
parties (as per the standard corruption transition table in Table 1) and sidH ̸= sidH′ , or (ii) H ′ = H and
sidH = sidH′ . If any of the check fails, do nothing. Otherwise, output (Init, sid, sidH) to P and record
(H, sidH) if not yet recorded.

Message Authentication

� Upon receiving the message (Send, sid,Pi,Pj ,m) on IOi where Pj ∈ P: Output the tuple on Si.

� Upon receiving the message (Send, sid,Pi,Pj , m̃) on Si: Add the tuple to an (initially empty) list W of
waiting messages. The same tuple can appear multiple times in the list. Then, leak the tuple to S.

� Upon receiving the message (Deliver, (Send, sid,Pi,Pj , m̃)) from S:

– If Pj did not previously receive an (Init, sid, sidH) output, do nothing.

– Else, if Pi is in the authentication set H of Pj , and Pi is uncorrupted, then: if there is
a tuple (Send, sid,Pi,Pj , m̃) ∈ W, remove one appearance of the tuple from W and output
(Receive, sid,Pi,Pj , m̃) on Sj . Otherwise, do nothing.

– Else (i.e., Pj received (Init, sid, sidH), and either Pi is corrupted or Pi /∈ H), output
(Receive, sid,Pi,Pj , m̃) on Sj , regardless of W.

� Upon receiving the message (Receive, sid,Pi,Pj , m̂) on Sj , output the tuple on IOj .

The functionality consists of a preliminary initialization phase and the actual message authentication phase.
In the initialization phase, the adversary controls how parties will be partitioned in the respective authenti-
cation sets. Intuitively, parties within the same authentication set will be able to communicate as if there was
an authenticated channel between them. It is however possible for the adversary to participate in different
authentication sets on behalf of all corrupted parties and any party outside of that authentication set. In the
message authentication phase, honest parties will transmit messages in an authenticated fashion within the
same authentication set. However, they may very well receive messages out of the blue from the adversary
on behalf of any party that is corrupted or outside the authentication set.

With respect to sanitation, whenever a core sends a message m with destination Pj on IOi, the message
is output on Si. This means that m is output to a firewall that will decide if/how to sanitize m to m̃ in any
arbitrary way, without involving the functionality in the sanitation process. Once the firewall determines
the message m̃ to send to Pj , m̃ is leaked to the adversary. According to the partition of parties performed
in the link authentication phase, the adversary has different capabilities:

• If the recipient party is within the same authentication set, the message is added to a message queue,
and the adversary can exclusively control its delivery time. This behaviour is indeed equivalent to
FSAT, in which the message is stored and then output to the recipient party whenever the adversary
decides to do so.

17

• If Pi is corrupted or the parties are in different authentication sets, the adversary may deliver arbitrary
messages to Pj , disregarding the message queue.

Whenever the adversary allows the delivery of a message, that message is output to the firewall Fj . Similarly
to the sending phase, Fj may now modify the message arbitrarily without involving the functionality. Once
a (potentially different) message m̂ is determined by Fj , it is delivered by the functionality to Cj .

We stress that, as it is the case for FSAT, cores and their respective firewall are allowed to freely commu-
nicate through secure channels. This is achieved by means of Send messages (from a core to its firewall),
and Receive messages (from a firewall to its core). In principle, a firewall may send back any message to
its core, even if it was not related to any Deliver message from the adversary.

5.1.2 Key-sanitizable signature schemes

In the construction of FSA of [7, Section 4.2], parties exchange locally-generated keys and sign their messages
in order to preserve the split-authenticated security of the communication channel. However, in order to
avoid subversion attacks, both inbound and outbound verification keys have to be appropriately sanitized
by firewalls, breaking correctness in the verification of the signature. In order to overcome this limitation,
we introduce a new notion that we call key-sanitizable signature schemes.

Informally, a key-sanitizable signature scheme allows to maul the verification key from vk to ṽk by means
of an algorithm MaulVK that takes as input randomness ρ. The same randomness may be re-used by an
algorithm AlignSig to align an (accepting) signature σ produced under secret key sk, producing a signature σ̃

that verifies with mauled key ṽk. The latter operation should also be invertible, meaning that the signature
σ may be re-computed from σ̃ and ρ. We formally define this notion as a natural extension of traditional
signatures in Definition 5, introducing a matching security notion in Definition 6 that extends EUF-CMA
security to account for the newly introduced algorithms. This new security notion is implied in a black-box
manner by any EUF-CMA scheme supporting the aforementioned algorithms.

Definition 5 (Key-sanitizable signature scheme). A key-sanitizable signature scheme consists of a tuple of
polynomial-time algorithms (KeyGen,Sign,Vrfy,MaulVK,AlignSig,UnAlignSig) with the following properties:

1. Correctness: For every (vk, sk) ←$ KeyGen(1λ), for every σ ←$ Sign(sk,m) with m ∈ {0, 1}n,
Vrfy(vk, (m,σ)) = 1.

2. Consistent key sanitation: For every (vk, sk)←$ KeyGen(1λ), for every ρ ∈ {0, 1}n, MaulVK(vk, ρ)

outputs a new verification key ṽk with the following property. For every σ ←$ Sign(sk,m) with m ∈
{0, 1}n, AlignSig((vk, σ,m), ρ) produces an accepting signature σ̃ for message m verifiable by verification

key ṽk, i.e., Vrfy(ṽk,AlignSig((vk, σ,m), ρ)) = 1, where ṽk = MaulVK(vk, ρ) and σ = Sign(sk,m).

3. Alignment invertibility: For every (vk, sk) ←$ KeyGen(1λ), for every σ ←$ Sign(sk,m) with m ∈
{0, 1}n, for every ρ ∈ {0, 1}n, for every ṽk = MaulVK(vk, ρ), for every σ̃ = AlignSig((vk, σ,m), ρ), the

algorithm UnAlignSig returns the original signature σ, i.e., UnAlignSig((ṽk, σ̃,m), ρ) = σ

Definition 6 (Key-sanitizable EUF-CMA security). A key-sanitizable signature scheme is key-sanitizable
existentially unforgeable against chosen message attacks (KS-EUF-CMA) if the probability of the adversary
A winning the following game is negligible:

� Sample (vk, sk) ←$ KeyGen(1λ) and a blinding factor ρ ←$ {0, 1}n, and run A(vk, ρ). Compute

ṽk = MaulVK(vk, ρ).

� Upon receiving a query from A with message m, compute σ = Sign(sk,m) and AlignSig((vk, σ,m), ρ).
Respond with σ̃ and add m to a listM.

� Challenge A to produce a signature σ̃∗ on message m∗ /∈M that verifies under ṽk.

� Upon receiving a response (m∗, σ̃∗), A wins if Vrfyṽk(m
∗, σ̃) = 1.

18

Lemma 1. Any EUF-CMA signature scheme that supports algorithms MaulVK, AlignSig, and UnAlignSig,
as defined in Definition 5, is also KS-EUF-CMA.

The proof consists of a black-box reduction to EUF-CMA, and is deferred to the Appendix C.4.

5.1.3 Combining verification keys

Looking ahead, the link initialization phase of the protocol realizing sFSAT relies on the determination of
session IDs via (identifying) verification keys of parties, which get sanitized by firewalls in different directions.

For instance, in the 2-party setting, core Ci has access to vki and ṽkj , and core Cj has access to ṽki and vkj ,

with ṽki, ṽkj being appropriate sanitations of vki, vkj using the same randomness ρi. For this reason, we
additionally define an appropriate generic algorithm that allows to combine these keys either way to output
the same value.

Definition 7 (Consistent identity combinability). A key-sanitizable signature scheme has consistent identity
combinability if it supports an algorithm IDComb with the following property:

IDComb(vki,MaulVK(vkj , ρ)) = IDComb(MaulVK(vki, ρ), vkj).

5.1.4 Instantiation from BLS

We report the BLS signature scheme [10] in the following.

• KeyGen(1λ) = (sk, vk) = (x, gx)

• Sign(sk,m) = H(m)sk

• Vrfy(vk, (m,σ)): Check ê(σ, g) = ê(H(m), vk)

The BLS signature scheme is already compatible with all the additional interfaces required by a key-
sanitizable signature scheme. Moreover, bilinear maps immediately induce the consistent identity com-
binability property:

• MaulVK(vk, ρ) = vkρ

• AlignSig((vk, σ,m), ρ) = σρ

• UnAlignSig((vk, σ̃,m), ρ) = σ̃ρ−1

• IDComb(vki, vkj) = ê(vki, vkj)

Theorem 5. The BLS signature scheme [10] with the additional algorithms specified above is a key-sanitizable
signature scheme with KS-EUF-CMA security and consistent identity combinability, assuming that H is a
random oracle and that CDH is hard for G.

The theorem follows by inspecting the newly-introduced algorithms, and by observing that the BLS signature
scheme is EUF-CMA. We defer the formal proof to Appendix C.5.

5.1.5 Realizing sFSAT

We now describe a protocol that realizes sFSAT in the 2-party setting, which follows a similar structure to
that of [7, Section 4.2]. The link initialization phase is depicted in Figure 5, and the message authentication
phase in Figure 6.

In the link initialization phase, the firewall blinds the outbound verification key vki (identifying party

Pi) to ṽki using blinding factor ρi, and forwards it (supposedly) to party Pj . Upon receiving the verification

key vkj (supposedly) from party Pj , the firewall blinds it to ṽkj with ρi and returns it to its core. The

core then uses ski to sign its SID s̃idi, computed from vki and ṽkj in such a way that it is equal to an

SID computed from ṽki and vkj (using the consistent identity combinability property of the key-sanitizable

19

signature scheme). Then, the firewall aligns the signature to verify under verification key ṽki and outputs it

(supposedly) to party Pj , along with s̃idi. Whenever the firewall receives a message (sidj , σj), it first checks

whether sidj is consistent with s̃idi, and whether the signature verifies. If not, the message is dropped (as
it may be triggering). Otherwise, it aligns σj to σ̃j with ρi and forwards (sidj , σ̃j) to its core, who checks

whether s̃idi = sidj (i.e., both parties agree on a consistently computed SID), and whether the signature is
valid. If so, the message authentication phase may be carried out.

In the message authentication phase, we distinguish the four interfaces in different interactions:

1. Whenever the core of the calling protocol inputs a message (Send, sid,Pi,Pj ,m) on IOi, Ci outputs
the message on Si (i.e., to the firewall of the calling protocol).

2. Whenever the firewall of the calling protocol inputs a message (Send, sid,Pi,Pj , m̃) on Si, Fi sends the
message back to its core Ci, who produces a signature σi using secret key ski and forwards σi to Fi. Fi

then aligns the signature to σ̃i using the same ρi of the link initialization phase, updates the counter
and sends the message and the signature (supposedly) to party Pj .

3. Whenever Fi receives a message m̃ (supposedly) coming from party Pj , it first checks whether the
signature is valid, whether the SID matches the one of the core, and whether a message with the same
counter was already sent. If any check fails, the message is dropped. Otherwise, it is output on Si
(i.e., to the firewall of the calling protocol).

