
Double Auction Meets Blockchain:
Consensus from Scored Bid-Assignment⋆

Xiangyu Su1, Xavier Défago1, Mario Larangeira1,2, Kazuyuki Mori3, Takuya
Oda1,4, Yasumasa Tamura1,5, and Keisuke Tanaka1

1 Institute of Science Tokyo. 2-12-1 Ookayama Meguro-ku, Tokyo, Japan.
su.x.4029@m.isct.ac.jp, defago@comp.isct.ac.jp,

rebello.m.f72a@m.isct.ac.jp, keisuke@comp.isct.ac.jp.
2 Input Output, Global. mario.larangeira@iohk.io.

3 Mitsubishi Electric Corporation. 8-1-1 Tsukaguchi-honmachi Amagasaki, Hyogo,
Japan. Mori.Kazuyuki@ab.MitsubishiElectric.co.jp.

4 The University of Kitakyushu. 1-1 Hibikino Wakamatsu-ku Kitakyushu, Fukuoka,
Japan. t-oda@kitakyu-u.ac.jp.

5 Hokkaido University, Kita 14, Nishi 9, Kita-ku Sapporo, Hokkaido, Japan.
ytamura@ist.hokudai.ac.jp.

Abstract. A double auction system, where buyers and sellers trade
through bids, requires a transparent and immutable mechanism to record
allocation results. This demand can be met with robust ledgers that en-
sure persistence and liveness, as exemplified by the Bitcoin blockchain
(EuroCrypt ’15). While existing blockchain-aided auction systems often
rely on secure smart contracts or layer-2 techniques, this work proposes a
more fundamental approach by constructing a provably secure blockchain
protocol directly from the computation of bid allocations. The core com-
ponent is an alternative proof-of-work (PoW) scheme based on a scored
generalized multiple assignment problem (SGMAP), integrated into a
tailored blockchain protocol. Unlike conventional PoW-based protocols,
our leader selection is driven by block scores derived from the SGMAP
scoring function, which is designed to be flexible enough to define the
difficulty level and accommodate real-life requirements of the underly-
ing double auction system. We prove persistence and a modified liveness
property for our design, and present implementation results to validate
its robustness and practicality.

Keywords: Double Auctions, Scored Generalized Multiple Assignment
Problem, Alternative Proof-of-Work, Blockchain Consensus.

1 Introduction

In a double auction system, multiple buyers and sellers issue (buy or sell) bids
to buy or sell some products. Eligible bids are matched, i.e., buy bids are allo-
cated with sell bids, and vice versa, into trading agreements according to some

⋆ This work was supported by the JST CREST under Grant JPMJCR2113, and the
JSPS KAKENHI under Grant JP24H00071 and Grant JP21K11882.

predefined conditions, e.g., the buy bid’s price is higher than the sell bid’s price.
A necessary functionality in such a system is to securely record the trading his-
tory so users can perform accordingly. In a decentralized environment, a public
ledger that ensures consensus is usually used for this purpose, preventing any
single party from tampering with the data.

The problem of consensus, in which multiple participants are made to agree
on common decisions, has been studied across five decades in the context of
distributed systems [22, 23]. Due to the popularity of Bitcoin and other crypto-
currencies, consensus and its embodiment as a blockchain protocol has gained a
much broader interest, taking the form of a distributed robust ledger, ensuring
consensus through the properties of persistence and liveness [16]. It is natural to
consider blockchain as the public ledger in double auction systems. In fact, nu-
merous studies have investigated blockchain-aided double auction systems (with
some in the context of peer-to-peer energy trading) [7,12–14,19,24–26,28,33,35,
36]. As we will show in the detailed literature review (Section 1.2), most of these
works are built atop secure smart contracts and layer-2 techniques. However, the
assumption of smart contracts being secure is unfalsifiable [27], let alone the gen-
uinely higher transaction fee incurred by using smart contacts. In contrast, this
work aims to build consensus on blockchain that directly utilizes mechanisms
in double auctions, e.g., bidding operations and the allocation of bids. Through
this, our protocol can handle more general double auction models (as explained
in Section 1.1) and can be proven secure without relying on smart contracts.

1.1 Our Approach and Contributions

The first step is to clarify our double auction model.

Our double auction model. We consider a single-product1 periodic double
auction system, in which the underlying market is cleared periodically so that
users can perform product and payment transmission accordingly in real life.
Bids are issued to buy/sell the product with three attributes: type (i.e., indi-
cating to buy or to sell), unit-price, and quantity. Each bid is associated with
a lifespan attribute, indicating whether it is time-wise available to be matched
with other bids. Unlike conventional double auctions, e.g., uniform price auc-
tion or k-double auction, we introduce a more flexible mechanism that enables
many-to-many assignments between buy and sell bids. This model can find use
cases in real-life applications like peer-to-peer energy trading.

Concretely, a buy bid can be matched with multiple sell bids (and vice versa)
if the following conditions hold:

1. The price in the buy bid is higher than the price in the sell bid;
2. The sum of the quantity in the multiple sell (buy) bids does not exceed the

quantity of the buy (sell) bid;

1 The multi-product case can be achieved by executing multiple instances of our pro-
tocol in parallel.

2

3. All the bids are within their lifespan.

Based on 2 and 3, we define the “residual” (later Definition 5) that inherits the
price and lifespan of the original bid while its quantity is the subtraction of the
matched parts from the original quantity. Finally, a matched buy-sell bid pair
is a trading agreement in which the buyer transfers the payment, and the seller
delivers the product. Note that our double auction model can be extended to
impose more constraints, e.g., including a preference list for each bid so that it
only buys from sellers (sells to buyers) in the list. However, this paper will focus
on the three conditions mentioned above, which are the bare minimum require-
ments for our many-to-many double auction model. Our blockchain protocol will
be general enough to cover extensions made to this model.

A brief description of our approach. To integrate double auctions into
blockchain protocols, we first define a bid layer to the data structure to support
bidding operations (i.e., issuing buy/sell bids). Atop the bid layer, we refine
transactions as matched buy-sell bid pairs, and blocks as the containers of bids
and transactions, i.e., each block keeps a list of buy/sell matched transactions.
The allocation of buy and sell bids (i.e., forming transactions) is formalized
into a Scored Generalized Multiple Assignment Problem (SGMAP, which is a
many-to-many match design in our auction model). We define a generic scoring
function that evaluates assignment results.

Later, by directly associating the SGMAP with our refined blockchain data
structure, i.e., directly relating it to our auction model, and lifting the scor-
ing function’s domain to the space of blocks, we propose the core component of
our blockchain protocol: an alternative proof-of-work (PoW) scheme, namely the
proof-of-bid-assignment (PoBA) scheme. Similar to the mempool of transactions
in conventional blockchain protocols, we introduce the concept of “bidpool” to
cope with double auctions and in accordance with our proposed bid layer. Our
PoBA starts with each user maintaining such a pool according to her view of the
blockchain. At the beginning of each time slot2, the user collects bids from the
previous slot and updates her bidpool. By sampling the bidpool, the user gener-
ates a block with its corresponding score by solving the semanticized SGMAP.
We require the user to include the input bid set in her block so that the block
and score can be verified by all other users.

Note that we do not require optimality, i.e., the best possible combination of
buy/sell bids, in block generation. This is due to a unique feature of our protocol:
we encourage competition among users so that the protocol will eventually put
forth a chain of blocks with the highest overall score (i.e., the highest-score rule).
Concretely, for blockchain selection, we first consider a tree structure for each
user’s intermediate view of block candidates (from multiple users in each time
slot). Hence, each branch (from root to leaf) on the tree is a valid blockchain.
Then, with an accumulation function defined over the depth of each block on the
branch, we extend the score of blocks to the score of branches. Thereby, users

2 We divide time into discrete units call slots, details can be found in Section 2.

3

can select the highest-scored branch accordingly, i.e., each branch has a score
associated given by the score accumulation of its blocks.

Our security proof is quite involved. We first abstract away from concrete
computations in the PoBA by directly sampling blocks with corresponding scores
from the distribution determined by the generic scoring function. We model this
approach under the universal sampler model [20] (with necessary modifications).
Our modeling is similar to how hash computation is modeled (i.e., by queries
to a random oracle) in conventional hash-PoW-based blockchain protocols, e.g.,
Bitcoin [16], and the way that we use the universal sampler is similar to [5].
To justify how suitable this modeling approach is, we provide theoretical in-
sights in Section 5.1 and implement the PoBA scheme under various conditions,
i.e., using different initial bid distributions and solving strategies, in Section 6.
Then, we prove persistence by analyzing the dynamics of honest users’ views
(i.e., represented by their local trees of blocks) concerning scores (of blocks and
branches) following the given (arbitrary) distribution. Moreover, we show block-
liveness, a variant of the standard liveness property, yields directly from our
protocol design. Note that the original liveness property indicates state changes
in a protocol. Hence, the adaptation of liveness is necessary and reasonable be-
cause in our refined data structure, a single transaction (i.e., a matched buy-sell
bid pair) cannot change the state of the protocol as in UTXO-based blockchain
protocols, e.g., Bitcoin [16]. In contrast, our protocol changes its state when a
block (containing the sets of bids and transactions) is inserted into all honest
users’ local trees. Thus, the security of our protocol is based on the persistence
and block-liveness properties.

Our contribution. It is threefold: (1) a blockchain data structure that supports
bidding operations in double auction systems; (2) an alternative PoW scheme
(i.e., the PoBA) based on the problem of assigning buy and sell bids concerning
a generic scoring function (i.e., the SGMAP); (3) design a blockchain protocol
for double auction systems based on the PoBA scheme and prove security for
our novel consensus mechanism (i.e., the score-based blockchain selection). Ad-
ditionally, we implement the PoBA scheme and provide a full network simulation
for our protocol. The link can be found in Section 6.

1.2 Related Works

Our literature review focuses on two aspects: (1) blockchain-aided double auction
systems; (2) alternative PoW-based blockchain protocols.

Firstly, most works rely on blockchains enabled by smart contracts (SC) or
layer-2 techniques [7,12,14,19,25,26,28,33,35,36], with some assuming a trusted
execution environment (TEE) [13,24]. While most works focused on implemen-
tation and engineering, [28], built atop state channels, provided a (UC-based) se-
curity proof that requires stronger liveness than relying only on smart contracts.
Our work is unique in that it focuses on the consensus layer of a blockchain-aided
auction system, utilizing an alternative PoW scheme (our PoBA scheme) that

4

integrates auction mechanisms, i.e., the computation of bid allocations. We fur-
ther propose a novel blockchain selection mechanism tailored to PoBA to achieve
consensus. Our design is securely proven for key consensus properties.

Table 1: Comparison with related works.
Works Techniques Focus of Analysis

[7, 19,25,26,33,35,36] SC & Secure blockchain SC-based privacy and security

[13,24] SC & TEE
Sealed-bids auction

& TEE-based security

[12,14] SC
Sealed-bids auction
& SC programming

[28] SC & State channel
Dispute resolution via SC

(UC-based)

This work
Scored bid-assignment problem

& The highest-score rule
Consensus: Persistence

& Block-liveness

Secondly, we list several works that inspired our design. The aim here is not
to make a direct comparison, but rather to trace the relevant research trends.
In [16], the authors provided the first rigorous security proof for Hash-PoW-
based blockchain protocols. Weighted variants of such protocols, that can op-
timize network throughput, were later proven secure in [17, 21]. However, the
computationally wasteful mining mechanism in the Hash-PoW highlighted the
need for alternative tasks (i.e., alternative PoW schemes) to secure blockchain
protocols. Hence, secure protocols based on “useful work” were proposed [4, 11]
to leverage computing power for meaningful purposes. While our PoBA design is
unique compared to existing works, it incorporates the concept of weight-based
consensus from [21] into the generic scoring function and uses the allocation of
bids as the useful work. While our consensus mechanism differs from the weight-
based ones, we show in Appendix F that our PoBA can also be applied to [21]’s
framework by lifting the score distribution via transformation functions [32].

