
DSKE: Digital Signatures with Key

Extraction

Zhipeng Wang1, Orestis Alpos2, Alireza Kavousi3, Harry W. H. Wong4,
Sze Yiu Chau4, Duc V. Le5, and Christian Cachin2

1Imperial College London
2University of Bern

3University College London
4The Chinese University of Hong Kong

5Visa Research

Abstract

This work introduces DSKE, digital signatures with key extraction.
In a DSKE scheme, the private key can be extracted if more than a
threshold number of signatures on different messages are ever created
while, within the threshold, each signature continues to authenticate
the signed message. We propose a formal definition of DSKE, as well
as two provably secure constructions, one from hash-based digital sig-
natures and one from polynomial commitments.

We demonstrate that DSKE is useful for various applications, such
as cryptographic deniability and spam prevention. First, we introduce
the GroupForge signature scheme, leveraging DSKE to achieve denia-
bility in digital communication. GroupForge integrates DSKE with a
Merkle tree and timestamps to produce a forward-forgeable signature
equipped with extractable sets, ensuring deniability under a fixed pub-
lic key. We illustrate that GroupForge can serve as a viable alternative
to Keyforge in the non-attributable email protocol of Specter, Park,
and Green (USENIX Sec ’21), thereby eliminating the need for contin-
uous disclosure of outdated private keys. GroupForge can also operate
as a short-lived signature, providing deniability non-interactively and
agnostic to time. Second, we leverage the inherent extraction property
of DSKE to develop a Rate-Limiting Nullifier (RLN) scheme. RLN
efficiently identifies and expels spammers once they exceed a predeter-
mined action threshold, thereby jeopardizing their private keys.

Moreover, we implement both variants of the DSKE to demon-
strate their performance and show they are comparable to existing
signature schemes. We also implement GroupForge from the polyno-
mial commitment-based DSKE and illustrate the practicality of our
proposed scheme.

1



1 Introduction

Digital signature schemes [GMR88] play an important role in protecting the
integrity of data transmitted over the Internet. In some jurisdictions [Bly05,
Mas16, Kar19], a digital signature applied to data can serve as evidence of
the sender’s authorship of the data. Moreover, the signature of a mes-
sage remains valid until either the underlying signature scheme is broken
or the private key is compromised. However, as pointed outby Borisov,
Goldberg, and Brewer in their work on off-the-record (OTR) communica-
tion [BGB04], this “long-lived” property is unsuitable for certain types of
messages [BCG+23]. For instance, if Alice wishes to communicate privately
with Bob, she can encrypt her messages using Bob’s public key (i.e., for
confidentiality) and sign them with her private key (i.e., for authenticity).
However, if Eve compromises Bob’s computer at some point in the future,
Eve will be able to read all of Bob’s previous messages from Alice, and use
the signatures to prove to Judy that the messages indeed originated from
Alice.

To address this problem, OTR messaging requires an interactive key
agreement protocol between the sender and the recipient to agree on session
keys before exchanging messages. Hence, participants can achieve plausible
deniability by revealing the message authentication code (MAC) key at the
end of the conversation; thus, no one can prove that any person is the author
of the messages. However, this pair-wise key agreement required in OTR is
not scalable for applications such as email protocols, in which there is often
no prior end-to-end interaction among the participating parties.

Another way to achieve deniability is to simply require the sender to peri-
odically rotate keys and publish their old private keys [Gre20]. This method
enables anyone to forge signatures using the published private keys and thus
offers deniability to old transcripts. In fact, this method is being suggested
to offer deniability in domain keys identified mail (DKIM) [ACD+07], where
SMTP servers sign outgoing emails on behalf of the whole domain using a
single key, as a way to safeguard against email spoofing. A server sending
an email cryptographically signs it so that the recipient can verify that it
has originated from the reported server. A side effect of this action is email
attributability which stems from the fact that the digital signature remains
valid for a long time, potentially forever [Gre20]. As a result, a malicious
actor, who at any time gains access to these emails, can provably link them
to their sender, which in turn incentivizes extortion and retaliation, among
others.

Problem Statement. In this paper, we focus on answering the following
question that arises naturally from the limitations of existing attempts [Gre20,
BGB04, ABC22]:

Is it possible to design a signature scheme that allows the recipients to

2



verify the validity of the signature, while enabling the sender to gain plausible
deniability, without requiring the constant publication of old key materials
or any additional components?

It is worth noting that the question itself is seemingly a contradiction
due to the non-repudiation property of the digital signature. In this work,
we propose digital signatures with key extraction (DSKE) scheme to an-
swer the aforementioned question affirmatively. We first propose a general
framework, showing that any one-time hash-based signature scheme, such as
Lamport [Lam79] and Winternitz OTS [Mer89, BDE+11], can be turned into
a DSKE scheme, and present two concrete constructions. We then propose
another DSKE construction based on polynomial commitments [KZG10].
This type of signature scheme comes with an extractable set, a set of signa-
tures from which the private key can be extracted asynchronously.

Independently, the key extraction property of DKSE is particularly use-
ful when there is a need to disincentivize or penalize the creation of more
than a certain number of signatures. As concrete examples, one may con-
sider the issue of double-spending [RKS] or double-signing on executable
code [DRS18]. Both could be mitigated by putting the user under the threat
of key leakage.1

Contributions. Our contributions can be summarized as follows:

• We formally define the notion of DSKE. It comes with an extractable set,
a set of signatures that can be used to extract the private key.

• We introduce a framework to make one-time hash-based DSKE, and
present two constructions for DSKEhash. One is based on Lamport [Lam79]
and the other is based on Winternitz signatures [Mer89, BDE+11]. We
demonstrate that generating multiple signatures while reusing a private
key in one-time hash-based signatures results in an extractable set with
an overwhelming probability.

• We propose a polynomial commitment-based DSKE, and present a con-
crete construction DSKEpoly based on the KZG commitment scheme [KZG10].
In comparison to hash-based DSKE, DSKEpoly offers shorter signature size
and more flexibility to the signer in customizing the size of the extractable
set.

• We use DSKEpoly to present two concrete applications. First, we intro-
duce GroupForge, a forward-forgeable signature with extractable set for
deniability under a fixed public key. This makes GroupForge a poten-
tial replacement for Keyforge (USENIX Sec ’21) [SPG21] with additional
benefit like eliminating the reliance on a trusted party and the need for

1We remark that DSKE in this sense resembles an existing primitive in the literature,
named double-authentication-preventing signatures (DAPS). However, there are crucial
differences between the two primitives, as we elaborate in Section 9.

3



continual disclosure of outdated private keys. We show how GroupForge
can also serve as a short-lived signature [ABC22] without using expensive
timed cryptography. Second, we harness the inherent extraction prop-
erty of DSKE to build a Rate-Limiting Nullifier (RLN) protocol, which
can identify and expel spammers once they exceed a certain threshold in
some action.

• We implement and evaluate both DSKE and GroupForge constructions,
thereby highlighting their practicality.

2 Preliminaries

Notation. We denote by 1λ the security parameter and by negl(λ) a neg-
ligible function of λ. We express by (pk, sk) a pair of public and private
keys. We let [n] denote the set {1, . . . , n}. Moreover, we require that pk can
always be efficiently derived from sk, and we denote extractPK(sk) = pk
to be the deterministic function for doing so. For a field F, we denote
F≤d(X) the set of polynomials in F[X] with degree at most d. We de-
note by M the message space and S the signature space. For a non-
negative integer j, we let f (j) be the j-th iterate of the function f , i.e.,
f (j)(x) = f(f(· · · f(x) · · · )) where f is repetitively calculated j times. We
use the notation p(x)← Interpolate({xi, yi}i∈[d+1]) to denote using Lagrange
interpolation to obtain a degree-d polynomial given d+ 1 evaluation points
and their corresponding evaluations.

Hash Functions. Our constructions employ the following standard prop-
erties of cryptographic hash functions. We use H : K ×M → {0, 1}λ to
denote a family of hash functions that is parameterized by a key k ∈ K and
message m ∈M and outputs a binary string of length λ. For this work, we
consider cryptographic hash functions [RS04], satisfying preimage resistance
and collision resistance properties. In practice, the key for standard hash
functions is public; therefore, from this point, we refer to the cryptographic
hash function h sampled from a family of hash functions as a fixed function
H :M→ {0, 1}λ.
Polynomial Commitment Schemes. A polynomial commitment scheme
(PCS) allows a prover to commit to a polynomial f(X) ∈ F≤d(X) and later
open f(X) at arbitrary points x, revealing only the value f(x).

Definition 1 (Polynomial Commitment). A PCS consists of the following
algorithms.

• (ck, vk)← Setup(1λ, d): The setup algorithm takes as input a security pa-
rameter λ, a maximum degree d ∈ N, and outputs the public commitment
key ck, which allows committing to polynomials in F≤d(X), and the public
verification key vk.

4



• Cf ← Com(ck, f(X)): The commitment algorithm takes as input the com-
mitment key ck, a polynomial f(X) ∈ F≤d(X), and outputs a commitment
Cf ∈ G to the polynomial f(X).

• (π, y) ← Open(ck, Cf , x, f(X)): The algorithm takes as input a commit-
ment key ck, a commitment Cf , an evaluation point x, the polynomial
f(X), and outputs y = f(x) ∈ F and a proof π ∈ G.

• 0/1← Check(vk, Cf , x, y, π): The algorithm takes as input the verification
key vk, the commitment Cf , a point x, the claimed evaluation y, the
opening proof π, and outputs 1 iff y = f(x).

A PSC is secure if it can guarantee correctness, computational hiding,
evaluation binding, polynomial binding, and interpolation binding properties
from the polynomial commitment scheme.

Definition 2 (Correctness [KZG10]). Let (ck, vk) ← Setup(1λ, d), f(X) ∈
F≤d(X), and Cf ← Com(ck, f(X)). Then for any (π, y) output by Open(ck, Cf , x, f(X)),
we have Check(vk, Cf , x, y, π) = 1.

Definition 3 (Computational Hiding [KZG10]). Given (ck, vk)← Setup(1λ, d),
the commitment Cf = Com(ck, f(X)), and d̂ valid openings (yi, πi) for points

xi, where i ∈ {1, . . . , d̂}, d̂ is the degree of f(X), and d̂ ≤ d, no PPT ad-
versary can determine the value f(x′), for x′ ̸∈ {x1, . . . , xd̂}, except with a
negligible probability.

Definition 4 (Evaluation Binding [KZG10]). Given (ck, vk)← Setup(1λ, d),
no PPT adversary can compute commitment Cf , point x, and two openings
(π1, y1), (π2, y2) for x, such that Check(vk, Cf , x, y1, π1) = 1, Check(vk, Cf , x, y2, π2) =
1, and y1 ̸= y2.

