
Power Contracts: Provably Complete Power Leakage Models for
Processors

Roderick Bloem∗

Graz University of Technology
Graz, Austria

Barbara Gigerl
Graz University of Technology

Graz, Austria

Marc Gourjon
Hamburg University of Technology

Hamburg, Germany
NXP Semiconductors
Hamburg, Germany

Vedad Hadžić
Graz University of Technology

Graz, Austria

Stefan Mangard
Graz University of Technology

Graz, Austria

Robert Primas
Graz University of Technology

Graz, Austria

ABSTRACT

The protection of cryptographic software implementations against
power-analysis attacks is critical for applications in embedded sys-
tems. A commonly used algorithmic countermeasure against these
attacks is masking, a secret-sharing scheme that splits a sensitive
computation into computations on multiple random shares. In prac-
tice, the security of masking schemes relies on several assumptions
that are often violated by microarchitectural side-effects of CPUs.
Many past works address this problem by studying these leakage
effects and building corresponding leakage models that can then be
integrated into a software verification workflow. However, these
models have only been derived empirically, putting in question the
otherwise rigorous security statements made with verification.

We solve this problem in two steps. First, we introduce a contract
layer between the (CPU) hardware and the software that allows
the specification of microarchitectural side-effects on masked soft-
ware in an intuitive language. Second, we present a method for
proving the correspondence between contracts and CPU netlists
to ensure the completeness of the specified leakage models. Then,
any further security proofs only need to happen between software
and contract, which brings benefits such as reduced verification
runtime, improved user experience, and the possibility of working
with vendor-supplied contracts of CPUs whose design is not avail-
able on netlist-level due to IP restrictions. We apply our approach
to the popular RISC-V IBEX core, provide a corresponding formally
verified contract, and describe how this contract could be used to
verify masked software implementations.

KEYWORDS

Power side-channel, Leakagemodel, Verification, Contract, Domain-
specific language, Masking, Probing security

This work is licensed under a Creative Com-
mons “Attribution 4.0 International” license.

Author Email: first.last@iaik.tugraz.at and first.last@tuhh.de

∗Authors listed in alphabetical order.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security (CCS ’22),
November 7–11, 2022, Los Angeles, CA, USA, https://doi.org/10.1145/3548606.3560600.

1 INTRODUCTION

Physical side-channel attacks such as power or EM analysis allow
attackers within proximity of a device to learn sensitive informa-
tion like cryptographic keys [32, 47]. One of the most widely used
algorithmic countermeasures for protecting a cryptographic im-
plementation against these kinds of attacks is masking [14, 27, 31].
Masking is a secret-sharing technique that splits input and interme-
diate variables of cryptographic computations into𝑑 ≥ 𝑡+1 random
shares such that the observation of up to 𝑡 shares does not reveal any
information about their corresponding unmasked value. Masking
schemes typically rely on certain assumptions, such as independent
computations producing independent side-channel leakage. How-
ever, the structure of a CPU architecture can violate these assump-
tions and introduce additional leakage effects [15, 18, 25, 41, 45].
Such leakage is often referred to as order-reducing leakage because
it induces a security loss and thus a gap between formal security
assurance and practical resilience. The physical characteristics of
CMOS gates are relatively well understood and give rise to extended
leakage models, which allow constructing hardware implementa-
tions that reliably mitigate order-reducing leakage [17, 20, 35, 36].
Similarly, when designing masked software implementations of
cryptographic algorithms, knowing the concrete power side-effects
of different instruction types is indispensable. It allows develop-
ers to optimize the performance of masked implementations by
simplifying the otherwise trial-and-error hardening process [9].

State of the Art. Many works address the problem of charac-
terizing and understanding the leakage behavior of instructions.
These can be divided into two categories: works that use empirical
methods to determine side-channel leakage, and works that use
formal verification approaches to verify side-channel resilience.

On the empirical side, the measurement of a CPU’s power con-
sumption combined with a subsequent analysis using statistical
methods is a straightforward approach to determine whether cryp-
tographic software is correctly masked. Any observed leakage ef-
fects can be reverse-engineered and taken into account in hardened
versions of the respective masked software implementations [1,
23, 24, 38, 39, 45, 50]. The authors of ELMO [39] characterize leak-
age behavior by selecting “explanatory variables”, e.g., operands of
assembly instructions and determining whether the variables con-
tribute to themeasured leakage using statistical tests. Variables with
a correlation to measured leakage form a “leakage model”. Such a

https://orcid.org/0000-0002-1411-5744
https://orcid.org/0000-0002-7373-9493
https://orcid.org/0000-0002-2580-801X
https://orcid.org/0000-0001-7974-3381
https://orcid.org/0000-0001-9650-8041
https://orcid.org/0000-0002-9569-8477
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://doi.org/10.1145/3548606.3560600

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

model specifies the side-effects of a (sequence of) assembly instruc-
tions which may be exploited using for example Differential Power
Analysis (DPA) [33, 40] to learn information about processed cryp-
tographic keys. However, manual selection of variables, statistical
methods and physical measurements bear potential for incomplete
models which do not specify leakage of data which in practice
could be exploited. Specifically, the restriction to sequences of three
instructions in [39] may miss leakage effects spanning between
two load instructions spaced by multiple instructions as observed
in [9, 45]. Similar issues exist with other works that try to gen-
eralize power side-channel leakages that are often reported on a
variety of devices in generic leakage models [9, 10, 39]. Any work
building upon empirical or generalized models, e.g., ELMO [39],
ROSITA [50] and TORNADO [11] only report, respectively protect
against, vulnerabilities and leakages which are part of the model.
Hence, all existing empirical approaches either require high practi-
cal effort or cannot guarantee completeness, thereby reducing the
confidence in security assessments [5, 26, 41].

On the formal verification side, several works verify the security
of masked software under specific masking-related security notions.
MaskVerif performs algorithmic software masking verification
using generic leakagemodels and supports the commonly acccepted
𝑡–NI and 𝑡–SNI security notions [7, 8]. scVerif improves upon this
and verifies the absence of order-reducing leakage in user-provided
leakage models for assembly instructions [9]. However, the security
assurance still relies on the completeness of the used leakagemodels,
as it is the case for pure empirical approaches.

Coco is a formal masking verification tool that avoids modeling
the leakage by directly working with the processor netlist [25,
26, 30]. Their approach considers the leakage of every gate in an
extended hardware leakage model and captures a wide range of
microarchitectural side-effects. However, their method requires the
processor’s netlist, which may not be available.

Hardware-software contracts have previously been used to ver-
ify speculative and timing related side-channel resilience [29]. The
contracts presented in this paper are more flexible and apply to
arbitrary side-channel behavior, devices and software implementa-
tions. Their close correspondence to the respective ISAs facilitates
understanding by users.

OurContribution. We answer to the question of leakagemodel
completeness and establish end-to-end (E2E) security for software
executing on a processor. First, we introduce a contract between
the hardware and the software that defines precise semantics and
models side-channel behavior of assembly instructions. We then
establish a technique to verify compliance of a processor with a con-
tract. A processor is compliant when the leakage of each of its gates
and the semantic of instruction is correctly specified in the con-
tract. Put vice-versa, we prove the contract’s model of instructions
correct and its model of leakages complete. We pave the way for
provable E2E security by defining software compliance for thresh-
old probing security notions so that the approach of Barthe et al. [9]
can be easily mapped to our slightly different language for con-
tracts. We combine hardware compliance and software compliance
to prove E2E security: any compliant software is secure w.r.t. all
microarchitectural power side-channel leakage of any compliant
CPU. Compared to related work, our approach comes with benefits
such as more rigorous (practical) security statements, simplified

software verification workflows, and the possibility of working
with vendor-supplied contracts of CPUs whose design is not avail-
able on netlist-level due to IP restrictions. Our contributions also
enable the construction of reliable hardened processors, as users
can specify the desired leakage model in a contract and modify
the CPU implementation to achieve compliance for fixed contracts.
We emphasize that the intermediate contract layer enables for the
first time portability of secure implementations across processors
and improves the separation of secure hardware and software de-
velopment in general. This separation also optionally allows the
creation of vendor-supplied CPU contracts whose leakage specifica-
tion is “high-level” on purpose to avoid potential IP-related issues
yet modeling all real leakages in the actual hardware.

1. Contracts. We introduce an intuitive and industry-grade
domain-specific language (DSL) called Genoa. Genoa allows spec-
ifying Instruction Set Architecture (ISA) semantics and device-
specific leakages in contracts. Genoa extends the long-standing
Sail language [4] to support leakage specifications. The RISC-V
foundation recently picked Sail as the official tool to specify the
reference RISC-V ISA and all standard extensions [42, 49]. Models
for multiple architectures (e.g., ARM) exist, which can be freely
adopted and compiled to software emulators [4]. We reuse existing
models as the basis for contracts, augmenting them with leakage
specifications and providing an interface for our verification tool.
We show that whenever a program is secure with respect to a
contract, its concrete execution on a compliant processor is also
secure, i.e., no order-reducing leakage can occur. We emphasize
that our contracts also support higher-order masking, branching,
and secret-dependent memory accesses needed for masked table
lookups [16].

2. Hardware Compliance. We present a method to automat-
ically verify the compliance of a processor with a contract. Ver-
ification ensures that the leakage of every gate is captured by a
leakage specification in the contract and that the contract specifies
correct instruction semantics. Our methodology is based on the
intuition that if the contract properly models the hardware, then
any leakage arising in the hardware can be computed from leakage
produced during an execution in the contract. It is hence up to the
contract designer if they want to create exact specifications for ev-
ery leakage of a CPU design, a high-level specification that does not
contain any information about the CPUs microarchitecture (while
still covering all real leakages), or any trade-off between the two.
The verification encodes both hardware and contract execution,
respectively leakage, as SMT formulas and checks for model gaps
using the SMT solver Z3 [6, 19]. If the solver finds no cases where
a hardware leakage is not modeled from the contract leakage, we
have proven hardware compliance.

3. Case Study. We implement our methods in a tool and apply
them to the popular RISC-V IBEX core [34], resulting in a verifiably
complete contract for a wide range of instructions that are com-
monly used for cryptographic implementations. IBEX is a low-end
processor, suitable for embedded or IoT applications that require
cryptographic computations. Our analysis is focused on gate-level
power leakage and we consider features such as speculative execu-
tion or data caches as out of scope since they are mostly deactivated
while executing masked programs.

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

We showcase the applicability of contracts by incorporating
them into scVerif and checking the software compliance of several
masked programs. We then validate our results by checking the
same programs with the independent verifiction tool Coco that
directly uses the IBEX netlist. The contract, which is based on the
official RISC-V reference models, is provided as part of the paper
and its appendix.

2 SIDE-CHANNEL RESILIENCE

We introduce preliminaries for side-channel security. Hardware
circuits and their power side-channel leakage are modeled in Sec-
tion 2.1. In Section 2.2, we recall the masking countermeasure and
the formal notions of provable side-channel resilience.

2.1 Hardware Model and Gate-level Leakage

Processors are digital hardware circuits which can bemodeled using
labeled directed graphs. For any given circuit (𝐺,𝑊 , 𝐿), we say that
𝐺 is the set of gates,𝑊 ⊆ 𝐺 ×𝐺 is the set of wires connecting the
gates, and 𝐿 : 𝐺 → 𝑇 is a labeling defining the type 𝜏 ∈ 𝑇 of each
gate 𝑔 ∈ 𝐺 . The types 𝑇 depend on the technology that realizes the
circuit. In addition to combinatorial gates we only require that the
technology contains an input type 𝜏in and a register type 𝜏reg. Input
gates only have outgoing wires, and register gates only have one
incomingwire. Additionally, every cyclic path in the circuit contains
at least one register gate. The state of a circuit is completely defined
by the values of its inputs and registers, referred to as locations,
denoted with𝑉ℎ =

{
𝑔 ∈ 𝐺 | 𝐿(𝑔) ∈ {

𝜏in, 𝜏reg
}}

. Superscript ℎ is for
hardware, later we use 𝑐 for contract. Hardware states are denoted
with 𝜎ℎ ∈ B

��𝑉ℎ
��, with optional subscripts. Any location 𝑣ℎ ∈ 𝑉ℎ

just returns the appropriate bit of the state. Any gate 𝑔 is a function
of a state, i.e., 𝑔 : B

��𝑉ℎ
�� → B where gate 𝑔 ∈ 𝐺 \𝑉 combines state

bits according to its type 𝜏 .
The execution of a circuit happens in clock cycles. For a state

𝜎ℎ
𝑗
, we denote the next state as 𝜎ℎ

𝑗+1. The registers of the next state
have values reflecting the values of their inputs in the previous
cycle, i.e., 𝑔(𝜎ℎ

𝑗+1) := 𝑔′(𝜎ℎ
𝑗
) with (𝑔′, 𝑔) ∈ 𝑊 , whereas the next

state of circuit inputs is determined by the environment.
We now proceed to define the power side-channel leakage that is

exposed to an adversary. The root cause of power side-channels is
that CMOS logic draws power, or emits electromagnetic radiation,
mainly if a transistor switches its state. Thus, CMOS gates have
a data-dependent power consumption. The leakage behavior of
CMOS gates themselves is relatively well understood and can be
modeled by a few simple leakage effects which allow an (idealized)
probing adversary to observe the (intermediate) values of gates and
wires without any loss due to measurement noise [5, 20, 31]. The
seminal work of Ishai et al. [31] introduced value leakage which
allows an idealized adversary to observe the value of any wire
connected to a gate at the beginning or end of a cycle, i.e., its stable
signal. The value leakage 𝜆𝑔 exposed by gate g is its value 𝜆𝑔 (𝜎ℎ𝑗) =
𝑔(𝜎ℎ

𝑗
) in the state 𝜎ℎ

𝑗
. Besides value leakage, additional leakage

effects are also observable in hardware. We define our extended
probing model in close relation to the robust probing model of
Faust et al. [20]. Transition leakage refers to the phenomeneon that
the power consumption of CMOS gates depends on the charges

(state) of the gate before computation. As such, transition leakage
allows observing whether the value of a gate changed during a clock
cycle but also whether the value changed from zero to one or vice-
versa. Formally, our idealized adversary is able to observe the initial
value and the resulting value of each gate. The observable gate
leakage is then the concatenation of the old and new gate values,
i.e., 𝜆𝑔 (𝜎ℎ𝑗−1, 𝜎ℎ𝑗) = 𝑔(𝜎ℎ

𝑗−1) | |𝑔(𝜎ℎ𝑗). This sufficiently captures any
real-world transition leakage function computable from the old and
new gate values. In addition to these main phenomena, there are
glitches caused by propagation delay in the temporary logic states
of combinatorial circuits within one clock cycle (and thus rather
ephemeral) [37] and couplings caused by inductive coupling of
adjacent wires [17]. These can be modeled by defining 𝜆𝑔 (𝜎ℎ𝑗−1, 𝜎ℎ𝑗)
for non-register gates as the concatenation of all possible values
the gate 𝑔 could take on due to these effects. We useLℎ

0,𝑚 to denote
the observable gate-level leakage throughout the execution starting
in state 𝜎ℎ0 and ending in state 𝜎ℎ𝑚 . While the techniques described
in the following apply to all effects, for the purpose of this paper,
we focus on value leakage and transition leakage. Hence, we define
Lℎ

0,𝑚 = {𝜆ℎ𝑔 (𝜎ℎ𝑗−1, 𝜎ℎ𝑗) | 𝑔 ∈ 𝐺, 1 ≤ 𝑗 < 𝑚}.

2.2 Provable Security and Simulatability

Applying masking to a cryptographic algorithm requires to replace
the primitive operations (e.g., logical conjunction, exclusive or, addi-
tion) by masked computations, often called gadgets, which compute
the same operation securely on shares [28, 31, 43, 48]. The challenge
in the design and implementation of gadgets is to maintain the secu-
rity of the secret-sharing: it must remain information theoretically
impossible to learn the secrets or intermediate values by observing
up to 𝑡 leakages caused by the gadget. In sufficiently noisy envi-
ronments this leads to an exponential gain of security in the order
of 𝑡 [13, 46]. However, many works do not take the full gate-level
leakages into account, resulting in implementations that are ex-
ploitable at a lower-than-advertised security order. Especially for
masked software, the resulting gap in the security assurance allows
to break the implementation by observing, e.g., transition leakage
of the processor executing the program [5, 35, 44]. This work aims
to reduce the gap by enabling software security assessments to
include the complete set of gate-level leakages.

We give an overview of the notation associated with masking,
and formalize gadgets and their security. Masking heavily relies on
random variables. We write the names of random variables in lower-
case, e.g., 𝑥𝑖 , and use lowercase boldface names for sets of variables,
e.g., 𝒙 = {𝑥0, . . . , 𝑥𝑛}. Each random variable 𝑥𝑖 , respectively set 𝒙 ,
is associated with a probability distribution Pr [𝑥𝑖], respectively
Pr [𝒙]. Each secret 𝑥𝑖 is encoded (masked) using 𝑑 > 𝑡 shares and
we write 𝒙𝑖 = {𝑥0𝑖 , . . . , 𝑥𝑑−1𝑖

} for the shares which encode 𝑥𝑖 , where
𝑥
𝑗
𝑖
denotes for 0 ≤ 𝑖 < 𝑛 and 0 ≤ 𝑗 < 𝑑 the 𝑗 th share of the 𝑖th

secret. The superset of all shares is denoted by 𝒙 = {𝒙0, . . . , 𝒙𝑛−1}.
A gadget operates on input tuple (𝒙, 𝒓,𝒑) returning tuple (𝒚, 𝒐,L),

each consisting of random variables. The input shares 𝒙 are a set of
𝑡-wise independent encodings 𝒙𝑖 , each encoding a secret variable
𝒙𝑖 . 𝒓 represents a set of independent and uniformly random vari-
ables, 𝒑 are public inputs independent of secrets. The output of a
gadget consist of output shares 𝒚, public outputs 𝒐, and observable

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

leakage L. Each individual output is a random variable 𝑦 𝑗
𝑖
(respec-

tively 𝑜𝑖) and computed as a function of the gadget’s inputs, i.e.,
𝑦
𝑗
𝑖
= 𝑓

𝑗
𝑖
(𝒙, 𝒓 ,𝒑). During its execution a gadget produces observable

leakage L = {𝜆0 (𝒙, 𝒓,𝒑), . . . , 𝜆𝑚 (𝒙, 𝒓,𝒑)}, which an attacker can
observe, e.g., through power measurements. The attacker’s goal is
to learn information about the unshared secret inputs 𝒙 .