4. Whenever the firewall of the calling protocol inputs a message (Receive, sid, Pi, Pj , m̂) on Si, Ci

outputs the message on IOi (i.e., to the core of the calling protocol).

Theorem 6. The protocol depicted in Figures 5, 6 realizes the sFSAT functionality, assuming a KS-EUF-
CMA signature scheme with consistent identity combinability and the presence of secure channels between
cores and their respective firewall.

Intuitively, the proof runs as the one for the non-sanitized protocol of [7], except that the blinding operations
of firewalls thwart subversion attacks, and consistency between keys is obtained by using IDComb. We defer
the formal proof to Appendix C.6.

5.2 Multi-realizing any ideal functionality in the wsrUC model

Next, we prove the following lemma.

Lemma 2. For any regular (well-formed) ideal functionality F there exists a protocol π that n-realizes F
in the wsrUC model assuming authenticated channels in the presence of static and malicious adversaries for
n = poly(λ). Moreover, the protocol π is such that all instances of π use a single instance of Fcrs.

Informally, such a protocol can be obtained from the adaptation of the GMW compiler to the srUC framework
shown in [18]. The formal proof of the lemma is essentially [7, Theorem 13] verbatim, except that we replace
results for the UC framework with their counterparts in the srUC framework, shown in [18] (e.g., the UC
composition theorem and the GMW compiler). We defer the formal proof to Appendix C.7.

5.3 Realizing Generic Split Functionalitites

We finally show that any protocol π that wsrUC-2-realizes a 2-party functionality F in the FSAT-hybrid model
(i.e., using authenticated channels) can be compiled into a protocol Π that wsrUC-realizes the split 2-party
functionality sF in the sFSAT-hybrid model (i.e., using unauthenticated channels). The sF functionality is
exactly the same as in [7]. Indeed, since we wsrUC-realize a regular ideal functionality F assuming FSAT,
our end goal is to wsrUC-realize the split counterpart of F assuming sFSAT, which is also a regular ideal
functionality. For completeness, we report a description of sF in Appendix D.1.

20

Core Ci Firewall Fi

(ski, vki)←$ KeyGen(1λ)

vki

ρi ←$ {0, 1}λ

ṽki = MaulVK(vki, ρi)

ṽki

vkj

ṽkj = MaulVK(vkj , ρi)

ṽkj

s̃idi = IDComb(vki, ṽkj)

σi = Sign(ski, s̃idi)

(s̃idi, σi)

σ̃i = AlignSig((vki, σi, s̃idi), ρi)

(s̃idi, σ̃i)

(sidj , σj)

Drop the message if either holds:

• sidj ̸= s̃idi.
• Vrfy(vkj , (sidj , σ̃j)) = 0.

Else, continue.

σ̃j = AlignSig((vkj , σi, s̃idi), ρi)
Set cnt = 0.

(sidj , σ̃j)

If s̃idi ̸= sidj , abort.

If Vrfy(ṽkj , (sidj , σ̃j)) = 0, abort.

Figure 5: Diagram of the protocol implementing the link initialization phase of sFSAT.

Lemma 3. Let G be a setup functionality, let F be a 2-party ideal functionality, and let πF be a protocol
that securely 2-realizes F in the wsrUC model with authenticated communication (i.e., FSAT) and a single
instance of G. Then, there exists a protocol ΠF wsrUC-realizing the split functionality sF using a single
instance of sFSAT and a single instance of G.

To prove this theorem, we adapt the proof of [7, Lemma 4.1] to the wsrUC model. First, we describe
the protocol ΠF , which is obtained by adapting the compiler presented in [7]. In particular, the compiler
of [7] transforms a protocol πF realizing functionality F in the UC FMAUTH-hybrid model into a protocol
ΠF realizing functionality sF in the UC FSA-hybrid model. This result can be mapped to our setting by
replacing FMAUTH with FSAT, and FSA with sFSAT, with the crucial detail that messages coming from sFSAT

are forwarded to the instance of the protocol πF on the respective interface (i.e., IO or S), rather than
having a single interface for each party. Then, we simply follow the proof of [7, Lemma 4.1] accounting for
the additional communication between cores and firewalls and for the presence of specious cores, as per the
srUC framework. We defer the description of ΠF and the formal proof to Appendix C.8.

5.4 Putting it all together

We showed that the split functionalities notion of [7] can be cast in the subversion-resilient UC model
in the same way as in standard UC. Namely, one can build a protocol n-realizing a functionality for the
authenticated channel setting and simply invoke Lemma 3 to obtain security of the split version of the
protocol in the unauthenticated channel setting (albeit only for 2-party functionalities). Since there exists

21

Core Ci Firewall Fi

Input: (Send, s̃idi,Pi,Pj ,mi)

Output (Send, s̃idi,Pi,Pj ,mi) on Si.

Input: (Send, s̃idi,Pi,Pj , m̃i)

Set msgout = (s̃idi,Pi,Pj , m̃i, cnt)
msgout

σi = Sign(ski,msgout)
σi

σ̃i = AlignSig((vk, σi,msgout), ρi)
cnt = cnt+ 1

(msgout, σ̃i)

(msgin, σj)

Parse msgin = (sidj ,Pi,Pj ,mj , cnt).
Drop the message if any holds:

• sidj ̸= s̃idi.
• Vrfy(vkj , (msgin, σj)) = 0.
• A message with cnt was already received.

Else, output (Receive, sidj ,Pi,Pj ,mj) on Sj .

Input: (Receive, sidj ,Pi,Pj , m̃j)
Output (Receive, sidj ,Pi,Pj , m̃j) on IOj .

Figure 6: Diagram of the protocol implementing the message authentication sFSAT, split in each of the interfaces.

a protocol 2-realizing any regular ideal functionality in the authenticated setting (by using the srUC GMW
compiler of [18], as per Lemma 2), there also exists a matching 2-party protocol in the unauthenticated
setting realizing the split version of the same functionality, yielding Theorem 4.

6 Sanitizing PAKE

So far we have only referred to the FRE functionality, in which the adversary is unable to perform any
(online) password guesses. In order to move to PAKE, we first provide a description of FPAKE, highlighting
its differences with respect to FRE. Then, similarly to [12], we argue that our protocol in Section 4 can be
compiled in a protocol for sFRE by invoking a result of Section 5. Finally, we show that sFRE is sufficient to
trivially realize FPAKE. We conclude the section by highlighting that it is also possible to obtain a protocol
for sFRE by using the general-purpose result given by Theorem 4 (which internally relies on the srUC GMW
compiler). In that regard, we provide a hand-wavy performance comparison of such a protocol with our
instantiation from DDH.

6.1 Description of FPAKE

The behaviour of FPAKE is conceptually close to that of the FRE we described in Section 4.1, with the
important difference that the adversary is now allowed to perform (online) password guesses in order to
influence the keys output by the functionality. In what follows, we provide a formal description of the FPAKE

functionality [12] that embeds minor variations to achieve consistency with FRE, and technical improvements
from Dupont et al. [22].

22

Functionality FPAKE

The functionality FPAKE is parameterized by a security parameter λ. an initiator I, a responder R, and the
adversary S via the following queries:

Upon receiving a query (NewSession, sid, I,R, wI) from I:

Record (I,R, wI), mark it as fresh, and leak (sid, I,R) to S. Ignore all future messages from I.

Upon receiving a query (ok, sid) from S:

Send a message (wakeup, sid, I,R) to R. Ignore all future (ok) messages.

Upon receiving a query (Respond, sid, I,R, wR) from R:

Record (R, I, wR) and mark it as fresh.

Upon receiving a query (TestPwd, sid,P, w′) from the adversary S:

If P ∈ {I,R} and there exists a record of the form (P, ·, w) which is fresh, then:

• If w′ = w, mark the record as compromised and return ”correct guess” to S.
• If w′ ̸= w, mark the record as interrupted and return ”wrong guess” to S.

Upon receiving a query (NewKey, sid,Pi,K) from S, where |K| = λ:

If Pi ∈ {I,R} and there is a record of the form (Pi,Pj , wi) that is not marked as completed, with Pj being
the peer of Pi, then:

• If any of the following conditions hold, output (sid,K) to party Pi:

− Pi is corrupted.
− This record is fresh, there exists a record (Pj ,Pi, wj) with wi = wj , and Pj is corrupted.
− This record is compromised.

• If this record is fresh, both parties are honest, and there exists a record (Pj ,Pi, wj) with wj = wi,
choose skey←$ {0, 1}λ. Output skey to Pi, and append skey to the record (Pi,Pj , wi).

• If this record is fresh, both parties are honest, and there exists a record (Pj ,Pi, wj , skey) with wj = wi,
output skey to Pi.

• If none of the above rules apply, choose skey′ ←$ {0, 1}λ and output it to party Pi.

In any case, mark the record (Pi, ·, wi) as completed.

Compared to FRE, each record now has a status associated to it, which is initially set to fresh. If the
adversary performs a password guess against party P’s fresh record and fails, the target record is marked as
interrupted. If instead the password guess succeeds, the target record is marked as compromised. Either way,
the adversary is notified of the outcome of its guess.

Finally, the adversary controls the delivery of the output of the functionality separately for each party,
by means of a NewKey query, in which it also specifies a key K. The same (random) key is output to both
honest parties only if (i) the input passwords were the same, and (ii) both records were fresh when their
respective key was determined (i.e., no password guesses occurred). Otherwise, the functionality outputs
the adversarially-generated key if any of the following occurs: (i) P is corrupted, (ii) the adversary does not
perform any TestPwd queries but runs the functionality as the peer of P with input the password of P, or
(iii) the adversary guesses the password for P via a TestPwd query. In any other case, the functionality
outputs a random key to party P.

6.1.1 Variations in the srUC setting

As for FRE, we restrict our attention to implicit mutual authentication (as discussed in Section 1.3), and
the functionality provides no security whatsoever whenever the adversary is able to guess an honest party’s
password.

23

6.1.2 Shortcomings of PAKE functionalities

Recent works have raised technical concerns regarding the definition of PAKE functionalities widely used
across the literature. Specifically, Abdalla et al. [1] observed that several definitions, including the one of
the seminal paper of Canetti et al. [13], allow the adversary to set the key output by an honest party even
without knowing the password. Similarly to Dupont et al. [22], our definitions of FRE and FPAKE do not
embed this shortcoming.

Additionally, Roy and Xu [30] show an impossibility result proving that any 2-party FPAKE may be
instantiated by an incorrect 0-round protocol. In order to overcome this limitation, they show that either
(i) the underlying PAKE protocol is assumed to be correct; (ii) the simulator gets limited in power; or (iii) a
third party responsible for routing messages is introduced in FPAKE. For this work, we solve this shortcoming
by considering approach (i), following the spirit of discarding “trivial protocols” in the context of UC (e.g.,
the empty protocol), as discussed by Canetti et al. [14].