Definition 5 (Polynomial Binding [KZG10]). Given (ck, vk)← Setup(1λ, d),
no PPT adversary can compute polynomials f(X) and f ′(X), such that
f(X) ̸= f ′(X) and Com(ck, f(X)) = Com(ck, f ′(X)).

Abraham et al. [AJM+23] recently introduced a new property termed
interpolation binding for polynomial commitment schemes. This property
implies that if a sufficient number of valid evaluations of the committed
polynomial are provided, the polynomial interpolated from these points must
be identical to the originally committed polynomial.

Definition 6 (Interpolation Binding [AJM+23]). Given (ck, vk)← Setup(1λ, d),
no PPT adversary can output (Cf , {xi, yi, πi}i∈[d+1]) such that xj ̸= xk
for all j ̸= k, Check(vk, Cf , xi, yi, πi) = 1 for all i ∈ [d + 1], and Cf ̸=
Com(ck, f ′(X)) where f ′(X) = Interpolate({xi, yi}i∈[d+1]).

5



3 Digital Signatures with Key Extraction (DSKE)

In this section, we formally define the notion of digital signatures with key
extraction (DSKE). We adopt the standard digital signature definition and
introduce a new algorithm to capture the capability of extracting the private
key from a set of signatures.

Definition 7 ((k, δ)-Digital Signature with Key Extraction). A signature
scheme Σ, with key extraction consists of five algorithms:

• par ← Setup(1λ): The setup algorithm takes a security parameter 1λ and
outputs a set of public parameters par. This algorithm runs once, and the
public parameters are implicitly input to all subsequent algorithms.

• (pk, sk)← KeyGen(par): The key generation is a probabilistic algorithm
that outputs a pair (pk, sk) of public and private keys.

• σ ← Sign(sk,m): The signing algorithm is a probabilistic algorithm that
takes a private key sk and a message m ∈ M as input and outputs a
signature σ in the signature space S.

• b ← Verify(pk,m, σ): The verification algorithm is a deterministic algo-
rithm that takes a public key pk, a message m, a signature σ as input,
and outputs the validity of the signature, b ∈ {0, 1}.

• sk ← Extract({(mi, σi)}i∈[k], pk): The extraction algorithm is a deter-
ministic algorithm that takes as input a set of distinct message-signature
pairs (mi, σi)i∈[k] and the public key pk such that Verify(pk,mi, σi) = 1,
and outputs the underlying private key sk with probability δ and ⊥ with
probability 1− δ.

Besides the straightforward correctness definition, we consider other
properties of DSKE: existential unforgeability (Definition 8), the extractabil-
ity with trusted generation (Definition 9) and untrusted generation (Defini-
tion 10).

To define existential unforgeability, we consider the following experiment.

d-times signature experiment SignExpdA,Σ(λ).

1. Setup(1λ) and KeyGen(par) are run to obtain keys (pk, sk).

2. A is given pk and can ask up to d queries to the signing oracle

Sign(sk, ·). Let Q
Sign(sk,·)
A = {mi}i∈[d] be the set of all messages for

which A queries Sign(sk, ·), where the ith query is a message mi ∈M.
Eventually, A outputs a pair (m∗, σ∗) ∈M× S.

3. The output of the experiment is defined to be 1 if and only if m∗ /∈
Q

Sign(sk,·)
A and Verify(pk,m∗, σ∗) = 1.

6



Definition 8 (Existential Unforgeability). A digital signature scheme Σ is
existentially unforgeable under a d-times adaptive chosen-message attack, or
d-times-secure, if for all PPT adversaries A the success probability in the
d-times signature experiment is negligible: Pr[SignExpdA,Σ(λ) = 1] ≤ negl(λ).

We proceed to define the extractability with trusted generation, in which
the private key becomes extractable upon accumulating an adequate quan-
tity of signatures generated by an honest signer. This property can be useful
for applications where the signer wants to achieve deniability.

Definition 9 (Extractability with Trusted Generation). A digital signature
scheme has a (k, δ)-extractable set when the algorithm Extract(·) on input k
distinct message-signature pairs {(mi, σi)}i∈[k] and the public key pk, such
that each σi is a valid signature on mi under pk, outputs the private key sk
with probability δ. That is:

Pr


par ← Setup(1λ), (pk, sk)← KeyGen(par),

mi ←M, s.t. mi ̸= mj , for i, j ∈ [k], i ̸= j,

σi ← Sign(sk,mi),

sk′ ← Extract
(
{(mi, σi)}i∈[k], pk

) : pk = extractPK(sk′)

 = δ

We further define the extractability with untrusted generation, in which
the signatures are generated by an adversary. Such property can be used
to construct spam prevention by revealing the secret key. Intuitively, this
property prevents an adversary from creating more message-signature pairs
than the pre-defined threshold.

Definition 10 (Extractability with Untrusted Generation). A digital sig-
nature scheme has a (k, δ)-extractable set when the algorithm Extract(·) on
input k distinct message-signature pairs {(mi, σi)}i∈[k] and the public key pk
generated by an adversary A, outputs the private key sk with probability δ:

Pr


par ← Setup(1λ), (pk, {(mi, σi)}i∈[k])← A(1λ, par),
s.t. Verify(pk,mi, σi) = 1,

mi ̸= mj , for i, j ∈ [k], i ̸= j,

sk′ ← Extract
(
{(mi, σi)}i∈[k], pk

) : pk = extractPK(sk′)

 = δ

4 DSKE from Hash-Based Signature Schemes

Hash-based signature schemes (such as Lamport [Lam79] and Winternitz
OTS [BDE+11]) leverage the security of one-way functions to construct dig-
ital signatures. In hash-based signature schemes, the private key is often
a list that is derived from a succinct seed, and based on the message, the
signature reveals “partial” information about the private key. In essence,
having a sufficiently large number of signatures allows us to obtain enough
information for the reconstruction of the private key.

7



In this section, we provide DSKE constructions based on the hash-based
signature schemes, denoted as DSKEhash. We first give a generic definition to
capture the private key leakage of hash-based signature schemes and then
provide two DSKE constructions that are based on the Lamport signature
scheme and Winternitz OTS (see Appendix A).

Definition 11 (Leakage of Hash-based Signature). A hash-based signature,
Σhash, consists of the four algorithms Setup, KeyGen, Sign, and Verify as
defined in Definition 7, as well as a leakage algorithm defined as follows:

• S/⊥ ← Leak((m,σ), pk): This leakage algorithm is a deterministic algo-
rithm that takes as input a message-signature pairs(m,σ) and a public key
pk. If Verify(pk,m, σ) = 1, it outputs a list S, containing a fraction of the
private key; Otherwise, it outputs ⊥.

We can then propose a hash signature-based DSKE:

Definition 12 (Hash-based DSKE). A hash-based DSKE scheme, DSKEhash,
consists of the four algorithms, Setup, KeyGen, Sign, and Verify which are
same as a hash-based signature, as well as an Extract algorithm defined as
follows:

• sk/⊥ ← Extract({(mi, σi)}i∈[k], pk): The extraction algorithm is a deter-
ministic algorithm that receives a set of distinct message-signature pairs
{mi, σi}i∈[k], and the public key pk as inputs. For each (mi, σi), this al-

gorithm runs Si ← Leak((mi, σi), pk), and computes sk′ =
⋃k

i=1(Si). The
algorithm outputs the private key sk′ if pk = extractPK(sk′); otherwise, it
outputs ⊥.

We subsequently introduce a definition aimed at quantifying the proba-
bility that an element of the private key is not revealed even after receiving k
hash-based signatures. This definition serves as a tool to compute the prob-
ability of a successful output of the private key by running the Extract()
function.

Definition 13. Given k distinct messages {mi}i∈[k] which are randomly
sampled from M, a key pair (pk, sk) generated by KeyGen() where sk =
(skj)[λ], k signatures {σi}i∈[k] such that each σi is a valid signature on mi

under pk, and an element skj which is a part of the secret key sk, we define

pleakk as the probability that skj is not leaked after running Leak() on all
message-signature pairs {(mi, σi)}i∈[k].

pleakk = Pr


par ← Setup(1λ), (pk, sk)← KeyGen(par)

mi
$←−M, for i ∈ [k]

σi ← Sign(sk,mi), Si ← Leak((mi, σi), pk)

skj ∈ sk

: skj ̸∈
k⋃

i=1

Si



8



The following theorem shows that the lower bound of δ in any hash-based
DSKE scheme can be determined by pleakk .

Theorem 1 (Extractability with Trusted Generation). Given a hash-based
DSKE scheme with a private key of size λ, if the underlying hash function
is modeled as a random oracle, then DSKEhash has a (k, δ)-extractable set,
where: δ ≥ 1− λ · pleakk − negl(λ).

In this paper, we provide two DSKE constructions based on the Lamport
signature scheme and Winternitz OTS, respectively. We will show that, for
a Lamport signature scheme, pleakk is determined by the number of given
signatures (i.e., k), pleakk = 1

2k−1 (see Section 4.1); and for a Winternitz

OTS, pleakk = wk

(w+1)k
, where w are a parameter for the Winternitz OTS

(See Appendix A).

4.1 Lamport Signature-Based Construction

The Lamport signature scheme is parameterized by a preimage-resistant
hash function F and a collision-resistant hash function H. The private key
SK contains 2λ binary strings uniformly sampled from {0, 1}λ, where λ is
the security parameter. The public key PK consists of 2λ binary strings
that are evaluations of F on each element in the private key. To form a
signature σ on a message m, the signer reveals components of the private
key SK, according to the binary representation of H(m) as the signature.
To verify the signature, the verifier uses the binary representation of the
digest, H(m), to validate if each element contained in the signature is the
actual preimage of the public key elements.

Extracting Private Key from Message-Signature Pairs. As shown
in Figure 1, the intuition behind the extracting function is that each signa-
ture σi is a subset of the private key SK. To extract the complete private key,
one needs to compute the union of k different signatures {σi}i∈[k]. Since the
underlying hash function is unpredictable, the probability of successfully ex-
tracting the private key depends on the number of distinct message-signature
pairs (i.e., k). Based on the above intuition, we propose a hash-based con-
struction, DSKElamp, as follows.

Leakage Function for Lamport Signatures. As illustrated in Figure 1,
within a Lamport signature scheme, each signature encapsulates half of the
information about the privacy key SK. The leakage function is employed
to extract the divulged information of the privacy key from the signature.

• Leak((m,σ), PK): Check if Verify(PK,m, σ) = 1; otherwise, output ⊥.
Compute d = H(m) = (di)i∈[λ], and parse σ = (σi)i∈[λ]. For each i ∈
[λ], b ∈ {0, 1}, if di = b, then let Si[b] = σi and Si[1 − b] = ⊥. Output
S = (Si[b])i∈[λ],b∈{0,1}.

9



...

...

...

...
...

...

...

...

...

...