Threshold non-interference (𝑡–NI) and strong threshold non-
interference (𝑡–SNI) are two prominent security notions for proving
the security of gadgets against idealized adversaries [7, 8]. These
have been extended in [9] into Stateful 𝑡–(S)NI to incorporate
that physical execution involves state and public in- and outputs.
Security of gadgets in these notions is shown by proving that the
observations an attacker makes can be simulated without knowing
the secret values, thereby proving that no information can be gained
from 𝑡 observations. In the following, we formalize what it means
to simulate random variables, and restate 𝑡–NI and 𝑡–SNI.

Definition 1 (Simulation Procedure). Let 𝒄 and 𝒉 be sets
of possibly related random variables and 𝒓 be a set of independent
and uniformly distributed variables. The simulation procedure 𝑆 :
Dom(𝒄 ∪ 𝒓) → Dom(𝒉) (simulator for short) samples the random
variables 𝒓 to simulate the distribution of 𝒉 from 𝒄 . We say that
simulator 𝑆 simulates 𝒉 from 𝒄 and 𝒓 if Pr [𝑆 (𝒄, 𝒓)] = Pr [𝒉].

Importantly, the variables 𝒄 and 𝒉 are not necessarily indepen-
dent, meaning Pr [𝒉 | 𝒄] could be different from Pr [𝒉], i.e., their
distributions are somehow related. This is central in the defini-
tions of Stateful 𝑡–NI and 𝑡–SNI, however, we introduce a non-
probabilistic way of modeling (instead of simulating) the outcome
of a computation from a related but different value.

Definition 2 (Modeling Function). Let 𝑓𝐻 : 𝐻 → 𝑉 and
𝑓𝐶 : 𝐶 → 𝑈 be deterministic functions. We say that a deterministic
function 𝑓𝑆 : 𝑈 → 𝑉 is a modeling function which models 𝑓𝐻 from
𝑓𝐶 under deterministic relation Ψ : 𝐻 ×𝐶 → B whenever

∀ℎ ∈ 𝐻, 𝑐 ∈ 𝐶 : Ψ (ℎ, 𝑐) ⇒ 𝑓𝑆 ◦ 𝑓𝐶 (𝑐) = 𝑓𝐻 (ℎ) . (1)

Definition 2 is strong: whenever modeling function 𝑓𝑆 models
𝑓𝐻 then it also simulates it, captured by Lemma 1.

Lemma 1 (Modeling Functions Simulate). Let 𝒉 and 𝒄 be sets
of possibly dependent random variables with deterministic function
𝑓𝐻 computing a set of dependent random variables 𝒗 and function 𝑓𝐶
computing dependent random variables 𝒖. If function 𝑓𝑆 models 𝑓𝐻
from 𝑓𝐶 whenever Ψ(𝒉, 𝒄) then it also simulates 𝒗:

Pr [𝑓𝑆 ◦ 𝑓𝐶 (𝒄) | Ψ(𝒉, 𝒄) = ⊤] = Pr [𝒉 | Ψ(𝒉, 𝒄) = ⊤] . (2)

Stateful 𝑡–(S)NI requires a probabilistic simulator to simulate
observations on leakage or outputs shares independently of secrets
and a function modeling public outputs from public inputs.

Definition 3 (Stateful 𝑡–(S)NI [7–9]). Gadget G (𝒙, 𝒓,𝒑) =
(𝒚, 𝒐,L) is Stateful 𝑡–(S)NI if for every set e ⊆ L ∪𝒚, with |e| ≤ 𝑡 ,
there exists a subset of input shares s ⊆ 𝒙 , with ∀𝑖 : |s ∩ 𝒙𝑖 | ≤
𝑡 ′ ≤ 𝑡 , a set of uniformly random variables 𝒓 ′, a modeling function
𝐹 : Dom(𝒑) → Dom(𝒐) modeling public outputs 𝒐 from public
inputs 𝒑 and a simulator 𝑆 : Dom(s, 𝒓 ′,𝒑) → Dom(e) simulating
observations e from a subset of shares s, random 𝒓 ′ and public inputs
𝒑 such that Pr [𝑆 (s, 𝒓 ′,𝒑) , 𝐹 (𝒑)] = Pr [e, 𝒐] and 𝒐 = 𝐹 (𝒑). For
𝑡–NI 𝑡 ′ = |e| while the stricter 𝑡–SNI notion requires 𝑡 ′ = |e\𝒚 |.

The tool scVerif allows proving software gadgets secure un-
der these notions for custom definitions of the observable leakage
behavior L [9]. However, to prove security with respect to gate-
level leakage, the provided model of L must capture absolutely all
gate-level leakages of the CPU executing a gadget. In case a gate-
level leakage is modeled incorrectly, the tool could assert security
although the gadget can be broken with less than 𝑡 observations at
the gate-level. As analyzed by Balasch et al. [5], such leakage may
halve the security order, i.e., 𝑡 ′ = 𝑡

2 . Even worse, Gigerl et al. report
protection losses that scale with the number of processor pipeline
stages [26]. Our work mitigates such losses by verifying that all
gate-level leakages are modeled.

3 HARDWARE-SOFTWARE CONTRACTS

A contract defines the instruction semantics and exposed side-
channel information of a processor from the perspective of a soft-
ware developer, i.e., which data is leaked via power side-channels
when an instruction is executed in conjunction with the seman-
tic of the instruction. Contracts must specify correct instruction
semantics to be able to express accurate data leakage. Besides the in-
struction perspective contracts allow to execute and thereby model
entire programs. In practice, a contract is a user-supplied text file
containing specifications of instructions written in Genoa.

In Sections 3.1 and 3.2, we describe how to build a contract which
completely captures the leakage exposed by every single gate of
a processor. In Section 3.3 we define how to verify the security of
masked software against the model specified in a contract. We then
turn towards the question of model completeness: In Section 3.4 we
define compliance, a property which connects gate-level leakage
of a processor to the leakage model specified in a contract. Finally,
we prove E2E security by showing that if a processor’s hardware
complies with a contract, the contract models all gate-level leak-
ages. Proving the security of a program against the leakage model
specified in the contract implies that the same order of security is
achieved when executed on real, compliant hardware. Section 4
introduces a way to check compliance of processors and contracts.

3.1 Expressing Contracts in Genoa

Genoa extends Sail by a dedicated leak statement to express that
specific values are observable through a side-channel. For example,
a statement of the form leak(val1, val2) indicates that the pro-
cessor may leak any combination of the source operands, i.e., any
value that can be computed using these operands. Users are free
to specify more fine-grained leakage using concrete functions, e.g.,
the Hamming-Distance. Barthe et al. applied this concept in [9] to
a custom DSL but leave the error-prone and time-consuming task
of modeling semantic and leakage to the user. As we will show,
modeling leakage in a contract becomes as easy as adding few leak

statements to one of the many existing Sail models for RISC-V,
ARM, etc. (Genoa supports all Sail models), providing an interface
to our tool and applying it to check for modeling gaps (more on this
in Section 5). Parts of the IBEX contract are shown in Listings 1 to 6.

The Sail manual [2] and the work of Armstrong et al. [4] pro-
vide in-depth explanations of the syntax, we give a brief overview.
In Listing 1 we define the architectural state of a processor, con-
sisting of 32-bit registers which are declared as global variables.

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Listing 1: Contract model of state defined in Genoa.

1 // adopted from RISCV Sail Model, see license in Listing 6
2 register PC : bits(32)
3 register nextPC : bits(32)
4 register x1 : bits(32) . . .

5 // shadow registers
6 register rf_pA : bits(32) // register file read port A
7 register rf_pB : bits(32) // register file read port B
8 register mem_last_addr : bits(32) // address of last access
9 register mem_last_read : bits(32) // data from last instr.

Listing 2: Model of instruction-step 𝜒 defined in Genoa.

1 // adopted from RISCV Sail Model, see license in Listing 6
2 function step_ibex (op : bits(32)) -> bool = {
3 nextPC = PC + 4;
4 let instruction = encdec(op);
5 let ret = execute(instruction);
6 tick_pc();
7 match ret { RETIRE_SUCCESS => return true,
8 RETIRE_FAIL => return false}}

Additional shadow registers are introduced to model leakage which
arises frommicroarchitectural state in hardware. For example, rf_pA
is used to remember the value last read from the register file but
is not used in the specification of instruction semantics. Its value
is maintained in the model and later on leaked in leak statements
to model leakage of instructions accessing the register file since
such leakage involves the value of the register read last [45]. Every
contract must specify a step function defining how a single instruc-
tion is executed. For IBEX, step_ibex shown in Listing 2 decodes
the machine code instruction (encdec) provided as parameter op

and returns whether the instruction executes (execute) successfully.
Both encdec and execute are scattered into multiple clauses which
describe the decoding, respectively execution, for a few instruc-
tions loosely belonging to a category. Each category is represented
by a datatype ast, e.g., RTYPE for instructions operating on three
ISA registers, represented by three indices for destination and two
operands, as well as another datatype rop for different operations.
Listing 3 shows the model of RTYPE instructions; encdec maps be-
tween instruction bits and ast representations using conditional
pattern matching. In line 6 rs1 represents the index bits of the first
source register. The instruction semantic and leakage is specified
in execute, X(rs1) returns the value of the register addressed by
rs1. Leakage which is common across multiple instruction cate-
gories is exposed with a call to function common_leakage (we defer
the descriptions to Section 5.2, Listing 4). The semantics of the
different operations (add, signed less than, etc.) is defined in the
match statement. Function overwrite_leakage specifies transition
leakage emitted while writing the result to the destination regis-
ter. In summary, Genoa allows designers to quickly construct and
adjust contracts, while the human-readable specification supports
the systematic development of side-channel protected software.

3.2 Contract Formalization

In the previous section we explained how to express contracts in the
Genoa DSL. We now describe Genoa’s profound formal semantics
which is the basis for security verification and compliance checking.

Listing 3: Contract model of R-type instructions in Genoa.

1 // adopted from RISCV Sail Model, see license in Listing 6
2 type regidx = bits(5) // index of register 0b00001 = x1
3 enum rop = {RISCV_ADD, RISCV_SUB, RISCV_SLL, RISCV_SLT,

↩→ RISCV_SLTU, RISCV_XOR, RISCV_SRL, RISCV_SRA,
↩→ RISCV_OR, RISCV_AND}

4 union clause ast = RTYPE : (regidx, regidx, regidx, rop),
5 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD)
6 <-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011
7 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)
8 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_SLT)
9 <-> 0b0000000 @ rs2 @ rs1 @ 0b010 @ rd @ 0b0110011
10 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)
11 . . .

12 function clause execute (RTYPE(rs2, rs1, rd, op)) = {
13 let rs1_val = X(rs1);
14 let rs2_val = X(rs2);
15 common_leakage(rs1_val, rs2_val);
16 let result : bits(32) = match op {
17 RISCV_ADD => rs1_val + rs2_val,
18 RISCV_SLT => EXTZ(bool_to_bits(rs1_val <_s rs2_val)),
19 . . . };
20 overwrite_leakage(rd, result);
21 X(rd) = result;
22 return RETIRE_SUCCESS}

The small-steps semantics of Genoa are defined as a reduction

(𝛿, 𝑠,L) ↦→ (
𝛿 ′, 𝑠 ′,L′

)
.

𝛿 is the context containing the definition of functions and the values
of local and global variables, 𝑠 is a sequence of statements and L

is the leakage exposed during execution. After the execution of
one Genoa statement (not to be confused with an instruction) 𝛿 ′ is
the resulting context, 𝑠 ′ are the remaining statements and L′ ⊇ L

is the resulting leakage. Leakage cannot be erased. All statements
except leak do not add leakage and their transformation rules stay
the same as in Sail [3]. A leak statement appends its operands
𝑣1, . . . , 𝑣𝑛 to the execution leakage (·; · is a sequence of statements):

(𝛿, leak (𝑣1, . . . , 𝑣𝑛) ; 𝑠,L) ↦→
(
𝛿, 𝑠,L ∪ {

𝑣1 (𝜎𝑐) | | . . . | |𝑣𝑛 (𝜎𝑐)
})

.

A leak statement may expose multiple values, which allows
abstracting away from particular assumptions such as Hamming-
Distance leakage, as processors are allowed to leak any combination
of the values exposed by a leak. While Genoa does not feature a
construct to sample random values, sampling can be mimicked by
reading from a dedicated state region containing randomness.

The behavior of a program is defined by user-supplied execu-
tions semantics which are specified in the contract. The contract
specification written in Genoa thus defines the context 𝛿 for small-
step execution and, as for hardware, the contract state 𝜎𝑐 ∈ B |𝑉 𝑐 |
denotes the values of variables 𝑣𝑐 ∈ 𝑉 𝑐 , further on referred to as
locations. Based on these definitions, we can now define the seman-
tics for the execution of an entire instruction, denoted by the step
function 𝜒 , starting in state 𝜎𝑐

𝑖
and returning the state 𝜎𝑐

𝑖+1 and a
set of side-channel leakages L𝑐

𝑖
of executing the 𝑖th instruction:

𝜒
(
𝜎𝑐𝑖

)
=
(
𝜎𝑐𝑖+1,L𝑐

𝑖

)
.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

The instruction to be executed is determined by the state 𝜎𝑐
𝑖
it-

self, e.g., by the value of the program counter. The execution of
an instruction corresponds to the many-steps evaluation of the
instruction-steps function 𝜒 using the small-steps semantics de-
scribed before. 𝜒 is part of the contract (for IBEX step_ibex) and
supplied by the user; to simplify our tool state𝜎𝑐

𝑖
is implicitly passed

while the instruction to be executed is passed explicitly. A step can
either fail or succeed, indicated by a Boolean flag. The criteria for
failing the execution is governed by user-defined assumptions. For
IBEX these prohibit illegal instructions, accesses of non-existent
registers or unaligned memory accesses. In the following, we depict
execution of an entire instruction in the contract with

𝜎𝑐𝑖

L𝑐
𝑖−−−⇀ 𝜎𝑐𝑖+1 .

Finally, we define the execution of programs in a contract. Con-
tract ⟦·⟧𝑐 models the execution of program P starting in initial
state 𝜎𝑐0 and resulting in state 𝜎𝑐𝑛 while producing the accumulated
observable side-channel information L𝑐

0,𝑛 =
⋃𝑛−1

𝑖=0 L𝑐
𝑖
, i.e.,

⟦P⟧𝑐
(
𝜎𝑐0

)
=

(
𝜎𝑐𝑛,L

𝑐
0,𝑛

)
.

3.3 Software Security

In this section we link security of abstract gadgets to the execu-
tion in a contract or on hardware, i.e., we define security w.r.t. the
leakages specified in a contract or gate-level leakage of a processor.

Gadgets have as inputs and outputs either shares, random or
public values, which are linked to the definition of Stateful 𝑡–(S)NI
(Definition 3). However, when the implementation of a gadget is
executed within a contract or hardware then the gadget’s inputs are
located in the state 𝜎 with an implementation-specific placement,
e.g., shares could be in registers or memory. We introduce policies
𝜋 to translate between the structured in- and outputs of a gadget
and the states in a contract, respectively hardware. Input policy
𝜋in : (𝒙, 𝒓 ,𝒑) ↔ 𝜎0 constructs a state given values of variables for
input shares, random and public variables but also the converse;
extracting the values of gadget inputs given a state. In practice, such
a policy is an annotation which defines where shares, random and
public (initial) values are located w.r.t. locations of the state. Similar,
output policy 𝜋out : (𝒚, 𝒐) ↔ 𝜎𝑛 maps between the values of public
outputs and output shares of a gadget and the state 𝜎𝑛 resulting
from an execution. Since Stateful 𝑡–(S)NI is defined for random
variables let 𝝈 denote the random variable for states. Using policies
we can link Stateful 𝑡–(S)NI security of gadgets to the execution
of their concrete implementation P within big-steps semantics ⟦·⟧
representing either the contract or hardware:

Definition 4 (𝑡–(S)NI of ⟦P⟧ under 𝜋𝑖𝑛, 𝜋𝑜𝑢𝑡). An implemen-
tation P of gadgetG (𝒙, 𝒓,𝒑) is 𝑡–(S)NI secure w.r.t. semantic ⟦·⟧ and
placement policies 𝜋in, 𝜋out if the gadget G′ (𝒙, 𝒓,𝒑) =

(
𝒚, 𝒐,L0,𝑛

)
is 𝑡–(S)NI according to Definition 3, where the inputs of the gadget
correspond to the starting states 𝝈0 = 𝜋in (𝒙, 𝒓,𝒑) while leakages and
gadget outputs correspond to the random variables 𝜋out (𝒚, 𝒐) = 𝝈𝑛
resulting from execution ⟦P⟧(𝝈0) = (𝝈𝑛,L0,𝑛).

The actual verification of security for software implementations
follows the same principles as outlined by Barthe et al. [9], which
also describes representation of policies. However, the dependent

ÈPÉ2 (f20) : f20 f21 . . . f2=

ÈPÉℎ (fℎ0) : fℎ0 fℎ1 . . . fℎ<

L20

M

L21 L2=−1

M
Lℎ0 Lℎ1 Lℎ<−1

Figure 1: Compliance for a full program execution

type system of Genoa enables new approaches to verification of
masked conversion functions and arithmetic masking in rings with
prime moduli for security orders 𝑡 > 1. We leave the development
of software verification tools to dedicated future work.

3.4 Hardware Compliance With a Contract

We now turn towards the question of model completeness and
define compliance with a contract, a formal property expressing that
the results and leakages from execution on a CPU are modeled by
a contract according to Definition 2. This property is verified in
Section 4 and ensures, as we prove in Section 3.5, that any program
that is Stateful 𝑡–(S)NI secure in a contract mitigates all order-
reducing leakage caused by the gate-level leakage of a processor.

A program P executed in initial hardware state 𝜎ℎ0 leads to leak-
ages Lℎ

0,𝑚 and final state 𝜎ℎ𝑚 when executed on processor ⟦·⟧ℎ :

⟦P⟧ℎ
(
𝜎ℎ0

)
=

(
𝜎ℎ𝑚,Lℎ

0,𝑚

)
.

