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Abstract. Many central banks, as well as blockchain systems, are looking into distributed versions
of interbank payment systems, in particular the netting procedure. When executed in a distributed
manner this presents a number of privacy problems. This paper studies a privacy-preserving netting
protocol to solve the gridlock resolution problem in such Real Time Gross Settlement systems. Our
solution utilizes Multi-party Computation and is implemented in the SCALE MAMBA system, using
Shamir secret sharing scheme over three parties in an actively secure manner. Our experiments show
that, even for large throughput systems, such a privacy-preserving operation is often feasible.

1 Introduction

Real Time Gross Settlement systems (RTGS systems for short) consist of fund transfer systems that
permit banks to exchange transactions, where debiting the funds from the account of the source to
credit them to the account of the destination (Settlement) is performed immediately (Real Time) if
enough funds are available from the account of the source. The settlement of transactions happens
individually (Gross), that is, the funds move (in electronical form as opposed to physical form)
every time a transaction is performed.

RTGS systems are nowadays widely adopted as they reduce the risks associated with high-
value payment settlements between participants. However, the immediate settlement of transactions
increases the liquidity requirements for the participants, and as a consequence, banks will be exposed
to the risk of not being able to settle transactions due to the lack of liquidity, and therefore settling
their transactions will be postponed. This delay comes with a cost for both sources and destinations,
especially for time-critical payments if they are not settled in due time. Moreover, such disturbances
in the system may lead to gridlock situations, where a set of transactions cannot be settled as each
transaction is waiting for another one to be settled (see Section 2).

To address such a situation, the parties involved could inject more liquidity into the system,
but this comes with a cost if the additional liquidity was borrowed. Alternatively, Liquidity Saving
Mechanisms (LSM for short) [GS10] can be employed, such as multilateral netting, which consists of
simultaneously offsetting multiple transactions, to result in a single net position for the participants
involved. This will eventually permit the unblocking some of the pending transactions if the net
positions of the respective sources are positive. This process is generally carried out by a central
entity, as RTGS systems are traditionally managed by the central banks of countries. That is, each
country has its own RTGS system, but we may also have a shared RTGS system between more
than one country, as the Target 2 system [ECB] operated by the Eurosystem.

Running the RTGS requires the central entity in charge to have sight over the balances of
the participants as well as all payment instructions, which includes the source, destination, and
the amount being transferred. Thus, this entity is trusted to preserve the confidentiality of this
information. As a result, participants might be skeptical about submitting all their transactions to
the RTGS. In order to eliminate this need for having a trusted entity, one could decentralize the
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RTGS system, by permitting the participants to exchange transactions, without having to disclose
them to a central entity.

However, designing such an RTGS gives rise to three main challenges, namely how to guarantee
(i) Correctness: while settling a transaction, the amount debited from the source is the same as the
amount transferred to the destination; (ii) Fairness: The LSM process implemented should not favor
a participant over the others. (iii) Privacy: Account balances and payment amounts, and possible
source and destination identities should be kept private to the respective banks. These requirements
are easy to achieve in a centralized system, as all the transactions are visible to the trusted central
entity in charge of the RTGS, but in a decentralized payment system, one would expect that these
tasks become a burden. In fact, one could imagine a fully decentralized solution where in the case
of a gridlock, each participant notifies the banks it is planning to send transactions to (with the
respective amounts), and based on this, each participant would determine the expected balance it
would hold. Then each participant removes transactions from its queue till the expected balance
becomes positive, and notifies the corresponding receivers about the deleted transactions. This will
allow the participants to resolve the gridlock situation without the interference of a third party, but
does not necessarily address the aforementioned challenges, particularly the privacy guarantee, as
the participants cannot move forward from the gridlock situation, until all participants confirm that
they have a positive balance, and this obviously depends on the transactions they are exchanging.
Thus, it may occur that correlations can be drawn over the sender and receiver of a transaction,
from the sequence of the parties that signal having a negative balance. It is thus not trivial how to
construct a protocol that avoids such leakages, without introducing heavy computation that would
make the RTGS impractical.

In this paper, we propose a Multi-Party Computation (MPC for short) based solution to perform
the liquidity optimization for decentralized RTGS systems. In particular, we show that the task of
managing the RTGS system can be assigned to a set of p entities, that will obliviously settle the
incoming transactions, and update the (private) balances of the parties involved. The payments
instructions and balances will remain hidden as long as less than t+ 1 of these entities collude.

We show that these p entities will be capable of obliviously running the multilateral netting
process. For this purpose, we distribute the gridlock resolution algorithm of [BS01] (See Section 2),
providing three main versions : (i) sodoGR where the amount being transferred in transactions is
held secret, while the source and the destination are revealed to the p entities; (ii) sodsGR where the
amount and the source are secret whereas the destination is revealed to the p entities; (iii) ssdsGR
where the source, destination, and the amount are all held secret;

We implemented our algorithms using the SCALE MAMBA framework [ACK+21], with p = 3
and t = 1, and we simulated an RTGS system running over time using the three aforementioned
versions of gridlock resolution. For our simulation, we generated transactions drawn from a distri-
bution similar to what is seen in real life. For one variant of our clearing methodology we found
that, in the sodoGR and sodsGR cases, that transactions could be cleared in effectively real time,
with no delay due to the secure nature of the processing. Only in the case of ssdsGR that we find
a significant delay being introduced, which depends on the number of banks, the number of trans-
actions per hour, and the overall liquidity within the system. In this case, we also allow a small
amount of information leakage, since removing this leakage would cause an even greater delay being
introduced.

Prior usage of MPC in financial applications has mainly focused on auctions, such as [BDJ+06,
BCD+09, PRST08, BHSR20], for one shot auctions, and [CST19, CSA20, ABPV20] for auctions
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running in Dark Markets. MPC was also used for privacy-preserving financial data analysis, such
as [BTW12] to conduct statistics over the performance of companies throughout the year or to
compute the systemic risk between financial institutions such as in [AKL11] and [HFT20]. Also,
[SvA+19] and [CSA21] used MPC for detecting fraud between financial institutions, and [BP20]
used MPC for privacy- preserving federated learning for financial applications.

Driven by the motivation of removing the central entity, various blockchain projects have also
investigated the feasibility of a decentralized RTGS using blockchain combined with smart con-
tracts, for example, the Jasper [CaSHMM], Ubin [Mon] and Stella [Eur] projects, In [WXF+18] the
authors provide a blockchain based solution, however it still relied on a central entity that checks
the correctness of the multilateral netting process. In addition, while the source, destination, and
amount of every transaction are hidden, the net positions during the multilateral netting process
are revealed. Moreover, the multilateral process being an expensive operation is only executed
whenever a pending transaction approaches its due time (if any).

