
Non-Interactive Threshold BBS+ From
Pseudorandom Correlations

Sebastian Faust1, Carmit Hazay3, David Kretzler1, Leandro Rometsch2, and
Benjamin Schlosser1

1 Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de

2 Technical University of Darmstadt, Germany
{first.last}@stud.tu-darmstadt.de

3 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. The BBS+ signature scheme is one of the most prominent
solutions for realizing anonymous credentials. Its prominence is due to
properties like selective disclosure and efficient protocols for creating and
showing possession of credentials. Traditionally, a single credential issuer
produces BBS+ signatures, which poses significant risks due to a single
point of failure.

In this work, we address this threat via a novel t-out-of-n threshold
BBS+ protocol. Our protocol supports an arbitrary security threshold
t ≤ n and works in the so-called preprocessing setting. In this setting, we
achieve non-interactive signing in the online phase and sublinear com-
munication complexity in the number of signatures in the offline phase,
which, as we show in this work, are important features from a practical
point of view. As it stands today, none of the widely studied signature
schemes, such as threshold ECDSA and threshold Schnorr, achieve both
properties simultaneously. To this end, we design specifically tailored
presignatures that can be directly computed from pseudorandom corre-
lations and allow servers to create signature shares without additional
cross-server communication. Both our offline and online protocols are
actively secure in the Universal Composability model. Finally, we evalu-
ate the concrete efficiency of our protocol, including an implementation
of the online phase and the expansion algorithm of the pseudorandom
correlation generator (PCG) used during the offline phase. The online
protocol without network latency takes less than 15ms for t ≤ 30 and
credentials sizes up to 10. Further, our results indicate that the influ-
ence of t on the online signing is insignificant, < 6% for t ≤ 30, and the
overhead of the thresholdization occurs almost exclusively in the offline
phase. Our implementation of the PCG expansion is the first consider-
ing correlations between more than 3 parties and shows that even for a
committee size of 10 servers, each server can expand a correlation of up
to 216 presignatures in about 600 ms per presignature.

Keywords: Threshold Signature · BBS+ · Pseudorandom Correlation
Functions · Pseudorandom Correlation Generators

1 Introduction

Anonymous credentials schemes, as introduced by Chaum in 1985 [Cha85] and
subsequently refined by a line of work [Che95, LRSW99, CL01, CL04, Cam06,
CDHK15, CKL+15, BBDE19, YAY19], allow an issuing party to create cre-
dentials for users, which then can prove individual attributes about themselves
without revealing their identities. The BBS+ signature scheme [ASM06, CDL16]
named after the group signature scheme of Boneh, Boyen, and Shacham [BBS04]
is one of the most prominent solutions for realizing anonymous credential schemes.
Abstractly speaking, a BBS+ signature over a set of attributes constitutes cre-
dentials, and the holder of such a credential can prove possession of individual
attributes using efficient zero-knowledge protocols. BBS+ signatures are par-
ticularly suited for anonymous credentials because of their appealing features,
including the ability to sign an array of attributes while keeping the signature
size constant, efficient protocols for blind signing, and efficient zero-knowledge
proofs for selective disclosure of signed attributes (without having to reveal
the signature). The importance of BBS+ is illustrated by the renewed atten-
tion in the research community [TZ23, DKL+23], several industrial implementa-
tions [Tri23, MAT23, Mic23], ongoing standardization efforts by the W3C Ver-
ifiable Credentials Group and IETF [LS23, LKWL23], and adaption in further
real-world applications [ASM06, Che09, BL10, BL11, CDL16].

In traditional credential systems, the credential issuer who is in possession
of the signing key constitutes a single point of failure. A powerful and widely
adapted tool mitigating such a single point of failure is to distribute the cryp-
tographic task (e.g., [Lin17, GG18, LN18, DKLS19, SA19, CCL+20, CGG+20,
KG20, KMOS21, ANO+22, CLT22, CGRS23] and many more) via so-called
threshold cryptography. Here, the cryptographic key is shared among a set of
servers such that any subset of t servers can produce a signature, while the
underlying signature scheme remains secure even if up to t − 1 servers are cor-
rupted. The thresholdization of digital signature schemes comes with significant
overhead in computation, communication, and round complexity. This is partic-
ularly the case for randomized signature schemes, where a random secret nonce
has to be generated among a set of servers. In the signing protocol, this nonce is
then used together with the shared key to produce the signature. Concretely, for
BBS+ signing, we require a distributed protocol to compute the exponentiation
of the inverse of the secret key added to the random nonce securely.

The straightforward approach to compute the inverse is based on the inver-
sion protocol by Bar-Ilan and Beaver [BB89] and requires server interaction. In
order to strengthen the protection against failure and corruption, we assess it as
likely for servers to be located in different jurisdictional and geographic regions.
In such a setting, any additional communication round involves a significant
performance overhead. Therefore, an ideal threshold BBS+ scheme has a non-
interactive signing phase that enables servers to respond to signature requests
without any cross-server interaction.

A popular approach in secure distributed computation to cope with the high
complexities of protocols is to split the computation into an input-independent

2

offline and input-dependent online phase [DPSZ12, NNOB12, WRK17a, WRK17b].
The offline phase provides precomputation material, which in the setting of a dig-
ital signature scheme is called presignatures [EGM96]. These presignatures are
produced during idle times of the system and facilitate an efficient online phase.
In recent years, Boyle et al. [BCGI18, BCG+19b, BCG+20a] put forth a novel
concept to generate precomputation material called pseudorandom correlation-
based precomputation (PCP). The main advantage of this concept is the gen-
eration of precomputation material in sublinear communication complexity in
the amount of generated precomputation material. Recently, this technique also
attracted interest for use in threshold signature protocols [ANO+22, KOR23]. In
PCP, precomputed values are generated by a pseudorandom correlation genera-
tor (PCG) or a pseudorandom correlation function (PCF). These primitives in-
clude an interactive setup phase where short keys are generated and distributed.
Then, in the evaluation phase, every party locally evaluates on its key and a com-
mon input. The outputs look pseudorandom but still satisfy some correlation,
e.g., oblivious linear evaluation (OLE), oblivious transfer (OT), or multiplication
triples.

1.1 Contribution

We propose a novel t-out-of-n threshold BBS+ signature scheme in the offline-
online model with an arbitrary security threshold t ≤ n. The centerpiece of our
protocol is the design of specifically tailored presignatures that can be directly
instantiated from PCG or PCF evaluations and can be used by servers to create
signature shares without any additional cross-server communication. This way,
our scheme simultaneously provides a non-interactive online signing phase and
an offline phase with sublinear communication complexity in the number of sig-
natures. Thus, our protocol is the first threshold BBS+ signature scheme with
non-interactive signing. Even for the widely studied signature schemes ECDSA
and Schnorr, no threshold protocol exists that achieves both features simulta-
neously. Moreover, we are the first to present a PCG/PCF-based protocol that
supports t-out-of-n threshold, while previous protocols support only n-out-of-
n. We formally analyze the static security of all our protocols in the Universal
Composability framework under active corruption.

We present two instantiations of the offline phase, one based on PCGs and
one based on PCFs. Conceptually, PCFs are better suited than PCGs for pre-
processing signatures as PCFs allow servers to compute presignatures only when
needed. In contrast, PCGs require the generation of a large batch of presigna-
tures at once that need to be stored on the server side. Nevertheless, existing
PCG constructions provide better efficiency than PCF constructions. Therefore,
we present protocols for both primitives.

Unlike prior work using silent preprocessing in the context of threshold sig-
natures [ANO+22], we use the PCG and PCF primitive in a black-box way,
allowing for a modular treatment. In this process, we identify several issues in
using the primitives in a black-box way, extend the definitional frameworks ac-

3

cordingly, and prove the security of existing constructions under the adapted
properties.

On a practical level, we provide an extensive evaluation of our protocol, in-
cluding an implementation and experimental evaluation of the online phase and
the seed expansion of the PCG-based offline phase. Since state-of-the-art PCF
constructions lack concrete efficiency, we focus our evaluation on the PCG-based
preprocessing. Given preprocessed presignatures, the total runtime of the online
signing protocol is below 13.595 ms plus one round trip time of the slowest
client-server connection for t ≤ 30 signers and message arrays of size k ≤ 10.
Our benchmarks show that the influence of the number of signers on the run-
time of the online protocol is minimal; increasing the number of signers from
2 to 30 increases the runtime by just 1.14% − 5.52% (for message array sizes
between 2 and 50). Further, our results show that the cost of thresholdization
occurs almost exclusively in the offline phase; a threshold signature on a single
message array takes 7.536 ms in our protocol, while a non-threshold signature,
including verification of the received signature, takes 7.248 ms; ignoring network
delays which are the same in both settings. Our implementation of the PCG
seed expansion is the first to consider more than 3 parties. In our benchmarks,
we extend batches of up to 216 presignatures for 2 ≤ n ≤ 10 parties in both
the n-out-of-n and the t-out-of-n setting. Even when considering the t-out-of-10
setting and batches of 216 presignatures, the computation time per signature is
roughly 600 ms. Our results show that the computation cost increases linearly
with the number of parties and superlinear with the size of the presignature
batches. However, our complexity analysis shows that the PCG key size and the
communication of a distributed key generation protocol grow sublinear, leading
to a trade-off between communication and computation complexity.
We summarize our contribution as follows:

– We propose the first threshold BBS+ scheme with a non-interactive online
signing phase.

– Our scheme simultaneously achieves non-interactive online signing and sub-
linear communication in the offline phase. This combination is not achieved
by the widely studied threshold protocols for ECDSA and Schnorr.

– We extend the definitional framework of PCGs and PCFs by introducing the
notion of (strong) reusability for both primitives.

– We specify two instantiations for the offline phase, one based on PCGs and
one based on PCFs.

– We prove the static security of our protocols in the Universal Composability
framework with active corruption.

– We provide an evaluation of the whole protocol with the PCG-based pre-
computation.

– We provide an implementation and evaluation of the online phase and the
PCG-based offline phase’s seed expansion.

For the sake of presentation, we focus the main body on PCGs and present the
definition of reusable PCFs and the PCF-based offline phase in the Appendix.

4

1.2 Technical Overview

BBS+ signatures. LetG1,G2, andGT be groups of prime order p with generators
g1 ∈ G1 and g2 ∈ G2 and let map e : G1 × G2 → GT be a bilinear paring. A
BBS+ signature on a message array {mℓ}ℓ∈[k] is a tuple (A, e, s) with A =

(g1 · hs
0 ·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e for random nonces e, s ∈R Zp, secret key x ∈ Zp and a

set of random elements {hℓ}ℓ∈[0..k] in G1. To verify under public key gx2 , check if
e(A, gx2 ·ge2) = e(g1 ·hs

0 ·
∏

ℓ∈[k] h
mℓ

ℓ , g2) (see Appendix A for a formal description).

Distributed inverse calculation. The main difficulty in thresholdizing the BBS+
signature algorithm comes from the signing operation requiring the computation
of the inverse of x+ s without leaking x. This highly non-linear operation is ex-
pensive to be computed in a distributed way. Similar challenges are known from
other signature schemes relying on exponentiation (or a scalar multiplication in
additive notion) of the inverse of secret values, e.g., ECDSA [AHS20, CGG+20,

ANO+22, WMYC23, BS23]. The typical approach (cf. [BB89]) to compute M
1
y

for a group element M and a secret shared y is to separately open B = Ma and
δ = a · y for a freshly shared random a. The desired result can be reconstructed

by computing M
1
y = B

1
δ .

Since δ is the product of two secret shared values, it still is a non-linear
operation requiring interaction between the parties. Nevertheless, as δ is inde-
pendent of the actual message, several such values can be precomputed in an
offline phase. As explained next, a similar, yet more involved, approach can
be applied to the BBS+ protocol, allowing an efficient, non-interactive online
signing based on correlated precomputation material.

The threshold BBS+ online protocol. We describe a simplified, n-out-of-n ver-
sion of our threshold BBS+ protocol. Assume a BBS+ secret key x, elements
{hℓ}ℓ∈[0..k] in G1, a random blinding factor a ∈ Zp and n servers, each hav-
ing access to a preprocessed tuple (ai, ei, si, δi, αi) ∈ Z5

p, in the following called
presignatures, such that

δ =
∑
i∈[n]

δi = a(x+ e),
∑
i∈[n]

αi = as

for a =
∑
i∈[n]

ai, e =
∑
i∈[n]

ei, s =
∑
i∈[n]

si.
(1)

To sign a message array {mℓ}ℓ∈[k], each server computes Ai := (g1·
∏

ℓ∈[k] h
mℓ

ℓ)ai ·
hαi
0 and outputs a partial signature σi := (Ai, δi, ei, si). This allows the receiver

of the partial signatures to reconstruct δ, e and s and compute

A = (
∏
i∈[n]

Ai)
1
δ = ((g1 ·

∏
ℓ∈[k]

hmℓ

ℓ)a · has
0)

1
a(x+e)

such that the tuple (A, e, s) constitutes a valid BBS+ signature. Each signature
requires a new preprocessed tuple to prevent straightforward forgeries.

5

The specialized layout of our presignatures allows us to realize a non-interactive
signing procedure. In contrast, using plain multiplication triples, as often done
in multi-party computation protocols [Bea91, DPSZ12], would require one ad-
ditional round of communication. Further, our online protocol provides active
security at a low cost. This is achieved by verifying the received signatures and
works since the presignatures are created securely.

The preprocessing protocol. An appealing choice for instantiating the prepro-
cessing protocol is to use pseudorandom correlation generators (PCG) or func-
tions (PCF), as they enable the efficient generation of correlated random tuples.
More precisely, PCGs and PCFs allow two parties to expand short seeds to
fresh correlated random tuples locally. While the distributed generation of the
seeds requires more involved protocols and typically relies on general-purpose
multi-party computation, the seed size and the communication complexity of
the generating protocols are sublinear in the size of the expanded correlated
tuples [BCGI18, BCG+19b].

The correlated pseudorandom presignatures required by our online signing
procedure are specifically tailored to the BBS+ setting (cf. (1)). For these spe-
cific presignatures, there exist no tailored PCG or PCF constructions. Instead,
we show how to obtain these presignatures from simple correlations. Specifically,
we leverage oblivious linear evaluation (OLE) and vector oblivious linear evalu-
ation (VOLE) correlations. For both of these correlations, there exist PCG and
PCF constructions [BCGI18, BCG+19b, BCG+20a, BCG+20b, CRR21, OSY21,
BCG+22]. An OLE tuple is a two-party correlation, in which party P1 gets ran-
dom values (a, u) and party P2 gets random values (s, v) such that a · s = u+ v.
A VOLE tuple provides the same correlation but fixes s over all tuples computed
by the particular PCG or PCF instance. In these tuples, we call a and s the input
value of party P1 and P2. Further, the PCGs/PCFs used by our protocol provide
a so-called reusability feature, allowing parties to fix the input values over several
PCG/PCF instances. This feature enables parties to turn two-party into multi-
party correlations as shown by [BCG+20b, ANO+22, AS22]. It is achieved by
extending the definitions with the ability of both parties to provide parameters
to the key generation.

For computing the product of two secret shared values, a and s, the parties
use OLE correlations. Let α =

∑
i∈[n] ai ·

∑
j∈[n] sj , where ai and si are known

to party Pi. Only aisi can be locally computed by Pi. For all cross terms aisj
for i ̸= j, the parties use OLE correlations to get an additive share of that cross
term, i.e., aisj = ui,j + vi,j . By adding aisi to the sum of all additive shares ui,j

and vj,i, party Pi obtains an additive share of α. Note that the ai value must
be the same for all cross terms, so we require the OLE PCG/PCF to provide
the reusability feature. This allows party Pi to use the same input value ai in
all OLE correlations for the cross terms aisj with j ̸= i.

Using PCGs/PCFs in a black-box way. Pseudorandom correlation generators
(PCGs) and pseudorandom correlation functions (PCFs) are introduced in [BCGI18]

6

and [BCG+20a]. Concrete constructions of both primitives for simple corre-
lations, such as VOLE, are presented in a line of work including [BCGI18,
BCG+19b, BCG+19a, BCG+20b, BCG+20a, CRR21, OSY21]. In our work, we
aim to deal with PCGs/PCFs in a black-box way such that we can instantiate our
protocols with arbitrary constructions as long as they fulfill our requirements.
These requirements include supporting VOLE and OLE correlations, the active
security setting, and the opportunity to reuse inputs, as emphasized above. A
first step towards black-box usage of PCGs was taken by [BCG+19b]. This work
defines an ideal functionality for correlated randomness, which they show can be
instantiated by PCGs. However, the definition does not support reusing inputs
to PCGs.

[BCG+19b] and [BCG+20a] lay the foundation of the reusability property for
PCGs and PCFs. However, their definitions consider passive security only and
are unsuitable for black-box usage. Therefore, we introduce new notions called
reusable PCG and reusable PCF, which capture the active security setting and
permit black-box use. Identical to prior definitions of PCGs and PCFs, our
primitives consist of a key generation Gen and an expansion algorithm Expand
or evaluation algorithm Eval. The reusability feature allows both parties to spec-
ify an input to the key generation, which is used to derive the correlation tu-
ples. Additionally, our reusable primitives must satisfy four properties. Three
of these properties are stated by [BCG+19b] and [BCG+20a], two of which we
slightly modified. Our new insight is the requirement of the key indistinguisha-
bility property, which we specifically introduce to cover malicious parties. The
key indistinguishability property states that the adversary cannot learn informa-
tion about the honest party’s input to the key generation, even if the corrupted
party chooses its input arbitrarily. This property makes our notion suitable for
the active security setting.

We present reusable PCG constructions for VOLE and OLE correlations and
prove that the VOLE PCF construction by Boyle et al. [BCG+20a] fulfills our
new definition. Additionally, we present an extension of this construction for
OLE correlations.

The t-out-of-n setting. So far, we discussed a setting where n-out-of-n servers
must contribute to the signature creation. However, in many use cases, we need
to support the more flexible t-out-of-n setting with t ≤ n. In this setting, the
secret key material is distributed to n servers, but only t must contribute to the
signing protocol. A threshold t ≤ n improves the flexibility and robustness of
the signing process, as not all servers must be online.

The typical approach in the t-out-of-n setting is to share the secret key
material using Shamir’s secret sharing [Sha79] instead of an additive sharing as
done above. While additive shares are reconstructed by summation, Shamir-style
shares must be aggregated using Lagrange interpolation, either on the client or
server side. In this work, we reconstruct on the server side due to technical
details of our precomputation protocols. Note that prior threshold signature
schemes leveraging PCF/PCGs (e.g., [ANO+22, KOR23]) achieve only n-out-of-
n, in contrast to a flexible t-out-of-n setting.

7

On a technical level, the challenge for client-side reconstruction is due to
(V)OLE correlations providing us with two-party additive sharings of multipli-
cations, e.g., ui,j + vi,j = aisj . For a product of two additively shared values
a · s, we can rewrite the product as

∑
i∈[n] ai ·

∑
i∈[n] si =

∑
i∈[n]

∑
j∈[n] aisj =∑

i∈[n]

∑
j∈[n] ui,j + vi,j . Here, ui,j and vi,j can be interpreted as additive shares

of the product. These additive shares are sufficient for the n-out-of-n setting.
However, it is unclear how (V)OLE outputs can be transformed to Shamir shar-
ing of a · s required for t-out-of-n with client reconstruction.

We, therefore, incorporate a share conversion mechanism from Shamir-style
shared key material into additively shared presignatures on the server side. Our
mechanism consists of the servers applying the corresponding Lagrange inter-
polation directly to the outputs of the VOLE correlation. More precisely, as
described above, each party Pi gets additive shares of the cross terms aixj and
ajxi for every other party Pj . Here, xℓ denotes the Shamir-style share of the
secret key belonging to party Pℓ. Let ci,j be the additive share of aixj , then
party Pi multiplies the required Lagrange coefficient Lj,T to this share and Li,T
to cj,i, where T is the set of t signers. The client provides the set of servers as
part of the signing request to enable the servers to compute the interpolation.

1.3 Related Work

Most related to our work are the works by Gennaro et al. [GGI19] and Doerner
et al. [DKL+23], proposing threshold protocols for the BBS+ signing algorithm.
While [GGI19] focuses on a group signature scheme with threshold issuance
based on the BBS signatures, their techniques can be directly applied to BBS+.
[DKL+23] presents a threshold anonymous credential scheme based on BBS+.
Both schemes compute the inverse using classical techniques of Bar-Ilan and
Beaver [BB89]. Moreover, they realize the multiplication of two secret shared
values by multiplying each pair of shares. While [GGI19] uses a three-round
multiplication protocol based on an additively homomorphic encryption scheme,
[DKL+23] integrates a two-round OT-based multiplier. Although the OT-based
multiplier requires a one-time setup, both schemes do not use precomputed val-
ues per signing request. This is in contrast to our scheme but at the cost of
requiring several rounds of communication during the signing. Parts of their
protocols are independent of the message that will be signed; thus, in principle,
these steps can be moved to a presigning phase. In this case, the signing phase
is non-interactive, but on the downside, the communication complexity of the
presigning phase has linear complexity. In contrast, our protocol achieves both a
non-interactive online phase and an offline phase with sublinear complexity. In
addition, both works [GGI19, DKL+23] consider a security model tailored to the
BBS+ signature scheme while we show security with respect to a more generic
threshold signature ideal functionality.