1.3 Organization

The remainder is organized as follows. Section 2 defines the notations and the
general model of protocol execution. The following sections present our main
contributions: Section 3 introduces the tailored data structure and basic abstrac-
tions from our double auction model; Section 4 proposes our blockchain protocol
by specifying an SGMAP-based PoBA scheme and the score-based blockchain
selection mechanism; Section 5 models the PoBA scheme using a universal sam-
pler and proves the security of our protocol; and finally, Section 6 implements
the PoBA scheme under various conditions and validates our analysis approach.

5

2 Preliminaries

We use λ for the security parameter. For any integer a≤b, let [a. .b]∆={a, a+1, . . .,

b}. If a≥0, let [a]0
∆
={0, . . ., a}, and if a≥1, let [a]∆={1, . . ., a}. Given a set X, x

$←X

denotes that x is uniformly and randomly sampled from X, and x
D←X denotes

that x is randomly sampled from X following distribution D. Given an algorithm
Alg, x←Alg denotes that x is assigned the output of the algorithm Alg on fresh
randomness. The (key:value) term denotes a mapping from a key key to the value
value. A collision-free hash function is denoted by H : {0, 1}∗ → {0, 1}λ.

We further employ a digital signature scheme SIG
∆
=(KGen,Sign,Verify) that

satisfies correctness and existential unforgeability under adaptive chosen message
attack. The formal definition is given in Appendix A.1. In particular, we say a
signature is valid if SIG.Verify outputs 1.

Protocol execution model. Based on the formalization methodology and
model outlined in [16] (including its subsequent refinements, e.g., [9, 30], that
operate under weaker assumptions closer to real-life environments), we specify
general settings of our protocol as follows. The protocol adopts the standard
Interactive Turing Machines (ITM) Model for its execution [6]. A protocol refers
to algorithms for a set of nodes (users) to interact with each other. All corrupted
nodes are considered to be controlled by an adversary A who can read inputs
and set outputs for these nodes.

Time and slots. Time is divided into discrete units called slots, indexed by an
integer t≥0. Following [9], users are equipped with (approximately) synchronized
clocks that indicate the current slot. The length of each slots is adjusted to be
long enough so that any discrepancies between users’ local time are insignifi-
cant. Here, we assume the existence of a (not necessarily fully) synchronized
clock T , secured by the signature scheme SIG with a key pair (skT , pkT). It
replies users’ queries with (σT , t)←T (m) s.t. (σT , t)←SIG.Sign(skT ,m, t), where
m is the query message and t is the current slot index. This assumption can be
instantiated using the trusted checkpoints approach proposed in [8], which was
later extended to the decentralized setting in [1].

Synchrony. We adapt the δ-synchronous setting [6] to our slot-based execution
model, where δ∈N represents a known upper bound of the actual network delay,
shared by all users. Suppose an honest user sends a message in slot t, the message
is guaranteed to be received by all honest users in any slot t′ ≥ t+ δ. We assume
the delayed diffuse functionality [9] (described in Appendix A.2).

Rushing adversary. The rushing network adversary can: (1) receive honest user
messages first; (2) decide for each recipient whether to inject additional messages;
(3) decide the order of message delivery; (4) diffuse its (the adversary’s) messages
after seeing all honest messages. Further, we need a constraint on the adversary
(formally in Assumption 1) to argue the security of our protocol.

6

Permissionless setting. We adopt the permissionless model from [31]. Specif-
ically, in each slot t, exactly nt∈N users participate in the protocol, with a
corruption fraction ft (i.e., ft·nt corrupted nodes). Upon joining, an honest user
is informed by the protocol of the parameters (nt, ft, δ). We assume an honest
majority, meaning the corruption fraction satisfies ft<1/2 for all t≥0.

Corruption model. This paper focuses on the static corruption model, where
honest users cannot be corrupted after spawned. However, as discussed in [18,
30], the static corruption can be relaxed to a constrained adaptive one (i.e., a
model permitting corruption only at the end of a slot) by employing key-evolving
cryptographic primitives3. While [30] extended this approach to support a fully
adaptive corruption model (i.e., honest users can be corrupted at any point
during protocol execution), further research is required to adapt their analysis
to our specific protocol.

3 Our Formalization of Blockchain-Aided Auctions

This section starts our formalization by presenting the refined blockchain data
structure and abstractions of our double auction model.

3.1 Refined Data Structure

We add a bid layer to support bidding operations, i.e., the issuance of buy/sell
bids. Recall our double auction model (in Section 1.1), a bid is issued at a gen-
eration slot and will expire at an expiration slot to either: (1) buy a quantity
of the product at an initial unit-price (anything lower is acceptable); or (2) sell
a quantity of the product at an initial unit-price (anything higher is accept-
able). Hence, we define each bid to consist of four attributes: type (i.e., buy
or sell), unit-price, quantity, and lifespan (i.e., represented by the generation
and expiration slot indices). Additionally, we secure the integrity of bids with a
hash function H(·) and a signature scheme SIG=(KGen,Sign,Verify) (from Sec-
tion 2). Next, a trading agreement, usually called a transaction in the context of
blockchain protocols, is redefined as a buy-sell bid pair with the corresponding
matched unit-price and matched quantity. We further refine the block’s defi-
nition to be the container of the sets of bids and transactions with necessary
metadata, e.g., the hash of the previous block and signatures.

The definitions. Formally, we define them as follows.

Definition 1 (Bid). A bid, issued by a user u with a key pair (sku, pku) from the

signature scheme SIG, is defined as bid
∆
= (bidraw, slotInfo, auxu), and is associated

with an identifier bidID=H(bid). The space of bids is denoted by BID.
3 Proposed in [18] and explored in [30] under the term “erasure model”, this approach
allows honest parties to securely erase their secret internal state upon corruption.

7

– bidraw
∆
= (type, p, q) is the bid’s raw content where: type ∈ {buy, sell} indicates

the bid’s type (i.e., being a buy/sell bid); and p, q > 0 denote the bid’s unit-
price and quantity, respectively;

– slotInfo
∆
= (tGen, tExp, pkT , σT) is the bid’s lifespan information where: tGen, tExp

denotes the bid’s generation and expiration slot indices s.t. −1≤tGen<tExp
4;

and (pkT , σT) is the time server’s public key and its signature on the bid’s
raw content and slot indices: σT←SIG.Sign(skT , (bidraw, tGen, tExp));

– auxu
∆
= (pku, σu) is the user’s public key and her signature on the bid’s raw

content and lifespan information: σu←SIG.Sign(sku, (bidraw, slotInfo)).

Definition 2 (Transaction). A transaction is defined as tx
∆
= (bidID1, bidID2,

ptx, qtx) where: bidID1, bidID2 are the identifiers of two bids of different types
(i.e., a buy bid and a sell bid); and ptx, qtx>0 denote the matched unit-price and
quantity. The space of transactions is denoted by TX.

Definition 3 (Block). A block, generated by u with (sku, pku) from SIG, is de-

fined as bk
∆
= (bkraw, slotInfo, auxu) and is associated with an identifier bkID =

H(bk). The space of blocks is denoted by BK.

– bkraw
∆
= (prevHash,BIDs,TXs) is the block’s raw content where: prevHash is the

identifier (i.e., hash) of the block’s direct predecessor; BIDs denotes a set of
bids where each element is in the mapping form (bidID:bid) ∈ BIDs; and TXs
denotes a set of transactions where tx ∈ TXs;

– slotInfo
∆
= (tGen, pkT , σT) is the block’s generation information where: tGen≥0

denotes the block’s generation slot index; and (pkT , σT) is the time server’s
public key and its signature on the block’s raw content and slot index: σT ←
SIG.Sign(skT , (bkraw, tGen));

– auxu
∆
= (pku, σu) is the user’s public key and her signature on the block’s raw

content and generation information: σu←SIG.Sign(sku, (bkraw, slotInfo)).

For completeness, we recall the definition of a blockchain: a linked list of
blocks, on which the first block is called the genesis block, denoted by bkG,
containing initial users’ public keys. Later, we will consider a tree structure (to
be explained in Section 4.3) to analyze users’ local views. In order to distinguish
an arbitrary blockchain from the highest-scored one, we use the term “branch”
to describe the former and “chain” for the latter.

Definition 4 (Chain). Let || denote block concatenation. That is, for any i≥0,
if bki−1||bki (let bk−1=bkG), the prevHash entry of bki equals to bki−1’s identifier
bkIDi−1=H(bki−1). Then, a blockchain for t≥0 is defined as the concatenation

of blocks: chaint
∆
=bkG||bk0|| · · · ||bkt where bkG is the genesis block. Moreover, for

any τ∈[t]0, we use chaint⌈τ to denote the blockchain without τ -rightmost blocks,

i.e., chaint⌈τ
∆
=bkG||bk0|| · · · ||bkt−τ .

4 In particular, we call a bid initial if tGen=−1, indicating that the bid was issued
before the first block was generated. Moreover, we require tGen<tExp because the bid
allocation has at least one slot delay by our protocol design (see Section 4.2).

8

Concrete configurations and their rationale. Here, we further specify sev-
eral configurations concerning our double auction model.

Firstly, the bid’s definition is extensible by including more attributes, e.g.,
the preference list mentioned before (in Section 1.1). We can even integrate a
reputation system by letting each bid include a signed (by some trusted author-
ities) reputation score of its issuer, and then design our generic scoring function
(to be explained in the following sections) to take the reputation score into con-
sideration. However, the current Definition 1 is sufficient for our protocol design,
and hence, the following of this work will proceed under this definition.

Bids, and hence their identifiers, are designed to be unique, unlike transac-
tions, which do not require uniqueness. That is, there can be multiple transac-
tions with the same (bidID1, bidID2, ptx, qtx). However, we consider that, in any
block, a (bidID1, bidID2, ptx) tuple appears only once in transactions. This is be-
cause if multiple transactions share the same (bidID1, bidID2, ptx), their qtx can
be aggregated, allowing them to be unified into a single transaction.

Moreover, recall that our double auction model aims to enable many-to-
many assignments between buy and sell bids. To facilitate this, we introduce the
concept of residuals, which represents the remaining quantity of a bid after it has
been partially matched with bids of the opposite type. The formal definition is
given in the form of a mapping w.r.t. a bid and a transaction involving that bid.
For simplicity, we inherently assume that all bids and transactions are “valid”:
the three conditions outlined in our double auction model hold, and signatures
and identifiers are correctly computed.

Definition 5 (Residual Bids). Let (bidID:bid) be the mapping form of a bid
where bid=(bidraw, slotInfo, auxu) and bidraw=(type, p, q). Given a transaction tx=
(bidID, ·, ptx, qtx) that involves the given bid, we denote the residual bid of bidID

w.r.t. tx with (bidID:rbid) s.t.: if q>qtx, rbid
∆
=(rbidraw, slotInfo, auxu) where rbidraw

=(type, p, q′ = q−qtx); otherwise (i.e., q=qtx), rbid
∆
= ⊥.