6.2 From FRE to FPAKE

The protocol we presented in Section 4 realizes FRE in the presence of subversion attacks in the authenticated
setting. Proceeding as [12], we convert it to a protocol for sFRE, obtaining the following theorem:

Theorem 7. There exists a protocol that wsrUC-realizes the sFRE ideal functionality in the (Fcrs, sFSAT)-
hybrid model under static corruptions. The protocol is based on the DDH assumption, runs in a constant
number of rounds, and has a communication complexity of O(n) group elements per session key.

Proof (Theorem 7). The proof of this theorem is the proof of [12, Theorem 2] verbatim. First, we observe
that the multi-session version of FRE can be implemented by having access to the multi-session version of
FsOT (each new session of FRE uses a new invocation of the protocol for FsOT). Then, we observe that our
protocol in Section 3 implements the multi-session version of FsOT in the Fcrs-hybrid model. Hence, we can
invoke Lemma 3, which allows us to replace FSAT with sFSAT, yielding a protocol for the split version of
randomized equality (i.e., sFRE).

All that remains to show is that FPAKE can be instantiated from sFRE. Intuitively, the power of the adversary
to disconnect parties in sFRE can be mapped to TestPwd queries in FPAKE, as the adversary is allowed to
run FRE with an arbitrary password by impersonating a disconnected party’s peer.

Theorem 8. There exists a protocol in the sFRE-hybrid model that instantiates FPAKE in the presence of
subversion attacks.

Dupont et al. [22] exhibit a trivial protocol in the sFRE-hybrid model that realizes FPAKE. In particular, their
protocol exclusively interacts with sFRE. This fact allows to port their protocol and its related proof to our
setting in a straight-forward manner, as intuitively such a protocol inherits the structure and the security
properties of sFRE. We report the formal proof in Appendix C.9.

6.3 A hand-wavy performance comparison

An alternative route to obtain FPAKE consists of invoking Theorem 4 to obtain a protocol wsrUC-realizing
sFRE, and then applying the transformation of Theorem 8. In particular, as per Lemma 2, this protocol relies
on the srUC GMW compiler of [18]. In order to establish an informal comparison with our instantiation
from DDH (given by Theorem 7), we first observe that both these protocols rely on Lemma 3 to move from
the authenticated setting to the unauthenticated setting. Hence, it suffices to compare the protocols in the
authenticated setting. For our hand-wavy comparison, we compare round complexity and communication
complexity.

Our instantiation from DDH, as per Figure 4, essentially relies on n runs of FsOT that share the same
CRS. By our specific instantiation of FsOT, each party sends 1 public key and 2 SHDME encryptions (= 4

24

group elements) for each bit of the password. Hence, our protocol runs in 2 rounds (by batching messages
for sOTs) with a communication complexity of O(n) group elements.

On the other hand, the instantiation from the srUC GMW compiler requires each party to (i) generate
its random tape jointly with its peer; (ii) commit to its input; (iii) prove in zero-knowledge that each step
of a semi-honest protocol realizing FRE was executed correctly. (i) requires 3 rounds: 1 for committing to
some locally-generated randomness and 2 from the coin tossing functionality. (ii) requires 1 round. (iii)
requires at least the same number of rounds of a semi-honest execution of an r-round protocol realizing FRE.
Hence, we end up with at least 4 + r rounds. We then observe that the coin tossing functionality of [18,
Section 4] relies on the sanitizable commitment functionality (presented in [18, Section 3]), which is realized
by computing and forwarding bit-wise commitments (each containing 2 group elements) under the DDH
assumption. Given that the input to the semi-honest instantiation of FRE is an n-bit password, and that
the random strings used to generate the random tape have size λ, the communication complexity of the first
two steps is already O(n+ λ).

We conclude that our instantiation from DDH has a better round and communication complexity even
prior to the run of the compiled semi-honest instantiation of FRE of the protocol from GMW. We further re-
mark that, in step (iii), the protocol from GMW requires the generation of re-randomizable NIZK arguments
for each message of the protocol, hindering the efficiency further.

7 Conclusions

We presented the first subversion-resilient UC protocol for PAKE. We formalized and instantiated oblivious
transfer in the subversion setting, and extended the framework to the unauthenticated setting, providing an
implementation for its respective backbone of communication (i.e., sFSAT) in the two-tier model without
assuming a PKI. Finally, we instantiated FPAKE by replacing, in a sanitized protocol for FRE, the FSAT

assumption with sFSAT. Several interesting research questions remain open, such as fully instantiating FSAT

in the two-tier model, expanding the notion of split functionalities in the srUC model to the n-party setting,
extending the framework to adaptive corruptions, weakening trusted setups to be subvertable, and achieving
explicit mutual authentication for randomized equality and PAKE.

References

[1] Michel Abdalla, Björn Haase, and Julia Hesse. Security analysis of CPace. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages 711–741. Springer,
Cham, December 2021.

[2] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A subversion-resistant
SNARK. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626
of LNCS, pages 3–33. Springer, Cham, December 2017.

[3] Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michal Zajac. On QA-NIZK in the BPK model.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I,
volume 12110 of LNCS, pages 590–620. Springer, Cham, May 2020.

[4] Paula Arnold, Sebastian Berndt, Jörn Müller-Quade, and Astrid Ottenhues. Protection against subver-
sion corruptions via reverse firewalls in the plain universal composability framework. Cryptology ePrint
Archive, Report 2023/1951, 2023.

[5] Giuseppe Ateniese, Danilo Francati, Bernardo Magri, and Daniele Venturi. Public immunization against
complete subversion without random oracles. In Robert H. Deng, Valérie Gauthier-Umaña, Mart́ın
Ochoa, and Moti Yung, editors, ACNS 19International Conference on Applied Cryptography and Net-
work Security, volume 11464 of LNCS, pages 465–485. Springer, Cham, June 2019.

25

[6] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient signature schemes. In
Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015, pages 364–375. ACM
Press, October 2015.

[7] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation without
authentication. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 361–377. Springer,
Berlin, Heidelberg, August 2005.

[8] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS: Security in
the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 777–804. Springer, Berlin, Heidelberg, December 2016.

[9] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric encryption against
mass surveillance. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 1–19. Springer, Berlin, Heidelberg, August 2014.

[10] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin Boyd, ed-
itor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Berlin, Heidelberg, December
2001.

[11] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[12] Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and Hoeteck Wee. Efficient password
authenticated key exchange via oblivious transfer. In Marc Fischlin, Johannes Buchmann, and Mark
Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 449–466. Springer, Berlin, Heidelberg, May
2012.

[13] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 404–421. Springer, Berlin, Heidelberg, May 2005.

[14] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 68–86. Springer, Berlin, Heidelberg, May 2003.

[15] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[16] Suvradip Chakraborty, Stefan Dziembowski, and Jesper Buus Nielsen. Reverse firewalls for actively
secure MPCs. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 732–762. Springer, Cham, August 2020.

[17] Suvradip Chakraborty, Chaya Ganesh, Mahak Pancholi, and Pratik Sarkar. Reverse firewalls for adap-
tively secure MPC without setup. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021,
Part II, volume 13091 of LNCS, pages 335–364. Springer, Cham, December 2021.

[18] Suvradip Chakraborty, Bernardo Magri, Jesper Buus Nielsen, and Daniele Venturi. Universally com-
posable subversion-resilient cryptography. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part I, volume 13275 of LNCS, pages 272–302. Springer, Cham, May / June 2022.

[19] Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, Fuchun Guo, and Mingwu Zhang. Cryptographic
reverse firewall via malleable smooth projective hash functions. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 844–876. Springer, Berlin,
Heidelberg, December 2016.

26

[20] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cautious approach to security
against mass surveillance. In Gregor Leander, editor, FSE 2015, volume 9054 of LNCS, pages 579–598.
Springer, Berlin, Heidelberg, March 2015.

[21] Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Message transmission with reverse
firewalls—secure communication on corrupted machines. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 341–372. Springer, Berlin, Heidelberg,
August 2016.

[22] Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia Yakoubov. Fuzzy
password-authenticated key exchange. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part III, volume 10822 of LNCS, pages 393–424. Springer, Cham, April / May 2018.

[23] Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 315–347. Springer, Cham, March 2018.

[24] Chaya Ganesh, Bernardo Magri, and Daniele Venturi. Cryptographic reverse firewalls for interactive
proof systems. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, ICALP 2020, volume
168 of LIPIcs, pages 55:1–55:16. Schloss Dagstuhl, July 2020.

[25] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

[26] Adam Groce and Jonathan Katz. A new framework for password-based authenticated key exchange.
Cryptology ePrint Archive, Report 2010/147, 2010.

[27] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse firewalls. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 657–686. Springer,
Berlin, Heidelberg, April 2015.

[28] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571.
Springer, Berlin, Heidelberg, August 2008.

[29] Magnus Ringerud. Note on subversion-resilient key exchange. Cryptology ePrint Archive, Report
2023/749, 2023.

[30] Lawrence Roy and Jiayu Xu. A universally composable PAKE with zero communication cost - (and
why it shouldn’t be considered UC-secure). In Alexandra Boldyreva and Vladimir Kolesnikov, editors,
PKC 2023, Part I, volume 13940 of LNCS, pages 714–743. Springer, Cham, May 2023.

[31] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography: Clipping the power
of kleptographic attacks. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II,
volume 10032 of LNCS, pages 34–64. Springer, Berlin, Heidelberg, December 2016.

[32] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic semantic security against
a kleptographic adversary. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 907–922. ACM Press, October / November 2017.

[33] Gustavus J. Simmons. Authentication theory/coding theory. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 411–431. Springer, Berlin, Heidelberg, August 1984.

[34] Gustavus J. Simmons. A secure subliminal channel (?). In Hugh C. Williams, editor, CRYPTO’85,
volume 218 of LNCS, pages 33–41. Springer, Berlin, Heidelberg, August 1986.

27

A Channel assumptions in the srUC Framework

In Figure 7, we compare the backbone of communication offered by FSAT and sFSAT. We remark that having
secure channels between cores and their respective firewall is still required, as otherwise the adversary could
simply speciously corrupt a core Ci and analyze the traffic from Ci to Fi, nullifying any sanitation the firewall
may have introduced. From a practical standpoint, this assumption is perfectly reasonable. In close-range
environments, such as LANs in enterprises or home networks, a user may have its machine connected to a
firewall (which could very well be the router itself) by means of a physical cable, and it is reasonable to
assume that no wiretapping will occur.

The framework would still hold even in the presence of remote firewalls: a core could establish a secure
channel with its firewall via a maliciously-secure 2PC protocol (e.g., by running a maliciously secure 2PC-
PAKE) in a preliminary setup phase. Notice that this still makes sense in our threat model, as the adversary
would have to mount an attack against a honest party, which is constituted of either a specious core and
an honest firewall or an honest core and a semi-honest firewall. In either case, one of the two components
remains honest throughout the setup of the secure channel.

Party Pi Party Pj

Ci

FSC

Fi FAC

Fj

FSC

Cj

Party Pi Party Pj

Ci

FSC

Fi Fj

FSC

Cj

Figure 7: On the left, communication as in FSAT. On the right, communication as in sFSAT. FSC, FAC represent
secure channels and authenticated channels, respectively.