More recently, another blockchain-based work was proposed in [CYD+20], which is the work
most closely related to ours. In [CYD+20] homomorphic Pedersen commitments and Zero-knowledge
proofs are used to remove the need of a central entity, as well as the need to reveal the net
positions during the multilateral netting process. However, the basic protocol reveals the source
and destination of every transaction. Hiding them is possible, but it would induce a factor of n to the
cost of the protocol, where n is the number of participants in the RTGS. In addition, the protocol
would still suffer from the issue described earlier about participants inferring correlations between
senders and receivers, from the expected balances of the participants during the multilateral netting
process.

The paper [CYD+20] does not provide any concrete runtimes, but simply gives execution times
of the underlying cryptographic primitives. In comparison to our algorithm, with 100 banks and
9000 transactions, and a liquidity measure of β = 0.1 (see Section 4) one would need to execute
approximately 1697 gridlock computations per hour. Our solution could achieve this with a delay
of zero seconds, assuming we only secure the values and not the source and destination addresses.
The algorithm in [CYD+20] would require around 63 minutes to process the transactions, and thus
is not real time even with these relatively modest transaction levels.

2 Preliminaries

2.1 The Gridlock Resolution Problem

For a pictorial description of the problem see Fig. 1 and Fig. 2. The problem is to decide on
a multilateral netting which will result in transactions being settled when this is possible. Such a
multilateral netting may not be locally determinable by an individual entity, as it requires knowledge
of the position of other entities and the transactions being processed. This problem can be modeled
as a discrete optimization problem. In order to introduce it, we will base our definitions on [BS01]
with some simplifications for ease of exposition.

Let n denote the number of banks using the RTGS system, with each bank i having an initial
balance Bi ≥ 0. A transaction is of the form t = [s, a, r], where s ∈ {1, . . . n} is the source of t,
r ∈ {1, . . . n} is the destination of t, and a > 0 is the amount of money that s is sending to r. For
a transaction t = [s, a, r], if Bs ≥ a, i.e. the sending bank has a large enough balance to cover the
transaction, the transaction is executed right away, otherwise, the transaction t is added to a queue
Q. The goal of gridlock resolution is to deal with the queue Q that is formed in this way.
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Fig. 1. The banks do not have enough liquidity to
settle their transactions, as each bank is planning to
send more than what it currently holds. However, a
multilateral netting will result in positive net posi-
tions for all banks.

Fig. 2. The banks do not have enough liquidity to
settle their transactions, as each bank is planning
to send more than what it currently holds, and even
multilateral netting will not result in positive net po-
sitions for all banks

The transactions are assumed to come with an ordering t < t′ which implies, for a given source
bank, that the bank prefers t to be executed before t′. This ordering can be First-In-First-Out, that
is, among the transactions hanging issued by bank i, no transaction can be addressed prior to the
execution of all transactions that arrived before it.

We define SenU ⊆ {1, . . . , n} to be the set of sources of transactions in a set U ⊆ Q. We also
denote by U i the set of the transactions in U coming from bank i, i.e. U i = {t = (s, a, r) ∈ U s.t. s =
i}, and let us denote by m the size of Q. Let Si

U and Ri
U denote respectively the amounts sent and

received by bank i after running simultaneously a set of U transactions. Let Bi
U denote the balance

of this bank after running these transactions. i.e., Bi
U = Bi − Si

U +Ri
U .

The key two states for the queue are those of gridlock and deadlock. A gridlock is where there
is a subset of transactions which can be executed, the term ‘gridlock’ is used here to distinguish it
from the situation where the transactions clear without resorting to a queue.

Definition 2.1 (Gridlock). A gridlock is a situation where among the transactions hanging in
Q, there exists U ⊆ Q and U 6= ∅, such that:

∀i ∈ SenU , B
i
U ≥ 0 (1)

∀i ∈ SenU , ∀t ∈ U i, @t′ ∈ Qi \ U i such that t < t′ (2)

A deadlock is where no transactions can be executed, with the current queue state.

Definition 2.2 (Deadlock). A deadlock is a situation where @U ⊆ Q that satisfies the conditions
of 2.1

The gridlock resolution problem is to find a subset of transactions in the queue which can be
executed.

Definition 2.3 (The gridlock resolution problem). The gridlock resolution problem consists
of finding maxU⊂Q |U |, such that (1) and (2) from 2.1 hold

This problem is NP-complete if no strict global ordering is given, and thus one needs to use
approximate algorithms in order to solve it, such as the ones introduced in [SD06] and [GJL98].
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However, the problem is not NP-complete if the transactions are augmented with a strict ordering
< of execution, and in such a situation one can find an optimal solution in polynomial time.

The Gridlock Resolution Algorithm: The algorithm for gridlock resolution GR [BS01] proceeds
in the following steps, with the formal definition of the algorithm being given in Fig. 3. We first
empty the queue Q by moving all the transactions from Q to U . We then call a subroutine which
computes the balances resulting from the set U . Thus we compute the amounts sent by the banks,
i.e. [S1

U , . . . , S
n
U ], as well as the amounts received by the banks, i.e. [R1

U , . . . , R
n
U ]. From this we can

compute the balances as [B1
U , . . . , B

n
U ], from Bi

U ← Bi + Si
U −Ri

U .
At this point, if all the balances of SenU are positive, the GR algorithm terminates with the

set U . Otherwise, the last transaction for all sources i such that the balance Bi
U is negative is

moved from U to the queue Q1. The balances are recomputed for this new set U , and this process
is repeated. If at some point the algorithm terminates with a set U 6= ∅, the transactions in U
are executed, and the actual balances Bi are updated. If however U = ∅ then we have reached a
deadlock and we need to wait for more transactions to come in before running the GR algorithm
again.

The GR algorithm

Algorithm: Balance(U,B):
On input of a list of transactions U and the current set of balances B this computes the new balances Bi

U

for all i ∈ [1, . . . , n].
(1) For i ∈ [1, . . . , n]

(I) Si ←
∑

t=[s,a,r]∈Ui a

(II) Ri ←
∑

t=[s,a,r]∈Us.t. r=i a

(III) Bi
U ← Bi − Si +Ri

(2) Output [B1
U , . . . , B

n
U ]

Algorithm : GR(Q):
On input Q this algorithm finds is a solution U ⊂ Q to the gridlock resolution problem, or it returns Deadlock.
(1) U ← Q and Q← ∅
(2) While U 6= ∅ do

(I) BU ← Balance(U,B)
(II) If all the balances in BU are positive returns U .

