Just how hard are rotations of Z™?
Algorithms and cryptography with the simplest lattice

Huck Bennett* Atul Ganju' Pura Peetathawatchai* ~ Noah Stephens-Davidowitz'

April 10, 2023

Abstract

We study the computational problem of finding a shortest non-zero vector in a rotation of Z", which
we call ZSVP. It has been a long-standing open problem to determine if a polynomial-time algorithm for
ZSVP exists, and there is by now a beautiful line of work showing how to solve it efficiently in certain
very special cases. However, despite all of this work, the fastest known algorithm that is proven to solve
ZSVP is still simply the fastest known algorithm for solving SVP (i.e., the problem of finding shortest
non-zero vectors in arbitrary lattices), which runs in 2" 7°" time.

We therefore set aside the (perhaps impossible) goal of finding an efficient algorithm for ZSVP and
instead ask what else we can say about the problem. E.g., can we find any non-trivial speedup over the
best known SVP algorithm? And, if ZSVP actually is hard, then what consequences would follow? Our
results are as follows.

1. We show that ZSVP is in a certain sense strictly easier than SVP on arbitrary lattices. In particular,
we show how to reduce ZSVP to an approzimate version of SVP in the same dimension (in fact,
even to approximate unique SVP, for any constant approximation factor). Such a reduction seems
very unlikely to work for SVP itself, so we view this as a qualitative separation of ZSVP from
SVP. As a consequence of this reduction, we obtain a 2"/27°(™_time algorithm for ZSVP, i.c., the
first non-trivial speedup over the best known algorithm for SVP on general lattices. (In fact, this
reduction works for a more general class of lattices—semi-stable lattices with not-too-large A1.)

2. We show a simple public-key encryption scheme that is secure if (an appropriate variant of) ZSVP
is actually hard. Specifically, our scheme is secure if it is difficult to distinguish (in the worst case)
a rotation of Z™ from either a lattice with all non-zero vectors longer than y/n/logn or a lattice
with smoothing parameter significantly smaller than the smoothing parameter of Z". The latter
result has an interesting qualitative connection with reverse Minkowski theorems, which in some
sense say that “Z™ has the largest smoothing parameter.”

3. We show a distribution of bases B for rotations of Z" such that, if ZSVP is hard for any input
basis, then ZSVP is hard on input B. This gives a satisfying theoretical resolution to the problem
of sampling hard bases for Z", which was studied by Blanks and Miller [BM21]. This worst-case
to average-case reduction is also crucially used in the analysis of our encryption scheme. (In recent
independent work that appeared as a preprint before this work, Ducas and van Woerden showed
essentially the same thing for general lattices [DvW22], and they also used this to analyze the
security of a public-key encryption scheme. Similar ideas also appeared in [CHKP12, HR14, AEN]
in different contexts.)

4. We perform experiments to determine how practical basis reduction performs on bases of Z™ that
are generated in different ways and how heuristic sieving algorithms perform on Z™. Our basis

*Oregon State University. huck.bennett@oregonstate.edu. Part of this work was completed while the author was at the
University of Michigan and supported by the National Science Foundation under Grant No. CCF-2006857. The views expressed
are those of the authors and do not necessarily reflect the official policy or position of the National Science Foundation.

fCornell University

tStanford University

$noahsd@gmail.com. Supported in part by the National Science Foundation under Grant No. CCF-2122230.

mailto:huck.bennett@oregonstate.edu
mailto:noahsd@gmail.com

reduction experiments complement and add to those performed by Blanks and Miller, as we work
with a larger class of algorithms (i.e., larger block sizes) and study the “provably hard” distribution
of bases described above. Our sieving experiments confirm that heuristic sieving algorithms perform
as expected on Z".

Contents

1 Introduction 1
1.1 Ourresults 00 o 1

1.2 Related work e 4

1.3 A brief note on using rotated bases as opposed to, e.g., Gram matrices 6

2 Preliminaries 7
2.1 Basic lattice definitions 7
2.2 The continuous and discrete Gaussian distributions and the smoothing parameter 7
2.3 Lattice problems e 8
2.3.1 Lattice problems on rotations of Z™. L Lo 9

2.4 Primitive vectors and vector countingo L Lo 9
2.5 Probability e 10
2.6 On bit lengths, input formats, and representing real numbers 10

3 How to sample a provably secure basis 10
3.1 A rotation-invariant generating set to basis conversion algorithm 12

4 'We have an encryption scheme to sell you 13
4.1 Basicsecurityo e e e e 15
4.2 A worst-case to average-case reduction (of asort) L 15
4.3 Putting everything together oL L 17
4.4 Ts Z™ the best lattice for cryptography? (with a connection to reverse Minkowski theorems) . 17
4.5 Concerning the genus of Z™ L L 17

5 Reductions and provable algorithms 18
5.1 A simple projection-based reduction L 18
5.2 The main reduction and algorithms oo 19
5.2.1 Sampling using a v-uSVP oracle L o 19

5.2.2 The main reduction L 19

5.2.3 Algorithms from Theorem 5.3 L 20

5.2.4 Hardness from Theorem 5.3 L 21

6 Experiments 22
6.1 Experiments on different procedures for generating bases Lo 22
6.1.1 Discrete Gaussian-based sampling. L o Lo 22

6.1.2 Unimodular matrix product sampling. 0oL 24

6.1.3 Bézout-coefficient-based sampling. Lo o 25

6.2 A threshold phenomenon 27
6.3 Sieving Experiments L e 27

A Proof of Lemma 2.1 32
B Proof of Theorem 5.2 33

iii

1 Introduction

God made the integers; all the rest is the work of man.

Leopold Kronecker

A lattice £ C R”™ is the set of all integer linear combinations of linearly independent basis vectors
B := (by,...,b,) € R"*" i,

L=LB)={z1b1+ -+ 2,b, : z,€Z}.

Lattices have recently played a central role in cryptography, as many powerful cryptographic schemes have
been constructed using lattices. (See [Peil6] and the references therein.) These schemes’ security rests on
the hardness of (worst-case) computational problems related to lattices, such as the Shortest Vector Problem
(SVP), in which the goal is to find a non-zero lattice vector whose £5 norm is minimal, given a basis B for
the lattice.

Perhaps the simplest example of a lattice is the integer lattice Z™, which has the identity matrix as
a basis. Of course, the shortest non-zero vectors in Z™ are simply the standard basis vectors and their
negations tey,...,e,, which have length one. So, it is trivially easy to find a shortest non-zero vector in
Z™ by simply outputting one of these vectors. Other computational lattice problems are also easy when the
relevant lattice is Z".

However, suppose that we are given some basis B for a rotation of Z", i.e., a basis B such that the lattice
L(B) generated by this basis is RZ™ for some orthogonal matrix R € O,(R). Of course, if the basis B is
simply R itself, then it is still easy to find a shortest vector in this lattice. (Any column of R will do.) But,
it does not need to be so easy. For example, the lovely matrix

2 31195 15857 2
33898 —5382y/ 15 = 3\ om0

vV 8
682378 _ 2 676011
B—| O 1919 110727/ eagr7so1 VT329954733
0 0 64221 67240 | 2
682378 3 21911498769
1
0 0 0 3v128442

is a basis for a rotation of Z*, but it is not immediately clear how to find a vector of length one in the lattice
generated by B.! We write ZSVP for the problem of finding vectors of length one in a rotation £ of Z",
given a basis for L.

Indeed, this is a well known problem, and it has been a long-standing open problem to settle the com-
plexity of ZSVP, leading to a beautiful line of work [GS02, Szy03, GS03, LS14, LS17, CGG17, Hun19].
Frustratingly, despite all of this wonderful work, the fastest known algorithm that is proven to solve ZSVP
is still simply the fastest known algorithm that is proven to solve SVP on arbitrary lattices, a 2"+°(")_time
algorithm [ADRS15]. So, we do not even know whether ZSVP is any easier at all than SVP on arbitrary
lattices, let alone whether there exists a polynomial-time algorithm!

1.1 Our results

In this paper, we set aside the (apparently difficult) question of whether a polynomial-time algorithm for
ZSVP exists and instead ask what else we can say about ZSVP. Specifically, we study the following questions.

1. Can we at least solve ZSVP in time better than 27+°(")? (In other words, can we at least do better
than just plugging in an algorithm that solves SVP on all lattices?)

2. If it is hard to solve ZSVP (or variants of it), does this imply any interesting cryptography?

1Of course, this is not actually a hard problem, since it is only four-dimensional and SVP can be solved efficiently when the
dimension n is constant. Indeed, one example of a unit-length vector in this lattice is Bz, where z := (59, 396, 225, —326)T.

