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Abstract

This work introduces the notion of naysayer proofs. We observe that in numerous (zero-knowledge) proof
systems, it is significantly more efficient for the verifier to be convinced by a so-called naysayer that a false proof is
invalid than it is to check that a genuine proof is valid. We show that every NP language has logarithmic-size and
constant-time naysayer proofs. We also show practical constructions for several example proof systems, including
FRI polynomial commitments, post-quantum secure digital signatures, and verifiable shuffles. Naysayer proofs
enable an interesting new optimistic verification mode potentially suitable for resource-constrained verifiers, such
as smart contracts.

1 Introduction

In most blockchains with programming capabilities, e.g., Ethereum [W+14], developers are incentivized to minimize
the storage and computation complexity of on-chain programs. Applications with high compute or storage incur
significant fees, commonly referred to as gas, to compensate validators in the network. Often, these costs are passed
on to users of an application.

High gas costs have motivated many applications to utilize verifiable computation [GGP10], off-loading expensive
operations to powerful but untrusted off-chain entities who perform arbitrary computation and provide a succinct
non-interactive proof (SNARK) that the claimed result is correct. This computation can even depend on secret
inputs not known to the verifier in the case of zero-knowledge proofs (i.e., zkSNARKs).

Verifiable computation leads to a paradigm in which smart contracts, while capable of arbitrary computation,
primarily act as verifiers and outsource all significant computation off-chain. A motivating application is rollups,
which combines transactions from many users into a single smart contract which verifies a proof that all have been
executed correctly. However, verifying these proofs can still be costly. For example, the StarkEx rollup has spent
hundreds of thousands of dollars to date to verify FRI polynomial commitment opening proofs.1

We observe that this proof verification is often wasteful. In most applications, provers have strong incentives to
only post correct proofs, suffering direct financial penalties (in the form of a lost security deposit) or indirect costs
to their reputation and business for posting incorrect proofs. As a result, a significant fraction of a typical layer-1
blockchain’s storage and computation is expended verifying proofs, which are almost always correct.2

This state of affairs motivates us to propose a new paradigm called naysayer proofs. In this paradigm, the verifier
(e.g., a rollup smart contract) optimistically accepts a submitted proof without verifying its correctness. Instead, any
observer can check the proof off-chain and, if needed, prove its incorrectness to the verifier by submitting a naysayer
proof. The verifier then checks the naysayer proof and, if it is correct, rejects the original proof. Otherwise, if no
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VC fraud proof fraud proof naysayer proof
(interactive) (non-interactive)

No optimistic assumption  # # #
Non-interactive  # G# G#
Off-chain f   G#  
Off-chain Π.Verify # - -  
Witness-independent challenge - # #  
Witness-independent resolution  G# #  
No Π.Prove #   #

Table 1: Trade-offs between VC, fraud proofs, and naysayer proofs.

party can successfully naysay the original proof before the end of the dispute period, the original proof is accepted.
To deter denial of service, naysayers may be required to post collateral, which is forfeited if their naysayer proof is
incorrect.

This paradigm potentially saves the verifier work in two ways. First, in the optimistic case, where the proof is
not challenged, the verifier does no work at all. We expect this to almost always be the case in practice. Second,
even in the pessimistic case, checking the naysayer proof may be much more efficient than checking the original
proof (e.g., if the verification fails at a single point, the naysayer proof can just point to that specific step). In other
words, the naysayer acts as a helper to the verifier by reducing the cost of the verification procedure in fraudulent
cases. At worst, checking the naysayer proof is equivalent to verifying the original proof (this is the trivial naysayer
construction).

Naysayer proofs enable other interesting trade-offs. For instance, naysayer proofs might be run at a lower
security level than the original proof system. A violation of the naysayer proof system’s soundness undermines the
completeness of the original proof system. For an application like a rollup service, this results only in a loss of
liveness; importantly, the rollup users’ funds would remain secure. Liveness could be restored by falling back to full
proof verification.

In Section 3, we formally define naysayer proofs and show that every NP language has a logarithmic size and
constant-time naysayer proof. Before that, we discuss related work in Section 2. In Section 4, we provide concrete
examples where naysayer proofs offer significant speedups. We discuss storage considerations in Section 5 and
conclude with open research questions in Section 6.