(III) Remove from U the last transaction sent by all of the banks for which Bi
U < 0, and place these

transactions in Q
(3) Return Deadlock

Fig. 3. The GR algorithm

2.2 Multiparty Computation (MPC)

MPC is a family of cryptographic techniques that allow a set of parties, to perform computation
on their inputs, without having to reveal them. MPC was introduced by Yao in [Yao86], and was

1 The algorithm from [BS01] removes just one transaction of a source with a negative balance at this point, but it
is equivalent to removing one transaction from each source which has a negative balance.
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developed throughout the years. One family of MPC protocols, and the ones we will consider in
this paper, are those based on secret sharing schemes. In these protocols, secrets are split among
the p parties participating in the protocol using a secret sharing scheme. The computation on
the shared secret is performed through communication between the parties. The function to be
evaluated is expressed (to a first-order approximation) through a circuit consisting of addition and
multiplication gates over a field Fq, for a large prime q.

The specific underlying MPC protocol we will use is that of [SW19], this is a protocol which
provides active security with abort. This means that an adversary may arbitrarily deviate from
the protocol, but if he does so then with overwhelming probability the honest parties should abort
the protocol. Whilst based on information-theoretic primitives, the protocol of [SW19] is computa-
tionally secure since it relies on hash functions and PRFs, etc for efficiency (as well as TLS in the
implementation we use in order to obtain secure channels).

MPC functionality FP [MPC]

The functionality runs with P = {P1, . . . ,Pp} and an ideal adversary A, that statically corrupts a set A of
parties. Given a set I of valid identifiers, all values are stored in the form (varid , x), where varid ∈ I.

Initialize: On input (init , q) from all parties, the functionality stores (domain, q),
Input: On input (input ,Pi, varid , x) from party Pi and (input ,Pi, varid , ?) from all other parties, with varid a

fresh identifier, the functionality stores (varid , x) in memory.
Add: On command (add , varid1, varid2, varid3) from all parties, where varid1, varid2 are present in memory

and varid3 is not, the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y) in memory.
Multiply: On input (multiply , varid1, varid2, varid3) from all parties, where varid1, varid2 are present in mem-

ory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x ·y) in memory.
Output: On input (output , varid , i) from all honest parties, where varid is present in memory, the functionality

retrieves (varid , y) and outputs it to the environment. The functionality waits for input from the environment.
If this input is Deliver then y is output to all parties if i = 0, or y is output to party i if i 6= 0. If the adversarial
input is not equal to Deliver then ∅ is output to all parties.

Fig. 4. MPC functionality FP [MPC]

The protocol of [SW19] essentially allows the implementation of the arithmetic black box defined
in Fig. 4. Note, as a shorthand in our protocols we will refer to the addition and multiplication
operations as 〈z〉 ← 〈x〉 + 〈y〉 and 〈z〉 ← 〈x〉 · 〈y〉, and the output operations as z ← Open(〈z〉)
for open-to-all. We also define an operation OpenE(〈z〉, i) which opens the shared value 〈z〉 to the
external bank i (by sending the players’ shares of 〈z〉 to the external bank i.) This last operation
is used to send data to external parties which is the output of the computation; this is identical as
an opening to an internal player in terms of the ability for the environment to decide if the correct
value is actually delivered.

The protocol of [SW19] is defined for arbitrary Q2 access structures, but in this paper, we will
concentrate on the simpler subset of threshold access structures. In a threshold access structure
on p players, with threshold t, up to t players can collude. A Q2 access structure in this threshold
context is one for which t < p/2. Such honest majority protocols allow efficient multiplication of
secret shared data.

In such a situation (threshold access structures with t < p/2) we can (and do in this paper)
define the underlying secret sharing scheme via Shamir Secret Sharing. In Shamir Secret Sharing,
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the secret x ∈ Fq is encoded in the constant term of a polynomial fx(X) of degree t, i.e. x = fx(0),
where t is the threshold considered. The share of each party i of the secret x is xi ∈ Fq, such that
fx(i) = xi. From now on we will denote such a secret shared value x by 〈x〉. If t+1 parties combine
their shares by interpolation of the polynomial, they can recover the polynomial fx and thus the
secret x. We will write 〈x〉 for the sharing of x with this sharing.

Linear operations on the secret shared values can be performed via local operations, whilst the
multiplication operations in our arithmetic black box are performed in an offline-online manner
(since our protocol is based upon [SW19]). In an “offline” phase is where data that does not
depend on player inputs or the function is pre-computed, and then in the “online” phase, the actual
computation takes place. The protocol of [SW19] provides an efficient online phase, although the
combined cost of the offline plus online phases can be less efficient than other protocol choices.

Up until now, we have considered the arithmetic black box of Fig. 4. This can be extended to cope
with non-arithmetic operations in a standard manner. For example, in this work, we will represent
integer values x ∈ [−2K−1 − 1, . . . , 2K − 1] as elements of Fq, where k � log2 q. Comparison, and
non-arithmetic operations, on such encoded integers, can then be performed using special purpose
statistically secure sub-protocols such as those in [Cd10, CS10, DFK+06]. The reader should note
that comparison is more expensive to execute than multiplication; which is the opposite of what
happens when computing in the clear.

At many points, we will need to read and write to an array of secret values, with an index which
is also secret. To do this we make use of the naive Oblivious RAM (ORAM) implementation from
[KS14]. We only require the naive methodology as our arrays will be relatively small, meaning the
naive methodology will be faster for our example than the more elaborate variants given in [KS14].
The naive ORAM has at its heart a Demux function, which takes as input a secret x and a bound
L, and outputs a list of bits b1, . . . bL, such that bi = 1 if i = x, and bi = 0 otherwise.

Given this arithmetic black-box extended with the protocols for comparison and ORAM-style
array lookup, we can implement algorithms securely. If the algorithm is correct and utilizes only
the operations described above, then the secure implementation will inherit the security properties
of the underlying MPC protocol. Particularly, if a server running the computation does not perform
the required computation, this will be detected by the honest servers. The only issue which needs
to be verified would be if the secure implementation opens any intermediate result, at this point
one simply needs to verify that the opened value is something which is inherent in the application;
i.e. it is a public value which we expect the algorithm to output to the parties. This is a topic which
we will return to in the next section.

3 The Gridlock Resolution Algorithm with MPC

Executing the GRP algorithm totally obliviously, i.e. where the MPC engines know neither the
amounts, the source addresses of each transaction, or the destinations, turns out to be very expen-
sive. Thus as well as examining this situation we also examine two relaxed situations in which both
the source and destination addresses are in the clear (i.e. open) (which we call sodoGR), and one
in which the source addresses are in the clear, but the destination addresses are not (which we call
sodsGR). We denote the fully oblivious version ssdsGR. In all situations, we ensure the privacy of
the amount in the transactions and privacy of the banks’ balances. The basic ideal functionality
we aim to emulate is given in Fig. 5.
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Gridlock Resolution Algorithm Functionality F type[GRP]

The functionality operates between n banks, p servers and an ideal adversary A that statically corrupts a set A
of parties among the servers. We assume that the banks are acting honestly throughout the protocol.
The functionality is reactive in that it maintains a list of the unexecuted queue of transactions Q, and then
updates this with the new incoming transaction I. The internal queue is updated with I and then the GRP
algorithm described in figure Fig. 3 is executed. The set of executed transactions U is returned (or Deadlock),
and these executed transactions are deleted from the internal queue Q for usage in the next call to F type[GRP].
We distinguish three versions of the functionality: where type is in {sodoGR, sodsGR, ssdsGR}

Initialize: The system is initialized with
- An empty queue of transactions Q.
- The current balances bi for the banks.