3. In particular, is there some (efficiently sampleable) distribution of instances of ZSVP such that these
instances are provably hard if ZSVP is hard in the worst case? l.e., is there a “hardest possible”
distribution of bases suitable for use in cryptography?

4. Do known algorithms perform any differently on rotations of Z™ empirically?

We essentially give positive answers to all of these questions, giving a richer perspective on ZSVP and related
problems, as we detail below.

Provably faster algorithms for Z™. Our first main result, presented in Section 5, is an exponential-time
algorithm for ZSVP that is faster than the fastest known algorithm for SVP over arbitrary lattices. In
fact, we show something significantly stronger: an efficient dimension-preserving reduction from ZSVP to
~-approximate GapSVP over general lattices for any constant v = O(1) (where GapSVP is the decision
version of SVP in which the goal is simply to determine whether there exists a short vector, rather than
to actually find one). In other words, we show that in order to find an exact shortest non-zero vector in
a rotation of Z", it suffices to simply approximate the length of a shortest non-zero vector in an arbitrary
lattice. (In fact, we reduce to the y-unique Shortest Vector Problem, which is SVP in which the shortest
vector is guaranteed to be a factor of v shorter than “the second shortest vector,” appropriately defined.)

Theorem 1.1 (Informal. See Corollary 5.4). There is an efficient reduction from ZSVP to y-approximate
GapSVP (in fact, to v-unique SVP, a potentially easier problem) in the same dimension for any constant

v=0(1).

If we plug in the fastest known algorithm for O(1)-GapSVP, we immediately obtain a 2"/2+°(")_time
provably correct algorithm for ZSVP [ADRS15]. (And, under a purely geometric conjecture, we obtain a
running time of (4/3)"T°(") a5 204157 [Ste20].) In fact, we show a similar result for exact SVP on a much
larger class of lattices, specifically, lattices £ with det(L£’) > 1 for all sublattices £’ C £ and with A;(£) not
too large (lattices satisfying the former condition are called semi-stable). While this generalized algorithm is
not directly related to the remainder of our work, it is related to [DvW22] and makes progress on a question
of theirs about “f-unusual lattices”; see Corollary 5.5 and the ensuing discussion.

However, the specific running times are perhaps less interesting than the high-level message: solving
exact SVP on rotations of Z" is no harder than solving approzimate (or even unique) SVP on arbitrary
lattices in the same dimension. We certainly do not expect such a reduction to work for arbitrary lattices,
so this shows that there is in fact something inherently “easier” about Z".

In fact, there is nothing particularly special about polynomial-time reductions in this context, and we
more generally achieve a smooth trade-off between the running time of the reduction and the approximation
factor v in the resulting SVP instance. In particular, we can reduce ZSVP to «-unique SVP in time roughly
(71/72)”Y2 for any v < y/n/2 (using roughly (n/72)72 queries to a y-unique SVP oracle).

Indeed, our reduction solves SVP over any lattice £ that has “remarkably few approximately shortest
points.” The running time depends on exactly how many ~y-approximate shortest vectors £ has. For example,
this yields essentially the same trade-off for any (rotation of a) lattice that is the direct sum of many low-
dimensional lattices, and any small perturbation of Z™. The key tool that we use here is lattice sparsification,
which was originally developed by Khot (in a rather different context) [Kho05].

We also present (in Section 5.1) a simple dimension-preserving reduction from ZSVP to v/2-SVP. (Notice
that a reduction from ZSVP to v-SVP for v < V2 is trivial, but a reduction for v > V2 is non-trivial.) This
reduction is formally weaker than the one described in Theorem 1.1 (since it only works for the approximation
factor v/2), but it is simpler and more intuitive (and it also has the benefit of being deterministic). We hope
that future authors might generalize it to work for larger approximation factors, perhaps even superconstant
approximation factors. (In fact, we know how to extend it to the approximation factors V3 and 2 = /4, but
our proof relies on tedious case analysis, so we do not bother to include this result.)

Our reduction can also potentially be viewed as a sort of hardness proof for unique SVP (uSVP), which is a
key problem in lattice cryptography. Despite its importance, little is known about its hardness under standard
complexity-theoretic assumptions: uSVP is not even known to be NP-hard for any constant approximation

factor greater than 1 [AD16, Stel6b]. However, our reduction shows that uSVP is hard for any constant
approximation factor if ZSVP is hard. (We show essentially the same result for the Bounded Distance
Decoding problem (BDD), which is closely related to uSVP via known reductions [LM09, BSW16].) We
emphasize that hardness of ZSVP is a non-standard and perhaps even overly strong assumption, and so,
while notable as the first of its kind, this result by itself should be viewed as relatively weak evidence that
approximate uSVP is hard.

A public-key encryption scheme. Our next main result, presented in Section 4, is a public-key encryp-
tion scheme whose security can be based on the (worst-case) hardness of variants of ZSVP.

To be clear, we feel that it is premature to base the security of real-world cryptography on the hardness
of ZSVP and related problems. Indeed, although ZSVP is fairly well-studied, it is not nearly as well-studied
as, e.g., (plain) SVP or factoring, and should therefore be treated with more skepticism. Furthermore, there
is currently no consensus about whether ZSVP is actually hard among those who study it.

With that said, we show an encryption scheme that is secure if it is difficult to distinguish a rotation of
7" either from (1) a lattice with no non-zero vectors with length less than roughly ~ for v = /n/logn; or
(2) from a lattice with smoothing parameter n.(£) smaller than 7. (Z™)/« for any a > w(1). (See Section 2.2
for the definition of the smoothing parameter.) We call these problems y-ZGapSVP and a-ZGapSPP,
respectively.

Theorem 1.2 (Informal, see Theorem 4.8). There is a public-key encryption scheme that is secure if either
v-ZGapSVP or a-ZGapSPP is hard, for v~ y/n/logn and any a > w(1).

We stress that both ZGapSVP and ZGapSPP are worst-case (promise) problems. In particular, our
encryption scheme is secure unless there is a polynomial-time algorithm that correctly distinguishes all bases
of rotations of Z™ from all bases of all lattices that either have no short vectors or have small smoothing
parameter. (A critical step in our proof is a worst-case to average-case reduction showing how to sample a
basis for a rotation of Z™ that is provably as secure as any basis. We discuss this more below.)

We note that the approximation factor v = /n/logn might look quite impressive at first. Specifically,
prior work shows public-key encryption schemes that are secure if 4/-GapSVP (as opposed to v-ZGapSVP)
is hard for v/ ~ n3/2, where v'-GapSVP asks us to distinguish a lattice with a non-zero vector with length
at most one from a lattice with no non-zero vectors with length less than 4/. So, our approximation factor
v & y/n/logn seems much better. (And, perhaps it is. In particular, we do not know algorithms that solve
~v-ZGapSVP faster than 4/-GapSVP or even v-GapSVP.)

Of course, our reduction only works for v-ZGapSVP, which is potentially a much easier problem than
~v-GapSVP, or even than +'-GapSVP. (Indeed, we are not even willing to conjecture that ZSVP is hard,
let alone 4-ZGapSVP.) And, from another perspective, the approximation factor of v ~ /n/logn seems
rather weak. Specifically, since Z™ (and any rotation of Z™) has determinant one, it is trivial by Minkowski’s
theorem to distinguish a rotation of Z™ from a lattice with no non-zero vectors with length less than roughly
v/n. So, from this point of view, our approximation factor v is just a factor of v/logn smaller than trivial.

The approximation factor « for ZGapSPP is harder to interpret, in part because computing the smoothing
parameter is not nearly as well studied as computing the length of the shortest non-zero vector. (But,
see [CDLP13].) However, a recent series of works [DR16, RS17, ERS22, RS23] has shown that there is a
certain sense in which “Z™ has the largest smoothing parameter of any lattice.” (E.g., up to a pesky factor of
2, Z™ is known to have the largest smoothing parameter of any determinant-one lattice whose gram matrix
is integral [RS23].) So, there is a certain vague sense in which a-ZGapSPP is the problem of “recognizing Z"
by one of its most distinguishing features,” and we therefore think of it as an approximate analogue of the
problem of simply recognizing a rotation of Z™ (i.e., distinguishing a rotation of Z™ from any other lattice).
See Section 4.4.

In fact, we note in passing that our cryptographic scheme can be adapted to work with other lattices,
but it seems that Z™ offers distinct advantages here (setting aside the rather important question of whether
the relevant problems are actually hard for rotations of Z").