In contrast to contracts the execution proceeds in clock-cycles
instead of instruction-steps, i.e., one step in hardware corresponds
to one clock cycle as defined in Section 2.1:

𝜎ℎ𝑗
Lℎ

𝑗−−−⇁ 𝜎ℎ𝑗+1 .

Compliance expresses the property that all leakage and all out-
puts of hardware execution ⟦·⟧ℎ can be modeled (according to Def-
inition 2) from execution in a contract ⟦·⟧𝑐 as long as the starting
states are similar, i.e., execute the same program under equivalent
inputs, depicted in Figure 1.

In Definition 5 we introduce a Boolean relation between hard-
ware state 𝜎ℎ and contract state 𝜎𝑐 expressing that the values con-
tained at a specific location 𝑣ℎ in the hardware can be modeled from
a location 𝑣𝑐 in the contract, e.g., register x1 models its counterpart
in hardware. Which contract locations model some hardware lo-
cation is defined in the simulation mappingM provided by users
alongside every contract and checked by our tool. The mapping
specifies for all registers in the hardware (including finite state
machines, decode stages, etc.) a location in the contract modeling
the hardware location. To ease notation assume there are contract
locations 𝑣𝑐0, 𝑣

𝑐
1 ∈ 𝑉 𝑐 which are constant zero, respectively one, and

later on used to express constraints on hardware execution.

Definition 5 (Similar states: 𝜎ℎ ≃M 𝜎𝑐). Two states 𝜎ℎ and
𝜎𝑐 , with respective locations 𝑉ℎ and 𝑉 𝑐 are similar under simulation
mappingM ⊆ 𝑉ℎ ×𝑉 𝑐 , written 𝜎ℎ ≃M 𝜎𝑐 , if and only if∧

(𝑣ℎ,𝑣𝑐)∈M
𝑣ℎ (𝜎ℎ) = 𝑣𝑐 (𝜎𝑐) (3)

Simulation mappingM is said to be complete if for all hardware
locations 𝑉ℎ a mapping is defined.

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Wenow give the definition of compliance, ensuring that semantic
and leakage of execution of hardware is correctly modeled:

Definition 6 (Compliance: ⟦·⟧ℎ ⊢M ⟦·⟧𝑐). A hardware imple-
mentation is compliant with a contract under simulation mapping
M if for every program P and starting hardware and contract states
𝜎ℎ0 and 𝜎𝑐0 , the program executions

⟦P⟧𝑐 (𝜎𝑐0) = (
𝜎𝑐𝑛,L

𝑐
0,𝑛

)
and ⟦P⟧ℎ

(
𝜎ℎ0

)
=

(
𝜎ℎ𝑚,Lℎ

0,𝑚

)
fulfill the following conditions:

(1) States remain similar: Whenever 𝜎ℎ0 and 𝜎𝑐0 are similar
underM, so are resulting states 𝜎ℎ𝑚 and 𝜎𝑐𝑛 :

∀𝜎ℎ0 , 𝜎𝑐0 : 𝜎ℎ0 ≃M 𝜎𝑐0 ⇒ 𝜎ℎ𝑚 ≃M 𝜎𝑐𝑛 .

(2) Leaks are modeled: For every leak 𝜆𝑔 (𝜎ℎ𝑗−1, 𝜎ℎ𝑗) ∈ Lℎ
0,𝑚 ob-

servable in hardware, there exists a leak 𝜆(𝜎𝑐
𝑖
) ∈ L𝑐

0,𝑛 in the
contract and a function 𝑓𝜆 : Dom(𝜆) → Dom(𝜆𝑔) that models
𝜆𝑔 from 𝜆 under relation 𝜎ℎ0 ≃M 𝜎𝑐0 according to Definition 2:

∀𝜎ℎ0 , 𝜎𝑐0 : 𝜎ℎ0 ≃M 𝜎𝑐0 ⇒ 𝑓𝜆 ◦ 𝜆
(
𝜎𝑐𝑖

)
= 𝜆𝑔

(
𝜎ℎ𝑗−1, 𝜎

ℎ
𝑗

)
.

The notion of similar states allows to express a key ingredient for
the relational definition of compliance: if execution in a contract and
hardware start in a similar state, then execution must end in similar
states such that the hardware execution’s results can be modeled
according to the simulation mapping (Clause 1 of Definition 6).
Further, the second part of compliance expresses that every gate-
level leak observable during execution in hardwaremust bemodeled
by a single, fixed leak observable during execution in the contract
(Clause 2 of Definition 6). Combined, this guarantees that software
which is Stateful 𝑡–(S)NI secure when executed in the contract, is
necessarily Stateful 𝑡–(S)NIwhen executed on compliant hardware.

3.5 End-to-end security

It remains to prove our E2E security claim: any implementation P
of gadget G that is Stateful 𝑡–(S)NI w.r.t. the leakages of a contract
must be Stateful 𝑡–(S)NI w.r.t. all gate-level leakage when executed
on any compliant hardware and as such its security order cannot
be decreased by leakage of the processor.

However, E2E security is claimed for the same software P im-
plementing some gadget G and running on a processor and in
the contract, i.e., both executions use the same structured inputs
and outputs. Since the states in hardware and contract may have
different structures we introduce a definition to ensure that the
placement of inputs in hardware 𝜋ℎin, 𝜋

ℎ
out is similar to the ones

𝜋𝑐in, 𝜋
𝑐
out for which 𝑡–(S)NI was shown in the contract. A hardware

policy can be derived from a contract policy by substituting the
locations which define where a value resides in the state according
to the simulation mapping.

Definition 7 (Similar Policy (𝜋ℎ ≜M 𝜋𝑐)). Let contract policy
𝜋𝑐 : (𝒅1, . . . , 𝒅𝑛) ↔ 𝜎𝑐 link sets of values 𝒅1, . . . , 𝒅𝒏 to contract state
𝜎𝑐 . Hardware policy 𝜋ℎ : (𝒅1, . . . , 𝒅𝑛) ↔ 𝜎ℎ is similar to 𝜋𝑐 , denoted
𝜋ℎ ≜M 𝜋𝑐 if any pair of contract and hardware states constructed
from the same sets of values are similar under mappingM:

∀𝜎ℎ = 𝜋ℎ (𝒅1, . . . , 𝒅𝑛) , 𝜎𝑐 = 𝜋𝑐 (𝒅1, . . . , 𝒅𝑛) : 𝜎ℎ ≃M 𝜎𝑐 .

Instead of proving the security reduction for 𝑡–(S)NI directly
we prove a general model reduction: any observations made by
an adversary interacting with hardware may be modeled with a
contract the hardware complies with instead. We emphasize the
difference: 𝑡–(S)NI requires the existence of a simulation proce-
dure whereas compliance guarantees the existence of a (stronger)
modeling function easing the subsequent security reduction.

Theorem 2 (Model Reduction). Let P be a program, and the gad-

gets G𝑐 (𝒙, 𝒓 ,𝒑) =
(
𝒚𝑐 , 𝒐𝑐 ,L𝑐

0,𝑛

)
and Gℎ (𝒙, 𝒓,𝒑) =

(
𝒚ℎ, 𝒐ℎ,Lℎ

0,𝑚

)
correspond to the program executions ⟦P⟧𝑐 (𝝈𝑐

0) = (𝝈𝑐
𝑛,L

𝑐
0,𝑛), respec-

tively ⟦P⟧ℎ (𝝈ℎ
0) = (𝝈ℎ

𝑚,Lℎ
0,𝑚), under policies 𝜋ℎin and 𝜋ℎout, respec-

tively 𝜋𝑐in and 𝜋
𝑐
out, with 𝝈𝑐

0 = 𝜋𝑐in (𝒙, 𝒓,𝒑), 𝝈ℎ
0 = 𝜋ℎin (𝒙, 𝒓 ,𝒑), 𝝈𝑐

𝑛 =

𝜋𝑐out (𝒚𝑐 , 𝒐𝑐), and 𝝈ℎ
𝑚 = 𝜋ℎout

(
𝒚ℎ, 𝒐ℎ

)
. Furthermore, let ⟦·⟧ℎ ⊢M

⟦·⟧𝑐 , 𝜋ℎin ≜M 𝜋𝑐in and 𝜋ℎout ≜M 𝜋𝑐out under complete mappingM.
For every set of observations in hardware on 𝒚ℎ or 𝒐ℎ there is an
equally sized set of observations in the contract on 𝒚𝑐 or 𝒐𝑐 which
allows to model the observations under the identity function:

∀eℎ𝒚 ⊆ 𝒚ℎ ∃ e𝑐𝒚 ⊆ 𝒚𝑐 : eℎ𝒚 = e𝑐𝒚 , (4)

∀eℎ𝒐 ⊆ 𝒐ℎ ∃ e𝑐𝒐 ⊆ 𝒐𝑐 : eℎ𝒐 = e𝑐𝒐 . (5)

In addition, for every set of observations in hardware on Lℎ
0,𝑚 , a

modeling function 𝑇L and a (potentially smaller) set of observations
in the contract on L𝑐

0,𝑛 allow to model the observations in hardware:

∀eℎ
L
⊆ L

ℎ
0,𝑚 ∃ e𝑐L ⊆ L

𝑐
0,𝑛 :

���e𝑐
L

��� ≤ ���eℎ
L

��� ∧ eℎ
L

= 𝑇L
(
e𝑐
L

)
. (6)

Proof. The gadgets G𝑐 and Gℎ operate on equally distributed
inputs and the policies for hardware are similar, thus for every ini-
tial state 𝜎ℎ0 there must be a starting state 𝜎𝑐0 similar under mapping
M, i.e., 𝜎ℎ0 ≃M 𝜎𝑐0 . Since hardware is compliant with the contract,
the resulting states are similar as well, i.e., 𝜎ℎ𝑚 ≃M 𝜎𝑐𝑛 and since
every observation in eℎ𝒐 , respectively eℎ

𝒚
, is an observation on the

value of a location in 𝜎ℎ𝑚 it follows directly that there exists a sin-
gle location in the contract e𝑐𝒐 , respectively eℎ

𝒚
, according to the

mappingM which models the observation, fulfilling (4) and (5).
From Lemma 1 and Clause 2 of Definition 6 it follows that every
observation 𝜆𝑔 (𝝈ℎ

𝑗−1,𝝈
ℎ
𝑗
) ∈ eℎ

L
can be modeled from some con-

tract leak 𝜆(𝝈𝑐
𝑖
) ∈ L𝑐

0,𝑛 using 𝑓𝜆 as modeling function. Grouping
the necessary 𝜆(𝝈𝑐

𝑖
) as the set of random variables e𝑐

L
, results in���e𝑐

L

��� ≤ ���eℎ
L

���, and defining 𝑇L as the set of respective 𝑓𝜆 implies (6),
completing the proof. □

From Theorem 3, we derive simulatability of mixed observations
in Corollary 3. Furthermore, the reduction from Stateful 𝑡–(S)NI
in hardware to Stateful 𝑡–(S)NI in contract stated in Corollary 4 is
a direct consequence of Theorem 3 and Corollary 3.

Corollary 3 (Mixed observations). Let the setting be as in
Theorem 2. Every set of mixed observations on leakage and shared
outputs eℎ

L,𝒚
⊆ Lℎ ∪𝒚ℎ , can be modeled from some an equally sized

set e𝑐
L,𝒚
⊆ L𝑐 ∪𝒚𝑐 by some modeling function 𝑇L,𝒚 .

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

Corollary 4 (End-to-End Security). Let the setting be as in
Theorem 2. If gadget G𝑐 is 𝑡–(S)NI then gadget Gℎ is also 𝑡–(S)NI
since there exist simulators𝑇L,𝒚 ◦𝑆 and 𝐹 which simulate the outputs
of Gℎ according to Definition 3.

This proof is valid for higher-order masking, i.e., 𝑡 ≥ 1, as each
of the 𝑡 hardware observations in eℎ can be simulated from one ob-
servation in e𝑐 in the contract. The presented model reduction can
be of help in proving the preservation of other security notions like
PINI [12], threshold implementations [43] or probing security [31].

4 VERIFYING HARDWARE COMPLIANCE

Whereas Section 3 introduces contracts and what it means for hard-
ware to be compliant, this section presents a method to actually
check hardware compliance for a given processor, i.e., that the leak-
age of each of gate in the CPU netlist (i.e. the synthesized CPU
design) and the semantic of instruction is correctly specified in the
corresponding contract. The method is broken down into verifica-
tion steps. Each step checks if the processor satisfies some part of
Definition 6. First, we check whether similar hardware and con-
tract states stay similar after executing an instruction according to
Clause 1. Then, we check that each hardware leak can be modeled
from a single leak emitted in the contract, according to Clause 2.

4.1 Verification Concept

In this section, we first suggest that it is possible to prove a processor
compliant without looking at full program executions. We argue
that looking at all possible single instruction executions is sufficient
to form an inductive argument of compliance. Next, we give an
overview of the individual verification steps needed to verify that a
processor is compliant with a given contract. Finally, we present a
method for indirectly proving the existence of modeling functions.
This method is the backbone of the verification procedure and
relies on encoding constraints into SMT formulas and checking
their satisfiability with an SMT solver.

Single instructions. Checking compliance for all programs
and pairs of processors and contracts using SMT solvers is com-
putationally intractable. Instead we prove compliance inductively
by showing that Definition 6 holds for all possible executions of a
single instruction. Consequently, we require compliant processors
to fulfill the outlined properties at the start and end of each instruc-
tion, as shown in Figure 2. Starting with similar states 𝜎ℎ

𝑗
and 𝜎𝑐

𝑖
,

the hardware executes 𝑘 clock cycles and the contract executes one
instruction step. The executions produce leaks Lℎ

𝑗,𝑗+𝑘 , respectively
L𝑐
𝑖 , and state 𝜎ℎ

𝑗+𝑘 , respectively 𝜎
𝑐
𝑖+1, for which we need to show:

(a) States remain similar: The states 𝜎ℎ
𝑗+𝑘 and 𝜎𝑐

𝑖+1 are similar

underM (marked red), i.e., every location in 𝜎ℎ
𝑗+𝑘 is equal

to the corresponding location in 𝜎𝑐
𝑖+1.

(b) Leaks are modeled: Every leak 𝜆𝑔 (𝜎ℎ𝑗+𝑙−1, 𝜎ℎ𝑗+𝑙) ∈ Lℎ
𝑗,𝑗+𝑘 pro-

duced by the processor (marked red) must be modeled by a
single leak 𝜆(𝜎𝑐

𝑖
) ∈ L𝑐

𝑖 emitted in the contract execution.

These conditions are inductive and much stricter than the cor-
responding clauses in Definition 6, i.e., if the execution of a single

f28 f28+1

fℎ9 . . . fℎ9+:

L28

M

Lℎ9

M
Lℎ9+:−1

Figure 2: Compliance for single instruction execution

instruction in an arbitrary valid starting state maintains the com-
pliance properties, the processor complies with the contract for all
possible program executions.

As seen in Figure 2, the hardware might require multiple clock
cycles to execute an instruction while the contract always takes
only one step. For the purposes of this paper, we define the starting
point of an instruction as the moment it becomes in-flight, i.e., it
reaches the decode stage, and its end point when it retires, i.e., the
writeback completes. Therefore, we look at every possible instruc-
tion duration 𝑘 on that particular processor. Concurrent execution
of instructions in the pipeline complicates this approach. For simple
pipelines this is not an issue because the fetch stage does not oper-
ate with security-critical data, and the writeback stage can be made
the synchronisation point for the induction, instead of its full re-
tirement. In more complex pipelines, the methods described in this
paper require checking leakage produced by hardware components
directly influenced by the instruction bits.

Verifying that states remain similar. As the very first step in
the verification procedure, we show that the hardware and contract
states are similar throughout the whole execution. That is, we show
that if the relation 𝜎ℎ

𝑗
≃M 𝜎𝑐

𝑖
holds, the relation 𝜎ℎ

𝑗+𝑘 ≃M 𝜎𝑐
𝑖+1 must

hold after the execution of a 𝑘-cycle instruction i.e., 𝜎ℎ
𝑗+𝑘 = 𝜒𝑘 (𝜎ℎ

𝑗
)

and 𝜎𝑐
𝑖+𝑖 = 𝜒 (𝜎𝑐

𝑖
), no matter what the starting states were. This

is essentially a full-fledged functional equivalence proof between
the hardware and the contract. If this check succeeds, we have
shown that the processor satisfies Clause 1 of Definition 6 because
≃M is conserved over the execution of an instruction. Section 4.3
formalizes the verification step and gives a verification method.

Finding modeling functions for gates. Before verifying that
leaks are modeled, we require an intermediate verification step that
provides information about the old values of gates. This constrains
the old values of each gate 𝑔, therefore implicitly constraining
the possible values of the corresponding leak 𝜆𝑔 . Otherwise, the
old value could directly leak secrets, trivially breaking leakage
modeling. For every gate 𝑔 ∈ 𝐺 in the hardware, we show that 𝑔
can be modeled by some function 𝑓𝑔 : B𝑛 → B that only uses a
(small) subset of contract state bits 𝜃𝑔 : B |𝑉 𝑐 | → B𝑛 , i.e.,

∃𝑓𝑔 : ∀𝜎ℎ𝑗 , 𝜎𝑐𝑖 : 𝜎ℎ𝑗 ≃M 𝜎𝑐𝑖 ⇒ 𝑓𝑔 ◦ 𝜃𝑔 ◦ 𝜒
(
𝜎𝑐𝑖

)
= 𝑔 ◦ 𝜒𝑘−1

(
𝜎ℎ𝑗

)
. (7)

Ideally, we want to prove the existence of a modeling function that
uses as little contract state information 𝜃𝑔 as possible. Section 4.4
gives exact definitions of the verification checks and the greedy
minimization procedure for 𝜃𝑔 .

Verifying that leaks are modeled. In this verification step,
we check whether the hardware leakage is properly modeled from
contract leakage for any possible instruction execution, starting
in any pair of similar states 𝜎ℎ

𝑗
≃M 𝜎𝑐

𝑖
. If the check succeeds, the

proper modeling throughout any program execution is implied by

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

composition of single instructions. Because we consider transition
leakage, we constrain the possible values of gates at the end of the
previous instruction. As mentioned before, we use the existence of
a modeling function 𝑓𝑔 according to (7) from the previous step.