InputTrans: On input t = (s, a, r) from bank s, the functionality takes a fresh identifier idt and associates it to
the transaction t. If type 6= ssdsGR and this transaction can be instantly executed, i.e. the balance of bank s
is larger than a, then this transaction is executed (i.e. the functionality informs banks s and r of the amount
a), otherwise the functionality also adds t to Q.
In addition to this, the functionality may reveal to the servers some of the components of the transaction t
depending on the type.

- If type = sodoGR, s and r are revealed to the servers.
- If type = sodsGR, s is revealed to the servers.
- Otherwise, i.e. type = ssdsGR, nothing is revealed to the servers.

Run: On input Run from the servers, the functionality processes Q, by executing the algorithm of Fig. 3. If
the algorithm returns Deadlock then this is returned to the servers and the banks. If the algorithm returns
a set of transactions U then the functionality informs the servers as to which transactions these values in U
correspond to; and they are deleted from the current queue Q. For every transaction t = (s, a, r) in U the
functionality informs s and r about this transaction and the amount.

Fig. 5. Gridlock Resolution Algorithm Functionality F type[GRP]
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Algorithms for Balances

DemuxsodsGR(Q)
On input of a list of transactions Q this produces the demux flags C for the destination addresses when the
source addresses are in the clear
(1) C ← [ ].
(2) For t = [s, 〈a〉, 〈r〉] in Q :

(I) 〈ct〉 ← Demux(〈r〉, n).
(II) Append C by 〈ct〉.

(3) Output C.

DemuxssdsGR(Q)
On input of a list of transactions Q this produces the demux flags for the recipient addresses C and the
source addresses W
(1) C ← [ ], W ← [ ].
(2) For t = [〈s〉, 〈a〉, 〈r〉] in Q:

(I) 〈ct〉 ← Demux(〈r〉, n).
(II) 〈wt〉 ← Demux(〈s〉, n).

(III) Append C by 〈ct〉 and C by 〈wt〉.
(3) Output (C,W ).

Balance([〈Bi〉]ni=1, Q,X,C,W, type)
This algorithm updates the balances 〈Bi〉 for every bank i, given a set of transactions U ⊂ Q and the operation
type, type = sodoGR, sodsGR, ssdsGR. The set U is oblivious to the algorithm and determined by an indicator set
X = [〈xt〉]t∈Q, such that xt = 1 if and only if t ∈ U , otherwise xt = 0. The sets C = [ct]t∈Q and W = [〈wt〉]t∈Q
are derived from the Demux operations above, when needed.

(1) 〈Bi
U 〉 ← 〈Bi〉 for all i ∈ [1, . . . , n].

(2) For i ∈ [1, . . . , n]:
(I) If type 6= ssdsGR then 〈Si〉 ←

∑
t=(i,〈a〉,∗)∈Qi〈a〉 · 〈xt〉.

(II) else 〈Si〉 ←
∑

t=(〈s〉,〈a〉,〈r〉)∈Q〈a〉 · 〈xt〉 · 〈w
t
i〉.

(III) If type = sodoGR then 〈Ri〉 ←
∑

t=(s,〈a〉,r)∈Q,r=i〈a〉 · 〈xt〉.
(IV) else 〈Ri〉 ←

∑
t=(∗,〈a〉,〈r〉)∈Q〈a〉 · 〈xt〉 · 〈c

t
i〉.

(V) 〈Bi
U 〉 ← 〈Bi〉 − 〈Si〉+ 〈Ri〉.

(3) Return [〈Bi
U 〉]ni=1.

Fig. 6. Algorithms for Balances
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In Fig. 6 we present the algorithm to compute the balances, upon processing a list of payments
Q, in our three different scenarios. The algorithms, make use of the Demux operation. Recall
〈v〉 ← Demux(〈r〉, n), where we are guaranteed that 1 ≤ r ≤ n, produces a vector 〈v〉 of size
n such that each entry is a sharing of zero, apart from entry r where we have a sharing of one. The
i-th element of 〈v〉 will be denoted by 〈vi〉.

In Fig. 8 we present the algorithm for executing the Gridlock Resolution algorithm in our three
cases. This utilizes the algorithm for computing balances from Fig. 6, as well as the algorithm, in
Fig. 7, which notifies the banks of their completed transactions. In the following paragraphs, we
highlight aspects of these algorithms in the three different situations.

Method to Notify Participants of Executed Transactions

Notify(X,Q,C,W, type)
This algorithm notifies the participants about the executed transactions they sent/received. On input Q
contains a set of transactions, X specifies (in the clear) the transactions in Q that were executed (signaled
by a one bit), the sets C and W are derived from the Demux operation in Fig. 6.

(1) If type = sodoGR
(I) For t = [s, 〈a〉, r] ∈ Q such that xt = 1.

(A) Notify s and r about t and execute OpenE(〈a〉, r).
(2) If type = sodsGR

(I) For t = [s, 〈a〉, 〈r〉] ∈ Q such that xt = 1
(A) Notify s about t, who can then update bank r about (s, a, r).

(3) If type = ssdsGR
(I) For i ∈ [1, . . . , n] and t = [〈s〉, 〈a〉, 〈r〉] ∈ Q such that xt = 1

(A) Execute OpenE(〈wt
i〉 · 〈s〉, i), OpenE(〈wt

i〉 · 〈a〉, i), OpenE(〈wt
i〉 · 〈r〉, i), OpenE(〈cti〉 · 〈s〉, i),

OpenE(〈cti〉 · 〈a〉, i), and OpenE(〈cti〉 · 〈r〉, i).

Fig. 7. Method to Notify Participants of Executed Transactions

Sources and Destinations are Open (sodoGR): For this version, computing the receipts and
payments is straightforward. That is, we know the source and destination of every transaction, thus
for every bank of SenQ, we know the amount of each transaction we need to add or subtract to its
balance. Therefore, the algorithm for updating the balances (Fig. 6) is relatively cheap. However,
we face two main obstacles for this version: (1) How to determine whether we have a solution for
the problem without leaking which banks have negative balances? (2) In the case where we still
do not have a solution, how can we remove transactions without leaking which ones, and without
leaking their corresponding banks?