Sampling provably secure bases. Our next main result, presented in Section 3, is a way to sample a
“hardest possible” basis B for a rotation of Z™. For example, we show an explicit (efficiently sampleable)
distribution of bases B for rotations of Z™ such that, if it is hard to solve ZSVP in the worst case, then it is
hard to solve ZSVP on input B. The basic idea is to use the discrete Gaussian sampling algorithm of [GPV08]
to use any basis of a rotation £ of Z™ to obtain many discrete Gaussian samples from L—sufficiently many
that we have a generating set of £. We can then apply any suitable algorithm that converts a generating set
into a basis. (Similar ideas have previously appeared in somewhat different contexts [CHKP12, HR14, AEN].
In particular, [CHKP12] introduced the idea of sampling a “discrete Gaussian basis” from an arbitrary basis.
More recently, in independent work that was published on ePrint before this work, [DvW22] used similar
ideas in a context very similar to ours. See Section 1.2.)

This gives a theoretically rigorous answer to the question studied by Blanks and Miller [BM21], who
considered the relative hardness of solving ZSVP for different input bases and asked whether there was a
clear choice for a how to generate “hardest possible” bases. We show that there is in fact a relatively simple
input distribution that is provably as hard as any other. Indeed, we have already implicitly mentioned this
result, as it is crucially used in the security reductions for our encryption scheme.

Experimental results for ZSVP. Our final contribution, presented in Section 6, consists of a number
of experimental results showing how practical heuristic lattice algorithms perform on Z™.

Our first such set of experiments ran state-of-the-art basis reduction algorithms on bases of Z™ that
were generated in different ways and compared their effectiveness.? These experiments complement similar
experiments performed by Blanks and Miller [BM21]. Our experiments differ from those of Blanks and
Miller in that we used the BKZ algorithm with larger block sizes; performed more trials; and performed
experiments on the distribution of bases resulting from our worst-case to average-case reduction.

Here, our results were broadly comparable to those of [BM21]. See Section 6.1 for the details. However,
we note that our new experiments on the distribution of bases resulting from worst-case to average-case
reductions suggest that these bases achieve comparable security to the bases studied in [BM21] with much
shorter vectors (which corresponds to a more efficient encryption scheme).

Our second set of experiments document a threshold phenomenon that is evident in these basis reduction
experiments with Z". Specifically, the output of basis reduction algorithms run on bases of Z™ is almost
always an ezract shortest non-zero vector or a vector much longer than this. I.e., once basis reduction
finds a vector in Z™ whose length is below some threshold, it nearly always simply finds a shortest vector.
We document this phenomenon in our context. (After a preliminary version of this paper was released,
we learned of a body of work studying this phenomenon in a larger context and providing compelling
heuristic explanations for it, such as in [AGVW17, DDGR20]. See [DPPvW23, Section 4.2] for more recent
experiments, discussion of this phenomenon in the specific context of Z", and additional references.)

Our third and final set of experiments studies the performance of a heuristic sieving algorithm on Z™.
Specifically, we ran the Gauss sieve, due to Micciancio and Voulgaris [MV10], on Z". In fact, Z™ is a
particularly interesting lattice for heuristic sieving algorithms because Z" is known to grossly violate the
heuristics that are used to design and analyze these algorithms. (See Section 6.3.) Nevertheless, we confirm
that the Gauss sieve performs more-or-less exactly the same on Z™ as it does on other lattices—in spite of
the fact that some of the heuristic justification for the Gauss sieve does not extend to Z". To our knowledge,
such experiments had not been published before.

1.2 Related work

As we mentioned above, there is by now a beautiful sequence of works showing polynomial-time algorithms
for certain special cases of ZSVP [GS02, GS03, LS14, LS17, CGG17]. A summary of their results is beyond
the scope of this work, but we note that their techniques are very different from those in this work with
the exception of Szydlo’s heuristic algorithm [Szy03]. In particular, Szydlo presented a heuristic algorithm

2Note that we ran these experiments directly on bases of Z™, rather than on rotations of bases of Z" because the algorithms
themselves are rotation invariant.

that solves ZSVP by finding many vectors of length roughly ¢\/n (where the constant ¢ > 0 is unspecified),
which can be viewed as a heuristic reduction from ZSVP to ¢/n-SVP. In contrast, we give an efficient
reduction with a proof of correctness from ZSVP to v-uSVP for any constant v (and, more generally, a
roughly (n/72)72—time reduction for v < y/n/2). Additionally, we note that a similar reduction to the one
in Theorem 1.1 appears in a different context in [Stel6b]. There, a sparsification-based reduction from
approximate SVP (on general lattices) to approximate uSVP is the key component in a search-to-decision
reduction for approximate SVP.

Recent work of Ducas [Duc23] (appearing after this paper) gave a provable 27/2t°(")_time algorithm
for ZSVP, matching the running time of our algorithm for ZSVP (see Corollary 5.4), but using different
techniques. The key to our algorithm is an efficient reduction from exact ZSVP on lattices of dimension
n to y-approximate SVP (in fact, y-approximate uSVP) on lattices of dimension n for any constant v > 1
(recall Theorem 1.1). On the other hand, the core of Ducas’s algorithm is an efficient reduction from exact
ZSVP on lattices of dimension n to (near) exact SVP on lattices of dimension roughly n/2. Additionally,
Ducas’s reduction has the advantage of being deterministic whereas ours is randomized, although using his
reduction to get a 2"/2+°(")_time algorithm for ZSVP in [Duc23] still requires invoking the fastest-known
exact SVP algorithm [ADRS15], which is randomized. We also note again that our reduction and algorithm
apply to SVP on a larger class of lattices than rotations of Z" (see Corollary 5.5).

Our public-key encryption scheme is quite similar to a scheme recently proposed by Ducas and van
Woerden [DvW22], in a beautiful independent work that appeared as a preprint before the present work was
finished. On one hand, Ducas and van Woerden’s construction is more general than ours—it works with any
“remarkable” lattice, of which Z" is an example. (We do note in passing that our constructions also make
sense for a more general class of lattices, but we do not attempt to make this precise.) On the other hand,
because we specialize to Z™, our scheme is arguably simpler, and the hardness assumptions that we require
for security, while formally incomparable, are arguably weaker.

Perhaps the biggest difference is that in [DvW22], the ciphertext is a target point that is very close to
the lattice, effectively within the unique decoding radius of Z", i.e., 1/2 (or for more general lattices, within
whatever radius one can efficiently decode, uniquely). And, the [DvW22] decryption algorithm recovers the
unique lattice vector within this distance of the target point. In this context, Z" is not a particularly good
lattice because its unique decoding radius is rather small (relative to, e.g., its determinant). (Of course, Ducas
and van Woerden list many “remarkable” lattices, many of which are better suited to their construction.)
In contrast, our ciphertext is a target point that is quite far away from the lattice, at distance ©(y/n) (well
above the radius at which unique decoding is possible), and our decryption algorithm simply determines
whether the target is closer or farther than a certain threshold value. Indeed, our scheme is particularly well
suited to Z™, as we discuss in Section 4.4. Because of this difference, our scheme achieves security under
arguably weaker hardness assumptions (because we work at much larger radii), but each of our ciphertexts
encodes just a single-bit plaintext, while [DvW22] encode many plaintext bits in each ciphertext (or, more
accurately, they construct a KEM). The assumptions are not directly comparable, however, as [DvW22]’s
hardness assumptions concern the lattice Z™ @ aZ" for a cleverly chosen scaling factor «, whereas our
hardness assumptions work with Z™ directly. Ducas and van Woerden also show a signature scheme and a
zero-knowledge proof, while we do not.

Ducas and van Woerden’s work also contains more-or-less the same worst-case to average-case reduction
that we describe in Section 3, and therefore also more-or-less the same distribution of bases that we propose.
Indeed, in this case their work is essentially strictly more general than ours. (Similar ideas also appeared
in [CHKP12, HR14, AEN], though in different contexts. Our proofs in Section 3 immediately generalize to
other lattices.)

Blanks and Miller introduced two of the basis-generating procedures that we study, and performed
experiments on them to determine if basis reduction algorithms could break them [BM21]. Our empirical
work on different bases for Z™ is best viewed as follow-up work to [BM21]. In particular, we perform more
trials and run BKZ with larger block sizes. Additionally, we perform experiments on the discrete Gaussian
bases described above, which were not considered in [BM21].

Finally, we note that recent follow-up work to this paper [BL23] has continued the study of the cryp-

tosystem that we propose. Specifically, [BL23] gives a reference implementation of our cryptosystem, gives
concrete (rather than asymptotic) parameters to instantiate it with, provides encryption challenges, and
presents primal and dual attacks on the cryptosystem (along with experiments about their effectiveness).