Figure 1: Example of the algorithm Extract for DSKElamp. The elements of
a signature σ are linked via red lines. In this example, the original private
key can be collectively reconstructed from {(mi, σi)}i∈[3].

We the proceed to define the Lamport-Based DSKE.

Lamport-Based DSKE. A Lamport-based DSKE scheme, DSKElamp, in-
cludes:

• Setup(1λ): On input the security parameter λ, the algorithm outputs a
parameter, par, containing a hash function, F : {0, 1}λ → {0, 1}λ, chosen
from a family of preimage-resistant hash functions, and a hash function,
H :M→ {0, 1}λ, chosen from a family of collision-resistant hash function.
The public parameters are implicitly input to all subsequent algorithms.

• KeyGen(par): For each i ∈ [λ], b ∈ {0, 1}, sample ski[b]
$←− {0, 1}λ; out-

put the private key, SK =(ski[b])i∈[λ],b∈{0,1}, and the public key, PK =
(pki[b])i∈[λ],b∈{0,1}, where pki[b] = F (ski[b]).

• Sign(SK,m): Parse SK = (ski[b])i∈[λ],b∈{0,1}, compute d = H(m) =
(di)i∈[λ], and output σ = (ski[di])i∈[λ].

• Verify(PK,m, σ) : Parse PK, σ, and compute d = H(m) = (di)i∈[λ]. For
all i ∈ [λ], if F (σi) ̸= pki[di], return 0. Otherwise, return 1.

• Extract({mj , σj}j∈[k], PK): For each message-signature pair (mj , σj), com-
pute dj = H(mj) = (dji)i∈[λ], and parse σj = (σji)i∈[λ]. For each
j ∈ [k], i ∈ [λ], b ∈ {0, 1}, if ∃dji = b, then let ski[b] = σji. Set
SK = (ski[b])i∈[λ],b∈{0,1} and parse PK = (pki[b])i∈[λ],b∈{0,1}. If ∀i ∈ [λ]
and b ∈ {0, 1}, pki[b] = pki[di] = F (σi) = F (ski[b]), then output SK.
Otherwise, the algorithm outputs ⊥.

DSKElamp satisfies unforgeability and extractability with trusted genera-
tion depending on the number of distinct message-signature pairs. We refer
readers to our detailed proofs in Appendix B.1.

10



Theorem 2 (Existential Unforgeability). DSKElamp is existentially unforge-
able under a 1-time adaptive chosen-message attack, that is,

Pr[SignExp1A,DSKElamp
(λ) = 1] ≤ negl(λ)

Lemma 1. In a Lamport-based DSKE scheme, if H(·) is modeled as a
random oracle, the probability that an element of the private key will not be
leaked after receiving k distinct signatures is pleakk = 1

2k−1 .

By combining Theorem 1 and Lemma 1, we can deduce Theorem 3.

Theorem 3 (DSKElamp Extractability with Trusted Generation). If H(·)
is modeled as a random oracle, then DSKElamp has a (k, δ)-extractable set,

where: δ ≥ 1− λ

2k−1
− negl(λ).

Limitations of DSKEhash. Although the scheme DSKEhash satisfies our def-
inition of a signature scheme with key extraction, it has several inherent
weaknesses: (1) The key and signature sizes are linear with the security
parameter λ, making it inefficient in practice; (2) Extract may not always
output the secret key and depends on the size of the extractable set k 2; (3)
DSKEhash does not satisfy the extractability with an untrusted generation, as
a (malicious) signer can manipulate the hash results of messages. For in-
stance, within DSKElamp, a signer may selectively choose messages to manip-
ulate the hash results: the first bit of the hash results (H(m1), H(m2), . . . )
consistently remains 0, thus ensuring that the private key will never get
extracted.

5 DSKE from Polynomial Commitment Schemes

In this section, we construct a DSKE scheme DSKEpoly from a polynomial
commitment scheme Π without the drawbacks of DSKEhash. The idea is to use
the polynomial f(X) of degree d as the private key with the corresponding
public key being the polynomial commitment. Then, the signature on a
message m is the evaluation of f(X) at point x = H(m), where H is a
collision-resistant hash function. For key extraction, we employ polynomial
interpolation: any set of d + 1 valid message-signature pairs (mi, σi) can
reconstruct f(X).

Definition 14 (Polynomial Commitment-based DSKE). A polynomial commitment-
based DSKE scheme, DSKEpoly, consists of:

2This drawback can be circumvented by requiring signers to add an extra nonce to
k different messages so that the set of these signatures guarantees the existence of the
extractable set.

11



• Setup(1λ, d): On input the security parameter λ and degree d ∈ N, it
runs Π.Setup(1λ, d) to obtain (ck, vk), which allows a signer to commit
to polynomials in F≤d(X). It samples a collision-resistant hash function
H : M → F. The public parameters, par, contain ck, vk, d, and the
specification of H.

• KeyGen(par): It samples f(X)
$←− F≤d(X) as a d-degree polynomial and

computes Π.Com(ck, f(X))→ Cf . Let sk = f(X), pk = Cf
3.

• Sign(sk,m): It parses sk = f(X), computes x = H(m), and runs
Π.Open(ck, Cf , x, f(X))→ (π, y). It outputs the signature σ = (π, y).

• Verify(pk,m, σ): It parses pk = Cf and σ = (π, y), computes x = H(m),
and outputs Π.Check(vk, Cf , x, y, π) ∈ {0, 1}.

• Extract({(mi, σi)}i∈[k], pk): If the number of distinct mi is less than d,
or Verify(pk,mi, σi) = 0 for some i ∈ [k], then return ⊥. Otherwise, it
computes xi = H(mi) and parses σi = (πi, yi), for i ∈ [k], and outputs
f ′(X)← Interpolate({xi, yi}i∈[d+1])

In the following, we show that DSKEpoly can achieve existential unforge-
ability, extractability with both trusted and untrust generation. Moreover,
in this construction, extractPK(·) = Π.Com(·).

Theorem 4 (Existential Unforgeability). Assuming the security of underly-
ing polynomial commitment scheme Π, and that H is a hash function mod-
eled as random oracle, the DSKE scheme DSKEpoly is existentially unforge-
able under d-times adaptive chosen-message attack. That is, Pr[SignExpdA,DSKEpoly

(λ) =
1] ≤ negl(λ).

We refer readers to our detailed proofs of Theorem 4 in Appendix B.2.

Theorem 5 (Extractability with Trusted Generation). Assuming the se-
curity of underlying polynomial commitment scheme Π, the DSKE scheme
DSKEpoly has a (k, 1−negl(λ))-extractable set with trusted generation for any
k ≥ d+ 1. That is,

Pr


par ← Setup(1λ), (pk, sk)← KeyGen(par)

mi ←M, s.t. mi ̸= mj , for i, j ∈ [k], i ̸= j

σi ← Sign(sk,mi), for i ∈ [k]

sk′ ← Extract
(
{(mi, σi)}i∈[k], pk

) : pk = extractPK(sk′)

 = 1− negl(λ)

3For applications that require deniability, the signer can flexibly choose to commit to
any polynomial of degree ℓ ∈ [1, d] and has no incentive to commit to a polynomial of
degree larger than ℓ, as that would cost them the deniability property, as we discuss in
the following sections.

12



Proof. The proof follows from two facts. First, since the key generation is
trusted, the degree of the polynomial must be less than d and the signer
does not commit to polynomials of degree bigger than d. Second, from the
evaluation binding property and since the points (xi, yi) correspond to valid
signatures, we know that yi = f(xi), for some polynomial f(X) ∈ F≤d(X)
and for all i ∈ [k], except with negligible probability. Due to the uniqueness
of polynomial interpolation, we know that any d+ 1 distinct points (xi, yi)
define a unique polynomial ϕ(X) of degree at most d, hence ϕ(X) must be
the same as f(X), hence sk = sk′ with probability 1− negl(λ).

Theorem 6 (Extractability with Untrusted Generation). Assuming the se-
curity of underlying polynomial commitment scheme Π, the DSKE scheme
DSKEpoly has a (k, 1 − negl(λ))-extractable set with untrusted generation for
any k ≥ d+ 1. That is,

Pr


par ← Setup(1λ), (pk, {(mi, σi)}i∈[k])← A(1λ, par),
s.t. Verify(pk,mi, σi) = 1,

mi ̸= mj , for i ̸= j,

sk′ ← Extract
(
{(mi, σi)}i∈[k], pk

) : pk = extractPK(sk′)

 = 1− negl(λ)

Proof. Consider an adversary A capable of submitting a public key pk and k
signatures σ1, . . . , σk on distinct messagesm1, . . . ,mk such that Verify(pk,mi, σi) =
1 for i ∈ [1, k] and k ≥ d + 1. If the private key f(X) cannot be extracted
from their corresponding signatures, we encounter two possible scenarios:

1. The k messages m1, . . . ,mk generate fewer than d+1 inputs for f(X),
implying the existence of some mi and mj (i ̸= j, i, j ∈ [k]) for which
H(mi) = H(mj), which breaks the collision-resistance property of H.

2. A directly breaks the interpolation binding property of PCS: Parse
σi = (πi, yi) and set xi = H(mi) for i ∈ [1, d + 1], we can submit
(pk, {xi, yi, πi}i∈[1,d+1]) which immediately breaks interpolation bind-
ing of the polynomial commitment scheme Π.

Both scenarios occur with negligible probability, leading to δ = 1− negl(λ).

5.1 DSKE from KZG Polynomial Commitment

KZG Polynomial Commitment Scheme. We now revisit the KZG
scheme [KZG10] as a concrete polynomial commitment construction. It
works over a bilinear pairing group G = ⟨e,G,Gt⟩, where G is a group of
prime order p, e is a symmetric pairing e : G × G → Gt, and g and ĥ are
generators of G.

13



• (G, ck, vk)← Setup(1λ, d): The algorithm outputs a representation of the

bilinear group G, commitment key ck = {g, gα, . . . , gαd}, and verification
key vk = ĥα, for an α ∈ Zp.

• Cf ← Com(ck, f(X)): The algorithm computes Cf = gf(α) using ck and
outputs Cf .

• (π, y) ← Open(ck, Cf , x, f(X)): The algorithm computes y = f(x) and

the quotient polynomial q(X) = f(X)−y
X−x , and outputs y and π = Cq =

Com(ck, q(X)).

• 0/1← Check(vk, Cf , x, y, π): The algorithm outputs 1 if e(Cf · g−y, ĥ) =

e(Cq, ĥ
α · ĥ−x), and 0 otherwise.

Kate et. al. [KZG10] proved that KZG scheme satisfies correctness, com-
putational hiding, evaluation binding, polynomial binding properties, pro-
vided the DL and d-SDH assumptions hold in G [KZG10]. Recently, Abra-
ham et. al. [AJM+23] proved that KZG PCS satisfies interpolation binding
property assuming the hardness of the Strong Diffie-Hellman problem in the
Algebraic Group Model.