In the non-threshold setting, Tessaro and Zhu [TZ23] show that short BBS+
signatures, where the signature consists only of A and e, are also secure under
the q-SDH assumption. Their results suggest removing s to reduce the signature
size to one group element and a scalar. Like prior proofs of BBS+, their security

8

proof in the standard model incurs a multiplicative loss. However, they present
a tight proof in the Algebraic Group Model [FKL18]. We discuss the impact of
their work on our evaluation in Appendix N.

Another anonymous credential scheme with threshold issuance, called Co-
conut, is proposed by Sonnino et al. [SAB+19] and the follow-up work by Rial
and Piotrowska [RP22]. Their scheme is based on the Pointcheval-Sanders (PS)
signature scheme, which allows them to have a non-interactive issuance phase
without coordination or precomputation. We emphasize that the PS signature
scheme is less popular than BBS+ and not subject to standardization efforts.
The security of PS and Coconut is based on a modified variant of the LRSW
assumption introduced in [PS16]. This assumption is interactive in contrast to
the q-Strong Diffie-Hellman assumption on which the security of BBS+ is based.
While PS and Coconut also support multi-attribute credentials, the secret and
public key size increases linearly in the number of attributes. In BBS+, the key
size is constant. Further, PS and, therefore, the Coconut scheme relies on Type-3
pairings, while our scheme can be instantiated with any pairing type. The secu-
rity of Coconut was not shown under concurrent composition while our scheme
is analyzed in the Universal Composability framework.

Like our work, [ANO+22] and [KOR23] leverage pseudorandom correlations
for threshold signatures. [ANO+22] presents an ECDSA scheme, while [KOR23]
focuses on Schnorr signatures. [ANO+22] constructs a tailored PCG generat-
ing ECDSA- presignatures while our scheme uses existing VOLE and OLE
PCGs/PCFs in a black-box way and combines the OLE and VOLE correlations
to BBS+ presignatures. Further, in contrast to our work, [ANO+22] presents
an n-out-of-n protocol without a flexible threshold. [KOR23] introduces the new
notion of a discrete log PCF and constructs a two-party protocol based on this
primitive. In contrast to our work, [KOR23] captures only the 2-out-of-2 setting.
Both schemes [ANO+22, KOR23] require additional per-presignature communi-
cation. Depending on the phase this communication is assigned to, the schemes
either have linear communication in the offline phase or require two rounds of
communication in the online phase.

2 Preliminaries

Throughout this work, we denote the security parameter by λ ∈ N, the set
{1, . . . , k} as [k], the set {0, 1, . . . , k} as [0..k], the number of parties by n and a
specific party by Pi. The set of indices of corrupted parties is denoted by C ⊊ [n]
and honest parties are denoted by H = [n] \ C. We denote vectors of elements
via bold letters, e.g., a, and the i-th element of a vector a by a[i].

We model our protocol in the Universal Composability (UC) framework by
Canetti [Can01]. We refer to Appendix B for a brief introduction to UC. In our
constructions, we denote by Z the UC environment and use sid and ssid to denote
session and subsession identifier. We model a malicious adversary corrupting up
to t − 1 parties. We consider static corruption and a rushing adversary. Our
protocols are in the synchronous communication model.

9

We make use of a bilinear mapping following the definition of [BF01, BBS04].
A bilinear mapping is described by three cyclic groups (G1,G2,GT) of prime
order p, generators g1 ∈ G1, g2 ∈ G2, and a pairing e : G1 × G → GT . We call
e a bilinear map iff it can be computed efficiently, e(ua, vb) = e(u, v)ab for all
(u, v, a, b) ∈ G1 × G2 × Zp × Zp, and e(g1, g2) ̸= 1 for all generators g1 and g2.
We refer to [BF01] for a more formal specification.

3 Reusable Pseudorandom Correlation Generators

In this section we introduce our definition of reusable PCGs, extending the
definition of programmable PCGs from [BCG+19b] and [BCG+20b]. We argue
why existing constructions for PCGs satisfy our new definition in Appendix D.
The extended definitional framework for PCFs and the PCF-based instantiation
of the precomputation are stated in Appendix E and G.

In a nuthsell, pseudorandom correlation generators allow two parties to gen-
erate a large amount of correlated randomness from short seeds. They are useful
in many two- and multi-party protocols in the offline-online-model [DPSZ12,
NNOB12, WRK17a, WRK17b]. Examples for frequently used correlations are
oblivious linear evaluations, oblivious transfer and multiplication triples.

Our modifications and extensions of the definitions of [BCG+19a] and [BCG+20b]
reflect the challenges we faced when using PCGs as black-box primitives in
our threshold BBS+ protocol. We present our definition and highlight these
challenges and changes in the following. We note that Boyle et al. [BCG+19b]
presents an ideal functionality for corruptible, correlated randomness which can
be instantiated by PCGs. While this simulation-based notion allows to abstract
from concrete PCG constructions, their ideal functionality does not cover the
reusability feature required in our setting. Therefore, we present a suitable game-
based definition.

3.1 Definition

As mentioned above, a PCF/PCG realizes a target correlation Y. For some cor-
relations, like VOLE, parts of the correlation outputs are fixed over all outputs.
In the example of VOLE, where the correlation is v = as+ u over some ring R,
the s value is fixed for all tuples.

Additionally, in a multi-party setting, we like PCG/PCF constructions that
allow parties to obtain the same values for parts of the correlation output in
multiple instances. Concretely, assume party Pi evaluates one VOLE PCG/PCF
instance with party Pj and one with party Pk. Pi evaluates the PCG/PCF to
(ai,j , ui,j) for the first instance and (ai,k, ui,k) for the second instance. Here,
we want to give party Pi the opportunity to get ai,j = ai,k when applied on
the same input. This property is necessary to construct multi-party correlations
from two-party PCG/PCF instances.

To formally model the abovementioned properties, we define a target corre-
lation as a tuple of probabilistic algorithms (Setup,Y), where Setup takes two

10

inputs and creates a master key mk. These inputs enable fixing parts of the
correlation, e.g., the fixed value s in VOLE correlations. Algorithm Y uses the
master key to sample correlation outputs.

Finally, we follow [BCG+19a, BCG+20b] and require a target correlation to
be reverse-sampleable to facilitate a suitable definition of PCGs. In contrast to
[BCG+19b, BCG+20b], our definition of a target correlation explicitly considers
the reusability of values over multiple invocations.

Definition 1 (Reverse-sampleable correlation with setup). Let ℓ0(λ), ℓ1(λ) ≤
poly(λ) be output length functions. Let (Setup,Y) be a tuple of probabilistic
algorithms, such that Setup on input 1λ and two parameters ρ0, ρ1 returns a
master key mk; algorithm Y on input 1λ and mk returns a pair of outputs

(y
(i)
0 , y

(i)
1) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ).

We say that the tuple (Setup,Y) defines a reverse-sampleable correlation with
setup if there exists a probabilistic polynomial time algorithm RSample that takes

as input 1λ,mk, σ ∈ {0, 1}, y(i)σ ∈ {0, 1}ℓσ(λ) and outputs y
(i)
1−σ ∈ {0, 1}ℓ1−σ(λ),

such that for all σ ∈ {0, 1}, for all mk,mk′ in the range of Setup for arbitrary
but fixed input ρσ the following distributions are statistically close:

{(y0, y1)|(y0, y1)
$← Y(1λ,mk)}

{(y0, y1)|(y′0, y′1)
$← Y(1λ,mk′),

yσ ← y′σ, y1−σ ← RSample(1λ,mk, σ, yσ)}.

Given the definition of a reverse-sampleable correlation with setup, we define
our primitive called reusable PCG (rPCG).

The security properties in the original notion of programmable PCGs assumes
randomly selected seeds that are inserted into the key generation. This reflects
a passive or semi-honest setting in which the adversary cannot deviate from the
protocol description such that the seeds are indeed random. We are interested
in the active security setting, where an adversary can insert arbitrary seeds into
the key generation. Therefore, we propose the notion of reusable pseudorandom
correlation generators.

Definition 2 (Reusable pseudorandom correlation generator (rPCG)).
Let (Setup,Y) be a reverse-sampleable and indexable correlation with setup which
has output length functions ℓ0(λ), ℓ1(λ), let λ ≤ η(λ) ≤ poly(λ) be the sample size
function. Let (PCG.Genp,PCG.Expand) be a pair of algorithms with the following
syntax:

– PCG.Genp(1
λ, ρ0, ρ1) is a probabilistic polynomial-time algorithm that on in-

put the security parameter 1λ and reusable inputs ρ0, ρ1 outputs a pair of
keys (k0, k1).

– PCG.Expand(σ, kσ) is a deterministic polynomial-time algorithm that on in-
put σ ∈ {0, 1} and key kσ outputs yσ ∈ {0, 1}ℓσ(λ)×η(λ), i.e. an array of size
η(λ) with elements being bit-strings of length ℓσ(λ).

11

We say (PCG.Genp,PCG.Expand) is a reusable pseudorandom correlation gen-
erator (rPCG) for (Setup,Y), if the following conditions hold:

– Programmability. There exist public efficiently computable functions ϕ0, ϕ1,
such that for all ρ0, ρ1 ∈ {0, 1}∗

Pr

(k0, k1)

$← PCG.Genp(1
λ, ρ0, ρ1)

(x0, z0)← PCG.Expand(0, k0),

(x1, z1)← PCG.Expand(1, k1)

:
x0 = ϕ0(ρ0)

x1 = ϕ1(ρ1)

 ≥ 1− negl(λ).

– Pseudorandom Y-correlated outputs. For every non-uniform adversary
A of size poly(λ) it holds that∣∣∣∣Pr[Exppr-gA (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exppr-gA (λ) is as defined in Figure 1.
– Security. For each σ ∈ {0, 1} and non-uniform adversary A of size poly(λ),

it holds that ∣∣∣∣Pr[Expsec-gA,σ (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Expsec-gA,σ (λ) is as defined in Figure 2.
– Key indistinguishability. For any σ ∈ {0, 1} and non-uniform adversary
A = (A0,A1), it holds

Pr[Expkey-ind-gA,σ (λ) = 1] ≤ 1

2
+ negl(λ)

for all sufficiently large λ, where Expkey-ind-gA,σ is as defined in Figure 1.

Exppr-gA,σ(λ) :

b
$← {0, 1}, N ← η(λ), (ρ0, ρ1)← A0(1

λ)

mk
$← Setup(1λ, ρ0, ρ1)

(k0, k1)
$← PCG.Genp(1

λ, ρ0, ρ1)

if b = 0 then (y0,y1)
$← Y(1λ,mk)

else yσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}
b′ ← A1(1

λ,y0,y1), return b′ = b

Expkey-ind-gA,σ (λ) :

b
$← {0, 1}, ρσ ← A0(1

λ)

ρ
(0)
1−σ, ρ

(1)
1−σ

$← {0, 1}∗

ρ1−σ ← ρ
(b)
1−σ

(k0, k1)← PCG.Genp(1
λ, ρ0, ρ1)

b′ ← A1(1
λ, kσ, ρ

(0)
1−σ)

return b′ = b

Fig. 1: Security games for pseudorandom Y-correlated outputs property (left)
and the key indistinguishability property (right) of a rPCG.

12

Expsec-gA,σ (λ) :

b
$← {0, 1}, N ← η(λ)

(ρ0, ρ1)← A0(1
λ)

mk
$← Setup(1λ, ρ0, ρ1)

(k0, k1)
$← PCG.Genp(1

λ, ρ0, ρ1)

yσ
$← PCG.Expand(σ, kσ)

if b = 0 then (y1−σ)← PCG.Expand(1− σ, k1−σ)

else y1−σ ← RSample(1λ,mk, σ,yσ)

b′ ← A1(1
λ,y0,y1), return b′ = b

Fig. 2: Game for security property of a rPCG.

3.2 Correlations

Our OLE correlation of size N over a finite field Fp is given by z1 = x0 ·x1+ z0,
where x0,x1, z0, z1 ∈ FN

p . Moreover, we require x0 and x1 being computed by
a pseudorandom generator (PRG). Formally, we define the reverse-sampleable
target correlation with setup (SetupOLE,YOLE) of size N over a field Fp as

mk = (ρ0, ρ1)← SetupOLE(1
λ, ρ0, ρ1) ,

((F0(ρ0), z0), (F1(ρ1), z1))← YOLE(1
λ,mk) such that

z0
$← FN

p and z1 = F0(ρ0) · F1(ρ1) + z0 ,

(2)

where F0, F1 being pseudorandom generators (PRG). Note that while the Setup
algorithm for our OLE and VOLE correlation essentially is the identity func-
tion, the algorithm might be more complex for other correlations. The reverse-
sampling algorithm is defined such that (F1(ρ1), F0(ρ0) · F1(ρ1) + z0) ←
RSampleOLE(1

λ,mk, 0, (F0(ρ0), z0)) and (F0(ρ0), z1 − F0(ρ0) · F1(ρ1)) ←
RSampleOLE(1

λ,mk, 1, (F1(ρ1), z1)).
Our VOLE correlation is the same as OLE but the value x1 is a fixed scalar

in Fp, i.e., z1 = x0 · x1 + z0. We formally define the reverse-sampleable target
correlation with setup (SetupVOLE,YVOLE) of size N over field Fp as

mk = (ρ, x1)← SetupVOLE(1
λ, ρ, x1) ,

((F (ρ), z0), (x1, z1))← YVOLE(1
λ,mk) such that

z0
$← FN

p and z1 = F0(ρ0) · x1 + z0 ,

(3)

where F being a pseudorandom generator (PRG). The reverse-sampling algo-
rithm is defined such that (x1, F (ρ)·x1+z0)← RSampleVOLE(1

λ,mk, 0, (F (ρ), z0))
and (F (ρ), z1 − F (ρ) · x1)← RSampleVOLE(1

λ,mk, 1, (x1, z1)).
We state PCG constructions realizing these definitions of OLE and VOLE

correlations in Appendix D.

13

4 Threshold Online Protocol

In this section, we present our threshold BBS+ protocol. This protocol yields a
signing phase without interaction between the signers and a flexible threshold
parameter t.

We show the security of our protocol against a malicious adversary statically
corrupting up to t − 1 parties in the UC framework. We show that our scheme
implements a modification of the generic ideal functionality for threshold sig-
nature schemes introduced by Canetti et al. [CGG+20]. We deliberately chose
the generic threshold signature functionality by Canetti et al. [CGG+20] over a
specific BBS+ functionality such as the one used in [DKL+23]. Proving security
under a generic threshold functionality enables our threshold BBS+ protocol to
be used whenever a threshold signature scheme is required (e.g., for the con-
struction of a more complex protocol such as an anonymous credential system).
We present the ideal functionality and discuss the changes with respect to the
original version in Appendix H.

Our protocol uses precomputation to accelerate online signing. An intuitive
description of the precomputation used is given in Section 1.2. We formally
model the precomputation by describing our protocol in a hybrid model where
parties can access a hybrid preprocessing functionality FPrep. Using a hybrid
model allows us to abstract from the concrete instantiation of the preprocess-
ing functionality. We present concrete instantiations of FPrep in Section 5 and
Appendix G.

4.1 Ideal Preprocessing Functionality

The preprocessing functionality consists of two phases. First, the Initialization
phase samples a private/public key pair. Second, the Tuple phase provides cor-
related tuples upon request. In the second phase, the output values of the honest
parties are reverse sampled, given the corrupted parties’ outputs. To explicitly
model the Tuple phase as non-interactive, we require the simulator to specify
a function Tuple during the Initialization. This function defines the corrupted
parties’ output values in the Tuple phase and is computed first to reverse sample
the honest parties’ outputs.

Functionality FPrep

The functionality FPrep interacts with parties P1, . . . , Pn and ideal-world ad-
versary S. The functionality is parameterized by a threshold parameter t.
During the initialization, S provides a tuple function Tuple(·, ·, ·)→ Z5

p.
Initialization. Upon receiving (init, sid) from all parties,

1. Sample the secret key sk
$← Zp.

2. Send pk = (gsk2) to S. Upon receiving (ok,Tuple(·, ·, ·)) from S, send pk to
every honest party.

Tuple. On input (tuple, sid, ssid, T) from party Pi where i ∈ T , T ⊆ [n] of
size t do:

14

– If (ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T) is stored, send (ai, ei, si, δi, αi) to Pi.
Else, compute (aj , ej , sj , δj , αj) ← Tuple(ssid, T , j) for every corrupted

party Pj where j ∈ C ∩ T . Next, sample a, e, s
$← Zp and tuples

(aj , ej , sj , δj , αj) over Zp for j ∈ H ∩ T such that∑
ℓ∈T

aℓ = a
∑
ℓ∈T

eℓ = e
∑
ℓ∈T

sℓ = s∑
ℓ∈T

δℓ = a(sk+ e)
∑
ℓ∈T

αℓ = as
(4)

Store (sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T) and send (sid, ssid, ai, ei, si, δi, αi)
to honest party Pi.

Abort. On input (abort, sid) from S, send abort to all honest parties and
halt.

4.2 Online Signing Protocol

Next, we formally state our threshold BBS+ protocol. We refer the reader to
the technical overview in Section 1.2 for a high-level description of our protocol.
Further, we discuss extensions for anonymous credentials systems, blind signing
and efficiency improvements in Appendix C.

Construction 1: πTBBS+

We describe the protocol from the perspective of an honest party Pi.
Public Parameters. Number of parties n, maximal number of signatures
N , size of message arrays k, security threshold t, a bilinear mapping tu-
ple (G1,G2,GT , p, g1, g2, e) and randomly sampled G1 elements {hℓ}ℓ∈[0..k]. Let
Verifypk(·, ·) be the BBS+ verification algorithm as defined in Appendix A.
KeyGen.

– Upon receiving (keygen, sid) from Z, send (init, sid) to FPrep and receive pk in
return.

– Upon receiving (pubkey, sid) from Z output (pubkey, sid,Verifypk(·, ·)).

Sign. Upon receiving (sign, sid, ssid, T ,m = {mℓ}ℓ∈[k]) from Z with Pi ∈ T and no
tuple (sid, ssid mod N , ·) is stored, perform the following steps:

1. Send (tuple, sid, ssid mod N , T) to FPrep and receive tuple (ai, ei, si, δi, αi).
2. Store (sid, ssid,m) and send (sid, ssid, T , Ai := (g1 ·

∏
ℓ∈[k] h

mℓ
ℓ)ai · hαi

0 , δi, ei, si)
to each party Pj ∈ T .

3. Once (sid, ssid, T , Aj , δj , ej , sj) is received from every party Pj ∈ T \ {Pi},
(a) compute e =

∑
ℓ∈T eℓ, s =

∑
ℓ∈T sℓ, ϵ =

(∑
ℓ∈T δℓ

)−1
, and A = (Πℓ∈T Aℓ)

ϵ.
(b) If Verifypk(m, (A, e, s)) = 1, set out = σ = (A, e, s). Otherwise, set out =

abort. Then, output (sig, sid, ssid, T ,m, out).

Verify. Upon receiving (verify, sid,m = {mℓ}ℓ∈[k], σ,Verifypk′(·, ·)) from Z output
(verified, sid,m, σ,Verifypk′(m, σ)).

15

Remark. While we simplified our UC model to capture the scenario where every
signer obtains the final signature, we expect real-world scenarios to have a dedi-
cated client which is the only party to obtain the signature. In the latter case, the
signers send the partial signature in Step 2 only to the client and Steps 3a and
3b are performed by the client. We stress that in both cases the communication
follows a request-response pattern which is the minimum for MPC protocols.
Moreover, note that the (tuple, ·, ·, ·)-call to FPrep does not involve additional
communication when being instantiated based on PCGs or PCFs as done in this
work. Using such an instantiation, the (tuple, ·, ·, ·)-call is realized by local eval-
uation of the PCF or local expansion of the PCG so that no interaction between
the parties is needed.

Theorem 1. Assuming the strong unforgeability of BBS+, protocol πTBBS+ UC-
realizes Ftsig in the FPrep-hybrid model in the presence of malicious adversaries
controlling up to t− 1 parties.

The proof is given in Appendix I.

5 PCG-based Threshold Preprocessing Protocol

We state our threshold BBS+ signing protocol in Section 4 in a FPrep-hybrid
model. Now, we present an instantiation of the FPrep functionality using pseudo-
random correlation generators (PCGs). In particular, our πPCG

Prep protocol builds
on PCGs for VOLE and OLE correlations. The resulting protocol consists of an
interactive Initialization and a non-interactive Tuple phase, consisting only of
the retrieval of stored PCG tuples and additional local computation.