2 Related Work

A concept related to the naysayer paradigm is refereed delegation [FK97]. The idea has found widespread adop-
tion [TR19, KGC+18, AAB+24] under the name “fraud proofs” or “fault proofs” and is the core idea behind
optimistic rollups [Eth23b, Lab23, Opt23]. Like naysayer proofs, fraud proofs work under an optimistic assump-
tion, i.e., a computation is assumed to be correct unless some party challenges it. In the context of optimistic rollups,
a “prover” performs the computation off-chain and posts the result on-chain, where it is provisionally accepted. Any
party can then challenge the correctness of the result by posting a challenge on-chain and engaging in a bisection
protocol with the prover via on-chain messages. Once the problematic step is identified, it is re-executed on-chain to
resolve the dispute. A dispute can also be resolved non-interactively by re-running the entire computation on-chain
in the event of a dispute, an approach initially taken by Optimism [Sin22, Buc21]. If no one challenges the prover’s
result before the end of the challenge period (typically 7 days [Fic]), it is accepted and irreversibly committed on
the layer-1 chain.

The naysayer approach offers significant speedups for the challenger over fraud proofs, since for succinct proof
systems, verification is much more efficient than the original computation. Notice that there is a slight semantic
difference between fraud proofs and naysayer proofs: A fraud proof challenges the correctness of the prover’s
computation, and thus can definitively show that the computation output is incorrect. In contrast, a naysayer proof
challenges the correctness of the accompanying proof, and can therefore only show that the proof is invalid—the
computation itself may still have been correct. A prover who performs the computation honestly has no incentive
to attach an incorrect proof3, since that would mean it wasted computational power to compute the result, but
would forfeit the reward (and likely incur some additional penalty).

3It is possible that an honest prover will still attach an incorrect proof if, for example, the proof generation software has a bug.
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We compare classic verifiable computation, fraud proofs, and our new approach in Table 1. We discuss the main
differences in more detail below.

Assumptions. Both fraud proofs and naysayer proofs work under an optimistic assumption, meaning a compu-
tation is accepted as correct unless some party challenges it. This requires assuming that at least one honest
party is present to challenge any incorrect results. This party must also be able to submit a challenge, meaning
we rely on the censorship-resistance of the underlying blockchain and assume new messages are added within
some known, bounded delay. VC does not rely on these assumptions since every computation is checked at
the time the result is submitted. It is well known that this leads to the faster on-chain finality of zk-rollups,
which use the VC paradigm and thus do not require a challenge period.

On-chain interaction. Except for the interactive version of fraud proofs, all of the approaches require only a
single message from the (off-chain) prover or challenger to the (on-chain) verifier. VC offers the strongest
form of non-interactivity, since it consists of one round total (for the original computation and (non-existent)
challenge phase). At the other end of the spectrum, optimistic rollups almost universally employ interactive
fraud proofs, requiring multiple on-chain messages in case of a dispute. This means the challenge period must
be long enough to ensure that all the messages of the dispute resolution protocol can be posted on-chain,
even in the presence of some fraction of malicious consensus nodes who delay inclusion of the challenger’s (or
prover’s) messages. We conjecture that by virtue of having a non-interactive challenge phase, naysayer proofs
(and non-interactive fraud proofs) admit a shorter challenge period. Furthermore, the challenge period must
also be long enough to accommodate the challenge resolution protocol to run on-chain. Thus, naysayer proofs
should have an advantage even over non-interactive fraud proofs, since for all practical use cases, the on-chain
resolution of the former (verifying a naysayer proof) will always be faster than re-computing the function f
on-chain.

On-chain computation & witnesses. As is their goal, none of the approaches require running the original com-
putation f on-chain, except for non-interactive fraud proofs in the (rare) case of a dispute. Compared to VC,
fraud proofs and naysayer proofs do not require running proof verification on-chain (fraud proofs do not use a
proof system at all). However, fraud proofs require the full computation input (including any off-chain input
w, which we refer to as the witness) to be available to potential challengers and at least in part to the verifier.
Neither VC nor naysayer proofs require this information to verify the correctness of the output y′: they use
only the statement and proof, which are already available on-chain.

Underlying proof system. Finally, a major advantage of fraud proofs is that they do not use any proof system at
all. This makes them much easier to implement and deploy. VC and naysayer proofs, on the other hand, require
computing a succinct proof, which is costly both in terms of implementation complexity and prover runtime.
However, the design and efficiency of the bisection protocol can depend significantly on the programming
model used [KGC+18] and the particular function f being computed [PD16, PB17, SNBB19, SJSW19]. We
thus view naysayer proofs as a drop-in replacement for the many application-specific fault proofs, offering an
alternative which is both more general and more efficient.

3 Naysayer Proofs

In this section, we introduce our system model and the syntax of naysayer proofs and show that logarithmic-size and
constant-time verifiable (i.e., succinct) naysayer proofs exist for all proof systems with polynomial-time verification.
First, we recall the syntax of non-interactive (zero-knowledge) proofs. We refer the reader to [Tha23] for a formal
description of the properties of NIZKs (e.g., correctness, soundness, zero-knowledge).