KZG-based DKSE Scheme. We now show DSKEpoly, a concrete construc-
tion of DSKEpoly from the Πkzg polynomial commitment scheme [KZG10].

• Setup(1λ, d): Run Πkzg.Setup(1
λ, d) to obtain the commitment key, ck =

{g, gα, . . . , gαd}, and the verification key, vk = ĥα ∈ G. It samples a
collision-resistant hash function H :M→ Zp The algorithm returns the
public parameters, par, containing ck, vk, d, and the specification of H.

• KeyGen(1λ): Sample f(X)
$←− Fd(X). The algorithm returns the public

key, pk = Cf = Πkzg.Com(ck, f(X)) = gf(α) ∈ G and the secret key,
sk = f(X).

• Sign(sk,m): Parse sk = f(X), compute x = H(m), and output the
signature σ = (π, y) = Πkzg.Open(ck, Cf , x, f(X)) ∈ G× Zp.

• Verify(pk,m, σ): Parse pk = Cf and σ = (π, y), compute x = H(m), and
output Πkzg.Check(vk, Cf , x, y, π) ∈ {0, 1}.

• Extract({(mi, σi)}i∈[k], pk): As in the general construction, check the va-
lidity of σi, for i ∈ [k], interpolate ϕ(X) from points (xi, yi) output
sk′ = ϕ(X) ∈ Fd(X).

DSKEkzg can satisfy existential unforgeability (see Theorem 4), and the
extractability with trusted generation (see Theorem 5) as well as untrusted
generation (see Theorem 6).

14



6 Applications

In this section, we present two concrete applications of DSKE.

6.1 Non-Attributable Email

Non-Attributable Email. The notion of non-attributable emails [SPG21]
addresses the inherent drawbacks of DKIM by deploying a forward-
forgeable signature (FFS) scheme. An FFS scheme consists of the standard
KeyGen(1λ), Sign(sk,m), and Verify(pk,m, σ) algorithms, and additionally
an Expire(sk, T ) algorithm, that generates expiry information η for a private
key sk, possibly using additional information T , and a Forge(η,m) algo-
rithm, that, given the expiry information of a key, outputs a signature on a
message m. The scheme satisfies the standard correctness and unforgeability
properties, and the forgeability on expiry property.

Definition 15 (Forgeability on Expiry [SPG21]). A digital signature scheme
satisfies the forgeability on expiry property if no PPT adversary can distin-
guish a signature created with private key sk from a signature created with
the expiry information η of sk. Formally, for any m ∈ M and any PPT
distinguisher D, there is a negligible function negl(·), such that for all λ,

Pr


(pk, sk)← KeyGen(1λ), σ0 ← Sign(sk,m)

η ← Expire(sk, T ), σ1 ← Forge(η,m)

b
$← {0, 1}, b′ ← D(σb, η,m, pk)

: b = b′

 ≤ 1

2
+ negl(λ)

The authors in [SPG21] provide two constructions, KeyForge and Time-
forge. Both satisfy the FFS properties by requiring signers either to publish
old private keys or to issue signed updates to a publicly verifiable time-
keeping service, respectively. KeyForge is an FFS scheme where signatures
expire after a predefined delay ∆. The expiry information is the private key
itself, which has to be published by the server every ∆ time. KeyForge uses
a hierarchical tree structure with four levels to manage private keys, where
each level corresponds to distinct timespans, namely, years, months, days,
and minutes. Each leaf represents a private key of a unique 15-minute time
chunk. This structure is realized by a hierarchical identity-based signature
scheme (HIBS), which allows any node to derive the private keys of its chil-
dren. The underlying HIBS enables email servers to keep the expiration
information succinct. Instead of storing all private keys for a day as the ex-
piration information, it is enough to store the private key that corresponds
to the node that encodes that day on the third level.

GroupForge from DSKE. In the following, we show how a DSKE scheme,
such as DSKEpoly, can be used in a non-attributable email protocol [SPG21].
DSKE removes the requirement for email servers to periodically publish

15



Figure 2: An example of GroupForge for hT = 2 and between the interval
[t, t+2hT ·∆]. In this example, {(mi, σi)}i∈[2] can potentially act as the deni-
able group (see Section 8 for detailed discussions) for the message-signature
pair (m3, σ3), and {(mi, σi)}i∈{4,5} can act as the deniable group for the
message-signature pair (m6, σ6).

expiration information. Looking ahead, we introduce GroupForge, an FFS
scheme that builds on top of a DSKE and achieves the same properties
as KeyForge, while it does not require the email servers to publish any
expiry information, i.e., algorithm Expire() requires only information already
published by the servers.

GroupForge uses a DSKE scheme ΣDSKE with extractable sets of size k,
a collision-resistant hash function H(), and a clock Time(·) that returns the
current time. GroupForge works as follows.

• KeyGen(1λ,∆, hT , t): On input the security parameter λ, the length ∆,
the height of the Merkle tree hT ∈ N, and the starting time t, it in-
vokes ΣDSKE.Setup(1

λ), and generates 2hT key pairs {(pki, ski)}i∈[2hT ]

using the algorithm ΣDSKE.KeyGen(par). The algorithm then uses the
hash function H() to construct a Merkle tree from {pki}i∈[2hT ]. Let R
be the root of this Merkle tree. Then it sets PK = (R,∆, hT , t) and
SK = (R,∆, hT , t, {ski}i∈[2hT ]), and outputs (SK,PK).

• Sign(SK,m): On input the key, SK = (R,∆, hT , t, {ski}i∈[2hT ]), it ob-

tains the current time t′ ← Time(), and computes i = ⌊(t′ − t)/∆⌋ (the
current time chunk ⌊(t′ − t)/∆⌋). It invokes s = ΣDSKE.Sign(ski,m), the
authenticity proof proofi for the path from leafi to the root R, and outputs
the signature σ = (s, pki, leafi, proofi).

• Verify(PK,m, σ): On input the public key PK, the message m, and the
signature σ, it parses PK = (R,∆, hT , t), and σ = (s, pki, leafi, proofi),
obtains the current time t′ ← Time(), and computes i′ = ⌊(t′ − t)/∆⌋.
If i ̸= i′ (i.e., messages arrived late), then returns 0. It validates
proofi starting from leafi; if invalid, it returns 0. Otherwise, returns
ΣDSKE.Verify(pki,m, s).

16



• Expire(PK, {(mj , σj)}j∈[k]): On input the public key PK and k message-
signature pairs {(mj , σj)}j∈[k], the algorithm checks that the messages are
pairwise different, i.e., for all j1, j2 ∈ [k], mj1 ̸= mj2 , that all signatures are
valid, i.e., for all j ∈ [k], Verify(PK,mj , σj) = 1 , and that all signatures
are created in the same time chunk, i.e., there exists i ∈ [2hT ] such that
for all j ∈ [k], σj = (sj , pki, leafi, proofi). If the conditions do not hold, it
returns ⊥. Otherwise, it calls ΣDSKE.Extract({(mj , σj)}j∈[k], pki). If this
call returns ⊥, then Expire() also returns ⊥. If it returns an extracted key
ski, then Expire() returns the expiry information info = (leafi, proofi, ski).

• Forge(PK,m, info): On input the public key PK, a message m, and
the expiry information info = (leafi, proofi, ski), for some i ∈ [2hT ], the
algorithm computes s = ΣDSKE.Sign(ski,m) and returns the signature
σ = (s, pki, leafi, proofi), where pki = extractPK(ski) is the public key of
leafi.

Figure 2 provides a pictorial example of how GroupForge works.
GroupForge satisfies the correctness, unforgeability, and forgeability on ex-
piry properties of an FFS scheme (see Appendix B.3).

Remark. A close notion to FSS is the concept of short-lived signa-
tures [ABC22], where the signature becomes non-attributable after some
time without requiring further actions from the signer like releasing expiry
information. We later in Section 8 discuss that GroupForge can also work
as a short-lived signature.

6.2 Rate-Limiting Nullifier

Rate Limiting Nullifier. A Rate-Limiting Nullifier (RLN) [Pri24] is a
scheme aimed at restricting the number of user actions, thereby facilitating a
robust mechanism for spam prevention. This approach has been extensively
discussed in a range of real-world applications [Bla21b, BB21]. Generally,
RLN achieves spam deterrence by either increasing the difficulty of dupli-
cating identities or disclosing of a user’s private key once a certain number
of actions are exceeded. In the following, we propose a RLN construction
that is directly derived from our DSKEpoly scheme. The formal study and
construction of secure RLN schemes has, to the best of our knowledge, not
appeared in academic literature before.

RLN from DSKEpoly. A RLN scheme typically consists of four parts, setup,
registration, interaction, and slashing, run between two types of participants,
a user U and a server T . Our DSKEpoly-based RLN works as follows:

• Setup(1λ, d,U , T ): On input the security parameter λ and degree d ∈ N,
it runs DSKEpoly.Setup(1

λ, d) to obtain (ck, vk), which allows a signer to
commit to polynomials in F≤d(X). It samples a collision-resistant hash

17



function h :M→ F. The public parameters par contain ck, vk, d, and h.
The parameters are publicly known for the user U and the server T .

• Registration(1λ,U , T ): The user U runs DSKEpoly.KeyGen(1
λ, d) to obtain

the private key skU = f(X) and the public key pkU = Cf . The public
key pkU is registered and stored on the server T . T initializes a counter
MsgNumU = 0 to record the number of messages signed by U .

• Interaction(m,U , T ): The interaction algorithm is run between U and T
in order to sign and verify a message m. User U parses sk = f(X), com-
putes x = h(m) and the signature σ = DSKEpoly.Open(ck, Cf , x, f(X)) =
(π, y), and sends σ to the server T . Upon receiving σ, server
T parses the user’s pkU = Cf and σ = (π, y), computes x =
h(m), and outputs DSKEpoly.Check(vk, Cf , x, y, π) ∈ {0, 1}. If
DSKEpoly.Check(vk, Cf , x, y, π) = 1, then T increases the counter
MsgNumU and stores the message-signature pair (m,σ).

• Slashing({(mi, σi)}i∈[MsgNum], pkU , T ): If server T has received more than
d message-signature pairs from the user U , i.e., MsgNum > d, then T runs
the algorithm Extract({(mi, σi)}i∈[MsgNum], pkU ) of DSKEkzg to extract skU .
Subsequently, T publishes skU and removes U from the system.

Spam Prevention in DSKEpoly-based RLN. The key extraction property
of a DSKEploy (see Theorem 5) empowers the server to extract the private
key of a user who issues more than d messages with their signatures. Here,
d serves as a predefined parameter, influencing the polynomial’s degree that
the user can select. Consequently, in a DSKEpoly-based RLN, a user is pre-
vented from generating excessive spam (exceeding d messages) because their
private key would be publicly disclosed, leading to their expulsion from the
system.