Our preprocessing protocol consists of four steps: the first three are part of
the Initialization phase, and the fourth one builds the Tuple phase. First, the
parties set up a secret and corresponding public key. For the BBS+ signature
scheme, the public key is pk = gx2 , while the secret key is sk = x, which is secret-
shared using Shamir’s secret sharing. This procedure constitutes a standard
distributed key generation protocol for a DLOG-based cryptosystem. Therefore,
we abstract from the concrete instantiation of this protocol and model the key
generation as a hybrid functionality FKG. Second, the parties set up the keys
for the PCG instances. The protocol uses two-party PCGs, meaning each pair of
parties sets up required instances. We model the PCG key generation as a hybrid
functionality FPCG

Setup. Third, every party expands the local seeds to the required
OLE- and VOLE-correlations and store them in their storage. The fourth step
constitutes the Tuple phase and is executed by every party in the signer set T
of a signing request. In this phase party Pi generates (ai, ei, si, δi, αi), where the
values fulfill correlation (4). For a signing request with ssid, Pi takes the ssid-th
component of the previously expanded correlation vectors a, e and s denoted by
ai, ei, si. Note that the ai values constitute an additive secret sharing of a and
the same holds for e and s (cf. (4)). Then,

∑
ℓ∈T αℓ = as can be rewritten as

as =
∑

ℓ∈T aℓ ·
∑

j∈T sj =
∑

ℓ∈T
∑

j∈T aℓsj . Each multiplication aℓsj is equal
to the additive shares of an OLE correlation, i.e., c1− c0 = aℓsj . The parties use

16

the stored OLE correlations that were expanded in the third step. Note that the
parties use again the ssid-th component of the vectors to get consistent values.
Finally, party Pi locally adds aisi and the outputs of its PCG expansions to
get an additive sharing of as. The same idea works for computing δi such that∑

ℓ∈T δℓ = a(sk + e) = ask + ae. Note that while the values a, e, s are fresh
random values for each signing request, sk is fixed. Therefore, the parties use
VOLE correlations to compute ask instead of OLE correlations.

Note that party Pi uses PCG instances for computing additive shares of
aisj and aisℓ for two different parties Pj and Pℓ. Since ai must be the same
for both products, we use reusable PCGs so parties can fix ai over multiple
PCG instances. Based on these two requirements, our protocol relies on strong
reusable PCGs defined in Section 3.

Key Generation Functionality. We abstract from the concrete instantiation of
the key generation. Therefore, we state a very simple key generation function-
ality for discrete logarithm-based cryptosystems similar to the functionality of
[Wik04]. The functionality describes a standard distributed key generation for
discrete logarithm-based cryptosystems and can be realized by [GJKR99, Wik04]
or the key generation phase of [CGG+20] or [DKL+23].

Functionality FKG

The functionality is parameterized by the order of the group from which the
secret key is sampled p, a generator for the group of the public key g2, and a
threshold parameter t. The key generation functionality interacts with parties
P1, . . . , Pn and ideal-world adversary S.
Key Generation. Upon receiving (keygen, sid) from every party Pi and
(corruptedShares, sid, {skj}j∈C) from S:

1. Sample random polynomial F ∈ Zp[X] of degree t−1 such that F (j) = skj
for every j ∈ C.

2. Set sk = F (0), pk = gsk2 , skℓ = F (ℓ) and pkℓ = gskℓ2 for ℓ ∈ [n].
3. Send (sid, ski, pk, {pkℓ}ℓ∈[n]) to every party Pi.

Setup Functionality. The setup functionality gets random values, secret key
shares, and partial public keys as input from every party. Then, it first checks if
the secret key shares and the partial public keys match and next generates the
PCG keys using the random values. Finally, it returns the generated PCG keys
to the parties.

In order to provide modularity, we abstract from concrete instantiation by
specifying this functionality. Nevertheless, FSetup can be instantiated using general-
purpose MPC or tailored protocols similar to distributed seed generation proto-
cols from prior work [BCG+20b, ANO+22]. We leave a formal specification of a
tailored protocol as future work.

17

Functionality FPCG
Setup

Let (PCGVOLE.Genp,PCGVOLE.Expand) be an rPCG for VOLE correlations and
let (PCGOLE.Genp,PCGOLE.Expand) be an rPCG for OLE correlations. The
setup functionality interacts with parties P1, . . . , Pn.

Setup. Upon receiving (setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)ℓ }ℓ∈[n]) from every

party Pi:

1. Check if gskℓ2 = pk
(i)
ℓ for every ℓ, i ∈ [n]. If the check fails, send abort to all

parties.
Else, compute for every pair of parties (Pi, Pj):

(a) (kVOLE
i,j,0 , kVOLE

i,j,1)← PCGVOLE.Genp(1
λ, ρ

(i)
a , skj),

(b) (k
(OLE,1)
i,j,0 , k

(OLE,1)
i,j,1)← PCGOLE.Genp(1

λ, ρ
(i)
a , ρ

(j)
s), and

(c) (k
(OLE,2)
i,j,0 , k

(OLE,2)
i,j,1)← PCGOLE.Genp(1

λ, ρ
(i)
a , ρ

(j)
e).

2. Send keys (sid, kVOLE
i,j,0 , kVOLE

j,i,1 , k
(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 ,

k
(OLE,2)
j,i,1)j ̸=i to every party Pi.

PCG-based Preprocessing Protocol. In this section, we formally present our PCG-
based preprocessing protocol in the (FKG,FPCG

Setup)-hybrid model.

Construction 2: πPCG
Prep

Let (PCGVOLE.Genp,PCGVOLE.Expand) be an rPCG for VOLE correlations and let
(PCGOLE.Genp,PCGOLE.Expand) be an rPCG for OLE correlations.
We describe the protocol from the perspective of Pi.
Initialization. Upon receiving input (init, sid), do:

1. Send (keygen, sid) to FKG.

2. Upon receiving (sid, ski, pk, {pk(i)ℓ }ℓ∈[n]) from FKG, sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e ∈ {0, 1}λ

and send (setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)ℓ }ℓ∈[n]) to FPCG

Setup.

3. Upon receiving (sid, kVOLE
i,j,0 , k

VOLE
j,i,1 , k

(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 ,

k
(OLE,2)
j,i,1)j ̸=i from FPCG

Setup, compute and store for every j ∈ [N] \ {i}:
(a) (ai, c

VOLE
i,j,0) = PCGVOLE.Expand(0, k

VOLE
i,j,0),

(b) (ski, c
VOLE
j,i,1) = PCGVOLE.Expand(1, k

VOLE
j,i,0),

(c) (ai, c
(OLE,1)
i,j,0) = PCGOLE.Expand(0, k

(OLE,1)
i,j,0),

(d) (si, c
(OLE,1)
j,i,1) = PCGOLE.Expand(1, k

(OLE,1)
j,i,1),

(e) (ai, c
(OLE,2)
i,j,0) = PCGOLE.Expand(0, k

(OLE,2)
i,j,0), and

(f) (ei, c
(OLE,2)
j,i,1) = PCGOLE.Expand(1, k

(OLE,2)
j,i,1).

4. Output pk.

Tuple. Upon receiving input (tuple, sid, ssid, T), compute:

5. Let T̃ = T \ {i}, ai = ai[ssid], ei = ei[ssid], si = si[ssid], c
VOLE
(i,j,0) = cVOLE

(i,j,0)[ssid],

cVOLE
(j,i,1) = cVOLE

(j,i,1)[ssid], c
(OLE,d)
(i,j,0) = c

(OLE,d)
(i,j,0) [ssid] and c

(OLE,d)
(j,i,1) = c

(OLE,d)
(j,i,1) [ssid] for j ∈

T \ {i} and d ∈ {1, 2}.

18

6. Compute δi = ai(ei+Li,T ski)+
∑

j∈T̃

(
Li,T cVOLE

j,i,1 − Lj,T cVOLE
i,j,0 + c

(OLE,2)
j,i,1 − c

(OLE,2)
i,j,0

)
7. Compute αi = aisi +

∑
j∈T̃

(
c
(OLE,1)
j,i,1 − c

(OLE,1)
i,j,0

)
8. Output (sid, ssid, ai, ei, si, δi, αi).

Theorem 2. Let PCGVOLE be an rPCG for VOLE correlations and let PCGOLEbe
an rPCG for OLE correlations. Then, protocol πPCG

Prep UC-realizes FPrep in the

(FKG,FPCG
Setup)-hybrid model in the presence of malicious adversaries controlling

up to t− 1 parties.

We state our simulator, a proof sketch and the full indistinguishability proof
in Appendix J, K, and L.

6 Evaluation

In the following, we present the evaluation of the online and the offline phase of
our protocol. As [TZ23] published an optimization of the BBS+ signature scheme
concurrent to our work, we repeat our evaluation for an optimized version of our
protocol and present the results in Appendix N.

Parameters. In the following, we denote the security parameter by λ, the number
of servers by n, the security threshold by t, the size of the signed message arrays
by k, the number of generated precomputation tuples by N , the order of the
elliptic curve’s groups G1 and G2 by p and assume PCGs based on the Ring LPN
problem with static leakage and security parameters c and τ , i.e., the Rc-LPNp,τ

assumption.4 This assumption is common to state-of-the-art PCG instantiations
for OLE correlations [BCG+20b].

6.1 Online, Signing Request-Dependent Phase

We evaluate the online, signing request-dependent phase by implementing the
protocol, running benchmarks, and reporting the runtime and the communica-
tion complexity. For comparison, we also implement and benchmark the non-
threshold BBS+ signing algorithm. We open-source our prototype implementa-
tion to foster future research in this area. 5

Implementation and experimental setup. Our implementation and benchmarks
of the online phase are written in Rust and based on the BLS12 381 curve.6

Note, since the BLS12 381 curve defines an elliptic curve, we use the additive
group notation in the following. This is in contrast to the multiplicative group
notation used in the protocol description. Our code, including the benchmarks

4 For 128-bit security and N = 220, [BCG+20b] reports (c, τ) ∈ {(2, 76), (4, 16), (8, 5)}.
5 https://github.com/AppliedCryptoGroup/NI-Threshold-BBS-Plus-Code
6 We have used [Alg23] for all curve operations.

19

https://github.com/AppliedCryptoGroup/NI-Threshold-BBS-Plus-Code

and rudimentary tests, comprises 1,400 lines. We compiled our code using rustc
1.68.2 (9eb3afe9e).

For our benchmarks, we split the protocol into four phases: Adapt (Steps 6
and 7 of protocol πPCG

Prep), Sign (Step 2 of πTBBS+), Reconstruct (Step 3a of πTBBS+)
and Verify (Step 3b of πTBBS+). Adapt and Sign are executed by the servers.
Reconstruct and Verify are executed by the client. Together, these phases cover
the whole online signing protocol. The runtime of our protocol is influenced by
the security threshold t and the message array size k. We perform benchmarks
for 2 ≤ t ≤ 30 and 1 ≤ k ≤ 50. The range for parameter t is chosen to provide
comparability with [DKL+23] and we deem k ≤ 50 a realistic setting for the
use-cases of credential certificates. Moreover, both ranges illustrate the trend
for increasing parameters. The influence of the total number of servers n is in-
significant to non-existent. Our benchmarks do not account for network latency,
which heavily depends on the location of clients and servers. Network latency,
in our protocol, incurs the same overhead as in the non-threshold setting. It can
be incorporated by adding the round-trip time of messages up to 2KB over the
client’s (slowest) server connection to the total runtime. As the online phase of
our protocol is non-interactive, we benchmark servers and clients individually.
We execute all benchmarks on a single machine with a 14-core Intel Xeon Gold
5120 CPU @ 2.20GHz processor and 64GB of RAM. We repeat each benchmark
100 times to account for statistical deviations and report the average. For com-
parability, we report the runtime of basic arithmetic operations in Table 1 in
Appendix M.

Experimental Results. We report the results of our benchmarks in Figure 3.
These results reflect our expectations as outlined in the following. The Adapt
phase transforming PCF/PCG outputs to signing request-dependent presigna-
tures involves only field operations and is much faster than the other phases for
small t. The runtime increase for larger t stems from the number of field opera-
tions scaling quadratically with the number of signers. Signers have to compute
a LaGrange coefficient for each other signer. The computation of the LaGrange
coefficient scales with t as well. The Sign phase requires the servers to compute
k + 2 scalar multiplications in G1, each taking 100 times more time than the
slowest field operation (cf. Appendix M). The Reconstruct phase involves a sin-
gle G1 scalar multiplication, field operations, and G1 additions, depending on
the threshold t. The scalar multiplication, being responsible for more than 90%
of the phase’s runtime for t ≤ 30, dominates the cost of this phase. The Verify
phase requires the client to compute two pairing operations, a single scalar mul-
tiplication in G2, k + 1 scalar multiplications G1, and multiple additions in G1

and G2. The pairing operations and the scalar multiplication in G2 are respon-
sible for the constant costs visible in the graph. The scalar multiplications in G1

cause the linear increase. The influence of G1 and G2 additions is insignificant
because they take at most 1.4% of scalar multiplication in G1. The Total run-
time mainly depends on the size of the signed message array due to the scalar
multiplications in the signing and verification step. The number of signers, t, has
only a minor influence on the online runtime; increasing the number of signers

20

from 2 to 30 increases the runtime by 1.14%− 5.52%. Following, the online pro-
tocol can essentially tolerate any number of servers as long as the preprocessing,
which is expected to scale worse, can be instantiated efficiently for the number
of servers and the storage complexity of the generated preprocessing material
does not exceed the servers’ capacities (cf. Section 6.2).

10 20 30
0

200

400

t

[µs]

(a) Adapt (Server).

10 30 50
0

5

10

15

k

[ms]

(b) Sign (Server).

10 20 30
0

100

200

300

t

[µs]

(c) Reconstruct (Client).

10 30 50
0

10

20

k

[ms]

(d) Verify (Client).

10 20 30
0

5

10

15

t

[ms]

k = 1 k = 2

k = 5 k = 10

(e) Total.

Fig. 3: The runtime of individual protocol phases (a)-(d) and the total online
protocol (e). The Adapt phase, describing Steps 5 and 6 of protocol πPrep, and the
Reconstruct phase, describing Step 3a of πTBBS+, depend on security threshold
t. The Sign phase, describing Step 2 of πTBBS+, and the signature verification,
describing Step 3b of πTBBS+, depend on the message array size k.

To measure the overhead of thresholdization, we compare the runtime of our
online protocol to the runtime of signature creation in the non-threshold setting
in Figure 4. The overhead of our online protocol consists only of a single scalar
multiplication in G1, assuming that clients also verify received signatures in
the non-threshold setting. This observation reflects our protocol pushing all the
overhead of the distributed signing to the offline phase.

Communication complexity. The client has to send one signing request of size
(k·⌈log p⌉)+(t·⌈log n⌉) bits to each of the t selected servers. By deriving the signer
set via a random oracle, we can reduce the size of the request to (k ·⌈log p⌉). Each

21

10 20 30 40 50
0

20

40

k

[ms] Threshold (t = 10)

Plain incl. verification

Plain excl. verification

Fig. 4: The total runtime of our online protocol compared to plain, non-threshold
signing with and without signature verification in dependence of k. The number
of signers t is insignificant (cf. Figure 3e).

selected server has to send a partial signature of size (3⌈log p⌉+ |G1|). In case of
the BLS12 381 curve, ⌈log p⌉ equals 381 bits whereas |G1| equals 762 bits. Parties
can also encode G1 elements with 381 bits by only sending the x-coordinate of
the curve point and requiring the sender to compute the y-coordinate itself.

Note that our UC functionality models a scenario where every signer obtains
the final signature. Therefore, the partial signatures are sent to all other signers.
However, by incorporating a dedicated client into the model, the signers can send
the partial signatures only to the client. While we expect this to be sufficient for
real-life settings, it makes the model messier. We emphasize that this request-
response behavior is the minimum interaction for MPC protocols. As there is no
interaction between the servers, this setting is referred to as non-interactive in
the literature [CGG+20, ANO+22].

6.2 Offline, Signing Request-Independent Phase

For the offline, signing request-independent phase, we focus on the PCG-based
precomputation as PCFs lack efficient instantiations. We compute the commu-
nication complexity of the distributed seed generation, the storage complexity
of the generated seeds and expanded tuples, and computation complexity of the
seed expansion phase. We further implement the seed expansion of the PCGs
(Step 3 of protocol πPCG

Prep), run benchmarks and report the runtime.

Experimental setup. Our implementation 7 and benchmarks are written in Go.
Our code, including the benchmarks and rudimentary tests, comprises 5 467
lines. We compiled our code using go 1.21.3. Again, we execute all benchmarks
on machines with a 14-core Intel Xeon Gold 5120 CPU @ 2.20GHz processor and
64GB of RAM. Due to the complexity of the benchmarks and the high amount
of repetition within a single protocol run, we execute the benchmarks for each
choice of parameters just once.

The runtime of the seed expansion is influenced by the number of parties
n, the number of generated precomputation tuples N and the Module Ring

7 https://github.com/leandro-ro/Threshold-BBS-Plus-PCG

22

https://github.com/leandro-ro/Threshold-BBS-Plus-PCG

LPN security parameters (c, τ). For security parameters we fix c = 4 and τ = 16
which corresponds to 128-bit security [BCG+20b]. We compute over a cyclotomic
ring as proposed by [BCG+20b] and fix the prime p to be the order of the
BLS12 381 curve. Our tests have shown that this choice of parameters yields
the best performance of the possible choices for the same security level. For the
number of parties, we consider 2 ≤ n ≤ 10.8 Further, we consider both the t-out-
of-n setting and the n-out-of-n setting as the latter has tremendous potential
for optimization as discussed below. For the number of generated triples, we
consider N ∈ [211, . . . , 216]. For scenarios with less parties, we also consider
N ∈ [217, 218, 219].

Our benchmarks cover the seed expansion phase of all required PCGs (Step 3
of πPCG

Prep). As our PCG instantiations compute over a ring, they also return ring
elements each representing an array of N field elements. For example, for a batch
of N OLE correlations a ·b = c+d (a,b, c,d ∈ ZN

p), the PCG actually returns
four degree-N polynomials A · B = C +D. By choosing the ring appropriately
(cf. [BCG+20b]), each polynomial can be split into N independent OLE corre-
lations over Zp. This step does not need to happen in a batch but can be done
individually. We report the computation time of the PCG seed expansion, yield-
ing the ring elements, and the time to split a single OLE correlation over Zp

from a ring element, separately.

n-out-of-n vs. t-out-of-n. The runtime of the seed expansion strongly depends
on whether we consider a t-out-of-n or a n-out-of-n setting. To understand this
dependency, recall the basic concepts of PCGs (cf. PCG constructions in Ap-
pendix D). Parties first compute the desired correlation with sparse polynomials
as input values. Then, they expand these preliminary sparse correlations to real
random correlations by applying an LPN-based randomization. In our protocol,
parties do this for each individual OLE- or VOLE-correlation and then combine
the real correlations to get the final precomputation tuples. However, in a real
implementation parties can first combine the sparse correlations and then apply
the LPN-based randomization, effectively reducing the amount of randomization
operations. In the t-out-of-n setting, the signer set is only known during the on-
line phase, i.e., after the randomization step. As the combination itself largely
depends on the signer set, parties can only perform the combination steps that
are independent of the set. In the n-out-of-n setting, the signer set is already
known during the offline phase, i.e., every party has to sign. Parties can therefore
perform most of the combinations before randomization. More precisely, in the
n-out-of-n setting, each party has to perform six randomizations and split five
polynomials, while in the t-out-of-n setting each party performs 3 + 4 · (n − 1)
randomizations and splits just as many polynomials.

Experimental results. In Figure 5 and Figure 6, we display the computation time
per signature of the PCG expansion in the n-out-of-n setting and the t-out-of-
n setting. The computation time per signature increases superlinear with the

8 The only prior work implementing the seed expansion [ANO+22] is restricted to
n ∈ {2, 3}.

23

11 15 20
0

200

400

log2(N)

[ms] n = 10
n = 9
n = 8
n = 7
n = 6
n = 5
n = 4
n = 3
n = 2

Fig. 5: Computation time of the seed expansion of all required PCGs in the n-
out-of-n setting for different committee sizes (n ∈ {2, . . . , 10}) dependent on the
number of generated precomputation tuples N .

number of signatures (note that the x-axis has a logarithmic scale) and linear
with the number of parties n. This is due to the fact that the seed expansion
requires multiplication of degree-N polynomials. We perform the multiplication
via the Fast Fourier Transformation which scales superlinear with the degree of
the polynomial. Both graphs show that the runtime increases with the number
N . Nevertheless, as the correlations are expanded from small keys, a large batch
sizeN benefit from the sublinear communication complexity inN of a distributed
seed generation.