1.3 A brief note on using rotated bases as opposed to, e.g., Gram matrices

Throughout this paper, we work with bases B that are rotations of bases of Z", or more precisely, orthogonal
transformations of bases of Z™. And, we sometimes even work with uniformly random orthogonal transfor-
mations. We do this largely because it is convenient for our presentation and proofs. Of course, to be fully
formal, we must specify exactly the input format that we use for these bases, which in general will not be
rational. Indeed, a true sample from the uniform distribution over orthogonal transformations will not even
admit a finite description. We adopt the convention, common in the literature on lattices, of ignoring these
issues. They can be resolved by appropriately discretizing the space.

However, there are at least two alternative approaches to using rotations, which avoid the issue of
discretization entirely and have some major advantages. In particular, neither approach runs into the
representation issues described above.

One alternative approach is to work with the Gram matriz G := BT B instead of the basis B itself.
Notice that the Gram matrix is rotation independent—i.e., if R € O,(R) is an orthogonal matrix, then
BB = (RB)T RB, so that working with the Gram matrix effectively removes the need to discuss rotations.
And, with some care, one can move freely between Gram matrices and bases. The Gram matrix is also easy
to represent in bits, because the Gram matrix is always an integer matrix when B generates a rotation of
Z". In fact, in terms of Gram matrices G, ZSVP admits a particularly elegant description: it is equivalent
to the problem of finding an integer matrix B € Z"*" such that G = BT B, given only G (with the promise
that such a matrix B exists). (See, e.g., [BM21].)

In fact, we do explicitly work with the Gram matrix when we present our cryptographic scheme, since in
that case we are actually proposing an explicit construction. However, most of the literature (and most of
the results from prior work that we rely on) is written in terms of bases, not Gram matrices. So, we (mostly)
stick to working with bases.

Another approach is to work with some canonical rotation. For example, for any basis B, there is a
unique upper-triangular matrix B’ with positive entries along the diagonal such that B’ = RB for some
orthogonal transformation R € O, (R). This is the QR-decomposition of the basis (where, confusingly, @ in
the QR-~decomposition is an orthogonal transformation and R is an upper-triangular matrix with positive
entries along the diagonal) or equivalently the Cholesky decomposition of the Gram matrix. So, rather than
work with arbitrary rotations, we could work with these canonical rotations. Indeed, this has a lot of appeal
because many lattice algorithms (e.g., LLL) compute the QR-decomposition anyway, and though it does not
consist of integers, it does consist of square roots of rational numbers. This would likely be our preferred
approach if it did not require extra background knowledge for the reader.

Acknowledgements

The authors would like to thank Divesh Aggarwal, Léo Ducas, Ryan Little, Stephen D. Miller, Shahed Sharif,
and Michael Walter for helpful comments. In particular, we thank Léo Ducas for bringing our attention to
the question of whether there exist lattices £ in the same genus as Z"™ with large A1 (£) or small 7.(L) (as
discussed in Section 4.5), and Divesh Aggarwal for pointing out the relevance of the 2™/2+°(")_time algorithm
in [ADRS15]. We also thank Phong Q. Nguyen for sharing an early version of [NP22] with us and for bringing
our attention to the algorithms in [LN14, LN19] that are similar to our algorithm in Section 3.1. Finally,
we thank the anonymous Eurocrypt 2023 reviewers for their helpful comments, and particularly for bringing
our attention to prior work studying the basis-reduction threshold phenomenon.

2 Preliminaries

We write I, for the identity matrix. We write O, (R) for the set of all orthogonal linear transformations.
That is O,,(R) is the set of matrices R € R"*™ with the property that RT R = I,,. We often informally refer
to orthogonal transformations as “rotations.” We refer to integer-valued matrices with determinant +1 (i.e,
matrices in GL,,(Z)) as unimodular. By default logarithms are base e.

2.1 Basic lattice definitions

We say that a lattice £ = £(B) C R™ with basis B = (by,...,b,) € R™™™ has dimension n. A sublattice
L' C L of the same dimension is called a full-rank sublattice.> We use A1 (L) to denote the minimum distance
of £ (equivalently, the length of the shortest non-zero vector in £). ILe., A\{(£) := minger\oy|/||. More
generally, we define the ith successive minimum X\;(L) for 1 < i < n (where n is the dimension of the lattice)
to be the smallest value of 7 > 0 such that £ contains at least i linearly independent vectors of length r:

Ai(£) := min{r > 0 : dim(span(L N 7BY)) > i} .

Here Bi denotes the Euclidean unit ball in n dimensions.

Given a lattice £ with basis B, we define the Gram matriz of B to be G := BTB. We define the
determinant of such a lattice £ to be det(L) := |det(B)| = y/det(G). We note that det(L) is well-defined
because all bases of £ are equivalent up to multiplication by unimodular matrices. Minkowski’s Theorem
upper bounds the minimum distance of a lattice in terms of its determinant, thereby relating the two most
important lattice invariants. Recall that Minkowski’s Theorem asserts that

M (L) < Cy/n - det(£)Y/™ (1)

for some explicit constant C' > 0.

2.2 The continuous and discrete Gaussian distributions and the smoothing pa-
rameter

For a vector y € R™ and parameter s > 0, we write
ps(y) = exp(~]ly|*/s°)

for the Gaussian mass of y with parameter s. We write D7 for the symmetric continuous Gaussian distri-
bution on R™, that is, the distribution with probability density function given by

1
leg),:[X €Sl=2 /Sps(y)dy

for any (measurable) subset S C R™. We simply write Dy for D!.
We prove the following lemma in Appendix A. It shows that when X is sampled from D7, dist(X,Z")
is highly concentrated.

Lemma 2.1. For any s > 0, positive integer n, and € > £

XPanHdist(X, Z")? — v| > en] < 2exp(—(e — €0)*n/10) ,

where
n exp(—ms?)
vi=— —
12 2 ’
and)
—4
€0 1= M S(14+1/s2).

31n general, one can consider lattices £ = £(B) for B € R™*" with m > n. In this case, we refer to m as the (ambient)
dimension of the lattice, and n as the rank of the lattice, and define a full-rank sublattice is one with the same rank n as L.
However, throughout this work we assume (essentially without loss of generality) that m = n.

The Gaussian mass of a lattice £ C R™ with parameter s > 0 is
ps(L) = psly) .
yeL

The discrete Gaussian distribution Dy s is the distribution over £ induced by this measure, i.e., for any
yerL,
Pr [X=y|= .
xip, X =yl=p:)/p:(L)

We will need the following theorem from [BLPT13], which is a slight strengthening of a result in [GPV08].

Theorem 2.2. There is an efficient algorithm that takes as input a basis B = (by,...,b,) € R™ ™ for a
lattice L C R™ and a parameter s > \/log(2n + 4) /7 - max; ||b;|| and outputs a sample from Dy s."

For € > 0, the smoothing parameter of a lattice £ C R™ is the unique parameter n.(£) > 0 such that

p1/n5(£)(ﬁ*) =1+4+e¢.

Lemma 2.3 ([MRO7, Lemma 4.1]). For any lattice L C R™ and parameter s > n.(L) for some € € (0,1), if
X ~ D7, then X mod L is within statistical distance €/2 of the uniform distribution modulo L.

Lemma 2.4 ([MRO7, Lemma 3.2]). For any lattice L C R™ and any e > 2"
Me(L) < vV/n/A(L7) .

We say that yq,...,y,, € L generate a lattice Lif L = {z1y;+ - +2m¥,, : 2i € Z}. In particular, when
m = n, a generating set is simply a basis. We will need the following result due to Haviv and Regev [HR14],
here applied for £ = Z" for simplicity. (The more general result works for lattices with determinant one and
parameters s such that the lattice has a basis consisting of vectors with length at most s.)

Lemma 2.5 ([HR14, Lemma 5.4]). For any s > 1 and m > n? + nlog(sy/n)(n + 20loglog(syv/n)), if
Yis-- o, Yy ~ Dzn s are sampled independently from Dyn g, then yq,...,y,, is a generating set of Z™ except
with probability 2~

2.3 Lattice problems

Definition 2.6. Forn € ZT and v = v(n) > 1, the search version of the y-approzimate Shortest Vector
Problem (v-SVP) is defined as follows. Given a basis B € R™*™ of a lattice L as input, output a non-zero
vector v € L with [|v|| <A (L).