Using RLN in Anonymous Setting. As discussed in existing
works [Bla21b, Res21, Bla21a, BB21], we can utilize non-interactive zero-
knowledge proofs to hide the public key pkU of a user U , thereby achieving
anonymity for an RLN scheme. Nevertheless, a significant challenge persists
in obtaining the extractable set, which consists of signatures from the same
user. The full anonymity provided by zero-knowledge proofs leaks nothing
about the signer, preventing anyone to obtain this set. A feasible approach
might be to weaken the full anonymity to the linkable anonymity by in-
cluding a linkable tag into the signed message. It allows the server to link
the signatures and track the number of messages originating from the same
user (without revealing the public key). Incorporating these techniques for
privacy protection into our DSKEpoly-enhanced RLN represents a promising
direction for future work.

18



Table 1: Performance of DSKElamp and DSKEkzg. Note that the probability
of extracting the key in DSKElamp is overwhelming in k, so the actual size of
the extractable group can be smaller than k = 64.

Scheme Group Size Key Generation Signing Verification Extraction

DSKElamp(SHA256) k = 64 451.583µs 17.625µs 160.458µs 45.083µs

DSKEkzg(BLS12-377)

k = 16 2.795ms 2.425ms 4.949ms 1.785ms
k = 32 2.825ms 2.523ms 6.123ms 7.813ms
k = 64 2.852ms 2.756ms 7.202ms 35.341ms
k = 128 3.624ms 3.404ms 8.045ms 166.433ms

Table 2: Performance of GroupForge Constructions with ∆ = 0.5 hour.

Scheme
Parameters:

Tree height (Duration)
Key Generation Signing Verification

GroupForgehash
(SHA256)

hT = 14 (0.93 years) 7.407s 21.791µs 176.541µs
hT = 15 (1.87 years) 14.815s 34.708µs 177.416µs
hT = 16 (3.74 years) 29.631s 41.291µs 178.083µs
hT = 17 (7.48 years) 59.262s 45.916µs 179.374µs

GroupForgekzg
(SHA256,BLS12-377, k = 32)

hT = 14 (0.93 years) 46.294s 1.554ms 6.139ms
hT = 15 (1.87 years) 92.588s 1.591ms 6.140ms
hT = 16 (3.74 years) 185.175s 1.611ms 6.141ms
hT = 17 (7.48 years) 370.350s 1.722ms 6.143ms

7 Evaluation

In this section, we evaluate the performance of hash-based and polynomial
commitment-based DSKE, as well as the performance of GroupForge.

Testbed. We evaluate our schemes on a macOS Monterey machine with an
Apple M1 chip (8-core, 3.2 GHz), 8 GB of RAM.

DSKE Constructions. We have implemented prototypes of our proposed
constructions of DSKElamp and DSKEpoly in Rust. For our DSKElamp, we use
the SHA-256 implementation. For DSKEpoly, we used the KZG polynomial
commitment implementation using the curve BLS12-377 from arkworks li-
brary 4.

Table 1 provides a comprehensive overview of the performance metrics
for both DSKElamp and DSKEpoly. Remarkably, the execution time of functions
within DSKElamp consistently remains below 1ms, indicating efficient pro-
cessing across various DSKElamp functions. The extraction time of DSKEpoly
appears as approximately a quadratic function of the group size k. This
is because the complexity of ϕ(X) in DSKEpoly increases quadratically as k
grows.

GroupForge Constructions. We also implement two GroupForge con-
structions based on DSKElamp and DSKEpoly respectively. We leverage
the Merkle tree library using SHA-256 from arkworks 5 to construct
our GroupForge. We implement GroupForgehash with DSKElamp, and

4https://github.com/arkworks-rs/poly-commit
5https://github.com/arkworks-rs/crypto-primitives

19

https://github.com/arkworks-rs/poly-commit
https://github.com/arkworks-rs/crypto-primitives


Figure 3: An example of GroupForge using FSS. The group {(mi, σi)}i∈{4,5}
can act as a deniable group that can reconstruct the private key to deny all
message-signature pairs in the past, {(mi, σi)}i∈[3].

GroupForgepoly with DSKEpoly using BLS12-377 curve and the group size
k = 32. Table 2 summarizes the performance of GroupForge construc-
tions. We evaluate our constructions with Merkle tree heights of 14, 15, 16,
and 17, which correspond to a duration of 0.93, 1.87, 3.74 and 7.48 years
respectively (given a time chunk of ∆ = 0.5 hour). For both GroupForgehash
and GroupForgepoly, the most expensive computation is the key generation.

This is because we need to generate 2hT key pairs, where hT is the Merkle
tree height.

8 Discussion

In this part, we discuss relevant properties and examine potential future
directions and improvements for our constructions.

GroupForge with Forward-secure Signature Schemes. Forward-
secure signature schemes (FSS) 6 [BM99] allow signers to derive future keys
from past keys while preventing users from deriving past keys from future
keys. This property of FSS can be combined with GroupForge to demon-
strate that if there is a deniable group at some point, the same group can be
used as a deniable proof for all message-signature pairs before that point. In
particular, to achieve this property, the signer can produce several FSS key
pairs from a master private key, and use them in reverse order in the leaves
of the Merkle hash tree. For instance, a private key ski used in the interval
[ti, ti +∆] can produce all previous private keys skj used before ti. Hence,
it is not difficult to see that, if a deniable group exists at some time t′, the
same group can derive all private keys before t′. Figure 3 gives a high-level
example of how FSS can help improve GroupForge.

GroupForge as a Short-lived Signature. There is a subtle difference
between forward-forgeable signature (FFS) scheme and a short-lived signa-
ture scheme. While FFS provides non-attributability by selective release of
some expiry information, short-lived signatures automatically become non-
attributable after some time without further action. GroupForge, proposed
in Section 6.1, can essentially offer both types of functionality. In other

6FSS is not to be confused with forward-forgeable signatures

20



words, as the deniability property of GroupForge relies on the number of
generated signatures, it essentially can be considered a short-lived signature
in scenarios where the signer is supposed to generate a certain number of sig-
natures, achieving deniability for free without requiring any trusted service
or computing costly VDFs. As mentioned, GroupForge can also be modeled
as a forward-forgeable signature, achieving forgeability without constantly
publishing key materials that are problematic in practice due to unreliable
distribution [SPG21].

Trusted Setup. The KZG scheme used in DSKEpoly requires a trusted setup
to generate the public parameters. Although the scheme can leverage a
trusted third party to run the setup, such a reliance on a trusted party is typ-
ically not welcome in various settings. To remove this trusted assumption,
practitioners and the academic community have developed practical solu-
tions to securely generate these parameters, knows as ceremony [NRBB22].
Also, one may deploy polynomial commitment schemes that do not require
a trusted setup, such as the one constructed from Bulletproofs [BBB+18].

Time-Agnostic Forgeability. Although not explicitly mentioned, mak-
ing a synchronous assumption on the communication is required to ensure
parties (i.e., group of size k) receive their signatures in the respective time
chuck. Moreover, the proper operation of the system relies on parties hav-
ing access to a local clock that advances at the same pace. The original
work of [SPG21] requires the stronger assumption of a shared global clock.
However, we observe that the forgeability aspect of the DSKE is generally
independent of the notion of time as it comes from the availability of a suffi-
cient number of signatures for key extraction. This essentially opens up the
door to use DSKE for adding forgeability property in settings where reliance
on time is not desirable.

Compacting the Keys and Signatures. We can also consider extend-
ing DSKEpoly to multi-signature schemes, where a group of individuals, each
holding their own key pairs, collectively sign a message and the resulting sig-
nature is verifiable under the respective set of public keys. In recent years,
there has been a surge of interest in multi-signature schemes that support an
aggregation property for the public key and the signature, aiming to reduce
the size of blockchains [BDN18]. Leveraging the homomorphic property of
the underlying KZG polynomial commitment scheme, these key and signa-
ture aggregation techniques are also applicable to DSKEkzg, offering a high
level of space efficiency.

Reduce the Size of the Private Key. The private key in DSKEpoly,
i.e., the polynomial f(X), contains d elements of F, i.e., the coefficients
f0, . . . , fd−1. A possible optimization is to employ a pseudorandom function
(PRF) F : {0, 1}λ × Z → F and pick a k ∈ {0, 1}λ as the private key. The
coefficients are derived as fi = F (k, i), for i ∈ 0, . . . , d − 1. In the security
proof the challenger now chooses k uniformly at random and uses the PRF to

21



Table 3: Comparison of signature schemes with deniability.

Scheme
Without Requiring
Future Actions

(e.g., Publishing Keys)

Without Requiring
External Services

(e.g., Random Beacon)

Without
Requiring

VDF

KeyForge [SPG21] ✗ ✓ ✓

TimeForge [SPG21] ✓ ✗ ✓

Short-lived signature [ABC22] ✓ ✗ ✗

GroupForgehash ✓ ✓ ✓
(based on DSKEhash)
GroupForgepoly ✓ ✓ ✓

(based on DSKEpoly)

derive f(X). From the security definition of PRF, f(X) still looks random
to the simulator B. Observe, however, that Extract() would still return all
d coefficients. Similarly, the KeyGen algorithm in GroupForge generates 2h

private keys for the underlying ΣDSKE scheme, i.e., {ski}i∈[2h], which are

then stored in the private key SK. Using again a PRF F ′ : {0, 1}λ×Z→ Z
and a private key k′ ∈ {0, 1}λ we can generate them as ski = F ′(k′, i),
for i ∈ 1, . . . , 2h, and store only k′ in SK. As long as 2h is polynomial in
λ the outputs of F ′ are pseudorandom and security holds. We leave the
formalization of these optimizations as future work.

Further Applications. DSKE can facilitate more applications where the
need for authenticity is momentary and signers desire long-term deniability.
Such examples are electronic voting and monetary donations. It has been ar-
gued that, even if future adversaries cannot go back to change the integrity or
the result of a finished election, the privacy requirements of voters in the face
of retaliation are everlasting [GCG+19]. Similarly, leaked donation records
have reportedly caused individuals to be targeted and threatened [Ott22],
and transaction deniability might be desirable in such scenarios as well.

9 Related Work

DAPS. Designing digital signature scheme with a key-extraction property
has already been explored in the context of double authentication prevent-
ing signatures (DAPS). DAPS are genuinely designed with the purpose of
double or multiple authentication prevention [PS14, RKS, BPS17, DRS18],
and they particularly aim at messages of special form, namely m = (a, p),
where a is an address and p is a payload. In case a signer signs two (or
more) messages with the same address but different payloads, its private
key is leaked. However, DSKE essentially provides key extractability as an
inherent feature without making assumptions about the type of message,
increasing its applicability. In particular, the key extraction in our poly-
nomial commitment-based DSKE (i.e., DSKEpoly) directly comes from the
polynomial interpolation theorem. Note that one major downside of many
DAPS schemes is their limited address space, i.e., exponentially large ad-
dress space is not supported. Moreover, a notable difference between DSKE

22



and DAPS is that the former has a sole design similar to the typical signa-
ture scheme in the literature like BLS [BLS01], while the latter has a hybrid
design, containing different components. For instance, DAPS of [BPS17]
builds on trapdoor identification schemes and that of [DRS18] involves en-
cryption scheme and secret sharing. This, in turn, results in DAPS having
considerably larger key pairs and also signature sizes compared to the normal
signatures [DRS18].