We further benchmarked the computation time to extract one of N field el-
ements from a degree-N polynomial. The results range from 0.1ms for N = 211

to 8.6ms for N = 219 . This step essentially represents a polynomial evalua-
tion executed via the Horner’s method which explains the linear increase in the
computation time.

Complexity analysis. Existing fully distributed PCG constructions for OLE-
correlations [BCG+20b, ANO+22] do not separate between the PCG seed gener-
ation and the PCG evaluation phase. Instead, they merge both phases into one
distributed protocol. These distributed protocols make use of secret sharing-
based general-purpose MPC protocols optimized for different kinds of opera-
tions (binary [NNOB12], field [DPSZ12, DKL+13], or elliptic curve [DKO+20])
as well as a special-purpose protocol for the computation of a two-party dis-
tributed point function (DPF) presented in [BCG+20b]. As the PCG-generated
preprocessing material utilized in [ANO+22] shows similarities to the material
required by our online signing protocol, we derive a distributed PCG protocol
for our setting from theirs and analyze the communication complexity accord-
ingly. The analysis yields that the communication complexity of a PCG-based
preprocessing instantiating our offline protocol is dominated by

26(ncτ)2 · (logN + log p) + 8n(cτ)2 · λ · logN

24

11 15 20
0

200

400

600

log2(N)

[ms]
n = 10
n = 9
n = 8
n = 7
n = 6
n = 5
n = 4
n = 3

Fig. 6: Computation time of the seed expansion of all required PCGs in the t-
out-of-n setting for different committee sizes (n ∈ {2, . . . , 10}) dependent on the
number of generated precomputation tuples N .

bits of communication per party.
Instead of merging the PCG setup with the PCG evaluation in one setup

protocol, it is also possible to generate the PCG seeds first, either via a trusted
party or another dedicated protocol, and execute the expansion at a later point
in time, e.g., when the next batch of presignatures is required. In this scenario,
each server stores seeds with a size of at most

log p+ 3cτ · (⌈log p⌉+ ⌈logN⌉)
+2(n− 1) · cτ · (⌈logN⌉ · (λ+ 2) + λ+ ⌈log p⌉)
+4(n− 1) · (cτ)2 · (⌈log 2N⌉ · (λ+ 2) + λ+ ⌈log p⌉)

bits if the PCGs are instantiated according to [BCG+20b].
When instantiating the precomputation with PCGs, servers must evaluate all

of the PCGs’ outputs at once. The resulting precomputation material occupies

log p ·N · (3 + 6 · (n− 1))

bits of storage. In [ANO+22], the authors report N = 94 019 as a reasonable
parameter for a PCG-based setup protocol. In [BCG+20b], the authors base
their analysis on N = 220 = 1048 576. To efficiently apply Fast Fourier Trans-
formation algorithms during the seed expansion, it is necessary to choose N such
that it divides p− 1. Figure 7 reports the storage complexity depending on the
number of servers n for different N . Note that the dependency on the number of
servers n stems from the fact that we support any threshold t ≤ n. In a n-out-
of-n settings, servers execute Steps 6 and 7 of πPCG

Prep during the preprocessing,
and hence, only store log p · 5N bits of preprocessing material.

The computation cost of the seed expansion is dominated by the ones of
the PCGs for OLE correlations. In [BCG+20b], the authors report the com-
putation complexity of expanding a seed of an OLE PCG to involve at most

25

N(ct)2(4+2⌊log(p/λ)⌋) PRG operations and O(c2N logN) operations in Zp. In
our protocol, each server Pi has to evaluate 4 OLE-generating PCGs for each
other server Pj ; one for each cross term (ai · ej), (aj · ei), (ai · sj), and (aj · si).
It follows that the seed expansion in our protocol is dominated by

4 · (n− 1) · (4 + 2⌊log(p/λ)⌋) ·N · (cτ)2

PRG evaluations and O(nc2N logN) operations in Zp.

6.3 Comparison to [DKL+23]

10 20 30
0

2

4

6

n

[GB] N = 1048 576

N = 94 019

Fig. 7: Storage complexity of the precomputation material required for N ∈
{94 019, 1 048 576} signatures depending on the number of servers n.

10 20 30
0

10

20

t

[ms] Us

[DKL+23]

(a) LAN.

10 20 30
0

200

400

t

[ms] Us

[DKL+23]

(b) WAN.

Fig. 8: Runtime of the signing protocol of [DKL+23] compared to the network
adjusted runtime of our signing protocol in the LAN and WAN setting.

Independently of our work, [DKL+23] presented the first t-out-of-n threshold
BBS+ protocol. While we achieve a non-interactive online signing phase at the
cost of a computationally intensive offline phase, their protocol incorporates
a lightweight setup independent from the number of generated signatures but
requires an interactive signing protocol. In [DKL+23], the authors provide an
experimental evaluation of the interactive signing protocol, to which we will
compare our online signing in the following.9

9 We thank the authors of [DKL+23] for sharing concrete numbers of their evaluation.

26

As our implementation, their implementation is in Rust and based on the
BLS12 381 curve. When comparing the benchmarking machines, G1 and G2

scalar multiplications are 20 − 30% faster on our machine, while signature ver-
ifications are 20% faster on their machine. Although not explicitly stated, the
numbers strongly indicate the choice k = 1 in [DKL+23]; the reported runtime
of non-threshold BBS+ signing is slightly larger than three G1 scalar multipli-
cations. Due to the interactivity of their protocol, their benchmarks incorporate
network delays for different settings (LAN, WAN). We add network delays to
our results to compare our benchmarks to theirs. All machines used in their
evaluation are Google Cloud c2d-standard-4 instances. In the LAN setting, all
instances are located at the us-east1-c zone. [DP20] reports a LAN latency of
0.146 ms for this zone. We add a delay of 0.3 ms to our results. In the WAN
setting, the first 12 instances in their benchmarks are located in the US, while
other machines are in Europe or the US. According to [Kum22], we add 100 ms
to our results for t < 13 and 150 ms for t ≥ 13.

In Figure 8, we compare the runtime, including latency, of our online signing
protocol to the runtimes reported in [DKL+23] for the LAN and the WAN
setting. The graphs show that our protocol outperforms the one of [DKL+23]
in both settings for every number of servers. The only exception is the runtime
for t = 2 in the WAN setting. This exception seems caused by an unusually low
connection latency between the first two servers and the client in [DKL+23].
The overhead of [DKL+23] is mainly caused by the two additional rounds of
cross-server interaction. This overhead rises with the number of servers as each
server has to communicate with each other servers and is especially severe in the
WAN setting.

Due to the high efficiency and non-interactivity of our online phase, our
protocol is more suited for settings where servers have a sufficiently long setup
interval and storage capacities to deal with the complexity of the preprocessing
phase. On the other hand, the protocol of [DKL+23] is more suited for use
cases with more lightweight servers, especially in a LAN environment where the
network delay of the additional communication is less significant.

Acknowledgments

The first, third, and fifth authors were supported by the German Research
Foundation (DFG) CRC 1119 CROSSING (project S7), by the German Federal
Ministry of Education and Research and the Hessen State Ministry for Higher
Education, Research and the Arts within their joint support of the National Re-
search Center for Applied Cybersecurity ATHENE, by the European Research
Council (ERC) under the European Union’s Horizon 2020 and Horizon Europe
research and innovation programs (grant CRYPTOLAYER-101044770), and by
the Hessen Agentur, LOEWE-Förderrichtlinie 3, 1376/22-81. The second au-
thor was partially supported by the Algorand Centres of Excellence programme
managed by Algorand Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do

27

not necessarily reflect the views of the Algorand Foundation and the United
States-Israel Binational Science Foundation (BSF) through Grant No. 2020277.

References

AHS20. Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A sur-
vey of ECDSA threshold signing. IACR Cryptol. ePrint Arch., 2020.

Alg23. Algorand. BLS12-381 Rust crate. https://github.com/algorand/

pairing-plus, 04 2023. (Accessed on 04/18/2023).

ANO+22. Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlo-
movits. Low-bandwidth threshold ECDSA via pseudorandom correlation
generators. In IEEE SP, 2022.

AO00. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind
signatures. In CRYPTO, 2000.

AS22. Damiano Abram and Peter Scholl. Low-communication multiparty triple
generation for spdz from ring-lpn. In PKC, 2022.

ASM06. Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k -TAA. In
SCN, 2006.

BB89. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant com-
puting in constant number of rounds of interaction. In PODC, 1989.

BBDE19. Johannes Blömer, Jan Bobolz, Denis Diemert, and Fabian Eidens. Updat-
able anonymous credentials and applications to incentive systems. In CCS,
2019.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In CRYPTO, 2004.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent
non-interactive secure computation. In CCS, 2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In CRYPTO, 2019.

BCG+20a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Correlated pseudorandom functions from variable-density
LPN. In FOCS, 2020.

BCG+20b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators from ring-lpn.
In CRYPTO, 2020.

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nico-
las Resch, and Peter Scholl. Correlated pseudorandomness from expand-
accumulate codes. In CRYPTO, 2022.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In CCS, 2018.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In CRYPTO, 1991.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
weil pairing. In CRYPTO, 2001.

BL10. Ernie Brickell and Jiangtao Li. A pairing-based DAA scheme further re-
ducing TPM resources. In TRUST, 2010.

28

https://github.com/algorand/pairing-plus
https://github.com/algorand/pairing-plus

BL11. Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pair-
ing for hardware authentication and attestation. Int. J. Inf. Priv. Secur.
Integr., 2011.

BS23. Alexandre Bouez and Kalpana Singh. One round threshold ECDSA with-
out roll call. In CT-RSA, 2023.

Cam06. Jan Camenisch. Anonymous credentials: Opportunities and challenges. In
SEC, 2006.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS, 2001.

CCL+20. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA. In PKC,
2020.

CDHK15. Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions
and practical constructions. In ASIACRYPT, 2015.

CDL16. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attes-
tation using the strong diffie hellman assumption revisited. In TRUST,
2016.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis,
and Udi Peled. UC non-interactive, proactive, threshold ECDSA with
identifiable aborts. In CCS, 2020.

CGRS23. Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Prac-
tical schnorr threshold signatures without the algebraic group model. In
CRYPTO, 2023.

Cha85. David Chaum. Security without identification: Transaction systems to
make big brother obsolete. Commun. ACM, 1985.

Che95. Lidong Chen. Access with pseudonyms. In Cryptography: Policy and Al-
gorithms, 1995.

Che09. Liqun Chen. A DAA scheme requiring less TPM resources. In Information
Security and Cryptology, 2009.

CKL+15. Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen,
Gregory Neven, and Michael Østergaard Pedersen. Formal treatment of
privacy-enhancing credential systems. In SAC, 2015.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In EUROCRYPT, 2001.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In CRYPTO, 2004.

CLT22. Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Threshold lin-
early homomorphic encryption on Z/2kZ. In ASIACRYPT, 2022.

CRR21. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent
VOLE and oblivious transfer from hardness of decoding structured LDPC
codes. In CRYPTO, 2021.

DILO22. Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenti-
cated garbling from simple correlations. In CRYPTO, 2022.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishonest
majority - or: Breaking the SPDZ limits. In ESORICS, 2013.

DKL+23. Jack Doerner, Yash Kondi, Eysa Lee, abhi shelat, and LakYah Tyner.
Threshold bbs+ signatures for distributed anonymous credential issuance.
In IEEE SP, 2023.

29

DKLS19. Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold
ECDSA from ECDSA assumptions: The multiparty case. In SP, 2019.

DKO+20. Anders Dalskov, Marcel Keller, Claudio Orlandi, Kris Shrishak, and Haya
Shulman. Securing dnssec keys via threshold ecdsa from generic mpc, 2020.

DP20. Rick Jones Derek Phanekham. How much is google cloud latency
(gcp) between regions? https://cloud.google.com/blog/products/

networking/using-netperf-and-ping-to-measure-network-latency,
June 2020. (Accessed on 05/04/2023).

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO,
2012.

EGM96. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital
signatures. J. Cryptol., 1996.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In CRYPTO, 2018.

GG18. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA
with fast trustless setup. In CCS, 2018.

GGI19. Rosario Gennaro, Steven Goldfeder, and Bertrand Ithurburn. Fully dis-
tributed group signatures, 2019.

GJKR99. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. In
EUROCRYPT, 1999.

KG20. Chelsea Komlo and Ian Goldberg. FROST: flexible round-optimized
schnorr threshold signatures. In SAC, 2020.

KMOS21. Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlo-
movits. Refresh when you wake up: Proactive threshold wallets with offline
devices. In SP, 2021.

KOR23. Yashvanth Kondi, Claudio Orlandi, and Lawrence Roy. Two-round state-
less deterministic two-party schnorr signatures from pseudorandom corre-
lation functions. IACR Cryptol. ePrint Arch., 2023.

Kum22. Chandan Kumar. How much is google cloud latency (gcp) between re-
gions? https://geekflare.com/google-cloud-latency/, March 2022.
(Accessed on 05/04/2023).

Lin17. Yehuda Lindell. Fast secure two-party ECDSA signing. In CRYPTO, 2017.
LKWL23. Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder. The

BBS Signature Scheme. Internet-Draft draft-irtf-cfrg-bbs-signatures-02,
Internet Engineering Task Force, March 2023. (Work in Progress).

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practi-
cal distributed key generation and applications to cryptocurrency custody.
In CCS, 2018.

LRSW99. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In SAC, 1999.

LS23. Tobias Looker and Orie Steele. Bbs cryptosuite v2023. https://w3c.

github.io/vc-di-bbs/, May 2023. (Accessed on 05/04/2023).
MAT23. MATTR. mattrglobal/bbs-signatures: An implementation of bbs+ sig-

natures for node and browser environments. https://github.com/

mattrglobal/bbs-signatures, 04 2023. (Accessed on 04/18/2023).
Mic23. Microsoft. microsoft/bbs-node-reference: Typescript/node reference

implementation of bbs signature. https://github.com/microsoft/

bbs-node-reference, 04 2023. (Accessed on 04/18/2023).

30

https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://geekflare.com/google-cloud-latency/
https://w3c.github.io/vc-di-bbs/
https://w3c.github.io/vc-di-bbs/
https://github.com/mattrglobal/bbs-signatures
https://github.com/mattrglobal/bbs-signatures
https://github.com/microsoft/bbs-node-reference
https://github.com/microsoft/bbs-node-reference

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In CRYPTO, 2012.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier:
Homomorphic secret sharing and public-key silent OT. In EUROCRYPT,
2021.

Ped91. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In CRYPTO, 1991.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In
CT-RSA, 2016.

RP22. Alfredo Rial and Ania M. Piotrowska. Security analysis of coconut, an
attribute-based credential scheme with threshold issuance. IACR Cryptol.
ePrint Arch., 2022.

SA19. Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve
based protocol. In IMA, 2019.

SAB+19. Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and
George Danezis. Coconut: Threshold issuance selective disclosure creden-
tials with applications to distributed ledgers. In NDSS, 2019.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 1979.
Tri23. Trinsic. Credential api - documentation. https://docs.trinsic.

id/reference/services/credential-service/, 04 2023. (Accessed on
04/18/2023).

TZ23. Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In EURO-
CRYPT, 2023.

Wik04. Douglas Wikström. Universally composable DKG with linear number of
exponentiations. In SCN, 2004.

WMYC23. Harry W. H. Wong, Jack P. K. Ma, Hoover H. F. Yin, and Sherman S. M.
Chow. Real threshold ECDSA. In NDSS, 2023.

WRK17a. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. In CCS,
2017.

WRK17b. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In CCS, 2017.

YAY19. Zuoxia Yu, Man Ho Au, and Rupeng Yang. Accountable anonymous cre-
dentials. In Advances in Cyber Security: Principles, Techniques, and Ap-
plications. 2019.

31

https://docs.trinsic.id/reference/services/credential-service/
https://docs.trinsic.id/reference/services/credential-service/

Appendix:

Non-Interactive Threshold BBS+ From
Pseudorandom Correlations

A The BBS+ Signature Scheme

Let k be the size of the message arrays, G = (G1,G2,GT , p, g1, g2, e) be a bilinear
mapping tuple and {hℓ}ℓ∈[0..k] be random elements of G1. The BBS+ signature
scheme is defined as follows:

– KeyGen(λ): Sample x
$← Z∗

p, compute y = gx2 , and output (pk, sk) = (y, x).

– Signsk({mℓ}ℓ∈[k] ∈ Zk
p): Sample e, s

$← Zp, computeA := (g1·hs
0·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e

and output σ = (A, e, s).
– Verifypk({mℓ}ℓ∈[k] ∈ Zk

p, σ): Output 1 iff e(A, y ·ge2) = e(g1 ·hs
0 ·
∏

ℓ∈[k] h
mℓ

ℓ , g2)

The BBS+ signature scheme is proven strong unforgeable under the q-strong
Diffie Hellman (SDH) assumption for pairings of type 1, 2, and 3 [ASM06,
CDL16, TZ23]. Intuitively, strong unforgeability states that the attacker is not
possible to come up with a forgery even for messages that have been signed
before. We refer to [TZ23] for further details.

Optimized scheme of Tessaro and Zhu [TZ23]. Concurrently to our work, Tessaro
and Zhu showed an optimized version of the BBS+ signatures, reducing the

signature size. In their scheme, the signer samples only one random value, e
$←

Zp, computes A := (g1 ·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e , and outputs σ = (A, e). The verification
works as before, with the only difference that the term hs

0 is removed. Note that
if the first message m1 is sampled randomly, then the short version is equal to
the original version. While we describe our protocol in the original BBS+ scheme
by Au et al. [ASM06], we elaborate on the influence of [TZ23] on our evaluation
in Appendix N.

B Universal Composability Framework ([Can01])

We formally model and prove the security of our protocols in the Universal
Composability framework (UC). The framework was introduced by Canetti in
2001 [Can01] to analyze the security of protocols formally. The universal com-
posability property guarantees the security of a protocol holds even under con-
current composition. We give a brief intuition and defer the reader to [Can01]
for all details.

Like simulation-based proofs, the framework differentiates between real-world
and ideal-world execution. The real-world execution consists of n parties P1, . . . , Pn

executing protocol π, an adversary A, and an environment Z. All parties are ini-
tialized with security parameter λ and a random tape, and Z runs on some advice
string z. In this work, we consider only static corruption, where the adversary

32

corrupts parties at the onset of the execution. After corruption, the adversary
may instruct the corrupted parties to deviate arbitrarily from the protocol spec-
ification. The environment provides inputs to the parties, instructs them to con-
tinue the execution of π, and receives outputs from the parties. Additionally, Z
can interact with the adversary.

The real-world execution finishes when Z stops activating parties and outputs
a decision bit. We denote the output of the real-world execution by REALπ,A,Z(λ, z).

The ideal-world execution consists of n dummy parties, an ideal functionality
F , an ideal adversary S, and an environment Z. The dummy parties forward
messages between Z and F , and S may corrupt dummy parties and act on their
behalf in the following execution. S can also interact with F directly according
to the specification of F . Additionally, Z and S may interact. The goal of S is
to simulate a real-world execution such that the environment cannot tell apart if
it is running in the real or ideal world. Therefore, S is also called the simulator.

Again, the ideal-world execution ends when Z outputs a decision bit. We
denote the output of the ideal-world execution by IDEALF,S,Z(λ, z).

Intuitively, a protocol is secure in the UC framework if the environment can-
not distinguish between real-world and ideal-world execution. Formally, protocol
π UC-realizes F if for every probabilistic polynomial-time (PPT) adversary A
there exists a PPT simulator S such that for every PPT environment Z

{REALπ,A,Z(1
λ, z)}λ∈N,z∈{0,1}∗ = {IDEALF,S,Z(1

λ, z)}λ∈N,z∈{0,1}∗ .

C Anonymous Credentials and Blind Signing

Our online protocol defined in Section 4.2 describes a threshold variant of the
BBS+ signature scheme. Since anonymous credentials are one prominent appli-
cation of BBS+ signatures, we elaborate on this application in the following.

BBS+ signatures can be used to design anonymous credential schemes as
follows. To receive a credential, a client sends a signing request to the servers
in the form of a message array, which contains its public and private creden-
tial information. Public parts of the credentials are sent in clear, while private
information is blinded. The client can add zero-knowledge proofs that blinded
messages satisfy some predicate. These proofs enable the issuing servers to en-
force a signing policy even though they blindly sign parts of the messages. Given
a credential, clients can prove in zero-knowledge that their credential fulfills
certain predicates without leaking their signature.

Our scheme must be extended by a blind-signing property to realize the
described blueprint. Precisely, we require a property called partially blind signa-
tures [AO00]. This property prevents the issuer from learning private information
about the message to be signed.