To address the first obstacle, in Fig. 8 we first compare the balances of the banks in an oblivious
manner, by performing in step 5.II.A a secure comparison of all balances of SenQ, which will result
in secret values 〈hi〉. Each of these values is equal to one if the corresponding balance is negative,
or equal to zero otherwise. Then in step 5.IV, we open 〈z〉 which is the product of (1− 〈hi〉). Thus
z will be one if all the balances are positive and therefore we found a solution or z will be zero in
which case we need to continue removing transactions.
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MPC variant of the Gridlock Resolution Algorithm

GR(〈Bi〉ni=1, Q, type)
Given a set of balances Bi and a queue of transactions this determines a subset of the transactions U ⊂ Q
which can be executed; where the set U is given by an indicator set X. If no such U exists it returns Deadlock,
otherwise it returns the set of remaining transactions which have not been executed.
(1) X ← [〈xt〉]t∈Q with 〈xt〉 ← 1.
(2) C,W ← ∅.
(3) If type = sodsGR then C ← DemuxsodsGR(Q).
(4) If type = ssdsGR then (C,W )← DemuxssdsGR(Q) and CNTDeadlock ← 0.
(5) Repeat

(I) [〈Bi
U 〉]ni=1 ← Balance([〈Bi〉]ni=1, Q,X,C,W, type).

(II) If type 6= ssdsGR
(A) For i ∈ SenQ do 〈hi〉 ← (〈Bi

U 〉 < 0).
(B) 〈z〉 ←

∏
{i∈SenQ}

(1− 〈hi〉).
(III) else

(A) 〈Sender〉 ← 0.
(B) For i ∈ {1, . . . , n} :

(i) 〈hi〉 ← (〈Bi〉 < 0)
(ii) 〈f i〉 ← 〈hi〉 − 〈hi〉

∑k=i−1
k=1 〈fk〉

(iii) 〈Sender〉 ← 〈Sender〉+ i · 〈f i〉
(C) 〈z〉 ←

∑n
i=1〈f

i〉
(IV) z ← Open(〈z〉).
(V) If z = 1 then

(A) xt ← Open(〈xt〉) for t ∈ Q, and let X ′ = [xt]t∈Q.
(B) Execute Notify(X ′, Q,C,W, type).
(C) For i ∈ [1, . . . , n] execute 〈Bi〉 ← 〈Bi

U 〉.
(D) Q← Q \ {t}t∈Q,xt=1.
(E) Return Q.

(VI) If type 6= ssdsGR
(A) For i ∈ SenQ

(i) Let t1, . . . , tv denote the transactions in Q with source i ordered in time of receipt order.
(ii) For j = 1, . . . , v − 1 do

(a) 〈xtj 〉 ← (〈xtj 〉 · 〈xtj+1〉) · 〈hi〉+ 〈xtj 〉 · (1− 〈hi〉).
(iii) 〈xtv 〉 ← 〈xtv 〉 · (1− 〈hi〉).

(B) 〈Deadlock〉 ←
∏

i∈SenQ,t∈Qi(1− 〈xt〉).
(C) Deadlock← Open(〈Deadlock〉).

(VII) else
(A) CNTDeadlock ← CNTDeadlock + 1
(B) If (CNTDeadlock = m− 1) :

(i) Deadlock← 1.
(C) else

(i) 〈d〉 ← 1
(ii) For j in {m, . . . , 1}

(a) 〈y〉 ← (〈sj〉 = 〈Sender〉) · 〈xj〉 · 〈d〉.
(b) 〈xj〉 ← 〈xj〉 − 〈y〉.
(c) 〈d〉 ← 〈d〉 − 〈y〉.

(6) Until Deadlock = 1.
(7) Return Deadlock.

Fig. 8. MPC variant of the Gridlock Resolution Algorithm
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For the second obstacle, basically we need to touch every transaction so as to not leak which ones
are being removed. We ensure this using the flags 〈hi〉, which guarantee that we will be modifying
the indicators of only the banks with negative balances,

Then in order to not reveal which transaction was removed for these banks, we use the indicators
xtj to act as flags. Namely, step 5.VI.A.ii guarantees that we are setting to zero only the last
indicator in the queue that has the value one, for the banks in question, i.e., the last transaction
submitted to the RTGS among the ones that are still considered for the gridlock resolution. Note
that within this step, we could have simply conducted secure comparisons in order to determine
which indicator to modify. However, we implemented it as such purely for performance purposes,
as multiplications are cheaper than comparisons. In order to detect a deadlock, we compute the
product of (1− 〈xt〉) in 5.VI.B and we open it, which will be equal to one if a deadlock occurs.

Finally, once a set of transactions are executed, we notify the corresponding sources and des-
tinations using the algorithm Notify. For every transaction executed t = [s, 〈a〉, r], this algorithm
notifies s about the execution of transaction t, and notifies r of receiving a transaction by sending
him the tuple (s, a). The amount a here was opened to r by having the p entities send their re-
spective shares of 〈a〉 to him, who will reconstruct a from these shares. This way only r will learn
a while the entities will not.

Sources are Open and Destinations are Secret (sodsGR): For this version, computing the
payments needed by a party is straightforward as the sources of transactions are open, but com-
puting the corresponding receipts we need to apply a Demux operation to compute the balances in
Fig. 6. This is done only once at the beginning of the algorithm, at the expense of having to store
the vectors C in memory all along with the computation. The rest of the computation proceeds as
in the case sodoGR described above.

To notify participants about the execution of their transactions, we again use Notify. For every
transaction executed t = [s, 〈a〉, 〈r〉], this algorithm, in this case, notifies s of the execution of t,
who can update r about the amount sent a.

Sources and Destinations are Secret (ssdsGR): This version is more challenging to address
compared to the previous versions as we keep all the sources and destinations secret, thus we have
to deal with some challenges. The alteration to compute the balances is similar to the case sodsGR.
However, given that the sources are hidden from the system, the Gridlock Resolution algorithm
needs to update all the n balances when looking for a solution, as opposed to only the balances of
the sources in sodoGR and sodsGR, which is quite expansive.

