
1

An Anonymous Authenticated Key Agreement
Protocol Secure in Partially Trusted Registration
Server Scenario for Multi-Server Architectures

Inam ul haq, Jian Wang, Youwen zhu, Sheharyar Nasir

Abstract—The accelerated advances in information communication technologies have made it possible for enterprises to deploy large
scale applications in a multi-server architecture (also known as cloud computing environment). In this architecture, a mobile user can
remotely obtain desired services over the Internet from multiple servers by initially executing a single registration on a trusted
registration server (RS). Due to the hazardous nature of the Internet, to protect user privacy and online communication, a lot of
multi-server authenticated-key-agreement (MSAKA) schemes have been furnished. However, all such designs lack in two very vital
aspects, i.e., 1) no security under the partially trusted RS and 2) RS cannot control a user to access only a wanted combination of
service-providing servers. To address these shortcomings, we present a new MSAKA protocol using self-certified public-key
cryptography (SCPKC). We confirm the security of the proposed scheme by utilizing the well-known automated verification tool AVISPA
and also provide a formal security proof in the random oracle model. Moreover, the software implementation of the proposed scheme,
and a performance and security metrics comparison shows that it portrays a better security performance trade-off, and hence is more
appropriate for real-life applications having resource constraint devices.

Index Terms—Multi-Server architecture, Partially trusted registration server, Mutual authentication, Key agreement, Self-Certified
Public Keys.

✦

1 INTRODUCTION

THe Rapid growth of wired and wireless network com-
munication technologies in the recent era has made the

concept of the Internet of things (IoT) a reality. Internet-
connected smart devices provide desirable services to their
users ranging from daily life matters to more complicated
e-commerce transactions. To provide robust and seamless
services, service providers host a lot of application servers
on the Internet. Historically, this client-server communica-
tion was started using single-server architecture, in which a
single server was providing services to all registered users.
However, widespread of internet-connected devices and an
increasing number of online services, cause a computational
bottleneck on the server end for providing seamless ser-
vices. Due to this limitation, multi-server architectures came
into place. In this setting, a user can acquire desired services
from multiple servers with a single credential set. Fig. 1
depicts a generic multi-server architecture.

The communication over the Internet is susceptible to
various security attacks because of malign parties. The
activities of these evils may result in a violation of user
privacy, financial frauds, and more. Due to this untrusted
situation, authentication protocols were in place (single-
server architecture) to protect the communication [1]. How-
ever, the transition from single-server to multi-server ar-
chitecture also demands new authentication protocols for
later architecture. This demand was inevitable as existing
protocols were not flexible enough for use in multi-server
architecture. The reasons for this were twofold; first, it is
not practical for a user to register on multiple servers and
remember complex passwords, and second, in case of two-
factor authentication, it is inconvenient for him to carry and
manage multiple physical tokens.

To address this problem, authentication protocols for
multi-server architecture were started. In this setting, three
participants are involved, a registration server RS, a small
number of service providing servers, and numerous end-
users. All the users and servers become part of multi-
server architecture after completing a one-time registration
process at RS end. This new paradigm has its challenges
in terms of security and functional requirements, such as
mutual authentication with offline RS (See Fig. 2), no burden
of updating user information to registered servers, key
compromise impersonation resistance, and various well-
known attacks prevention [2]–[7]. Although every proposed
protocol claimed that it fulfills all the security and functional
requirements, however, it is evident from the history that the
majority of the proposals were found insecure or inefficient,
thus forming a break-fix-break chain [8]→ [9]→ [10]→ [11]
→ [12].

The motivation of this research is to identify three very
significant shortcomings in the existing MSAKA protocols
and furnish a new MSAKA protocol free of these pitfalls.
These shortcomings are:

• All the existing MSAKA protocols in the literature
assume that RS is fully trusted. However, in real-
ity, the registration services are performed by some
commercial entities that can not be fully trusted.
Therefore, the MSAKA protocol should restrict RS
from impersonating any user or application server,
even if, it maliciously store proscribed information
during the registration phase.

• It is assumed that after getting registered, a user
can access any service-providing server controlled by

2

Internet Server 2

Server 3

Server m

Server 1

WAP Connected

 to Internet

User 1

Biometric

Smart Card

Mobile

Device

User 2

Biometric

Smart Card

Mobile

Device

User n

Biometric

Smart Card

Mobile

Device

WAP Connected

 to Internet

Fig. 1: Generic Architecture of Multi-Server Environment

Registration Server

User Application Server

Mutual Authentication and Key Agreement

Registration Registration

: Secure Channel

: Public Channel

Fig. 2: System Model

RS. Nevertheless, in practical scenarios, users may
belong to a different privilege level, thus entitled to
access a limited set of servers. For the rest of this
paper, we will use the term “flexible access control
(FAC)” for this feature.

• The majority of the existing MSAKA protocols with
offline RS, which are deemed secure to-date incorpo-
rates computationally expensive bilinear map opera-
tions. This computational expensiveness makes such
schemes unsuitable for battery-limited devices.

Therefore, it is very vital to design an MSAKA protocol that
satisfies all the existing security and functionality require-
ments as well as the above critical features.

1.1 Adversarial Model

• The link between the user and the service-providing
server is open to an adversary. Due to this openness,
an adversary can read, modify, and store ongoing
communication to attack the proposed scheme. How-
ever,A gains no help from underlying cryptography,
i.e., the cryptographic primitives used are secure.

• The smart card of the user can be stolen, and an
adversary can obtain stored information using the
power analysis attack [13].

• Using above mentioned powers an adversary can ex-
ecute offline identity and password guessing attacks
in succession.

• The RS is partially trusted, and an internal adver-
sary (administrator of the RS) can store authorized
information (during registration time) of any user

or service-providing server to launch impersonation
attacks at a later stage.

• The long term private keys of RS and other servers
can not be compromised.

1.2 Related Work

To best of our knowledge, Li et al. [14] firstly proposed
neural networks based multi-server authentication protocol
in 2001. Next, in 2003, Lin et al. noticed the computational
expensiveness of [14] involved in the training phase. They
proposed an authentication protocol based on integer fac-
torization cryptography featuring no verification table at
the server end [15]. Later in 2006, Cao and Zhong [16]
demonstrated that after observing the single authentication
message, it is possible to impersonate any legal user in
[15]. Next, a number of symmetric cryptography based
MSAKA protocols were presented [17]–[21]. However, con-
forming strong user anonymity, perfect forward secrecy,
and key compromise impersonation resilience in symmetric-
key-settings is an arduous job. Due to these restrictions,
MSAKA protocols based on public-key cryptography (PKC)
remained dominant in this research domain. The security
basis of these PKC-based protocols is a hard mathematical
problem such as integer factorization problem, discrete log-
arithm (DL) problem, and Diffie-hellman (DH) problem.

In 2013, Tsai et al. presented an MSAKA protocol based
on finite field cryptography (FFC) [22]. In this paper, they
showed the vulnerability of Yeh-Lo’s protocol [23] against
undetectable password guessing attack and proposed their
amended version. Next, Pippal et al. proposed an MSAKA
protocol using FFC [24], however later in 2014, Wei et al.
[25] pointed that attacks like user impersonation, privileged
insider, and password guessing are possible in [24]. In
2015, He-Wang [26] presented an MSAKA protocol using
ECC that achieves mutual authentication utilizing the reg-
istration server RS. Later, Odelu et al. [27] crypt-analyzed
and demonstrated that [26] does not resist impersonation
attack and session-specific information attack. [27] pre-
sented a new ECC based amended protocol in which a
user can re-register himself using his old identity after
revocation. In 2016, Tseng et al. [28] furnished a pairing-
based MSAKA protocol which support dynamic revocation
of compromised participants. Recently several ECC based
protocols have been proposed, such as [12], [29], [30]. Sim-
ilarly, several Chebyshev chaotic map cryptography-based
MSAKA protocols were proposed during recent years [31]–
[34]. All these protocols suffer from critical problems, e.g.,
[31] requires an online RS, [32] shares a pre-shared key to
all application servers (no key compromise impersonation
resilience), and [33] requires a permanent secure channel
between RS and application servers for updating the user
identity table.

The notion of the Self-certified public key (SCPK) was
introduced by Marc Girault in 1991 [35]. The first SCPKC-
based MSAKA protocols was proposed by Liao-Hsiao using
bilinear maps [4]. Later, Hsieh-Leu found that [4] did not
support the feature of unlinkability, and also require a
permanent secure channel for updating the newly registered
user data on all application servers. Following the cryptanal-
ysis, they presented an improved protocol based on SCPKC

3

using bilinear maps. Subsequently, Amin-Biswas pointed
out that [3] is susceptible to offline-identity guessing attack,
offline-password guessing attack, and server masquerading
attack [36]. Next, He et al. [2] proposed an efficient SCPKC
based MSAKA protocol in which computationally expen-
sive bilinear map operation was needed on the server end
only. Recently, Ying-Nayak proposed a lightweight SCPKC-
based multi-server authentication protocol for 5G networks.
However, it is vulnerable to various well-known attack
which make it unpractical for real life applications [37].