To transform our scheme into a partially blind signature scheme, we follow
the approach of [ASM06]. Let {mℓ}ℓ∈[k] be the set of messages representing
the client’s credential information. Without loss of generality, we assume that

33

mk is the public part. In order to blind its messages, the client computes a
Pedersen commitment [Ped91] on the private messages: C = hs′

0 ·
∏

ℓ∈[k−1] h
mℓ

ℓ

for a random s′ and a zero-knowledge proof π that C is well-formed, i.e., that
the client knows (s′, {mℓ}ℓ∈[k−1]). The client sends (T , C, π,mk) and potential
zero-knowledge proofs for signing policy enforcement to the servers. Each server
Pi for i ∈ T replies with (Ai = (g1 ·C ·hmk

k)ai ·hαi
0 , δi, ei, si). The client computes

e, s, and A as before but outputs signature (A, e, s∗ = s′ + s) which yields a
valid signature.

As the blinding mechanism and the resulting signatures are equivalent in
the non-threshold BBS+ setting, we can use existing zero-knowledge proofs for
policy enforcement and credential usage from the non-threshold setting [ASM06,
CDL16, TZ23].

D Reusable PCG Constructions

In this section, we present constructions of reusable PCGs for VOLE and OLE
correlations according to the definitions provided in Section 3 together with the
required building blocks and security assumptions. The constructions are derived
from the one of [BCG+20b].

Notation. Let R be a ring. For two column vectors u = (u1, . . . , ut) ∈ Rt and
v = (v1, . . . , vt) ∈ Rt, we define the outer sum u ⊞ v be the vector (ui +

vj)i,j∈[t] ∈ Rt2 . Similar, we define the outer product (or tensor product) u⊗v to

be (ui · vj)i,j∈[t] ∈ Rt2 . The inner product of two t-size vectors ⟨u,v⟩ is defined
as
(∑

i∈[t] ui · vi
)
∈ R.

Ring Module LPN Assumption. The following definition of the Module Ring
LPN assumption introduced by [BCG+20b] is taken almost verbatim from the
original [BCG+20b, Definition 3.2] but adapted to our notation.

Definition 3. Module-LPN
Let c ≥ 2 be an integer, let R = Zp/F (X) for a prime p and degree-N polyno-

mial F (X) ∈ Zp[X] and let τ ∈ N be an integer. Further, let HWR,τ denote the
distribution of “sparse polynomials” over R obtained by sampling τ noise posi-
tions α ← [N]τ and τ payloads β ← (Z∗

p)
τ uniformly at random and outputting

e(X) :=
∑

i∈[τ] β[i] · Xα[i]−1. Then, for R = R(λ),m = m(λ), τ = τ(λ), we
say the Rc-LPNR,m,τ problem is hard if for every nonuniform polynomial-time
distinguisher A, it holds that

|Pr[A({(a(i), ⟨a(i), e⟩+ f (i))}i∈[m]) = 1]

−Pr[A({(a(i), u(i))}i∈[m]) = 1]| ≤ negl(λ)

where the probabilities are taken over a(1), . . . ,a(m) ← Rc−1, u(1), . . . , u(m) ←
R, e← HWc−1

R,τ , f
(1), . . . , f (m) ← HWR,τ .

34

Distributed Sum of Point Functions (DSPF). We use distributed sum of func-
tions. The definition is taken partially verbatim from [BCG+20b, ANO+22] but
adapted to our notation.

Definition 4 (Distributed Sum of Point Functions). Let G be an Abelian
group, N, τ be positive integers, fα,β : [N] → G be a sum of τ point functions,
parametrized for α ∈ [N]τ and β ∈ Gτ , such that fα,β(x) = 0+

∑
(i∈[τ] s.t. α[i]=x) β[i].

A 2-party distributed sum of point functions (DSPF) with domain [N], codomain
G, and weight τ is a pair of PPT algorithms (DSPF.Gen,DSPF.Eval) with the
following syntax.

– DSPF.Gen takes as input the security parameter 1λ and a description of the
sum of point functions fα,β, specifically, the special positions α ∈ [N]τ and
the non-zero elements β ∈ Gτ . The output is two keys (K0,K1).

– DSPF.Eval takes as input a DPF key Kσ, index σ ∈ {0, 1} and a value
x ∈ [N], outputting an additive share vσ of fα,β(x).

A DSPF should satisfy the following properties:

– Correctness. For every set of special positions α ∈ [N]τ , set of non-zero
elements β ∈ Gτ and element x ∈ [N], we have that

Pr[v0 + v1 = fα,β(x)|(K0,K1)← DSPF.Gen(1λ, α, β),

vσ ← DSPF.Eval(Kσ, σ, x) for σ ∈ {0, 1}] = 1

– Security. There exists a PPT simulator S such that, for every corrupted
party σ ∈ {0, 1}, set of special positions α ∈ [N]τ and set of non-zero el-
ements β ∈ Gτ , the output of S(1λ, σ) is computationally indistinguishable
from

{Kσ|(K0,K1)← DSPF.Gen(1λ, α, β)}

We denote the execution of DSPF.Eval(Kσ, σ, x) for every x ∈ [N], i.e. the
evaluation over the whole domain [N], by DSPF.FullEval(Kσ, σ).

PCG constructions. The OLE construction is derived from [BCG+20b, Fig. 1].
However, we extend it by the reusability feature by deriving the sparse poly-
nomials normally sampled in PCG.Gen by applying a random oracle on seeds
provided as input to the programmable key generation PCG.Genp.

Construction 3: Reusable PCG for YR
OLE

Let λ be the security parameter, τ = τ(λ) be the noise weight, c ≥ 2 the compression
factor, p = p(λ) a modulus, N = N(λ) a degree, and Rp = Zp[X]/F (X) be a
ring for a degree-N F (X) ∈ Zp[X]. Further, let (DSPF.Gen,DSPF.Eval) be a FSS
scheme for sums of τ2-point functions with domain [2N] and range Zp. Finally, let
H : {0, 1}λ → ([N]τ × (Z∗

p)
τ)c be a random oracle.

35

Correlation: The target correlation YR
OLE over ring Rp is defined as

mk = (ρ0, ρ1)← SetupROLE(1
λ, ρ0, ρ1)

((x0, z0), (x1, z1))← YR
OLE(1

λ,mk) such that

x0 = F0(ρ0), x1 = F1(ρ1), z0
$← Rp, z1 = x0 · x1 − z0

(xσ, x0 · x1 − zσ)← RSampleROLE(1
λ,mk, σ, (xσ, zσ)) where

x0 = F0(ρ0),x1 = F1(ρ1)

with F0 and F1 being PRGs. As proposed by [BCG+20b], Rp can be constructed to
be isomorphic to N copies of Zp. This allows the direct transformation of one OLE
over Rp into N independent OLEs over Zp.
Public Input: Random Rc − LPN polynomials a2, . . . ac ∈ Rp, defining the vector
a = (1, a2, . . . , ac).
PCG.Genp(1

λ, ρ0, ρ1):

1. Compute {(αi
σ, β

i
σ)}i∈[c] ← H(ρσ) for σ ∈ {0, 1} where each αi

σ ∈ [N]τ and each
βi
σ ∈ (Z∗

p)
τ .

2. For i, j ∈ [c], sample FSS keys (K
(i,j)
0 ,K

(i,j)
1)

$← DSPF.Gen(1λ, αi
0⊞αj

1, β
i
0⊗βj

1).

3. For σ ∈ {0, 1}, define kσ = ({(αi
σ, β

i
σ)}i∈[c], {K(i,j)

σ }i,j∈[c]).
4. Output (k0, k1).

PCG.Expand(σ, kσ):

5. Parse kσ as ({(αi
σ, β

i
σ)}i∈[c], {K(i,j)

σ }i,j∈[c]).
6. For i ∈ [c], define (over Zp) the degree < N polynomial:

eiσ(X) =
∑
k∈[τ]

βi
σ[k] ·Xαi

σ [k]

and compose all eiσ (for i ∈ [c]) to a length-c vector eσ.

7. For i, j ∈ [c], compute u
i+c(j−1)
σ ← DSPF.FullEval(σ,K

(i,j)
σ) and view this as a

degree < 2N polynomial. Compose all ui
σ (for i ∈ [c2]) to a length-c2 vector vσ

mod F (X).
8. Compute xσ = ⟨a, eσ⟩ mod F (X) and zσ = ⟨a⊗ a,vσ⟩ mod F (X).
9. Output (xσ, zσ).

From the previous construction, we derive a VOLE construction in a straight-
forward way.

Construction 4: Reusable PCG for YR
VOLE

Let λ be the security parameter, τ = τ(λ) be the noise weight, c ≥ 2 the compression
factor, p = p(λ) a modulus, N = N(λ) a degree, and Rp = Zp[X]/F (X) be a
ring for a degree-N F (X) ∈ Zp[X]. Further, let (DSPF.Gen,DSPF.Eval) be a FSS
scheme for sums of τ point functions with domain [N] and range Zp. Finally, let
H : {0, 1}λ → ([N]τ × (Z∗

p)
τ)c be a random oracle.

36

Correlation: The target correlation YR
VOLE over ring Rp is defined as

mk = (ρ, x)← SetupROLE(1
λ, ρ, x)

((y, z0), (x, z1))← YR
OLE(1

λ,mk) such that

y = F (ρ), z0
$← Rp, z1 = x · y − z0

(x, x · F (ρ)− z0)← RSampleRVOLE(1
λ,mk, 0, (F (ρ), z0))

(F (ρ), x · y − z1)← RSampleRVOLE(1
λ,mk, 1, (x, z1))

with F being a PRG. As proposed by [BCG+20b], Rp can be constructed to be
isomorphic to N copies of Zp. This allows the direct transformation of one VOLE
over Rp into N independent VOLEs over Zp.
Public Input: Random Rc − LPN polynomials a2, . . . ac ∈ Rp, defining the vector
a = (1, a2, . . . , ac).
PCG.Genp(1

λ, ρ0, ρ1):

1. Parse ρ1 as x and compute {(αi, βi)}i∈[c] ← H(ρ0) where x ∈ Z∗
p, each αi ∈ [N]τ

and each βi ∈ (Z∗
p)

τ .

2. For i ∈ [c], sample FSS keys (Ki
0,K

j
1)

$← DSPF.Gen(1λ, αi, x · βi).
3. For σ ∈ {0, 1}, define kσ = (ρσ, {Ki

σ}i∈[c]).
4. Output (k0, k1).

PCG.Expand(σ, kσ):

5. If σ = 0, parse k0 as (ρ0, {Ki
0}i∈[c]) and compute {(αi, βi)}i∈[c] ← H(ρ0) where

each αi ∈ [N]τ and each βi ∈ (Z∗
p)

τ . Then, for i ∈ [c], define (over Zp) the
degree < N polynomial:

ei(X) =
∑
k∈[τ]

βi[k] ·Xαi[k]

and compose all ei (for i ∈ [c]) to a length-c vector e.
6. If σ = 1, parse k1 as (x, {Ki

1}i∈[c]).
7. For i ∈ [c], compute ui

σ ← DSPF.FullEval(σ,Ki
σ) and view the result as a de-

gree < N polynomial. Compose all ui
σ (for i ∈ [c]) to a length-c vector vσ

mod F (X).
8. Compute zσ = ⟨a,vσ⟩ mod F (X).
9. If

– σ = 0, compute y = ⟨a, e⟩ mod F (X) and output (y, z0)
– σ = 1, output (x, z1).

Security. We state the following Theorems:

Theorem 3. Assume the Rc-LPNRp,1,τ assumption holds and that DSPF is a
secure instantiation of a distributed sum of point functions. Then, Construction 3
is a secure reusable PCG for OLE correlations over Rp in the random oracle
model.

37

Theorem 4. Assume the Rc-LPNRp,1,τ assumption holds and that DSPF is a
secure instantiation of a distributed sum of point functions. Then, Construction 4
is a secure reusable PCG for VOLE correlations over Rp in the random oracle
model.

In the following, we provide a proof sketch for Theorem 3. A proof sketch for
Theorem 4 follows in a straight-forward way.

Proof. To show that Construction 3 is a secure reusable PCG, we need to show
programmability, pseudorandom Y-correlated outputs, security and key indis-
tinguishability.

Programmability can be shown, by defining ϕσ as a function, that first
computes {(αi

σ, β
i
σ)}i∈[c] ← H(ρσ), expands these to eσ ∈ Rc

p as done in the
PCG.Expand algorithm, and then outputs ⟨a, eσ⟩.

Pseudorandom Y-correlated outputs can be shown via a sequence of games.
First, we replace the PRG Fσ in Y by ϕσ. As the random oracle ensures that the
secrets e∗∗ are sampled uniformly at random, indistinguishability can be shown
via a reduction to the Rc-LPNRp,1,τ assumption. Next, we skip the DSPF key
generation and full evaluation during the expansion. Instead, we directly sample
z0 ∈R Rp and define z1 = x0 · x1 − z0. Here, indistinguishability can be shown
analogously to the correctness proof in [BCG+20b]. Note that in the previous
game for every i, j ∈ [c], it holds that

ei0(X) · ej1(X) =
∑

k,l∈[τ]

βi
0[k] · β

j
1[l] ·Xαi

0[k]·α
j
1[l].

Therefore, parties can obtain an additive sharing of this product by fully evalu-

ating the (i, j)-th DSPF instance. It follows that u
i+c(j−1)
0 + u

i+c(j−1)
1 = ei0(X) ·

ej1(X), and hence, v = e0 ⊗ e1. This observation yields the following relation of
the outputs:

z0 + z1 = ⟨a⊗ a,v0 + v1⟩ = ⟨a⊗ a, e0 + e1⟩
= ⟨a, e0⟩ · ⟨a, e1⟩ = x0 · x1

As the correlation of (x0, x1, z0, z1) is the same in both games, the computation
of x0 and x1 remains untouched, and the DSPF implies that each zσ is indi-
vidually pseudorandom, both games are computationally indistinguishable. In
the resulting game, the challenger executes the exact same steps independent
of the coin b. Therefore, it follows that any adversary wins the final game with
probability exactly 1

2 which implies that any adversary wins the original security
game with probability at most 1

2 + negl.

As RSampleROLE executes the same steps as the forward sampling YR
OLE, se-

curity can be shown analogously to the pseudorandom Y-correlated outputs
property.

Key indistinguishability follows from the security property of the DSPF scheme
via a sequence of game hops. We replace one by one the DSPF-keys in kσ with

38

ones produced by the DSPF-simulator. Indistinguishability between games can
be proven via reductions to the security property of the DSPF scheme. Finally,
we remove in one more game the PCG key generation and the assignment of
ρ1−σ as both steps become redundant. The final game is completely indepen-
dent of the choice of b such that the success probability of A is exactly 1

2 which
shows that the success probability of A in the initial game is at most 1

2 +negl(λ).

E Reusable Pseudorandom Correlation Function

On a high level, a pseudorandom correlation function (PCF) allows two parties to
generate a large amount of correlated randomness from short seeds. PCF extends
the notion of a pseudorandom correlation generator (PCG) in a similar way as
a pseudorandom function extends a pseudorandom generator. While a PCG
generates a large batch of correlated randomness during one-time expansion, a
PCF allows the creation of correlation samples on the fly.

A PCF consists of two algorithms, Gen and Eval. The Gen algorithm computes
a pair of short keys distributed to two parties. Then, each party can locally
evaluate the Eval algorithm using its key and public input to generate an output
of the target correlation. One example of such a correlation is the oblivious linear
evaluation (OLE) correlation, defined by a pair of random values (y0, y1) where
y0 = (a, u) and y1 = (s, v) such that v = as+ u. Other meaningful correlations
are oblivious transfer (OT) and multiplication triples.

PCFs are helpful in two- and multi-party protocols, where parties first set
up correlated randomness and then use this data to speed up the computation
[DILO22, ANO+22, KOR23].

This section presents our definition of reusable PCFs, extending the definition
of programmable PCFs from [BCG+20a]. Furthermore, we state constructions
of reusable PCFs and argue why they satisfy our new definition in Appendix F.

Our modifications and extensions of the definition [BCG+20a] reflect the
challenges we faced when using PCFs as black-box primitives in our threshold
BBS+ protocol. We present our definition and highlight these challenges and
changes in the following.

E.1 Definition

Similar to PCGs, PCFs realize a target correlation Y. While PCFs output single
correlation outputs instead of a bunch of correlation as PCGs, we need to slightly
adapt the definition of a target correlation. We emphasize the modification in
the following.

We formally define a target correlation as a tuple of probabilistic algorithms
(Setup,Y), where Setup takes two inputs and creates a master key mk. These
inputs enable fixing parts of the correlation, e.g., the fixed value s. Algorithm Y
uses the master key and an index i to sample correlation outputs. The index i
helps to sample the same value if one of the Setup inputs is identical for multiple
invocations. The input i is not necessary for correlations for PCGs since the

39

output of PCG expansion is a bunch of correlation. For PCFs, the output of the
evaluation is a single correlation tuple. Thus, we need the index i to sample the
same value if one of the Setup inputs is identical for multiple PCF invocations.

Definition 5 (Reverse-sampleable and indexable correlation with setup).
Let ℓ0(λ), ℓ1(λ) ≤ poly(λ) be output length functions. Let (Setup,Y) be a tuple of
probabilistic algorithms, such that Setup on input 1λ and two parameters ρ0, ρ1
returns a master key mk; algorithm Y on input 1λ, mk, and index i returns a

pair of outputs (y
(i)
0 , y

(i)
1) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ).

We say that the tuple (Setup,Y) defines a reverse-sampleable and indexable
correlation with setup if there exists a probabilistic polynomial time algorithm

RSample that takes as input 1λ,mk, σ ∈ {0, 1}, y(i)σ ∈ {0, 1}ℓσ(λ) and i, and

outputs y
(i)
1−σ ∈ {0, 1}ℓ1−σ(λ), such that for all σ ∈ {0, 1}, for all mk,mk′ in the

range of Setup for arbitrary but fixed input ρσ, and all i ∈ {0, 1}∗ the following
distributions are statistically close:

{(y(i)0 , y
(i)
1)|(y(i)0 , y

(i)
1)

$← Y(1λ,mk, i)}

{(y(i)0 , y
(i)
1)|(y′(i)0 , y

′(i)
1)

$← Y(1λ,mk′, i),

y(i)σ ← y′(i)σ , y
(i)
1−σ ← RSample(1λ,mk, σ, yσ, i)}.

Given the definition of a reverse-sampleable and indexable correlation with
setup, we define our primitive called strong reusable PCF (srPCF). Our defi-
nition builds on the definition of a strong PCF of Boyle et al. [BCG+20a] and
extends it by a reusability feature. Note that [BCG+20a] presents a separate
definition of this reusability feature for PCFs, but this property also affects the
other properties of a PCF. Therefore, we merge these definitions. Additionally,
the reusability definition of Boyle et al. works only for the semi-honest setting,
while our definition covers malicious adversaries. The crucial point to cover ma-
licious adversaries is to allow the corrupted party to choose an arbitrary value as
its input to the key generation. Our definitions give this power to the adversary,
while the definitions of Boyle et al. use randomly chosen inputs.

A PCF must fulfill two properties. First, the pseudorandomness property
intuitively states that the joint outputs of the Eval algorithm are computationally
indistinguishable from outputs of the correlation Y. Second, the security property
intuitively guarantees that the PCF output of party P1−σ is indistinguishable
from a reverse-sampled value. Indistinguishability holds even if the adversary
corrupts party Pσ and learns its key. Hence, this property provides security
against an insider.

Similarly to the notions of weak and strong PRFs, there exist the notions of
weak and strong PCFs. For a weak PCF, we consider the Eval algorithm to be
executed on randomly chosen inputs, while for a strong PCF, we consider arbi-
trarily chosen inputs. Boyle et al. [BCG+20a] showed a generic transformation
from a weak to a strong PCF using a hash function modeled as a programmable
random oracle. In Appendix F, we present constructions for weak srPCFs, which
then yield strong srPCFs based on the transformation of Boyle et al.

40

A PCF needs to meet two additional requirements to satisfy the reusabil-
ity features. First, an adversary cannot learn any information about the other
party’s input used for the key generation from its own key. This is modeled by
the key indistinguishability property and the corresponding game in Figure 11.
In the game, the challenger samples two random values and uses one for the key
generation. Then, given the corrupted party’s key and the random values, the
adversary has to identify which of the two random value was used. Second, two
efficiently computable functions must exist to compute the reusable parts of the
correlation from the setup input and the public evaluation input. Formally, we
state the definition of a strong reusable PCF next.

Definition 6 (Strong reusable pseudorandom correlation function (sr-
PCF)). Let (Setup,Y) be a reverse-sampleable and indexable correlation with
setup which has output length functions ℓ0(λ), ℓ1(λ), and let λ ≤ η(λ) ≤ poly(λ)
be an input length function. Let (PCF.Gen,PCF.Eval) be a pair of algorithms with
the following syntax:

– PCF.Gen(1λ, ρ0, ρ1) is a probabilistic polynomial-time algorithm that on input
the security parameter 1λ and reusable inputs ρ0, ρ1 outputs a pair of keys
(k0, k1).

– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input
σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}η(λ) outputs a value yσ ∈
{0, 1}ℓσ(λ).