B Basics of the UC Framework

We briefly recap the UC framework from [11]. A protocol Π consists of code for each of the parties P1, . . . ,Pn.
The parties can in turn make calls to ideal functionalities G. More precisely, the code of the program is
a single machine. As part of its input, it gets a party identifier pid which tells the code which party it
should be running the code for. This allows more flexibility for dynamic sets of parties. Below, we will only
consider programs with a fixed number of parties. We are therefore tacitly identifying n parties identifiers
pid1, . . . , pidn with the n parties P1, . . . ,Pn, i.e., Pi = pidi. We prefer the notation Pi for purely idiomatic
reasons.

A party Pi can call an ideal functionality. To do so it will specify which G to call (technically it writes
down the code of G and a session identifier sid distinguishing different calls), along with an input x. Then,
(sid, pid, x) is given to G. If G does not exists, then it is created from its code.

There is an adversary A which attacks the protocol. It can corrupt parties via special corruption com-
mands. How parties react to these corruptions is flexible; the parties can in principle be programmed to react
in any efficient way. As an example, in response to input active-corrupt, we might say that the party in
the future will output all its inputs to the adversary, and that it will let the adversary specify what messages

28

the party should send. The adversary can also control ideal functionalities, if the ideal functionalities expose
an interface for that. It might for instance be allowed to influence at what time messages are delivered on
an ideal functionality of point-to-point message transmission.

There is also an environment E which gives inputs to the parties and sees their outputs. The environment
can talk freely to the adversary. A real world execution ExecΠ,A,E is driven by the environment which can
activate parties or ideal functionalities. The parties and ideal functionalities can also activate each other.
The details of activation are not essential here, and can be found in [11].

The protocol Π is meant to implement an ideal functionality F . This is formulated by considering a run
of F with dummy parties which just forward messages between E and F . In addition, there is an adversary
S, called the simulator, which can interact with F on the adversarial interface, and which can interact freely
with E as an adversary can. The simulation is the process ExecF,S,E , where we do not specify the dummy
protocol but use F for the dummy protocol composed with F . We say that Π UC-realizes F if there exists an
efficient simulator which makes the simulation look like the real world execution to any efficient environment:

∃S∀E : ExecΠ,A,E ≈ ExecF,S,E ,

where A is the dummy adversary (that simply acts as a proxy for the environment), and where the quan-
tifications are over poly-time interactive Turing machines.

Consider a protocol Π that realizes an ideal functionality F in a setting where parties can communicate
as usual, and additionally make calls to an unbounded number of copies of some other ideal functionality
G. (This model is called the G-hybrid model.) Furthermore, let Γ be a protocol that UC-realizes G as
sketched above, and let ΠG→Γ be the composed protocol that is identical to Π, with the exception that
each interaction with the ideal functionality G is replaced with a call to (or an activation of) an appropriate
instance of the protocol Γ. Similarly, any output produced by the protocol Γ is treated as a value provided
by the functionality G. The composition theorem states that in such a case, Π and ΠG→Γ have essentially
the same input/output behavior. Namely, Γ behaves just like the ideal functionality G even when composed
with an arbitrary protocol Π. A special case of this theorem states that if Π UC-realizes F in the G-hybrid
model, then ΠG→Γ UC-realizes F .

C Security proofs

In this section, we report the proofs that were deferred throughout the composition.

C.1 Proof of Theorem 1

Proof (Theorem 1). Correctness and all the properties related to the original dual-mode cryptosystem are
unchanged (as per [28, Theorem 5.2]). It remains to show that the cryptosystem has homomorphic ciphertexts
and consistent key sanitation.

The homomorphic ciphertexts property follows by observing that the underlying DDH cryptosystem

is multiplicative homomorphic. In the following, crs = (g0, g1, h0, h1), (pk, sk) = ((grσ, h
r
σ), r), p̃kDDH,b =

(gb, hb, p̃k0, p̃k1) = (gb, hb, g
r
σ, h

r
σ), and s, s′, t, t′ are random coins sampled by the DDHEnc algorithm.

Enc(pk, b,m0)Enc(pk, b,m1) = DDHEnc(p̃kDDH,b,m0)DDHEnc(p̃kDDH,b,m1)

= (gsbh
t
b, g

rs
σ hrt

σ m0)(g
s′

b ht′

b , g
rs′

σ hrt′

σ m1)

= (g
(s+s′)
b h

(t+t′)
b , gr(s+s′)

σ hr(t+t′)
σ m0m1)

= DDHEnc(p̃kDDH,b,m0m1)

= Enc(pk, b,m0m1)

The consistent key sanitation property follows by inspection. In the following, crs = (g0, g1, h0, h1), (pk, sk) =

((grσ, h
r
σ), r), p̃k = MaulPK(pk, ρ) = (grρσ , hrρ

σ), and c←$ Enc(p̃k, σ,m), and s, t are random coins sampled by

29

the DDHEnc algorithm.

Dec(sk,AlignEnc(c, ρ)) = Dec(sk, (cρ1, c2))

= c2/(c
ρ
1)

r

= grρsσ hrρt
σ m/gsρrσ htρr

σ

= m

C.2 Proof of Theorem 2

We first show that the firewalls are strongly sanitizing, meaning that the environment is unable to distinguish
a protocol run in which either core is speciously corrupted and their firewall is honest from a run in which
the same core is incorruptible and their firewall is honest.

Lemma 4. The firewall FS of the sender CS in Figure 3 is strongly sanitizing.

Proof (Lemma 4). We show that no environment E , which allows specious corruptions for the core CS but
does not corrupt the respective firewall FS, is able to distinguish between an execution of the protocol in
Figure 3 with an incorruptible CS from one that accepts the corruption C̃S.

We first argue that no input-trigger attacks are possible. The only message the sender receives from a
(potentially malicious) receiver is the public key pk used in the encryption scheme, which may be crafted in a
way to trigger a specious corruption in CS in an undetectable manner. However, FS randomizes the inbound
key by means of algorithm MaulPK, producing a new uniformly distributed key. If the message cannot be
parsed as a public key for the encryption scheme, the message is dropped.

We now show that CS is unable to leak any information. Since the only outbound message of the sender
is a tuple of ciphertexts of a dual-mode cryptosystem (y0, y1), C̃S can modify how this tuple is generated.
In order to establish a side-channel, the specious core may (i) produce signaling ciphertexts distributed as
valid ciphertexts (e.g., by means of rejection sampling), or (ii) produce a different message. E is unable to
determine whether the specious corruption had effect or not, as:

• In case (i) the ciphertext gets replaced by Fi with a fresh ciphertext that is side-channel free, as the
firewall the random coin ρ used in AlignEnc and the internal coins tossed in the computation of (y′0, y

′
1)

are sampled uniformly at random and are independent from each other.

• In case (ii), if the message cannot be parsed as a tuple of ciphertexts, the message is dropped. Otherwise,
the HomOp and AlignEnc algorithms produce a uniformly distributed value as y0, y1 are not valid
ciphertexts.

Lemma 5. The firewall FR of the receiver CR in Figure 3 is strongly sanitizing.

Proof (Lemma 5). We show that no environment E , which allows specious corruptions for the core CR but
does not corrupt the respective firewall FR, is able to distinguish between an execution of the protocol in
Figure 3 with an incorruptible CR from one that accepts the corruption C̃R.

We first argue that no input-trigger attacks are possible. The only message the receiver receives from a
(potentially malicious) sender is the tuple of ciphertexts (y0, y1), which may be crafted in a way to trigger a
specious corruption in CR in an undetectable manner. However, FR randomizes the inbound tuple by means
of algorithms HomOp and AlignEnc, producing a new uniformly distributed tuple. If the message cannot be
parsed as a tuple of ciphertexts, the message is dropped.

We now show that CS is unable to leak any information. Since the only outbound message of the receiver
is a public key pk of a dual-mode cryptosystem, C̃R can modify how pk is generated in order to exfiltrate
information. The specious core may (i) produce a signaling key distributed as a valid key (e.g., by means
of rejection sampling), or (ii) produce a different message. E is unable to determine whether the specious
corruption had effect or not, as:

30

• In case (i), the key is mauled by FR to a different key, as the firewall samples the random coin ρ used
in MaulPK uniformly at random, and the output key is uniformly distributed.

• In case (ii), if the message cannot be parsed as a public key for the encryption scheme, the message is
dropped. Otherwise, the MaulPK algorithm produces a uniformly distributed value, since pk is not a
valid key.

Lemma 6. For every adversary A corrupting either party maliciously and the firewall of the other (honest)
party semi-honestly in an execution of the protocol Π as in Figure 3 in the (FSAT,Fcrs)-hybrid model, there
exists a simulator S such that, for all environments E, the following holds:

Exec
(FSAT,Fcrs)
Π,A,E ≈ ExecFsOT,S,E

Proof (Lemma 6). The proof of this lemma follows closely the proof of the original generic framework [28,
Theorem 4.1]: the dual-mode cryptosystem induces statistical security for the sender in messy mode and sta-
tistical security for the receiver in decryption mode. The indistinguishability of modes induces computational
security for the specific party in the protocol run.

In the context of our framework, for each corruption scenario, the adversary can semi-honestly corrupt the
firewall of the matching honest core. Intuitively, revealing this information does not provide the adversary
any advantage, as semi-honestly corrupting the firewall only reveals blinding factors and the matching core
is honest.

We analyze corruption scenarios separately, interacting with FsOT and the environment E , and simulating
a run of the protocol Π for the core of the honest party. We show the proof for mode = mes; the proof for
mode = dec only varies in the generation of the common reference strings by the simulator.

Malicious Receiver. The receiver R is corrupted, so the core of the sender CS is honest and its firewall
FS is semi-honest. S generates the CRS in messy mode, obtaining a trapdoor t that enables it to find a
messy branch related to a (possibly malformed) public key pk. It then initializes the real-world adversary A
with crs.

When A sends a message containing public key pk, S extracts a messy branch b = FindMessy(crs, t, pk).
Then, it sends to FsOT the following queries:

1. (blind, sid, x′
0, x

′
1) on SS.

2. (receiver, sid, 1− b) on IOR, receiving x̂1−b = x1−b ∗ x′
1−b.

Notice that the blind query on SS is allowed, as the firewall of the sender FS is semi-honestly corrupted, so
its inputs (x′

0, x
′
1) are known to S. On the other hand, the query on SR is not needed, as PR is corrupted

according to the corruption translation table.
Finally, whenever the dummy S is activated for session sid, S first computes x1−b = x̂1−b ∗−1 x′

1−b
5,

computes y1−b ←$ Enc(pk, 1− b, x1−b) and yb ←$ Enc(pk, b, 0n), and sends (sid, y1−b, yb) to A.
Since the only difference between the real world and ideal world is in the generation of yb, and b is the

messy branch correctly identified by the trapdoor, Enc(pk, b, 0n)
s
≈ Enc(pk, b, xb). The two experiments are

therefore statistically indistinguishable.