1.3 Contributions
• We propose the first MSAKA scheme, which is se-

cure even if the RS is partially-trusted. Additionally,
our design provides the FAC feature and does not
involve expensive bilinear-map and map-to-point
operations. The proposed design incorporates only
ECC-based operations.

• We present proofs of session key semantic security,
and security under partially trusted RS.

• We perform formal security verification of the pro-
posed protocol using the well-known AVISPA tool.
The output results show the security of the proposed
scheme against active attacks.

• We implement the proposed protocol for both, the
user-end (android platform) and the server-end
(Linux platform).

• The performance analysis and comparison results
concerning the security level of 112-bits show that
the proposed protocol has good execution efficiency
with enhanced features support, as compared with
the latest related protocols.

1.4 Roadmap of the Paper
In the remaining paper, cryptographic primitives used in
this paper are concisely discussed in Section 2. Section 3
elaborates the proposed MSAKA protocol, whereas, Section
4 provides its security analysis, accompanied by implemen-
tation details a performance comparison in Section 5. In the
end, Section 6 concludes this paper.

2 CRYPTOGRAPHIC BACKGROUND

Cryptographic primitives and hard mathematical problems
used in this paper are explained concisely in this section.

2.1 Fuzzy Extractor (FE)
A FE(B, e, lb, t, ξ) function extracts a random key Ψ by
taking a biometric template Bio as an input. The extracted
secret key can be used for any cryptographic application.
Fuzzy extractor [38] comprises of following two procedures:

Gen: A non-deterministic procedure takes inputBio ∈ B
and yields a secret key Ψ ∈ {0, 1}lb and θ, which is assumed
to be public. It is required that ∀Bio ∈ B having a minimum
entropy e, if (Ψ, θ) ← Gen (Bio) then we have statistical
distance SD{(Ψ, θ) , (Rlb , θ)} ≤ ξ where Rlb denotes the
random string of length lb.

Rep: A deterministic procedure that recovers original
secret key Ψ by taking a biometric template Bio′ and public
reproduction parameter θ. The reproduction procedure will
be successful if and only if dis (Bio,Bio′) ≤ t where t is a
predefined threshold value.

TABLE 1: Nomenclatures

Term Meaning Term Meaning
RS Registration Server Bioi Ui’s biometric template.
x Private key of RS si Private key of Ui

RSpb Public key of RS SCi Authorized smart card of Ui

ASj jth application server SKij Session key
SIDj Identity of ASj G Elliptic curve points group
ssj Private key of ASj P Base point on elliptic curve
Ui ith user A Adversary
IDi Ui’s identity ⊕ Bitwise xor operation
PWi Ui’s password || Concatenation operation

TABLE 2: Computation procedure of 2m−1 unique numbers
for m = 6

Pattern Computation
0 0 0 0 0 1 rn6 mod n
0 0 0 0 1 0 rn5 mod n
0 0 0 0 1 1 rn5 × rn6 mod n
0 0 0 1 0 0 rn4 mod n
0 0 0 1 0 1 rn4 × rn6 mod n
0 0 0 1 1 0 rn4 × rn5 mod n
· ·
· ·
1 1 1 1 0 0 rn1 × rn2 × rn3 × rn4 mod n
1 1 1 1 0 1 r1 × rn2 × rn3 × rn4 × rn6 mod n
1 1 1 1 1 0 r1 × rn2 × rn3 × rn4 × rn5 mod n
1 1 1 1 1 1 r1 × rn2 × rn3 × rn4 × rn5 × rn6 mod n

2.2 Elliptic Curve Cryptography (ECC)

A non-singular elliptic curve [39] defined over a finite field
Fq and q be a large prime is defined as:

E : y2 = x3 + ax+ b

where a, b ∈ Fq and 4a3 + 27b2 ̸= 0 holds.
The points on the curve along with abstract point O

serving as identity element form an additive cyclic group G.
A base point P with prime order n serve as the generator of
the group. The scalar multiplication is achieved by repeated
point addition.

Following are two well-known ECC-based hard prob-
lems.

ECDL Problem: Given P and a · P where a ∈ [1, n− 1],
it is computationally very hard to find a.

ECDH Problem: Given P , a · P and b · P , it is computa-
tionally impracticable to find ab ·P for some a, b ∈ [1, n−1].

3 PROPOSED PROTOCOL

This section elaborates on the proposed protocol, which
consists of four phases. These are system setup, user reg-
istration, application server registration, mutual authentica-
tion & key agreement, and user credentials update. Table 1
summarizes all the terminologies used in this paper.

3.1 System Setup Phase

Registration server RS initializes the protocol by executing
the following steps:

Setup1: Chooses an elliptic curve E(Fq) over a finite
field Fq , where q is a large prime. It further selects a base
point P of prime order n.

Setup2: Randomly selects x ∈R [1, n− 1] as its private
key and computes matching public key RSpb = x · P .

4

Setup3: For registering m service-providing servers, RS
pre-computes an access control database (ACDB) having
2m − 1 unique numbers. For this, 1) it generates m random
numbers, i.e., {rn1, rn2, ...rnm} (a random number for each
server), 2) list down all possible combinations of m − bits,
and 3) against each pattern it calculates a new number by
multiplying the random numbers where the corresponding
bit is 1. In this way, a total of 2m−m−1 unique numbers are
calculated. These computed numbers, along with generated
random numbers, constitute the complete ACDB (see Table
2).

Setup4: RS chooses six hash functions h : {0, 1}∗ → Z∗
n,

h1 : G → {0, 1}∗, h3 : {0, 1}∗ × G × {0, 1}∗ × G → Z∗
n,

h4 : {0, 1}∗×G×G×G→ Z∗
n, h5 : G×G×{0, 1}∗×G→

{0, 1}∗, and h6 : G×G× {0, 1}∗ ×G→ Z∗
n.

Setup5: Finally RS keeps x and ACDB
secret, whereas publishes all other parameters
{E, q, n, P,RSpb, h, h1, h3, h4, h5, h6} publicly.

3.2 User Registration Phase
User Reg1: User selects his unique identity IDi, password
PWi, random number hi ∈R [1, n − 1] and imprints his
biometric template Bioi on a suitable biometric device.

User Reg2: Computes Fi = hi · P , Gen(Bioi) = (Ψi, θi)
and MPWi = h (PWi||Ψi). The user Ui transmits the tuple
⟨IDi,MPWi, Fi⟩ to RS using a secure channel.

User Reg3: RS first verifies the IDi to avoid duplicate
entries in user registration database (UDB). It asks the user
to select a different identity value, if there already exists a
registered user with the same identity.

User Reg4: Next, according to the user privilege, RS
decides the set of allowed server(s) and select the unique
number Ti from the ACDB, e.g., if user is only allowed to
access first four servers then number against pattern 111100
will be selected as Ti.

User Reg5: Selects ki ∈R [1, n− 1], and computes:

Ri = ki · Fi

mi = h(IDi||Ti)xk−1
i mod n

Ai = Ti ⊕MPWi

Ci = h(Ri||Ti)

User Reg6: Finally, RS stores the tuple ⟨IDi, h1(Ri)⟩ in
UDB and writes the information ⟨Ri, Ai, Ci,mi⟩ on a smart
card and securely delivers it to the user Ui.

User Reg5: On receiving smart card from RS, Ui com-
putes his private key si = [mih

−1
i] mod n. Next, Ui cal-

culates Vi = h(IDi) ⊕ θi, ESi = si ⊕ h (IDi||PWi||Ψi)
and Ci = h(Ci||si). Finally, user writes Vi and ESi on SCi,
discards mi, and replaces the existing Ci value with the new
one.

Remark: If a registered user wants to change his privilege level
(wants to access more or less servers) after some time, then he has
to re-register with the RS by following these steps.

3.3 Application Server Registration Phase
App Srvr Reg1: Application server ASj chooses its unique
identity SIDj and a random number rj ∈R [1, n−1]. It then
computes Yj = rj · P and sends ⟨SIDj , Yj⟩ to RS using a
secure channel.

App Srvr Reg2: RS first validates the SIDj to avoid du-
plicate entries in the application server registration database
(ADB). If SIDj is fresh, it randomly selects zj and computes
Qj = zj · Yj , and nj = h(SIDj)xz

−1
j mod n.

App Srvr Reg3: Next, it assigns a pre-generated random
number rnj (generated during setup phase) to ASj and
construct a server-specific access control database (SACDB)
by only picking the entries of ACDB where rnj was used in
computation. So in this way a total of 2m−1 entries will be
selected for each server.