We say (PCF.Gen,PCF.Eval) is a strong reusable pseudorandom correlation func-
tion (srPCF) for (Setup,Y), if the following conditions hold:

– Strong pseudorandom Y-correlated outputs. For every non-uniform
adversary A of size poly(λ) asking at most poly(λ) queries to the oracle
Ob(·), it holds ∣∣∣∣Pr[Exps-prA (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exps-prA (λ) is as defined in Figure 9.
– Strong security. For each σ ∈ {0, 1} and non-uniform adversary A of size

poly(λ) asking at most poly(λ) queries to oracle Ob(·), it holds∣∣∣∣Pr[Exps-secA,σ (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exps-secA,σ (λ) is as defined in Figure 10.
– Programmability. There exist public efficiently computable functions f0, f1,

such that for all x ∈ {0, 1}η(λ) and all ρ0, ρ1 ∈ {0, 1}∗

Pr

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

(a, c)← PCF.Eval(0, k0, x),

(b, d)← PCF.Eval(1, k1, x)

:
a = f0(ρ0, x)

b = f1(ρ1, x)

 ≥ 1− negl(λ).

41

Exps-prA (λ) :

(ρ0, ρ1)← A0(1
λ)

mk← Setup(1λ, ρ0, ρ1)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)
Q = ∅
b

$← {0, 1}
b′ ← AOb(·)

1 (1λ)
if b = b′return 1
else return 0

O0(x) :

if (x, y0, y1) ∈ Q :
return (y0, y1)

else :

(y0, y1)← Y(1λ,mk, x)

Q = Q∪ {(x, y0, y1)}
return (y0, y1)

O1(x) :

for σ ∈ {0, 1} :
yσ ← PCF.Eval(σ, kσ, x)

return (y0, y1)

Fig. 9: Strong pseudorandom Y-correlated outputs of a PCF.

– Key indistinguishability. For any σ ∈ {0, 1} and non-uniform adversary
A = (A0,A1), it holds

Pr[Expkey-indA,σ (λ) = 1] ≤ 1

2
+ negl(λ)

for all sufficiently large λ, where Expkey-indA,σ is as defined in Figure 11.

Exps-secA,σ(λ) :

(ρ0, ρ1)← A0(1
λ)

mk← Setup(1λ, ρ0, ρ1)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

b
$← {0, 1}

b′ ← AOb(·)
1 (1λ, σ, kσ)

if b = b′return 1
else return 0

O0(x) :

y1−σ ← PCF.Eval(1− σ, k1−σ, x)

return y1−σ

O1(x) :

yσ ← PCF.Eval(σ, kσ, x)

y1−σ ← RSample(1λ,mk, σ, yσ, x)

return y1−σ

Fig. 10: Strong security of a PCF.

E.2 Correlations

Here, we state the correlations required for our PCF-based precomputation pro-
tocol (cf. Appendix G.2). As these correlations differ slightly from the correla-

42

Expkey-indA,σ (λ) :

b
$← {0, 1}

ρ
(0)
1−σ, ρ

(1)
1−σ

$← {0, 1}∗

ρ1−σ ← ρ
(b)
1−σ

ρσ ← A0(1
λ)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

b′ ← A1(1
λ, kσ, ρ

(0)
1−σ, ρ

(1)
1−σ)

if b′ = b return 1
else return 0

Fig. 11: Key Indistinguishability of a reusable PCF.

tions required by our PCG-based offline phase (cf. Section 5), we state them in
the following for completeness.

Our OLE correlation over ring R is given by c1 = ab+ c0, where a, b, c0, c1 ∈
R. Moreover, we require a and b being computed by a weak pseudorandom
function (PRF). Formally, we define the reverse-sampleable and indexable target
correlation with setup (SetupOLE,YOLE) over ring R as

(k, k′)← SetupOLE(1
λ, k, k′) ,

((Fk(i), u), (Fk′(i), v))← YOLE(1
λ, (k, k′), i) such that

v = Fk(i) · Fk′(i) + u ,

(5)

where u
$← R, u ∈ R and F being a (PRF) with key k, k′. Note that while

the Setup algorithm for our OLE and VOLE correlation essentially is the iden-
tity function, the algorithm might be more complex for other correlations. The
reverse-sampling algorithm is defined such that (Fk′(i), Fk(i) · Fk′(i) + u) ←
RSampleOLE(1

λ, (k, k′), 0, (Fk(i), u), i) and (Fk(i), v − Fk(i) · Fk′(i)) ←
RSampleOLE(1

λ, (k, k′), 1, (Fk′(i), v), i).
Our VOLE correlation is the same as OLE but the value b is fixed over

multiple correlation samples, i.e., c⃗1 = a⃗b + c⃗0, where each correlation sample
contains one component of the vectors. We formally define the reverse-sampleable
and indexable target correlation with setup (SetupVOLE,YVOLE) over ring R as

(k, b)← SetupVOLE(1
λ, k, b) ,

((Fk(i), u), (b, v))← YVOLE(1
λ, (k, b), i) such that

v = Fk(i) · b+ u ,

(6)

where u
$← R, b, v ∈ R and F being a weak pseudorandom function (PRF)

with key k. Note that b is fixed over all correlation samples, while u and v
are not. The reverse-sampling algorithm is defined such that (b, Fk(i) · b+ u)←

43

RSampleVOLE(1
λ, (k, b), 0, (Fk(i), u), i) and (Fk(i), v − Fk(i) · b) ←

RSampleVOLE(1
λ, (k, b), 1, (b, v), i).

We state PCF constructions realizing these definitions of OLE and VOLE cor-
relations in Appendix F. The VOLE PCF construction is taken from [BCG+20a],
and the OLE PCF follows a straightforward adaptation of the VOLE PCF.

F Reusable PCF Constructions

This sections presents construction of reusable PCFs for VOLE and OLE cor-
relations as defined in Section 3.2. We first present the reusable PCF for VOLE
and then for OLE.

The VOLE construction heavily builds on the constructions of [BCG+20a],
which provides only weak PCF. However, Boyle et al. presented a generic trans-
formation from weak to strong PCF using a programmable random oracle. This
transformation is also straightforwardly applicable to reusable PCFs. Therefore,
we state a weak reusable PCF in the following and emphasize that this construc-
tion can be extended to a strong reusable PCF in the programmable random
oracle model.

The following construction is taken from [BCG+20a, Fig. 22]. It builds on a
weak PRF F and a function secret sharing for the multiplication of F with a
scalar.

Construction 5: Reusable PCF for YVOLE

Let F = {Fk : {0, 1}η → R}k∈{0,1}λ be a weak PRF and FFS = (FFS.Gen,FFS.Eval)
an FSS scheme for {c·Fk}c∈R,k∈{0,1}λ with weak pseudorandom outputs. Let further

ρ0 ∈ {0, 1}λ, ρ1 ∈ R.
PCF.Genp(1

λ, ρ0, ρ1):

1. Set the weak PRF key k ← ρ0 and b← ρ1.
2. Sample a pair of FSS keys (KFFS

0 ,KFFS
1)← FFS.Gen(1λ, b · Fk).

3. Output the keys k0 = (KFFS
0 , k) and k1 = (KFFS

1 , b).

PCF.Eval(σ, kσ, x): On input a random x:

– If σ = 0:
1. Let c0 = −FFS.Eval(0,KFFS

0 , x).
2. Let a = Fk(x).
3. Output (a, c0).

– If σ = 1:
1. Let c1 = FFS.Eval(1,KFFS

1 , x).
2. Output (b, c1).

Theorem 5. Let R = R(λ) be a finite commutative ring. Suppose there exists
an FSS scheme for scalar multiples of a family of weak pseudorandom functions
F = {Fk : {0, 1}η → R}k∈{0,1}λ . Then, there is a reusable PCF for the VOLE
correlation over R as defined in Appendix E.2, given by Construction 5.

44

Proof. Boyle et al. showed in their proof of [BCG+20a, Theorem 5.3] that Con-
struction 5 satisfies pseudorandom YVOLE-correlated outputs and security. Al-
though we slightly adapted our definition to consider reusable inputs, their ar-
gument still holds. Further, it is easy to see that programmability holds for
functions f0(ρ0, x) = Fρ0

(x) and f1(ρ1, x) = ρ1. Finally, key indistinguishabil-
ity follows from the secrecy property of the FSS scheme. The secrecy property
states that for every function f of the function family, there exists a simulator
S(1λ) such that the output of S is indistinguishable from the FSS keys generated
correctly using the FFS.Gen-algorithm.

To briefly sketch the proof of key indistinguishability, we define a hybrid
experiment, where inside the PCF key generation, we use S to simulate FSS keys.
These simulated FSS keys are used inside the PCF key, which is given to A1.
We can show via a reduction to the FSS secrecy that the original Expkey-ind game
is indistinguishable from the hybrid experiment. For the hybrid experiment, it
is easy to see that the adversary can only guess bit b′ since the simulated PCF

key is independent of ρ
(0)
1−σ, ρ

(1)
1−σ and hence also independent of b. It follows that

Pr[Expkey-indA,σ (λ) = 1] ≤ 1
2 + negl(λ).

G PCF-based Threshold Preprocessing Protocol

In this section, we state the PCF-based instantiation of FPrep. As it is conceptu-
ally very similar to the PCG-based instantiation in Section 5, we omit a detailed
description and intuition here. We refer the reader to Section 5 for an intuition
and a detailed description.

Our protocol πPCF
Prep builds on reusable PCFs for VOLE and OLE correlations.

As ssid, which is used to evaluate the PCFs, is provided by the environment, we
require strong reusable PCFs.

G.1 Setup Functionality

The setup functionality is identical to FPCG
Setup just that the functionality generates

PCF keys instead of PCG keys. For the sake of completeness, we formally state
FPCF

Setup next.

Functionality FPCF
Setup

Let (PCFVOLE.Gen,PCFVOLE.Eval) be an srPCF for VOLE correlations and
let (PCFOLE.Gen,PCFOLE.Eval) be an srPCF for OLE correlations. The setup
functionality interacts with parties P1, . . . , Pn and ideal-world adversary S.
Setup:

Upon receiving (setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)ℓ }ℓ∈[n]) from every party Pi

send (setup) to S and do:

45

1. Check if gskℓ2 = pk
(i)
ℓ for every ℓ, i ∈ [n]. If the check fails, send abort to all

parties and S.
Else, compute for every pair of parties (Pi, Pj):

(a) (kVOLE
i,j,0 , kVOLE

i,j,1)← PCFVOLE.Gen(1
λ, ρ

(i)
a , skj),

(b) (k
(OLE,1)
i,j,0 , k

(OLE,1)
i,j,1)← PCFOLE.Gen(1

λ, ρ
(i)
a , ρ

(j)
s), and

(c) (k
(OLE,2)
i,j,0 , k

(OLE,2)
i,j,1)← PCFOLE.Gen(1

λ, ρ
(i)
a , ρ

(j)
e).

2. Send keys (sid, kVOLE
i,j,0 , kVOLE

j,i,1 , k
(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 ,

k
(OLE,2)
j,i,1)j ̸=i to every party Pi.

G.2 PCF-based Preprocessing Protocol

In this section, we formally present our PCF-based preprocessing protocol in the
(FKG,FSetup)-hybrid model.

Construction 6: πPCF
Prep

Let (PCFVOLE.Gen,PCFVOLE.Eval) be an srPCF for VOLE correlations and let
(PCFOLE.Gen,PCFOLE.Eval) be an srPCF for OLE correlations.
We describe the protocol from the perspective of Pi.
Initialization. Upon receiving input (init, sid), do:

1. Send (keygen, sid) to FKG.

2. Upon receiving (sid, ski, pk, {pk(i)ℓ }ℓ∈[n]) from FKG, sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e ∈ {0, 1}λ

and send (setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)ℓ }ℓ∈[n]) to FSetup.

3. Upon receiving (sid, kVOLE
i,j,0 , k

VOLE
j,i,1 , k

(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 ,

k
(OLE,2)
j,i,1)j ̸=i from FSetup, output pk.

Tuple. Upon receiving input (tuple, sid, ssid, T), compute:

4. for j ∈ T \ {i}:
(a) (ai, c

VOLE
i,j,0) = PCFVOLE.Eval(0, k

VOLE
i,j,0 , ssid),

(b) (ski, c
VOLE
j,i,1) = PCFVOLE.Eval(1, k

VOLE
j,i,0 , ssid),

(c) (ai, c
(OLE,1)
i,j,0) = PCFOLE.Eval(0, k

(OLE,1)
i,j,0 , ssid),

(d) (si, c
(OLE,1)
j,i,1) = PCFOLE.Eval(1, k

(OLE,1)
j,i,1 , ssid),

(e) (ai, c
(OLE,2)
i,j,0) = PCFOLE.Eval(0, k

(OLE,2)
i,j,0 , ssid), and

(f) (ei, c
(OLE,2)
j,i,1) = PCFOLE.Eval(1, k

(OLE,2)
j,i,1 , ssid).

5. δi = ai(ei + Li,T ski) +
∑

j∈T \{i}

(
Li,T cVOLE

j,i,1 − Lj,T cVOLE
i,j,0 + c

(OLE,2)
j,i,1 − c

(OLE,2)
i,j,0

)
6. αi = aisi +

∑
j∈T \{i}

(
c
(OLE,1)
j,i,1 − c

(OLE,1)
i,j,0

)
Finally, output (sid, ssid, ai, ei, si, δi, αi).

Theorem 6. Let PCFVOLE be an srPCF for VOLE correlations and let PCFOLE

be an srPCF for OLE correlations as defined in Appendix E.2. Then, proto-

46

col πPCF
Prep UC-realizes FPrep in the (FKG,FSetup)-hybrid model in the presence of

malicious adversaries controlling up to t− 1 parties.

The proof works analogously to the proof of Theorem 2, which is presented
in Appendix L. Therefore, we omit the proof of Theorem 6 for the sake of con-
ciseness.

H Ideal Threshold Signature Functionality

In this section, we state our ideal threshold functionality Ftsig on which we base
our security analysis of the online protocol (cf. Theorem 1). The functionality is
presented in the universal composability (UC) framework and we refer the reader
to Appendix B for a brief introduction into the UC framework and its notation.
Ftsig is a modification of the functionality proposed by Canetti et al. [CGG+20].
First, we allow the parties to specify a set of signers T during the signing request.
This allows us to account for a flexible threshold of signers instead of requiring
all n parties to sign. Second, we model the signed message as an array of mes-
sages. This change accounts for signature schemes allowing signing k messages
simultaneously, such as BBS+. Third, we remove the identifiability property, the
key-refresh, and the corruption/decorruption interface. The key-refresh and the
corruption/decorruption interface are not required in our scenario as we consider
a static adversary in contrast to the mobile adversary in [CGG+20]. Fourth, we
allow every party to sign only one message per ssid. Finally, at the end of the
signing phase, honest parties might output abort instead of a valid signature.
This modification is due to our protocol not providing robustness or identifiable
abort.

Next, we state the full formal description of our threshold signature func-
tionality Ftsig.

Functionality Ftsig

The functionality is parameterized by a threshold parameter t. We denote a
set of t parties by T . For a specific session id sid, the sub-procedures Signing
and Verification can only be executed once a tuple (sid,V) is recorded.
Key-generation.

1. Upon receiving (keygen, sid) from some party Pi, interpret sid = (. . . ,P),
where P = (P1, . . . , Pn).
– If Pi ∈ P, send to S and record (keygen, sid, i).
– Otherwise ignore the message.

2. Once (keygen, sid, i) is recorded for all Pi ∈ P, send (pubkey, sid) to the
adversary S and do:
(a) Upon receiving (pubkey, sid,V) from S, record (sid,V).
(b) Upon receiving (pubkey, sid) from Pi ∈ P, output (pubkey, sid,V) if it

is recorded. Else ignore the message.

Signing.

47

1. Upon receiving (sign, sid, ssid, T ,m = (m1, . . . ,mk)) with T ⊆ P, from
Pi ∈ T and no tuple (sign, sid, ssid, ·, ·, i) is stored, send to S and record
(sign, sid, ssid, T ,m, i).

2. Upon receiving (sign, sid, ssid, T ,m = (m1, . . . ,mk), i) from S, record
(sign, sid, ssid, T ,m, i) if Pi ∈ C. Else ignore the message.

3. Once (sign, sid, ssid, T ,m, i) is recorded for all Pi ∈ T , send
(sign, sid, ssid, T ,m) to the adversary S.

4. Upon receiving (sig, sid, ssid, T ,m, σ, I) from S, where I ⊆ T \ C, do:
– If there exists a record (sid,m, σ, 0), output an error.
– Else, record (sid,m, σ,V(m, σ)), send (sig, sid, ssid, T ,m, σ) to all

Pi ∈ T \ (C ∪I) and send (sig, sid, ssid, T ,m, abort) to all Pi ∈ T ∩I.

Verification.

Upon receiving (verify, sid,m = (m1, . . . ,mk), σ,V ′) from a party Q,
send the tuple (verify, sid,m, σ,V ′) to S and do:
– If V ′ = V and a tuple (sid,m, σ, β′) is recorded, then set β = β′.
– Else, if V ′ = V and less than t parties in P are corrupted, set β = 0

and record (sid,m, σ, 0).
– Else, set β = V ′(m, σ).

Output (verified, sid,m, σ, β) to Q.

I Proof of Theorem 1

This section presents the proof of our online protocol, i.e., Theorem 1.

Proof. We construct a simulator S that interacts with the environment and the
ideal functionality Ftsig. Since the security statement for UC requires that for
every real-world adversary A, there is a simulator S, we allow S to execute A in-
ternally. In the internal execution of A, S acts as the environment and the honest
parties. In particular, S forwards all messages between its environment and A.
The adversary A creates messages for the corrupted parties. These messages are
sent to S in the internal execution. Note that this scenario also covers dummy
adversaries, which just forward messages received from the environment. An
output of S indistinguishable from the output of A in the real-world execution
is created by simulating a protocol transcript towards A that is indistinguish-
able from the real-world execution and outputting whatever A outputs in the
simulated execution. Since the protocol πTBBS+ is executed in the FPrep-hybrid
model, S impersonates the hybrid functionality FPrep in the internal execution.

We start with presenting our simulator S.

Simulator S

KeyGen.

48

1. Upon receiving (init, sid) from corrupted party Pj , send (keygen, sid) on
behalf of Pj to Ftsig.

2. Upon receiving (pubkey, sid) from Ftsig simulate the initialization phase

of FPrep to get pk. In particular, sample sk
$← Zp and send pk = gsk2 to A.

3. Upon receiving (ok,Tuple(·, ·, ·)) from A, send (pubkey, sid,Verifypk(·, ·))
to Ftsig.

Sign.

1. Upon receiving (sign, sid, ssid, T ,m = {mℓ}ℓ∈[k], i) from Ftsig for honest
party Pi, simulate the tuple phase of FPrep to get (ai, ei, si, δi, αi) for Pi.
Then, compute (Ai := (g1 ·

∏
ℓ∈[k] h

mℓ

ℓ)ai ·hαi
0 , δi, ei, si) and send it to the

corrupted parties in T in the internal execution.
2. Upon receiving (sign, sid, ssid, T ,m) from Z to corrupted party Pj , send

message to Pj in the internal execution an do:
(a) Upon receiving (tuple, sid, ssid, T) on behalf of FPrep from corrupted

party Pj with j ∈ T return (aj , ej , sj , δj , αj)← Tuple(ssid, T , j) to Pj .

(b) Forward (sign, sid, ssid, T ,m, j) to Ftsig and define an empty set Îj =
∅ of honest parties that received signature shares from corrupted party
Pj .

(c) Upon receiving (sid, ssid, T ,m, A′
j,i, δ

′
j,i, e

′
j,i, s

′
j,i) from Pj to honest

party Pi in the internal execution, add Pi to Îj .
3. Upon receiving (sign, sid, ssid, T ,m) from Ftsig, do:

– Use tuple (aj , ej , sj , δj , αj) to compute honestly generated
(Aj , δj , ej , sj) for Pj ∈ T ∩ C. Compute honestly generated sig-
nature σ = (A, e, s) as honest parties do using (Aℓ, δℓ, eℓ, sℓ) for
Pℓ ∈ T .

– For each honest party Pi recompute signature σi obtained by Pi as
honest parties do by using A′

j,i, δ
′
j,i, e

′
j,i, s

′
j,i for Pj ∈ T ∩ C.

– We define set I of honest parties that obtained no or an invalid signa-
ture. First set, I = (T \ C) \ (

⋂
j∈T ∩C Îj), i.e., add all honest parties

to I that did not receive signature shares from all corrupted par-
ties in T . Next, compute I = I ∪ {i : σi ̸= σ}, i.e., add all honest
parties that obtained a signature different to the honestly generated
signature. If there exists σi ̸= σ such that Verifypk(m, σi) = 1 and
(sig, sid, ssid, ·,m, σi, ·) was not sent to Ftsig before, output fail and
stop the execution.