We note that tx in the definition should be valid w.r.t. bid, i.e., to have q≥qtx.
Moreover, when q=qtx, we consider the bid is fully matched, i.e., rbid =⊥.

Given another transaction tx′=(bidID, bidID′′, p′tx, q
′
tx), we can extract the

residual of (bidID:rbid) by further subtracting q′tx from q′, i.e., the new resid-

ual bid is defined as (bidID:rbid′): if q′>q′tx, rbid
′
raw

∆
=(type, p, q′−q′tx); otherwise,

rbid′
∆
= ⊥. This process can be repeated recursively until the residual quantity

reaches 0 or the bid expires. The recursive nature of residual bids (while preserv-
ing their identifiers) allows us to save block space by only storing original (“non-
residual”) bids in the bid sets, i.e., bidID = H(bid) for any (bidID:bid) ∈ BIDs.
Users can ambiguously extract the latest quantity of any bid concerning its iden-
tifier with the given blockchain. Note that the equation for identifiers above does
not hold for residual bids as their quantities have changed.

Concretely, for a blockchain chaint=bkG||bk0|| . . . ||bkt with t≥0, let BIDsi

and TXsi be the bid set and transaction set in each block bki for all i ∈ [t]0,
respectively. Note that each (bidID:bid) should exist only once in a bid set
on chaint by our configuration, we denote the set of transactions involving

9

bidID with Tt
bidID

∆
={tx|tx=(bidID, ·, ptx, qtx)∈

⋃
i∈[t]0

TXsi}5 for each (bidID:bid) ∈⋃
i∈[t]0

BIDsi. Then, let q be the quantity of bid, the latest quantity of the resid-

ual bid associated with bidID, denoted by q′, can be derived by the equation (as
before, only meaningful when q′ > 0)

q′ = q −
∑

tx∈Tt
bidID

qtx. (1)

One concern with this configuration (i.e., storing only original bids in blocks)
is that block verification may become less efficient because the latest residual
of each bid is not explicitly recorded. However, we argue that users can track
residuals locally on a block-by-block basis, for example, by updating TbidID with
transactions from TXst+1 ∈ bkt+1 that involve bidID.

3.2 Abstraction of Bid Assignment

Now, we abstract the process of allocating bids in our double auction model,
then present a scored variant of the generalized multiple assignment problem

(SGMAP, which is many-to-many) [29]. Precisely, we consider two sets B={bi
∆
=

(B, pi, qi)}i∈[m] and S={si
∆
=(S, pj , qj)}j∈[n] (where m,n≥1) as the problem’s in-

put. Here, each element (i.e., b∈B and s∈S) consists of a flag that indicates in
which set the element is in (i.e., B for set B and S for set S, ensuring the two
sets are disjoint); and two value attributes s.t. p, q>0. The corresponding space
of the sets are denoted by B={B|∀p, q>0} and S={S|∀p, q>0}.

Then, a match between bi∈B and sj∈S concerning value attributes can be
represented by their indices as (i, j, pij , qij) where pij , qij denote the assigned
values. By considering the attributes in terms of our double auction model (i.e.,
B for buying, S for selling, p for price, and q for quantity), we directly yield a
requirement: qij≥0, in which qij=0 indicates there is no match between bi and
sj . Next, we can impose the first two constraints6 from the model. Recall that
a buy bid can be matched to a sell bid if: (1) the buy bid’s price is higher than
the sell bid’s price7; (2) the residual quantity of both bids is no less than 0 after
being matched together. We formally write these constraints as follows:

qij ≥ 0 ∧ pij ∈ [pj , pi] if qij ̸= 0;

n−1∑
j=0

qij ≤ qi ∧
m−1∑
i=0

qij ≤ qj . (2)

Finally, we define the scoring function that evaluates assignment results. Let
the set of assignment results for the input sets (B,S) be denoted as AB,S=

5 We omit writing “or tx=(·, bidID, ptx, qtx)” in Tt
bidID because the two bid identifiers in

a transaction are symmetric, and bidID can only exist in one position.
6 The third one involves lifespan, which will be discussed later concerning the correct-
ness of our PoBA scheme.

7 In practice, it is convenient to consider a deterministic pricing strategy as in the
k-double auction model, i.e., given k∈[0, 1], set pij=k·pj+(1−k)·pi.

10

{(i, j, pij , qij)|∀(i, j)∈[m]×[n]∧ (pij , qij) satisfies conditions in Eq. 2}. Then, the
generic scoring function is defined over the space of assignment results as s :
A→R where A={AB,S|∀(B,S)∈B×S}.

The next formal definition yields directly from the early explanation.

Definition 6 (The SGMAP). Given two sets B={(B, pi, qi)}i∈[m] and S={(S,
pj , qj)}j∈[n] with m,n≥1 and any p, q>0. The SGMAP is to find a set AB,S={(i,
j, pij , qij)} that satisfies conditions in Eq. 2 and evaluate the set with the generic
scoring function given above, i.e., s(AB,S).

Note that it is easy to find a valid solution to the SGMAP as any random
assignment set that satisfies conditions in Eq. 2 is sufficient. In contrast, the
difficulty of finding an optimal solution depends on the scoring function. Proven
in [29], the optimization problem is NP-complete even when the scoring function
is just a linear combination of qij for (i, j)∈[m]×[n]. We will review this in
Section 5.1 and present experiments with concrete examples in Section 6.

4 Our Protocol

This section first semanticizes the SGMAP with our refined blockchain data
structure to yield an alternative PoW scheme, namely proof-of-bid-assignment
(PoBA). Then, by specifying the process of users preparing their input bid set
(to the PoBA) and the selection of blockchain (after generating blocks from the
PoBA), we build a blockchain protocol based on the PoBA scheme.

4.1 The PoBA Scheme

We first semanticize the definition of SGMAP (Definition 6) with the raw content
of bids (Definition 1) and transactions (Definition 2).

Definition 7 (The SGMAP, Semanticized). Let Bs = {(bidID:b)|b ∈ {bid,
rbid}} be a set of (residual) bids where bidID is the identifier of the original bid
corresponding to b. Extract the buy and sell bid subset:

B={(bidIDi:bi)|braw,i=(buy, pi, qi)}i∈[m],

S={(bidIDj :bj)|braw,j=(sell, pj , qj)}j∈[n],

s.t. Bs = B ∪ S and B ∩ S = ∅. The SGMAP is to find a transaction set
TXs={(bidIDi, bidIDj , pij , qij)} so that pij , qij satisfies conditions in Eq. 2. By
abuse of notations, the score of the transaction set is s(TXs) (i.e., s : TX∗→R).

Next, we want users to generate blocks by solving the semanticized SGMAP
in our PoBA. Hereby, we lift the range of the generic scoring function from trans-
action sets to blocks by considering a transforming function T :R×{0, 1}∗→R.
Concretely, the score of a given block that embeds a transaction set, i.e., TXs∈bk,
is denoted by sbk(bk)=T (s(TXs), bk\TXs) (i.e., sbk:BK→R) where bk\TXs∆=
(prevHash,BIDs, slotInfo, auxu) is the other content in the block (by Definition 3).

Finally, the PoBA scheme PoBA
∆
=(Solve,Verify) is specified as follows.

11

Construction 1 (The PoBA). Let H:{0, 1}∗→{0, 1}λ be a collision-free hash
function, and let sbk:BK→R be a generic scoring function that evaluates blocks.
For any user u, denote her blockchain at the beginning of slot t+1≥0 with chaint

=bkG|| · · · ||bkt (chain−1∆=bkG). She performs Solve and Verify s.t.:

– Solve(chaint,Bs) takes as input the blockchain and a set of bids8. It outputs
an extended blockchain chaint||bku where bku=((H(bkt),BIDs,TXs), (t+1, pkT ,
σT), (pku, σu)) s.t.:
• For any (bidID:b)∈Bs, if H(b)=bidID ∧ (bidID:b)/∈

⋃
i∈[t]0

BIDsi, the bid set

BIDs ∈ bku contains (bidID:b);
• TXs is a valid solution to the semanticized SGMAP regarding Bs;
• Signatures (σT , σu) are generated according to Definition 3.

– Verify(chain′t+1) takes as input a blockchain. Parse chain′t+1=chain′t||bku′9,
i.e., bku′ is generated by u′. Parse bku′=((prevHash,BIDs,TXs), (tGen, pkT , σT),
(pku′ , σu′)). It outputs (1, sbk(bku′)) if the following conditions hold (i.e., the
input blockchain is valid); Otherwise, it outputs (0,⊥).
1. The blockchain being extended is valid: (1, ·)←Verify(chain′t). In particular,

we extend this verification to the genesis block, i.e., Verify(chain−1) = 1;
2. Parse chain′t=bkG|| · · · ||bk′t, we have prevHash=H(bk′t);
3. The bid set satisfies, for each (bidID:bid)∈BIDs, that: (1) H(bid) = bidID;

(2) (bidID:bid)/∈
⋃

i∈[t]0
BIDs′i; (3) bid’s lifespan (tGen, tExp) satisfies tGen≤t

<tExp
10; (4) the signatures (σT , σu′′,bid) in bid are valid;

4. The transaction set satisfies, for each (bidID1, bidID2, ptx, qtx) ∈ TXs, that:
(1) bidID1, bidID2 ∈

⋃
i∈[t]0

BIDs′i ∪ BIDs where BIDs′i ∈ bk′i ∈ chain′t; (2)

Extract all transactions from chain′t||bku′ for bidID1, bidID2:

Tt+1
bidID1

={tx|tx=(bidID1, ·, ptx, qtx)∈
⋃

i∈[t]0

TXs′i ∪ TXs},

Tt+1
bidID2

={tx|tx=(·, bidID2, ptx, qtx)∈
⋃

i∈[t]0

TXs′i ∪ TXs}.

The conditions given by Eq. 2 hold for both bidIDj, j ∈ {1, 2}, i.e.,

ptx∈[p2, p1] ∧ ∀j∈{1, 2},
∑

{tx∈Tt+1
bidIDj

}

qtx ≤ qj ,

where (pj , qj) is the price and quantity of (bidIDj :bidj)∈
⋃

i∈[t]0
BIDs′i ∪

BIDs. Note that bid1 is for buying and bid2 is for selling, hence, p2≤p1.
5. The generation slot bku′ .tGen=t+1, and the signatures (σT , σu′) are valid.

8 Bs is the user’s local input to solve the semanticized SGMAP, which may contain
residual bids given by chaint. Intuitively, the bid set BIDs in the newly generated
block should contain non-residual bids from Bs that are not included in chaint.

9 u′ and u may not share the same view of the blockchain, i.e., chain′t ̸=chaint.
10 We require valid blocks of slot t+1 only contain bids issued up to the end of slot t

to prevent on-the-fly bid issuance for artificially boosting block scores.

12

We say the PoBA is correct, if Verify(chaint||bku)=(1, sbk(bku)) for any valid
Bs and (chaint||bku)←Solve(chaint,Bs). The preparation of the input bid set Bs
and its validity will be clarified below. On a high level, and consistent with
our configurations (Section 3.1), each user can extract residual bids locally and
maintain a pool of bids (referred to as the “bidpool” Pool) based on their view of
the blockchain. However, to address practical constraints, such as limited block
sizes, we introduce an inherent parameter N∈N that imposes an upper bound
on the size of Bs ⊆ Pool, i.e., |Bs| ≤ N.