Definition 2.7. Forn € ZT and v = v(n) > 1, the decision version of the y-approzimate Shortest Vector
Problem (v-GapSVP) is defined as follows. Given a basis B € R"*™ of a lattice L and a value v > 0 as
input, decide whether

o (YES instance) A1 (L) <r, or
e (NO instance) A\ (L) > r,
when one of the two cases is promised to hold.

Definition 2.8. Forn € Z% and v = v(n) > 1, the unique Shortest Vector Problem with gap v (y-uSVP)
is the search problem defined as follows. Given a basis B € R™*"™ of a lattice L satisfying v - A1 (L) < X2(L)
as input, output a vector v € L with ||v|| = A1(L).

4In fact, the algorithm even works for any parameter s > 1/log(2n + 4)/7 - max; |[b;||, where b; is the ith Gram-Schmidt
vector of the basis B.

We will use a result of Lyubashevsky and Micciancio that gives an efficient, dimension-preserving reduc-
tion from y-uSVP to y-GapSVP for polynomially bounded vy = v(n).

Theorem 2.9 ([LM09, Theorem 3]). For any 1 < ~ < poly(n), there is a dimension-preserving Cook
reduction from y-uSVP to v-GapSVP.

We will also make use of the following algorithm. (We thank Divesh Aggarwal for pointing out to us
that the below theorem is sufficient for our purposes. Earlier versions of this work used a slower algorithm
for v-SVP.)

Theorem 2.10 ([ADRS15, Corollary 6.6]). There is a 2™/2T°(") _time algorithm that solves v-GapSVP with
v =193+ 0(1).

2.3.1 Lattice problems on rotations of Z".

We say that two lattices L1, Lo of dimension n are isomorphic, which we denote by £q = Lo, if there exists
R € 0,(R) such that R(Ly) = L2. We call lattices £ satisfying £ = Z™ “rotations of Z".” We define
~¥-ZSVP to be v-SVP (as defined in Definition 2.6) with the additional requirement that the input basis B
satisfy £(B) = Z".

Definition 2.11. For v = ~(n) > 1, the y-approzimate Shortest Vector Problem on rotations of Z"™ (v-
ZSVP) is the search problem defined as follows. Given a basis B € R™*"™ of a lattice L satisfying L =2 Z™ as
input, output a non-zero vector v € L with ||v]| <v- A1 (L).

When ~v = 1, we simply write 7-ZSVP as ZSVP.

One may also consider the problem of recovering a rotation of Z", i.e., of recovering an orthonormal basis
of a lattice £ = Z"™. This problem is equivalent to the search version of the so-called Lattice Isomorphism
Problem (LIP) when one input lattice is fixed to be Z™. Although we will not explicitly study the problem
of recovering rotations of Z", it provides the intuitive foundation (though not the formal foundation) for the
security of our cryptosystem, i.e., given a public key corresponding to a “bad” basis of £ = Z™, our scheme’s
security rests intuitively on the assumption that it is hard to find an orthonormal basis of L.

We also note in passing that recovering an orthonormal basis of £ = Z"™ is polynomial-time equivalent to
ZSVP. Indeed, an orthonormal basis of such a lattice £ in particular contains a shortest non-zero vector in
L, and, because Tgpan(v,)+ (£) = Z"~1 for a shortest non-zero vector (i.e., unit-length vector) v € £, one can
find an orthogonal basis of £ by calling a ZSVP oracle, projecting orthogonally to its output, and recursing.

2.4 Primitive vectors and vector counting

Given a lattice £, a vector @ € L is called primitive if ¢ aL for any integer a > 1. Note that 0 is not
primitive regardless of £. Let Lyim denote the set of primitive vectors in £. For a lattice £ and r > 0,
let N(L,r) := [{xeL:]|z| <r} and let Npum(L,7) = [{& € Lprim : ||z]| < r}| /2, where in the latter
expression we divide by two so that we effectively count +a € £ as a single vector.

We will use the following bound from [RS17] on the number of integer points in a ball rB for various
radii r, where By denotes the closed Euclidean unit ball. Although we will only need the upper bound, we
include a lower bound as well to illustrate that the bound is quite tight. Such bounds were originally shown
in [MO90].

Proposition 2.12 ([RS17, Claim 8.2]). For any n > 1 and any radius 1 < r < \/n with r* € Z,
(271/7"2)7'2 <|Z"nrBy| < (2e3n/r2)

A lattice £ C R™ satisfying det(£’) > 1 for all sublattices £’ C L is called semi-stable. (A semi-stable
lattice that additionally satisfies det(L£) = 1 is called stable.) We will also use the following bound from [RS17]
on |£NrBY| where L is a semi-stable lattice. (In fact, [RS17] shows such bounds on the number of lattice
points in a shifted ball; we state their result only for the centered ball rB%.)

Proposition 2.13 ([RS17, Corollary 1.4, Item 1]). Let ¢t := 10(logn + 2) and let £ be a semi-stable lattice.
Then for any r > 1, |LNrBY| < 3e™7 /2.

7,2

2.5 Probability

Lemma 2.14 (Chernoff-Hoeffding bound [Hoe63]). Let X1,..., X € [0,1] be independent and identically
distributed random variables. Then, for s > 0,

Pr HM]E[Xi] ¥ x,

> sM] < 267MS2/10 .

2.6 On bit lengths, input formats, and representing real numbers

Throughout this work, we adopt the common convention of expressing the running times of lattice algorithms
in terms of the dimension n only, ignoring any dependence on the bit length £ of the entries of the input
matrix. Formally, we should specify a particular input format for the lattice basis (e.g., by restricting our
attention to rational numbers and using the natural binary representation of a rational matrix, or by working
with algebraic numbers represented by their minimal polynomials), and our running time should of course
have some dependence on ¢. Consideration of the bit length would simply add a poly(¢) factor to the running
time for the algorithms and reductions considered in this paper for any reasonable input format.

Similarly, our reductions sometimes apply random orthogonal linear transformations R ~ O, (R), without
worrying about how we represent such a linear transformation. There are at least two solutions to this
problem: one can either use a suitable discretization of O, (R), or one can simply switch from working
directly with a basis B to working with the associated Gram matrix G := BTB or some canonical rotation
of B such as the QR-~decomposition, as discussed in Section 1.3.

3 How to sample a provably secure basis

In this section, we show how to sample a basis B for a rotation of Z™ that is “provably at least as secure as
any other basis.” In particular, we show a distribution of bases B of rotations of Z™ that can be sampled
efficiently given any basis of a rotation of Z" together with the orthogonal transformation R mapping the
original lattice to the new lattice. This implies that “if a computational problem can be solved efficiently
given a basis from this distribution, then it can be solved efficiently given any basis.” (We do not try to
make this very general statement formal. In particular, we do not try to classify the set of computational
problems for which this result applies. Instead, we simply provide an example.) Similar ideas appeared
in [CHKP12, HR14, AEN, DvW22].

In fact, we give a class of distributions, one for each efficient rotation-invariant algorithm that converts a
generating set to a basis. We say that an algorithm A that takes as input vectors yy,...,yy € £ that form
a generating set of a lattice £ and outputs a basis B of L is rotation-invariant if for any orthogonal transfor-
mation R € O,(R), A(Ry,,...,Ryy) = R(A(y,,...,yy)). (Here, for simplicity, we are assuming that A is
a deterministic algorithm. We could generalize this definition to randomized algorithms and simply require
that the distribution of A(Ry,,...,Ryy) be statistically close to the distribution of R(A(yq,...,yxn)).)
One can equivalently consider algorithms that work with the gram matrix G € RV*Y of the generating
set, given by G;; = (yi,yj>, which is invariant under rotations by construction. For example, the LLL
algorithm yields an efficient rotation-invariant algorithm that converts a generating set to a basis, and in
Section 3.1 we give a more efficient algorithm that also does this. Given such an A, our distribution is then
the following.

Definition 3.1. For any efficient rotation-invariant algorithm A that converts a generating set to a basis
and parameter s = s(n) > 1 the distribution (A, s)-ZDGS is sampled as follows. For i =1,2,3,..., sample
z; ~ Dgn 5. Let B := A(z1,...,2;). If B € Z"" is full rank and |det(B)| = 1, then sample a uniformly
random orthogonal matriz R ~ O,(R) and output B’ := RB. Otherwise, continue the loop.

Notice that the resulting basis is in fact a basis of a rotation of Z", specifically, RZ™. By Lemma 2.5,
the above procedure terminates in polynomial time except with negligible probability.’