– Finally, send (sig, sid, ssid, T ,m, σ, I) to Ftsig.

Verify. Upon receiving (verify, sid,m, σ,Verifypk′(·, ·)) from Ftsig check if

– Verifypk′(·, ·) = Verifypk(·, ·) ,
– (sig, sid, ssid, ·,m, σ, ·) was not sent to Ftsig before
– Verifypk(m, σ) = 1.

If the checks hold, output fail and stop the execution.

49

Lemma 1. If simulator S does not outputs fail, protocol πTBBS+ UC-realizes
Ftsig in the FPrep-hybrid model in the presence of malicious adversaries control-
ling up to t− 1 parties.

Proof. If the simulator S does not outputs fail, it behaves precisely as the
honest parties in real-world execution. Therefore, the simulation is perfect, and
no environment can distinguish between the real and ideal worlds.

Lemma 2. Assuming the strong unforgeability of BBS+, the probability that S
outputs fail is negligible.

Proof. We show Lemma 2 via contradiction. Given a real-world adversaryA such
that simulator S outputs fail with non-negligible probability, we construct an
attacker B against the strong unforgeability (SUF) of BBS+ with non-negligible
success probability. B simulates the protocol execution towards A like S except
the following aspects:

1. During the simulation of the initialization phase of FPrep, instead of sampling

sk
$← Zp and computing pk = gsk2 , B returns pk∗ obtained from the SUF-

challenger. Since the SUF-challenger samples the key exactly as the simulator
S, this step of the simulations is indistinguishable towards A.

2. During the Sign phase, upon receiving (sign, sid, ssid, T ,m, i) from Ftsig for
honest party Pi, the computation of signature shares of the honest parties
is modified as follows:

– Request the signing oracle of the SUF-game on message m to obtain
signature σ = (A, e, s). This signature is forwarded to Ftsig on receiving
(sign, sid, ssid, T ,m) from Ftsig.

– Compute (aj , ej , sj , δj , αj)← Tuple(ssid, T , j) and (Aj , ej , sj) according
to the protocol specification for every corrupted party Pj ∈ T ∩ C.

– Sample random index k
$← T \ C.

– For all honest parties except Pk sample random signature share, i.e.,

∀Pi ∈ (T \ C) \ {Pk} : (Ai, δi, ei, si)
$← (G1,Zp,Zp,Zp).

– For Pk sample random δk
$← Zp and compute ek = e −

∑
ℓ∈T \{k} eℓ,

sk = s−
∑

ℓ∈T \{k} sℓ, and

Ak =
A

∑
ℓ∈T δℓ∏

ℓ∈T \{k} Aℓ
.

It is easy to see that ei and si are sampled at random by both, S and B.
Moreover, δi is a share of a(sk + e) in the simulation by S and since the
random value a works as a random mask, it has the same distribution as
in the simulation by B. Finally, the Ai values yield a valid signature in B.
Therefore, the simulation of the Sign phase of B and S are indistinguishable
to A.

50

Finally, B needs to provide a strong forgery to the SUF-challenger. Here, we
use the fact that S outputs fail with non-negligible probability either in the
Sign or the Verify phase. As the interaction of B with A is indistinguishable,
B outputs fail with non-negligible probability as well. Whenever B outputs
fail, it forwards the pair (m∗, σ∗) obtained in the Sign or Verify phase to the
SUF-challenger.

It remains to show that B successfully wins the SUF-game. In order to be
a valid forgery, it must hold that (1) Verifypk∗(m

∗, σ∗) = 1 and (2) (m∗, σ∗)
was not returned by the signing oracle before. (1) is trivially true, since B only
outputs fail if this condition holds. For (2), we note that A has never seen
σ∗ as output from Ftsig, since B checks that (sig, sid, ssid, ·,m∗, σ∗, ·) was not
sent to Ftsig before. However, it might happen that B obtained σ∗ as response
to a signing request for message m∗ without forwarding it the to Ftsig (this
happens if the environment does not instruct all parties in T to sign). Since the
signing oracle samples e and s at random from Zp, the probability that σ∗ was
returned by the signing oracle is ≤ q

p , where q is the number of oracle requests
and p is the size of the field. While q is a polynomial, p is exponential in the
security parameter. Thus, the probability that σ∗ hits an unseen response from
the signing oracle is negligible in the security parameter. It follows that (m∗, σ∗)
is a valid forgery and B wins the SUF-game.

Since this contradicts the strong unforgeability of BBS+, it follows that the
probability that S outputs fail is negligible.

Combining Lemma 1 and Lemma 2 concludes the proof of Theorem 1.

J Simulator for PCG-based Preprocessing

Here, we state our simulator for proving security of our PCG-based preprocess-
ing. Formally, the security is stated in Theorem 2. We provide a proof sketch
of our indistinguishability argument in Appendix K and state the full proof in
Appendix L.

Simulator for Preprocessing S

Without loss of generality, we assume the adversary corrupts parties
P1, . . . , Pt−1 and parties Pt, . . . , Pn are honest. S internally uses adversary
A.
Initialization.

1: • Upon receiving (keygen, sid) on behalf of FKG from corrupted party
Pj , send (init, sid) on behalf of corrupted Pj to FPrep. Then, wait to
receive (corruptedShares, sid, {skj}j∈C) from A.

2: • Upon receiving pk from FPrep, set pkj = g
skj
2 for j ∈ C and compute

pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

, where T := C ∪ {i}, for every

honest party Pi. Then, send (sid, skj , pk, {pkℓ}ℓ∈[n]) to every corrupted
party Pj .

51

• Upon receiving (setup, sid, ρ
(j)
a , ρ

(j)
s , ρ

(j)
e , sk′j ,

{pk(j)ℓ }ℓ∈[n]) on behalf of FPCG
Setup from every corrupted party Pj ,

check that pk
(j)
ℓ = pkℓ and g

sk′j
2 = pkj for j ∈ C and ℓ ∈ [n]. If any

check fails, send (abort, sid) to FPrep.

Otherwise sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e and a dummy secret key share ŝki for

every honest party Pi and simulate the computation of FPCG
Setup (i.e.,

compute all the PCG keys using the values received from the corrupted
parties and the values sampled for the honest parties).

3: • Send keys (sid, kVOLE
j,ℓ,0 , kVOLE

ℓ,j,1 , k
(OLE,1)
j,ℓ,0 , k

(OLE,1)
ℓ,j,1 , k

(OLE,2)
j,ℓ,0 ,

k
(OLE,2)
ℓ,j,1)ℓ ̸=j to every corrupted party Pj .

• Send (ok,Tuple(·, ·, ·)) to FPrep, where Tuple(ssid, T , j) computes
(aj , ej , sj , δj , αj) for corrupted party Pj exactly as Pj computes its
tuple in the protocol description.
First, expand for every ℓ ∈ T \ {j}:

(aj , c
VOLE
j,ℓ,0) = PCGVOLE.Expand(0, k

VOLE
j,ℓ,0) ,

(skj , c
VOLE
ℓ,j,1) = PCGVOLE.Expand(1, k

VOLE
ℓ,j,0) ,

(aj , c
(OLE,1)
j,ℓ,0) = PCGOLE.Expand(0, k

(OLE,1)
j,ℓ,0) ,

(sj , c
(OLE,1)
ℓ,j,1) = PCGOLE.Expand(1, k

(OLE,1)
ℓ,j,1) ,

(aj , c
(OLE,2)
j,ℓ,0) = PCGOLE.Expand(0, k

(OLE,2)
j,ℓ,0) ,

(ej , c
(OLE,2)
ℓ,j,1) = PCGOLE.Expand(1, k

(OLE,2)
ℓ,j,1) .

Next, set aj = aj [ssid], ej = ej [ssid], sj = sj [ssid], c
VOLE
(j,ℓ,0) =

cVOLE
(j,ℓ,0)[ssid], c

VOLE
(ℓ,j,1) = cVOLE

(ℓ,j,1)[ssid], c
(OLE,d)
(j,ℓ,0) = c

(OLE,d)
(j,ℓ,0) [ssid] and c

(OLE,d)
(ℓ,j,1) =

c
(OLE,d)
(ℓ,j,1) [ssid] for ℓ ∈ T \ {j} and d ∈ {1, 2} and compute

αj = ajsj +
∑

ℓ∈T \{j}

c
(OLE,1)
ℓ,j,1 − c

(OLE,1)
j,ℓ,0 ,

δj = aj(Lj,T skj + ej)

+
∑

ℓ∈T \{j}

(
Lj,T c

VOLE
ℓ,j,1 − Lℓ,T c

VOLE
j,ℓ,0 + c

(OLE,2)
ℓ,j,1 − c

(OLE,2)
j,ℓ,0

)
.

Tuple. Upon receiving (tuple, sid, ssid, T) from Z on behalf of corrupted
party Pj , forward message (tuple, sid, ssid, T) to A and output whatever A
outputs.

52

K Indistinguishability Proof Sketch of Theorem 2

We prove indistinguishability between the ideal-world execution and the real-
world execution via a sequence of hybrid experiments. We start with Hybrid0
which is the ideal-world execution and end up in Hybrid7 being identical to the
real-world execution. By showing indistinguishability between each subsequent
pair of hybrids, it follows that the ideal and real-world execution are indistin-
guishable. In particular, we show indistinguishability between the joint distribu-
tion of the adversary’s view and the outputs of the honest parties in Hybridi and
Hybridi+1 for i = 0, . . . , 6. In the following we sketch the proof outline and defer
the full proof to Appendix L.

Hybrid1: In this hybrid experiment, we inline the description of the simulator S,
the ideal functionality FPrep and the outputs of the honest parties. Since this is
only a syntactical change, the distribution is identical to the one of Hybrid0.

Hybrid2: Instead of sampling the secret key sk at random from Zp, we sample a
random polynomial F (x) ∈ Zp[X] of degree t− 1 such that F (j) = skj for every
j ∈ C. The secret key is then defined as sk = F (0).

Note that the adversary knows only t−1 shares of the polynomial which give
no information about sk. This is due to the information-theoretically secrecy
of Shamir’s secret sharing. It follows that Hybrid1 and Hybrid2 are perfectly
indistinguishable.

Hybrid3: In this hybrid, we change the way honest parties’ secret key shares are
defined. Instead of sampling random dummy key shares, we derive the key shares
from the polynomial introduced in the last hybrid. In more detail, the key share
of honest party Pi is computed as ski = F (i). This change effects the PCG key
generation as the dummy key share is replaced by ski for honest party Pi.

To show indistinguishability between Hybrid2 and Hybrid3, we reduce to the
key indistinguishability property of the PCGVOLE primitive. More specifically, we
introduce a sequence of intermediate hybrids where we only change the secret
key of a single honest party in each step.

Hybrid4: In this hybrid, we change the computation of the honest party Pi’s

public key share pki. Instead of interpolating pki it is defined as pki = gski2 . As
both ways are equivalent, Hybrid4 is perfectly indistinguishable from Hybrid3.

Hybrid5: In this hybrid, we make the sampling of the honest parties’ outputs
of the tuple phase explicit. To this end, we compute the tuple values in two
steps. First, we sample values for ai, ei and si, then we compute αi and δi. For
sampling, we distinguish between two cases. (1) For every pair of two honest
parties (Pi, Pℓ) the values are sampled from YVOLE and YOLE. (2) For every pair
of one honest party Pi and one corrupted party Pj , we use the reverse-sampling
algorithm of the correlations to compute the correlation outputs of the honest
party. We illustrate the idea for ai, si and αi in the following.

53

After simulating the PCG key generation of FPCG
Setup, the experiment computes

once and stores for every i, ℓ ∈ ([N] \ C) with i ̸= ℓ:

((ai, c
(OLE,1)
i,ℓ,0), ·) ∈ YOLE(1

λ, (ρ(i)a , ρ(ℓ)s), [N]) ,

(·, (si, c(OLE,1)
ℓ,i,1)) ∈ YOLE(1

λ, (ρ(ℓ)a , ρ(i)s), [N]) ,

and for every i ∈ ([N] \ C), j ∈ ([N] ∩ C):

(ai, c
(OLE,1)
i,j,0)← RSampleOLE(1

λ, (ρ(i)a , ρ(j)s), 0, (sj , c
(OLE,1)
i,j,1), [N])

(si, c
(OLE,1)
j,i,1)← RSampleOLE(1

λ, (ρ(j)a , ρ(i)s), 1, (aj , c
(OLE,1)
j,i,0), [N]) ,

where (aj , c
(OLE,1)
j,i,0) = PCGOLE.Expand(0, k

(OLE,1)
j,i,0) and

(sj , c
(OLE,1)
i,j,1) = PCGOLE.Expand(1, k

(OLE,1)
i,j,1).

Then, during the tuple phase, for every j ∈ T \ {i} let ai = ai[ssid], si =

si[ssid], c
(OLE,1)
i,j,0 = c

(OLE,1)
i,j,0 [ssid], and c

(OLE,1)
j,i,1 = c

(OLE,1)
j,i,1 [ssid] and compute

αi = aisi +
∑

ℓ∈T \{i}

c
(OLE,1)
ℓ,i,1 − c

(OLE,1)
i,ℓ,0 .

Similar process is done for the computation of δi and ei. A straightforward
calculation shows that resulting tuple values satisfy correlation (4). Note that
the reverse-sampling and the correlation sampling outputs uniform correlation
outputs and hence the correlation is identically distributed as in Hybrid4. It
follows that the view of the environment is indistinguishable in Hybrid4 and
Hybrid5.
Hybrid6: Now, we replace the sampling of correlation outputs for calculating
honest parties’ tuples (cf. case (1) of previous hybrid) with the expansion of the
PCG keys, i.e., instead of using outputs of the YVOLE and YOLE correlations, we
run the PCGVOLE and PCGOLE expansions. For running the PCG expansions, we
use the keys obtained during the simulation of FPCG

Setup in step (2).
Indistinguishability between Hybrid5 and Hybrid6 can be shown via reductions

to the pseudorandom YVOLE-correlated output property of the PCGVOLE primi-
tive and to the pseudorandom YOLE-correlated output property of the PCGOLE

primitive, respectively. More precisely, a series of intermediate hybrids can be
introduce, where in each hop only a single correlation output is replaced by the
output of PCG expansions.
Hybrid7: Finally, we replace the reverse-sampling in case (2) of Hybrid5 with the
PCG expansion. The indistinguishability between Hybrid6 and Hybrid7 can be
shown via a reduction to the security property of the rPCGs.

Hybrid7 is the real-world execution, which concludes the proof.

L Full Indistinguishability Proof of Theorem 2

In this section, we provide the full indistinguishability proof of Theorem 2. The
simulator is given in Appendix J.

54

Hybrid0: The initial experiment Hybrid0 denotes the ideal-world execution where
simulator S is interacting with the corrupted parties, ideal functionality FPrep

and internally runs real-world adversary A.

Hybrid1: In this hybrid, we inline the description of the simulator S, the ideal
functionality FPrep and the outputs of the honest parties. Since this is only a
syntactical change, the joint distribution of the adversary’s view and the output
of the honest parties is identical to the one of Hybrid0. We state Hybrid1 as the
starting point, and emphasize only on the changes in the following hybrids.

Hybrid1

Without loss of generality, we assume the adversary corrupts parties
P1, . . . , Pt−1 and parties Pt, . . . , Pn are honest. S internally uses adversary
A.
Initialization.

1: • Upon receiving (keygen, sid) on behalf of FKG from cor-
rupted party Pj , store (init, sid, Pj). Then, wait to receive
(corruptedShares, sid, {skj}j∈C) from A.

• Upon receiving (init, sid) from every honest party, sample the secret

key sk
$← Zp and set pk = gsk2 . Further, set pkj = g

skj
2 for j ∈ C and

compute pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

, where T := C ∪ {i},
for every honest party Pi.

2: • Send (sid, skj , pk, {pkℓ}ℓ∈[n]) to every corrupted party Pj .

• Upon receiving (setup, sid, ρ
(j)
a , ρ

(j)
s , ρ

(j)
e , sk′j ,

{pk(j)ℓ }ℓ∈[n]) on behalf of FPCG
Setup from every corrupted party Pj ,

check that pk
(j)
ℓ = pkℓ and g

sk′j
2 = pkj for j ∈ C and ℓ ∈ [n]. If any

check fails, honest parties output abort.

Otherwise sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e and a dummy secret key share ŝki for

every honest party Pi and simulate the computation of FPCG
Setup (i.e.,

compute all the PCG keys using the values received from the corrupted
parties and the values sampled for the honest parties).

3: • Send keys (sid, kVOLE
j,ℓ,0 , kVOLE

ℓ,j,1 , k
(OLE,1)
j,ℓ,0 ,

k
(OLE,1)
ℓ,j,1 , k

(OLE,2)
j,ℓ,0 , k

(OLE,2)
ℓ,j,1)ℓ ̸=j to every corrupted party Pj .

• Store (ok,Tuple(·, ·, ·)), where Tuple(ssid, T , j) computes
(aj , ej , sj , δj , αj) for corrupted party Pj exactly as Pj computes
its tuple in the protocol description.

55

First, expand for every ℓ ∈ T \ {j}:

(aj , c
VOLE
j,ℓ,0) = PCGVOLE.Expand(0, k

VOLE
j,ℓ,0) ,

(skj , c
VOLE
ℓ,j,1) = PCGVOLE.Expand(1, k

VOLE
ℓ,j,0) ,

(aj , c
(OLE,1)
j,ℓ,0) = PCGOLE.Expand(0, k

(OLE,1)
j,ℓ,0) ,

(sj , c
(OLE,1)
ℓ,j,1) = PCGOLE.Expand(1, k

(OLE,1)
ℓ,j,1) ,

(aj , c
(OLE,2)
j,ℓ,0) = PCGOLE.Expand(0, k

(OLE,2)
j,ℓ,0) ,

(ej , c
(OLE,2)
ℓ,j,1) = PCGOLE.Expand(1, k

(OLE,2)
ℓ,j,1) .

Next, set aj = aj [ssid], ej = ej [ssid], sj = sj [ssid], c
VOLE
(j,ℓ,0) =

cVOLE
(j,ℓ,0)[ssid], c

VOLE
(ℓ,j,1) = cVOLE

(ℓ,j,1)[ssid], c
(OLE,d)
(j,ℓ,0) = c

(OLE,d)
(j,ℓ,0) [ssid] and c

(OLE,d)
(ℓ,j,1) =

c
(OLE,d)
(ℓ,j,1) [ssid] for ℓ ∈ T \ {j} and d ∈ {1, 2} and compute

αj = ajsj +
∑

ℓ∈T \{j}

c
(OLE,1)
ℓ,j,1 − c

(OLE,1)
j,ℓ,0 ,

δj = aj(Lj,T skj + ej)

+
∑

ℓ∈T \{j}

(
Lj,T c

VOLE
ℓ,j,1 − Lℓ,T c

VOLE
j,ℓ,0 + c

(OLE,2)
ℓ,j,1 − c

(OLE,2)
j,ℓ,0

)
.

• The honest parties Pt, . . . , Pn output pk.

Tuple.

– Upon receiving (tuple, sid, ssid, T) from Z on behalf of corrupted party Pj ,
forward message (tuple, sid, ssid, T) to A and output whatever A outputs.

– Upon receiving (tuple, sid, ssid, T) from Z on behalf of hon-
est party Pi, if (sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T) is stored, out-
put (sid, ssid, ai, ei, si, δi, αi). Otherwise, compute (aj , ej , sj , δj , αj) ←
Tuple(ssid, T , j) for every corrupted party Pj where j ∈ C ∩T and sample

a, e, s
$← Zp and tuples (ai, ei, si, δi, αi) over Zp for i ∈ H ∩ T such that∑

ℓ∈T

aℓ = a
∑
ℓ∈T

eℓ = e
∑
ℓ∈T

sℓ = s∑
ℓ∈T

δℓ = a(sk+ e)
∑
ℓ∈T

αℓ = as

Store (sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T) and honest party Pi outputs
(sid, ssid, ai, ei, si, δi, αi).

56

Hybrid2: In this hybrid, we change the sampling of the secret key sk. Instead
of sampling sk in step 1 from Zp, we sample a random polynomial F ∈ Zp[X]
of degree t − 1 such that F (j) = skj for every j ∈ C. Further, we define sk =
F (0). Since the polynomial is of degree t − 1, t evaluation points are required
to fully determine F (x). As the adversary knows only t − 1 shares, it cannot
learn anything about sk. In detail, for every sk′ ∈ Zp there exists a t-th share
that defined the polynomial F (x) such that F (x) = sk′. It follows that the views
of the adversary are distributed identically and hence Hybrid2 and Hybrid3 are
perfectly indistinguishable.
Hybrid3: Next, we use the polynomial F (x) sampled in step 1 to determine the
honest parties’ secret key shares. In particular, for every honest party Pi the
experiment samples ski = F (i). The secret key shares {ski}i∈H are then used
for the simulation of FPCG

Setup instead of the dummy key shares. In particular,
the correctly sampled key shares of the honest parties are used as input to
PCGVOLE.Gen whenever a secret key share of the honest party is used. Since the
experiment does not use the dummy key shares at all after these changes, we
remove them completely. Note that the sampling of the honest parties’ key shares
and the generation of the PCG keys are exactly as in the real-world execution.