4.2 Bidpool Update and Validation

A bidpool is analogous to the mempool in conventional blockchain protocols,
with the difference that a bidpool stores bids instead of transactions. A user’s
bidpool is maintained by two aspects: (1) the user’s view of the blockchain, i.e.,
extracting the latest residual bids and removing them from the bidpool if their
residual quantity reaches 0; (2) the non-residual bids issued in previous slots but
not included in the user’s bidpool.

Concretely, for each user, at the beginning of slot t+1≥0, denote her bidpool
and her blockchain of slot t with Poolt and chaint (Pool−1=∅ and chain−1=bkG),
respectively. Moreover, we write the set that consists of bids in the second aspect.

Bt∆={(bidID:bid)|H(bid)=bidID ∧ bid.tGen≤t<bid.tExp ∧ (bidID:bid)/∈Poolt} (3)

Here, following the requirement in block verification (Verify in Construction 1),

the set Bt only collects bids with tGen≤t. For t=−1, we denote B−1∆={(bidID:bid)|
bid.tGen=− 1}, i.e., consisting of initial bids (Definition 1).

Then, the update algorithm UpdatePool(Poolt, chaint,B) outputs the bidpool
of slot t+1, i.e., Poolt+1. We specify UpdatePool in Algorithm 1. Finally, we say
Poolt+1 is valid w.r.t. chaint if there are no duplicates or conflicts, as formally
defined in Definition 8. Therefore, given chaint, any subset Bst+1 ⊆ Poolt+1 is
considered a valid input set for the PoBA scheme in slot t+1.

Definition 8 (Validity of Bidpools). Let Poolt+1 be a user’s bidpool in slot
t+1≥0, and let chaint=bkG|| . . . ||bkt be the valid blockchain in her view at the
beginning of slot t+1 (by Construction 1). Poolt+1 is valid w.r.t. chaint if the
following conditions hold for any (bidID:b)∈Poolt+1:

– b.p, b.q>0, and b.tGen≤t<b.tExp;
– If ∃(bidID:bid) ∈ chaint, b is identical to bid except with b.q is computed by

Eq. 1 concerning bid.q11;
– Otherwise, i.e., b is non-residual, H(b)=bidID and (b.σT , b.σu) are valid.

It is straightforward to see that, given any valid Poolt (w.r.t. any chaint−1),
a valid chaint, and Bt as defined by Eq. 3, the Poolt+1 obtained from UpdatePool
is valid w.r.t. chaint. This holds even when chaint deviates from chaint−1 (i.e.,

chaint⌈1 ̸=chaint−1) due to unsettled blockchain selection.

11 b.q=bid.q when the transaction set involving bidID (i.e., Tt
bidID) on chaint is empty.

13

Algorithm 1: In any t+1≥0, UpdatePool is parameterized by a bidpool
Poolt, a blockchain chaint, and a set of bids Bt given by Eq. 3.

// Parse chaint=bkG||bk0|| . . . ||bkt.
// For any i ∈ [t]0, recall bkiraw=(H(bki−1),BIDsi,TXsi).

1 function UpdatePool(Poolt, chaint,Bt);
2 if t=−1 then
3 Return Pool0=B−1 ;

// Pool−1 is empty, and no bids in chain−1.

4 else
5 Set Poolt+1=Poolt ∪ Bt ;

// Poolt ∩ Bt=∅ by definition.

6 for (bidID:bid)∈
⋃

i∈[t]0
BIDsi do

7 if (bidID:bid) /∈ Poolt+1 then
8 Add (bidID:bid) to Poolt+1 ;

// chaint may contain previously unnoticed bids.

9 end

10 end
// Note that Poolt+1 inherits residual bids from Poolt.
// To distinguish, denote with b∈{bid, rbid}.

11 for (bidID:b)∈Poolt+1 do
12 if b.tExp < t+1 then
13 Remove (bidID:b) from Poolt+1 ;
14 end

15 Let Tt
bidID={tx|tx=(bidID, ·, ptx, qtx)∈

⋃
i∈[t]0

TXsi} ;
// The case of tx=(·, bidID, ptx, qtx) follows identically.

16 Compute q′=b.q −
∑

tx∈Tt
bidID

qtx ;

17 if q′>0 then
18 Set b′=b, except with b′.q = q′ ;
19 else
20 Remove (bidID:b) from Poolt;
21 end

22 end
23 Return Poolt+1

24 end

4.3 Score-Based Blockchain Selection

Alongside correctness, the difficulty level is another crucial property for alter-
native PoW schemes, i.e., users must contribute enough computing power to
generate valid blocks. Otherwise, they may generate massive amounts of blocks
in a short time period so that the network fails to finalize on a chain of blocks.
In contrast, as in Section 3.2, finding a valid SGMAP solution (hence, a PoBA
block) does not require intensive computing power, i.e., no difficulty.

We tackle this difference by proposing a novel blockchain selection mecha-
nism that encourages users to compete using their blocks (w.r.t. scores). One
potential challenge arises when the overall bidpool size is insufficient, i.e., there

14

are not enough input bids to even reach the desired optimization difficulty of
the SGMAP. To mitigate this, we suggest issuing “dummy” bids in a publicly
verifiable manner, e.g., using verifiable random functions over outputs from a
publicly available randomness beacon. This approach may also facilitate the dy-
namic adjustment of the PoBA difficulty.

Concretely, since each user may generate and diffuse multiple valid blocks in
each slot, we utilize a directed tree (precisely, forest due to potentially missing
blocks) to store blocks locally. Our score-based selection requires honest users to
extend their block-tree with newly received blocks and select the highest-scored
branch on the tree as their blockchain, i.e., the highest-score rule. Hereby, we
further extend the score of blocks to branches to support this mechanism.

Starting with definitions, we first consider a master-tree at the end of slot
t≥0, denoted by mtreet, that contains all valid blocks generated (not diffused)
by users up to slot t. It is a directed tree with the genesis block bkG as the root.
Its vertices correspond to blocks, and edges correspond to the hash link between
blocks. As in graph theory: (1) vertex height is defined as the number of edges
from the vertex to the root; (2) tree height is defined as the number of edges in
the longest path from a leaf vertex to the root. Hence, mtreet is of height t+1,
and blocks are generated in the same slot if vertices in mtreet are of the same
height. Because we assume a rushing adversary controlling block diffusion (while
constrained by the bound δ as detailed in Section 2), honest users may only see
a part of the master-tree. Hence, a user’s view, denoted by treetu, is a sub-tree of
the master tree.

Definition 9 (Master-Tree and User-Tree). Let bkG be the genesis block.
For any ℓ≥0 and all i∈[n] where n≥1 is the number of users participating the
protocol in slot t∈[ℓ]0, let BKt

i={bk
t
i} denote the set of valid blocks generated

by user ui. Then, BKt=
⋃

i∈[n] BK
t
i denotes the set of all valid blocks gener-

ated in slot t by all users. The master-tree of slot ℓ is defined as mtreeℓ=(V,E)
where V=

⋃
t∈[−1. .ℓ] BK

t and E=
⋃

t∈[ℓ]0
{(bkt−1, bkt)|bkt.prevHash=H(bkt−1)}

with bk−1=bkG being the only element in BK−1. A user-tree of u, denoted by
treeℓu=(Vu, Eu), satisfies treeℓu⊆mtreeℓ.

Next, we define branches w.r.t. a given block-tree (master or user), which is
a chain of blocks (Definition 4).

Definition 10 (Branch on Tree). Let Gℓ=(V ℓ, Eℓ) be a block-tree (master or
user) of slot ℓ≥0. A branch is defined as brancht=bkG||bk0i1 || . . . ||bk

t
it (t≤ℓ) s.t.

brancht⊆Gℓ and the vertex represents bktit on Gℓ is a leaf vertex.

We later distinguish the notations of branch and chain by using brancht for an
arbitrary branch on a given block-tree, and chainℓ for the highest-scored branch.
Next, we define the score of branches by introducing an accumulating function
acc:N→R s.t. it takes as input the height of vertices on the given branch.

Definition 11 (Score of Branches and Highest-Score Rule). Let brancht⊆
Gℓ be a branch as in Definition 10 where ℓ≥0 and t∈[ℓ]0. Parse it with brancht=

15

bkG||bk0i1 || . . . ||bk
t
it . The score of brancht is defined as follows:

Sbrancht=

t∑
j=0

acc(t)·sbk(bkj). (4)

Therefore, our highest-score rule requires honest users with treeℓu to adopt the

blockchain that satisfies chainℓ
∆
=argmaxbrancht⊆treeℓu

Sbrancht .

It is important to note that block or branch scores may not be strictly or-
dered for certain scoring functions, e.g., the concrete example we provided for
implementation in Section 6. However, it is convenient to consider the hash value
of blocks or branches as a tiebreaker, e.g., with the lower one being preferred.

4.4 Protocol Description

The execution starts at time 0 slot index t=0, and the genesis block bkG, con-
taining public keys of initial users, is known to all users.

Considering our periodic auction model, each user u start their slot t+1≥0
following the instruction of the global clock T . Denote the view of u on her bid-
pool and user-tree at the end of slot t with Pooltu′ and treetu′ , respectively (where

Pool−1
u′ =∅ and tree−1

u′ ={bkG}). Note that due to our permissionless setting, umay
not participate in slot t. Hence, we use u′ as the subscript to emphasize that u
may obtain her bidpool and user-tree from another user. Moreover, we require
PoBA.Verify(branch)=(1, ·) for any branch⊆treetu′ , hence, the user can select her
blockchain chaintu′ following the highest-score rule (Definition 11). Denote u’s
view on the non-residual bid set with Bt

u (by Eq. 3).
The user first updates her bidpool by executing Poolt+1

u ←UpdatePool(Pooltu′ ,
chaintu′ ,B

t
u). She can then run PoBA.Solve on several Bs⊆Poolt+1

u instances, with
the inherent upper bound parameter s.t. |Bs|≤N, to obtain multiple block candi-

dates. Let BKt+1
u

∆
={bkt+1

u,j }j∈[ite] be the set of candidates where chaintu′ ||bk
t+1
u,j ←

PoBA.Solve(chaintu′ ,Bsj), and ite∈N is the maximum number of PoBA.Solve it-
erations. Note that ite is bounded by the computing power of the user and the
length of each slot. If the user is honest, she only diffuses the highest-scored can-

didate bk∗t+1
u

∆
=argmaxbkt+1

u,j ∈BKt+1
u

sbk(bk
t+1
u,j) with the corresponding blockchain

chaint+1
u

∆
=chaint−1

u′ ||bk
∗t+1
u .

Additionally, each user helps propagate other user’s blockchains. A significant
concern is the potential strain on network bandwidth. However, it is crucial for
our security analysis (as in Lemma 1) that users propagate, at a minimum,
their locally highest-scored blockchain in each slot. To reduce network traffic,
we propose that during each slot, users propagate a received blockchain only if
it surpasses their current highest-scored blockchain. Additionally, users should
avoid retransmitting identical information to prevent redundancy.

Finally, the update process of tree-view is specified with UpdateTree (Algo-
rithm 2). At the end of slot t+1, u is responsible for reporting her confirmed

16

blockchain chaint+1⌈τ
u ⊆treet+1

u , to the protocol w.r.t. a parameter τ (to be es-
timated in Section 5.2). The description of our protocol can be found in Ap-
pendix B, and discussions concerning the incentive model in Appendix C.