The fact that the sources and destinations are hidden obliged us to radically change our strategy
to remove transactions with negative balances. In fact, obliviously removing the last transaction of
all sources which have a negative balance is expensive, as it would require n ·m equality checks;
where n is the number of banks and m is the number of transactions in Q. Therefore, for this
version we remove only one transaction at each iteration, as this requires only m equality checks.
To determine which transaction to remove, we compute the flags 〈hi〉 in a similar way to sodoGR
and sodsGR, then we compute the flags 〈fi〉 in step 5.III.B.ii, which are all equal to zero, except
for the first source who has a negative balance, in which case it is equal to one. These flags will be
used to determine the sender 〈Sender〉 for which we remove the last transaction. Removing this last
transaction is done in step 5.VII where we iterate over all the transactions starting from the end
and going backward, so as to switch the first encountered indicator xj equal to one corresponding
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to a transaction issued by source sj = Sender. Ensuring that the indicators of other sources will not
be modified while doing this operation is guaranteed by the term 〈sj〉 = 〈Sender〉 in 〈y〉, thus when
this equality test is equal to zero, y will be zero, and thus xj will not be modified in step 5.VII.C.ii.b,
and ensuring that only one indicator for Sender is switched from one to zero is guaranteed using
the variable d, that is, once we reach the first indicator xj for Sender that is equal to one, y will be
equal to one in step 5.VII.C.ii.a, and xj will be equal to zero in 5.VII.C.ii.b, and d will be equal
to zero. Once d becomes zero, y will always have the value zero, and thus no other indicator will
change in step 5.VII.C.ii.b

In addition, we introduce a counter CNTDeadlock into the algorithm in order to identify a dead-
lock. This counter is augmented by one each time we perform an iteration, and therefore we will
have a deadlock when this counter reaches m.

Finally, we need to notify participants of the execution of their transactions. For every trans-
action executed t = [〈s〉, 〈a〉, 〈r〉], this algorithm sends to every bank i the opening of the values,
{(〈wt

i〉·〈s〉, 〈wt
i〉·〈a〉, 〈wt

i〉·〈r〉), (〈cti〉·〈s〉, 〈cti〉·〈a〉, 〈cti〉·〈r〉)} which are equal to {(0, 0, 0), (0, 0, 0)} if t
was not sent to i or received by i; equal to {(s, a, r), (0, 0, 0)} if i = s; and equal to {(0, 0, 0), (s, a, r)}
if i = r.

3.1 Leakage

We now discuss the leakage our algorithms have in comparison to the ideal functionality given in
Fig. 5. Given the underlying MPC system implements securely any algorithm, the only leakage
which can arise is when our algorithms reveal information via an Open command. We assume that
the ordering between transactions is public knowledge, which will be the case if the ordering is done
purely in a first-in/first-out manner.

We first discuss each such operation in Fig. 8. The openings in the notify algorithm in Fig. 7
are all identical to values revealed by the ideal functionality.

In step 5.V.A the identifiers of which transactions, which are executed, are opened but this
is also something which is leaked in our ideal functionality; thus this line provides no additional
leakage over what the ideal functionality will leak.

In step 5.VI.C the algorithm reveals to all servers whether Deadlock has been reached. Again
this is something which happens in our ideal functionality.

This leaves us with the opening in step 5.IV, which reveals the value of 〈z〉. This reveals whether
on this iteration we should terminate with a solution or not, thus revealing this value reveals the
number of iterations needed to solve the GRP problem or the number of iterations needed to
reach Deadlock. In the first situation, this value is equal to the maximum number of transactions
not executed by one of the banks when it is the source. Thus this information is always revealed
by the functionality in the case where we have type = sodoGR or type = sodsGR. In the case of
type = ssdsGR this value leaks to the p servers, but not to the n banks. In the case where Deadlock
is output then the number of iterations reveals the maximum number of transactions with a given
source. Thus this value does reveal some information about the distribution of transactions between
banks at any given point in time, but we feel it is an acceptable leakage. Removing this leakage is
possible, by essentially looping obliviously, in the case where we have type = ssdsGR, for a maximum
number of iterations. This would make our implementation match the specifications of Fig. 5 for
ssdsGR without inducing the aforementioned leakage, however, this would cause a huge performance
penalty.
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3.2 Experiments

We implemented the above three variants using the SCALE MPC system [ACK+21], which provides
a convenient interface to access different secret sharing-based access structures, as well as the
comparison and Demux operations discussed above. The experiments were performed using a setup
using Shamir Secret Sharing between three parties, over a finite field of size 128 bits. This models
the situation where the n banks outsource the computation to p = 3 entities, such that each bank
trusts that only one of the three entities will act in a malicious manner. The reason for doing this
is to avoid having to perform a secure computation with n servers, which will be prohibitively
expensive for practical values of n. Of course we can outsource the computation to more than p = 3
entities, which will allow the n servers to tolerate more malicious entities, but this will increase the
cost of the computation. We used three machines to perform the experiments, that is one machine
for each entity. The machines used are 128GB of RAM, with an Intel i-9900 CPU, with a ping time
of 0.098 ms between them.

We begin by examining the online phase runtimes of single runs of the algorithms of this section
(without including the notification part of the participants about the execution of their transac-
tions). In all experiments, we varied the number of banks n to have the values {8, 64, 128, 256, 512, 1024},
and the number of transactions m to have the values {10, 50, 100}. The m transactions were chosen
in such a way that a solution will be found after m/4 iterations.
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Fig. 9. Run times for sodoGR (left) and sodsGR (right).

sodoGR: The runtimes for this variant are shown in Fig. 9. As one can notice, the runtimes keep
increasing when n increases, and stabilize when n becomes bigger than m; reaching a maximum
of 5.7 seconds when considering m = 100 and n ≥ m. This is because when m ≤ n we set
the transactions in such a way that we only process the m banks that will be sources of the
transactions. Therefore, when m ≤ n the algorithm will perform exactly the same amount of work
as when n = m.

sodsGR: The runtimes for this experiment are also presented in Fig. 9. One sees that they grow
as n increases, irrespective of m, when m = 100 growing to around 39 seconds for n = 1024. When
n ≥ m the runtime increases, but at a slower pace than for n < m. This is due to the fact that
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once n reaches m, the only extra computation is the calculation of the Demux flags C over a bigger
set for n, as we can set in this case m banks to be the sources of the transactions when m ≤ n.

Since this variant needs to calculate the Demux flags, as well as performing more multiplications
to compute the received values, for all values of n and m it is slower than sodoGR. For example in
step 2.IV of the Balance algorithm in Fig. 6 we need to compute a multiplication by the Demux flag
〈cit〉, as opposed to performing a conditional multiplication (conditioned on where r = i) in step
2.III of the same algorithm.
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Fig. 10. Run times for ssdsGR.

ssdsGR: The runtimes for this variant are shown in Fig. 10. As one can see the runtimes keep
increasing at the same rate even when m ≤ n. This is related to the fact that sources are hidden
from the algorithms. The runtimes are larger for this variant due to the fact that as explained in
Section 3, the algorithm cannot exclude the banks that are not sources of the transactions hanging,
therefore whenever a transaction is removed, the balances of all banks are calculated. Another
thing that one can notice is that, the runtimes of ssdsGR are only twice the ones of sodsGR. This is
actually related to how we chose transactions as explained earlier. That is, we chose transactions in
such a way that we run m/4 iterations in step 5.VI/5.VII. We refer the reader to the next section
for a more accurate comparison between the two algorithms.