Definition 1 (Non-interactive proof). A non-interactive proof Π for some NP language L (with the corresponding
relation RL) is a tuple of PPT algorithms (Setup,Prove,Verify):

Setup(1λ)→ crs: Given a security parameter, output a common reference string crs. This algorithm might use
private randomness (a trusted setup).

Prove(crs, x, w)→ π: Given the crs, an instance x, and witness w such that (x,w) ∈ RL, output a proof π.

Verify(crs, x, π)→ {0, 1}: Given the crs and a proof π for the instance x, output a bit indicating accept or reject.
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3.1 System Model

There are three entities in a naysayer proof system. We assume that all parties can read and write to a public bulletin
board (e.g., a blockchain). Fix a function f : X ×W → Y and let Lf be the language {(x, y) : ∃w s.t. y = f(x,w)}.
LetRf = {((x, y), w)} be the corresponding relation. We assume f, x are known by all parties. When f : Y×W → Y
is a state transition function with y′ = f(y, w), this corresponds to the rollup scenarios described previously.

Prover The prover posts y and a proof π to the bulletin board claiming (x, y) ∈ Lf .

Verifier The verifier does not directly verify the validity of y or π, rather, it waits for time Tnay. If no one naysays
(y, π) within that time, the verifier accepts y. In the pessimistic case, a party (or multiple parties) naysay the
validity of π by posting proof(s) πnay. The verifier checks the validity of each πnay, and if any of them pass, it
rejects y.

Naysayer If Verify(crs, (x, y), π) = 0, then the naysayer posts a naysayer proof πnay to the public bulletin board
before Tnay time elapses.

Note that, due to the optimistic paradigm, we must assume a synchronous communication model: in partial
synchrony or asynchrony, the adversary can arbitrarily delay the posting of naysayer proofs, and one cannot enforce
soundness of the underlying proofs. Furthermore, we assume that the public bulletin board offers censorship-
resistance, i.e., anyone who wishes to write to it can do so successfully within a certain time bound. Finally, we
assume that there is at least one honest party who will submit a naysayer proof for any invalid π.

3.2 Formal Definitions

Next, we introduce a formal definition and syntax for naysayer proofs. A naysayer proof system Πnay can be seen
as a “wrapper” around an underlying proof system Π. For example, Πnay defines a proving algorithm Πnay.Prove
which uses the original prover Π.Prove as a subroutine.

Definition 2 (Naysayer proof). Given a non-interactive proof system Π = (Setup,Prove,Verify) for an NP language
L, the corresponding naysayer proof system Πnay is a tuple of PPT algorithms (Setup,Prove,Naysay,VerifyNay)
defined as follows:

Setup(1λ, 1λnay)→ (crs, crsnay): Given (potentially different) security parameters 1λ and 1λnay , output two common
reference strings crs and crsnay. This algorithm may use private randomness.

Prove(crs, x, w)→ π′: Given a statement x and witness w such that (x,w) ∈ RL, output π′ = (π, aux), where
π ← Π.Prove(crs, x, w).

Naysay(crsnay, (x, π
′), tdnay)→ πnay: Given a statement x and values π′ = (π, aux) where π is a (potentially invalid)

proof that ∃w s.t. (x,w) ∈ RL using the proof system Π, output a naysayer proof πnay disputing π. This
algorithm may also make use of some (private) trapdoor information tdnay ⊆ w.

VerifyNay(crsnay, (x, π
′), πnay)→ {0,⊥}: Given a statement-proof pair (x, π′) and a naysayer proof πnay disputing π′,

output a bit indicating whether the evidence is sufficient to reject (0) or inconclusive (⊥).

A trivial naysayer proof system always exists in which πnay = ⊤, π′ = (π,⊥), and VerifyNay simply runs the
original verification procedure, outputting 0 if Π.Verify(crs, x, π) = 0 and ⊥ otherwise. We say a proof system Π is
efficiently naysayable if there exists a corresponding naysayer proof system Πnay such that VerifyNay is asymptotically
faster than Verify. If VerifyNay is only concretely faster than Verify, we say Πnay is a weakly efficient naysayer proof.
Note that some proof systems already have constant proof size and verification time [Gro16, Sch90] and therefore
can, at best, admit only weakly efficient naysayer proofs. Moreover, if tdnay =⊥, we say Πnay is a public naysayer
proof (see Section 4.4 for an example of a non-public naysayer proof).