50ne can also use an alternative optimized sampling procedure that “runs the algorithm A iteratively.” ILe., we can

10

Theorem 3.2. For any efficient rotation-invariant algorithm A that converts a generating set into a basis,
there is an efficient randomized algorithm that takes as input a basis B = (by,...,b,) € R™*™ for a rotation
L of Z" and a parameter s > +/log(2n + 4)/7 - max ||b;|| and outputs a basis B’ € R"*™ generating L'
that is distributed exactly as (A, s)-ZDGS together with an orthogonal transformation R € O, (R) such that
RL=1CL".

Proof. The algorithm behaves as follows. For ¢ = 1,2,3, ..., the algorithm uses the procedure from Theo-
rem 2.2 to sample y; ~ D 5, where L is the lattice generated by B. It then computes Bf = A(yy,..., ;).
If the lattice generated by B has full rank and determinant one, then the algorithm outputs B’ := RB'
and R, where R ~ O, (R) is a uniformly random rotation. Otherwise, it continues.

To see why this is correct, let R’ € O, (R) be an orthogonal transformation such that Z™ = R'L. Let
y, := R'y,, and notice that the y, are distributed as independent samples from Dz~ 4. It follows from the
fact that A is rotation invariant that R'Bf = A(y},...,y}). Clearly Bf is full rank and has determinant
one if and only if R’B' has this same property. Therefore, B’ is distributed exactly as R(R') "L A(y},...,y})
(conditioned on the rank and determinant conditions being satisfied). Since R is a uniformly random
orthogonal transformation, this is distributed identically to R"A(y},...,y;) for R ~ O,(R). Notice that
this is exactly the ZDGS distribution.

Finally, as we observed above, Lemma 2.5 implies that after poly(n,log s) samples, ¥/, . .., y; will generate
Z™ with high probability, in which case yq,...,y; will generate £. Therefore, the algorithm terminates in
polynomial time (with high probability). O

The following corollary shows that we can achieve the same result for a fixed parameter s (regardless of
the length of the input basis).

Corollary 3.3. For any efficient rotation-invariant algorithm A that converts a generating set into a basis,
there is an efficient randomized algorithm that takes as input any basis B € R™*"™ for a rotation L of Z"
and outputs a basis B’ € R"*" generating L and rotation R such that B’ is distributed as (A, s)-ZDGS and
RL = L', where s = 2™,

Proof. The algorithm simply runs the LLL algorithm on B, receiving as output some basis Bt = (bJ{7 ey bIL)
for £ with ||bl|| < 27/2. Tt then runs the procedure from Theorem 3.2 and outputs the result. O

Using Corollary 3.3, we can easily reduce worst-case variants of lattice problems on rotations of Z" to
variants in which the input basis is sampled from ZDGS. As an example, we show a random self-reduction
for SVP over rotations of Z™ below. (We also use this idea in Section 4.)

Definition 3.4. For any v = v(n) > 1 and any efficient rotation-invariant algorithm A, the (A,~)-acZSVP
problem is defined as follows. The input is a basis B € R™ "™ sampled from (A,2")-ZDGS generating a
rotation L of Z". The goal is to output y € L with 0 < ||y|| < 7.

Theorem 3.5. For any efficient rotation-invariant algorithm A and any vy > 1, there is an efficient reduction
from v-ZSVP to (A,~)-acZSVP.

Proof. The reduction takes as input a basis B € R"*" for a rotation £ of Z™ and simply runs the procedure
from Corollary 3.3, receiving as output a basis B’ sampled from (A, 2")-ZDGS generating £’ together with
a rotation R such that RL = L'. Tt then calls its (A, v)-acZSVP oracle on input B’, receiving as output
some vector ¢y’ € £'. Finally, it outputs y := R~ 'y’. O

maintain a running basis B = (b1, ..., by), which starts as the empty basis. And, after sampling y,, we can simply update B to
A(by,...,bk,y;), continuing in this fashion until £ = n and det(B) = £1. E.g., if A is Algorithm 1, then this will significantly
improve performance in practice.

11

3.1 A rotation-invariant generating set to basis conversion algorithm

For completeness, we now specify and analyze a rotation-invariant algorithm (Algorithm 1) for converting
a generating set Y = (yq,...,yy) to a basis. After we published a preliminary version of this work, we
learned that Li and Nguyen developed a very similar algorithm in [LN14, Algorithm B.1], and showed an
optimized variant in [LN19, Section 4].

The algorithm A itself is perhaps best viewed as a “lazy” variant of the LLL algorithm. In particular,
unlike LLL, A simply works to find some basis of the lattice generated by Y, and makes no attempt to further
reduce the basis. More quantitatively, in Theorem 3.6, we upper bound the number of swaps performed by
Algorithm 1 for (rotations of) integer lattices by nlog, 8, where n is the rank of the input lattice and 3
is the maximum norm of a vector in the input generating set Y. (It is common in the literature to state
the running time of basis reduction algorithms in this form. In our main use case, the y, are sampled from
a discrete Gaussian with parameter s, in which case 8 < \/ns with high probability.) For comparison,
standard analysis of the LLL algorithm (see, e.g., [Reg04]) upper bounds the number of swaps it performs
by O(n?log B3), which depends quadratically rather than linearly on n.

Define the (generalized) Gram-Schmidt vectors corresponding to a sequence yq, . ..,y of (not necessarily
linearly independent) vectors as follows:

Y =Y,

gi::yi—zng fori=2,...,N.
= (¥;9;)
y;#0

Algorithm 1: Rotation-Invariant Generating Set to Basis Conversion

Input: A generating set Y = (y;,...,yy) € R™*Y of a lattice £ of rank 1 < n < N.
Output: A basis of L.

// Size-reduction step.
Compute the Gram-Schmidt vectors ¥y, ...,y corresponding to yq,...,Yy-
fori=2,...,N do
for j=i—1,...,1 withy; #0 do
‘ Y Y — l1igl -y, /1 iy =Y, ¥;)/{Y;,9;)-
end
end
Delete any identically zero columns from Y, and update N to be the new number of columns in Y.

// Swap step.

if there exists i € {2,..., N} such that y, = 0 then
Swap y; and y;, where j < is the minimum index such that y, € span(yy, ..., yj).
goto size-reduction step.

end

return Y.

We next prove that Algorithm 1 is correct, rotation invariant, and in fact quite efficient. Recall that a
generating-set-to-basis conversion algorithm A being rotation invariant means that for all input generating

sets Y € R™N and R € 0,,(R), RA(Y) = A(RY).

Theorem 3.6. On input a generating setY = (yy,...,yy) € R™N of a lattice L of rankn > 1, Algorithm 1
outputs a basis of L. Furthermore, Algorithm 1 is rotation invariant and performs at most nlog, S—log det(L)

12

.....

swap operations, where 3 1= max;c(1,.. Ny||Y;ll. In particular, if L is (a rotation of an) integer lattice then
det(L£) > 1 and so Algorithm 1 performs at most nlog, 8 swaps.

Proof. We first argue that the output of Algorithm 1 must be a basis of £ assuming that it halts. First, we
note that the algorithm preserves Y being a generating set of £ as an invariant. Indeed, this follows from
the fact that at each iteration Algorithm 1 only performs size-reduction and swap operations. Additionally,
we note that the condition in the ‘if’ statement in the swap step holds exactly when the vectors in Y are
not linearly independent. So, if the algorithm terminates the vectors in Y must be linearly independent
and therefore be a basis of £. The fact that Algorithm 1 is rotation-invariant follows from the fact that, if
R € 0,,(R) then the Gram-Schmidt vectors of RY are equal to Ry, ..., Ry,. In particular, the values p; ;
are the same for Y and RY.

It remains to upper bound the number of swaps performed by Algorithm 1. Define the potential function

Pay= Il

and note that P(Y) is equal to the determinant of the sublattice of £ spanned by vectors y, with y, # 0.
Therefore, because the algorithm maintains the invariant that Y is a generating set of £, we have that
P(Y) > det(£). Using the same invariant, we also have that at each iteration there are exactly n vectors
with non-zero Gram-Schmidt vectors. So, by definition of §, the input generating set Yy = (y1,...,Yn)

satisfies
rvo)= I lwli< I lwl<s". (2)
i€{1,...,N}, i€{1,...,N},
3,70 7,70

Finally, we show that P(Y") decreases by a multiplicative factor of at least 2 after each swap operation.
Let Y = (yq,...,yy) and Y/ = (y},...,y)y) denote the respective generating sets in Algorithm 1 before
and after performing a given swap operation on y, and y, for j <.