Algorithm 2: In any slot t+1≥0, UpdateTree is parameterized by a

user-tree treet+1 and a blockchain candidate chaint
′
.

1 function UpdateTree(treet+1, chaint
′
);

2 Parse treet+1 = {V,E};
// Verify the input blockchain candidate.

3 Run (b, ·)← PoBA.Verify(chaint
′
);

4 if b = 0 then
5 Return treet+1

6 else

// chaint
′
is valid with t′ = t+1.

// Parse chaint
′
=chaint+1=bkG||bk0|| . . . ||bkt||bkt+1.

7 for i ∈ [t]0 do
// Find the first block not in tree.

8 if bki−1 ∈ treet+1 and bki /∈ treet+1 then
9 Set V ′ = V ∪ {bkj}j∈[i. .t+1];

10 Set E′ = E ∪ {(bkj , bkj+1)}j∈[i−1. .t];
11 Return treet+1 = (V ′, E′)

12 end

13 end

14 end

5 Security Analysis

The first step of our analysis is to model the computation in the PoBA scheme.
We follow the approach similar to [5] under the universal sampler model [20].

5.1 Modeling the PoBA

Recall that PoW can be modeled by queries to the random oracle [16]. Extending
this methodology, we model the computation of the PoBA as queries to a mod-
ified universal sampler [5, 20], which is an “advanced” random oracle that can
sample from any given distribution. This approach abstracts away from concrete
algorithms and focus on the distribution of block scores instead. This modeling
choice is justified by the following observations: (1) for an appropriately chosen
scoring function, e.g., the linear combination of assigned quantities, the opti-
mization version of the SGMAP is proven to be NP-complete [29]; (2) users
need to sample an N-size bid set as the input to the PoBA from their bidpools

17

in which stochasticity arises due to the uncertainty in problem inputs [10]. We
will validate this approach with a concrete scoring function in Section 6.

Now, we show the definition of the modified universal sampler [5] and detail
the interaction between users and the universal sampler .

Definition 12 (The Modified Universal Sampler [5]). A universal sampler

consists of algorithms US
∆
=(Setup,Sample) that are performed as follows.

– Setup(1λ) takes the security parameter λ and outputs sampler parameters U;
– Sample(U, d, β) takes the parameters U, the program description d with a ran-

dom seed for the program to generate samples. It outputs induced samples pd.

We specify the program description above with d
∆
=(PoBA.Solve, sbk). In any

slot t+1≥0, a user u queries the universal sampler with β
∆
=(Poolt+1

u , chaintu; r
t+1
u)

(i.e., we write the randomness explicitly). Following the conventional modeling of
computational power [16,21], we assume that, in each slot, each user can make up
to q>0 queries to the universal sampler. This assumption derives from the limited
length of slots in the protocol, where each user can perform ite≤q executions of
PoBA.Solve per slot. The total number of queries in a slot is bounded above by
Q∈N, which includes less than f fraction from the adversary, i.e., QA<f ·Q. We
further clarify that the network or the adversary cannot delay queries, given that
it is local oracle access.

Then, we require the universal sampler to have the single property of ran-
domly sampling a block candidate bk s.t. its score sbk(bk) follows the distri-
bution D determined by the scoring function sbk(·). Denote the score space

with S∆
=sbk(BK), we have sbk(bk)

D←S. Moreover, the probability density func-
tion and the distribution function of D are denoted by f(·) and F (·) that satisfy
F (x)=Pr[X≤x]=

∫ x

smin
f(t)dt.

A Universal Sampler that Models PoBA.Solve

In any slot t+1 ≥ 0, run U←US.Setup(1λ). Let Lt+1
u = {(·, ·, ·, ·, ·)} be the

list kept by the universal sampler for user u, and let Ut+1 denote the set

of all users. We define U
∆
=
⋃

u∈Ut+1 Lt+1
u . The total size of lists is upper

bounded by Q∈N: |U|≤Q.
On a query (Poolt+1

u , chaintu, r
t+1
u) from u:

– If: there exists a tuple (Poolt+1
u , chaintu, r

t+1
u , bkt+1

u , sbk(bk
t+1
u))∈Lt+1

u ,
then, return (bkt+1

u , sbk(bk
t+1
u));

– Else if: |Lt+1
u |>q when u is honest or |U|>Q, then return ⊥;

– Else: return (bkt+1
u , sbk(bk

t+1
u)) ← US.Sample(U, (PoBA.Solve, sbk),

(Poolt+1
u , chaintu, r

t+1
u)) s.t. sbk(bk

t+1
u)

D←S, and add (Poolt+1
u , chaintu, r

t
u,

bkt+1
u , sbk(bk

t+1
u)) to Lt+1

u .

18

5.2 Persistence and Block-Liveness

Persistence and liveness [16] are the core properties of our protocol. For persis-
tence, we adopt a refined version from [11]. Whereas for liveness, it is derived
from two basic properties called chain growth and chain quality [16]. We observe
(1) chain growth follows from our slot-based execution setting (Section 2); and
(2) our score-based design eliminates the need of chain quality. That is, the chain
quality requires the fraction of adversarial blocks in a time interval to be on par
with the fraction of adversarial users. Otherwise, adversaries can exclude typical
transactions in their blocks, so the protocol cannot achieve liveness. However, in
our case, with a well-designed scoring function (concerning the underlying dou-
ble auction system), adversaries cannot gain advantages from such an attack as
it lowers the block score. Hence, the possibility of the adversarial blocks being
selected is lowered. Based on these observations, we define a “block-liveness”
property for our protocol instead of the conventional transaction liveness.

Definition 13 (Persistence and Block-Liveness). Formally, we define:

– Persistence: For any two honest users with blockchains chaint11 , chaint22 at slot
t1, t2≥0, respectively. Without loss of generality, let t1≤t2. Persistence with
parameter τ ∈ N indicates that chaint11 , is a prefix of chaint22 after removing

the rightmost τ blocks, i.e., chain
t1⌈τ
i ⊆ chaint22 ;

– Block-liveness: For any honest user with chaint in slot t≥0, block-liveness
states that for any i ∈ [t]0, chain

i is extended by exact one block.

In an honest user’s local block-tree, the persistence is proven by: (1) the
highest-scored branch of each slot will eventually be known to all honest users;
(2) the selected branches of different slots have a long enough common prefix.
If a block or branch is known to all honest users, it is disclosed. The δ-bounded
network guarantees that honestly generated blocks are always disclosed after δ
slots. The adversary is empowered to learn all generated blocks, thereby knowing
the master-tree in any given slot. However, we require the adversary to always
send the highest-scored blockchain of each slot to at least one honest user. This
assumption is made to rule out the possibility of a selfish mining attack, which
is particularly challenging to analyze due to its game-theoretic nature [2].

Assumption 1. Let A be the rushing adversary who holds the master-tree mtreet

of slot t≥0. For any i∈[t]0, if chaini=argmaxbranchi⊆mtreei Sbranchi , at least one

honest user receives chaini by the end of slot i.

Thereby, we have the following Lemma 1 (proof is in Appendix D).

Lemma 1. Given a δ-synchronous network, for any slot t≥0, if chaint⊆mtreet

is the highest-scored branch in t, chaint will be disclosed for any ℓ≥t+δ+1.

The knowledge of the highest-scored branches of each slot is not enough to
prove persistence. Even in the master-tree in which everything is known, given
two conjunctive slots, the highest-scored branches may be different from each
other, e.g., a high-but-not-highest-scored branch gets extended by an extremely

19

high-scored block so that the new branch is selected in the next slot. This sit-
uation causes the blockchain to be unstable and prevents honest users from
agreeing on the same blockchain. There are two types of persistence violations:
(1) the newly selected branch does not extend previously selected ones so that
consensus can get reset (Figure 1a); (2) the change of branch selection frequently
happens so that consensus cannot be settled (Figure 1b).

(a) A chain get substituted after se-
lected for multiple slots.

(b) Chains swing among branches over
conjunctive slots.

Fig. 1: Persistence Violations: Substitution and Swing. The circle denotes the
blocks on the branches, and the double circle denotes the branch being selected
as the highest-scored one.

The first case, we analyze the probability of existing any branch that de-
viates the selected chain for τ≥1 slots getting selected in slot t+1. We de-
note the chain selected in slot t with chaint=chaint⌈τ ||bkt−τ+1

c || . . . ||bktc, and

w.l.o.g., let brancht=chaint⌈τ ||bkt−τ+1
b || . . . ||bktb be a branch s.t. bkic ̸=bkib for all

i∈[t−τ+1. .t]. The violation indicates that there exists a block bkt+1
b that extends

brancht s.t. Sbrancht||bkt+1
b

>maxbkt+1
c

Schaint||bkt+1
c

where bkt+1
c denotes the block

candidates extending chaint. We conclude with Lemma 2 (proof in Appendix E).

Lemma 2. Let D be the score distribution determined by sbk(·). Let mtreet+1

be the master-tree of any slot t+1≥τ≥1. Assuming at least one honest user,
there exists an accumulating function acc(·) (Definition 11) s.t. the violation
case mentioned above occurs with probability less than O(c−τ) where c>1 is a
constant value given by acc(·).

The second violation occurs when the adversary finds the highest-scored block
in multiple conjunctive slots as honest users stick to the highest-scored branch.

Lemma 3. Given D and mtreet+1 the same as Lemma 2. Assuming the fraction
of adversarial computing power is f<1 (i.e., QA<f ·Q), chain swinging occurs
during τ≥1 conjunctive slots with probability O(fτ).

To prove this lemma, we remark that for any distribution, the probability of
the adversary finding the highest-scored block is upper bounded by its comput-
ing power fraction f . Finally, by Lemma 1 and by applying the Markov chain
approach to Lemma 2, 3, we have the theorem for persistence.

Theorem 1 (Persistence). Let c>1 be the constant value given by acc(·) and
f<1 be the fraction of adversarial computing power, the protocol parameterized
by τ≥δ + 1 satisfies persistence with probability 1− O(c−τ+δ + fτ−δ).

20

For completeness, we show Theorem 2. The proof is straightforward. Assume
the one honest user is unaware of any other blocks. She can trivially extend her
block-tree by generating blocks locally and selecting the blockchain accordingly.

Theorem 2 (Block-liveness). Assuming at least one honest user, the protocol
satisfies block-liveness unconditionally.

6 Implementation

The implementation is for the PoBA scheme using a concrete scoring function:
sbk(bk) =

∑
i,j pij · qij where (bidIDi, bidIDj , pij , qij)∈TXs is the transaction set

embedded bk. The code for PoBA and a functional network simulation for our
PoBA-based blockchain protocol can be found in the anonymous repository12.

Setup. Our implementation begins with an SGMAP under the given scoring
function, using a bid set of size N=5. We deliberately selected a small N to
shorten the solving time, as our primary focus is on validating the output dis-
tribution rather than the runtime. To solve this sub-problem, we utilized the
SLSQP solver from Python’s SciPy package [34]. Next, we prepared two bid sets
under different distributions: (1) Bids with uniformly distributed p∈(0, 1] and
q∈[1. .10]; (2) Bids with (normally distributed) p∼N (0.5, 0.01) and q∼N (5.5, 4),
which are further clipped (and rounded) to range (0, 1] (for p) and [1. .10] (for
q), respectively. Both sets are much larger than N to simulate the bidpool.