Definition 3 (Naysayer completeness). Given a proof system Π, a naysayer proof system Πnay = (Setup,Prove,
Naysay,VerifyNay) is complete if, for all honestly generated crs, crsnay and all values of aux,4given an invalid
statement-proof pair (x, π), Naysay outputs a valid naysayer proof πnay. That is, for all λ, λnay ∈ N and all aux, x, π,

Pr

VerifyNay(crsnay, (x, (π, aux)), πnay) = 0

∣∣∣∣∣∣
(crs, crsnay)← Setup(1λ, 1λnay) ∧

Π.Verify(crs, x, π) ̸= 1 ∧
πnay ← Naysay(crsnay, (x, (π, aux)),⊥)

 = 1.

4We do not place any requirement on aux.

4



Definition 4 (Naysayer soundness). Given a proof system Π, a naysayer proof system Πnay is sound if, for all
PPT adversaries A, and for all honestly generated crs, crsnay, all (x,w) ∈ RL, and all correct proofs π′, A produces
a passing naysayer proof πnay with at most negligible probability. That is, for all λ, λnay ∈ N, and all tdnay,

Pr

VerifyNay(crsnay, (x, π′), πnay) = 0

∣∣∣∣∣∣∣∣
(crs, crsnay)← Setup(1λ, 1λnay) ∧

(x,w) ∈ RL ∧
π′ ← Prove(crs, x, w) ∧

πnay ← A(crsnay, (x, π′), tdnay)

 ≤ negl(λnay).
5

We distinguish between two types of naysayer proofs as follows.

Type 1. A prover of an NP-relationRL posts (x, π) to the public bulletin board claiming that x ∈ L. If the proof π
is invalid with respect to the statement x, i.e., Verify(crs, x, π) = 0, then naysayer provers convince the resource-
constrained verifier by sending a πnay that this is indeed the case, i.e., VerifyNay(crsnay, (x, π), πnay) = 0.

Type 2. This family of naysayer proofs is even more efficient in the optimistic case, as the prover only sends
the instance x and no proofs at all, claiming without evidence that (x,w) ∈ RL. On the other hand, if the
prover’s assertion is incorrect, i.e., (x,w) /∈ RL, then a naysayer prover provides the correct statement x′ such
that (x′, w) ∈ RL and a corresponding “regular” proof π such that Verify(crs, x′, π) = 1. For example, in the
case of rollups, the (public) witness w is the set of transactions in the rollup, and the statement x = (st, st′) is
the updated rollup state after applying the batch w. Therefore, an incorrect assertion represents an incorrect
application of the update w. The correction x′ is the result of the proper application of w.

We conjecture that in most applications, in the worst case, type-2 naysayer proofs are more costly than type-1
naysayer proofs (both compute and storage). It is an interesting open question which applications are more suited
to type-1 or type-2 naysayer proofs considering both optimistic and pessimistic costs. To thoroughly model this
question, one must take into account the verifier’s compute cost, the (naysayer) proof storage costs, as well as the
probability of the prover sending an invalid proof. We leave this problem to future work. In the rest of this paper,
we focus solely on type-1 naysayer proofs.

3.3 Naysayer Proofs for All NP

Next, we show that every proof system with polynomial-time verification has a corresponding naysayer proof system
with a logarithmic-sized (in the size of the verification circuit) naysayer proofs and constant verification time—i.e.,
a succinct naysayer proof system.

Lemma 1. A claimed satisfying assignment for a circuit C : X → {0, 1} on input x ∈ X is efficiently naysayable.
That is, if C(x) ̸= 1, there is an O(log |C|)-size proof of this fact which can be checked in constant-time, assuming
oracle access to the wire assignments of C(x).

Proof. Without loss of generality, let C be a circuit of fan-in 2.
If C(x) ̸= 1, then there must be some gate of C for which the wire assignment is inconsistent. Let i be the index

of this gate (note |i| ∈ O(log |C|)). To confirm that C(x) ̸= 1, a party can re-evaluate the indicated gate Gi on its
inputs a, b and compare the result to the output wire c. That is, if Gi(a, b) ̸= c, the verifier rejects the satisfying
assignment.

Theorem 1. Every proof system Π with poly(|x|, |w|) verification complexity has a succinct naysayer proof.

Proof. Given any proof system Π, the evaluation of Π.Verify(crs, ·, ·) can be represented as a circuit C. (We assume
this circuit description is public.) Then the following is a complete and sound naysayer proof system Πnay:

Setup(1λ, 1λnay): Output crs← Π.Setup(1λ) and crsnay := ∅.

Prove(crs, x, w)→ π′: Let π ← Π.Prove(crs, x, w) and aux be the wire assignments of Π.Verify(crs, x, π). Output
π′ = (π, aux).