Malicious Sender. The sender S is corrupted, so the core of the receiver CR is honest and its firewall FS

is semi-honest. S generates the CRS in decryption mode, generating a tuple of keys (pk, sk0, sk1) with skb
being the decryption key of the b-th branch for b ∈ {0, 1}.

Whenever A sends (sid, ŷ0, ŷ1), S computes xb = Dec(skb, ŷb). Then, it sends to FsOT the following
queries:

5We assume the operator supports the inverse operation. This is the case for additive blinding (⊖), and multiplicative
blinding (multiplicative inverse).

31

1. (Send, sid, x0, x1) on IOS.

2. (blind, sid, x′′
0 , x

′′
1) on SR.

Notice that the blind query on SR is allowed, as the firewall of the receiver FR is semi-honestly corrupted,
so its inputs (x′′

0 , x
′′
1) are known to S. On the other hand, the query on SS is not needed, as PS is corrupted

according to the corruption translation table.
Since the only difference between the real world and ideal world is in the generation of the keys, and

(pk, skσ)
s
≈ KeyGen(crs, σ) by trapdoor key generation. However, crs was generated in decryption mode,

whereas the protocol expects messy mode. Since SetupMessy1
c
≈ SetupDec1, the two experiments are only

computationally indistinguishable.

Proof (Theorem 2). The theorem statement follows by looking at the standard corruption translation table.
Since the adversary maliciously corrupts either the sender or the receiver, the remaining honest party has
either (i) a Honest core and a SemiHonest firewall, or (ii) a Specious core and a Honest firewall.
Since both firewalls are strongly sanitizing, as shown in Lemma 4 and Lemma 5, the core in case (ii) can
be considered Honest [18, Lemma 2]. Hence, the statement follows directly by Lemma 6. We consider
Isolate corruptions as Malicious corruptions.

C.3 Proof of Theorem 3

First of all, we argue that the protocol is correct.

Lemma 7. The protocol in Figure 4 is correct.

Proof (Lemma 7). If wI = wR, then KI ∗ K̃ ′′ = K̃ ′ ∗KR (i.e., parties output the same key):

KI ∗ K̃ ′′ = (rIwI) ∗ (rRwI ∗ ρRwI ∗ ρIwI)

= (rIwI ∗ ρIwI ∗ ρRwI) ∗ rRwI

= (rIwR ∗ ρIwR ∗ ρRwR) ∗ rRwR

= K̃ ′ ∗KR

We now show that the firewalls are strongly sanitizing, meaning that the environment is unable to distinguish
a protocol run in which either core is speciously corrupted and their firewall is honest from a run in which the
same core is incorruptible and their firewall is honest. Notice however that we do not require this condition
to hold whenever the adversary is able to successfully guess the password of a honest party.

Lemma 8. The firewall FP in Figure 4, for P ∈ {I,R}, is strongly sanitizing.

Proof (Lemma 8). We show that no environment E , which allows specious corruptions for the core CP but
does not corrupt the respective firewall FP, is able to distinguish between an execution of the protocol in
Figure 4 with an incorruptible CP from one that accepts the corruption C̃P.

Specious Receiver. We first show that CR is unable to leak any information. The initiator’s outbound
communication consists of choosing random strings and sending them through FsOT. Since FR samples coins
ρRb uniformly at random from the input space I, the output of the operation ∗ is uniformly random in I,
even in the presence of a biased distribution sampled by the specious core C̃I.

We now argue that no input-trigger attacks are possible. The only source of input-triggers comes from
the inbound values of the second batch of FsOT, as the inputs of the (malicious) initiator may have been
crafted in a way to trigger a specious corruption in CR in an undetectable manner. In particular, the trigger
should force the specious receiver to compute an adversarially-known key K. First, we note that malicious

32

initiator fails to guess the password, so rIwR ̸= rIwI , and ρRwR ̸= ρRwI . However, since the responder is specious,
both know the random strings (rRwI , rRwR) may be known to the malicious initiator. Moreover, the malicious
initiator receives r̃′′ = rRwI ∗ ρRwI . Since the responder’s firewall is honest and the password are distinct, any
trigger the malicious initiator may craft is blinded by operation ∗ with a fresh random string that was never
used before. Hence, the output key for the specious responder will be a uniformly random key.

Specious Initiator. We first argue that no input-trigger attacks are possible. The only source of input-
triggers comes from the inbound values of the first batch of FsOT, as the inputs of the (malicious) responder
may have been crafted in a way to trigger a specious corruption in CI in an undetectable manner. Since FI

samples coins ρIb uniformly at random from the input space I, the output of the operation ∗ is uniformly
random in I, even in the presence of a trigger sampled by the malicious receiver.

We now argue that CI is unable to leak any information. The only source of leakage comes from the
outbound values in the second batch of FsOT. In particular, the specious initiator could sample random
strings in a biased manner, so that the output of the protocol leaks information. As before, we note that the
malicious receiver fails to guess the password, so rIwR ̸= rIwI , and ρIwI ̸= ρIwR . However, since the initiator is
specious, it may know the (maliciously sampled) random strings (rRwI , rRwR). Moreover, the malicious initiator
receives r̃′′ = rRwI ∗ ρRwI . Since the initiator’s firewall is honest and the password are distinct, any outbound
message from the specious initiator is blinded by operation ∗ with a fresh random string that was never used
before (i.e., ρIwI ̸= ρIwR). Hence, the outbound message will be a uniformly random string.

Remark 2. As expected, in the event the adversary successfully guesses the password, there are no longer
any security guarantees against specious corruptions. In the first case of the previous proof, the malicious
initiator can recompute from r′′ the correct blinding factor used by the honest firewall of the receiver (as the
randomness used by the specious receiver is known to the adversary). Since in this case the same blinding
factor would be reused, the adversary may craft a contribution to the key that embeds the same blinding
factor so that it gets cancelled out, forcing the specious core to output a fixed key and causing a trigger,
breaking indistinguishability. In the second case, the specious initiator obtains r′′ embedding the correct
blinding factor used from its firewall, as well as some adversarially generated randomness that is hard-wired
in the subverted implementation itself. With that, the specious initiator is able to recompute the blinding
factor used by its firewall. From here, the specious initiator can sample a random string accounting for the
blinding factor of its firewall, and leak information, breaking indistinguishability.

Lemma 9. For every adversary A corrupting either party maliciously in an execution of the protocol Π as
in Figure 3 in the (FsOT,FSAT)-hybrid model, there exists a simulator S such that, for all environments E,
the following holds:

Exec
(FsOT,FSAT)
Π,A,E ≈ ExecWrap(FRE),S,E

Proof (Lemma 9). Intuitively, the proof follows closely the proof of the non-sanitized protocol [12, Theorem
1], restricted to the case of static corruptions.

We analyze corruption scenarios separately, defining a simulator S interacting with FRE and the environ-
ment E , and simulating a run of the core of the honest party of the protocol Π.

Malicious Initiator. The initiator I is corrupted, so the core of the receiver CR is honest and its firewall
FR is semi-honest. The simulator S can simulate the ideal functionality FsOT, hence it can obtain whatever
the adversary A inputs on behalf of corrupted parties (honest parties are still internally simulated). More
specifically, it simulates the first batch of OTs (in which I acts as the sender) as follows:

1. Whenever A sends inputs (ρR0 , ρ
R
1) to FsOT acting as the responder’s firewall FR in the first OT, S

records the tuple.

2. Whenever A sends input w to FsOT acting as a malicious initiator in the first OT, if S had received a
message as in (1), it records the input w, samples a random value r′ ←$ I, and returns r′ ∗ ρRw to A.
Otherwise, it does nothing.

33

It then simulates the second batch of OTs (in which I acts as the receiver) as follows:

1. Whenever A sends inputs (rI0, r
I
1) to FsOT acting as a malicious initiator in the second OT, S records

the tuple.

2. Whenever A sends inputs (ρR0 , ρ
R
1) to FsOT acting as the receiver’s firewall FR in the second OT, S

records the tuple.

Notice that step (1) is still necessary, as the functionality still expects the semi-honest FR to blind the
sender’s inputs of the OT (as the overall party is honest).

After this preliminary phase, S sends message (NewSession, sid, I,R, w) to FRE. It also sends message
(ok, sid) to FRE, prompting the (dummy) receiver to input its password. Then, it computes the key as the
initiator would in the protocol by using the password w it extracted from the adversary. More specifically,
KI = rIw ∗ ρIw ∗ ρRw, and K̃ ′′ = r′. S then sends a NewKey query containing K = KI ∗ K̃ ′′ to FRE for both
parties, receiving skeyI (i.e., the output of the corrupted initiator). skeyI is forwarded to A.

Malicious Receiver. S initially waits for a message (sid, I,R) from FRE. As soon as the message is
received, it inputs (ok, sid) to FRE, receiving a matching (wakeup, sid, I,R) message. From this point on, it
simulates the Respond and NewKey queries exactly as the simulation for the malicious initiator.

Proof (Theorem 3). The theorem statement follows by looking at the standard corruption translation table.
Since the adversary maliciously corrupts either the initiator or the responder, the remaining honest party has
either (i) a Honest core and a SemiHonest firewall, or (ii) a Specious core and a Honest firewall. Both
firewalls are strongly sanitizing, and as shown in Lemma 8, the core in case (ii) can be considered Honest
[18, Lemma 2]. Hence, the statement follows directly by Lemma 9. We consider Isolate corruptions as
Malicious corruptions.

C.4 Proof of Lemma 1

Proof (Lemma 1). Assume by contradiction the theorem statement does not hold. Then, there exists an
adversary A′ that breaks KS-EUF-CMA security of an EUF-CMA scheme with the algorithms and properties
of Definition 5 with non-negligible probability. Leveraging on A′, we build a reduction A that breaks the
EUF-CMA property of the referenced scheme with the same probability.
A acts as the challenger for KS-EUF-CMA security of A′. Therefore, it has to (i) provide a verification

key and randomness, and (ii) answer to signature queries. For (i), A simply mauls the verification key

vk received from C to ṽk via algorithm MaulVK using a uniformly distributed randomness ρ; for (ii), A
forwards signature queries on mi’s to C, and mauls signatures σi to σ̃i via algorithm AlignSig using the same
randomness ρ used to maul vk. Finally, A′ will produce a forged signature σ∗ on m∗ /∈M that verifies under
ṽk. Using algorithm UnAlignSig with randomness ρ, A can translate this forgery to a forged signature σ for
m∗ /∈M that verifies under vk. This concludes the proof.

We depict pictorially the reduction in Figure 8.

C.5 Proof of Theorem 5

Proof (Theorem 5). First, we inspect the MaulVK, AlignSig, and UnAlignSig algorithms we introduced, show-
ing that they satisfy the consistent key sanitation and alignment invertibility properties. Then, we show that
the BLS signature scheme, combined with the algorithms above, achieves KS-EUF-CMA security. Finally,
we inspect the IDComb algorithm we introduced to show consistent identity combinability.