For the optimization process, we utilize two stochastic algorithms in con-
junction with the SLSQP solver: simulated annealing (SA) and stochastic local
search (SLS). In each iteration, these algorithms explore possible solutions by
moving elements in and out of the current sub-problem. To demonstrate the
solving process, our simulations run with a maximum of 100 iterations for each
algorithm. For large-scale experiments focusing on the score distribution, each
algorithm is set to 20 iterations to simulate the limited computing power and
shorten the solving time. We conduct the following two series of experiments: (1)
Optimization process visualization: Each algorithm (SA and SLS) is run once
on the uniformly distributed bids to visualize the score during 100 iterations;
and (2) Score distribution analysis: Each algorithm is run 5000 times on both
uniform and normal bid distributions, with each run limited to 20 iterations.

Visualization and analysis. The following figures visualize the score history
during 100 iterations using SA (Figure 2a) and SLS (Figure 2b). Both results
show noticeable fluctuations in block scores throughout the iterations, highlight-
ing the stochastic nature of finding the optimal PoBA solution w.r.t. the given
scoring function. Consequently, by requiring users in the PoBA scheme to adhere

12 https://anonymous.4open.science/r/poba-chain.

21

https://anonymous.4open.science/r/poba-chain

0 20 40 60 80 100
Iteration

0

5

10

15

20

25

Bl
oc

k
Sc

or
e

Total Score History
Best Score History

(a) Score history with the SA.

0 20 40 60 80 100
Iteration

2

4

6

8

10

12

14

16

18

Bl
oc

k
Sc

or
e

Total Score History
Best Score History

(b) Score history with the SLS.

5 10 15 20 25 30
Block Score

0

100

200

300

400

500

600

700

Nu
m

be
r o

f B
lo

ck
s

SA with Uniform Bids
SLS with Uniform Bids

(c) Uniform bids using SA and SLS.

10 12 14 16 18 20 22
Block Score

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f B
lo

ck
s

SA with Normal Bids
SLS with Normal Bids

(d) Normal bids using SA and SLS.

Fig. 2: Optimization process visualization and score distribution analysis.

to a generic enough stochastic solving algorithm, it becomes unlikely that any
single user will consistently dominate the block generation.

Next, we illustrate the results of the score distribution in Figure 2c and
Figure 2d, comparing different algorithms (SA and SLS) applied to uniformly
and normally sampled bids. We consider that our bid set simulates a user’s
bidpool, which should exhibit some consistency across the network. Although
slight shifts are observed in the results, the overall distribution of the best scores
remains stable. This stability arises from two key factors: (1) the scores naturally
align with the distribution defined by the scoring function; and (2) the resulting
distribution is influenced by the generalized extreme value (GEV) distribution
(according to the extreme value theory) as each trial involves multiple iterations
in our experiments. The stability in our results suggests that, given an input
bid distribution, a generic stochastic solving algorithm prevents any user from
gaining a significant advantage in finding higher-scored blocks, as the scores are
consistently shaped by both the scoring function and the GEV distribution.

The implementation results suggest that we can reliably focus on the score
distribution without overly concerned with specific settings, thereby validating
our use of the universal sampler model for the generic scoring function.

7 Final Remarks

We proposed a novel blockchain consensus protocol that can be applied to dou-
ble auction systems, hence having practical applications, i.e., peer-to-peer energy

22

trading. Our construction is somewhat similar to PoW, i.e., relying on computa-
tional power. However, it was repurposed for a more useful work, i.e., allocating
buy and sell bids. Concretely, we introduced a Scored Generalized Multiple As-
signment Problem, SGMAP, and semanticized the problem with our thoroughly
redesigned (to accommodate bidding and bid allocation) blockchain data struc-
ture. The resulting scheme is proof-of-bid-assignment (PoBA), the core compo-
nent of our proposed score-based blockchain protocol. Finally, we presented sig-
nificantly involved security analysis and experimental results to substantiate the
security. Concretely, we analyzed honest users’ local chain dynamics under our
score-based blockchain selection rule to prove persistence; and showed liveness
concerning a variant that focuses on block dynamics instead of transactions.

References

1. Badertscher, C., Ga zi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros chronos:
Permissionless clock synchronization via proof-of-stake. Cryptology ePrint Archive,
Report 2019/838 (2019), https://eprint.iacr.org/2019/838

2. Badertscher, C., Garay, J.A., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 34–65. Springer,
Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78375-8_2

3. Badertscher, C., Lu, Y., Zikas, V.: A rational protocol treatment of 51% attacks.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp.
3–32. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.1007/
978-3-030-84252-9_1

4. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case
assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS,
vol. 10991, pp. 789–819. Springer, Heidelberg (Aug 2018). https://doi.org/10.
1007/978-3-319-96884-1_26

5. Blocki, J., Zhou, H.S.: Designing proof of human-work puzzles for cryptocurrency
and beyond. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986,
pp. 517–546. Springer, Heidelberg (Oct / Nov 2016). https://doi.org/10.1007/
978-3-662-53644-5_20

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

7. Constantinides, T., Cartlidge, J.: Block auction: A general blockchain protocol for
privacy-preserving and verifiable periodic double auctions. In: Xiang, Y., Wang,
Z., Wang, H., Niemi, V. (eds.) 2021 IEEE Blockchain 2021, Melbourne, Aus-
tralia, December 6-8, 2021. pp. 513–520. IEEE (2021). https://doi.org/10.1109/
BLOCKCHAIN53845.2021.00078

8. Daian, P., Pass, R., Shi, E.: Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Heidelberg (Feb 2019). https:
//doi.org/10.1007/978-3-030-32101-7_2

9. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Hei-
delberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78375-8_3

23

https://eprint.iacr.org/2019/838
https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1007/978-3-030-84252-9_1
https://doi.org/10.1007/978-3-030-84252-9_1
https://doi.org/10.1007/978-3-030-84252-9_1
https://doi.org/10.1007/978-3-030-84252-9_1
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-662-53644-5_20
https://doi.org/10.1007/978-3-662-53644-5_20
https://doi.org/10.1007/978-3-662-53644-5_20
https://doi.org/10.1007/978-3-662-53644-5_20
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/BLOCKCHAIN53845.2021.00078
https://doi.org/10.1109/BLOCKCHAIN53845.2021.00078
https://doi.org/10.1109/BLOCKCHAIN53845.2021.00078
https://doi.org/10.1109/BLOCKCHAIN53845.2021.00078
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3

10. Dyer, M.E., Frieze, A.M.: Probabilistic analysis of the generalised assignment prob-
lem. Math. Program. 55, 169–181 (1992). https://doi.org/10.1007/BF01581197

11. Fitzi, M., Kiayias, A., Panagiotakos, G., Russell, A.: Ofelimos: Combinato-
rial optimization via proof-of-useful-work - A provably secure blockchain pro-
tocol. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol.
13508, pp. 339–369. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/
978-3-031-15979-4_12

12. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the ethereum
blockchain. In: Zohar, A., Eyal, I., Teague, V., Clark, J., Bracciali, A., Pintore,
F., Sala, M. (eds.) FC Workshop. LNCS, vol. 10958, pp. 265–278. Springer (2018).
https://doi.org/10.1007/978-3-662-58820-8_18

13. Galal, H.S., Youssef, A.M.: Trustee: Full privacy preserving vickrey auction on top
of ethereum. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.)
FC Workshop. LNCS, vol. 11599, pp. 190–207. Springer (2019). https://doi.org/
10.1007/978-3-030-43725-1_14

14. Galal, H.S., Youssef, A.M.: Publicly verifiable and secrecy preserving periodic auc-
tions. In: Bernhard, M., Bracciali, A., Gudgeon, L., Haines, T., Klages-Mundt, A.,
Matsuo, S., Perez, D., Sala, M., Werner, S. (eds.) FC Workshop. LNCS, vol. 12676,
pp. 348–363. Springer (2021). https://doi.org/10.1007/978-3-662-63958-0_29

15. Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol
design: Cryptography against incentive-driven adversaries. In: 54th FOCS. pp. 648–
657. IEEE Computer Society Press (Oct 2013). https://doi.org/10.1109/FOCS.
2013.75

16. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (Apr 2015). https://doi.org/
10.1007/978-3-662-46803-6_10

17. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 465–495. Springer,
Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-319-76581-5_16

18. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report
2017/454 (2017), https://eprint.iacr.org/2017/454

19. Górski, T., Bednarski, J.: Modeling of smart contracts in blockchain solution for
renewable energy grid. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A.
(eds.) 17th Computer Aided Systems Theory - EUROCAST 2019, Las Palmas de
Gran Canaria, Spain, February 17-22, 2019, Part I. LNCS, vol. 12013, pp. 507–514.
Springer (2019). https://doi.org/10.1007/978-3-030-45093-9_61

20. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg (Dec
2016). https://doi.org/10.1007/978-3-662-53890-6_24

21. Kamp, S.H., Magri, B., Matt, C., Nielsen, J.B., Thomsen, S.E., Tschudi, D.:
Weight-based nakamoto-style blockchains. In: Longa, P., Ràfols, C. (eds.) LAT-
INCRYPT 2021. LNCS, vol. 12912, pp. 299–319. Springer, Heidelberg (Oct 2021).
https://doi.org/10.1007/978-3-030-88238-9_15

22. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563,
https://doi.org/10.1145/359545.359563

24

https://doi.org/10.1007/BF01581197
https://doi.org/10.1007/BF01581197
https://doi.org/10.1007/978-3-031-15979-4_12
https://doi.org/10.1007/978-3-031-15979-4_12
https://doi.org/10.1007/978-3-031-15979-4_12
https://doi.org/10.1007/978-3-031-15979-4_12
https://doi.org/10.1007/978-3-662-58820-8_18
https://doi.org/10.1007/978-3-662-58820-8_18
https://doi.org/10.1007/978-3-030-43725-1_14
https://doi.org/10.1007/978-3-030-43725-1_14
https://doi.org/10.1007/978-3-030-43725-1_14
https://doi.org/10.1007/978-3-030-43725-1_14
https://doi.org/10.1007/978-3-662-63958-0_29
https://doi.org/10.1007/978-3-662-63958-0_29
https://doi.org/10.1109/FOCS.2013.75
https://doi.org/10.1109/FOCS.2013.75
https://doi.org/10.1109/FOCS.2013.75
https://doi.org/10.1109/FOCS.2013.75
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1007/978-3-319-76581-5_16
https://eprint.iacr.org/2017/454
https://doi.org/10.1007/978-3-030-45093-9_61
https://doi.org/10.1007/978-3-030-45093-9_61
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-030-88238-9_15
https://doi.org/10.1007/978-3-030-88238-9_15
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563

23. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176, https://doi.org/10.1145/357172.357176

24. Liu, B., Yang, Y., Wang, R., Hong, Y.: Poster: Privacy preserving divisible double
auction with A hybridized tee-blockchain system. In: 41st IEEE ICDCS 2021,
Washington DC, USA, July 7-10, 2021. pp. 1144–1145. IEEE (2021). https://
doi.org/10.1109/ICDCS51616.2021.00128

25. Liu, L., Du, M., Ma, X.: Blockchain-based fair and secure electronic double auction
protocol. IEEE Intell. Syst. 35(3), 31–40 (2020). https://doi.org/10.1109/MIS.
2020.2977896