The hardware leak 𝜆𝑔 (𝜎ℎ𝑗+𝑙−1, 𝜎ℎ𝑗+𝑙) = 𝑔(𝜎ℎ
𝑗+𝑙−1) | |𝑔(𝜎ℎ𝑗+𝑙) con-

tains information about both the old, and the new values of gate 𝑔
for any clock cycle 𝑙 of the executed instruction. We analyze each
hardware leak function 𝜆𝑔 separately by going through all leak-
age functions 𝜆 : B |𝑉 𝑐 | → B𝑚 and checking if there is a function
𝑓𝜆 : B𝑚 → B2 that models 𝜆𝑔 from 𝜆, whenever states 𝜎ℎ

𝑗
and 𝜎𝑐

𝑖

are similar, the contract leak is emmitted, i.e., 𝜆(𝜎𝑐
𝑖
) ∈ L𝑐

𝑖 , and 𝑓𝑔
models the previous value of the gate 𝑔 from 𝜃𝑔 . Written formally:

∀𝜎ℎ𝑗 , 𝜎𝑐𝑖 : 𝜎ℎ𝑗 ≃M 𝜎𝑐𝑖 ∧ 𝑓𝑔 ◦ 𝜃𝑔 ◦ 𝜒
(
𝜎𝑐𝑖

)
= 𝑔 ◦ 𝜒𝑘−1

(
𝜎ℎ𝑗

)
∧

𝜆
(
𝜎𝑐𝑖

) ∈ L𝑐
𝑖 ⇒ 𝑓𝜆 ◦ 𝜆

(
𝜎𝑐𝑖

)
= 𝜆𝑔

(
𝜎ℎ
𝑗+𝑙−1, 𝜎

ℎ
𝑗+𝑙

)
.

(8)

Additionally, we require that for any possible state 𝜎𝑐
𝑖
at least one

leak 𝜆 fulfills (8), guaranteeing that Clause 2 of the compliance
definition is fulfilled. Section 4.5 gives a more detailed description.

Existence of modeling functions. Within the last two verifi-
cation steps, we check that functions over the hardware state 𝜎ℎ
can be modeled from functions over the contract state 𝜎𝑐 whenever
𝜎ℎ ≃M 𝜎𝑐 . This involves proving the existence of modeling func-
tions from Definition 2. However, automatically finding modeling
functions is intractable in general [21]. We circumvent this issue by
proving the existence of modeling functions without finding their
definitions. Theorem 5 presents the condition we need to check.

Theorem 5 (Existence of Modeling Function). There exists a
modeling function 𝑓 : 𝑈 → 𝑉 according to Def. 2 if and only if

∀ℎ,ℎ′ ∈ 𝐻, 𝑐, 𝑐 ′ ∈ 𝐶 :

Ψ (ℎ, 𝑐) ∧ Ψ
(
ℎ′, 𝑐 ′

) ∧ 𝑓𝐶 (𝑐) = 𝑓𝐶
(
𝑐 ′
) ⇒ 𝑓𝐻 (ℎ) = 𝑓𝐻

(
ℎ′
)
.

(9)

Proof. We prove the equality of the two statements by showing
an implication in both directions. First, we prove that (9) follows
from (1). From the functional congruence of 𝑓 , we have:

∀𝑐, 𝑐 ′ ∈ 𝐶 :
(
𝑓𝐶 (𝑐) = 𝑓𝐶

(
𝑐 ′
)) ⇒ (

𝑓 ◦ 𝑓𝐶 (𝑐) = 𝑓 ◦ 𝑓𝐶
(
𝑐 ′
))
.

After instantiating the statement (1) separately for the primed and
non-primed versions of ℎ ∈ 𝐻 and 𝑐 ∈ 𝐶 , we get:

∀ℎ ∈ 𝐻, 𝑐 ∈ 𝐶 : Ψ (ℎ, 𝑐) ⇒ 𝑓 ◦ 𝑓𝐶 (𝑐) = 𝑓𝐻 (ℎ) ,
∀ℎ′ ∈ 𝐻, 𝑐 ′ ∈ 𝐶 : Ψ

(
ℎ′, 𝑐 ′

) ⇒ 𝑓 ◦ 𝑓𝐶
(
𝑐 ′
)
= 𝑓𝐻

(
ℎ′
)
.

We see that if all three premises are fulfilled simultaneously, then
also all consequences of the implication must be fulfilled simultane-
ously. Therefore, we consolidate the left- and right-hand sides. Af-
terwards, we simplify the right-hand side by substituting 𝑓 ◦ 𝑓𝐶 (𝑐)
with 𝑓𝐻 (ℎ), and respectively 𝑓 ◦ 𝑓𝐶 (𝑐 ′) with 𝑓𝐻 (ℎ′), to get (9).

For the second direction of the proof, we assume (9) and construct
𝑓 so that it fulfills (1) and is well defined for all 𝑢 ∈ 𝑈 . First, we
define the subset𝑈 ⊆ 𝑈 of function inputs as

𝑈 := {𝑢 | ∃ℎ ∈ 𝐻, 𝑐 ∈ 𝐶 : 𝑢 = 𝑓𝐶 (𝑐) ∧ Ψ (ℎ, 𝑐)} . (10)

For inputs 𝑢 ∈ 𝑈 \𝑈 , we define 𝑓 (𝑢) as an arbitrary result 𝑣 ∈ 𝑉 .
This partial definition trivially fulfills (1). For all other 𝑢 ∈ 𝑈 , we
define 𝑓 (𝑢) := 𝑓𝐻 (ℎ), for an arbitrary qualified ℎ and 𝑐 as in (10).

We now argue that this portion of 𝑓 is well defined, because 𝑓𝐻 (ℎ)
is fixed for 𝑢. Consider the case where we can pick two such pairs:

∃ℎ,ℎ′ ∈ 𝐻, 𝑐, 𝑐 ′ ∈ 𝐶 : 𝑢 = 𝑓𝐶 (𝑐) ∧ Ψ (ℎ, 𝑐) ∧
𝑢 = 𝑓𝐶

(
𝑐 ′
) ∧ Ψ

(
ℎ′, 𝑐 ′

)
.

Because 𝑓𝐶 (𝑐) = 𝑓𝐶 (𝑐 ′) = 𝑢, assumption (9) implies that 𝑓𝐻 (ℎ) is
unique since we always get 𝑓𝐻 (ℎ′) = 𝑓𝐻 (ℎ). □

The underlying principle behind Theorem 5 can be thought of
as partial functional congruence. Plainly speaking, if equal inputs
𝑓𝐶 (𝑐) and 𝑓𝐶 (𝑐 ′) always result in equal outputs 𝑓𝐻 (ℎ) and 𝑓𝐻 (ℎ′),
then there must also be a function mapping between them. More-
over, Theorem 5 can be translated into the quantifier-free SMT
fragment and efficiently checked with modern SMT solvers.

4.2 Verification Prerequisites

Real program execution within a processor is subject to many inter-
nal assumptions and restrictions that need to be considered when
checking the compliance properties. In particular, we define normal
operating conditions for the execution of an instruction, as well as
constraints related to the mappingM from Section 3.4.

Normal operating conditions. The hardware of a processor
has many input ports and internal registers that are invisible to a
software developer and are subject to hidden assumptions under
normal operating conditions. In this section, we introduce predicates
𝜙_ to explicitly represent these assumptions. We use the predicate
𝜙dev (𝜎ℎ) to represent the usual assumptions a software developer
might have, such as the processor not getting reset, triggering an
interrupt, going into debug mode, or getting memory access errors.
Similarly, there are several internal conditions for the processor
to fetch, start the execution of, and retire an instruction. We for-
malize these conditions as 𝜙𝑙instr (𝜎ℎ), 0 ≤ 𝑙 < 𝑘 for the 𝑙-th cycle
in 𝑘-cycle instructions and apply them for the intermediate states
𝜎ℎ
𝑗+𝑙 = 𝜒𝑙 (𝜎ℎ

𝑗
). Sometimes, a contract is not able to execute an

instruction because it violates some sanity conditions such as the
instruction not being implemented or triggering a fault. We formal-
ize the condition of the contract successfully retiring an instruction
as 𝜙ret (𝜎𝑐). We aggregate these conditions into 𝜙noc as

𝜙noc

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
:= 𝜙ret

(
𝜎𝑐𝑖

) ∧ 𝑘−1∧
𝑙=0

𝜙dev

(
𝜎ℎ
𝑗+𝑙

)
∧ 𝜙𝑙instr

(
𝜎ℎ
𝑗+𝑙

)
.

There are also some constraints that concern multiple execu-
tions of the hardware and contract. For such predicates we write 𝜙∗_
instead. We define 𝜙∗ports (𝜎ℎ, 𝜎ℎ

′) as the constraint that certain pro-
cessor input ports only contain public values. More concretely, for
two executions of the hardware, these input ports are required to
produce identical values. There are also similar execution-spanning
conditions for the contract. For instance, the contract should forbid
the program counter from becoming secret dependent. The predi-
cate 𝜙∗ret (𝜎𝑐 , 𝜎𝑐

′) expresses these constraints, and is stricter than
both 𝜙ret (𝜎𝑐) and 𝜙ret (𝜎𝑐

′) separately. Finally, we extend 𝜙noc to

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

𝜙∗noc over several executions as

𝜙∗noc
(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗 , 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖

)
:= 𝜙∗ret

(
𝜎𝑐𝑖 , 𝜎

𝑐′
𝑖

)
∧

𝑘−1∧
𝑙=0

𝜙∗ports
(
𝜎ℎ
𝑗+𝑙 , 𝜎

ℎ′
𝑗+𝑙

)
𝑘−1∧
𝑙=0

𝜙dev

(
𝜎ℎ
𝑗+𝑙

)
∧ 𝜙dev

(
𝜎ℎ
′

𝑗+𝑙
)
∧ 𝜙𝑙instr

(
𝜎ℎ
𝑗+𝑙

)
∧ 𝜙𝑙instr

(
𝜎ℎ
′

𝑗+𝑙
)
.

Breaking any of the conditions from 𝜙∗noc breaks the guarantees
provided in this work. Because these assumptions are instrumental
for correct execution, we make sure that the restrictions imposed on
the hardware still permit the execution of all instructions defined
in the contract. This sanity check confirms that software can still
execute within both the hardware and the contract, allowing the
implementation of a sensible software verifier.

Applying mappings. As introduced in Section 3.4, hardware
and contract states can be similar under a mapping. For expressing
that two states 𝜎ℎ and 𝜎𝑐 are similar under mappingM, i.e., 𝜎ℎ ≃M
𝜎𝑐 , we use the predicate 𝜙Mrel (𝜎ℎ, 𝜎𝑐) as defined in (3). Conversely,
we also require a predicate expressing that all registers, which are
not in the mappingM, are equivalent across hardware executions
of the same program. We specify this property of two hardware
states 𝜎ℎ and 𝜎ℎ

′
for the mappingM and locations 𝑉ℎ as

𝜙M∗pub

(
𝜎ℎ, 𝜎ℎ

′)
:=

∧
𝑣ℎ ∈𝑉ℎ,�(𝑣ℎ,𝑣𝑐) ∈M

𝑣ℎ
(
𝜎ℎ

)
= 𝑣ℎ

(
𝜎ℎ
′)
.

4.3 Verifying that States Remain Similar

As introduced in Section 4.1, we verify that the hardware and con-
tract states resulting from the execution of a program are similar by
showing similarity after every instruction. Our inductive argument
assumes that the states 𝜎ℎ

𝑗
and 𝜎𝑐

𝑖
are similar at the start of an

instruction, and proves that the states 𝜎ℎ
𝑗+𝑘 and 𝜎ℎ

𝑖+1 are also similar
after the 𝑘-cycle instruction terminates. This is a straightforward
functional equivalence check under the assumption that 𝜙noc holds.

Proposition 1. Let 𝜎ℎ
𝑗
be a hardware state and 𝜎𝑐

𝑖
the corre-

sponding contract state under mappingM. Furthermore, let 𝜎ℎ
𝑗+𝑘 =

𝜒𝑘 (𝜎ℎ
𝑗
) and 𝜎𝑐

𝑖+1 = 𝜒 (𝜎𝑐
𝑖
) be the hardware and contract state after

the execution of an instruction. Inductively,

� 𝜎ℎ𝑗 , 𝜎𝑐𝑖 : 𝜙noc
(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧ 𝜙Mrel

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧ ¬𝜙Mrel

(
𝜎ℎ
𝑗+𝑘 , 𝜎

𝑐
𝑖+1

)
(11)

implies the first hardware compliance condition (Clause 1) from Defi-
nition 6 under normal operating conditions.

Proposition 1 specifies how exactly this check is performed. We
use an SMT solver to check for states that satisfy both 𝜙noc and
𝜙Mrel , but their successors break 𝜙

M
rel . Any such case is a counterex-

ample to the state similarity property of Definition 6. Otherwise
the property is inductive, and we use it in all further checks.

We also check that 𝜙M∗pub (·) is inductive because all of the further
verification targets require this as an assumption. We check the
inductiveness by asking an SMT solver

�𝜎ℎ𝑗 , 𝜎ℎ
′

𝑗 , 𝜎
𝑐
𝑖 , 𝜎

𝑐′
𝑖 : 𝜙∗noc

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗 , 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖

)
∧ 𝜙Mrel

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧

𝜙Mrel
(
𝜎ℎ
′

𝑗 , 𝜎
𝑐′
𝑖

)
∧ 𝜙M∗pub

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗

)
∧ ¬𝜙M∗pub

(
𝜎ℎ
𝑗+𝑘 , 𝜎

ℎ′
𝑗+𝑘

)
.

(12)

Algorithm 1: Greedy minimization of required state bits.
Input :gate 𝑔 to be modeled

1 Θ← 𝑉 𝑐 ; 𝜃𝑔 ← concat(Θ) ;
2 if formula (13) is SAT then

3 error(“gate 𝑔 cannot be modeled”);
4 for 𝑣𝑐 ∈ 𝑉 𝑐

do

5 𝜃𝑔 ← concat(Θ \ {𝑣𝑐 });
6 if formula (13) is UNSAT then Θ← Θ \ {𝑣𝑐 } ;
7 return 𝜃𝑔 ;

If the solver is not able to find a solution, 𝜙M∗pub is inductive and

we assume 𝜙M∗pub in addition to 𝜙Mrel whenever we check properties
under normal operating conditions over multiple executions.

4.4 Finding Modeling Functions for Gates

In this section, we introduce a method that finds a small number
of contract registers from which the value of a hardware gate is
modeled. This intermediate step determines, and later on restricts,
the values a gate can have at the end of the previous instruction.
Corollary 6 instantiates Theorem 5 under normal operating condi-
tions and presents a method for checking whether the value of a
hardware 𝑔 can be modeled by contract state bits 𝜃𝑔 .

Corollary 6. Let 𝜎ℎ
𝑗
be a hardware state and 𝜎𝑐

𝑖
the correspond-

ing contract state under mappingM that fulfill both (11) and (12).
Furthermore, let 𝜎ℎ

𝑗+𝑘−1 = 𝜒𝑘−1 (𝜎ℎ
𝑗
) be the last hardware state before

the instruction terminates, and 𝜎𝑐
𝑖+1 = 𝜒 (𝜎𝑐

𝑖
) be the contract state

after the instruction terminates. The contract function 𝜃𝑔 models gate
𝑔 in cycle 𝑘 − 1 under normal operating conditions if and only if

�𝜎ℎ𝑗 , 𝜎ℎ
′

𝑗 , 𝜎
𝑐
𝑖 , 𝜎

𝑐′
𝑖 : 𝜙∗noc

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗 , 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖

)
∧

𝜙M∗pub

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗

)
∧ 𝜙Mrel

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧ 𝜙Mrel

(
𝜎ℎ
′

𝑗 , 𝜎
𝑐′
𝑖

)
∧

𝜃𝑔
(
𝜎𝑐𝑖+1

)
= 𝜃𝑔

(
𝜎𝑐
′

𝑖+1
)
∧ 𝑔

(
𝜎ℎ
𝑗+𝑘−1

)
≠ 𝑔

(
𝜎ℎ
′

𝑗+𝑘−1
)
.

(13)

Corollary 6 instantiates Theorem 5 under assumption of𝜙noc and
𝜙M∗pub . Here, 𝑔 is the function 𝑓𝐻 to be modeled, 𝜃𝑔 is the function
𝑓𝐶 whose results are used as inputs for the modeling function, and
𝜙Mrel is the relation Ψ between the hardware and contract states.

However, not all functions 𝜃𝑔 are useful, so a function like
𝜃𝑔 (𝜎𝑐) = 𝜎𝑐 would not really restrict the initial values of 𝑔. In-
stead, we propose the greedy minimization procedure shown in
Algorithm 1. Here, we first check whether the hardware gate 𝑔
can be modeled from the complete contract state. If this fails the
contract does not model the hardware properly and the verification
fails. Algorithm 1 iterates over all locations 𝑣𝑐 in the contract state
and checks whether they are needed for modeling 𝑔. In case they
are not, i.e., formula (13) is unsatisfiable, they are removed from 𝜃𝑔 .
At the end, we have a (locally) minimal 𝜃𝑔 , where removing any
component breaks the modeling of gate 𝑔.

4.5 Verifying that Leaks are Modeled

Lastly, we verify that the hardware leakage produced during the
execution of an instruction can be modeled by the contract leakage

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

emitted during the execution of the same instruction. The set of
transition leaks produced in the hardware, starting in state 𝜎ℎ

𝑗
and

executing a 𝑘-cycle instruction is given by

L
ℎ
𝑗,𝑗+𝑘 =

{
𝜆𝑔

(
𝜎ℎ
𝑗+𝑙−1, 𝜎

ℎ
𝑗+𝑙

)
| 𝑔 ∈ 𝐺, 0 ≤ 𝑙 < 𝑘

}
.

As established in Section 4.1, we analyze every hardware leak
𝜆𝑔 (𝜎ℎ𝑗+𝑞−1, 𝜎ℎ𝑗+𝑞) separately and show that there is a set of leak
statementsL𝑔 ⊆ L𝑐

𝑖 such that every 𝜆𝑔 can be modeled by 𝜆(𝜎𝑐
𝑖
) ∈

L𝑔 whenever the corresponding leak statement is reached in the
contract, written as 𝜙emit (𝜎𝑐𝑖 , 𝜆). Here, we use the intermediate
proof of 𝑔(𝜎ℎ

𝑗−1) being modeled by 𝜃𝑔 (𝜎𝑐𝑖) from Corollary 6.