4 Simulating an RTGS

Having so far provided latency values for single executions of our algorithms, we now turn to
discussing are these latencies ‘fast enough’ in a real application. The latency depends not only
on the number of banks n, but also on the number of unmet transfers in the queue Q, i.e. m.
In a real system, the value of m can both increase and decrease over time, depending on the
frequency of incoming transactions and the amount of liquidity in the system. In this section, we
aim to simulate a realistic system and determine the cost of performing the liquidity matching in
a privacy-preserving manner.

Simulating Transactions: Our first task is to simulate the banks and the transactions between
them. The transactions exchanged between banks over a period of time L can be modeled as a
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directed graph, where nodes represent banks and edges among them represent the flow of the
transactions, i.e. a link from bank A to bank B is formed if bank A sent a transaction to bank B
over L. This graph can be either unweighted, that is, in the case that bank A sends to bank B
multiple transactions, these are counted with only one link or weight. That is, the link from A to
B has a weight which is determined by either the number of transactions sent from A to B over L,
or the volume of these transactions, i.e., the total amount of money sent from A to B.

The structure and properties of such graphs have been extensively studied in the literature,
and it has been shown that scale-free graphs (graphs for which the degree distribution follows
the power-law) are the closest ones to model transaction graphs (see [CHBA03] for more details
about the structural properties of scale-free graphs). In particular [SBA+07] shows that the Fedwire
system in the United States has a scale-free behavior, and similar observations have been made for
the Japanese inter-bank payment system [INT+04] and the Austrian inter-bank market [BEST04].
Even the transaction graph formed by Bitcoin has been shown to be scale-free [ALVL19].

Our simulation is controlled by a number of parameters: n the number of banks in the network,
n0 the number of ‘central nodes’ (see below), the total number of transactionsM to be simulated, the
time interval L over which we simulate the transactions, a parameter o giving the average number
of transactions for each of the n − n0 non-central nodes, a value for modifying the preferential
attachment α (which we take to be 0.1), and a value β controlling the amount of liquidity in the
system.

For our work, we utilized the simulator of [SC13] to generate the transaction graph. This
simulator uses a tweaked version of the Barabasi-Albert model to generate scale-free graphs. In this
simulation the graph is built by setting first n0 central nodes among the n nodes, these central nodes
are intended to send and receive transactions more than the remaining nodes; they correspond in the
real world to the important banks in a network. This preference is guaranteed by at the beginning
setting the preferential attachment vi for these banks to be one, and for the remaining banks to be
zero. The algorithm then proceeds to find a total number of M = o ·(n−n0) transactions t1, . . . , tM .

These transactions ti = (s, a, r) are generated as follows: The source bank s ∈ {1, . . . , n} is se-
lected with probability vs/

∑j=n
j=1 vj , the destination bank r ∈ {1, . . . , n} is selected with probability

vr/
∑j=n

j=1 vj . If we obtain s = r then a new value of r is sampled in the same way, until s 6= r.
Whenever a transaction is generated, we update the preferential attachment for both the source
and destination, by adding α = 0.1 to vs and vr, and whenever o transactions are generated, we set
the preferential attachment to be 1 for one of the banks that were not yet considered for sending
or receiving transactions, i.e., a bank i that still has vi = 0. The amount a is sampled by taking
a value v from the normal distribution with mean 1 and standard deviation 0.2, and then setting
a = d · exp(v), where d is the minimum of the in-out degrees of the source and destination nodes
s and r; this follows the methodology in [SC13]. It also means that transactions are likely to be
larger from banks which are more central to the graph, a fact which is born out in practice.

To each transaction we assign a time of occurrence; for this, we assume that the M transactions
are uniformly distributed over the time interval L. The order of the transactions is as in the
simulation above, with transaction ti entering the system at time τi, where we have τi+1−τi ≈ L/M
for all i.

For the initial balances of the banks, these are set according to a parameter β ∈ [0, 1] that
determines the amount of liquidity available in the system. That is, we calculate the lower and
upper bounds of liquidity for each bank, where the lower bound Li for bank i refers to the minimal
initial balance that will allow the bank to settle all its transactions at the end of the time window,

16



and the upper bound Ui refers to an initial balance that will allow the bank to settle immediately
all its transactions without having to be placed in the queue U for the gridlock execution. Then
the initial balance of bank i we set equal to Bi = β · (Ui − Li) + Li.

In [SC13] it is claimed that the above algorithm is a good model for transaction graphs between
banks. In particular, they discuss the Fedwire transaction graph. To get some idea of the sizes
of the graph we note that Fedwire in 2008 had approximately n = 7300 participants2 and the
average daily volume of transfers in January 20213 was 803, 413 transactions. A smaller system is
the Target2 system run by the European Central Bank, according to the annual report of 20194,
the number of direct participant is n = 1050, with each participant originating on average 344, 120
transactions per day.

The Simulation: In our simulation, we assume that for sodoGR and sodsGR, two banks will settle
an incoming transaction if it can be settled immediately, with unsettled transactions being passed
to the queue Q for application of the Gridlock Resolution algorithm. For the case of ssdsGR, the only
way a transaction can be settled is through the Gridlock Resolution algorithm. For the remaining
transactions, we process them in one of two manners: In Version 1 each transaction is processed
one at a time, it is cleared immediately if it can be, otherwise, it is added to the current queue Q.
For the cases of sodsGR and ssdsGR, we run the GR algorithm if Q has more than one entry. For
the case of sodoGR, we run the GR algorithm if the last incoming transaction (either settled or
not) has as the destination one of the sources of the transactions in Q. In Version 2 we simulate
the current time (according to how long previous executions of the GR algorithm take), we then
add all transactions, which have arrived between the start of the previous execution of the GR
algorithm and the end of the previous execution, to the queue Q, after clearing all which can be
executed immediately. For the cases of sodsGR and ssdsGR, we then execute the GR algorithm if
Q has more than one entry. For the case of sodoGR, we run the GR algorithm if at least one of the
last incoming transactions (either settled or not) has as the destination one of the sources of the
transactions in Q. These two variants are described in Fig. 11.

Leakage Again we need to consider if there is any leakage of information from the Open operations
in Fig. 11. The two lines, in steps 2.IV.A.iii and 2.IV.B.iii, open a value which indicates whether
(in the cases of type = sodoGR and type = sodsGR respectively) a transaction can be executed
immediately, without needing to be passed into a gridlock resolution process. This is something
which our ideal functionality also leaks.

Experimental Results We executed the above simulation, again with an MPC system of three
players, over a simulation time window L of one hour, considering only the online phase, with three
different levels of liquidity β ∈ {0.1, 0.5, 0.9}, and with n0 = 10. We tested on different values of n
and o, with n either 100 or 1000; a value of 1000 is approximately the number of direct participants
in Target 2. Our values of o (which controls the number of transactions M = o · (n − n0)) where
also chosen to approximate the number of transactions Target 2 deals with in an hour assuming
transactions are uniformly distributed through the day (in this case only with n = 100).