5If we assume aux is computed correctly, the second and third line of the precondition can be simplified to see that Πnay is required
to be a sound proof system for the language Lnay = {(x, π) : x /∈ L ∨ Π.Verify(crs, x, π) ̸= 1}.
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Naysay(crsnay, (x, π
′), tdnay): Parse π′ = (π, aux)6 and output πnay := ⊤ if aux = aux′∥0. Otherwise, evaluate

Π.Verify(crs, x, π). If the result is not 1, search aux to find an incorrect wire assignment for some gate Gi ∈ C.
Output πnay := i.

VerifyNay(crsnay, (x, π
′), πnay): Parse π′ = (·, aux) and πnay = i. If aux = aux′∥0, output 0, indicating rejection of the

proof π′. Otherwise, obtain the values in, out ∈ aux corresponding to the gate Gi and check Gi(in)
?
= out. If

the equality does not hold, output ⊥; else output 0.

Completeness (if a π fails to verify, we can naysay (π, aux)) follows by Lemma 1. If Π.Verify(crs, x, π) ̸= 1, then
we have two cases: If aux is consistent with a correct evaluation of Π.Verify(crs, x, π), either aux = aux′∥0 (and
VerifyNay rejects) or we can apply the lemma to find an index i such that Gi(in) ̸= out for in, out ∈ aux, where
Gi ∈ C. Alternatively, if aux is not consistent with a correct evaluation, there must be some gate (with index i′)
which was evaluated incorrectly, i.e., Gi′(in) ̸= out for in, out ∈ aux.

Soundness follows by the completeness of Π. If (x,w) ∈ RL and π′ = (π, aux) is computed correctly, completeness
of Π implies Π.Verify(crs, x, π) = 1. Since aux is correct, it follows that aux ̸= aux∥0 and Gi(in) = out for all i ∈ |C|
and corresponding values in, out ∈ aux. Thus there is no index i which will cause VerifyNay(crsnay, (x, π

′), i) to
output 0.

Succinctness of πnay follows from the fact that |i| = log |Π.Verify(crs, ·, ·)| = O(log(|x|, |w|)) ∈ o(|x| + |w|) and
that the runtime of VerifyNay is constant.

The proof of Theorem 1 gives a generic way to build a succinct naysayer proof system for any proof system Π with
polynomial-time verification. For succinct proof systems, the generic construction even allows efficient (sublinear)
naysaying, since the runtime of Naysay depends only on the runtime of Π.Verify, which is sublinear if Π is succinct.

Notice that although the syntax gives π′ = (π, aux) as an input to the VerifyNay algorithm, in the generic
construction the algorithm does not make use of π. Thus, if a naysayer rollup were instantiated with this generic
construction, π would not need to be posted on-chain since the on-chain verifier (running the VerifyNay algorithm)
will not use this information. In fact, the verifier wouldn’t even need most of aux—only the values corresponding
to the gate Gi, which is determined by πnay. Thus, although π′ must be available to all potential naysayers, only a
small (adaptive) fraction of it must be accessible on-chain. In Section 5, we will discuss how to leverage this insight
to reduce the storage costs of a naysayer rollup.

4 Four Concrete Applications of Naysayer Proofs

The naysayer proof paradigm is generally applicable for proof systems with multi-round amplification, repetitive
structure (e.g., multiple bilinear pairing checks [GWC19]), or recursive reduction (e.g., Pietrzak’s proof of exponen-
tiation [Pie19]). In this section, we highlight four example constructions of naysayer proofs. Our first construction
(Section 4.1) is a concrete example of the generic naysayer construction from Theorem 1, applied to Merkle trees. We
then consider two cases which take advantage of repetition in the verification procedure to achieve better naysayer
performance: the FRI polynomial commitment scheme (Section 4.2) and two post-quantum signature schemes (Sec-
tion 4.3). Then, in Section 4.4, we give an example of a non-public naysayer proof which uses a trapdoor to reduce
the size and verification complexity of the naysayer proof.

4.1 Merkle Commitments

Proof size Verification

Original log n H log n H

Naysayer log log n B 1H

Table 2: Cost savings of the naysayer paradigm applied to Merkle proofs. H = hash output size/hash operations,
B = bits.

Merkle trees [Mer88] and their variants are ubiquitous in modern systems, including Ethereum’s state stor-
age [Eth24]. A Merkle tree can be used to commit to a vector v⃗ of elements as shown in Figure 1, with the root h

6If |aux| is larger than the number of wires in C, truncate it to the appropriate length.
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v0 v1 v2 v3 v4 v5 v6 v7

h

h0

h01

h010

h1

h00

h011

Figure 1: Each node in a Merkle tree consists of a hash of its children. The root h is a commitment to the vector
of leaves (v0, v1, . . . , v7). An opening proof for the element v2 is its copath (black nodes); the “verification trace”
for the proof is the path (gray nodes).

acting as a commitment to v⃗. The party who created the tree can prove the inclusion of some element vi at position
i in the tree by providing the corresponding copath.