Proposition 2. Let 𝜎ℎ
𝑗−1 be the predecessor of hardware state

𝜎ℎ
𝑗
= 𝜒 (𝜎ℎ

𝑗−1), and 𝜎ℎ𝑗 be similar to contract state 𝜎𝑐
𝑖
under mapping

M, fulfilling both (11) and (12). Furthermore, let 𝜎ℎ
𝑗+𝑙 = 𝜒𝑙 (𝜎ℎ

𝑗
) with

0 ≤ 𝑙 < 𝑘 be the hardware states reached throughout the execution
of a 𝑘-cycle instruction. Let 𝜆𝑔 be the leakage function of a hardware
gate 𝑔, and 𝜃𝑔 be a contract function such that (13) holds. Crucially, let
L𝑔 ⊆ L𝑐

𝑖 be a set of contract leaks, such that for every 𝜆(𝜎𝑐
𝑖
) ∈ L𝑔 :

�𝜎ℎ𝑗−, 𝜎ℎ
′

𝑗−1, 𝜎
𝑐
𝑖 , 𝜎

𝑐′
𝑖 : 𝜙∗noc

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗 , 𝜎

𝑐
𝑖 , 𝜎

𝑐′
𝑖

)
∧ 𝜙emit

(
𝜎𝑐𝑖 , 𝜆

) ∧
𝜙M∗pub

(
𝜎ℎ𝑗 , 𝜎

ℎ′
𝑗

)
∧ 𝜙Mrel

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧ 𝜙Mrel

(
𝜎ℎ
′

𝑗 , 𝜎
𝑐′
𝑖

)
∧(

𝜃𝑔
(
𝜎𝑐𝑖

)
= 𝜃𝑔

(
𝜎𝑐
′

𝑖

)
⇒ 𝑔

(
𝜎ℎ𝑗−1

)
= 𝑔

(
𝜎ℎ
′

𝑗−1
))
∧

𝜆(𝜎𝑐𝑖) = 𝜆(𝜎𝑐′𝑖) ∧ 𝜆𝑔
(
𝜎ℎ
𝑗+𝑙−1, 𝜎

ℎ
𝑗+𝑙

)
≠ 𝜆𝑔

(
𝜎ℎ
′

𝑗+𝑙−1, 𝜎
ℎ′
𝑗+𝑙

)
.

The leak function 𝜆𝑔 in cycle 𝑙 of a 𝑘-cycle instruction is modeled
by a single contract leak function 𝜆 under relation 𝜙Mrel and normal
operating conditions 𝜙noc, according to Definition 6 if

∀𝜎ℎ𝑗 , 𝜎𝑐𝑖 : 𝜙noc
(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
∧ 𝜙Mrel

(
𝜎ℎ𝑗 , 𝜎

𝑐
𝑖

)
⇒

∨
𝜆(𝜎𝑐

𝑖)∈L𝑔

𝜙emit
(
𝜎𝑐𝑖 , 𝜆

)
.

Again, the method outlined in Proposition 2 uses an SMT solver
to show that the hardware cannot leak more information than the
contract. If the solver is able to find a pair of states 𝜎ℎ

𝑗
, 𝜎𝑐

𝑖
for which

the check fails, it has found a counterexample and the hardware
does not comply with the leakage specified in the contract.

4.6 Modeling and Implementation

In this section, we briefly discuss the implementation and modeling
details enabling our verification method. In particular, we discuss
how all the formulas given to the SMT solver are constructed.

Unfolding circuits into SMT. Our method relies on the syn-
thesized processor netlist to build the SMT formulas shown in
Section 4. We follow the procedure established in the model check-
ing community: the hardware state 𝜎ℎ

𝑗
is represented symbolically

using propositional variables. Each gate 𝑔 in the processor is a
symbolic expression of the variables representing hardware loca-
tions 𝑉ℎ . The expressions are generated by topologically iterating
through the circuit and building the representation of each gate
𝑔 from its inputs and gate type. With regard to clock cycles, the
registers of the very first state 𝜎ℎ

𝑗
, repsectively 𝜎ℎ

𝑗−1, are variables.

In successor states 𝜎ℎ
𝑗+𝑙 , the registers are determined by their write-

backs from the previous cycle. In a sense, we unfold the processor
circuit symbolically 𝑘 times for our verification.

Genoa to SMT translation. The translation of a contract to a
SMT formula is based on an existing Sail back-end which allows
to generate SMT formulas for custom predicates. However, the
back-end cannot handle leak statements. We perform two code-
rewriting passes from Genoa to Genoa. The first adds global state
for each value in a leak statement and replaces the leak by an
assignment to the respective global state. This reduces the Genoa
DSL to the Sail subset supported by the SMT back-end. The second
pass duplicates the variables representing contract state 𝜎𝑐 and
leakages into prime and non-primed variants and duplicates the
instruction-step function 𝜒 by rewriting it to operate on either 𝜎𝑐

𝑖
or

𝜎𝑐
′

𝑖
and resulting in 𝜎𝑐

𝑖+1, respectively 𝜎
𝑐′
𝑖+1. Finally, Genoa ensures

that the initial and final states are preserved by the SMT back-end
and asserts that the predicates 𝜙ret, 𝜙

∗
ret and 𝜙emit hold. Our tool

receives the resulting SMT code as input.
Gluing it all together. Configuration files play a central role

in the generation of formulas. In particular, our verification pro-
cedure expects an input where all of the hardware locations are
declared, and either mapped onto contract registers with 𝜙Mrel , sub-
jected to developer assumptions 𝜙dev, port restrictions 𝜙

∗
ports, or

instruction execution constraints 𝜙𝑙instr. Everything specified in the
configuration is heavily sanity-checked, making sure that execu-
tion works properly, public signals 𝜙M∗pub remain public, and every
hardware location is declared. Similarly, intermediate results such
as 𝜃𝑔 are cached in configuration files and checked upon use. The
IBEX configuration is provided in Listing 7.

5 VERIFICATION PROCESS

We apply the verification method presented to the IBEX processor
and detail the process and results. IBEX is an open source RISC-
V processor that supports the Integer, Embedded,Multiplication,
Compressed and Bit manipulation ISA extensions [34]. For the
purpose of our paper, we mainly target the E extension, although
adding support for the others is possible. The IBEX pipeline consists
of two stages, Instruction Fetch (IF) and Instruction Decode/Execute
(ID/EX). Computations take place in the ID/EX stage, which consists
of a decoder, a controller, and the register file, which forward the
data into the arithmetic-logic unit (ALU) and the load-store unit
(LSU). The outputs of the ALU and LSU are routed to the write-back
logic (WBL), that decides which data is written into the register file.
In the same pipeline stage, and hence in the same clock cycle, the
result is written back into the register file.

The verification requires two manual and four automated steps:

(1) Configuration of the processor by defining constraints
(2) Definition of a mapping between hardware and contract
(3) Automated sanity-check to ensure instructions defined in the

contract can still execute in the processor under constraints
(4) Automated check of similarity for resulting states (Section 4.3)
(5) Automated check for gate modeling functions (Section 4.4)
(6) Automated check for leakagemodeling functions (Section 4.5)

In case any of the steps fail, the verification framework produces
a detailed counterexample explaining the verification failure. The

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

developer must then adjust the configuration, the annotation, the
contract, or even the processor in order to fix the problem and
restart verification. Therefore, development and verification form a
refinement loop producing improved contracts.

5.1 IBEX Configuration

We align the contract and the hardware by restricting the state
of the processor throughout the execution of an instruction. We
constrain the values of all registers with regard to the current in-
struction length and analyzed cycle. For the verification, we look
at instructions when they reach the ID stage. At this point, sig-
nal instr_rdata_id carries the instruction bits and must be set
equivalent to the argument of step_ibex in the contract.

Additionally, we need to make sure that instructions are only
retired in the last cycle 𝑘−1 of a 𝑘-cycle instruction by constraining
instr_id_done to be ⊤ in the last cycle and ⊥ otherwise. Simi-
larly, we enforce that the next instruction is fetched exactly in
cycle 𝑘 − 1 by constraining fetch_valid and id_in_ready. We
assert that there are no outstanding errors caused by the previ-
ous instruction by constraining registers lsu_err_q, pmp_err_q,
branch_set_raw, and data_err_i to be ⊥. To make sure that the
state machines in the LSU and control unit start off in a valid
state when the instruction starts executing, we add several further
constraints. Finally, we also assert that there is no reset through
rst_ni and no interrupt signals irq_*, debug_req_i are triggered
to match the developers expected behavior.

One of the main challenges in modeling the processor environ-
ment is the memory interface. Whenever the processor requests
data by setting data_req_o to ⊤, the next cycle provides a grant
with data_rvalid_i set to ⊤ and the corresponding read data be-
ing available at data_rdata_i. Here, we additionally require mem-
ory to only provide acknowledgement through data_rvalid_i
if there was a request, and not provide any data on the input
data_rdata_i otherwise. This is due to an oversight in IBEX, which
causes the data_rvalid_i signal to overrule all other signals in
the processor and ultimately issue an erroneous write-back.

5.2 Complete Power Contract for IBEX

We have proven that IBEX is compliant with the contract. In this
section, we discuss the observed behavior and compare the findings
to existing models for other architectures.

Most instructions have a common leakage pattern modeled in
common_leakage in Listing 4. The IBEX processor combines the pre-
vious outputs of the register file (modeled in leakage states rf_pA,
rf_pB) with the current outputs rs1_val and rs2_val, as well as the
address and value of the last memory access mem_last_addr and
mem_last_read. This leak statement models all transition leakage
and value leakage produced in the ALU and the WBL. None of the
operands in the leak statement can be removed without breaking
compliance since distinct parts of IBEX cause these combinations.
The WBL causes additional combinations: ALU or branch instruc-
tions after a memory load cause a transition between their results.

This common leakage covers leak effects previously discussed
in related works. It models transition leakage produced in the ALU
and WB stage, whose source are the two read ports of the register
file. Transitions in the first and second operand of instructions are

Listing 4: Common leakage occurring in every instruction.

1 // see license in Listing 6
2 function common_leakage(rs1_val, rs2_val) = {
3 leak(rs1_val, rs2_val, rf_pA, rf_pB,
4 mem_last_addr, mem_last_read);
5 rf_pA = rs1_val; rf_pB = rs2_val; /* update read ports */
6 mem_last_read = 0x00000000; /* clear data memory port */ }

Listing 5: Specialized leakage occurring during loads.

7 // see license in Listing 6
8 function load_leakage(rs1_val : xlenbits, rs2_val : xlenbits

↩→ , addr: xlenbits, req_data: xlenbits) = {
9 leak(rf_pA, rf_pB, rs1_val, rs2_val);
10 leak(rf_pA, rf_pB, mem_last_addr, mem_last_read);
11 leak(addr, req_data, mem_last_addr);
12 rf_pA = rs1_val; rf_pB = rs2_val;
13 mem_last_read = req_data; mem_last_addr = addr; }

well-known [38, 39]. Interestingly, prior empirical analysis of the
ARM M0 [39], a processor in the same performance and size class
as IBEX, did not report interactions between the data loaded in the
previous instruction and the current or past ALU operands.

Furthermore, the leakage is even caused by instructions which
have no register operands like LUI (load unsigned immediate). The
root cause of this effect is that the register file always decodes
specific instruction bits as register addresses and forwards their
contents to the ALU. In the case of LUI, these bits are actually part of
the immediate value. This effect was observed by Gigerl et al. [25]
but we characterize and describe the behaviormore accurately. Prior
analyses of the ARM M0 did not report similar effects [39], and
instead reports that instructionswith an immediate field behave as if
they have only one operandwhich could be to themicroarchitecture
of the CPU or gaps in the empirical modeling procedure.

The leakage of load instructions modeled by load_leakage (List-
ing 5) differs from all other instructions. Here, the leak statement in
common_leakage can be broken down into smaller leak statements.
First off, because the ALU is always active, the current and pre-
vious values of the register file outputs are combined in line 9.
Line 10 specifies leakage inherited from the prior instruction’s WBL
through transition leakage. In contrast to prior work [25, 45], con-
secutive load instructions do not cause transition leakage between
the loaded data because the contract disallows misaligned memory
accesses. Similarly, IBEX does not expose transition leakage in sub-
sequent memory writes, unlike several ARM architectures [9, 38].
This is likely because IBEX does not have additional registers in the
memory path like other processors. However, IBEX does produce
transition leakage between memory access addresses of loads and
stores separated by an arbitrary amount of other instructions, as
shown in line 11. IBEX causes this leakage because it always stores
the last address for error-handling purposes.

We emphasize that the contract is provably complete for branch-
ing instructions; the behavior of these central instructions was so
far not characterized.

5.3 Discussion

Performance. Verifying that a CPU design complies with a con-
tract is computationally intensive, but can be well parallelized. We

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

ran the full verification on an Intel Xeon E5-4669 CPU with 88
logical cores running at 2.20GHz. The most time-consuming verifi-
cation task is the search for gate modeling functions, which takes
about 30.6 hours. This step is done once and then cached, and any
changes to leak statements in the contract do not require it to be run
again. Verifying the leakage modeling requires another 4.9 hours.

Adaptability and scalability. While we demonstrate our ap-
proach on the RISC-V IBEX core we emphasize that it is neither
limited to RISC-V processors, nor the IBEX core. Verifying con-
tract compliance for similar architectures and processors requires
adapting the tool to their pipeline and properly configuring the
verification procedure. We believe that the effort of including other
architectures or processors mainly comes from adapting a contract
to their CPU pipeline and properly configuring the verification. In
any case, this effort is only required once per CPU netlist, and can
be made either by the CPU designers themselves, or by any other
person in case the CPU netlist is not IP restricted. Anybody with
access to the contract can then verify masked software against it,
without the need of having access to the CPU netlist itself.

Hardware constraints and shortcomings. We currently limit
the scope of our contracts, and thus also the scope of masking verifi-
cation, to the CPU core itself. Clearly, there may also be some other
components that could cause power side-channel leaks during the
execution of masked software. For example, RAM or data caches are
another location where unintentional combinations of shares could
occur. Within our framework, the leakage of such components
would need to be verified separately and modeled within the CPU
contract. Additionally, there are also cases when no “good” contract
can be written for a CPU. One such example would be CPUs where
the register file output is computed with a multiplexer tree, and
would lead to a leak statement containing the whole register file.

So far, we analyze an instruction starting with the decode stage,
which assumes that the fetch stage does not expose leakage de-
pending on the fetched instruction. From what we have seen in
IBEX and other processors, there is no leakage in the fetch stage
that depends on the bits of the fetched instruction. For a similar
reason, speculation or (secret-dependent) branch prediction is not
a primary concern for our current analysis since these are usually
not present in embedded devices.

Masking verification. Our tool currently focuses on value
leakage and transition leakage, while our theoretical framework
supports arbitrary gate-level leakage. Extending our verification
tool to include further effects such as glitches makes an interesting
future research question, and could be achieved by extending the
encoding of leakage from Section 4.5. Our verification methodol-
ogy and the contracts themselves support bitsliced and 𝑛-sliced
masking [11], which are among the most popular implementation
techniques for masked software. Our analysis, as well as prior work
by others, observes joint leakage of bits stored in the same 32-bit
register [22, 25, 39], rendering exotic concepts like share-slicing
inherently insecure.

6 APPLICATION AND VALIDATION

We implement higher-order masked gadgets in software and ver-
ify their security against the IBEX contract. We demonstrate the
benefit of contracts and validate our methodology by repeating the

Table 1: Verifying software implementations of 2nd-order
probing secure gadgets using the contract or the netlist of

IBEX results in the same confirmation of security (") at re-

duced verification time and validates our approach.

Gadget 𝑡 # Instr. # Clear. Verification time

Contract Netlist

AND 2 62 10 < 1 s" 284.63 s"
Refresh 2 19 0 < 1 s" 32.85 s"
XOR 2 16 1 < 1 s" 50.79 s"
NOT 2 5 0 < 1 s" 63.32 s"

verification with an independent tool that directly verifies programs
against the processor netlist and all of its side-effects. Finally, we
assess the precision of contracts by confirming that the abstract
leakage specification does not demand needless protection.

Validation of the methodology and tool. We port multiple
2nd order masked gadgets presented by Barthe et al. [9] to RISC-V
and check their security (software compliance) using scVerif. For
this, we perform a manual translation (which could be automated)
of the Genoa contract to the DSL of scVerif and adopt its front-
end slightly to accept RISC-V assembly. The resulting tool allows
to prove software compliance (Definition 4), as well as the weaker
notion of probing security for assembly implementations against
the IBEX contract. There are no software masking verifiers capable
of verifying 𝑡–(S)NI while also accounting for the CPU netlists.
Therefore, we compare our results against Coco [25], a tool that
accounts for the CPU netlist, but only supports probing security.

All gadgets are hardened by adding the least amount of clearing
instructions until they are threshold probing secure, i.e., compliant
with the contract under a weaker notion of security yet claimed
secure against all gate-level leakage of IBEX. We have checked each
gadget with both Coco and scVerif, and the results are shown in
Table 1. The correctness of our methodology, hardware compliance
checking tool and pen-and-paper model reduction (Theorem 2) are
confirmed since there is no case where scVerif reports security
while Coco rejects it.

Quality of contracts. We check that, whenever one of the
clearing instructions that mitigate contract leakage is removed,
Coco also rejects the program due to some gate-level leakage in
the CPU netlist. If Coco would report that an implementation
with less clearings is still secure, it would means that the leakage
generalization in the contract was too broad and requires needless
hardening of the program. In our tests, whenever we removed any
of the 11 clearings from Table 1, Coco always reported some gate-
level leakage that breaks probing security. This indicates that our
contract does not cause wrong insecurity reports (false negatives).

7 CONCLUSION

We introduced a methodology for creating software leakage mod-
els and proving their completeness based on the netlist of a CPU.
Our rigorous approach allows us to treat the model as contract
between the software and the hardware which provably guarantees
end-to-end security: any implementation secure w.r.t. a contract
is also secure on any compliant processor for all leakages exposed

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

at gate-level. Overall the result significantly improve the secure
construction of hardened software implementations.