App Srvr Reg4: Finally, RS transmits ⟨Qj , nj⟩ and
SACDB to ASj over a secure channel. Furthermore, it stores
the tuple ⟨SIDj , h1(Qj)⟩ in the ADB and publish the pair
{SIDj , Qj} in a public repository for all registered users.

App Srvr Reg5: Upon receiving the message from RS,
application server ASj computes ssj = r−1

j nj mod n.
Furthermore, it securely stores the ssj and SACDB.

Fig. 3 illustrates the registration process of both user and
application server.

3.4 Mutual Authentication & Key Agreement Phase
MAKA1: Whenever Ui wants to access an application server
ASj , he plugs the SCi into a smart card reader and keys
in ⟨ID′

i, PW
′
i , Bio

′
i⟩. Smart card SCi computes θ′i = Vi ⊕

h(ID′
i), Ψ

′
i = Rep(Bio′i, θ

′
i), T

′
i = h (PW ′

i ||Ψ′
i) ⊕ Ai, s′i =

h (ID′
i||PW ′

i ||Ψ′
i) ⊕ ESi and C ′

i = h (h (h(Ri||T ′
i)) ||s′i). It

then checks whether C ′
i = Ci and rejects the user if both are

not equal.
MAKA2: In case of equal, it selects a random num-

ber αi ∈R [1, n − 1] and computes γij = αih(SIDj) ·
RSpb, Mi = (ID′

i||Ri||Ti) ⊕ h1(γij), Dij = αi · Qj and
Ni = h3 (ID

′
i||Ri||T ′

i ||γij). Finally, SCi sends Msg1 =
⟨Mi, Dij , Ni⟩ to ASj over a public channel.

MAKA3: On receipt of Msg1, ASj computes γ′ij = ssj ·
Dij , (ID′

i||Ri||T ′
i) = h1(γ

′
ij) ⊕Mi. It then computes N ′

i =

h3
(
ID′

i||Ri||T ′
i ||γ′ij

)
and compares it with the received Ni

and decline the request, if both are different. Next, it verifies
whether received Ti value exist in its SACDB, and refuses
the user if not.

MAKA4: After successful verification, ASj generates a
random number δj ∈R [1, n−1] and computesWji = δj ·Ri,
Ωj = δj · P and Nj = h4

(
T ′
i ||Wji||Ωj ||γ′ij

)
. Finally, ASj

transmits Msg2 = ⟨Wji, Nj ,Ωj⟩ to Ui via a public channel.
MAKA5: Upon receiving Msg2, Ui calculates N ′

j =
h4 (T

′
i ||Wji||Ωj ||γij), compares it with the received Nj and

terminates the session if the comparison is not equal. If
both are equal, Ui considers the application server ASj is
legitimate. Next, Ui calculates Authi = s′i · Wji, KMij =
αi · Ωj , βi = αi · P , SKij = h5 (γij ||KMij ||T ′

i ||Authi)
and ATi = h6 (γij ||Authi||SKij ||βi). At the end, Ui sends
Msg3 = ⟨ATi, βi⟩ to ASj over a public channel.

MAKA6: Upon receiving Msg3, ASj computes
Auth′i = [δjh(ID

′
i||Ti)] · RSpb, KMij = δj ·

βi, SKij = h5
(
γ′ij ||KMij ||T ′

i ||Auth′i
)

and AT ′
i =

h6
(
γ′ij ||Auth′i||SKij ||βi

)
. It then checks the equivalence of

ATi and AT ′
i and aborts the session if the result is unequal.

Otherwise, ASj believes Ui is authentic and uses SKij for
future correspondence.

This phase has been elaborated in Fig. 4.

5

RSServer ASj
User Ui

𝐼𝑛𝑝𝑢𝑡: 𝐼𝐷𝑖 ,𝑃𝑊𝑖 , 𝐵𝑖𝑜𝑖 , 𝑖

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑠:

𝐹𝑖 = 𝑖 . 𝑃

𝐺𝑒𝑛 𝐵𝑖𝑜𝑖 = (𝜓𝑖 , 𝜃𝑖)

𝑀𝑃𝑊𝑖 = (𝑃𝑊𝑖||𝜓𝑖)

〈𝐼𝐷𝑖 ,𝑀𝑃𝑊𝑖 , 𝐹𝑖〉

𝑆𝑒𝑙𝑒𝑐𝑡𝑠 𝑇𝑖 𝑓𝑟𝑜𝑚 𝐴𝐶𝐷𝐵.

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑘𝑖 , 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠:

𝑅𝑖 = 𝑘𝑖 . 𝐹𝑖

𝑚𝑖 = (𝐼𝐷𝑖| 𝑇𝑖 𝑥𝑘𝑖
−1 𝑚𝑜𝑑 𝑛

𝐴𝑖 = 𝑇𝑖 ⊕ 𝑀𝑃𝑊𝑖

𝐶𝑖 = (𝑅𝑖||𝑇𝑖)

〈𝑅𝑖 , 𝐴𝑖 , 𝐶𝑖 , 𝑚𝑖〉
𝑠𝑖 = 𝑚𝑖𝑖

−1 𝑚𝑜𝑑 𝑛

𝑉𝑖 = 𝐼𝐷𝑖 ⊕ 𝜃𝑖

𝐸𝑆𝑖 = 𝑠𝑖 ⊕(𝐼𝐷𝑖||𝑃𝑊𝑖||𝜓𝑖)

𝐶𝑖 = (𝐶𝑖||𝑠𝑖)

𝐶𝑜𝑜𝑠𝑒 𝑆𝐼𝐷𝑗

𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑟𝑗

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑠 𝑌𝑗 = 𝑟𝑗 .𝑃 〈𝑆𝐼𝐷𝑗 , 𝑌𝑗 〉
𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑧𝑗

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑠:

𝑄𝑗 = 𝑧𝑗 . 𝑌𝑗

𝑛𝑗 = 𝑆𝐼𝐷𝑗 𝑥𝑧𝑗
−1 𝑚𝑜𝑑 𝑛

〈𝑛𝑗 , 𝑄𝑗 , 𝑆𝐴𝐶𝐷𝐵〉

𝑠𝑠𝑗 = 𝑟𝑗
−1𝑛𝑗 𝑚𝑜𝑑 𝑛

Fig. 3: Registration process of User Ui and server ASj

Server ASj

〈𝑊𝑗𝑖 , 𝑁𝑗 , Ω𝑗 〉

𝜃𝑖
′ = 𝑉𝑖 ⊕ ℎ(𝐼𝐷𝑖

′)
𝜓𝑖

′ = 𝑅𝑒𝑝(𝐵𝑖𝑜𝑖
′ , 𝜃𝑖

′)
𝑇𝑖

′ = ℎ(𝑃𝑊𝑖
′ ∥ 𝜓𝑖

′) ⊕ 𝐴𝑖
𝑠𝑖

′ = ℎ(𝐼𝐷𝑖
′ ∥ 𝑃𝑊𝑖

′ ∥ 𝜓𝑖
′) ⊕ 𝐸𝑆𝑖

𝐶𝑖
′ = ℎ(ℎ(𝑅𝑖 ∥ 𝑇𝑖

′) ∥ 𝑠𝑖
′)

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 𝐶𝑖
′ =? 𝐶𝑖 . 𝐼𝑓 𝑦𝑒𝑠:

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝛼𝑖 , 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑠:

𝛾𝑖𝑗 = ൣ𝛼𝑖ℎ൫𝑆𝐼𝐷𝑗 ൯൧. 𝑅𝑆𝑝𝑏

𝑀𝑖 = (𝐼𝐷𝑖
′ ∥ 𝑅𝑖 ∥ 𝑇𝑖

′) ⊕ ℎ1(𝛾𝑖𝑗)

𝐷𝑖𝑗 = 𝛼𝑖 ⋅ 𝑄𝑗

𝑁𝑖 = ℎ3(𝐼𝐷𝑖
′ ∥ 𝑅𝑖 ∥ 𝑇𝑖 ∥ 𝛾𝑖𝑗)

User Ui

〈𝑀𝑖, 𝐷𝑖𝑗 , 𝑁𝑖〉

𝛾𝑖𝑗
′ = 𝑠𝑠𝑗 ⋅ 𝐷𝑖𝑗

(𝐼𝐷𝑖
′ ∥ 𝑅𝑖 ∥ 𝑇𝑖

′) = 𝑀𝑖 ⊕ ℎ1(𝛾𝑖𝑗
′)

𝑁𝑖
′ = ℎ3൫𝐼𝐷𝑖

′ ∥ 𝑅𝑖 ∥ 𝑇𝑖
′ ∥ 𝛾𝑖𝑗

′ ൯

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 𝑁𝑖
′ =? 𝑁𝑖. 𝐼𝑓 𝑦𝑒𝑠:

𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑠 𝑇𝑖
′ 𝑓𝑟𝑜𝑚 𝑆𝐴𝐶𝐷𝐵. 𝐼𝑓 𝑦𝑒𝑠:

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝛿𝑗 , 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠:

𝑊𝑗𝑖 = 𝛿𝑗 ⋅ 𝑅𝑖

Ω𝑗 = 𝛿𝑗 ⋅ 𝑃

𝑁𝑗 = ℎ4(𝑇𝑖
′ ∥ 𝑊𝑗𝑖 ∥ Ω𝑗 ∥ 𝛾𝑖𝑗

′) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠:

𝑁𝑗
′ = ℎ4൫𝑇𝑖

′ ∥ 𝑊𝑗𝑖 ∥ Ω𝑗 ∥ 𝛾𝑖𝑗 ൯

𝐶ℎ𝑒𝑐𝑘 𝑁𝑗
′ =? 𝑁𝑗 . 𝐼𝑓 𝑦𝑒𝑠:

𝐴𝑢𝑡ℎ𝑖 = 𝑠𝑖
′ ⋅ 𝑊𝑗𝑖

𝐾𝑀𝑖𝑗 = 𝛼𝑖 ⋅ Ω𝑗

𝛽𝑖 = 𝛼𝑖 ⋅ 𝑃

𝑆𝐾𝑖𝑗 = ℎ5൫𝛾𝑖𝑗 ∥ 𝐾𝑀𝑖𝑗 ∥ 𝑇𝑖
′ ∥ 𝐴𝑢𝑡ℎ𝑖൯

𝐴𝑇𝑖 = ℎ6൫𝛾𝑖𝑗 ∥ 𝐴𝑢𝑡ℎ𝑖 ∥ 𝑆𝐾𝑖𝑗 ∥ 𝛽𝑖൯

〈𝐴𝑇𝑖 , 𝛽𝑖〉

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑠:

𝐴𝑢𝑡ℎ𝑖
′ = ൣ𝛿𝑗 ℎ(𝐼𝐷𝑖

′ ∥ 𝑇𝑖)൧ ⋅ 𝑅𝑆𝑝𝑏

𝐾𝑀𝑖𝑗 = 𝛿𝑗 ⋅ 𝛽𝑖

𝑆𝐾𝑖𝑗 = ℎ5൫𝛾𝑖𝑗
′ ∥ 𝐾𝑀𝑖𝑗 ∥ 𝑇𝑖

′ ∥ 𝐴𝑢𝑡ℎ𝑖
′ ൯

𝐴𝑇𝑖
′ = ℎ6൫𝛾𝑖𝑗

′ ∥ 𝐴𝑢𝑡ℎ𝑖
′ ∥ 𝑆𝐾𝑖𝑗 ∥ 𝛽𝑖൯

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 𝐴𝑇𝑖
′ =? 𝐴𝑇𝑖 . 𝐼𝑓 𝑦𝑒𝑠

SKij

Fig. 4: Mutual Authentication & Key Agreement phase

3.5 User Credential Update Phase

At whatever time user Ui requires to change his password
or/and biometric template, he can do it without involving
RS, by performing the following steps:

Cred Upd1: The user plugs the SCi into a suitable card
reader and keys in ⟨IDold

i , PW old
i , Biooldi ⟩. SCi validates

the legitimacy of credentials, as detailed in Section 3.4
(MAKA1).

Cred Upd2: If the result of the verification is success-
ful, SCi asks the user to provide a new PWnew

i and
Bionewi . Next, it computes Gen(Bionewi) = (Ψnew

i , θnewi),
Anew

i = T ′
i ⊕ h (PWnew

i ||Ψnew
i), V new

i = h(IDold
i) ⊕ θnewi ,

and ESnew
i = si ⊕ h

(
IDold

i ||PWnew
i ||Ψnew

i

)
. Finally, SCi

replaces Vi, Ai, and ESi with V new
i , Anew

i , and ESnew
i ,

respectively.
Remark: A user can change his password or biometric template

independently.

3.6 Proof of Correctness

The proof of correctness for the computations, i.e., 1) ssj ·
Dij = γij and 2)Auth′i = [δjh(ID

′
i||Ti)] ·RSpb done by ASj

is as follows:

ssj ·Dij Authi
=r−1

j njαi ·Qj =si ·Wji

=njαizj · P =siδj ·Ri

=h(SIDj)xz
−1
j αizj · P =mih

−1
i δjkihi · P

=h(SIDj)xαi · P =h(IDi||Ti)xk−1
i δjki · P

=αih(SIDj) ·RSpb =[δjh(IDi||Ti)] ·RSpb

=γij =Auth′i

4 SECURITY ANALYSIS

This section presents a security model of the proposed
protocol mainly adopted from the work of [40]–[42] and a
formal security proof using a sequence of games technique
[43]. Moreover, this section also elaborates the automated
formal verification using AVISPA tool.

4.1 Security Model

Participants
During registration phase, the application server stores the
parameters {SIDj , ssj , SACDB}, whereas the smart card
of Ui contains {Ri, Ai, Ci, Ei, Vi, ESi}. The parameters on
smart card are protected with password PWi (selected from
a Zipf distributed dictionary Dt with size |Dt| and Zipf
parameters C ′ and s′ [44], [45], biometric template Bioi
and identity IDi. However, during mutual authentication &
key agreement phase of the proposed protocol, only Ui and
ASj engage in communication to establish a session key.
Let Πu

Ui
and Πs

ASj
be the instances u and s of Ui ∈ Users

and ASj ∈ Servers respectively. These are also known as
oracles. Furthermore, we denote any kind of instance with
Πt ∈ Users ∪ Servers.

Partnering
Instances Πu and Πs are said to be partner, if they agreed on
the same session id (sid) where sid ̸= NULL (This mean

6

both partners have mutually authenticated each other). The
session id is built by arranging all sent/received messages
between instances Πu and Πs before they go into an ac-
cepted state.

Freshness
As long as, session key SKij is secure, instance Πu or
Πs remains fresh. This means that both participants are in
accept state and Reveal(Πt) query has never been asked to
any of the participants.

Adversary
Adversary A has full control of communication channel
[46], i.e., he can intercept, store, modify and delete any
message. Furthermore, A is capable of extracting stored
information from user smart card (after stealing) using side
channel attacks [13], [47].
A can ask different oracle queries by interacting with any

participant instance Πu or Πs. There are three possible out-
comes of any oracle query. These are accept (oracle receive
correct message), reject (oracle receive wrong message) and
no conclusion (oracle receive no message). To attack the pro-
posed multi-server authenticated key agreement protocol
say P , adversary A can ask following queries:

Execute(Πu,Πs): A uses this query to intercept ongoing
communication between Ui and ASj . So in a practical sce-
nario, A uses this query to launch an eavesdropping attack
on P .

Send(Πt,MSG): Using this query, A sends a fabricated
message MSG to a legitimate participant Πt and gets a
reply as per the specification of the proposed protocol.

Reveal(Πt): A uses this query to acquire knowledge of
session key SKij established during the current session
among Πt and its partner. In case no session key is defined
for instance Πt or a test query was asked to (Πt) or its
partner, then oracle returns undefined symbol ⊥ to A.

Corruptuser (Πu
Ui
, z): This query model the three-factor

security of P . The adversary runs this query for three
different values of z. For z = 0 and z = 1, oracle re-
sponds with Πu

Ui
’s password PWi and biometric template

Bioi respectively. For z = 2, oracle answered with all the
information stored in Πu

Ui
’s smart card.

Test(Πt): Following the indistinguishability of the ran-
dom oracle model, this query model the semantic security
of SKij established between Ui and ASj . The output of this
query is used to measure the strength of the session key
SKij .

Semantic Security of SKij

We say that the adversary is successful in breaking the
semantic security of the session key if it successfully dis-
tinguishes between a real session key and a random key (of
the same length) during an experiment. For this purpose, A
can ask a single Test query to any participant instance. At
the end of the experiment, if the A guessed bit C ′

n is equal
to Cn then, A wins the game. Suppose EV represents an
event when A is successful in a game. Then the advantage
of A in breaking the session key security of the proposed
protocol P can be defined as:

Advmaka
P (A) = |2.P r[EV]− 1| = |2.P r[Cn = C ′

n]− 1|

Where, Pr[EV] represents probability of event EV . Pro-
posed protocol P is considered to be secure in proposed
security model, if the advantage of A is ≤ ϵ where ϵ > 0
and negligible.

Random Oracle
A cryptographic hash function has been modeled as random
oracle HO. All participants including A can ask queries to
HO.