For example, to open the leaf at position 2, a prover provides its value v2 and an opening proof π = (h011, h00, h1)
consisting of the copath from the leaf v2 to the root h. The proof π is checked by using its contents to recompute
the root h′ starting with v2, then checking that h = h′. This involves recomputing the nodes along the path from
the leaf to the root (the gray nodes in the figure). These nodes can be seen as a “verification trace” for the proof π.

In the context of a naysayer proof system, the prover provides π along with the verfication trace aux =
(h010, h01, h0). A naysayer can point out an error at a particular point of the trace by submitting the incor-
rect index of aux (e.g., πnay = 1 to indicate h01). The naysayer verifier checks πnay by computing a single hash using

π and oracle access to aux, e.g., checking H(h010, h011)
?
= h01, where h010, h01 ∈ aux and h011 ∈ π. This is the

generic construction from Theorem 1.

4.2 FRI Polynomial Commitment Scheme

Proof size Verification

Original O(λ log2 d)H+O(λ log d)F O(λ log2 d)H+O(λ log d)F

Naysayer 2 log(q log d) + 1 B best: O(1)F
worst: O(log d)H

Table 3: Cost savings of the naysayer paradigm applied to FRI opening proofs. H = hash output size/hash
operations, F = field element size/operations, B = bits.

The Fast Reed-Solomon IOP of proximity (FRI) [BBHR18a] is used as a building block in many non-interactive
proof systems, including the STARK IOP [BBHR18b]. Below, we describe only the parts of FRI as applied in
STARK. We refer the reader to the cited works for details.

The FRI commitment to a polynomial p(X) ∈ F[X]≤d is the root of a Merkle tree with ρ−1d leaves. Each leaf is
an evaluation of p(X) on the set L0 ⊂ F, where ρ−1d = |L0| ≪ |F| for a constant 0 < ρ < 1 (the Reed-Solomon rate
parameter). We focus on the verifier’s cost in the proof of proximity. Let δ be a parameter of the scheme such that
δ ∈ (0, 1 − √ρ). The prover sends log d + 1 values (roots of successive “foldings” of the original Merkle tree, plus
the value of the constant polynomial encoded by the final tree). The verifier makes q = λ/log(1/(1− δ)) queries to
ensure 2−λ soundness error; the prover responds to each query with 2 log d Merkle opening proofs (2 for each folded
root). For each query, the verifier must check each Merkle authentication path, amounting to O(log d log ρ−1d)
hashes per query. Furthermore, it must perform log d arithmetic checks (roughly 3 additions, 2 divisions, and 2
multiplications in F per folding) per query to ensure the consistency of the folded evaluations. Therefore, the overall
FRI verification consists of O(λ log2 d) hashes and O(λ log d) field operations.
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A FRI proof is invalid if any of the above checks fails. Therefore a straightforward naysayer proof πFRI
nay = (i, j, k)

need only point out a single Merkle proof (the jth proof for the ith query, i ∈ [q], j ∈ [2 log d]) or a single arithmetic
check k ∈ [q log d] which fails. The naysayer verifier only needs to recompute that particular check: O(log ρ−1d)
hashes in the former case7 or a few arithmetic operations over F in the latter.

This approach can lead to incredible concrete savings: According to [Hab22], for λ = 128, d = 212,8 ρ = 2−3,
q = 91, δ = 9, the size of a vanilla FRI opening proof (i.e., without concrete optimizations) can be estimated at
around 322KB. A naysayer proof for the same parameter settings is 2 log(q log d)+1 ≈ 2 · 10+1 = 21 bits ¡ 3 bytes.

4.3 Post-quantum Signature Schemes

Proof size Verification

Original O(λ)F O(λ)F+ 1H

Naysayer 2 + log k + log d B best: O(1)F
worst: O(λ)F+ 1H

Table 4: Cost savings of the naysayer paradigm applied to CRYSTALS-Dilithium signatures. H = hash output
size/hash operations, F = field element size/operations, B = bits. Since the parameter k depends on λ and d is a
constant, |πnay| ∈ O(log λ).

With the advent of account abstraction [Eth23a], Ethereum users can define their own preferred digital signa-
ture schemes, including post-quantum signatures as recently standardized by NIST [BHK+19, DKL+18, PFH+22].
Compared to their classical counterparts, post-quantum signatures generally have either substantially larger signa-
tures or substantially larger public keys. Since this makes post-quantum signatures expensive to verify on-chain,
these schemes are prime candidates for the naysayer proof paradigm.