We claim that g, = g, for all k # j. This is immediate for k¥ < j because Yy, = y,, for such k. For
k > j, it follows by noting that span(yi,...,y}) = span(yy,...,y;), which in turn follows by noting that,
by the algorithm’s choice of i and j, ¥} =y, and y, € span(yy,...,y;) \ span(yy,...,y,;_;). Furthermore,
y; € span(yy,...,y;) \ span(y;,...,y,;_1) implies that y, is non-zero.

Let 73 denote projection onto span(yy,...,y,)". We then have that

~ ~/ ~
POy B el sl Uy
PO) ik ol Tl T T I,
Y, 70

The final equality again uses the fact that y; € span(yy,... ,yj), and the inequality holds because p; ; =
(Y:,9;)/(Y;,9Y;) has magnitude at most 1/2 after the size-reduction step.
Therefore, by Equation (2), Algorithm 1 performs at most

logy(P(Yp)/ det(L)) < nlog, 8 — logdet(L)

swap operations, as needed. O

4 We have an encryption scheme to sell you

We now consider the possibility that it actually is “hard to recognize Z™” (where we must formalize what
this means rather carefully), and we show that this implies the existence of a relatively simple public-key
encryption scheme. (See also [BL23] for follow-up work implementing the scheme and studying its security.)

The encryption scheme itself is described below. There are public parameters s > 0 and r > 0, which are
functions of the security parameter n (i.e., s = s(n) and r = r(n)). In particular, the parameter s will control

13

the length of the basis used as the public key, and the parameter r is a noise parameter. As we will discuss
in more detail below, choosing s to be smaller decreases the public key size but potentially harms security
(though, to our knowledge, the scheme retains its security as long as s = 10, as we discuss Section 6.1.1; on
the other hand, there is no need to take s > 2", because an adversary can always use the LLL algorithm to
reduce to the case when s < 2™). Choosing r to be smaller decreases the probability of decryption failures
but again potentially harms security (though, again, we do not know of attacks that exploit small choices of
r, unless r is chosen to be very small, e.g., r < 1).

e Gen(1™): Sample vectors 21, z2, 23, . .. independently from Dyzn until z1,..., 2, generate Z". Run
Algorithm 1° on input z1,..., zj to obtain a basis B of Z" and let G := BTB. Output sk := B and
pk = G.

e Enc(pk,b e {0,1}):

— If b = 0, sample X € R" from a continuous Gaussian distribution with probability density

function”

det(G)'/?

/'/-77/

cexp(—mXTGX /r?) cexp(-nXTGX /r?) ,

_ det(B)

and output ¢ := X mod 1 (i.e., the coordinates of ¢ are the fractional parts of the coordinates of
X).

— If b = 1, output uniformly random ¢ ~ [0, 1)™.
e Dec(sk,c): Set t = (ty,...,t,)T := Be. Output 1 if >_(t; — |[t;])? > d and 0 otherwise, where

_n exp(—mnr?)
T12 272

We first concern ourselves with the correctness of this scheme. In particular, the following lemma tells us
that the decryption algorithm will answer correctly except with probability roughly exp(—e‘”Qn). In order
to be conservative, we will want to take r to be as big as possible, so we will take r to be slightly smaller
than /logn/7. E.g., we can take r = \/logn/(10x). This is the maximal choice for r up to a constant,
since if we took, e.g, r > +/logn, then ciphertexts of zero would be statistically close to ciphertexts of one,
making decryption failures unreasonably common.

Lemma 4.1. For r > 1, let § := exp(—mr?). Then, the decryption algorithm described above outputs the
correct bit b except with probability at most 2exp(—cén) for some constant ¢ > 0.

Proof. For the case b = 1, we simply notice that ¢ is uniformly random in a fundamental domain of Z™. It
follows that ¢; — | ¢;] is uniformly random in the interval [—1/2,1/2) and independent of the other coordinates.
In particular E[(t; — [t;])?] = 1/12. It then follows from the Chernoff-Hoeffding bound (Lemma 2.14) that

Pr [Z(ti) < d] < exp(—82n/1000) .

We now consider the case b = 0. Write ¢ = X + z for z € Z". Then, t = Bc = BX + Bz = BX mod 1.
(Here, we crucially rely on the fact that B is an integer matrix.) Notice that BX is distributed exactly as a
continuous Gaussian with covariance B(r?G~')B” = r2, i.e., as D?*. Therefore, 3 (t; — |;])? is distributed
identically to dist(Y',Z")?, where Y ~ D". By Lemma 2.1,

Pr[dist(Y,Z")? > d] < 2exp(—(d — v — en)?/10) ,

60ne can instead run any rotation-invariant algorithm that converts generating sets into bases, as defined in Section 3. We
simply suggest Algorithm 1 for concreteness.

7This is the probability density function of the continuous n-dimensional Gaussian distribution with mean 0 and covariance
r2/(27) - G~1. Notice that we would get an identical distribution if we were to sample Y ~ D and set X := B~'Y.

14

where
n)

12 2"
and ¢ := §*/3. Notice that

d—v—en 0 4
T_ﬁ_a /3> 6/100 .

The result follows. O

4.1 Basic security

We now observe that the above scheme is semantically secure if (and only if) the following problem is
hard. The only distinction between this problem and the problem of breaking the semantic security of the
encryption scheme is that in the problem below the underlying lattice is specified by a worst-case basis B
instead of an average-case Gram matrix G. We will reduce between the two problems using the ideas from
Section 3.

Here and below, we have an additional parameter p, which is a bound on the lengths of the input basis
vectors. If we set s = 2™ in our encryption scheme, then we could remove p by using the LLL algorithm,
as we did in Section 3. However, we choose to keep the parameter p to allow for the possibility of smaller
choices of s, which yield smaller entries in the Gram matrix G and therefore a smaller public key. As far as
we know, the hardness of the problem is essentially independent of p as long as, e.g., p = 100y/n.

Definition 4.2. For parameters p = p(n) > 0 and r = r(n) > 0, the (p,r)-ZGvU problem (Gaussian versus
Uniform mod Z™) is the promise problem defined as follows. The input is a basis B = (by,...,b,) € R**"
such that ||b;]| < p that generates a rotation of Z™, and a vector y € [0,1)™, where y is sampled as follows.
A bit b ~ {0,1} is sampled uniformly at random. If b =0, y = B~'X mod 1 for X ~ D,, and if b = 1,
y ~ [0,1)". The goal is to output b.

We say that (p,r)-ZGvU is hard if no probabilistic polynomial-time algorithm A can solve this problem
with probability better than 1/2 + negl(n).

Theorem 4.3. If (p,r)-ZGvU is hard for some p,r, then the above encryption scheme is semantically secure
with parameters s := \/log(2n +4)/7 - p and r.

Proof. Suppose that there is a probabilistic polynomial-time adversary B that has non-negligible advantage
in breaking the semantic security of the encryption scheme. We construct an efficient algorithm £ that solves
ZGvU with probability non-negligibly larger than 1/2.

The algorithm & takes as input a basis B € R™*™ generating a lattice £, and y € [0,1)™. It then uses
the procedure from Theorem 3.2 with Algorithm 1 to convert this into a basis B’ for a rotation of £ and
sets G := (B’)TB’. It then sets ¢ := (B’)"'By mod 1. Finally, £ calls B on input G and ¢ and outputs
whatever B outputs.

It is clear that &£ is efficient. Furthermore, if y is uniformly random modulo 1, then clearly ¢ is also
uniformly random modulo 1. On the other hand, if y = B~!'X mod 1 for X ~ D,., then

c=(B) 'Bymod1=(B) X mod1.

Notice that (B’)~'X is distributed exactly as a Gaussian with covariance r>G~". Therefore, when b = 0, ¢
is distributed exactly like an encryption of zero, and when b = 1, ¢ is distributed exactly like an encryption
of one. O

4.2 A worst-case to average-case reduction (of a sort)

Of course, ZGvU is a rather artificial problem. Below, we show reductions to it from worst-case problems
that ask us to distinguish Z™ from a lattice that is different from Z" in a specific way. These can be thought
of as “Z"™ versions” of the traditional worst-case lattice problems GapSPP and GapSVP.

Recall that n.(Z™) = y/log(2n/ec)/m for small e.

15

Definition 4.4. For any approzimation factor a = a(n) > 1, € € (0,1/2), and a length bound p = p(n) > 0,
the problem («,e, p)-ZGapSPP is defined as follows. The input is a basis B = (by,...,b,) € R"™™ for a
lattice L satisfying ||b;|| < p. The goal is to output YES if L= Z™ and to output NO if n.(L) < n-(Z")/c.