Definition: A three-factor multi-server authenticated key
agreement protocol is semantically secure, if the advan-
tage Advmaka

P (A) of an adversary is larger than max{C ′ ·
qs

′

snd, qsnd(
1

2bk
, ϵfp)} and negligible, where qsnd represents

number of send queries, bk represent the length of biomet-
ric key, and ϵfp denotes the probability of biometric false
positive, respectively.

4.2 Formal Security Proof

Theorem 1. Assume a polynomial-time adversaryA running
alongside the P in random oracle with consistent pass-
word dictionary Dt and |Hl| represents the range space
of hash function. The adversary is allowed to make at
most qsnd times Send queries, qex times Execute queries,
and qH times hash queries, respectively. Then A has
approximately the following advantage in violating the
session key security.

Advmaka
P (A) ≤ q2H+8qH

|Hl| + 2max{C ′ · qs′snd, qsnd(1
2bk

, ϵfp

)}+ (qsnd+qex)
2+6qsnd

2lr
+ 2qHAdv

ECDL
A (t)+

2qH(qsnd + qex)
2AdvECDH

A (t1)

Where AdvECDL
A (t) and AdvECDH

A (t1) denote adver-
sary advantage in solving the ECDL and ECDH prob-
lems in time t and t1, respectively.

Proof: The proof follows a sequence of six games
Gamei where i ≥ 0 ≤ 5. Let EVi is an event, where A
successfully guesses the random bit Cn in Test query for
Gamei.

Game0: This is a real attack launched by A against
the proposed protocol P . Since bit Cn has been chosen
randomly at the start of the Game0 so by definition it
follows:

Advmaka
P (A) = |2Pr[EV0]− 1|. (1)

Game1: In this game, random oracle HO is simulated
by maintaining a list LH . All other oracle queries are simu-
lated as real attacks. Clearly, the real protocol execution in
Game0 and the simulation in this game are indistinguish-
able. Hence, we got:

Pr[EV1] = Pr[EV0]. (2)

Game2: During this game, we simulate all the oracles
as in Game1, but we halt the execution in case of collision.
There are two possible cases in which collision can occur.
These are:

• The collision can happen in the hash oracle queries.
• A collision can occur in the transcript

(⟨Mi, Dij , Ni⟩, ⟨Wji, Nj ,Ωj⟩, ⟨ATi, βi⟩), which
denotes collision in random numbers αi and δj .

7

in case of such collisions,A can win the game by launching a
replay attack. According to birthday paradox, the maximum
probabilities of case1 and case 2 are q2H

2|Hl| and (qsnd+qex)
2

2lr+1 .
So, Game1 and this game are indistinguishable unless these
cases of collisions occur. This gives us:

|Pr[EV2]− Pr[EV1]| ≤
q2H
2|Hl|

+
(qsnd + qex)

2

2lr+1
. (3)

Game3: In this game all the oracles in Game2 are sim-
ulated, however we abort the execution, wherein A luckily
guess the correct message transcript (without making the
corresponding hash query). Since in the proposed protocol
P , three messages are exchanged among Ui and ASj , fol-
lowing three cases are possible:

a Considering Send(ASj ,Msg1) query, the hash
value, i.e., Ni = h3(ID

′
i||Ri||T ′

u||γij) must match;
otherwise ASj will terminate the session. The maxi-
mum probability of this event is qH

|Hl| . The probability
of successful guessing of message Msg1 is at most
qsnd

2lr
.

b For Send(Ui,Msg2) oracle query, the hash value
Nj = h5(Tu||Wji||Ωj ||γ′ij) must hold and for this
maximum probability is qH

|Hl| . Accordingly, the prob-
ability of successful guessing of message Msg2 is at
most qsnd

2lr
.

c For authentication response, i.e.,
Send(ASj ,Msg3) query, the hash value
ATi = h6(γij ||Authii||SKij ||βi) must hold with at
most probability 2qH

|Hl| .

Unless the oracle aborts the game with legitimate values,
Game2 and this game are indistinguishable to adversary.
So, considering all above three cases, we have:

|Pr[EV3]− Pr[EV2]| ≤
3qsnd
2lr

+
4qH
|Hl|

(4)

Game4:In this game, we consider all the possible attacks
executed by A by simulating all the oracles as in Game3. If
adversary successfully gets the real session key SKij , then
ECDL problem can be solved in polynomial time. Since, pro-
posed protocol P provides three-factor security, therefore
guessing of both PWi and Bioi need to be considered. For
this purpose, A required all the parameters stored in SCi.
Suppose, adversary executes Corruptuser (Πu

Ui
, 2) and gets

all the required information. For other values, following are
three possible cases:

1 Adversary gets the Bioi by running the Corruptuser
(Πu

Ui
, 1) query and guesses (online) the PWi by

choosing it from Dt with a maximum allowed send
queries. The probability of this case is C ′ · qs′snd [1].

2 Adversary runs Corruptuser (Πu
Ui
, 0) query to get the

pasword PWi. Then, A can guess the biometric key
of the user by adopting any one of the following two
approaches:

– A randomly selects a biometric key ψi. The
maximum probability for this case with at
most qsnd Send queries is qsnd

2bk
.

– A tries with a different biometric template
Bio∗i and a false positive event can happen
with probability ϵfp.

3 In order to break the session key SKij =
h5(γij ||KMij ||Tu||Authi), adversary is required to
compute γi = ssj · Di and Authi = si ·Wj which
both are instances of ECDL problem. So, in this
case to launch an offline guessing attack, A queries
either Corruptuser (Πu

Ui
, 0) or Corruptuser (Πu

Ui
, 1)

along with Corruptuser (Πu
Ui
, 2) query. So, we can

say that A asks either pure Execute(Πu,Πs) or con-
secutive Send queries with hash oracle HO. The
advantage ofA in solving ECDL problem in this case
is qHAdvECDL

A (t).

The simulation of Game3 and this game are indistinguish-
able with above mentioned guessing attacks. This give us

|Pr[EV4]− Pr[EV3]| ≤ max{C ′ · qs
′

snd, qsnd(
1

2bk
, ϵfp)}

+qHAdv
ECDL
A (t)

(5)

Game5: The purpose of this last game is to verify the
forward secrecy of P . Here we assume that adversary has
asked Corrupt(Usi

i /AS
ssj
j /RSx) and simulates Execute, Send

andHO oracle queries on only old transcripts of P followed
by a Test query. In this case, A needs to calculate αi · ωj · P
with the available values βi,Ωj and P , which is equivalent
to solving a ECDH problem. The probability of having
correct αi and ωj in the same session is 1

(qsnd+qex)2
. Finally,

this gives us

|Pr[EV5]− Pr[EV4]| ≤ qH(qsnd + qex)
2AdvECDH

A (t1)
(6)

Regarding all above games, it is obvious that A obtains no
advantage. So, we can say that this game is identical to real
case and Pr[EV5] = 1

2 .
By applying the triangular inequality, We have the fol-

lowing

|Pr[EV 0]− 1
2 | = |Pr [EV1]− Pr [EV5] |
≤ |Pr [EV1]− Pr [EV2] |

+ |Pr [EV2]− Pr [EV5] |
≤ |Pr [EV1]− Pr [EV2] |

+ (|Pr [EV2]− Pr [EV3] |
+ |Pr [EV3]− Pr [EV5] |)

≤ [EV1]− Pr [EV2] |
+ (|Pr [EV2]− Pr [EV3] |
+ |Pr [EV3]− Pr [EV4] |)
+ |Pr [EV4]− Pr [EV5] |)

(7)

By utilizing the equations from (1) to (7) we got.
1
2Adv

maka
P (A) = |Pr[EV 0]− 1

2 |
≤ q2H

2|Hl| +
(qsnd+qex)

2

2lr+1

+ 3qsnd

2lr
+ 4qH

|Hl|
+ max{C ′ · qs′snd, qsnd(1

2bk
, ϵfp)}

+ qHAdv
ECDL
A (t)

+ qH(qsnd + qex)
2AdvECDH

A (t1)
(8)

By simplifying both side of the above equation and rear-
ranging the terms, we got the final result as presented in
theorem 1.
Theorem 2. Assuming that the ECDL problem is intractable

in polynomial time, then registration server RS can not

8

impersonate any user or application server in P , even
if it has stored all the information during registration
phases of P .

Proof: During registration of server ASj , RS receives
⟨SIDj , Yj⟩ from ASj where Yj = rj · P . Next, it computes
Qj = zj ·Yj and nj = h(SIDj)xz

−1
j mod n. Let suppose, RS

stores all the information, i.e., {SIDj , Yj , Qj , zj , nj} in its
memory. Now, registration server acting as an application
server ASj receive login message ⟨Mi, Dij , Ni⟩ from user
Ui. According to the specification of P , RS has to compute
γij = ssj ·Di, where ssj = r−1

j nj mod n. To calculate ssj , RS
needs to find rj from given Yj and P , which is equivalent to
solving the ECDL problem. Hence RS can not impersonate
any application server in the proposed protocol.