CRYSTALS-Dilithium [DKL+18]. We give a simplified version of signature verification in lattice-based sig-
natures like CRYSTALS-Dilithium. In these schemes, the verifier checks that the following holds for a signature
σ = (z⃗1, z⃗2, c), public key pk = (A⃗, t⃗), and message M :

∥z⃗1∥∞ < β ∧ ∥z⃗2∥∞ < β ∧ c = H(M, w⃗, pk). (1)

Here β is a constant, A⃗ ∈ Rk×ℓ
q , z⃗1 ∈ Rℓ

q, z⃗2, t⃗ ∈ Rk
q for the polynomial ring Rq := Zq[X]/(Xd + 1), and w⃗ =

A⃗z⃗1 + z⃗2 − ct⃗ mod q. (Dilithium uses d = 256.) We will write elements of Rq as polynomials p(X) =
∑

j∈[d] αjX
j

with coefficients αj ∈ Zq. Since Equation (1) is a conjunction, the naysayer prover must show that

(∃zi ∈ z⃗1, z⃗2 : ∥zi∥∞ > β) ∨ c ̸= H(M, w⃗, pk). (2)

If the first check of Equation (1) fails, the naysayer gives an index i for which the infinity norm of one of the
polynomials in z⃗1 or z⃗2 is large. (In particular, it can give a tuple (b, i, j) such that αj > β for zi = · · ·+αjX

j+. . . ∈
z⃗b.)

9

If the second check fails, the naysayer indicates that clause to the naysayer verifier, who must recompute w⃗ and
perform a single hash evaluation which is compared to c.

Overall, πnay is a tuple (a, b, i, j) indicating a clause a ∈ [2] of Equation (2), the vector z⃗b with b ∈ [2], an entry
i ∈ [max{k, ℓ}] in that vector, and the index j ∈ [d] of the offending coefficient in that entry. Since k ≥ ℓ, we have
|πnay| = (2+ log k+ log d) bits. The verifier is very efficient when naysaying the first clause, and only slightly faster
than the original verifier for the second clause.

SPHINCS+ [BHK+19]. The signature verifier in SPHINCS+ checks several Merkle authentication proofs,
requiring hundreds or even thousands of hash evaluations. An efficient naysayer proof can be easily devised akin to
the Merkle naysayer described in Section 4.1. Given a verification trace, the naysayer prover simply points to the
hash evaluation in one of the Merkle-trees where the signature verification fails.

7One could use a Merkle naysayer proof (Section 4.1) to further reduce the naysayer verification from checking a full Merkle path to
a single hash evaluation.

8This is smaller than most polynomial degrees used in production systems today.
9The same idea can be applied to constructions bounding the ℓ2 norm, but with lower efficiency gains for the naysayer verifier, who

must recompute the full ℓ2 norm of either z⃗1, z⃗2.
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4.4 Verifiable Shuffles

Proof size Verification

Original O(
√
n)G O(n)G

Naysayer log n B+ 3G+ 1F O(1)G+ 1H

Table 5: Cost savings of the naysayer paradigm applied to Bayer-Groth shuffles. H = hash output size/hash
operations, G = group element size/operations, B = bits.

Verifiable shuffles are applied in many (blockchain) applications such as single secret leader election algo-
rithms [BEHG20], mix-nets [Cha81], cryptocurrency mixers [SNBB19], and e-voting [Adi08]. The state-of-the-art
proof system for proving the correctness of a shuffle is due to Bayer and Groth [BG12]. Their proof system is
computationally heavy to verify on-chain as the proof size is O(

√
n) and verification time is O(n), where n is the

number of shuffled elements.
Most shuffling protocols (of public keys, re-randomizable commitments, or ElGamal ciphertexts) admit a par-

ticularly efficient naysayer proof if the naysayer knows at least one of the shuffled elements. Let us consider the
simple case of shuffling public keys. The shuffler wishes to prove membership in the following NP language:

Lperm := {((pki, pk′i)ni=1, R) : ∃r, w1, . . . , wn ∈ Fp, σ ∈ Perm(n) s.t. ∀i ∈ [n], pki = gwi ∧ pk′i = gr·wσ(i) ∧R = gr}.
(3)

Here Perm(n) is the set of all permutations f : [n]→ [n].
Suppose a party knows that for some j ∈ [n], the prover did not correctly include pk′j = gr·wj in the shuffle.