Indistinguishability between Hybrid2 and Hybrid3 can be shown via a series
of reductions to the key indistinguishability property of the VOLE PCG. We
briefly sketch the proof outline in the following. We define intermediate hybrids
Hybrid2,ℓ,k for ℓ ∈ {0, . . . , n − (t − 1)} and k ∈ [n], which only differ in the
honest parties’ key shares that are used in the generation of the VOLE PCG
keys. Recall that for every party Pℓ we generate a VOLE PCG for every other
party Pk, where Pℓ uses its secret key shares as input. We define Hybrid2,ℓ,k such
that the key shares derived from polynomial F (x) are used for the first ℓ honest
parties in all VOLE PCG instances and for the (ℓ + 1)-th honest party in the
VOLE PCG instances with the first k other parties. For all other VOLE PCG
instances, the dummy key shares are used for the honest parties’ key shares.

Note that Hybrid2,0,0 = Hybrid2 and Hybrid2,n−(t−1),n = Hybrid3. To show in-
distinguishability between Hybrid2,ℓ,k and Hybrid2,ℓ,k+1 for every ℓ ∈ {0, . . . , n−
(t − 1)}, we make a reduction to the key indistinguishability property of the
VOLE PCG. In particular, we construct an adversary Akey−ind from a distin-
guisher Dℓ which distinguishes between Hybrid2,ℓ,k and Hybrid2,ℓ,k+1. Upon re-

ceiving the shares of the corrupted parties in the hybrid execution, Akey−ind

forwards the key share of the k + 1-th corrupted party to the security game.
Then, the security game samples two possible key shares for the ℓ-th honest

party ρ
(0)
1 , ρ

(1)
1 , uses one of them in the VOLE PCG key generation and sends

the key k1 for the corrupted party and ρ
(0)
1 to Akey−ind. Next, Akey−ind continues

the simulation of hybrid Hybrid2,ℓ,k or Hybrid2,ℓ,k+1 by sampling the polynomial

F (x) using the corrupted key shares and ρ
(0)
1 . Since ρ

(0)
1 is a random value in

Zp, F (x) is also a random polynomial. Finally, Akey−ind uses k1 as the output of
the simulation of FSetup.

If k1 was sampled using ρ
(0)
1 , then the simulated experiment is identical to

Hybrid2,ℓ,k+1 and otherwise it is identical to Hybrid2,ℓ,k. It is easy to see that a

57

successful distinguisher between these two hybrids allows to easily win the key
indistinguishability game. Since we assume the VOLE PCG to satisfy the key
indistinguishability property, this leads to a contradiction. Thus, the two hybrids
are indistinguishable.

Hybrid4: In this hybrid, we derive the honest parties public key shares pki from
the secret key shares ski instead of interpolating them from pk and the corrupted
shares. More precisely, in Hybrid3 the public key share of honest party Pi was
computed as

pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

,

where T := C ∪ {i}. In Hybrid4 the public key share is instead computed as
pki = gski2 . We show that both definitions are equivalent.

To this end, note that sk =
∑

ℓ∈T Lℓ,T skℓ for every set T of size t, pk = gsk2
and pkj = g

skj
2 for j ∈ C. Using this equation we get for T = C ∪ {i}

pki =

(
pk

pk
L1,T
1 · . . . · pkL1,T

t−1

)1/Li,T

⇔ pki =

(
gsk2

g
L1,T sk1
2 · . . . · gL1,T skt−1

2

)1/Li,T

⇔ pki =

(
g
∑

ℓ∈T Lℓ,T skℓ
2

g
L1,T sk1
2 · . . . · gL1,T skt−1

2

)1/Li,T

⇔ pki =
(
g
Li,T ski
2

)1/Li,T

⇔ pki = gski2

As public key shares are equivalent in both hybrids, the view of the adversary
is identical distributed. Hence, Hybrid3 and Hybrid4 are perfectly indistinguish-
able.

Hybrid5: In this hybrid, we derive the sampling the honest parties’ outputs of
the tuple phase from correlation samples and reverse sampling. To this end, we
distinguish two cases. (1) For every pair of honest parties (Pi, Pℓ), the values are
sampled from YVOLE and YOLE. (2) For every pair of one honest party Pi and
one corrupted party Pj , we take the output of Pj ’s PCG expansion and reverse-
sample the output of the honest party. More specifically, after simulating the
PCG key generation of FPCG

Setup, the experiment computes once and stores for

58

every i, ℓ ∈ ([N] \ C) with i ̸= ℓ:

((ai, c
VOLE
i,ℓ,0), ·) ∈ YVOLE(1

λ, (ρ(i)a , skℓ)), [N]) ,

(·, (ski, cVOLE
ℓ,i,1)) ∈ YVOLE(1

λ, (ρ(ℓ)a , ski), [N]) ,

((ai, c
(OLE,1)
i,ℓ,0), ·) ∈ YOLE(1

λ, (ρ(i)a , ρ(ℓ)s), [N]) ,

(·, (si, c(OLE,1)
ℓ,i,1)) ∈ YOLE(1

λ, (ρ(ℓ)a , ρ(i)s), [N]) ,

((ai, c
(OLE,2)
i,ℓ,0), ·) ∈ YOLE(1

λ, (ρ(i)a , ρ(ℓ)e), [N]) ,

(·, (ei, c(OLE,2)
ℓ,i,1)) ∈ YOLE(1

λ, (ρ(ℓ)a , ρ(i)e), [N]) ,

and for every i ∈ ([N] \ C), j ∈ ([N] ∩ C):

(ai, c
VOLE
i,j,0)← RSampleVOLE(1

λ, (ρ(i)a , skj), 0, (skj , c
VOLE
i,j,1), [N])

(ski, c
VOLE
j,i,1)← RSampleVOLE(1

λ, (ρ(j)a , ski), 1, (aj , c
VOLE
j,i,0), [N]) ,

(ai, c
(OLE,1)
i,j,0)← RSampleOLE(1

λ, (ρ(i)a , ρ(j)s), 0, (sj , c
(OLE,1)
i,j,1), [N])

(si, c
(OLE,1)
j,i,1)← RSampleOLE(1

λ, (ρ(j)a , ρ(i)s), 1, (aj , c
(OLE,1)
j,i,0), [N]) ,

(ai, c
(OLE,2)
i,j,0)← RSampleOLE(1

λ, (ρ(i)a , ρ(j)e), 0, (ej , c
(OLE,2)
i,j,1), [N])

(ei, c
(OLE,2)
j,i,1)← RSampleOLE(1

λ, (ρ(j)a , ρ(i)e), 1, (aj , c
(OLE,2)
j,i,0), [N]) ,

where

(aj , c
VOLE
j,i,0) = PCGVOLE.Expand(0, k

VOLE
j,i,0) ,

(skj , c
VOLE
i,j,1) = PCGVOLE.Expand(1, k

VOLE
i,j,1) ,

(aj , c
(OLE,1)
j,i,0) = PCGOLE.Expand(0, k

(OLE,1)
j,i,0) ,

(sj , c
(OLE,1)
i,j,1) = PCGOLE.Expand(1, k

(OLE,1)
i,j,1) ,

(aj , c
(OLE,2)
j,i,0) = PCGOLE.Expand(0, k

(OLE,2)
j,i,0) ,

(ej , c
(OLE,2)
i,j,1) = PCGOLE.Expand(1, k

(OLE,2)
i,j,1) ,

Then, during the tuple phase, for every j ∈ T \ {i} let ai = ai[ssid], ei =

ei[ssid], si = si[ssid], c
VOLE
i,j,0 = cVOLE

i,j,0 [ssid], cVOLE
j,i,1 = cVOLE

j,i,1 [ssid], c
(OLE,1)
i,j,0 = c

(OLE,1)
i,j,0 [ssid], c

(OLE,1)
j,i,1 =

c
(OLE,1)
j,i,1 [ssid], c

(OLE,2)
i,j,0 = c

(OLE,2)
i,j,0 [ssid], and c

(OLE,2)
j,i,1 = c

(OLE,2)
j,i,1 [ssid] and compute

according to the protocol specification

αi =aisi +
∑

ℓ∈T \{i}

c
(OLE,1)
ℓ,i,1 − c

(OLE,1)
i,ℓ,0

δi =ai(ei + Li,T ski)

+
∑

ℓ∈T \{i}

(
Li,T c

VOLE
ℓ,i,1 − Lℓ,T c

VOLE
i,ℓ,0 + c

(OLE,2)
ℓ,i,1 − c

(OLE,2)
i,ℓ,0

)
.

59

We show that the resulting tuple outputs satisfy the same correlation as
before. In particular, we show

∑
ℓ∈T αℓ = as and

∑
ℓ∈T δℓ = a(sk+e), where a =∑

ℓ∈T aℓ =
∑

ℓ∈T F
ρ
(ℓ)
a
(x), e =

∑
ℓ∈T eℓ =

∑
ℓ∈T F

ρ
(ℓ)
e
(x) and s =

∑
ℓ∈T sℓ =∑

ℓ∈T F
ρ
(ℓ)
s
(x). First, we show

∑
ℓ∈T αℓ = as:

∑
ℓ∈T

αℓ =
∑
ℓ∈T

aℓsℓ +
∑

k∈T \{ℓ}

(c
(OLE,1)
k,ℓ,1 − c

(OLE,1)
ℓ,k,0)

=
∑
ℓ∈T

aℓsℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

(
c
(OLE,1)
k,ℓ,1 − c

(OLE,1)
k,ℓ,0

)
=
∑
ℓ∈T

aℓsℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

(
F
ρ
(k)
a

(x) · F
ρ
(ℓ)
s
(x)
)

=
∑
ℓ∈T

aℓsℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

aksℓ

=
∑
ℓ∈T

∑
k∈T

aksℓ

=
∑
ℓ∈T

ak
∑
k∈T

sℓ

= as

60

Next, we show
∑

ℓ∈T δℓ = a(sk+ e):

∑
ℓ∈T

δℓ =
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑

k∈T \{ℓ}

Lℓ,T c
VOLE
k,ℓ,1 − Lk,T c

VOLE
ℓ,k,0

+ c
(OLE,2)
k,ℓ,1 − c

(OLE,2)
ℓ,k,0

)
=
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑
ℓ∈T

∑
k∈T \{ℓ}

Lℓ,T c
VOLE
k,ℓ,1 − Lℓ,T c

VOLE
k,ℓ,0

+ c
(OLE,2)
k,ℓ,1 − c

(OLE,2)
k,ℓ,0

=
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑
ℓ∈T

∑
k∈T \{ℓ}

Lℓ,T akskℓ + akeℓ

=
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑
ℓ∈T

∑
k∈T \{ℓ}

ak(Lℓ,T skℓ + eℓ)

=
∑
ℓ∈T

∑
k∈T

ak(Lℓ,T skℓ + eℓ)

=
∑
k∈T

∑
ℓ∈T

ak(Lℓ,T skℓ + eℓ)

=
∑
k∈T

ak
∑
ℓ∈T

(Lℓ,T skℓ + eℓ)

=
∑
k∈T

ak

(∑
ℓ∈T

Lℓ,T skℓ +
∑
ℓ∈T

eℓ

)
= a(sk+ e)

As the tuple values of the honest parties still satisfy the same correlation
as in Hybrid4, Hybrid4 and Hybrid5 are indistinguishable. Note that the reverse-
sampling and the correlation sampling outputs uniform correlation outputs and
hence the correlation is identically distributed as in Hybrid4.
Hybrid6: In this hybrid, we replace the correlation sampling of values of a pair of
honest parties with PCG expansions (cf. case (1) of Hybrid5). For example, in-

stead of sampling ((ai, c
VOLE
i,ℓ,0), ·) ∈ YVOLE(1

λ, (ρ
(i)
a , skℓ), [N]), party Pi computes

(ai, c
VOLE
i,ℓ,0) = PCGVOLE.Expand(0, k

VOLE
i,ℓ,0). The same change is applied to all VOLE

and OLE correlations.
Indistinguishability can be shown via a series of reductions to the pseudoran-

dom YVOLE- and YOLE-correlated output property of the PCGs. In more detail,
we construct a sequence of hybrid experiments where only a single correlation
sampling is replaced by a PCG expansion. Then, in the reduction to the pseudo-
random correlated output property, in case the challenge bit is 0, the reduction
simulates the hybrid where the output is sampled from the correlation, and in
case the challenge bit is 1, the output is the PCG expansion. A distinguisher
between any pair of hybrid experiments in the sequence helps to construct a
successful adversary against the pseudorandom correlated output property. We

61

conclude that Hybrid5 and Hybrid6 are indistinguishable under the assumption
of reusable PCGs.
Hybrid7: Finally, we replace the reverse-sampling in case (2) of Hybrid5 with the
corresponding PCG expansion. For instance, instead of computing

(ai, c
VOLE
i,j,0)← RSampleVOLE(1

λ, (ρ(i)a , skj), 0, (skj , c
VOLE
i,j,1), [N])

the honest party computes

(ai, c
VOLE
i,j,0) = PCGVOLE.Expand(0, k

VOLE
i,j,0).

The same change is applied for all other reverse-sampling algorithms.
Analog to the indistinguishability between Hybrid5 and Hybrid6, we can show

indistinguishability between Hybrid6 and Hybrid7 via a sequence of hybrid exper-
iments. In each hybrid one reverse sampling is replaced by the PCG expansion.
Indistinguishability between adjacent hybrids is reduced to the security prop-
erty of the PCG. Since the only change between two adjacent hybrids is the fact
whether the correlation output of an honest party is reverse-sampled given the
output of a corrupted party or taken as the PCG expansion, it is easy to see
that a distinguisher between these hybrids can be used to construct a successful
adversary against the security property.

We end up in Hybrid7 where all correlation outputs and reverse-sampling
outputs are replaced by PCG expansions. As this hybrid does not use any reverse-
sampling anymore, we can get rid of the tuple function Tuple.

Now, Hybrid7 is identical to the real-world execution which concludes the
proof.

M Benchmarks of Basic Arithmetic Performance

We report the runtime of basic arithmetic operations in Table 1. The presented
numbers might help the reader to assess the performance of system used for
benchmarking and provides details for comparisons.

Table 1: Runtime of basic arithmetic operations in the BLS12 381 curve on our
evaluation machine. The bit-size of the curve’s group order p is 255. The error
terms report standard deviation.

Operation Time

Zp addition 5.092 ns ±1.049 ns
Zp multiplication 32.045 ns ±1.556 ns
Zp inverse 2.713 µs ±101.973 ns
G1 addition 1.102 µs ±48.571 ns
G2 addition 3.668 µs ±96.867 ns
G1 scalar multiplication 279.146 µs ±14.763 µs
G2 scalar multiplication 0.952 ms ±0.04 µs
Pairing 2.403 ms ±56.976 µs

62

N Evaluation Considering [TZ23]

Concurrently to our work, Tessaro and Zhu [TZ23] proposed and proved security
of a more compact BBS+ signature scheme removing the nonce s, and hence,
reducing the signature size by one element in Zp. The proposed extension trans-
lates to our protocol in a straight-forward way as follows. We do no longer need
public parameter h0. The preprocessing protocol does not generate the shares si
or αi. When answering a signing request, the servers compute Ai differently, i.e.,
Ai := (g1 ·

∏
ℓ∈[k] h

mℓ

ℓ)ai , and do not send si. The reconstruction of a signature

ignores s and outputs the tuple (A, e). When verifying a signature, parties now
check if e(A, y · ge2) = e(g1 ·

∏
ℓ∈[k] h

mℓ

ℓ , g2). In the following we call the described
protocol the lean version of our protocol.

For us, their optimization has the advantage of removing the necessity of the
α values computed during the preprocessing and the computation of the gsi and
gs term in the signing and verification process. In order to quantify the benefits
of this optimization, we have repeated the evaluation presented in Section 6 for
the lean version of our protocol and report the changes here.

Online, Signing Request-Dependent Phase. For the online phase, we have imple-
mented the lean version of the protocol and executed benchmarks. The scope of
the implementation and the setup of our benchmarks remains unchanged. The
results of our benchmarks are reported in Figure 12. The comparison to the non-
threshold protocol, also optimized according to [TZ23], is displayed in Figure 13.
The size of signing requests does not change in the lean version of our protocol.
The size of partial signatures sent by the servers reduces to (2⌈log p⌉+ |G1|).

Offline, Signing Request-Independent Phase. For the offline phase, we derive
the benchmarks for the lean version of our protocol from the original one. To
this end, we have measured the execution time of the expansion steps that are
removed by the lean version and deduct them from the total runtime. The results
are displayed in Figure 15 and Figure 16. In the n-out-of-n setting of the lean
version, each party performs four randomization and splits three polynomials.
In the t-out-of-n setting, each party performs 2+ 3 · (n− 1) randomizations and
splits just as many polynomials. The time to extract one of the N field elements
from a degree-N polynomial remains unchanged.

The communication complexity of a distributed PCG-based preprocessing
protocol instantiating the offline, signing request-independent phase of the lean
version of our protocol is dominated by a factor of

13(ncτ)2 · (logN + log p) + 4n(cτ)2 · λ · logN.

In case, the preprocessing decouples seed generation from seed evaluation,
servers have to store seeds with a size of at most

log p+ 2cτ · (⌈log p⌉+ ⌈logN⌉)
+2 · (n− 1) · cτ · (⌈logN⌉ · (λ+ 2) + λ+ ⌈log p⌉)
+2(n− 1) · (cτ)2 · (⌈log 2N⌉ · (λ+ 2) + λ+ ⌈log p⌉)

63

10 20 30
0

200

400

t

[µs]

(a) Adapt (Server).

10 30 50
0

5

10

15

k

[ms]

(b) Sign (Server).

10 20 30
0

100

200

300

t

[µs]

(c) Reconstruct (Client).

10 30 50
0

10

20

k

[ms]

(d) Verify (Client).

10 20 30
0

5

10

15

t

[ms]

k = 1 k = 2

k = 5 k = 10

(e) Total.

Fig. 12: The runtime of individual phases (a)-(d) and the total online protocol
(e) in the protocol version optimized according to [TZ23]. The Adapt phase,
describing Steps 5 and 6 of protocol πPrep, and the Reconstruct phase, describing
Step 3a of πTBBS+, depend on security threshold t. The Sign phase, describing
Step 2 of πTBBS+, and the signature verification, describing Step 3b depend on
the message array size k.

10 20 30 40 50
0

20

40

k

[ms] Threshold (t = 10)

Plain incl. verification

Plain excl. verification

Fig. 13: The total runtime of the lean version of our online protocol in comparison
to plain, non-threshold signing (also optimied according to [TZ23]) with and
without signature verification in dependence of the size of the message array k.
As depicted in Figure 12e, the influence of the number of signers t is insignificant.
We choose t = 10.

64

5 10 15 20 25 30
0

2

4

n

[GB] N = 1048 576

N = 98 304

Fig. 14: Storage complexity of the preprocessing material in the lean version of
our protocol required for N ∈ {98 304, 1 048 576} signatures depending on the
number of servers n.

11 15 20
0

100

200

300

log2(N)

[ms] n = 10
n = 9
n = 8
n = 7
n = 6
n = 5
n = 4
n = 3
n = 2

Fig. 15: Computation time in the lean version of our protocol of the seed expan-
sion of all required PCGs in the n-out-of-n setting for different committee sizes
(n ∈ {2, . . . , 10}) dependent on the number of generated precomputation tuples
N .

65

11 15 20
0

200

400

log2(N)

[ms]
n = 10
n = 9
n = 8
n = 7
n = 6
n = 5
n = 4
n = 3

Fig. 16: Computation time in the lean version of our protocol of the seed expan-
sion of all required PCGs in the t-out-of-n setting for different committee sizes
(n ∈ {2, . . . , 10}) dependent on the number of generated precomputation tuples
N .

bits. The expanded precomputation material occupies

log p · (1 +N · (2 + 4 · (n− 1)))

bits of storage. In Figure 14, we report the concrete storage complexity of the
preprocessing material of the lean version of our protocol when instantiating the
with N ∈ {98 304, 1 048 576} and p = 255 according to the BLS12 381 curve
used by our implementation.

The computation cost of the seed expansion is still dominated by the ones
of the PCGs for OLE correlations. However, we do no longer need the OLE-
generating PCGs for the cross terms ai · sj , and aj · si. It follows that the
computation complexity of the seed expansion in the lean version of our protocol
is dominated by

2 · (n− 1) · (4 + 2⌊log(p/λ)⌋) ·N · (ct)2

PRG evaluations and O(nc2N logN) operations in Zp.

66

	Non-Interactive Threshold BBS+ From Pseudorandom Correlations