Similarly, during the registration of the user Ui, RS stores
the information {IDi,MPWi,mi, ki, Fi, Ri} in its memory,
where Fi = hi · P . Assume that RS acting as user Ui selects
a random number αRS

i ∈R [1, n − 1] and computes γRS
ij =

αRS
i h(SIDj) · RSpb, MRS

i = (IDi||Ri||Ti) ⊕ h1(γ
RS
ij),

DRS
ij = αRS

i · Qj , and NRS
i = h3

(
IDi||Ri||Ti||γRS

ij

)
.

Finally, it sends Msg1 = ⟨MRS
i , DRS

ij , NRS
i ⟩ to ASj over a

public channel. Since, Msg1 is according to the specification
of P , application serverASj will accept it, and respond with
Msg2 = ⟨Wji,Ωj , Nj⟩. In order to successfully imperson-
ate the user Ui, RS has to compute AuthRS

i = si · Wji,
where si = h−1

i mi mod n. So, to calculate si RS need
to compute hi from the available information Fi and P ,
which is an instance of computationally intractable ECDH
problem. Hence, RS can not impersonate a legal user Ui in
the proposed protocol.

4.3 Automated Verification Using AVISPA Tool

Automated formal verification using any well-known tool
proves the safety of AKA protocol against active attacks. The
proposed scheme has been verified by utilizing the security
protocol animator for AVISPA (SPAN), a platform for well-
known automated verification tool AVISPA. In SPAN, we
specify our protocol in high-level protocol specification lan-
guage (HLPSL), and then these specifications are translated
in a machine-readable intermediate format. The AVISPA
then verifies the machine-readable instruction using any one
of its back-ends(OFMC, CL-AtSe, SATMC, and TA4SP). The
participants of the protocol are represented as a basic role
(role Ui, role RS, and role ASj) in HLPSL implementation.

We have implemented both registration phases and mu-
tual authentication & key agreement phase. The actions of
each participant are specified in its corresponding role, and
then a composed session role is utilized to execute these
basic roles in parallel. Finally, a mandatory top-level role
known as environment role is defined, in which we specify
all the global constants, session role(s), knowledge of the
intruder, and desired security goals. Fig. ?? and Fig . 6
depict the specifications of server role and environment role,
respectively.

Among four of the available back-ends, we have used
OFMC and CL-AtSe for verification of our scheme. The sim-
ulation results, as illustrated in Fig. 7 ensures the security of
the proposed protocol against active attacks.

Fig. 5: The specifications of server role in HLPSL

Fig. 6: The specifications of mandatory environment role of
the proposed scheme

Fig. 7: Simulation Results of AVISPA tool

5 IMPLEMENTATION AND PERFORMANCE ANALY-
SIS

We have developed a sample client server-based application
to implement the proposed protocol. The communication

9

(a) Login Screen of User (b) MA and Session Key cal-
culated at User End

(c) MA and Session Key calculated at Server End

Fig. 8: Output of a Successful Session key calculation on
both ends in real life scenario

protocol is based on user datagram protocol (UDP). All the
cryptographic functions in both client and server are im-
plemented using the MIRACL library. A client application
is developed for android using Android SDK, whereas, the
server application is implemented in C++ on Ubuntu 16.0
LTS operating system using Boost. Asio framework. Login
interface of the client application, as well as simulation of a
successful mutual authentication & session key agreement,
are illustrated in Fig. 8.

The performance analysis of the proposed protocol con-
cerning storage memory required on the smart card, com-
munication overhead, and computational complexity has
been carried out in this section. Furthermore, we have com-
pared the proposed protocol with existing SCPKC-based
protocols concerning these metrics. For comparison, we
select four latest MSAKA protocols, i.e., Wei et al. [48], Ying-
Nayak [49], He et al. [2], and Hsieh-Leu [3].

The analysis and comparison have been done for secu-
rity strength of 112 bits (security level of 2048 bits RSA al-
gorithm, (2048, 256) bits DSA and 224 bits ECC). To comply
with the said security strength we have used, an elliptic
curve defined over a Galois field of 224 bits prime number q,
and hash functions (sha256) in our experiment. For pairing-
base settings, a Tate pairing defined over an elliptic curve
with a 192-bit group order, prime modulus of 512 bits with
“security multiplier” 4 is used.

5.1 Analysis and Comparison of Communication Over-
head and Smart Card Storage Cost
Keeping in mind the cryptographic primitives used in our
experiment, the length of q or length of all random numbers,
or hash function output (truncated) is 224 bits. The length
of elements in both groups of Tate pairing is 2048 bits. The
length of each each elliptic curve group element is 448 bits.
Using MIRACL library, elliptic curve points (in both pairing
and non-pairing settings) can be efficiently compressed to
almost half length. Let suppose the length of user identity is
64 bits, then the communication overhead and storage space
required on the smart card for each aforementioned protocol
is as follows:

Both parties (Ui and ASj) in Ying-Nayak [49] pro-
tocol exchange two messages among them during mu-
tual authentication phase. The communication overhead
involve in these two messages, i.e., Ui → ASj :
⟨σui

, DIDui
, A∗

ui
, Fui
⟩, ASj → Ui : ⟨σsj , IDsj , Bsj , Fsj ⟩

is ⟨224 + 224 + 232 + 232⟩, ⟨224 + 224 + 232 + 232⟩,
respectively. So, the total communication cost of [49] is
1824 bits. Similarly the space required on smart card is
{ϕui

, Nui
,Mui

, c0} = 224 + 232 + 224 + 224 = 904 bits.
In He et al.’s protocol [2] user sends two messages

(⟨RUi⟩, ⟨CUi⟩), whereas ASj sends only one message
⟨y, asj ⟩. The total communication cost of these messages is
⟨1032⟩+ ⟨2048+224⟩+ ⟨2496⟩ = 5800 bits. Accordingly, the
smart card of the user contains gui

, ψui
, vui

, and bui
. So, the

storage cost of [2] is 2048 + 224 + 224 + 224 = 2720 bits.
Protocol of Wei et al. [48] completes mutual au-

thentication and session key agreement in three mes-
sages. Among these, user transmits two messages, i.e.,
(⟨Fui, kui, Bui, dtui, t⟩, and ⟨Dui⟩), whereas ASj sends a
single message ⟨Dsj , ksj⟩. The cumulative communication
overhead involved in messages is ⟨224+2048+2048+224+
224⟩+⟨224⟩+⟨224+2048⟩ = 7264 bits. Similarly, user’s smart
card contains Tui, Gui, Vui, h1, θui,Wui, Bui, dtui, t which
require 6(224)+ 2048+2(224) = 3840 bits of storage space.

In Hsieh-Leu protocol [3] both participants,
i.e., user and application server transmit messages
⟨xAuthi, Cm,Mi, Bij , Ri⟩, ⟨Authij⟩ and ⟨Authji,Kji, Rj⟩
to other end respectively. The communication overhead
involves in these messages is ⟨1032+ 1032+ 1032+ 1032+
1032⟩+ ⟨224⟩+ ⟨224 + 1032 + 1032⟩ = 7672 bits. The smart
card of Ui stores {Authi, RegIDi , PubRS , bi, CIDi}, which
requires total 1032+ 1032+ 1032+ 224+ 224 = 3544 bits of
memory.

In proposed protocol, three messages are exchanged
between Ui and ASj . The first message,i.e., Ui → ASj :
contains ⟨Mi, Dij , Ni⟩, second message ASj → Ui : con-
tains ⟨Wji, Nj ,Ωj⟩ and final message Ui → ASj : contains
⟨ATi, βi⟩. So, the total communication overhead calculated
as 520 + 232 + 224 + 232 + 224 + 232 + 224 + 232 is
2120 bits. In the proposed protocol, the SCi contains val-
ues of {Ri, Ai, Ci, Vi, ESi} which require storage space of
232 + 224 + 224 + 224 + 224 = 1128 bits.

The comparison of communication overhead and space
required on the smart card has been shown in Fig. 9.