GroupForge. Specter, Park, and Green formally defined the notion of
forward-forgeable signature (FFS) [SPG21] and showed how FFS can be used
to achieve deniability in the email protocol. The main idea of their scheme
is to make the signatures become forgeable after a fixed delay. They present
two concrete constructions: KeyForge and TimeForge. In the KeyForge
construction, the email server needs to periodically publish expired keys to
claim deniability over sent emails, and in the TimeForge construction, the
signers need to rely on a trusted publicly verifiable time-keeping (PVTK)
service to provide them with a verifiable clock time proof. The forgeability
comes from the possibility of obtaining a valid proof by querying the PVTK
service after a fixed delay.

Arun, Bonneau, and Clark proposed a similar notion to FFS called short-
lived signatures [ABC22]. The main idea of their work is to leverage a
disjunctive statement to achieve deniability, building up on the previous
efforts in the literature, e.g., designated verifier proofs [JSI96], proofs-of-
work-or-knowledge (PoWorKs) [BKZZ16], ring signatures [RST01], and one-
out-of-many proofs [GK15]. In particular, the construction in Arun et al.’s
work [ABC22] deploys verifiable delay functions [BBBF18, Wes19] as its
main building block together with a (trusted) randomness beacon. They use
a statement of the form: I know the witness, x (e.g., private key), or someone
solved a VDF on a beacon value derived from the trusted beacon before a
time, t. Hence, their construction offers deniability to the prover because
anyone can produce a valid proof by evaluating the VDF through sequential
computation. Moreover, a recent analysis report [LMPR23] of the VDF
implementation shows that VDFs in practice, such as Minroot [KMT22],
the VDF for the Ethereum blockchain, might be prone to various potential
attacks, which have yet not been explored thoroughly. This work offers a
simpler approach without requiring costly VDF evaluations and a trusted
random beacon. We provide a comparison of our work and state-of-the-art
signature schemes with deniability in Table 3.

Rate-Limiting Nullifier. A Rate-Limiting Nullifier (RLN) [Pri24] is a
mechanism designed to restrict users in the number of actions within a sys-
tem, thereby facilitating an effective spam prevention mechanism. RLN can
be used in anonymous voting schemes [Bla21b], privacy-preserving P2P net-
works [Res21], and decentralized blockchain applications [Bla21a]. RLN has
been extensively discussed by the blockchain community and implemented

23



in practice [Lim23]. However, to our knowledge, no academic initiative has
been undertaken to formally propose and establish secure RLN construc-
tions as we do in this work with DSKE. In addition, it is feasible to extend
DSKE-based RLN to an anonymous setting by employing non-interactive
zero-knowledge proofs.

10 Conclusion

This paper introduces DSKE, a novel signature scheme featuring key extrac-
tion capabilities. We present concrete DSKE constructions based on the
hash-based signature schemes and polynomial commitment schemes. We
provide formal proof of security for our constructions, demonstrating that
signers can consistently achieve deniability by presenting a set of signatures
utilized to regenerate (old) private keys. Furthermore, we illustrate how
DSKE can serve as the foundation for constructing both GroupForge signa-
tures and RLN schemes. We posit that DSKE holds promise for application
in other protocols that require short-term authenticity.

References

[ABC22] Arasu Arun, Joseph Bonneau, and Jeremy Clark. Short-lived
zero-knowledge proofs and signatures. In ASIACRYPT 2022.
Springer, 2022.

[ACD+07] E Allman, Jon Callas, M Delany, Miles Libbey, J Fenton, and
M Thomas. Domainkeys identified mail (dkim) signatures. Tech-
nical report, RFC 4871, May, 2007.

[AJM+23] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meikle-
john, and Gilad Stern. Bingo: Adaptivity and asynchrony in
verifiable secret sharing and distributed key generation. In Ad-
vances in Cryptology – CRYPTO, 2023.

[BB21] Blagoj and WhiteHat Barry. Decentralised cloudflare - using rln
and rich user identities, 2021. Available at: https://ethresea
r.ch/t/decentralised-cloudflare-using-rln-and-rich-u

ser-identities/10774.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. In 2018 IEEE symposium on
security and privacy (SP), pages 315–334. IEEE, 2018.

24

https://ethresear.ch/t/decentralised-cloudflare-using-rln-and-rich-user-identities/10774
https://ethresear.ch/t/decentralised-cloudflare-using-rln-and-rich-user-identities/10774
https://ethresear.ch/t/decentralised-cloudflare-using-rln-and-rich-user-identities/10774


[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch.
Verifiable delay functions. In Annual international cryptology
conference, 2018.

[BCG+23] Gabrielle Beck, Arka Rai Choudhuri, Matthew Green, Abhishek
Jain, and Pratyush Ranjan Tiwari. Time-deniable signatures.
Proceedings on Privacy Enhancing Technologies, 2023.

[BDE+11] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas
Hülsing, and Markus Rückert. On the security of the winternitz
one-time signature scheme. In AFRICACRYPT 2011. Springer,
2011.

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing.
XMSS - A Practical Forward Secure Signature Scheme Based
on Minimal Security Assumptions. In Bo-Yin Yang, editor,
Post-Quantum Cryptography, pages 117–129, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-
signatures for smaller blockchains. In International Conference
on the Theory and Application of Cryptology and Information
Security, pages 435–464. Springer, 2018.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record
communication, or, why not to use pgp. In Proceedings of the
2004 ACM workshop on Privacy in the electronic society, pages
77–84, 2004.

[BKZZ16] Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and
Bingsheng Zhang. Indistinguishable proofs of work or knowledge.
In International Conference on the Theory and Application of
Cryptology and Information Security, pages 902–933. Springer,
2016.

[Bla21a] Blagoj. Private message sharing for eth2 validators, 2021. Avail-
able at: https://ethresear.ch/t/private-message-shari

ng-for-eth2-validators/10664.

[Bla21b] Blagoj. Rate limiting nullifier: A spam-protection mechanism
for anonymous environments, 2021. Available at: https://medi
um.com/privacy-scaling-explorations/rate-limiting-n

ullifier-a-spam-protection-mechanism-for-anonymous-e

nvironments-bbe4006a57d.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures
from the weil pairing. In International conference on the theory

25

https://ethresear.ch/t/private-message-sharing-for-eth2-validators/10664
https://ethresear.ch/t/private-message-sharing-for-eth2-validators/10664
https://medium.com/privacy-scaling-explorations/rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d
https://medium.com/privacy-scaling-explorations/rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d
https://medium.com/privacy-scaling-explorations/rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d
https://medium.com/privacy-scaling-explorations/rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d


and application of cryptology and information security, pages
514–532. Springer, 2001.

[Bly05] Stephen E Blythe. Digital signature law of the united nations,
european union, united kingdom and united states: Promotion of
growth in e-commerce with enhanced security. Richmond Jour-
nal of Law & Technology, 11(2):6, 2005.

[BM99] Mihir Bellare and Sara K Miner. A forward-secure digital sig-
nature scheme. In Annual international cryptology conference,
pages 431–448. Springer, 1999.

[BPS17] Mihir Bellare, Bertram Poettering, and Douglas Stebila. De-
terring certificate subversion: efficient double-authentication-
preventing signatures. In Public-Key Cryptography–PKC 2017,
2017.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied
cryptography. Draft 0.5, 2020.

[DRS18] David Derler, Sebastian Ramacher, and Daniel Slamanig. Short
double-and n-times-authentication-preventing signatures from
ecdsa and more. In 2018 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 273–287. IEEE, 2018.

[GBH17] Leon Groot Bruinderink and Andreas Hülsing. “oops, i did it
again”–security of one-time signatures under two-message at-
tacks. In International Conference on Selected Areas in Cryp-
tography, pages 299–322. Springer, 2017.

[GCG+19] Huangyi Ge, Sze Yiu Chau, Victor E Gonsalves, Huian Li, Tian-
hao Wang, Xukai Zou, and Ninghui Li. Koinonia: verifiable
e-voting with long-term privacy. In Proceedings of the 35th An-
nual Computer Security Applications Conference, pages 270–285,
2019.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs:
Or how to leak a secret and spend a coin. In Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 253–280. Springer, 2015.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digi-
tal signature scheme secure against adaptive chosen-message at-
tacks. SIAM Journal on computing, 17(2):281–308, 1988.

[Gre20] Matthew Green. Ok Google: please publish your DKIM secret
keys, 2020. https://blog.cryptographyengineering.com/2

26

https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/
https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/
https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/


020/11/16/ok-google-please-publish-your-dkim-secre

t-keys/.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Des-
ignated verifier proofs and their applications. In International
Conference on the Theory and Applications of Cryptographic
Techniques, pages 143–154. Springer, 1996.

[Kar19] Nikolaos Karanikolas. Digital signature legality in different ju-
risdictions: Legally binding issues. 2019.

[KMT22] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Ti-
wari. Minroot: Candidate sequential function for ethereum vdf.
Cryptology ePrint Archive, 2022.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their applica-
tions. In Advances in Cryptology - ASIACRYPT 2010 - 16th In-
ternational Conference on the Theory and Application of Cryp-
tology and Information Security, volume 6477, pages 177–194.
Springer, 2010.

[Lam79] Leslie Lamport. Constructing digital signatures from a one way
function. 1979.

[Lim23] Wanseob Lim. Rln on kzg polynomial commitment scheme, 2023.
Available at: https://zkresear.ch/t/rln-on-kzg-polynom

ial-commitment-scheme-cross-posted/114.

[LMPR23] Gaetan Leurent, Bart Mennink, Krzysztof Pietrzak, and Vincent
Rijmen. Analysis of minroot: Public report, 2023. Available at:
https://crypto.ethereum.org/events/minrootanalysis20

23.pdf.

[Mas16] Stephen Mason. Electronic signatures in law. University of Lon-
don Press, 2016.

[Mer89] Ralph C Merkle. A certified digital signature. In Conference
on the Theory and Application of Cryptology, pages 218–238.
Springer, 1989.

[NRBB22] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan
Boneh. Powers-of-tau to the people: Decentralizing setup cere-
monies. Cryptology ePrint Archive, 2022.