26. Ma, X., Xu, D., Wolter, K.: Blockchain-enabled feedback-based combinatorial dou-
ble auction for cloud markets. Future Gener. Comput. Syst. 127, 225–239 (2022).
https://doi.org/10.1016/J.FUTURE.2021.09.009

27. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (Aug
2003). https://doi.org/10.1007/978-3-540-45146-4_6

28. Nguyen, T.D.T., Thai, M.T.: A blockchain-based iterative double auction proto-
col using multiparty state channels. CoRR (2020), https://arxiv.org/abs/2007.
08595

29. Park, J.S., Lim, B.H., Lee, Y.: A lagrangian dual-based branch-and-bound algo-
rithm for the generalized multi-assignment problem. Manage. Sci. 44(12), 271–275
(dec 1998)

30. Pass, R., Seeman, L., shelat, a.: Analysis of the blockchain protocol in asynchronous
networks. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS,
vol. 10211, pp. 643–673. Springer, Heidelberg (Apr / May 2017). https://doi.
org/10.1007/978-3-319-56614-6_22

31. Pass, R., Shi, E.: Thunderella: Blockchains with optimistic instant confirmation. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821,
pp. 3–33. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/

978-3-319-78375-8_1

32. Roussas, G.: An introduction to probability and statistical inference, pp.
207–243. Elsevier, Academic Press (12 2015). https://doi.org/10.1016/

B978-0-12-800114-1.00006-8

33. Thakur, S., Breslin, J.G., Malik, S.: Privacy-preserving energy trade using double
auction in blockchain offline channels. In: Prieto, J., Mart́ınez, F.L.B., Ferretti,
S., Guardeño, D.A., Nevado-Batalla, P.T. (eds.) 4th IEEE BLOCKCHAIN 2022,
L’Aquila, Italy, 13-15 July 2022. Lecture Notes in Networks and Systems, vol. 595,
pp. 289–302. Springer (2022). https://doi.org/10.1007/978-3-031-21229-1_27

34. Virtanen, P., et al.: SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods 17(3), 261–272 (2020). https://doi.org/10.1038/
s41592-019-0686-2, https://www.nature.com/articles/s41592-019-0686-2

35. Wongsamerchue, T., Leelasantitham, A.: An electronic double auction of prepaid
electricity trading using blockchain technology. J. Mobile Multimedia 18(6), 1829–
1850 (2022). https://doi.org/10.13052/JMM1550-4646.18616

36. Zhang, S., Miao, P., Wang, B., Dong, B.: A privacy protection scheme of microgrid
direct electricity transaction based on consortium blockchain and continuous dou-
ble auction. IEEE Access 7, 151746–151753 (2019). https://doi.org/10.1109/
ACCESS.2019.2946794

25

https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/ICDCS51616.2021.00128
https://doi.org/10.1109/ICDCS51616.2021.00128
https://doi.org/10.1109/ICDCS51616.2021.00128
https://doi.org/10.1109/ICDCS51616.2021.00128
https://doi.org/10.1109/MIS.2020.2977896
https://doi.org/10.1109/MIS.2020.2977896
https://doi.org/10.1109/MIS.2020.2977896
https://doi.org/10.1109/MIS.2020.2977896
https://doi.org/10.1016/J.FUTURE.2021.09.009
https://doi.org/10.1016/J.FUTURE.2021.09.009
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://arxiv.org/abs/2007.08595
https://arxiv.org/abs/2007.08595
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-78375-8_1
https://doi.org/10.1007/978-3-319-78375-8_1
https://doi.org/10.1007/978-3-319-78375-8_1
https://doi.org/10.1007/978-3-319-78375-8_1
https://doi.org/10.1016/B978-0-12-800114-1.00006-8
https://doi.org/10.1016/B978-0-12-800114-1.00006-8
https://doi.org/10.1016/B978-0-12-800114-1.00006-8
https://doi.org/10.1016/B978-0-12-800114-1.00006-8
https://doi.org/10.1007/978-3-031-21229-1_27
https://doi.org/10.1007/978-3-031-21229-1_27
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://doi.org/10.13052/JMM1550-4646.18616
https://doi.org/10.13052/JMM1550-4646.18616
https://doi.org/10.1109/ACCESS.2019.2946794
https://doi.org/10.1109/ACCESS.2019.2946794
https://doi.org/10.1109/ACCESS.2019.2946794
https://doi.org/10.1109/ACCESS.2019.2946794

A Auxiliary Definitions

This section provides supplementary definitions and descriptions.

A.1 Digital Signatures Scheme

The algorithms in a signature scheme SIG=(KGen,Sign,Verify) works as follows.

– KGen(1λ) takes as input λ and outputs a key pair (sk, pk);
– Sign(sk,m) takes as input the secret key sk and a message m. It outputs a

signature σ on m under sk;
– Verify(pk,m, σ) takes as input the public key pk, the message m and the

signature σ. It outputs 1 if the signature is valid and 0 otherwise.

The correctness and the existential unforgeability under adaptive chosen mes-
sage attacks (EUF-CMA) are defined as follows.

Definition 14 (Correctness). A signature scheme satisfies correctness, if for
any λ > 0 and (sk, pk)← KGen(1λ): Pr [Verify(pk,m,Sign(sk,m)) = 1] = 1.

Definition 15 (EUF-CMA). A signature scheme satisfies EUF-CMA, if for
any adversary that has access to a signing oracle OSign(sk, ·) with queries m ∈ Q,
the following probability is negligible of λ for any λ > 0 and (sk, pk)← KGen(1λ):

Pr
[
(m∗, σ∗)← AOSign(pk)|m∗ /∈ Q ∧ Verify(m∗, σ∗, pk) = 1

]
.

A.2 The Diffuse Functionality

Based on [9, 16], we describe the delayed diffuse functionality tailored to our
protocol setting (recall Section 2). The functionality is parameterized by δ∈N and
denoted by DDiffuseδ. It keeps rounds, executing one round per slot. DDiffuseδ
interacts with the environment Z, users in slot t≥0, i.e., ui for all i∈[nt], and
an adversary A. It works as follows in each round:

– DDiffuseδ maintains a RECEIVE(i) string defined for each user ui. A user ui, if
activated, is allowed to fetch the contents of her personal RECEIVE(i) string at
any time. Moreover, users can instruct the functionality to diffuse a potentially
empty message m. Activated users are allowed to diffuse once in a round;

– When the adversary is activated, it is allowed to: (1) Read all RECEIVE(·);
(2) Read all diffuse requests and deliver messages to their corresponding
RECEIVE(·) in any order it prefers; (3) For any message m obtained from a dif-
fuse request and any user ui, A can move m into a special string DELAYED(i)
instead of RECEIVE(i);

– At the end of each round, DDiffuseδ ensures that any message to ui that was
either (1) diffused in this round and not put to DELAYED(i); or (2) removed
from the string DELAYED(i) in this round and delivered to RECEIVE(i). More-
over, if any message currently present in DELAYED(i) was originally diffused
at least δ slots ago, then DDiffuseδ removes it from DELAYED(i) and appends
it to RECEIVE(i);

– Upon receiving a create instruction from Z with a user-tree tree, DDiffuseδ
spawns a new user with tree as her local tree and informs her with (nt, ft, δ).

26

B Formal Protocol Description

The PoBA-Based Blockchain Protocol Π
n,δ,k,τ,sbk(·),acc(·)
T ,PoBA,UpdatePool,UpdateTree

In each slot t+1≥0 given by the global clock T , the protocol Π is ex-
ecuted by n users (with honest majority). We assume δ is the known
network delay and k∈[0, 1] is a constant that determines the auction
price. Given a generic scoring function sbk(·), an accumulating pa-
rameter function acc(·), the PoBA scheme PoBA, and the algorithms
(UpdatePool,UpdateTree), instructions for an honest user u with an tuple
output from slot t, i.e., (Pooltu′ , tree

t
u′ ,B

t
u), are as follows.

– Select local blockchain: chaint
∆
=argmaxbrancht⊆treet

u′
Sbrancht ;

– Update bidpool: Run Poolt+1
u ←UpdatePool(Pooltu′ , branch

t,Bt
u) for

each brancht ⊆ treetu′ s.t. Pool
t+1
u is valid w.r.t. chaint;

– Generate block candidates: chaint||bkt+1
u,j ←PoBA.Solve(chaint,Bsj)

where Bsj⊆Poolt+1
u and |Bsj |≤N s.t. BKt+1

u
∆
={bkt+1

u,j }j∈[ite];

– Diffuse the best candidate: Let the best block candidate bk∗t+1
u

∆
=

argmaxbkt+1
u,j ∈BKt+1

u
sbk(bk

t+1
u,j) and diffuse chain∗t+1

u
∆
=chaint||bk∗t+1

u ;

– Update user-tree: treet+1
u ←treetu′ , and for each valid chain′t+1 re-

ceived in slot t+1, treet+1
u ←UpdateTree(treet+1

u , chain′t+1);

– Collect new bids: Collect valid bids to Bt+1∆={(bidID:bid)|H(bid) =
bidID ∧ bid.tGen ≤ t+1 < bid.tExp ∧ (bidID:bid) /∈ Poolt+1

u };
– Report confirmed ledger: When queried by the protocol Π, select

chaint+1
u

∆
=argmaxbrancht+1⊆treet+1

u
Sbrancht+1 and output chaint+1⌈τ

u .

C Discussion: Incentive Model and Rational Analysis

Our security analysis (Section 5) is based on assumptions of the fraction of
adversarial users and their behaviors. Note that this work does not analyze
the reasons behind these assumptions based on users’ rationality as in [2, 3, 15].
Instead, we present an intuition of the hardness of our rational analysis here.

Like conventional blockchain protocols, there are two layers of incentive: in-
herent (e.g., transaction fee) and explicit (e.g., block reward). The inherent in-
centive in our case derives from where users can tweak transactions to benefit
themselves, e.g., assigning higher buy prices for their sell bids or lower sell prices
for their sell bids. However, prioritizing their own bids in the solving algorithm
will potentially sacrifice the block scores. Hence, their blocks may fail to be se-
lected in the confirmed blockchain. The trade-off between this inherent reward
and the scarification of block scores requires a case-by-case analysis with respect
to concrete scoring functions.

27

It is even more complicated to consider explicit incentives. A well-chosen
scoring function and our highest-score rule will impose the selected blockchain
to benefit the underlying double auction system. Hence, as long as the rushing
adversary cannot disturb consensus (proven with respect to persistence and live-
ness), we regard our protocol as secure. However, in practice, the computation in
the PoBA can be unfair so that some users may dominate the block generation.
Explicit incentives, like block rewards, will intensify this unfairness.

Moreover, as pointed out by [15], the reason of honest users following protocol
instruction is also a crucial aspect for rational analysis, which, unfortunately,
is unclear for our protocol13. Recall that we inherently assume that users in
the PoBA will compete with each other for higher-scored blocks. An instant
deficiency caused by replacing honest users with rational agencies is that rational
agencies will generate blocks embedding random (but valid) transaction sets to
save computing power. Then, even under our highest-score rule, the selected
blockchain is far from meaningful for the underlying double auction system.

Therefore, we deliberately leave the design of the incentive model and rational
analysis as future work.

D Proof of Lemma 1

We prove Lemma 1 as follows.