5.2 Computational Complexity Analysis
This section presents the analysis and comparison in
terms of the computational complexity of the proposed

10

5800

7672

1824

7264

2120
2720

3544

904

3840

1128

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

He et al. Hsieh-Leu Ying-Nayak Wei et al. Ours

Communication overhead (bits) Storage Space on Smart Card (bits)

Fig. 9: Communication overhead and storage space required
on SCi

TABLE 3: Running time of Operations

Notation Computational Time (milliseconds)
User End Server End

Tb 36.13 10.84
Tmp 13.22 3.97
Tpx 7.09 2.13
Tex 4.89 0.89
Te+ 0.02 0.005
Te 13.32 2.96
Tx 0.01 0.005
Tr 1.74 0.11
Th 0.01 0.003

TABLE 4: Number of Operations executed on both ends

Protocol No of Operations
User End Server End

Hsieh-Leu [3] Tmp + 7Tpx + 8Th Tmp + 2Tb + 5Tpx

+Tr +3Th + Tr

He et al. [2] 2Te + 2Tpx + 8Th 4Te + Tb

+Tx + Tr +5Th + Tr

Ying-Nayak [49] 5Tex + 8Th + 2Tr 5Tex + 4Th + Tr

Tx + 2Te+ Tx + 2Te+

Wei et al. [48] 2Te + 9Th + Tr 4Te + Tb + Tmp

+5Th + Tr + Tx

Ours 5Tex + 12Th + Tr 5Tex + Tx

+Tx 6Th + Tr

42.65

64.67

28.03 28.47
26.32

22.81

36.42

4.59

26.78

4.58
0

10

20

30

40

50

60

70

He et al. Hsieh-Leu Ying-Nayak Wei et al. Proposed

Ti
m

e
 in

 m
ill

is
e

co
n

d
s

Computational Time on User End Computational Time on server End

Fig. 10: Computational time elapsed on user and server ends

protocol with four above-mentioned benchmarked pro-
tocols. We only consider mutual authentication & key
agreement phase for this analysis and comparison. Let
Tb, Tmtp, Tpx, Tex, Te+, Te, Tx, Tr, Th denote execution time
of bilinear pairing operation, map-to-point operation,
pairing-based point multiplication operation, elliptic curve
point multiplication operation, point addition operation, ex-
ponentiation operation, scalar multiplication, random num-
ber generation, and one-way hash function function, respec-

TABLE 5: The comparison of security and functionality
features

Security & Functional Features [3] [2] [49] [48] Ours
User Anonymity ✓ ✓ ✓ ✓ ✓
Un-traceability ✓ ✓ χ χ ✓
Mutual Authentication ✓ ✓ χ ✓ ✓
Provides TFS χ χ χ ✓ ✓
Provides PFS ✓ ✓ ✓ ✓ ✓
Resists UIA ✓ ✓ χ ✓ ✓
Resists SIA χ ✓ ✓ ✓ ✓
Resists offline IGA χ ✓ χ ✓ ✓
Resists offline PGA χ ✓ χ ✓ ✓
Resists Replay attack ✓ ✓ ✓ ✓ ✓
Resists SVA ✓ ✓ ✓ ✓ ✓
Resists PIA ✓ ✓ ✓ ✓ ✓
Secure in PTRS χ χ χ χ ✓
Single Registration ✓ ✓ ✓ ✓ ✓
Provides FAC χ χ χ χ ✓
Mutual Authentication with offline RS ✓ ✓ ✓ ✓ ✓

SIA: Server Impersonation Attack, UIA: User Impersonation Attack, IGA: Iden-
tity Guessing Attack, PGA: Password Guessing Attack, PFS: Perfect Forward
Secrecy, TFS: Three-factor Security, SVA: Stolen Verifier Attack, PIA: Privileged
Insider Attack, PTRS: Partially Trusted Registration server

tively. The running times of these operations are tabulated in
Table 3. Whereas, Table 4 details the number of operations
executed on both ends during mutual authentication and
key agreement for each protocol.

The computational time for each operation, as illustrated
in Table 3 has been calculated on a laptop computer (HP
EliteBook 8460p with an i7-2620M 2.70GHz processor, 4G
bytes memory, and the Ubuntu 16.04 LTS operating system)
using the MIRACL library for server-side. Whereas, for the
user side, running time has been calculated on a Xiaomi
Redmi Note 7 smartphone having 6G bytes of memory,
Snapdragon 660 Octa-core Max 2.20GHz processor, and
Android 9 MIUI 11.0.4 development version.

Fig. 10 depicts the total time elapsed on both ends during
mutual authentication & key agreement phase.

5.3 Security and Functionality Features Comparison
This subsection compares the proposed protocol in terms
of desired functional and security features with the related
protocols. According to Table 5, all the protocols provide
single registration and mutual authentication without en-
gaging the RS. The protocols of Ying-Nayak [49] and Wei et
al. do not confirm the un-traceability feature. The protocols
and [2], [49], and [3] do not provide three-factor security.
Furthermore, [3] is susceptible to offline IGA, offline PGA,
and server spoofing attacks, whereas [49] does not with-
stand offline IGA, offline PGA, and user impersonation
attack. Finally, all the compared protocols are insecure in
partially trusted RS adversary model and do not feature
flexible access control in multi-server architecture (MSA).
In contrast, the proposed protocol ensures all the functional
and security requirements of MSA.

5.4 Discussion on Comparison Results
The comparison results evidently show that the proposed
protocol is computationally efficient and provides more
enhanced security and functionality features among all the
compared protocols. The protocol of Ying-Nayak performs
better concerning communication overhead and smart card
storage costs, but it is vulnerable to IGA, PGA, and UIA
[37]. These security pitfalls cause it a less practical scheme
for security-critical multi-server architectures.

11

6 CONCLUSION

In this paper, we identify three very vital deficiencies in
the existing state-of-the-art MSAKA protocols. To alleviate
this matter, we propose an MSAKA protocol with offline
RS using SCPKC. The proposed scheme withstands both
UIA and SIA in a partially trusted RS scenario, provides
flexible access control, and is provably secure. Additionally,
the simulation results of the AVISPA tool ensure that the
proposed scheme resists active attacks in the Dolev-Yao
intruder model. The provision of more satisfying security
controls and better computational efficiency makes it very
suitable for use in real-life applications with battery-limited
mobile devices.

REFERENCES

[1] D. Wang and P. Wang, “Two birds with one stone: Two-factor
authentication with security beyond conventional bound,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 4, pp.
708–722, July 2018.

[2] D. He, S. Zeadally, N. Kumar, and W. Wu, “Efficient and anony-
mous mobile user authentication protocol using self-certified pub-
lic key cryptography for multi-server architectures,” IEEE Transac-
tions on Information Forensics and Security, vol. 11, no. 9, pp. 2052–
2064, Sep. 2016.

[3] W.-B. Hsieh and J.-S. Leu, “An anonymous mobile user authen-
tication protocol using self-certified public keys based on multi-
server architectures,” The Journal of Supercomputing, vol. 70, no. 1,
pp. 133–148, Oct 2014.

[4] Y.-P. Liao and C.-M. Hsiao, “A novel multi-server remote user
authentication scheme using self-certified public keys for mobile
clients,” Future Generation Computer Systems, vol. 29, no. 3, pp.
886 – 900, 2013, special Section: Recent Developments in High
Performance Computing and Security.

[5] T. Wu, Z. Lee, M. S. Obaidat, S. Kumari, S. Kumar, and C. Chen,
“An authenticated key exchange protocol for multi-server archi-
tecture in 5g networks,” IEEE Access, vol. 8, pp. 28 096–28 108,
2020.

[6] H. Yao, X. Fu, C. Wang, C. Meng, B. Hai, and S. Zhu, “Crypt-
analysis and improvement of a remote anonymous authentication
protocol for mobile multi-server environments,” in 2019 IEEE
Fourth International Conference on Data Science in Cyberspace (DSC),
June 2019, pp. 38–45.

[7] N. M. Lwamo, L. Zhu, C. Xu, K. Sharif, X. Liu, and C. Zhang,
“Suaa: A secure user authentication scheme with anonymity
for the single & multi-server environments,” Information
Sciences, vol. 477, pp. 369 – 385, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025518308570

[8] M.-C. Chuang and M. C. Chen, “An anonymous multi-server
authenticated key agreement scheme based on trust computing
using smart cards and biometrics,” Expert Systems with Applica-
tions, vol. 41, no. 4, Part 1, pp. 1411 – 1418, 2014.

[9] D. Mishra, A. K. Das, and S. Mukhopadhyay, “A secure user
anonymity-preserving biometric-based multi-server authenticated
key agreement scheme using smart cards,” Expert Systems with
Applications, vol. 41, no. 18, pp. 8129 – 8143, 2014.

[10] C. Wang, X. Zhang, and Z. Zheng, “Cryptanalysis and Improve-
ment of a Biometric-Based Multi-Server Authentication and Key
Agreement Scheme,” PLOS ONE, vol. 11, no. 2, FEB 11 2016.

[11] A. G. Reddy, E. Yoon, A. K. Das, V. Odelu, and K. Yoo, “Design
of mutually authenticated key agreement protocol resistant to
impersonation attacks for multi-server environment,” IEEE Access,
vol. 5, pp. 3622–3639, 2017.

[12] D. Xu, J. Chen, and Q. Liu, “Provably secure anonymous three-
factor authentication scheme for multi-server environments,” Jour-
nal of Ambient Intelligence and Humanized Computing, vol. 10, no. 2,
pp. 611–627, Feb 2019.