[Ott22] Ottawa Citizen. Threats close stella luna gelato café after owner’s
name appears in givesendgo data leak, 2022. https://ottawa

citizen.com/news/local-news/threats-close-stella-lun

27

https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/
https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/
https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/
https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/
https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/
https://zkresear.ch/t/rln-on-kzg-polynomial-commitment-scheme-cross-posted/114
https://zkresear.ch/t/rln-on-kzg-polynomial-commitment-scheme-cross-posted/114
https://crypto.ethereum.org/events/minrootanalysis2023.pdf
https://crypto.ethereum.org/events/minrootanalysis2023.pdf
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak


a-gelato-cafe-after-owners-name-appears-in-givesendg

o-data-leak.

[Pri24] Privacy and Scaling Explorations team, Ethereum Foundation.
Rate-limiting nullifier, 2024. Available at: https://rate-lim

iting-nullifier.github.io/rln-docs/rln.html.

[PS14] Bertram Poettering and Douglas Stebila. Double-authentication-
preventing signatures. In Computer Security-ESORICS 2014:
19th European Symposium on Research in Computer Security,
Wroclaw, Poland, September 7-11, 2014. Proceedings, Part I 19,
pages 436–453. Springer, 2014.

[Res21] Vac Research. Privacy-preserving p2p economic spam protection
in waku v2, 2021. Available at: https://vac.dev/rlog/rln-r
elay/.

[RKS] Tim Ruffing, Aniket Kate, and Dominique Schröder. Liar, liar,
coins on fire! penalizing equivocation by loss of bitcoins. In CCS
2015.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-
function basics: Definitions, implications, and separations for
preimage resistance, second-preimage resistance, and collision re-
sistance. In International workshop on fast software encryption,
pages 371–388. Springer, 2004.

[RST01] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a
secret. In International conference on the theory and application
of cryptology and information security, pages 552–565. Springer,
2001.

[SPG21] Michael A Specter, Sunoo Park, and Matthew Green.
KeyForge:non-attributable email from Forward-Forgeable Signa-
tures. In 30th USENIX Security Symposium (USENIX Security
21), pages 1755–1773, 2021.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, 2019.

A Winternitz OTS-Based Construction

In the following, we demonstrate how hash-based Winternitz can also be a
good candidate for DSKE construction.

28

https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://rate-limiting-nullifier.github.io/rln-docs/rln.html
https://rate-limiting-nullifier.github.io/rln-docs/rln.html
https://vac.dev/rlog/rln-relay/
https://vac.dev/rlog/rln-relay/


Domination Free Function. A domination free function P :M→ Iλw de-
termines the existential unforgeability and extractable set of our Winternitz
Hash-based DSKEwots. We use the definition of the domination free function
construction from [BS20].

Given a message m ∈ M and a hash function H : M → {0, 1}ν , we
compute H(m) and convert it to an integer in [0, 2ν). Given the public
parameter w, let λ0 be the smallest number satisfying 2ν ≤ (w + 1)λ0 , set
λ1 = logw+1(w · λ0) + 1 and λ = λ0 + λ1. Given an input message m, the
function P (m) works as follows:

• Compute H(m), convert H(m) to a λ0-digit number in base (w + 1):
(s1, · · · , sλ0).

• Compute the checksum c = w · λ0 − (s1 + · · ·+ sλ0).

• Convert c to a λ1-digit number in base (w + 1): (c1, · · · , cλ1).

• Output (s1, · · · , sλ0 , c1, · · · , cλ1).

In this case, the function P is domination free [BS20] and can map the
message m to a vector P (m) = (s1, · · · , sλ0 , c1, · · · , cλ1) ∈ Iλw.

Winternitz-Based DSKE. The Winternitz signature scheme is another
hash-based signature scheme, that allows a trade-off between computation
and the size of the signature. Winternitz-based DSKE, DSKEwots, consists of
the following algorithms:

• Setup(1λ): On input the security parameter λ, the algorithm outputs the
public parameter, par, which contains: (1) a hash function, f : {0, 1}λ →
{0, 1}λ, chosen from a family of preimage-resistant hash functions, (2)
a hash function, H : M → {0, 1}ν , chosen from a family of collision-
resistant hash function (3) a parameter integer w, and (4) a domination
free function P parameterized by g and w, which maps a message m to a
vector s⃗ of length λ, and each component of s is a number in {0, · · · , w},
namely P :M → Iλw, where Iλw = ({0, . . . , w})λ. The public parameters
are implicitly input to all subsequent algorithms.

• KeyGen(par): For each i ∈ [λ], sample ski
$←− {0, 1}λ; compute pki =

f (w)(ski); and output the private key, SK =(ski)i∈[λ], and the public key,
PK = (pki)i∈[λ].

• Sign(SK,m): Parse SK = (ski)i∈[λ]; compute s⃗ = P (m) = (s1, · · · , sλ) ∈
Iλw; and output σ = (f (s1)(sk1), · · · , f (sλ)(skλ)).

• Verify(PK,m, σ) : Parse PK = (pki)i∈[λ], σ = (σi)i∈[λ], and compute

s⃗ = P (m) = (s1, · · · , sλ) ∈ Iλw. For all i ∈ [λ], if f (w−si)(σi) ̸= pki, return
0. Otherwise, return 1.

29



... ... ...

...

...

...

...

... ... ...

...

...

...

...

... ... ...

...

...

...

...

...

...

Figure 4: Example of the algorithm Extract for DSKEwtos. The elements of
a signature σ are linked via red lines. In this example, the original private
key can be collectively reconstructed from {(mi, σi)}i∈[3].

• Extract({mj , σj}j∈[k], PK): For each message-signature pair (mj , σj),
compute s⃗j = P (mj) = (sji)i∈[λ], and parse σj = (σji)i∈[λ]. For each
j ∈ [k], i ∈ [λ], if ∃sji = 0, then let ski = σji. Set SK = (ski)i∈[λ] and

parse PK = (pki)i∈[λ]. If ∀i ∈ [λ], pki = f (w−si)(ski), then output SK.
Otherwise, output ⊥.

Leakage Function for Winternitz Signatures. As illustrated in Fig-
ure 4, given a Winternitz signature σ = (σ1, · · · , σλ), the Leak() function
of Winternitz signature will output all the signature elements (σi)i that are
equal to the corresponding elements in the private key list, which satisfy
f (w)(σi) = pki.

• Leak((m,σ), PK): Check if Verify(PK,m, σ) = 1; otherwise, output ⊥.
Compute s⃗ = P (m) = (si)i∈[λ], and parse σ = (σi)i∈[λ]. For each i ∈ [λ],
if si = 0, then let Si = σi; otherwise, let Si = ⊥. Output S = (Si)i∈[λ].

The intuition of the domination free function is to ensure that if a forger
can obtain a valid signature for m′ from one signature for m, domination
property of P ensures that there exists one element s′i in P (m′) that is
smaller than si ∈ P (m). Therefore, it implies the fact that such a forger
can be used to invert the preimage-resistant hash function f .

Security Analysis. DSKEwots satisfies unforgeability and extractability with
trusted generation depending on the number of distinct message-signature
pairs.

Theorem 7 (Existential Unforgeability). DSKEwots is existentially unforge-
able under a 1-time adaptive chosen-message attack, that is,

Pr[SignExp1A,DSKEwots(λ) = 1] ≤ negl(λ)

30



In the following analysis for the extractable set, we assume that the
checksum computed by P is independent and uniformly random. This is
not the case, because there is a dependency between the checksum elements
and other elements in the vector s computed by P . However, as mentioned
in [GBH17], without such an assumption, the analysis will become signifi-
cantly more complex.

Lemma 2. In a Winternitz-based DSKE scheme, if H(·) is modeled as a
random oracle and the domination-free function P (·) outputs a uniformly
random vector in Iλw, then the probability that an element of the private key

will not be leaked after receiving k signatures is pleakk = wk

(w+1)k
.

By combining Theorem 1 and Lemma 2, we can deduce Theorem 8.

Theorem 8 (DSKEwots Extractability with Trusted Generation). If H(·) is
modeled as a random oracle and the domination free function P (·) outputs a
uniformly random vector in Iλw, then DSKEwots has an (k, δ)-extractable set,

where: δ ≥ 1− λ·wk

(w+1)k
− negl(λ).

B Missing Proofs

B.1 Proofs of Hashed-Based DSKE

In the following, we prove that DSKElamp satisfies unforgeability and ex-
tractability with trusted generation depending on the number of distinct
message-signature pairs.

Proof of Theorem 1.

Proof. Given a private key of a hash-based DSKE scheme, which is a list
of λ elements, denoted as sk = (skj)j∈[λ]. We denote Bad0 to be the event

that at least one element of sk is not included in
⋃k

i=1 Leak((mi, σi), pk).
We have:

Pr[Bad0] = Pr

[
∨λj=1

(
skj ̸∈

k⋃
i=1

Leak((mi, σi), pk)

)]

≤
λ∑

j=1

Pr

[
skj ̸∈

k⋃
i=1

Leak((mi, σi), pk)

]
= λ · pleakk

Moreover, we denote Bad1 to be the event that there are two private key
elements that map to the same public key element. However, since the
underlying hash is modeled as a random oracle, this probability is negligible:
Pr[Bad1] = negl(λ).

Therefore, the probability that the extraction algorithm Extract(·) out-
puts a private key sk′ such that pk = extractPK(sk′) is δ ≥ 1 − Pr[Bad0 ∨
Bad1] ≥ 1− λ · pleakk − negl(λ).

31



Missing Proof of Theorem 2.

Proof. The t-Repeated One-Way Problem. We first define the attack
game of t-repeated one-way problem. Let f be a one-way function over
(X ,Y). For a given positive integer t and a given adversary A1, the game
runs as follows:

• The challenger samples x1, . . . , xt
$←− X , computes y1 ← f(x1), . . . , yt ←

f(xt), and sends (y1, . . . , yt) to the adversary A1.

• The adversary A1 makes a sequence of reveal queries by sending indexes
from (1, . . . , t) to the challenger. Upon receiving an index j, the challenger
returns xj to A1.

• A1 outputs (j∗, x), where j∗ ∈ (1, . . . , t) and x ∈ X .

We say that the adversary A1 wins the game if index j∗ is not among
A1’s reveal queries, and f(x) = yj∗ . We denote rOWadv[A1, f, t] as the
probability that A1 wins the game.

According to Lemma 13.5 in [BS20], for every t-repeated one-way prob-
lem adversary A1, there exists an adversary A0 that can leverage A1 as a
subroutine to break the preimage resistance of the function f . Moreover,
let OWadv[A0, f ] be the probability that A0 breaks the preimage resistance,
we have rOWadv[A, f, t] ≤ t · OWadv[A0, f ].

We now consider the adversary A that wins the 1-time signature ex-
periment SignExp1A,Σ(λ), and show thatA can be used to solve the repeated
one-way problem for f .