2 https://www.federalreserve.gov/paymentsystems/fedfunds_about.htm
3 https://www.frbservices.org/resources/financial-services/wires/volume-value-stats/monthly-stats.

html
4 https://www.ecb.europa.eu/pub/targetar/html/ecb.targetar2019.en.html
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Simulation of RTGS

RTGSSimulation: Given a set of transaction T = {(ti, τi)} where ti is the transaction and τi is the time
stamp of this transaction execute:

(1) Q← ∅, T ← ∅, τ = 0. The variable τ will define the current time in the simulation.
(2) While T 6= ∅ do

(I) If Version 1
(A) Let (ti, τi) denote element in T with the minimal value of τi.
(B) τ ← τi if τ < τi.
(C) T← T \ {(ti, τi)}.
(D) U ← {(ti, τi)}.

(II) Else if Version 2
(A) Let U denote all transactions in T with time τi < τ .
(B) If U = ∅ execute the above four steps for Version 1.
(C) Else T← T \ U .

(III) Start-timer; this is used to ensure we simulate time correctly.
(IV) For all (t, τi) ∈ U

(A) If type = sodoGR:
(i) Write t = [s, 〈a〉, r].

(ii) 〈z〉 ← 〈Bs〉 ≥ 〈a〉
(iii) z ← Open(〈z〉)
(iv) If z = 1 then

1. 〈Bs〉 ← 〈Bs〉 − 〈a〉.
2. 〈Br〉 ← 〈Br〉+ 〈a〉.
3. Execute Notify({1}, {t}, ∅, ∅, sodoGR).

(v) Else Q← Q ∪ {t}.
(B) Else if type = sodsGR:

(i) Write t = [s, 〈a〉, 〈r〉].
(ii) 〈z〉 ← 〈Bs〉 ≥ 〈a〉
(iii) z ← Open(〈z〉)
(iv) If z = 1 then

(a) v← Demux(〈r〉, n).
(b) 〈Bs〉 ← 〈Bs〉 − 〈a〉
(c) 〈Bi〉 ← 〈Bi〉+ 〈a〉 · vi for i ∈ [1, . . . , n]
(d) Execute Notify({1}, {t},v, ∅, sodsGR).

(v) Q← Q ∪ {t}.
(C) Else if type = ssdsGR:

(i) Q← Q ∪ {t}.
(V) If type = sodoGR and ∃tj = [sj , 〈aj〉, rj ] ∈ U and ∃tk = [sk, 〈ak〉, rk] ∈ Q \ U such that rj = sk then

execute sodoGR(Q).
(VI) Else if type = sodsGR then execute sodsGR(Q), running DemuxsodsGR only on the new transactions

in U ⊂ Q, by keeping track of the prior executions.
(VII) Else if type = ssdsGR then execute ssdsGR(Q), running DemuxsodsGR and DemuxssdsGR only on the

new transactions in U ⊂ Q, by keeping track of the prior executions.
(VIII) Stop-timer; let the elapsed time be denoted by τ0.

(IX) τ ← τ + τ0.
(3) Output the elapsed time τ needed to execute all the transactions.

Fig. 11. Simulation of RTGS
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We considered two main metrics to evaluate the performance: (i) How much time we exceed the
time window L, i.e. was the value τ output by the simulation larger than the time window L, i.e.
E = τ−L. (ii) The average delay time for transactions. Each transaction (t, τi) is supposed to enter
to the system in time τi, however, the system may not be able to address this transaction at time
τi, but only at a later time τ ′i , after finishing an ongoing gridlock computation. Thus the average
delay time, in seconds, will be D =

∑i=M
i=1 (τ ′i − τi)/M . In a real system, one would desire that E is

zero, or as close as possible (to ensure real time settlement of all transactions in a day) and that
D is also as small as possible (to ensure individual transactions are not delayed too much). The
results of our simulation are given in Table 1.

Version 1 Version 2
E D E D

sodoGR β = 0.1 n = 100, M = 900, o = 10 0 0 0 0
n = 100, M = 9000, o = 100 0 307 0 0
n = 100, M = 45000, o = 500 - - 0 0
n = 1000, M = 9900, o = 10 - - 0 1

β = 0.5 n = 100, M = 900, o = 10 0 0 0 0
n = 100, M = 9000, o = 100 0 0 0 0
n = 100, M = 45000, o = 500 - - 0 0
n = 1000, M = 9900, o = 10 - - 0 0

β = 0.9 n = 100, M = 900, o = 10 0 0 0 0
n = 100, M = 9000, o = 100 0 0 0 0
n = 100, M = 45000, o = 500 - - 0 0
n = 1000, M = 9900, o = 10 - - 0 0

sodsGR β = 0.1 n = 100, M = 900, o = 10 0 0 0 0
n = 100, M = 9000, o = 100 18707 12030 0 0
n = 100, M = 45000, o = 500 - - 0 2
n = 1000, M = 9900, o = 10 - - 0 7

β = 0.5 n = 100, M = 900, o = 10 0 0 0 0
n = 100, M = 9000, o = 100 0 163 0 0
n = 100, M = 45000, o = 500 - - 0 0
n = 1000, M = 9900, o = 10 - - 0 5

β = 0.9 n = 100, M = 900, o = 10 0 0 0 0
n = 100, M = 9000, o = 100 0 0 0 0
n = 100, M = 45000, o = 500 - - 0 0
n = 1000, M = 9900, o = 10 - - 0 0

ssdsGR β = 0.1 n = 100, M = 900, o = 10 0 63 0 0
n = 100, M = 9000, o = 100 164556 102046 0 13
n = 100, M = 45000, o = 500 - - 1175 835
n = 1000, M = 9900, o = 10 - - 7426 5427

β = 0.5 n = 100, M = 900, o = 10 0 0 0 0
n = 100, M = 9000, o = 100 28646 14442 0 2
n = 100, M = 45000, o = 500 - - 0 8
n = 1000, M = 9900, o = 10 - - 4482 1784

β = 0.9 n = 100, M = 900, o = 10 0 0 0 0
n = 100, M = 9000, o = 100 0 0 0 0
n = 100, M = 45000, o = 500 - - 0 0
n = 1000, M = 9900, o = 10 - - 0 105

Table 1. Experimental Results
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We can notice from the runtimes that the more liquidity we have, the faster the runtimes are.
This is because liquidity affects how many times the gridlock computation takes place, as well as the
size of the queues on which this computation happens. We can also notice that the slowest runtimes
correspond (unsurprisingly) to the case where sources and destinations are hidden. Version 2 of the
algorithm for clearing is much better and indeed seems to meet the operational requirements of E
and D being close to zero, for all cases bar that of both sources and destinations being secret.
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