[13] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology — CRYPTO’ 99, M. Wiener, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 388–397.

[14] L.-H. Li, L.-C. Lin, and M.-S. Hwang, “A remote password
authentication scheme for multiserver architecture using neural
networks,” IEEE Transactions on Neural Networks, vol. 12, no. 6, pp.
1498–1504, Nov 2001.

[15] I.-C. Lin, M.-S. Hwang, and L.-H. Li, “A new remote user authen-
tication scheme for multi-server architecture,” Future Generation
Computer Systems, vol. 19, no. 1, pp. 13 – 22, 2003, selected papers
of the 29th SPEEDUP workshop on distributed computing and
high-speed networks, 22-23 March 2001, Bern, Switzerland.

[16] X. Cao and S. Zhong, “Breaking a remote user authentication
scheme for multi-server architecture,” IEEE Communications Let-
ters, vol. 10, no. 8, pp. 580–581, Aug 2006.

[17] C.-C. Chang and J.-S. Lee, “An efficient and secure multi-server
password authentication scheme using smart cards,” in 2004 In-
ternational Conference on Cyberworlds, Nov 2004, pp. 417–422.

[18] J.-L. Tsai, “Efficient multi-server authentication scheme based on
one-way hash function without verification table,” Computers &
Security, vol. 27, no. 3, pp. 115 – 121, 2008.

[19] E. Yoon and K. Yoo, “Robust multi-server authentication scheme,”
in 2009 Sixth IFIP International Conference on Network and Parallel
Computing, Oct 2009, pp. 197–203.

[20] S. K. Sood, A. K. Sarje, and K. Singh, “A secure dynamic identity
based authentication protocol for multi-server architecture,” Jour-
nal of Network and Computer Applications, vol. 34, no. 2, pp. 609 –
618, 2011, efficient and Robust Security and Services of Wireless
Mesh Networks.

[21] X. Li, Y. Xiong, J. Ma, and W. Wang, “An efficient and security
dynamic identity based authentication protocol for multi-server
architecture using smart cards,” Journal of Network and Computer
Applications, vol. 35, no. 2, pp. 763 – 769, 2012, simulation and
Testbeds.

[22] J.-L. Tsai, N.-W. Lo, and T.-C. Wu, “A new password-based
multi-server authentication scheme robust to password guessing
attacks,” Wireless Personal Communications, vol. 71, no. 3, pp. 1977–
1988, Aug 2013.

[23] K.-H. Yeh and N. W. Lo, “A Novel Remote User Authentica-
tion Scheme For Multi-Server Environment Without Using Smart
Cards,” International Journal of Innovative Computing Information and
Control, vol. 6, no. 8, pp. 3467–3478, AUG 2010.

[24] R. S. Pippal, C. D. Jaidhar, and S. Tapaswi, “Robust smart card
authentication scheme for multi-server architecture,” Wireless Per-
sonal Communications, vol. 72, no. 1, pp. 729–745, Sep 2013.

[25] J. Wei, W. Liu, and X. Hu, “Cryptanalysis and improvement
of a robust smart card authentication scheme for multi-server
architecture,” Wireless Personal Communications, vol. 77, no. 3, pp.
2255–2269, Aug 2014.

[26] D. He and D. Wang, “Robust biometrics-based authentication
scheme for multiserver environment,” IEEE Systems Journal, vol. 9,
no. 3, pp. 816–823, Sep. 2015.

[27] V. Odelu, A. K. Das, and A. Goswami, “A secure biometrics-
based multi-server authentication protocol using smart cards,”
IEEE Transactions on Information Forensics and Security, vol. 10, no. 9,
pp. 1953–1966, Sep. 2015.

[28] Y. Tseng, S. Huang, T. Tsai, and J. Ke, “List-free id-based mutual
authentication and key agreement protocol for multiserver archi-
tectures,” IEEE Transactions on Emerging Topics in Computing, vol. 4,
no. 1, pp. 102–112, Jan 2016.

[29] S. Kumari, X. Li, F. Wu, A. K. Das, K.-K. R. Choo, and J. Shen, “De-
sign of a provably secure biometrics-based multi-cloud-server au-
thentication scheme,” Future Generation Computer Systems, vol. 68,
pp. 320 – 330, 2017.

[30] Q. Feng, D. He, S. Zeadally, and H. Wang, “Anonymous
biometrics-based authentication scheme with key distribution for
mobile multi-server environment,” Future Generation Computer
Systems, vol. 84, pp. 239 – 251, 2018.

[31] A. Irshad, S. A. Chaudhry, Q. Xie, X. Li, M. S. Farash, S. Kumari,
and F. Wu, “An enhanced and provably secure chaotic map-based
authenticated key agreement in multi-server architecture,” Arabian
Journal for Science and Engineering, vol. 43, no. 2, pp. 811–828, Feb
2018.

[32] S. Kumari, A. K. Das, X. Li, F. Wu, M. K. Khan, Q. Jiang, and S. K.
Hafizul Islam, “A provably secure biometrics-based authenticated
key agreement scheme for multi-server environments,” Multimedia

12

Tools and Applications, vol. 77, no. 2, pp. 2359–2389, Jan 2018.
[33] S. Chatterjee, S. Roy, A. K. Das, S. Chattopadhyay, N. Kumar, and

A. V. Vasilakos, “Secure biometric-based authentication scheme
using chebyshev chaotic map for multi-server environment,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 5, pp.
824–839, Sep. 2018.

[34] J. Srinivas, A. K. Das, M. Wazid, and N. Kumar, “Anonymous
lightweight chaotic map-based authenticated key agreement pro-
tocol for industrial internet of things,” IEEE Transactions on De-
pendable and Secure Computing, pp. 1–1, 2018.

[35] M. Girault, “Self-certified public keys,” in Advances in Cryptology
— EUROCRYPT ’91, D. W. Davies, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1991, pp. 490–497.

[36] R. Amin and G. P. Biswas, “Design and analysis of bilinear pairing
based mutual authentication and key agreement protocol usable
in multi-server environment,” Wireless Personal Communications,
vol. 84, no. 1, pp. 439–462, Sep 2015. [Online]. Available:
https://doi.org/10.1007/s11277-015-2616-7

[37] I. [ul haq], J. Wang, and Y. Zhu, “Secure two-factor lightweight
authentication protocol using self-certified public key cryptogra-
phy for multi-server 5g networks,” Journal of Network and Computer
Applications, vol. 161, p. 102660, 2020.

[38] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data,” in
Advances in Cryptology - EUROCRYPT 2004, C. Cachin and J. L.
Camenisch, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 523–540.

[39] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. Comp., vol. 48,
no. 177, pp. 203–209, 1987.

[40] M. Bellare and P. Rogaway, “Entity authentication and key distri-
bution,” Adv. Cryptology-CRYPTO 1993, pp. 232–249, 1994.

[41] J. Xu, W.-T. Zhu, and D.-G. Feng, “An improved smart card
based password authentication scheme with provable security,”
Computer Standards & Interfaces, vol. 31, no. 4, pp. 723 – 728, 2009.

[42] M. Wazid, A. K. Das, V. Odelu, N. Kumar, and W. Susilo, “Secure
remote user authenticated key establishment protocol for smart
home environment,” IEEE Transactions on Dependable and Secure
Computing, pp. 1–1, 2018.

[43] V. Shoup, “Sequences of games: a tool for taming complexity
in security proofs,” Cryptology ePrint Archive, Report 2004/332,
2004, https://eprint.iacr.org/2004/332.

[44] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law in
passwords,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 11, pp. 2776–2791, 2017.

[45] S. Roy, A. K. Das, S. Chatterjee, N. Kumar, S. Chattopadhyay, and
J. J. P. C. Rodrigues, “Provably secure fine-grained data access con-
trol over multiple cloud servers in mobile cloud computing based
healthcare applications,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 1, pp. 457–468, 2019.

[46] D. Dolev, “On the Security of Public Key Protocols,” IEEE Trans.
Inf. Theory, vol. 29, no. 2, pp. 198–208, 1983.

[47] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining smart-
card security under the threat of power analysis attacks,” IEEE
Transactions on Computers, vol. 51, no. 5, pp. 541–552, May 2002.

[48] W. Li, L. Xuelian, J. Gao, and H. Y. Wang, “Design of secure
authenticated key management protocol for cloud computing
environments,” IEEE Transactions on Dependable and Secure Com-
puting, pp. 1–1, 2019.

[49] B. Ying and A. Nayak, “Lightweight remote user authentication
protocol for multi-server 5g networks using self-certified public
key cryptography,” Journal of Network and Computer Applications,
vol. 131, pp. 66 – 74, 2019.