The party can naysay by showing that

(g, pkj , R, pk′j) ∈ LDH ∧ pk′j /∈ (pki, ·)ni=1

where LDH is the language of Diffie-Hellman tuples10. To produce such a proof, however, the naysayer must know
the discrete logarithm wj . Unlike our previous examples, which were public naysayer proofs, this is an example
of a private Naysay algorithm using tdnay := wj . The naysayer proof is πnay := (j, pk′j , πDH). The Diffie-Hellman
proof can be checked in constant time and, with the right data structure for the permuted list (e.g., a hash table),
so can the list non-membership. This, πnay is a O(log n)-sized naysayer proof with O(1)-verification, yielding in
exponential savings compared to verifying the original Bayer-Groth shuffle proof.

4.5 Summary

We showed the asymptotic cost savings of the verifiers in the four examples discussed in Sections 4.1 to 4.4 in their
respective tables. Note that the verifier speedup is exponential for verifiable shuffles and logarithmic for the Merkle
and FRI openings. For CRYSTALS-Dilithium, our naysayer proof is only weakly efficient (see Section 3.2) as there
is no asymptotic gap in the complexity of the original signature verification and the naysayer verification in the
worst case.

As for proof size, in all the examples, our naysayer proofs are logarithmically smaller than the original proofs.
(Note this calculation does not include the size of aux, but we will see in the next section that aux does not
meaningfully impact the proof size for the verifier.) Furthermore, in most cases, the naysayer proof consists of
an integer index or indices rather than group or field elements. Representing the former requires only a few bits
compared to the latter (which are normally at least λ bits long), so in practice, naysayer proofs can offer practically
smaller proofs sizes even when they are not asymptotically smaller. This can lead to savings even when the original
proof is constant-size (e.g., a few group elements).

5 Storage Considerations

We assumed in our evaluation that the naysayer verifier can read the instance x, the original proof π, and the
naysayer proof πnay entirely. Note that in the pessimistic case, the verifier requires increased storage (for πnay) but

10Membership in LDH can be shown via a proof of knowledge of discrete logarithm equality [CP93] consisting of 2 group elements
and 1 field element which can be verified with 4 exponentiations and 2 multiplications in the group.
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only needs to compute VerifyNay instead of Verify. A useful naysayer proof system should compensate for increased
storage by considerably reducing verification costs.

In either case, this approach of storing all data on chain may not be sufficient in blockchain contexts where
storage is typically very costly. Blockchains such as Ethereum differentiate costs between persistent storage (which
we can call Sper) and “call data” (Scall), which is available only for one transaction and is significantly cheaper as
a result. Verifiable computation proofs, for example, are usually stored in Scall with only the verification result
persisted to Sper.

Some applications now use a third, even cheaper, tier of data storage, namely off-chain data availability ser-
vices (SDA), which promise to make data available off-chain but which on-chain contracts have no ability to read.
Verifiable storage, an analog of verifiable computation, enables a verifier to store only a short commitment to a
large vector [CF13, Mer88] or polynomial [KZG10], with an untrusted storage provider (SDA) storing the full values.
Individual data items (elements in a vector or evaluations of the polynomial) can be provided as needed to Scall or
Sper with short proofs that they are correct with respect to the stored commitment. (Ethereum implemented this
type of storage, commonly referred to as “blob data”, using KZG commitments in EIP-4844 [BFL+22].)

This suggests an optimization for naysayer proofs in a blockchain context: the prover posts only a binding
commitment Com(π′), which the contract stores in Sper, while the actual proof π′ = (π, aux) is stored in SDA. We
assume that potential naysayers can read π′ from SDA. In the optimistic case, the full proof π′ is never written
to the more-expensive Scall or Sper. In the pessimistic case, when naysaying is necessary, the naysayer must send
openings of the erroneous proof elements to the verifier (in Scall). The verifier checks that these data elements are
valid with respect to the on-chain commitment Com(π′) stored in Sper. Note that most naysayer proof systems
don’t require reading all of π′ for verification, so even this pessimistic case will offer significant savings over storing
all of π′ in Scall. An important future research direction is to investigate this optimized storage model’s implications
and implementation details.

6 Open Questions and Conclusion

We see many exciting open research directions for naysayer proofs. A thorough game-theoretical analysis of naysayer
proofs (e.g., deposits and the length of the challenge period) is crucial for real-world deployments. Another fas-
cinating direction is to better understand the complexity-theoretic properties of naysayer proofs. Is it possible to
create a universal black-box naysayer proof for all non-interactive proof systems? Finally, one might consider sev-
eral extensions of naysayer proofs, e.g., interactive naysayer proofs or naysayer proofs with non-negligible soundness
error. We leave these generalizations to future work.
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