34

A′ A C

(sk, vk)←$ KeyGen(1λ)

vk

ρ←$ {0, 1}n

ṽk = MaulVK(vk, ρ)

(vk, ρ)

mi

mi

σi = Sign(sk,mi)
σi

σ̃i = AlignSig((vk, σi,mi), ρ)

σ̃i

m∗, σ̃∗

σ∗ = UnAlignSig((ṽk, σ̃∗,m∗), ρ)

m∗, σ∗

Figure 8: A reduction proving Lemma 1. A′ is the algorithm that breaks KS-EUF-CMA with non-negligible
probability. A acts as the challenger for A′ and as the adversary for EUF-CMA. C is the challenger for EUF-CMA.

Consistent key sanitation. Denoting (sk, vk) = KeyGen(1λ) = (x, gx), σ = Sign(sk,m) = H(m)x with

m ∈ {0, 1}n, ṽk = MaulVK(vk, ρ) = gxρ, σ̃ = AlignSig((vk, σ,m), ρ) = (H(m)x)ρ, the verification of signature

σ̃ for message m under ṽk (i.e., Vrfy(ṽk, (σ̃,m)) : ê(σ̃, g)
?
= ê(H(m), ṽk)) succeeds:

ê(σ̃, g) = ê(H(m)xρ, g)

= ê(H(m), gxρ)

= ê(H(m), ṽk)

Alignment invertibility.

UnAlignSig((ṽk, σ̃,m), ρ) = (H(m)xρ)ρ
−1

= H(m)x = σ

KS-EUF-CMA security. Given that the BLS signature scheme is EUF-CMA (as shown in [10]), we
simply invoke Lemma 1.

Consistent identity combinability.

IDComb(vki,MaulVK(vkj , ρ)) = ê(gxi , gxjρ)

= ê(gxiρ, gxj)

= IDComb(MaulVK(vki, ρ), vkj)

35

C.6 Proof of Theorem 6

We first show that the firewalls are strongly sanitizing, meaning that the environment is unable to distinguish
a protocol run in which either core is speciously corrupted and their firewall is honest from a run in which
the same core is incorruptible and their firewall is honest.

Lemma 10. The firewall Fi in Figure 4, is strongly sanitizing.

Proof (Lemma 10). We show that no environment E , which allows specious corruptions for the core Ci

but does not corrupt the respective firewall Fi, is able to distinguish between an execution of the protocol
in Figures 5, 6 with an incorruptible Ci from one that accepts the corruption C̃i. We analyze the link
initialization and the message authentication phases separately.

Link Initialization. We first argue that no input-trigger attacks are possible. The inbound values for Ci

are vkj and (sidj , σj), all of which are sanitized as follows:

• vkj is sanitized to a fresh verification key by means of algorithm MaulVK with randomness ρi.

• sidj is publicly verifiable and it matches a known sanitized value, so any different message is dropped

(in particular, it should match the outbound s̃idi).

• σj is sanitized to a new signature using the same blinding factor ρi.

We now show that Ci is unable to leak any information. The core sends a verification key vki and session

ID s̃idi with a matching signature σi, all of which are sanitized as follows:

• vki is sanitized to a fresh verification key by means of algorithm MaulVK with randomness ρi.

• s̃idi is publicly verifiable and is a sanitized value, so any different message is dropped.

• σi is sanitized to a new signature using the same blinding factor ρi.

Message Authentication. The only inbound message to Ci is the tuple (Pj , m̃i, cnt), which is output by
the honest Fi, so no triggering exists.

The only outbound message from Ci is the signature σj , which gets sanitized by means of algorithm
AlignSig with the same randomness ρi used in the link initialization phase.

The sanitation of all other messages (both inbound and outbound) is taken care of by the calling protocol.

Lemma 11. For every adversary A corrupting any subset of parties maliciously and the firewall of honest
parties semi-honestly in an execution of the protocol Π as in Figures 5, 6, there exists a simulator S such
that, for all environments E, assuming secure channels between cores and their firewall and a KS-EUF-CMA
signature scheme with consistent identity combinability, the following holds:

ExecΠ,A,E ≈ ExecsFSAT,S,E

Proof (Lemma 11). The proof runs similarly to the one of Barak et al. (Proof of Theorem 11, [7]): the
simulator S partitions parties according to the SID they compute, and the unforgeability of the signature
scheme prevents the adversary from forcing inconsistent authentication sets among honest parties or injecting
arbitrary messages in the channel.

Intuitively, the main differences consist in (i) the core combining verification keys to a single value, (ii)
the adversary controlling the blinding factor used by the (semi-honest) firewall to sanitize the verification key
and to align signatures, (iii) the presence of additional communication between a core and its firewall. Item
(i) is covered by consistent identity combinability. Item (ii) is covered by assuming a sanitizable EUF-CMA
signature scheme, so knowing the blinding factor does not help towards producing a valid forgery. Item (iii)
is covered by the assumption of secure channels between a core and its firewall.

We refer to the 2-party setting in which both parties are composed of an honest core and a semi-honest
firewall. The simulator internally simulates the behaviour of the honest cores in the link initialization phase

36

by producing keys vki and vkj respectively. The simulator also stores keys ṽkj , ṽki received from A. Now,

the simulator checks whether IDComb(vki, ṽkj) = IDComb(ṽki, vkj) (i.e., whether the locally-received keys

have been blinded consistently), and whether the signatures generated on s̃idi and s̃idj verify. If so, it places
Pi and Pj in the same authentication set H. In any other case, it places Pi and Pj in different authentication
sets.

Compared to the original proof, the output of IDComb now immediately identifies the identification
set and its related SID in a correct manner (as we are in the 2-party case) due to the consistent identity
combinability property.

For what concerns the simulation of communication between firewalls, the strategy is the same as the
original proof. The only way their simulation fails in the message authentication phase is by having a
Receive message from party Pj to party Pi coming out of the blue from A. This occurs only by considering
two honest cores with semi-honest firewalls, as otherwise the signature would have been generated by S. In
this case, if A forges a signature on behalf of the honest core Cj , even by knowing the randomness used to
maul the respective verification key, it may be used to break KS-EUF-CMA of the signature scheme.

Simulating the communication between cores and their firewall is immediate, due to the presence of
a secure channel between said components: Send or Receive messages coming from sFSAT (on behalf of
dummy components) are forwarded to the appropriate component; Send from (corrupted) cores or Receive
from (corrupted) firewalls messages are forwarded to sFSAT.

Proof (Theorem 6). The theorem statement follows by looking at the standard corruption translation table.
Since both parties are honest, they are either composed of (i) a Honest core and a SemiHonest firewall, or
(ii) a Specious core and a Honest firewall. Since both firewalls are strongly sanitizing, as shown in Lemma
10, the core in case (ii) can be considered Honest (Lemma 2 of [18]). Hence, the statement follows directly
by Lemma 11. We do not consider Isolate corruptions explicitly, as they collapse to MITM attacks.

C.7 Proof of Lemma 2

Proof (Lemma 2). We follow the proof of [7] adjusting to our setting when necessary. Let ΦF be the protocol
of [18] (i.e., the GMW compiler in the srUC framework) realizing functionality F in the wsrUC model. The
structure of ΦF can roughly be broken down into two main components: (1) a protocol πF̂C&P

for realizing a

multi-instance commit-and-prove functionality F̂C&P that provides multiple independent commit-and-prove
operations making (implicit) use of a single CRS functionality Fcrs, and (2) a protocol ΠF for realizing

functionality F assuming access to F̂C&P. We can express the protocol ΦF as ΦF = Π
πF̂C&P

F . Observe that
πF̂C&P

produces each commit-and-prove operation in a separate subroutine, and the only state that is shared
is the access to the CRS. Thus, we conclude that for any n, running n independent instances of ΦF where
each instance uses a different instance of F̂C&P is exactly the same as running the same n instances of ΦF
where all instances use a single joint instance of F̂C&P. Then, we can invoke the composition theorem of the
srUC model and replace the the joint instance of F̂C&P by a single instance of a protocol that realizes F̂C&P.
We end up with a protocol that realizes n independent instances of F and uses a single instance of Fcrs.

C.8 Proof of Lemma 3

Proof (Lemma 3). The first important observation is that protocols realizing regular ideal functionalities
exclusively allow cores to have an input or output. Given that, the proof is essentially the same as in [7],
with particular care in adapting the communication between components of parties consistently. Towards
this goal, we first provide a description of the compiler of [7] adapted to our setting.

Informally, protocol ΠF is described as follows. Each party first runs sFSAT to obtain sidH . Next, it runs
πF with SID = (sid, sidH). We recall that, since πF n-realizes F , it internally runs n concurrent instances of a
protocol realizing F , each identified by a different sub-session ID. Each outgoing message of πF is forwarded
to sFSAT, and each incoming message from sFSAT is forwarded to πF . As in [7], all participants of each

37

instance of πF interact with a single instance of FSAT, identified by SID sid||0. We proceed more formally in
what follows.

Protocol ΠF

Let πF be a protocol n-realizing functionality F , that has access to G and assumes authenticated communication
(i.e., FSAT). Protocol ΠF proceeds as follows, using ideal access to G and sFSAT and interacting with a set of
parties, each composed of a core Ci and a firewall Fi:

� Upon receiving input (Init, sid) from party P, where P = (C,F), sid = (P, sid′), and P is a set of parties
containing P, call sFSAT with input (Init, sid||1).

� Upon receiving (Init, sid||1, sidH) from sFSAT with destination party P, store (P, sidH) and output
(Init, sid, sidH) to ITI P.

� Upon receiving (input,Pi, sid, x) from core Ci of party Pi, input x to ITI (πF , (sid, sidH),Pi), i.e., to the
ITI running πF with SID (sid, sidH) and PID Pi on Ci.

� Handle communication as follows:

– When core Ci of ITI (πF , (sid, sidH),Pi) sends message (Send, sid,Pi,Pj ,m) using FSAT on interface
IOi, input the tuple to sFSAT on IOi.

– Upon receiving (Send, sid,Pi,Pj ,m) from sFSAT on interface Si, forward the tuple to the firewall Fi

of ITI (πF , (sid, sidH),Pi) as if coming from interface Si of FSAT.

– When firewall Fi of ITI (πF , (sid, sidH),Pi) sends message (Send, sid,Pi,Pj ,m) using FSAT on inter-
face Si, input the tuple to sFSAT on Si.

– Upon receiving (Receive, sid,Pi,Pj ,m) from sFSAT on interface Sj of party Pj , forward the tuple
to firewall Fj of ITI (πF , (sid, sidH),Pj), as if coming from FSAT on interface Sj .

– When firewall Fj of ITI (πF , (sid, sidH),Pj) sends message (Receive, sid,Pi,Pj ,m) using FSAT on
interface Sj , input the tuple to sFSAT on Sj .

– Upon receiving (Receive, sid,Pi,Pj ,m) from sFSAT on interface IOj of party Pj , forward
(Receive, sid,Pi,Pj ,m) to core Cj of ITI (πF , (sid, sidH),Pj) as if coming from FSAT on interface
IOj .