Besides providing strong guarantees of side-channel resistance,
easing the safe porting of programs to different CPUs and the most
extensive modeling of different instructions’s side-channel leakage,
we think our approach could be beneficial for other applications as
well. In particular, it could be used for leakage emulators or statis-
tical security evaluations that can be derived from the executable
Genoa contracts.

ACKNOWLEDGMENTS

This work was supported by the Austrian Research Promotion
Agency (FFG) through projects FERMION (grant number 867542)
and AWARE (grant number FO999891092). The work received fund-
ing from the Federal Ministry of Education and Research (BMBF)
as part of the VE-Jupiter project (grant number 16ME0231K). This
work was supported by the Graz University of Technology LEAD
project “Dependable Internet of Things in Adverse Environments”.
Parts of this work received sponsoring from NXP Semiconductors
Austria.

REFERENCES

[1] Arnold Abromeit, Florian Bache, Leon A. Becker, Marc Gourjon, Tim Güneysu,
Sabrina Jorn, Amir Moradi, Maximilian Orlt, and Falk Schellenberg. 2021. Auto-
mated Masking of Software Implementations on Industrial Microcontrollers. In
Design, Automation & Test in Europe Conference & Exhibition, DATE 2021, Grenoble,
France, February 1-5, 2021. IEEE, 1006–1011. https://doi.org/10.23919/DATE51398.
2021.9474183

[2] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Kathryn E. Gray, Robert
Norton-Wright, Christopher Pulte, Shaked Flur, and Peter Sewell. July 2021
(accessed January 12, 2022). https://raw.githubusercontent.com/rems-project/
sail/sail2/manual.pdf.

[3] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.
Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-
pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2018
(accessed January 12, 2022). MiniSail: A core calculus for Sail. https:
//www.cl.cam.ac.uk/~mpew2/papers/minisail_anf.pdf.

[4] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.
Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-
pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2019.
ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. In Proc. 46th ACM SIG-
PLAN Symposium on Principles of Programming Languages. https://doi.org/10.
1145/3290384 Proc. ACM Program. Lang. 3, POPL, Article 71.

[5] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. 2014. On the Cost of Lazy Engineering for Masked Software
Implementations. In Smart Card Research and Advanced Applications - 13th In-
ternational Conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 8968), Marc Joye and Amir
Moradi (Eds.). Springer, 64–81. https://doi.org/10.1007/978-3-319-16763-3_5

[6] Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB Standard:
Version 2.0. Technical Report. Department of Computer Science, The University
of Iowa. Available at www.SMT-LIB.org.

[7] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. 2015. Verified Proofs of Higher-Order Masking.
In EUROCRYPT 2015, Part I (LNCS, Vol. 9056), Elisabeth Oswald and Marc Fischlin
(Eds.). Springer, Heidelberg, 457–485. https://doi.org/10.1007/978-3-662-46800-
5_18

[8] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. 2016. Strong Non-Interference
and Type-Directed Higher-Order Masking. In ACM CCS 2016, Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi
(Eds.). ACM Press, 116–129. https://doi.org/10.1145/2976749.2978427

[9] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara Paglia-
longa, and Lars Porth. 2021. Masking in Fine-Grained Leakage Models: Con-
struction, Implementation and Verification. IACR TCHES 2021, 2 (2021), 189–228.
https://doi.org/10.46586/tches.v2021.i2.189-228 https://tches.iacr.org/index.php/
TCHES/article/view/8792.

[10] Omid Bazangani, Alexandre Iooss, Ileana Buhan, and Lejla Batina. 2021. ABBY:
Automating the creation of fine-grained leakage models. Cryptology ePrint

Archive, Report 2021/1569. https://ia.cr/2021/1569.
[11] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain, and

Raphaël Wintersdorff. 2020. Tornado: Automatic Generation of Probing-
Secure Masked Bitsliced Implementations. In EUROCRYPT 2020, Part III (LNCS,
Vol. 12107), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, 311–341.
https://doi.org/10.1007/978-3-030-45727-3_11

[12] Gaëtan Cassiers and François-Xavier Standaert. 2020. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE Trans.
Inf. Forensics Secur. 15 (2020), 2542–2555. https://doi.org/10.1109/TIFS.2020.
2971153

[13] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO’99 (LNCS,
Vol. 1666), Michael J. Wiener (Ed.). Springer, Heidelberg, 398–412. https://doi.
org/10.1007/3-540-48405-1_26

[14] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. 2016. Masking AES with d+1 Shares in Hardware. In
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th International
Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings (Lecture Notes
in Computer Science, Vol. 9813). Springer, 194–212.

[15] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. 2012. Conversion of Security
Proofs from One Leakage Model to Another: A New Issue. In Constructive Side-
Channel Analysis and Secure Design - Third International Workshop, COSADE
2012, Darmstadt, Germany, May 3-4, 2012. Proceedings (Lecture Notes in Computer
Science, Vol. 7275). Springer, 69–81.

[16] Jean-Sébastien Coron. 2014. Higher Order Masking of Look-Up Tables. In EU-
ROCRYPT 2014 (LNCS, Vol. 8441), Phong Q. Nguyen and Elisabeth Oswald (Eds.).
Springer, Heidelberg, 441–458. https://doi.org/10.1007/978-3-642-55220-5_25

[17] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla
Nikova, and Vincent Rijmen. 2017. Does Coupling Affect the Security of Masked
Implementations?. In COSADE 2017 (LNCS, Vol. 10348), Sylvain Guilley (Ed.).
Springer, Heidelberg, 1–18. https://doi.org/10.1007/978-3-319-64647-3_1

[18] Wouter de Groot, Kostas Papagiannopoulos, Antonio de la Piedra, Erik Schnei-
der, and Lejla Batina. 2016. Bitsliced Masking and ARM: Friends or Foes?. In
Lightweight Cryptography for Security and Privacy - 5th International Workshop,
LightSec 2016, Aksaray, Turkey, September 21-22, 2016, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 10098). Springer, 91–109.

[19] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient
SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4963),
C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340. https://doi.org/
10.1007/978-3-540-78800-3_24

[20] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and
François-Xavier Standaert. 2018. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR TCHES 2018, 3 (2018),
89–120. https://doi.org/10.13154/tches.v2018.i3.89-120 https://tches.iacr.org/
index.php/TCHES/article/view/7270.

[21] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. 2013. More on the
Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding.
In Computer Science - Theory and Applications - 8th International Computer Science
Symposium in Russia, CSR 2013, Ekaterinburg, Russia, June 25-29, 2013. Proceedings
(Lecture Notes in Computer Science, Vol. 7913), Andrei A. Bulatov and Arseny M.
Shur (Eds.). Springer, 378–390. https://doi.org/10.1007/978-3-642-38536-0_33

[22] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. 2019. Share-slicing: Friend
or Foe? IACR TCHES 2020, 1 (2019), 152–174. https://doi.org/10.13154/tches.
v2020.i1.152-174 https://tches.iacr.org/index.php/TCHES/article/view/8396.

[23] Si Gao and ElisabethOswald. 2021. ANovel Completeness Test and its Application
to Side Channel Attacks and Simulators. Cryptology ePrint Archive, Report
2021/756. https://ia.cr/2021/756.

[24] Si Gao, Elisabeth Oswald, and Dan Page. 2021. Reverse Engineering the Micro-
Architectural Leakage Features of a Commercial Processor. Cryptology ePrint
Archive, Report 2021/794. https://ia.cr/2021/794.

[25] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. 2021. Coco: Co-Design and Co-Verification of Masked Software Imple-
mentations on CPUs. In 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX As-
sociation, 1469–1468. https://www.usenix.org/conference/usenixsecurity21/
presentation/gigerl

[26] Barbara Gigerl, Robert Primas, and Stefan Mangard. 2021. Secure and Efficient
Software Masking on Superscalar Pipelined Processors. InAdvances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings,
Part II (Lecture Notes in Computer Science, Vol. 13091), Mehdi Tibouchi and Huax-
iong Wang (Eds.). Springer, 3–32. https://doi.org/10.1007/978-3-030-92075-3_1

https://doi.org/10.23919/DATE51398.2021.9474183
https://doi.org/10.23919/DATE51398.2021.9474183
https://raw.githubusercontent.com/rems-project/sail/sail2/manual.pdf
https://raw.githubusercontent.com/rems-project/sail/sail2/manual.pdf
https://www.cl.cam.ac.uk/~mpew2/papers/minisail_anf.pdf
https://www.cl.cam.ac.uk/~mpew2/papers/minisail_anf.pdf
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.46586/tches.v2021.i2.189-228
https://tches.iacr.org/index.php/TCHES/article/view/8792
https://tches.iacr.org/index.php/TCHES/article/view/8792
https://ia.cr/2021/1569
https://doi.org/10.1007/978-3-030-45727-3_11
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.13154/tches.v2018.i3.89-120
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://doi.org/10.1007/978-3-642-38536-0_33
https://doi.org/10.13154/tches.v2020.i1.152-174
https://doi.org/10.13154/tches.v2020.i1.152-174
https://tches.iacr.org/index.php/TCHES/article/view/8396
https://ia.cr/2021/756
https://ia.cr/2021/794
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://doi.org/10.1007/978-3-030-92075-3_1

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[27] Hannes Gross, Stefan Mangard, and Thomas Korak. 2016. Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbitrary Protection
Order. In Proceedings of the 2016 ACM Workshop on Theory of Implementation
Security (Vienna, Austria) (TIS ’16). ACM, New York, NY, USA, 3–3. https:
//doi.org/10.1145/2996366.2996426

[28] Hannes Gross, Stefan Mangard, and Thomas Korak. 2017. An Efficient Side-
Channel Protected AES Implementation with Arbitrary Protection Order. In
CT-RSA 2017, San Francisco, CA, USA, February 14–17, 2017, Proceedings, Helena
Handschuh (Ed.). Springer International Publishing, Cham, 95–112. https://doi.
org/10.1007/978-3-319-52153-4_6

[29] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-
Software Contracts for Secure Speculation. In 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 1868–1883.
https://doi.org/10.1109/SP40001.2021.00036

[30] Vedad Hadzic and Roderick Bloem. 2021. COCOALMA: A Versatile Masking
Verifier. In Formal Methods in Computer Aided Design, FMCAD 2021, New Haven,
CT, USA, October 19-22, 2021. IEEE, 1–10. https://doi.org/10.34727/2021/isbn.978-
3-85448-046-4_9

[31] Yuval Ishai, Amit Sahai, and David Wagner. 2003. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO 2003 (LNCS, Vol. 2729), Dan Boneh
(Ed.). Springer, Heidelberg, 463–481. https://doi.org/10.1007/978-3-540-45146-
4_27

[32] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings (Lec-
ture Notes in Computer Science, Vol. 1666), Michael J. Wiener (Ed.). Springer,
388–397. https://doi.org/10.1007/3-540-48405-1_25

[33] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In CRYPTO ’99. Springer-Verlag, London, UK, 10 pages. http://dl.acm.org/citation.
cfm?id=646764.703989

[34] lowRISC. [n. d.]. Ibex RISC-V Core. https://github.com/lowRISC/ibex.
[35] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. 2005. Side-Channel Leak-

age of Masked CMOS Gates. In CT-RSA 2005 (LNCS, Vol. 3376), Alfred Menezes
(Ed.). Springer, Heidelberg, 351–365. https://doi.org/10.1007/978-3-540-30574-
3_24

[36] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. 2005. Success-
fully Attacking Masked AES Hardware Implementations. In CHES 2005 (LNCS,
Vol. 3659), Josyula R. Rao and Berk Sunar (Eds.). Springer, Heidelberg, 157–171.
https://doi.org/10.1007/11545262_12

[37] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. 2005. Successfully
Attacking Masked AES Hardware Implementations. In CHES (Lecture Notes in
Computer Science, Vol. 3659). Springer, 157–171.

[38] Ben Marshall, Dan Page, and James Webb. 2021. MIRACLE: MIcRo-ArChitectural
Leakage Evaluation: A study of micro-architectural power leakage across many
devices. IACR Transactions on Cryptographic Hardware and Embedded Systems
2022, 1 (Nov. 2021), 175–220. https://doi.org/10.46586/tches.v2022.i1.175-220

[39] David McCann, Elisabeth Oswald, and Carolyn Whitnall. 2017. Towards Practical
Tools for Side Channel Aware Software Engineering: ’Grey Box’ Modelling for In-
struction Leakages. In USENIX Security 2017, Engin Kirda and Thomas Ristenpart
(Eds.). USENIX Association, 199–216.

[40] Thomas S. Messerges. 2000. Using Second-Order Power Analysis to Attack DPA
Resistant Software. In CHES 2000. https://doi.org/10.1007/3-540-44499-8_19

[41] Lauren De Meyer, Elke De Mulder, and Michael Tunstall. 2020. On the Effect of
the (Micro)Architecture on the Development of Side-Channel Resistant Software.
IACR Cryptol. ePrint Arch. 2020 (2020), 1297. https://eprint.iacr.org/2020/1297

[42] Prashanth Mundkur, Rishiyur S. Nikhil, Bluespec Inc, Jon French, Brian Campbell,
Robert Norton-Wright, Alasdair Armstrong, Thomas Bauereiss, Shaked Flur,
Christopher Pulte, Peter Sewell, Alexander Richardson, HeshamAlmatary, Jessica
Clarke, Microsoft, Nathaniel Wesley Filardo, Peter Rugg, and Aril Computer
Corp. August 2021 (accessed January 17, 2022). RISCV Sail Model. https:
//github.com/riscv/sail-riscv.

[43] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. 2006. Threshold
Implementations Against Side-Channel Attacks and Glitches. In ICICS 06 (LNCS,
Vol. 4307), Peng Ning, Sihan Qing, and Ninghui Li (Eds.). Springer, Heidelberg,
529–545.

[44] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. 2011. Secure Hardware
Implementation of Nonlinear Functions in the Presence of Glitches. Journal of
Cryptology 24, 2 (April 2011), 292–321. https://doi.org/10.1007/s00145-010-9085-7

[45] Kostas Papagiannopoulos and Nikita Veshchikov. 2017. Mind the Gap: Towards
Secure 1st-Order Masking in Software. In COSADE 2017 (LNCS, Vol. 10348),
Sylvain Guilley (Ed.). Springer, Heidelberg, 282–297. https://doi.org/10.1007/978-
3-319-64647-3_17

[46] Emmanuel Prouff and Matthieu Rivain. 2013. Masking against Side-Channel
Attacks: A Formal Security Proof. In EUROCRYPT 2013 (LNCS, Vol. 7881), Thomas
Johansson and Phong Q. Nguyen (Eds.). Springer, Heidelberg, 142–159. https:
//doi.org/10.1007/978-3-642-38348-9_9

[47] Jean-Jacques Quisquater and David Samyde. 2001. ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards. In Smart Card Program-
ming and Security, International Conference on Research in Smart Cards, E-smart
2001, Cannes, France, September 19-21, 2001, Proceedings (Lecture Notes in Com-
puter Science, Vol. 2140), Isabelle Attali and Thomas P. Jensen (Eds.). Springer,
200–210. https://doi.org/10.1007/3-540-45418-7_17

[48] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. 2015. Consolidating Masking Schemes. In CRYPTO 2015. https:
//doi.org/10.1007/978-3-662-47989-6_37

[49] Peter Sewell. June 2020 (accessed January 14, 2022). ISA Formal Spec Public
Review. https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review.

[50] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. 2021. Rosita: Towards Automatic Elimination of
Power-Analysis Leakage in Ciphers. In NDSS. The Internet Society.

APPENDIX

7.1 RISC-V Model for IBEX

The missing parts of our contract for IBEX are depicted in Listing 6.

Listing 6: Contract model of remaining instructions for

IBEX.

23 /*==============================*/

24 /* RISCV Sail Model */

25 /* This Sail RISC-V architecture model, comprising all files

↩→ and directories except for the snapshots of the

↩→ Lem and Sail libraries in the prover_snapshots

↩→ directory (which include copies of their licences),

↩→ is subject to the BSD two-clause licence below. */

26 /* Copyright (c) 2017-2021 Prashanth Mundkur, Rishiyur S.

↩→ Nikhil and Bluespec Inc., Jon French, Brian

↩→ Campbell, Robert Norton-Wright, Alasdair Armstrong,

↩→ Thomas Bauereiss, Shaked Flur, Christopher Pulte,

↩→ Peter Sewell, Alexander Richardson, Hesham Almatary,

↩→ Jessica Clarke, Microsoft, for contributions by

↩→ Robert Norton-Wright and Nathaniel Wesley Filardo,

↩→ Peter Rugg and Aril Computer Corp., for

↩→ contributions by Scott Johnson */

27 /* Copyright 2020-2022 - TUHH, TU Graz */

28 /* All rights reserved. */

29 /* This software was developed by the above within the

↩→ Rigorous Engineering of Mainstream Systems (REMS)

↩→ project, partly funded by EPSRC grant EP/K008528/1,

↩→ at the Universities of Cambridge and Edinburgh. */

30 /* This software was developed by SRI International and the

↩→ University of Cambridge Computer Laboratory (

↩→ Department of Computer Science and Technology)

↩→ under DARPA/AFRL contract FA8650-18-C-7809 ("CIFV"),

↩→ and under DARPA contract HR0011-18-C-0016 ("ECATS")

↩→ as part of the DARPA SSITH research programme. */

31 /* This project has received funding from the European

↩→ Research Council (ERC) under the European Union's

↩→ Horizon 2020 research and innovation programme (

↩→ grant agreement 789108, ELVER). */

32 /* This software has received funding from the Federal
Ministry of Education and Research
(BMBF) as part of the VE-Jupiter project grant
16ME0231K. */

33 /* This work was supported by the Austrian Research
Promotion Agency (FFG) through the FERMION project
(grant number 867542). */

https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
http://dl.acm.org/citation.cfm?id=646764.703989
http://dl.acm.org/citation.cfm?id=646764.703989
https://github.com/lowRISC/ibex
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/11545262_12
https://doi.org/10.46586/tches.v2022.i1.175-220
https://doi.org/10.1007/3-540-44499-8_19
https://eprint.iacr.org/2020/1297
https://github.com/riscv/sail-riscv
https://github.com/riscv/sail-riscv
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

34 /* Redistribution and use in source and binary forms, with

↩→ or without modification, are permitted provided

↩→ that the following conditions are met: */

35 /* 1. Redistributions of source code must retain the above

↩→ copyright notice, this list of conditions and the

↩→ following disclaimer. */

36 /* 2. Redistributions in binary form must reproduce the

↩→ above copyright notice, this list of conditions and

↩→ the following disclaimer in the documentation and/

↩→ or other materials provided with the distribution.