Proof. Consider the rightmost block on chaint=bkG|| . . . ||bkt. If bkt is generated
by an honest user, it will be disclosed after δ slots by the network setting.
Otherwise, by Assumption 1, at least one honest user receives bkt in slot t.
Because chaint is the highest-scored branch in mtreet, and the user’s block-tree
is a sub-graph of mtreet, the user will also adopt chaint as her highest-scored
branch of slot t. Then, she (honest) will generate a block atop it in slot t+1.
Therefore, for any ℓ≥t+ δ + 1, chaint is disclosed.

E Proof of Lemma 2

We prove Lemma 2 as follows.

Proof of Lemma 2. For τ=1, let brancht+1
c =chaint−1 ||bktc||bk

t+1
c and branch∗t+1

b

=chaint−1||bk∗tb ||bk
∗t+1
b be two branches in slot t+1 where chaint−1, chaint−1||bktc

are the selected blockchains in slot t−1 and t. If a particular branch∗t+1
b substi-

tutes brancht+1
c (i.e., branch∗t+1

b gets selected), we write the probability with
Pr[τ=1, branch∗t+1

b] as follows (the subscript of the scoring function is omitted).

Pr[τ=1, branch∗t+1
b] = Pr[s(bktc)− s(bk∗tb)≥0,

c0,1·(s(bktc)− s(bk∗tb)) + (s(bkt+1
c)− s(bk∗t+1

b))≤0] (5)

13 The solution may not be as simple as granting block rewards.

28

Here, we consider a constant value given by the accumulating function, i.e.,

c0,1=
acc(t)

acc(t+1) . Denote random variables that represents the scores of the tuple

(bktc, bk
∗t
b , bkt+1

c , bk∗t+1
b) with (Xt

c , X
t
b, X

t+1
c , Xt+1

b). Then, write the subtraction
of scores with Y t=Xt

c − Xt
b and Y t+1=Xt+1

c − Xt+1
b . Following the universal

sampler model, (Xt
c , X

t
b, X

t+1
c , Xt+1

b) are independent and follow the same dis-
tribution DX=D on [smin, smax]. Hence, Y t and Y t+1 are independent, and
distributed identically and symmetrically on [smin−smax, smax−smin]. We de-
note the distribution of Y t and Y t+1 with DY , and let fY (·) and FY (·) be the
probability density function and the distribution function of DY . Therefore, the
probability Pr[τ=1, branchb] can be rewritten in the form of random variables

Pr[(Y t≥0)∧c0,1·Y t + Y t+1≤0)]. (6)

Consider the event: {Y t=y∧Y t+1≤−c0,1y} for all y∈[0, smax−smin]. For sim-
plicity, we rewrite r=smax−smin. By Y t being independent of Y t+1, we have
Eq. 6=

∫ r

0

∫ −c0,1y

−r
fY (y)fY (x)dxdy. Then, we can estimate the upper bound with

a trick that scales up fY (·) with two coefficients c1, c2 > 0,

fY (y)

{
≤c1·e−c2·y2

, if y ∈ [−r, r];
=0, otherwise.

(7)

Note that fY (y) is a probability density function, hence, it satisfies
∫ r

−r
fY (y)

dy=1. Then, for c1, c2, we have the estimation:
∫∞
−∞ c1·e−c2·y2

dy≥1, which is

c21/c2≥π−1. The manipulation of inequality gives us that:

Eq. 6≤
∫ ∞

0

∫ −c0,1y

−∞
e−y2

·e−x2

dxdy=
c1

2

2c2
· tan−1

(
1

c0,1

)
≤ c1

2

2c2·c0,1
.

That is, Pr[τ=1, branch∗t+1
b]≤c12/(2c2·c0,1) for any c1, c2≥0, c21/c2≥π−1 where

c0,1=
acc(t)

acc(t+1) .

Next, the probability for any brancht+1
b , denoted by Pr[τ=1], should consider

a joint event, i.e., let q be the number of possible brancht+1
b . Recall that Q is the

upper bound of the total number of queries in each slot. Hence, q≤Q. Finally,

for τ=1, we have Pr[τ=1]≤1−
(
1− c21

2c2·c0,1

)Q
.

The case of τ > 1 follows the same methodology of τ=1. Consider a branch
that satisfies branchtb ∩ chaint = chaint⌈τ . Denote the distinct blocks on branchtb
with bkib for i∈[t−τ+1. .t], and the blocks on chaint with bkic for i∈[t−τ+1. .t].
For the new blocks generated in slot t+1, denote them with bkt+1

b for branchb
and bkt+1

c for branchc (i.e., chain
t||bkt+1

c is no longer the highest-scored branch,
hence restated as brancht+1

c). By rewriting Eq. 6, the probability of brancht+1
c

substituted by a particular branch∗t+1
b , denoted by Pr[τ>1, branch∗t+1

b], is:

Pr

 ∧
i∈[t−τ+1. .t]

 i∑
j=t−τ+1

acc(j)

acc(i)
·Y j≥0

∧(t+1∑
i=t−τ+1

acc(i)

acc(t+1)
·Y i≤0

) .

(8)

29

Here, Y i = Xi
c−Xi

b for all i∈[t−τ+1. .t] are independent and distributed identi-
cally withDY on [smin−smax, smax−smin]. Note that we normalize the coefficient

of the last Y in the sum with acc(j)
acc(i) (when j=i) and acc(i)

acc(t+1) (when i=t+1). For

simplicity, we rewrite acc(j)
acc(i) with c(j, i), hence c(i, i)=1, and we have (r1=0):

Eq. 8 =

∫ r

r1

· · ·
∫ r

rτ

Πt
i=t−τ+1 Pr[Y

i=yi]·Pr

[
Y t+1≤−

t∑
i=t−τ+1

c(i, t+1) · yi

]
dyτi

=

∫ r

r1

· · ·
∫ r

rτ

Πt
i=t−τ+1fY (yi)·FY

(
−

t∑
i=t−τ+1

c(i, t+1)·yi

)
dyτi

=

∫ r

r1

· · ·
∫ r

rτ

∫ −
∑t

i=t−τ+1 c(i,t+1)·yi

−r

Πt
i=t−τ+1fY (yi) · fY (x)dxdyτi . (9)

We denote the lower bound of random variable Y t−τ+i for any i∈[1. .τ] as ri.

Hence ri=−
∑i

j=t−τ+1 c(j, i)·yj . Here, we use a small trick to scale Eq. 9. Note
that ri is not necessarily larger than 0. We scale yt−τ+i down to −r for all

i ∈ [1. .τ]. Then, the upper bound of Y t+1 is Y t+1≤r̃τ+1
∆
=−c(t−τ+1, t+1)yt−τ+1

+ r·
∑τ

j=2 c(t−τ+j, t+1). By
∫ r

−r
fY (yt−τ+i)dyt−τ+i ≤ 1 for any i ∈ [1. .τ], we

have:

Eq. 9 ≤
∫ r

0

∫ r̃τ+1

−r

fY (yt−τ+1)fY (x)dxdyt−τ+1. (10)

Finally, utilizing the same trick for fY (·) as in Eq. 7, we have:

Eq. 10 ≤= c1
2

c2
· tan−1

(
1

c(t− τ + 1, t+1)−
∑τ

j=2 c(t− τ + j, t+1)

)

In order to obtain a similar result as the case of τ = 1, i.e., Pr[τ>1, branch∗t+1
b]≤

c1
2

c2·c(t−τ+1,t+1) , we need to further scale the sum formula to a higher-order in-

finitesimal of c(t − τ + 1, t+1), which can be achieved when setting acc(t)=ct

and c > 2. In this situation, for any c1, c2≥0 and c21/c2 ≥ π−1, the probability
for any brancht+1

b concerning our universal sampler model is:

Pr[τ > 1] ≤ 1−
(
1− c21

c2 · c(t−τ+1, t+1)

)Q

Combining the discussion above, we consider a constant value c > max{2, c21
c2
}

for acc(t)=ct. Then, Pr[τ≥1]≤1−
(
1− c21

c2·c−τ

)Q
is of the same order as Q·c−τ .

Since we only use the upper bound of total queries to the universal sampler
instead of honest queries, our conclusion holds even there is at least one honest
user. Finally, we conclude the first violation case occurs with probability O(c−τ).

30

F PoBA, but in the Weight-Based Framework

The core idea of blockchain consensus based on proof-of-work (PoW) schemes
is that valid solutions to the PoW puzzle (w.r.t. a difficulty threshold) are hard
to find. Hence, blocks embedding such solutions are sparse, ensuring that each
valid block has enough time (longer than the network delay) to be finalized.
The average time between blocks, determined by the threshold, is referred to as
the block time, which must be set to a worst-case value to prevent the situation
where there are unfinalized blocks. However, this setting significantly burdens
the network throughput.

To tackle the issue above, a weight-based PoW framework [21] is proposed,
where solutions are assigned continuous weights instead of binary ones: 0 when
below the threshold; or 1 when meeting the threshold. Similar to the conventional
PoW, it remains hard to find a heavy solution. The trick is that, users can submit
solutions that do not surpass the threshold when finding one takes too long,
offering them a chance to be selected and extend the blockchain.

In particular, the authors proposed a “capped exponential weight function”
that amplifies the weight of each solution (hence, block) exponentially based on
its relevance with the threshold. Although this leads to a different consensus
mechanism, the exponentiation shares a similar design philosophy with the ac-
cumulating function used in our highest-score-based blockchain selection, where
settled blocks on the chain receive an exponential amplification of their scores.

Considering that: (1) our analysis focuses on the score distribution of the
scoring function; and (2) there are transformation functions [32] that can modify
the distribution of random variables. Therefore, it raises the following question:

Can we integrate PoBA into the weight-based consensus framework
by transforming the scoring function?

Concretely, given a hash function H : {0, 1} → {0, 1}λ, a threshold T, and a
constant value c (which controls the increase rate of the weight function, i.e., a
higher c makes the function closer to the form of binary weights), the normalized
capped exponential weight function w : {0, 1}λ → [0, 1] is defined as follows.

w(h)
∆
=

{
e(h−T−1)c, if h ≤ T;

1, otherwise.

Thus, the probability density function of the weight distribution Dw, defined by
w(·), can be expressed as Pr[X = h] = w(h) where X is the random variable
representing the weight of hash values.

Note that the part on the left of the threshold follows an exponential distri-
bution. Then, the problem above can be divided into two parts: For any scoring
function, (1) is there a transformation function that can modify the score dis-
tribution to an exponential distribution? (2) how should the threshold in the
PoBA scheme (w.r.t. the scoring function) be determined?

31

Unfortunately, there is no generic transformation that can convert arbitrary
distributions into an exact exponential distribution. However, by applying in-
verse transformations, such as Y = 1/|X| , we can generate approximately
exponential-like distributions from various baseline distributions, such as uni-
form (which results in an exact exponential distribution) and normal distribu-
tions. Further research is required to assess the applicability of these exponential-
like distributions within the context of a weight-based consensus framework.

As for the second question regarding how to determine the threshold in the
PoBA scheme for a given scoring function, this remains challenging. Unlike hash
functions, which have a clearly defined range, {0, 1}λ, the range of a scoring
function depends heavily on its input set, making it difficult to choose an ap-
propriate threshold in advance. However, we suggest that for scoring functions
with simpler structures, it may be possible to establish a reasonable threshold
based on the properties of the input set.

32

	Double Auction Meets Blockchain: Consensus from Scored Bid-Assignment