� When core Ci of ITI (πF , (sid, sidH),Pi) outputs a value y, output y.

The goal of this proof consists in showing that ΠF wsrUC realizes sF , i.e.:

ExecsFSAT

ΠF ,A,E ≈ ExecsF,S,E

To this extent, we build a series of intermediate experiments relating the unauthenticated execution of
protocol ΠF to the authenticated concurrent execution.

Intermediate experiment 1. Given an adversary A that interacts with a single instance of protocol
ΠF (running on unauthenticated channels), we construct an adversary A′ that interacts with n instances
of protocol πF (running on authenticated channels). We first build an experiment ExecFSAT

πF ,A′,E′ for the
authenticated concurrent of protocol πF , and argue that the following holds:

ExecsFSAT

ΠF ,A,E ≡ ExecFSAT

πF ,A′,E′

The environment E ′ internally runs the environment in a black-box manner E , and the adversary A′ internally
runs the adversary in a black-box manner A (i.e., objects of the unauthenticated execution of protocol ΠF),
emulating sFSAT for E and A. We proceed to describe E ′ and A′ more formally.

Environment E ′ with black-box access to E .

� Whenever E wishes to input (Init, sid) to party P = (C,F), E ′ forwards (Internal-Init,P, sid) to A′.

� Whenever E ′ receives an output (Internal-Init, sid,P, H, sidH) from A′, store (P, sid, sidH , H) and forward

38

the tuple to E as if it came from P with SID sid.

� Whenever E wishes to input (input, sid, x) to party P of SID sid, E ′ checks whether there exists a stored tuple
(P, sid, sidH , H). If so, E ′ inputs x to party P of SID (sid, sidH) of πF . Otherwise, E ′ ignores the message.

� Whenever E wishes to input any other value to P, E ′ ignores the message.

� Whenever E wishes to input any value to A (including any instruction for any specious core), E forwards this
message to A′.

� Whenever E ′ receives any message from A′, it forwards the message to E .
� Whenever E ′ receives an output from party P with SID (sid, sidH), the message is forwarded to E as if it came

from P with SID sid.

� Whenever E halts outputting z, E ′ also halts outputting z.

Adversary A′ with black-box access to A.

Link initialization phase

� Whenever A′ receives (Internal-Init,P, sid) from E ′, A′ initializes an instance of sFSAT with input
(Init, sid||1) as if coming from party (P, sid). Messages from sFSAT to the adversary are delivered to A.

� Whenever A outputs (Init, sid||1,P, H, sidH) to sFSAT, A′ forwards the tuple to the internal instance of
sFSAT.

� Whenever the internal instance of sFSAT outputs (Init, sid||1, H, sidH) to P, A′ outputs (Internal-Init,
sid,P, H, sidH) to E ′.

Inbound communication from FSAT

� Whenever A′ receives a message (Send,Pi,Pj ,m) from FSAT with destination Fi, it inputs (Send, sid||1,
Pi,Pj ,m) to sFSAT as if coming from Ci.

� Whenever A′ receives a message (Send,Pi,Pj ,m) from FSAT (i.e., the tuple that is leaked to the adver-
sary), it inputs (Send, sid||1,Pi,Pj ,m) to sFSAT as if coming from Fi.

� Whenever A′ receives a message (Receive,Pi,Pj ,m) from FSAT with destination Cj , it inputs (Receive,
sid||1,Pi,Pj ,m) to sFSAT as if coming from Fj .

Outbound communication from A
� Whenever A wishes to send (Send,Pi,Pj ,m) to sFSAT on IOi, A′ forwards the tuple to sFSAT on IOi.

Upon receiving (Send,Pi,Pj ,m) from sFSAT with destination (uncorrupted) Fi, A′ forwards the message
(Send,Pi,Pj ,m) to FSAT on IOi.

a

� Whenever A wishes to send (Deliver, sid||1,Pi,Pj ,m) to sFSAT, A′ forwards the tuple to sFSAT. When-
ever sFSAT outputs (Receive, sid||1,Pi,Pj ,m) with destination (uncorrupted) Fj , A′ sends (Deliver,
sid||0,Pi,Pj ,m) to FSAT.

� Whenever A wishes to send (Receive,Pi,Pj ,m) to sFSAT on Sj , A′ forwards the tuple to sFSAT on
Sj . Upon receiving (Receive,Pi,Pj ,m) from sFSAT with destination (uncorrupted) Cj , A′ forwards the
message (Receive,Pi,Pj ,m) to FSAT on Sj .

� Whenever A wishes to deliver any other message to an uncorrupted component, the message is ignored.

aNote that if Fi is corrupted, sFSAT already internally returns this tuple to A.

Intuitively, the fact that A′ is receiving inbound messages from FSAT means that some honest dummy
component has sent them on FSAT with destination a corrupted component. For that, A′ reproduces the
query made by the honest component by producing a responding query to sFSAT. Conversely, A may want to
deliver messages to uncorrupted components. For that, A′ first inputs them to the local instance of sFSAT.
If sFSAT returns a matching tuple to A′, it means that it has as destination an uncorrupted component. In
this case, the tuple is forwarded on FSAT on the appropriate interface.6.

6Otherwise, it means that the communication is among corrupted components and does not need to be forwarded to FSAT,
as it is already locally emulated.

39

Finally we remark that, since we only restrict our attention to static corruptions, no adaptive corruption
message is present. If a party is corrupted in ΠF (according to the corruption translation table in Table 1)
before the protocol run, the party will also be corrupted in the respective run of πF . This implicitly includes
also specious corruptions of cores, as per Table 1.

It directly follows from the construction of A′ and E ′ that the view of E running within E ′ is distributed
identically to the view of E in the execution of ΠF , as desired.

Intermediate experiment 2. Since πF n-securely realizes F , we have that for every adversary A′ there
exists a simulator S ′ such that, for every environment E ′ that opens at most a single session of F , the
following holds:

ExecFSAT

πF ,A′,E′
c
≈ ExecF,S′,E′

The descriptions of A′ and E ′ are defined above.

Intermediate experiment 3. Finally, we construct simulator S from S ′. In particular, we prove that:

ExecF,S′,E′
s
≈ ExecsF,S,E

Essentially S internally incorporates S ′, and mimics for S ′ the interaction with environment E ′ by using
environment E . Intuitively, the goal of S consists in (i) initializing S ′ consistently with sFSAT, (ii) forward
outbound messages with destination the concurrent execution of F with SSID sidH to sFSAT, and (iii) forward
inbound messages from sFSAT to corrupted parties as if coming from F . We describe S formally next.

Simulator S with black-box access to S ′.

� Whenever S receives a message (Init, sid,P) from sF , it forwards (Internal-Init, sid,P) to S ′ as if it came
from E ′.

� Whenever S ′ wishes to send (Internal-Init, sid,P, H, sidH) to E ′, S forwards (Init, sid,P, H, sidH) to sF .
� Whenever S ′ wishes to send input x to the instance of F with SID (sid, sidH), S sends (input, sid, H, x) to

sF (the set H associated with sidH can be determined from the content of the respective Internal-Init
message received from S ′).

� Upon receiving from sF an output v directed at party P in instance H, S forwards to S ′ an output v for
party P as if coming from F (in this case, P is corrupted, according to the corruption translation table in
Table 1).

As for the original proof, the only difference is that sF might ignore certain inputs and not forward them
to the respective instance of F . This happens only if any of the following occurs:

� Upon receiving a message from an uncorrupted party that is not part of any H.

� Upon receiving a message (Init, sid,Pi, H, sidH) from the adversary that is malformed. This happens
if:

– Pi has not previously sent any (Init, sid) message.

– Pi is not part of set H.

– sF has previously received another pair (sidH′ , H ′) such that either H = H ′ and H ∩H ′ contains
uncorrupted parties, or H = H ′ but sidH ̸= sidH′ .

The first event never occurs, as these inputs are also ignored in the execution of E ′ and A′ with (the
multi-session) F . In particular, E ′ ignores all inputs that E wishes to send to parties Pi that are not of a
previously-recorded set H.

We analyze the second event next. By construction of A′, A′ never outputs a malformed message
(Internal-Init, sid,P, H, sidH) to E ′: indeed, A′ stores a tuple (sidH , H) only if sFSAT would have done

40

so, which implies that only well-formed Internal-Init messages are output to E ′. Since for every A′ there
exists a valid simulator S ′, S ′ will output a malformed Internal-Init message with negligible probability.
By construction of S, the probability that S sends a malformed (Init, sid, P,H, sidH) message to sF is
negligible (as this occurs only if S ′ outputs an Internal-Init that is malformed). Since the execution of
S ′ and E ′ interacting with a multi-session F is otherwise identically distributed to an execution of S and E
interacting with sF , the two executions are statistically indistinguishable, concluding the experiment.

Putting everything together. By putting the experiments together, we have the following, concluding
the proof:

ExecsFSAT

ΠF ,A,E ≡ ExecFSAT

πF ,A′,E′
c
≈ ExecF,S′,E′

s
≈ ExecsF,S,E

Remark 3. Even though we considered a protocol πF n-realizing an n-party functionality F , the lemma has
to be cast to the 2-party setting due to the restriction we have from the instantiation of sFSAT we propose
in this composition.

C.9 Proof of Theorem 8

Proof (Theorem 8). We adapt the proof of Dupont et al. [22, Appendix D] to the FRE and FPAKE we defined
in Sections 4.1, 6.1. First, we define a trivial protocol7 ΠPAKE that instantiates FPAKE in the sFRE-hybrid
model. Then, we show a one-to-one mapping of the adversarial behaviour within the two functionalities.

Definition and simulation of ΠPAKE. Compared to the original proof, in ΠPAKE we only distinguish
explicitly the initiator I from the responder R to match the description of our ideal functionalities.

Protocol ΠPAKE

� Upon receiving (sid, wP) from party P ∈ {I,R}, proceed as follows:

– Send (Init, sid) to sFRE on behalf of P.

– If P = I: Send (NewSession, sid, I,R, wI) to sFRE.

– If P = R: Upon receiving (wakeup, sid, I,R) from sFRE, send (Respond, sid,R, I, wR) to sFRE.

� Upon receiving skeyP from sFRE, output skeyP to P.

Next, we define a simulator for ΠPAKE similarly to Dupont et al. [22].

Simulator SPAKE

Initialization

� Upon receiving (Init, sid) from A on behalf of any corrupted party, SPAKE does nothing.

� Upon receiving (Init, sid,Pi, H, sidH) from A, SPAKE records the partition set H for party P.

A places I and R in the same authentication set H

� If both I and R are corrupted, SPAKE internally simulates the behaviour of sFSA without interacting with
FPAKE.

� Else (i.e., at most one among I and R are corrupted), SPAKE proceeds as follows:

– Upon receiving (NewSession, sid, I,R, wI) from A, where I is corrupted, SPAKE forwards the query
to FPAKE.

– Upon receiving (Respond, sid,R, I, wR) from A, where R is corrupted, SPAKE forwards the query to

7We say it is a trivial protocol, as it exclusively makes parties interact with sFRE.