↩→ */

37 /* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS

↩→ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,

↩→ INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

↩→ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

↩→ PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

↩→ SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY

↩→ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

↩→ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

↩→ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

↩→ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

↩→ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

↩→ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

↩→ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

↩→ OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

↩→ THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

↩→ OF SUCH DAMAGE. */

38 /*==============================*/

39

40 val common_leakage : (xlenbits, xlenbits) -> unit effect {

↩→ rreg, wreg, leakage}

41 function common_leakage(rs1_val : xlenbits, rs2_val :

↩→ xlenbits) =

42 {

43 leak(rs1_val, rs2_val, rf_pA, rf_pB, mem_last_addr,

↩→ mem_last_read);

44 rf_pA = rs1_val;

45 rf_pB = rs2_val;

46 mem_last_read = 0x00000000;

47 }

48

49 val overwrite_leakage : (regidx, xlenbits) -> unit effect {

↩→ rreg, leakage}

50 function overwrite_leakage(dest_idx : regidx, res : xlenbits

↩→) = {

51 let x1_n = if (dest_idx == 0b00001)

52 then {res} else {x1} in leak(x1 , x1_n);

53 let x2_n = if (dest_idx == 0b00010)

54 then {res} else {x2} in leak(x2 , x2_n);

55 let x3_n = if (dest_idx == 0b00011)

56 then {res} else {x3} in leak(x3 , x3_n);

57 let x4_n = if (dest_idx == 0b00100)

58 then {res} else {x4} in leak(x4 , x4_n);

59 let x5_n = if (dest_idx == 0b00101)

60 then {res} else {x5} in leak(x5 , x5_n);

61 let x6_n = if (dest_idx == 0b00110)

62 then {res} else {x6} in leak(x6 , x6_n);

63 let x7_n = if (dest_idx == 0b00111)

64 then {res} else {x7} in leak(x7 , x7_n);

65 let x8_n = if (dest_idx == 0b01000)

66 then {res} else {x8} in leak(x8 , x8_n);

67 let x9_n = if (dest_idx == 0b01001)

68 then {res} else {x9} in leak(x9 , x9_n);

69 let x10_n = if (dest_idx == 0b01010)

70 then {res} else {x10} in leak(x10, x10_n);

71 let x11_n = if (dest_idx == 0b01011)

72 then {res} else {x11} in leak(x11, x11_n);

73 let x12_n = if (dest_idx == 0b01100)

74 then {res} else {x12} in leak(x12, x12_n);

75 let x13_n = if (dest_idx == 0b01101)

76 then {res} else {x13} in leak(x13, x13_n);

77 let x14_n = if (dest_idx == 0b01110)

78 then {res} else {x14} in leak(x14, x14_n);

79 let x15_n = if (dest_idx == 0b01111)

80 then {res} else {x15} in leak(x15, x15_n);

81 }

82

83 /* **************************** */

84

85 enum uop = {RISCV_LUI, RISCV_AUIPC}

86 union clause ast = UTYPE : (bits(20), regidx, uop)

87

88 mapping encdec_uop : uop <-> bits(7) = {

89 RISCV_LUI <-> 0b0110111,

90 RISCV_AUIPC <-> 0b0010111

91 }

92

93 mapping clause encdec = UTYPE(imm, rd, op)

94 <-> imm @ rd @ encdec_uop(op)

95 if (rd[4] == bitzero)

96

97 function clause execute UTYPE(imm, rd, op) = {

98 let rs1_val = X(0b0 @ imm[6 .. 3]);

99 let rs2_val = X(0b0 @ imm[11 .. 8]);

100 common_leakage(rs1_val, rs2_val);

101

102 let off : xlenbits = EXTS(imm @ 0x000);

103 let ret : xlenbits = match op {

104 RISCV_LUI => off,

105 RISCV_AUIPC => get_arch_pc() + off

106 };

107

108 X(rd) = ret;

109 RETIRE_SUCCESS

110 }

111

112 /* **************************** */

113

114 union clause ast = RISCV_JAL : (bits(21), regidx)

115

116 mapping clause encdec =

117 RISCV_JAL(imm_19 @ imm_7_0 @ imm_8 @ imm_18_13 @ imm_12_9

↩→ @ 0b0, rd)

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

118 <-> imm_19 : bits(1) @ imm_18_13 : bits(6) @ imm_12_9 :

↩→ bits(4) @ imm_8 : bits(1) @ imm_7_0 : bits(8) @ rd

↩→ @ 0b1101111

119 if (rd[4] == bitzero)

120

121 function clause execute (RISCV_JAL(imm, rd)) = {

122 let rs1_val = X(0b0 @ imm[18 .. 15]);

123 let rs2_val = X(0b0 @ imm[3 .. 1]

124 @ subrange_bits(imm, 11, 11));

125 common_leakage(rs1_val, rs2_val);

126

127 let t : xlenbits = PC + EXTS(imm);

128 let rd_next = get_next_pc();

129

130 overwrite_leakage(rd, rd_next);

131 X(rd) = rd_next;

132 if t[1 .. 0] == 0b00 then {

133 set_next_pc(t);

134 RETIRE_SUCCESS

135 } else RETIRE_FAIL

136 }

137

138 /* **************************** */

139

140 union clause ast =

141 RISCV_JALR : (bits(12), regidx, regidx)

142

143 mapping clause encdec = RISCV_JALR(imm, rs1, rd)

144 <-> imm @ rs1 @ 0b000 @ rd @ 0b1100111

145 if (rs1[4] == bitzero & rd[4] == bitzero)

146

147 function clause execute (RISCV_JALR(imm, rs1, rd)) = {

148 let rs1_val = X(rs1);

149 let rs2_val = X(0b0 @ imm[3..0]);

150 common_leakage(rs1_val, rs2_val);

151

152 let t : xlenbits =

153 [(rs1_val + EXTS(imm)) with 0 = bitzero];

154 if t[1 .. 0] == 0b00 then {

155 overwrite_leakage(rd, get_next_pc());

156 X(rd) = get_next_pc();

157 set_next_pc(t);

158 RETIRE_SUCCESS

159 } else RETIRE_FAIL

160 }

161

162 /* **************************** */

163

164 enum bop = {RISCV_BEQ, RISCV_BNE, RISCV_BLT, RISCV_BGE,

↩→ RISCV_BLTU, RISCV_BGEU}

165 union clause ast =

166 BTYPE : (bits(13), regidx, regidx, bop)

167

168 mapping encdec_bop : bop <-> bits(3) = {

169 RISCV_BEQ <-> 0b000,

170 RISCV_BNE <-> 0b001,

171 RISCV_BLT <-> 0b100,

172 RISCV_BGE <-> 0b101,

173 RISCV_BLTU <-> 0b110,

174 RISCV_BGEU <-> 0b111

175 }

176

177 mapping clause encdec = BTYPE(imm7_6 @ imm5_0 @ imm7_5_0 @

↩→ imm5_4_1 @ 0b0, rs2, rs1, op)

178 <-> imm7_6 : bits(1) @ imm7_5_0 : bits(6) @ rs2 @ rs1 @

↩→ encdec_bop(op) @ imm5_4_1 : bits(4) @ imm5_0 :

↩→ bits(1) @ 0b1100011

179 if (rs1[4] == bitzero & rs2[4] == bitzero)

180

181 function clause execute (BTYPE(imm, rs2, rs1, op)) = {

182 let rs1_val = X(rs1);

183 let rs2_val = X(rs2);

184 common_leakage(rs1_val, rs2_val);

185 let taken : bool = match op {

186 RISCV_BEQ => rs1_val == rs2_val,

187 RISCV_BNE => rs1_val != rs2_val,

188 RISCV_BLT => rs1_val <_s rs2_val,

189 RISCV_BGE => rs1_val >=_s rs2_val,

190 RISCV_BLTU => rs1_val <_u rs2_val,

191 RISCV_BGEU => rs1_val >=_u rs2_val

192 };

193

194 overwrite_leakage(0b00000, 0

↩→ b00000000000000000000000000000000);

195

196 let t : xlenbits = PC + EXTS(imm);

197 if (t[1 .. 0] != 0b00) then

198 return RETIRE_FAIL;

199 if taken then { set_next_pc(t); };

200 return RETIRE_SUCCESS

201 }

202

203 /* **************************** */

204

205 enum iop = {RISCV_ADDI, RISCV_SLTI, RISCV_SLTIU, RISCV_XORI,

↩→ RISCV_ORI, RISCV_ANDI}

206 union clause ast =

207 ITYPE : (bits(12), regidx, regidx, iop)

208

209 mapping encdec_iop : iop <-> bits(3) = {

210 RISCV_ADDI <-> 0b000,

211 RISCV_SLTI <-> 0b010,

212 RISCV_SLTIU <-> 0b011,

213 RISCV_ANDI <-> 0b111,

214 RISCV_ORI <-> 0b110,

215 RISCV_XORI <-> 0b100

216 }

217

218 mapping clause encdec = ITYPE(imm, rs1, rd, op)

219 <-> imm @ rs1 @ encdec_iop(op) @ rd @ 0b0010011

220 if (rs1[4] == bitzero) & (rd[4] == bitzero)

221

222 function clause execute (ITYPE (imm, rs1, rd, op)) = {

223 let rs1_val = X(rs1);

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

224 let rs2_val = X(0b0 @ imm[3 .. 0]);

225 common_leakage(rs1_val, rs2_val);

226 let immext : xlenbits = EXTS(imm);

227 let result : xlenbits = match op {

228 RISCV_ADDI => rs1_val + immext,

229 RISCV_SLTI =>

230 EXTZ(bool_to_bits(rs1_val <_s immext)),

231 RISCV_SLTIU =>

232 EXTZ(bool_to_bits(rs1_val <_u immext)),

233 RISCV_ANDI => rs1_val & immext,

234 RISCV_ORI => rs1_val | immext,

235 RISCV_XORI => rs1_val ^ immext

236 };

237 overwrite_leakage(rd, result);

238 X(rd) = result;

239 RETIRE_SUCCESS

240 }

241

242 /* **************************** */

243

244 enum sop = {RISCV_SLLI, RISCV_SRLI, RISCV_SRAI}

245 union clause ast =

246 SHIFTIOP : (bits(6), regidx, regidx, sop)

247

248 mapping encdec_sop : sop <-> bits(3) = {

249 RISCV_SLLI <-> 0b001,

250 RISCV_SRLI <-> 0b101,

251 RISCV_SRAI <-> 0b101

252 }

253

254 mapping clause encdec = SHIFTIOP(shamt, rs1, rd, RISCV_SLLI)

255 <-> 0b000000 @ shamt @ rs1 @ 0b001 @ rd @ 0b0010011

256 if (shamt[5] == bitzero) &(rs1[4] == bitzero) & (rd[4] ==

↩→ bitzero)

257 mapping clause encdec = SHIFTIOP(shamt, rs1, rd, RISCV_SRLI)

258 <-> 0b000000 @ shamt @ rs1 @ 0b101 @ rd @ 0b0010011

259 if (shamt[5] == bitzero) &(rs1[4] == bitzero) & (rd[4] ==

↩→ bitzero)

260 mapping clause encdec = SHIFTIOP(shamt, rs1, rd, RISCV_SRAI)

261 <-> 0b010000 @ shamt @ rs1 @ 0b101 @ rd @ 0b0010011

262 if (shamt[5] == bitzero) &(rs1[4] == bitzero) & (rd[4] ==

↩→ bitzero)

263

264 function clause execute (SHIFTIOP(shamt, rs1, rd, op)) = {

265 let rs1_val = X(rs1);

266 let rs2_val = X(0b0 @ shamt[3..0]);

267 common_leakage(rs1_val, rs2_val);

268 /* the decoder guard ensures that shamt[5] = 0 for RV32E

↩→ */

269 let result : xlenbits = match op {

270 RISCV_SLLI => if sizeof(xlen) == 32

271 then rs1_val << shamt[4..0]

272 else rs1_val << shamt,

273 RISCV_SRLI => if sizeof(xlen) == 32

274 then rs1_val >> shamt[4..0]

275 else rs1_val >> shamt,

276 RISCV_SRAI => if sizeof(xlen) == 32

277 then shift_right_arith32(rs1_val, shamt

↩→ [4..0])

278 else shift_right_arith64(rs1_val, shamt)};

279 overwrite_leakage(rd, result);

280 X(rd) = result;

281 RETIRE_SUCCESS

282 }

283

284 /* **************************** */

285

286 enum rop = {RISCV_ADD, RISCV_SUB, RISCV_SLL, RISCV_SLT,

287 RISCV_SLTU, RISCV_XOR, RISCV_SRL, RISCV_SRA,

288 RISCV_OR, RISCV_AND}

289 union clause ast = RTYPE : (regidx, regidx, regidx, rop)

290

291 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD)

292 <-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011

293 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)

294

295 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_SLT)

296 <-> 0b0000000 @ rs2 @ rs1 @ 0b010 @ rd @ 0b0110011

297 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)

298 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_SLTU)

299 <-> 0b0000000 @ rs2 @ rs1 @ 0b011 @ rd @ 0b0110011

300 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)

301 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_AND)

302 <-> 0b0000000 @ rs2 @ rs1 @ 0b111 @ rd @ 0b0110011

303 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)

304 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_OR)

305 <-> 0b0000000 @ rs2 @ rs1 @ 0b110 @ rd @ 0b0110011

306 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)

307 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_XOR)

308 <-> 0b0000000 @ rs2 @ rs1 @ 0b100 @ rd @ 0b0110011

309 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)

310 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_SLL)

311 <-> 0b0000000 @ rs2 @ rs1 @ 0b001 @ rd @ 0b0110011

312 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)

313 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_SRL)

314 <-> 0b0000000 @ rs2 @ rs1 @ 0b101 @ rd @ 0b0110011

315 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)

316 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_SUB)

317 <-> 0b0100000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011

318 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)

319 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_SRA)

320 <-> 0b0100000 @ rs2 @ rs1 @ 0b101 @ rd @ 0b0110011

321 if (rs1[4] == bitzero) & (rs2[4] == bitzero) & (rd[4] ==

↩→ bitzero)

322

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

323 function clause execute (RTYPE(rs2, rs1, rd, op)) = {

324 let rs1_val = X(rs1);

325 let rs2_val = X(rs2);

326 common_leakage(rs1_val, rs2_val);

327

328 let result : xlenbits = match op {

329 RISCV_ADD => rs1_val + rs2_val,

330 RISCV_SLT => EXTZ(bool_to_bits(rs1_val <_s rs2_val)),

331 RISCV_SLTU => EXTZ(bool_to_bits(rs1_val <_u rs2_val)),

332 RISCV_AND => rs1_val & rs2_val,

333 RISCV_OR => rs1_val | rs2_val,

334 RISCV_XOR => rs1_val ^ rs2_val,

335 RISCV_SLL => if sizeof(xlen) == 32

336 then rs1_val << (rs2_val[4..0])

337 else rs1_val << (rs2_val[5..0]),

338 RISCV_SRL => if sizeof(xlen) == 32

339 then rs1_val >> (rs2_val[4..0])

340 else rs1_val >> (rs2_val[5..0]),

341 RISCV_SUB => rs1_val - rs2_val,

342 RISCV_SRA => if sizeof(xlen) == 32

343 then shift_right_arith32(rs1_val, rs2_val

↩→ [4..0])

344 else shift_right_arith64(rs1_val, rs2_val

↩→ [5..0])

345 };

346 // leak(X(rd), result);

347 overwrite_leakage(rd, result);

348

349 X(rd) = result;

350 RETIRE_SUCCESS

351 }

352

353 /* **************************** */

354

355 enum word_width = {BYTE, HALF, WORD, DOUBLE}

356 union clause ast = LOAD :

357 (bits(12), regidx, regidx, bool, word_width, bool, bool)

358

359 mapping clause encdec = LOAD(imm, rs1, rd, is_unsigned, size

↩→ , false, false)

360 if ((word_width_bytes(size) < sizeof(xlen_bytes)) | (

↩→ not_bool(is_unsigned) & word_width_bytes(size) <=

↩→ sizeof(xlen_bytes))) & (rs1[4] == bitzero) & (rd

↩→ [4] == bitzero)

361 <-> imm @ rs1 @ bool_bits(is_unsigned) @ size_bits(size) @

↩→ rd @ 0b0000011

362 if ((word_width_bytes(size) < sizeof(xlen_bytes)) | (

↩→ not_bool(is_unsigned) & word_width_bytes(size) <=

↩→ sizeof(xlen_bytes))) & (rs1[4] == bitzero) & (rd

↩→ [4] == bitzero)

363

364 function aligned(vaddr : xlenbits, width : word_width) ->

↩→ bool =

365 { width == BYTE | (width == HALF & vaddr[0] == bitzero) |

↩→ (width == WORD & vaddr[1 .. 0] == 0b00) }

366

367 val load_leakage : (xlenbits, xlenbits, xlenbits, xlenbits)

368 -> unit effect {rreg, wreg, leakage}

369 function load_leakage(rs1_val : xlenbits, rs2_val : xlenbits

↩→ , addr: xlenbits, req_data: xlenbits) = {

370 leak(rf_pA, rf_pB, rs1_val, rs2_val);

371 leak(rf_pA, rf_pB, mem_last_addr, mem_last_read);

372 leak(addr, req_data, mem_last_addr);

373 rf_pA = rs1_val;

374 rf_pB = rs2_val;

375 mem_last_read = req_data;

376 mem_last_addr = addr;

377 }

378

379 function clause execute(LOAD(imm, rs1, rd, is_unsigned,

↩→ width, aq, rl)) = {

380 let offset : xlenbits = EXTS(imm);

381 let rs1_val = X(rs1);

382 let rs2_val = X(0b0 @ imm[3 .. 0]);

383 let addr = rs1_val + offset;

384 let req_addr = addr[(sizeof(xlen) - 1) .. 2] @ 0b00;

385 let req_data = read_mem(Read_plain, sizeof(xlen), req_addr

↩→ , 4);