We construct an adversary B that uses A to win the repeated one-way
game:

• The repeated one-way challenger C gives B a list of λ elements y1, . . . , yλ ∈
{0, 1}λ. B aims to invert one of the elements.

• B sends (y1, . . . , yλ) as the public key pk to A. Note that pk is indistin-
guishable from a public key generated by KeyGen().

• Upon receiving the signing request of a message m from A, B requests
from C the preimages of all i that i ∈ H(m), and sends these preimages
as the signature to A.

• Eventually, A outputs a forgery σ∗ for a message m∗, which is not already
requested by A, i.e., m∗ ̸= m. Let bad1 be the event that H(m∗) ̸= H(m).
Therefore, Pr[bad1] is negligible due to the collision-resistance of H.In this
event, there exists some j ∈ (1, . . . , λ) which is not requested by B, and
if σ∗ is a valid signature on m∗ then σ∗ contains a preimage xj of yj . B
then outputs (j, xj) as its solution to the repeated one-way problem.

32



Therefore, we have

Pr[SignExp1A,DSKElamp
(λ) = 1] ≤ (1− Pr[bad1]) · rOWadv[A, f, t] + Pr[bad1]

≤ λ · OWadv[A0, f ] + negl(λ) = negl(λ)

B.1.1 Missing Proof of Lemma 1.

Proof. We define di = H(mi). All di for i ∈ {1, . . . , k} form a k× λ matrix:H(m1)
...

H(mk)

 =

d1
...
dk

 =

d1,1 . . . d1,λ
...

. . .
...

dk,1 . . . dk,λ


where di,j ∈ {0, 1}.

For j ∈ [λ], b ∈ {0, 1}, to extract the value of skj [b], there should be at
least one dij that satisfies dij = b, i.e., for j ∈ [λ], dij should not all be
1− b. Therefore, to be able to extract an element skj , we do not want any
columns in the matrix that contain all 0s or all 1s.

Since H(·) is modeled as a random oracle, pleakk is the probability that
one single column consists of all 0s or all 1s:

pleakk = Pr
[
x

$←− {0, 1}k : x = 0k ∨ x = 1k
]
=

1

2k−1

B.2 Missing Proofs of Polynomial Commitment Schemes-
Based DSKE

Missing Proof of Theorem 4.

Proof. Let A be a PPT adversary breaking the signature scheme DSKEpoly.
We construct two PPT algorithms B0 and B1 that run A as a subroutine.

Algorithm B0 attacks the hiding property of the polynomial commitment
scheme Π. From the challenger, B0 receives Cf , d, ck, vk, and up to d
openings (xj , f(xj), πj), for xj ∈ F and j ∈ [d], and for f(X) not known to
B0. It breaks the hiding property if it outputs (x∗, y∗) for an unqueried x∗

such that y∗ = f(x∗). It is important to note that Cf is of degree-d.
Algorithm B1 attacks the evaluation binding property of the polyno-

mial commitment scheme Π. For d, ck, vk from the challenger, B1 breaks
the evaluation binding property if it outputs (Cf , x

∗, (y, π), (y∗, π∗)) such
that Check(vk, Cf , x

∗, (y, π)) = 1, Check(vk, Cf , x
∗, (y∗, π∗)) = 1, and

y ̸= y∗. Breaking the evaluation binding property allows knowing f(X)
for Cf = Com(ck, f(X)). It leads to a slight difference between B0 and B1

33



in the opening generation, where B1 generates the opening itself rather than
relaying the opening from an existing challenger.
B takes (d, (ck, vk) as the basic input. B0 additionally takes Cf and

(xj , f(xj), πj) for j ∈ [d]. Bb∈{0,1} works as follows:

• If b = 1, Cf is empty, so it samples f(X)
$←− Fd(X) and runs

Π.Com(ck, f(X)) → Cf . Initiate A with pk = Cf for Cf and create
an empty set Squer.

• For hash query on m, B samples y, r
$←− F, programs H(m, r) as y, and

replies (y, r).

• WheneverA requests a signature on messagemi: If b = 1, (xj , f(xj), πj) is

not generated, so it samples xj
$←− F and runs Π.Open(ck, Cf , xj , f(X))→

(yi, πi). B samples ri
$←− F, programs H(mi, ri) as xi from the openings,

adds xi to Squer, and replies σi = (πi, yi, ri).

• If A fails to output a valid forgery on an unqueried message, then abort.
Otherwise A has output a message m∗ and a forgery σ∗ = (π∗, y∗, r∗)
on m∗. We assume w.l.o.g. A has made d signature queries (if not, B
queries these values itself) and hence B has openings (πi, yi) for points xi,
with i ∈ [d]. Compute x∗ = h(m∗, r∗). If x∗ ∈ Squer, then set bad1 ← 1
and abort. Otherwise interpolate f ′(X) ∈ Fd(X) from the d + 1 points
{(x1, y1), . . . , (xd, yd), (x∗, y∗)} and compute Cf ′ = Π.Com(ck, f ′(X)). If
Cf ′ ̸= Cf , B1 runs Π.Open(ck, Cf , x

∗, f(X)) → (y, π), and outputs
(Cf , x

∗, (y, π), (y∗, π∗)) to break the evaluation binding property. Else,
B0 outputs (x∗, y∗) to break the hiding property.

The event bad implies that A breaks the collision resistance property
of H, which is assumed secure, hence Pr[bad] = negl(λ). B has two routes,
depending if the interpolated polynomial f ′(X) matches the commitment Cf

or not. If it does not match, i.e., Cf ′ ̸= Π.Com(ck, f ′(X)), it implies that
(x∗, y∗) is not a point of f(X), i.e., f(x∗) ̸= y∗. Since A succeeded, point
(x∗, y∗) and proof π∗ satisfy Π.Check(vk, Cf , x

∗, y∗, π∗) = 1. B1 outputs
(Cf , x

∗, (y, π), (y∗, π∗)) to breaks the evaluation binding property.
If it matches, i.e., Cf ′ = Π.Com(ck, f ′(X)), it implies that (x∗, y∗) is a

point of f(X), i.e., f(x∗) = y∗. B0 outputs (x∗, y∗) to breaks the hiding
property. Note that although it is possible f(X) ̸= f ′(X) for Cf ′ = Cf , it
is impossible when both f(X) and f ′(X) are of degree-d.

B.3 Missing proof of GroupForge

GroupForge satisfies the correctness, unforgeability, and forgeability on ex-
piry properties of an FFS scheme.

34



Correctness follows from the underlying ΣDSKE scheme and from the
correctness of the Merkle proofs: every signature σ = (s, pki, leafi, proofi)
constructed with Sign() will be valid according to ΣDSKE.Verify(), and proofi
will be a valid Merkle proof that pki is the public key that corresponds to
leafi.

Unforgeability is also reduced to the unforgeability of ΣDSKE through
standard arguments on Merkle-based constructions [BDH11]. Assume an
adversary A that is given PK and attacks GroupForge. For each time
chunk i ∈ [2h], A is allowed to make up to k signing queries. The challenger
of A delegates these queries to ΣDSKE. Assume a successful forgery σ∗ =
(s∗, pk∗, leaf∗, proof∗), for some leaf leaf∗. Since ΣDSKE is unforgeable, pk∗

must be a public key under which s∗ is a valid signature. In this case,
however, the hash of pk∗ and the Merkle proof proof∗ can be used by the
challenger to break the collision resistance of H().

Forgeability on expiry is proven in the following theorem.

Theorem 9. GroupForge achieves correctness, unforgeability, and forgeabil-
ity on expiry properties.

Proof. Let D be an adversary that is given a signature σb, for b ∈ {0, 1},
and, as described in the definition of FFS, aims to distinguish the value
of b. Signature σ0 is created with the private key ski of some time chunk
i, i.e., σ0 ← Sign(ski,m). Signature σ1 is created using the expiry infor-
mation η, which in turn is computed from the additional material T , i.e.,
η ← Expire(T ) and σ1 ← Forge(η,m). Let us assume that T contains
k valid message-signature pairs, i.e., T = {(mj , σj)}j∈[k], that all mj are
pairwise different, and that all signatures are created in time chunk i, i.e.,
σj = (sj , pki, leafi, proofi), for each j ∈ [k]. In this case, since the un-
derlying DSKE scheme ΣDSKE has (k, δ)-extractable sets, Expire(T ) returns
h ̸= ⊥ with probability δ. For this h = (leafi, proofi, sk

′
i) we know from the

properties of ΣDSKE that ski = sk′i, and Forge() will compute σ1 by calling
s = ΣDSKE.Sign(ski,m), which is identical to how σ0 is created. Hence, D
can only guess the value of b with probability 1/2.

Overall, assuming that the signer has created enough message-signature
pairs T with the properties described above, with probability δ, D can only
at random guess the value of b, while with probability 1−δ (when Expire(T )
returns⊥), the challenger ofD cannot produce a valid σ1 andD can correctly
guess b. The overall success probability of D is P = 1 − δ/2. Observe that
for the polynomial commitment-based DSKE scheme δ = 1− negl(λ), hence
P = 1/2+negl(λ), while for the hash-based DSKE scheme δ ≥ 1−λ/(2k−1)+
negl(λ), hence P asymptotically approaches 1/2 as k grows.

Setting the Deniable Group Size k and Delay ∆. GroupForge requires
that no recipients of k signatures collaborate within a time chunk ∆. This
requirement can be made plausible by adjusting two variables. First, the

35



size of the deniable group k can be set to a value large enough, for example,
⌈n/2⌉, where n is the number of recipient email servers. This would be
equivalent to the assumption that no more than half of the nodes may be
Byzantine, which is typical in distributed protocols. Second, time delay ∆
can be set to a low value. Similar to that of KeyForge, we can assume an
upper bound ∆̂ in the time required for email delivery and then set ∆ = ∆̂.
Hence, even if the signature recipients collaborate, the forged signature has
a high probability of reaching the recipient email server in the next time
chunk.

Moreover, the value of k and the choice of the underlying DSKE scheme
affect the probability of the algorithm Forge() outputting a signature and
not ⊥. For DSKEpoly we have δ = 1 for all k ≥ d+1, and the signer can choose
the size of the group by selecting the degree of the polynomial accordingly.
For DSKElamp the probability δ changes with k.

36


	Introduction
	Preliminaries
	Digital Signatures with Key Extraction (DSKE)
	DSKE from Hash-Based Signature Schemes
	Lamport Signature-Based Construction

	DSKE from Polynomial Commitment Schemes
	DSKE from KZG Polynomial Commitment

	Applications
	Non-Attributable Email
	Rate-Limiting Nullifier

	Evaluation
	Discussion
	Related Work
	Conclusion
	Winternitz OTS-Based Construction
	Missing Proofs
	Proofs of Hashed-Based DSKE
	Missing Proof of Lemma 1.

	Missing Proofs of Polynomial Commitment Schemes-Based DSKE
	Missing proof of GroupForge