41

FPAKE.

– Upon receiving (NewKey, sid,P,K) from A, SPAKE forwards the query to FPAKE.

– Upon receiving (sid, ·) from FPAKE, SPAKE forwards the tuple to A.

A places I and R in different authentication sets

� If an authentication set contains exclusively corrupted parties, SPAKE internally simulates the behaviour
of sFSA for that authentication set without interacting with FPAKE.

� Else, SPAKE proceeds as follows:

– Upon receiving (NewSession, sid, I,R, wI) from A, where I is corrupted, SPAKE forwards
(TestPwd, sid,R, wI) to FPAKE.

– Upon receiving (Respond, sid,R, I, wR) from A, where R is corrupted, SPAKE forwards
(TestPwd, sid, I, wR) to FPAKE.

– Upon receiving (NewKey, sid,P,K) from A, SPAKE forwards the query to FPAKE.

– Upon receiving (sid, ·) from FPAKE, SPAKE forwards the tuple to A.

Whenever A places both parties in the same authentication set, no TestPwd query can occur, as the
parties were allowed to mutually authenticate and the adversary can no longer man-in-the-middle. On the
other hand, if A is splitting parties, an authenticated set can contain at most one honest party (as the
intersection of distinct authentication sets can only contain corrupted parties). This way, the adversary is
effectively performing two distinct TestPwd queries against honest I and honest R, as they are in distinct
authentication and the adversary can impersonate their peer.

Mapping between sFRE and FPAKE. It remains to show that the output of SPAKE is correctly distributed.
To this extent, we enumerate all possible adversarial behaviours in sFRE and map them to the status of records
in FPAKE in Table 2. When the adversary ”attacks” party P in sFRE, it first partitions parties in different
authentication sets, and then runs the individual FRE on behalf of its peer by using an arbitrary password.
Intuitively, the attack is successful if the arbitrary password matches with wP. For all rows, the output of
both sFRE and FPAKE matches by inspecting the behaviour of the functionalities for that specific adversarial
behaviour. For the sake of clarity, we discuss the meaning of some of the rows in a verbose fashion.

Row 1. Parties input wI and wR such that wI = wR, and the adversary does not MITM in sFRE. This
means that the parties are placed within the same authentication set. This behaviour corresponds to both
records being fresh in FPAKE, as no TestPwd queries can occur. If both parties are honest (i.e., C = ∅),
the output of both functionalities is a random shared key. If party R is corrupted, the adversary can set the
key it outputs arbitrarily, and since it knows the password used by the honest peer I, it may set the key I
outputs to an arbitrary value (as intuitively, it is able to run the protocol on behalf of R with the correct
password).

Row 4. Parties input wI and wR and the adversary does MITM in sFRE by isolating parties and
impersonating their matching peer. In particular, the adversary supplies password w̃R on behalf of R in a
run against I, and w̃I on behalf of I in a run against R. In this row, wI = w̃R and w̃I ̸= wR. This means that
the adversary successfully guessed the password of I but failed to guess the password of R. In FPAKE, this
behaviour corresponds to the record of I being compromised and the record of R being interrupted. Therefore,
the adversary can set the key output by I.

42

sFRE FPAKE Output of sFRE and FPAKE

No MITM Attack I Attack R Record of I Record of R C = ∅ C = {R} C = {I,R}
wI = wR fresh fresh r, r K,K ′ K,K ′

wI ̸= wR fresh fresh r, s r,K ′ K,K ′

wI = w̃R w̃I = wR compromised compromised K,K ′ K,K ′ K,K ′

wI = w̃R w̃I ̸= wR compromised interrupted K, s K,K ′ K,K ′

wI = w̃R compromised fresh K, b K,K ′ K,K ′

wI ̸= w̃R w̃I = wR interrupted compromised r,K ′ r,K ′ K,K ′

wI ̸= w̃R w̃I ̸= wR interrupted interrupted r, s r,K ′ K,K ′

wI ̸= w̃R interrupted fresh r, s r,K ′ K,K ′

w̃I = wR fresh compromised r,K ′ r,K ′ K,K ′

w̃I ̸= wR fresh interrupted r, s r,K ′ K,K ′

Table 2: Mapping between the adversarial behaviour in sFRE and in FPAKE. C is the set of corrupted parties. r, s
are randomly generated keys. K,K′ are adversarially generated keys. Passwords denoted as wP are inputs to the
protocol. Passwords denoted as w̃P are supplied by the adversary while performing MITM. The column for C = {I}
is omitted, as it is symmetrical with respect to the column for C = {R}.

D Base protocols

In this section, we report some of the descriptions of non-sanitized (i.e., base protocols) and regular ideal
functionalities from prior literature.

D.1 Split Functionality

Informally, a split functionality is a wrapper of a functionality F where the adversary can separate parties
(each made of a core and a firewall) into disjoint execution sets.

Functionality sF

sF is a split ideal functionality of F that interacts with an adversary S and a set of parties, and behaves as
follows.

Initialization

� Upon activation with input (Init, sid) from party P, parse sid = (P, sid′) where P is a set of parties that
includes P. Forward (Init, sid,P) to the adversary S.

� Upon receiving the message (Init, sid,P, H, sidH), from S: Verify that party H ⊆ P, that the list H of
party identities includes P, and that for all recorded sets H ′, either (i) H ∩H ′ contains only corrupted
parties and sidH ̸= sidH′ , or (ii) H ′ = H and sidH = sidH′ . If any check fails, do nothing. Otherwise,
record (Init, sid, sidH) output the tuple to P, and initialize an instance of the ideal functionality F with
SID sidH , denoted as FH . The adversary plays the role of parties P −H in FH .

Computation

� Upon receiving an input (input, sid, v) from party P ∈ P, find the set H such that P ∈ H, and forward
the message v from P to FH . If no such set is found, ignore the input.

� Upon receiving a message (input, sid, H,P, v) from S, if FH is initialized and P ∈ P −H, forward v to
FH as if coming from party P. Otherwise, ignore the message.

� When an instance FH generates an output v for party P ∈ H, output v to P. When the output is for a
party P ∈ P −H or for S, send the output to S.

43

D.2 Split Authentication

Functionality FSA

FSA is an ideal functionality that interacts with a set of parties P and an adversary S.

Initialization

Upon receiving query (Init, sid), where sid = (P, sid′):

Record P and forward it to S.

Upon receiving query (Init, sid,P, H, sidH), from S:

Verify that party P ∈ P, that the list H of party identities includes P, and that for all recorded sets H ′,
either H ∩ H ′ contains only corrupted parties and sidH ̸= sidH′ , or H ′ = H and sidH = sidH′ . If so,
output (Init, sid, sidH) to P and record (H, sidH) if not yet recorded. Else, do nothing.

Message authentication

Upon receiving query (Send, sid,P,P′,m), where P ∈ P:

Send (P,P′,m) to S and add (P,P′,m) to an (initially empty) list W of waiting messages. The same
triple can appear multiple times in the list.

Upon receiving query (Deliver, sid,P,P′,m) from S:

• If P′ did not previously receive an (Init, sid, sidH) output then do nothing.
• Else, if P is in the authentication set H of P′, and P is uncorrupted, then: if there is a triple

(P,P′,m) ∈ W, remove one appearance of the triple from W and output (Received, sid,P,P′,m)
to P ′. Otherwise do nothing.

• Else (i.e., P′ received (Init, sid, sidH), and either P is corrupted or P /∈ H), output
(Received, sid,P,P′,m) to P′, regardless of W.

As shown in Barak et al. [7], the protocol depicted in Figure 9 instantiates FSA.

D.3 Oblivious Transfer

We report the generic framework of Peikert et al. [28] in Figure 10.

D.4 Randomized Equality

We depict in Figure 11 a variant of the construction of RE from OT of Canetti et al. [12] using a 1-bit
password.

44

Client Pi

(ski, vki)←$ KeyGen(1λ)

vki

vkj

sidi = (vki, vkj)
σi = Signski(sidi)

(σi, sidi)

(σj , sidj)

If sidi ̸= sidj , abort.
If Vrfyvkj (sidj , σj) = 0, abort.

Input: mi

σ = Signski(sidi,mi, Pj , cnt = 0)

((sidi,mi, Pj , 0), σi)

((sidj ,mj ,Pi, 0), σj)

If Vrfyvkj ((sidj ,mj ,Pi, 0), σj) = 0, drop the message.

Output mj .

Figure 9: Session-authenticated channel of Barak et al. [7]. On the top half, the setup phase. On the bottom half,
the message authentication phase, consisting of sending a message, and receiving and verifying an inbound message.

Sender S(x0, x1) Receiver R(σ)

CRS = crs
(sk, pk)←$ KeyGen(σ)

pk

yb ←$ Enc(pk, b, xb)

(y0, y1)

Output Dec(sk, yσ)

Figure 10: The generic framework for FOT of Peikert et al. [28].

Initiator I (wI) Responder R (wR)

(rI0, r
I
1)←$ {0, 1}2λ (rR0 , r

R
1)←$ {0, 1}2λ

wI

r′′ = rRwI
FOT

(rR0 , r
R
1)

(rI0, r
I
1) FOT

wR
i

r′ = rIwR

KI = rIwI K ′ = r′

K ′′ = r′′ KR = rRwR

Output skey = KI ⊕K ′′ Output skey′ = K ′ ⊕KR

Figure 11: FRE from OT [12] with a 1-bit password.

45

	Introduction
	Password-Authenticated Key Exchange
	Our Results
	Technical Overview
	Sanitizing OT
	Sanitizing Randomized Equality
	Split functionalities in the srUC model
	The final PAKE protocol

	Related Work
	Reverse firewalls and subversion
	PAKE

	Organization

	A Brief Recap of Subversion-resilient UC
	Corruption Types
	Specious corruption
	Isolate corruption
	Strong sanitation

	Ideal Functionalities
	Communication channels

	Sanitizing Oblivious Transfer
	Sanitizable OT
	Sanitizable Homomorphic Dual-Mode Encryption
	Sanitizable Homomorphic Dual-Mode Cryptosystems
	Instantiation from DDH

	A Generic Framework for Sanitizable OT
	Multi-session FsOT

	Sanitizing Randomized Equality
	Description of FRE
	Randomized Equality from OT

	Subversion-Resilient Split Functionalities
	Building Link Initialization
	Description of sFSAT
	Key-sanitizable signature schemes
	Combining verification keys
	Instantiation from BLS
	Realizing sFSAT

	Multi-realizing any ideal functionality in the wsrUC model
	Realizing Generic Split Functionalitites
	Putting it all together

	Sanitizing PAKE
	Description of FPAKE
	Variations in the srUC setting
	Shortcomings of PAKE functionalities

	From FRE to FPAKE
	A hand-wavy performance comparison

	Conclusions
	Channel assumptions in the srUC Framework
	Basics of the UC Framework
	Security proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 1
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 8

	Base protocols
	Split Functionality
	Split Authentication
	Oblivious Transfer
	Randomized Equality