386 load_leakage(rs1_val, rs2_val, addr, req_data);

387 let req_byte : bits(8) = match (addr[1 .. 0]) {

388 0b00 => req_data[7 .. 0],

389 0b01 => req_data[15 .. 8],

390 0b10 => req_data[23 .. 16],

391 0b11 => req_data[31 .. 24]};

392 let req_half : bits(16) = match (addr[1]) {

393 bitzero => req_data[15 .. 0],

394 bitone => req_data[31 .. 16]};

395 match (width, addr[1 .. 0]) {

396 (BYTE, _) => process_load(rd, addr, req_byte,

↩→ is_unsigned),

397 (HALF, 0b00) => process_load(rd, addr, req_half,

↩→ is_unsigned),

398 (HALF, 0b10) => process_load(rd, addr, req_half,

↩→ is_unsigned),

399 (WORD, 0b00) => process_load(rd, addr, req_data,

↩→ is_unsigned),

400 (_, _) => RETIRE_FAIL // takes care of misaligned}

401 }

402

403 /* **************************** */

404

405 union clause ast = STORE :

406 (bits(12), regidx, regidx, word_width, bool, bool)

407

408 mapping clause encdec = STORE(imm7 @ imm5, rs2, rs1, size,

↩→ false, false)

409 if (word_width_bytes(size) <= sizeof(xlen_bytes)) & (rs1

↩→ [4] == bitzero) & (rs2[4] == bitzero)

410 <-> imm7 : bits(7) @ rs2 @ rs1 @ 0b0 @ size_bits(size) @

↩→ imm5 : bits(5) @ 0b0100011

411 if (word_width_bytes(size) <= sizeof(xlen_bytes)) & (rs1

↩→ [4] == bitzero) & (rs2[4] == bitzero)

412

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

413 function clause execute (STORE(imm, rs2, rs1, width, aq, rl)

↩→) = {

414 let offset : xlenbits = EXTS(imm);

415 let rs1_val = X(rs1);

416 let rs2_val = X(rs2);

417 common_leakage(rs1_val, rs2_val);

418 let addr = rs1_val + offset;

419 // address comptation and register file access leakage

420 leak(mem_last_addr, addr);

421 mem_last_addr = addr;

422 if aligned(addr, width) then {

423 let result = rs2_val;

424 overwrite_leakage(0b00000, result);

425 let success : bool = match(width) {

426 BYTE => write_mem(Write_plain, sizeof(xlen), addr, 1,

↩→ result[7..0]),

427 HALF => write_mem(Write_plain, sizeof(xlen), addr, 2,

↩→ result[15..0]),

428 WORD => write_mem(Write_plain, sizeof(xlen), addr, 4,

↩→ result),

429 _ => false};

430 if success then {RETIRE_SUCCESS} else {RETIRE_FAIL}

431 } else { RETIRE_FAIL }

432 }

433

434 /* **************************** */

435

436 mapping clause encdec = ILLEGAL(s) <-> s

437 function clause execute (ILLEGAL(s)) =

438 { return RETIRE_FAIL }

7.2 IBEX Configuration

In the following, we give the configuration file that specifies the
mapping and normal operating conditions simultaneously.

Listing 7: IBEX configuration file

1 // Power Contract for IBEX

2 //

3 // Copyright (c) 2020-2022 - TUHH, TU Graz

4 //

5 // All rights reserved.

6 //

7 // This software has received funding from the Federal
Ministry of Education and Research (BMBF) as part of
the VE-Jupiter project grant 16ME0231K.

8 //

9 // This work was supported by the Austrian Research
Promotion Agency (FFG) through the FERMION project
(grant number 867542).

10 //

11 // Redistribution and use in source and binary forms,

12 // with or without modification, are permitted provided

13 // that the following conditions are met:

14 // 1. Redistributions of source code must retain the

15 // above copyright notice, this list of conditions

16 // and the following disclaimer.

17 // 2. Redistributions in binary form must reproduce the

18 // above copyright notice, this list of conditions

19 // and the following disclaimer in the documentation

20 // and/or other materials provided with the

21 // distribution.

22 //

23 // THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND

24 // CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR

25 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

26 // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

27 // AND FITNESS FOR A PARTICULAR PURPOSE ARE

28 // DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR

29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

30 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

31 // DAMAGES (INCLUDING, BUT NOT LIMITED TO,

32 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

33 // OF USE, DATA, OR PROFITS; OR BUSINESS

34 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

35 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

36 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

37 // ARISING IN ANY WAY OUT OF THE USE OF THIS

38 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

39 // SUCH DAMAGE.

40

41 ///

42 // This file contains the configuration of our tool.

43 // It specifies

44 // - the state modeled in the contract (registers, memory,

↩→ leakage state)

45 // - the registers of the IBEX processor (registers and

↩→ memory)

46 // - a mapping between the states

47 // - which states may contain sensitive data

48 // - conditions which have to hold before/during execution

↩→ of an instruction

49 // - which HW and contract state is printed in

↩→ counterexamples

50 ///

51

52 ///

53 // specification of architectural registers and HW/CT

↩→ mapping

54 ///

55 // PC

56 contract register PC BitVec 32

57 hardware public u_ibex_core.pc_id

58 mapping register PC u_ibex_core.pc_id

59

60 // next PC

61 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.instr_addr_q

62 contract register nextPC BitVec 32

63 mapping register nextPC u_ibex_core.if_stage_i.

↩→ gen_prefetch_buffer.prefetch_buffer_i.fifo_i.

↩→ instr_addr_q

64

65 // REGISTERS

66 contract register x1 BitVec 32

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

67 contract register x2 BitVec 32

68 contract register x3 BitVec 32

69 contract register x4 BitVec 32

70 contract register x5 BitVec 32

71 contract register x6 BitVec 32

72 contract register x7 BitVec 32

73 contract register x8 BitVec 32

74 contract register x9 BitVec 32

75 contract register x10 BitVec 32

76 contract register x11 BitVec 32

77 contract register x12 BitVec 32

78 contract register x13 BitVec 32

79 contract register x14 BitVec 32

80 contract register x15 BitVec 32

81 hardware variable register_file_i.rf_reg_q[1]

82 hardware variable register_file_i.rf_reg_q[2]

83 hardware variable register_file_i.rf_reg_q[3]

84 hardware variable register_file_i.rf_reg_q[4]

85 hardware variable register_file_i.rf_reg_q[5]

86 hardware variable register_file_i.rf_reg_q[6]

87 hardware variable register_file_i.rf_reg_q[7]

88 hardware variable register_file_i.rf_reg_q[8]

89 hardware variable register_file_i.rf_reg_q[9]

90 hardware variable register_file_i.rf_reg_q[10]

91 hardware variable register_file_i.rf_reg_q[11]

92 hardware variable register_file_i.rf_reg_q[12]

93 hardware variable register_file_i.rf_reg_q[13]

94 hardware variable register_file_i.rf_reg_q[14]

95 hardware variable register_file_i.rf_reg_q[15]

96 mapping register x1 register_file_i.rf_reg_q[1]

97 mapping register x2 register_file_i.rf_reg_q[2]

98 mapping register x3 register_file_i.rf_reg_q[3]

99 mapping register x4 register_file_i.rf_reg_q[4]

100 mapping register x5 register_file_i.rf_reg_q[5]

101 mapping register x6 register_file_i.rf_reg_q[6]

102 mapping register x7 register_file_i.rf_reg_q[7]

103 mapping register x8 register_file_i.rf_reg_q[8]

104 mapping register x9 register_file_i.rf_reg_q[9]

105 mapping register x10 register_file_i.rf_reg_q[10]

106 mapping register x11 register_file_i.rf_reg_q[11]

107 mapping register x12 register_file_i.rf_reg_q[12]

108 mapping register x13 register_file_i.rf_reg_q[13]

109 mapping register x14 register_file_i.rf_reg_q[14]

110 mapping register x15 register_file_i.rf_reg_q[15]

111

112 contract opcode op BitVec 32

113 // instruction bits for the instruction whose last execution

↩→ cycle is this cycle

114 // only true if the assertion for the valid_d is present

115 hardware opcode u_ibex_core.instr_rdata_id

116

117 // memory request name_contract name_hardware

118 contract register read_val_1 BitVec 32

119 contract register read_addr_1 BitVec 32

120 hardware variable data_rdata_i

121

122 memory raddr u_ibex_core.load_store_unit_i.adder_result_ex_i

↩→ read_addr_1

123 memory rdata data_rdata_i read_val_1

124 memory req data_req_o

125 memory gnt data_gnt_i

126 memory ack data_rvalid_i

127 memory we data_we_o

128

129 ///

130 // Non-regport signals that must be constrained

131 ///

132 // fetching next instruction was successful, ready to

↩→ continue execution

133 hardware const@end-1 u_ibex_core.if_stage_i.fetch_valid 0b1

134 hardware const@pre u_ibex_core.if_stage_i.fetch_valid 0b1

135 // do not load a new instruction until last cycle

136 hardware const@start:end-1 u_ibex_core.id_stage_i.

↩→ id_in_ready_o 0b0

137 // make sure that nothing retires before the end of the last

↩→ cycle

138 hardware const@start:end-1 u_ibex_core.instr_id_done 0b0

139 // make sure that an instruction has its last cycle in our

↩→ last cycle

140 hardware const@end-1 u_ibex_core.instr_id_done 0b1

141 hardware const@pre u_ibex_core.instr_id_done 0b1

142 hardware const@start u_ibex_core.id_stage_i.decoder_i.

↩→ illegal_insn 0b0

143

144 ///

145 // important signals that must be constrained

146 ///

147 // never trigger a reset of the core

148 hardware public rst_ni

149 hardware const@pre: rst_ni 0b1

150 // make sure that initially, the ID FSM is in state

↩→ instr_first_cycle_i

151 // this means that we look at the case where we started

↩→ executing in 0th cycle

152 hardware public u_ibex_core.id_stage_i.id_fsm_q

153 hardware const@start u_ibex_core.id_stage_i.id_fsm_q 0b0

154 // no compressed (valid or invalid) instructions at the

↩→ output of instruction fetch stage

155 hardware public u_ibex_core.if_stage_i.instr_new_id_q

156 hardware public u_ibex_core.if_stage_i.

↩→ instr_is_compressed_id_o

157 hardware const@start u_ibex_core.if_stage_i.

↩→ instr_is_compressed_id_o 0b0

158 hardware public u_ibex_core.if_stage_i.illegal_c_insn_id_o

159 hardware const@start u_ibex_core.if_stage_i.

↩→ illegal_c_insn_id_o 0b0

160 // this is a hidden assumption made by IBEX developers

161 hardware public u_ibex_core.if_stage_i.instr_rdata_alu_id_o

162 hardware public u_ibex_core.if_stage_i.instr_rdata_id_o

163 // this encodes pre cycle and first cycle assumptions

164 hardware equiv@pre:start+1 u_ibex_core.if_stage_i.

↩→ instr_rdata_id_o u_ibex_core.if_stage_i.

↩→ instr_rdata_alu_id_o

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Roderick Bloem et al.

165

166 ///

167 // annotation of input ports of ibex_top

168 ///

169 hardware public clk_i

170 hardware public ram_cfg_i

171 hardware public test_en_i

172 hardware public hart_id_i

173 hardware public boot_addr_i

174 // Instruction memory interface

175 hardware public instr_gnt_i

176 hardware public instr_rvalid_i

177 hardware public instr_rdata_i

178 hardware public instr_err_i

179 hardware public data_gnt_i

180 hardware public data_rvalid_i

181 hardware public data_err_i

182 hardware const@pre: data_err_i 0b0

183 // interrupts

184 hardware public irq_software_i

185 hardware public irq_timer_i

186 hardware public irq_external_i

187 hardware public irq_fast_i

188 hardware public irq_nm_i

189 // disabling interrupts

190 hardware const@pre: irq_software_i 0b0

191 hardware const@pre: irq_timer_i 0b0

192 hardware const@pre: irq_external_i 0b0

193 hardware const@pre: irq_fast_i 0b000000000000000

194 hardware const@pre: irq_nm_i 0b0

195 // core debug

196 hardware public debug_req_i

197 hardware const@pre: debug_req_i 0b0

198 hardware public fetch_enable_i

199 hardware public scan_rst_ni

200

201 //////////////////////////////////////

202 // annotate internal state of ibex

203 //////////////////////////////////////

204 hardware public core_busy_q

205 hardware public u_ibex_core.instr_fetch_err

206 hardware public u_ibex_core.instr_fetch_err_plus2

207 // instructions in the prefetch fifo

208 hardware public u_ibex_core.if_stage_i.instr_valid_id_q

209 hardware public u_ibex_core.if_stage_i.instr_rdata_c_id_o

210 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.rdata_q0

211 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.rdata_q1

212 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.rdata_q2

213 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.err_q

214 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fifo_i.valid_q

215 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.rdata_pmp_err_q

216 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.discard_req_q

217 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.branch_discard_q

218 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.rdata_outstanding_q

219 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.fetch_addr_q

220 hardware public u_ibex_core.if_stage_i.gen_prefetch_buffer.

↩→ prefetch_buffer_i.stored_addr_q

221

222 // instruction decode

223 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ ctrl_fsm_cs

224 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ load_err_q

225 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ store_err_q

226 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ exc_req_q

227 hardware public u_ibex_core.id_stage_i.branch_set_raw

228 hardware const@start u_ibex_core.id_stage_i.branch_set_raw 0

↩→ b0

229 hardware public u_ibex_core.id_stage_i.

↩→ branch_jump_set_done_q

230 hardware public u_ibex_core.load_store_unit_i.data_we_q

231

232 // since data_pmp_err_i is 0, this should not be 1

233 hardware public u_ibex_core.load_store_unit_i.pmp_err_q

234 hardware const@start u_ibex_core.load_store_unit_i.pmp_err_q

↩→ 0b0

235 // since data_err_i is never 1 and pmp_err_q is also not 1,

↩→ this must be 0

236 hardware public u_ibex_core.load_store_unit_i.lsu_err_q

237 hardware const@start u_ibex_core.load_store_unit_i.lsu_err_q

↩→ 0b0

238 hardware public u_ibex_core.load_store_unit_i.

↩→ handle_misaligned_q

239 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ illegal_insn_q

240 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ do_single_step_q

241 hardware public u_ibex_core.id_stage_i.controller_i.

↩→ enter_debug_mode_prio_q

242 // LSU register handling misaligned memory accesses which

↩→ are not allowed by the contract

243 hardware public u_ibex_core.load_store_unit_i.rdata_q

244 contract leakagestate mem_last_read BitVec 32

245 // Must be idle when new instruction reaches ID/EX

246 hardware public u_ibex_core.load_store_unit_i.ls_fsm_cs

247 hardware const@start u_ibex_core.load_store_unit_i.ls_fsm_cs

↩→ 0b000

248 hardware variable u_ibex_core.load_store_unit_i.addr_last_q

249 hardware variable u_ibex_core.load_store_unit_i.

↩→ rdata_offset_q

250 contract leakagestate mem_last_addr BitVec 32

Power Contracts: Provably Complete Power Leakage Models for Processors CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

251 mapping leakagestate mem_last_addr u_ibex_core.

↩→ load_store_unit_i.addr_last_q

252 mapping leakagestate mem_last_addr u_ibex_core.

↩→ load_store_unit_i.rdata_offset_q

253 hardware public u_ibex_core.load_store_unit_i.data_type_q

254 hardware public u_ibex_core.load_store_unit_i.

↩→ data_sign_ext_q

255

256 // system registers

257 hardware public u_ibex_core.cs_registers_i.mie_q

258 hardware public u_ibex_core.cs_registers_i.mtval_q

259 hardware public u_ibex_core.cs_registers_i.mcause_q

260 hardware public u_ibex_core.cs_registers_i.mscratch_q

261 hardware public u_ibex_core.cs_registers_i.dscratch0_q

262 hardware public u_ibex_core.cs_registers_i.dscratch1_q

263 hardware public u_ibex_core.cs_registers_i.mstack_q

264 hardware public u_ibex_core.cs_registers_i.mstack_cause_q

265 hardware public u_ibex_core.cs_registers_i.mstack_epc_q

266 hardware public u_ibex_core.cs_registers_i.mstatus_q

267 hardware public u_ibex_core.cs_registers_i.dcsr_q

268 hardware const@start u_ibex_core.cs_registers_i.dcsr_q 0

↩→ b00000000000000000000000000000000

269 hardware public u_ibex_core.cs_registers_i.mhpmcounter[0]

270 hardware public u_ibex_core.cs_registers_i.mhpmcounter[1]

271 hardware public u_ibex_core.cs_registers_i.mhpmcounter[2]

272 hardware public u_ibex_core.cs_registers_i.mcountinhibit

273 hardware public u_ibex_core.csr_depc

274 hardware public u_ibex_core.csr_mtvec

275 hardware public u_ibex_core.csr_mepc

276 hardware public u_ibex_core.dummy_instr_en

277 hardware public u_ibex_core.dummy_instr_mask

278 hardware public u_ibex_core.data_ind_timing

279 hardware public u_ibex_core.icache_enable

280 hardware public u_ibex_core.debug_mode

281 hardware public u_ibex_core.priv_mode_id

282 hardware public u_ibex_core.nmi_mode

283

284 contract leakagestate rf_pA BitVec 32

285 contract leakagestate rf_pB BitVec 32

	Abstract
	1 Introduction
	2 Side-Channel Resilience
	2.1 Hardware Model and Gate-level Leakage
	2.2 Provable Security and Simulatability

	3 Hardware-Software Contracts
	3.1 Expressing Contracts in Genoa
	3.2 Contract Formalization
	3.3 Software Security
	3.4 Hardware Compliance With a Contract
	3.5 End-to-end security

	4 Verifying Hardware Compliance
	4.1 Verification Concept
	4.2 Verification Prerequisites
	4.3 Verifying that States Remain Similar
	4.4 Finding Modeling Functions for Gates
	4.5 Verifying that Leaks are Modeled
	4.6 Modeling and Implementation

	5 Verification Process
	5.1 IBEX Configuration
	5.2 Complete Power Contract for IBEX
	5.3 Discussion

	6 Application and Validation
	7 Conclusion
	Acknowledgments
	References
	7.1 RISC-V Model for IBEX
	7.2 IBEX Configuration