The below reduction shows that if («, e, p)-ZGapSPP is hard, then our encryption scheme with

r:=+/logn/(10m)

is secure for any ¢ < n=“(and a < n.(Z")/r ~ /10log(n/e)/logn ~ \/log(1/e)/logn.

Theorem 4.5. For any efficiently computable ¢ = e(n) € (0,1/2) and integer £ = £(n) > 100n/(5 — ¢)?,
there is a reduction from (a, e, p)-ZGapSPP to (p,r)-ZGuvU that runs in time poly(n)-£ and answers correctly
except with probability at most 27", where « := 1 (Z™)/r and the success probability of the ZGuvU oracle is
1/2 + 0, provided that § > ¢.

In particular, if (a, €, p)-ZGapSPP is hard for any negligible ¢ = (n) < n=<W) | then (p,r)-ZGuU is hard.

Proof. The reduction takes as input a basis B for a lattice £ C R™ and behaves as follows. Fori =1,...,¢,
it samples a uniformly random bit b; ~ {0,1}. If b; = 0, it samples X; ~ D" and sets y, :== B~ X; mod 1,
and if b; = 1, it samples y; ~ [0,1)™. It then calls the ZGvU oracle on input B and y;, receiving as output
some bit b € {0,1}.

Let p be the fraction of indices ¢ such that b; = b}. The algorithm outputs YES if p > 1/2 4+ /20n/¢.
Otherwise, it outputs NO.

The running time is clear. To prove correctness, we first notice that in the YES case, the input to the
ZGvU oracle is distributed identically to the ZGvU input. It follows that for each i, Pr[b} = b;] = 1/2 + 6.
Furthermore, these events are independent. Therefore, by the Chernoff-Hoeffding bound (Lemma 2.14),

Prlp < 1/2 +¢ 4+ /20n/0] < 2exp(—£(6 — e — /20n/£)?/10) < 27"

as needed.

On the other hand, in the NO case, by Lemma 2.3, y, is within statistical distance ¢ of a uniformly random
element in [0,1)". It follows that, regardless of the behavior of the oracle, for each i, Pr[bf = b;] < 1/2 +¢,
and again these events are independent. Therefore, by the Chernoff-Hoeffding bound again,

Prjp>1/2+¢e++/20n/¢] < 2exp(—2n) <277,
as needed. O]

(Note that the following definition is not simply the restriction of GapSVP to rotations £ of Z"—which
would be a meaningless problem since all such £ have A\;(£) = 1. Instead, it is the problem of distinguishing
Z"™ from a lattice £ with significantly larger A\ (L£*). Of course, since Z" is self dual, and since one can
efficiently test whether a lattice is self dual, we could without loss of generality restrict our attention to
self-dual lattices and then equivalently work with A1 (L) instead of Ay (L*).)

Definition 4.6. For parameters p = p(n) > 0 and v = y(n) > 1, the problem (p,~y)-ZGapSVP is defined
as follows. The input is a basis B = (by,...,b,) € R™™ for a lattice L satisfying ||b;|| < p. The goal is to
output YES if L =27 and to output NO if A1 (L*) > 7.

Theorem 4.7. For any e = e(n) with 27" <e < 1/2, p=p(n) > 0, and v = y(n) > 104/n/log(n/e), there
is an efficient reduction from (p,~)-ZGapSVP to («,e, p)-ZGapSPP for o := ~v+/log(n/e)/n/10.

Proof. The reduction simply calls its ZGapSPP oracle on its input, and outputs whatever the oracle outputs.
To see that this reduction is correct, it suffices to consider the NO case. Indeed, by Lemma 2.4 if A1 (L*) > 7,
then n.(£) < v/n/y < 10/n/log(n/e) - ne(Z™) /v = ne(Z™) /v, so that the oracle must output NO. O

16

4.3 Putting everything together

Finally, we put the reductions above together to obtain a correct public-key encryption scheme that is secure
assuming that ZGapSVP (or even ZGapSPP) is hard.

Theorem 4.8. Let r := y/logn/(107), and let d be as in Lemma 4.1. Then, the above encryption scheme is
correct, and for any s = s(n) > 0 and any 27" < & < n=“(M) the scheme is secure either if (a, e, p)-ZGapSPP

is hard for o == n.(Z")/r ~ \/10log(n/c)/logn and p := s/+/(log2n + 4) /7 or if (p,~)-ZGapSVP is hard

for v :=104/n/log(n/e) - a = /10n/logn.

4.4 Is 7" the best lattice for cryptography? (with a connection to reverse
Minkowski theorems)

Much of the analysis that we did above could replace Z™ with a different lattice £. Indeed, we are certainly
not conjecturing that the encryption scheme described above is actually secure because we are not willing
to conjecture that even ZSVP is hard (let alone the variants described above). So, one should certainly
question whether it is wise to use Z™ for cryptographic constructions because one should question whether
lattice problems are actually hard on rotations of Z™.

Setting that gigantic caveat aside for the moment, we present an interesting argument that Z"™ might
actually be the best lattice for cryptographic purposes.

First, notice that we show security of our scheme assuming the hardness of ZGapSVP with an approxima-
tion factor v &~ y/n/logn. If this were a reduction from GapSVP, rather than the exotic problem ZGapSVP,
then this would be truly remarkable. Indeed, the best security results that we have for public-key encryption
schemes still require hardness of v-GapSVP for v > n3/2. So, in some sense, we achieve a much better
worst-case approximation factor than what is known for, e.g., LWE-based public-key encryption. (Of course,
this is quite misleading, since ZGapSVP is actually trivial for v > /n by Minkowski’s theorem. So, one
could also argue that the approximation factor v & \/n/logn is “only slightly better than trivial.”)

The relationship with ZGapSPP is more interesting. In particular, there is a certain precise sense in
which Z™ “has the largest smoothing parameter of any lattice.” Such a statement can be made formal in
a reverse Minkowski theorem [DR16, RS17]. In particular, recent work [RS17, RS23] comes quite close to
proving a statement of the form “any lattice £ C R™ with determinant one and an integral Gram matrix G
has 0. (£) < n-(Z"), with equality if and only if £ = Z".”® Such a statement would suggest that (1) Z" is the
best lattice (among those with integral Gram matrices) for the purposes of decoding (since taking r above
smoothing makes decoding impossible by definition); and (2) that solving ZGapSPP might be more-or-less
as hard as simply recognizing a rotation of Z". In particular, it is trivial to check that the input lattice has
an integral Gram matrix and determinant one, so recognizing Z" is equivalent to distinguishing Z™ from
any other such lattice. If all such lattices have smaller smoothing parameter than Z™, then distinguishing
Z" from a lattice with significantly smaller smoothing parameter is closely related to the problem of simply
distinguishing Z™ from any lattice.

Of course, the above argument is not quantitative. There exist unimodular lattices that are distinct from
Z"™ with n.(L) > n.(Z™)/« for rather small o > 1, and we do not show that our encryption scheme is secure
even under the assumption that it is hard to distinguish a rotation of Z™ from such a lattice £. Instead,
we are noting that a-ZGapSPP amounts to the problem of “recognizing Z™ by identifying one of its most
distinguishing features.”

4.5 Concerning the genus of Z"

We note that there exist certain efficiently computable arithmetic lattice invariants (i.e., arithmetic properties
of a lattice that are invariant under rotation) that can sometimes be used to determine that two lattices are

8Such lattices are called unimodular. Specifically, [RS23] prove that ne (L) < (2 + o(1))ne(Z™) for any unimodular lattice.
Furthermore, [RS17] proves that 7:(£) < 7e(Z™) with equality if and only if £ = Z™ for very small ¢ < 2-¢" and [ERS22]
proves a similar statement for a non-Gaussian test function.

17

not isomorphic. The equivalence class of lattices with the same arithmetic invariants is called a genus. The
authors do not know whether there exist lattices £ in the genus of Z™ that have A\;(L£) 2 y/n/logn, and it
seems like proving the existence of such a lattice (or that they do not exist) might be difficult. If no such
lattices exist, then ZGapSVP can be solved efficiently for the parameters in Theorem 4.8 by simply checking
whether the input lattice is in the same genus as Z™. It is, however, known that there exist lattices with very
large minimum distance that share some of the simplest arithmetic invariants with Z"—specifically, there
exist odd unimodular lattices with Ay (L) > (n/(2me))™/? [MHT73, Theorem 9.5].

In fact, the authors do not even know if there exist lattices £ in the same genus as Z" with n.(£) <
0. (Z™) //Togn ~ /log(1/¢)/logn for ¢ < n=<M). If such lattices do not exist, then ZGapSPP can also be
solved efficiently for the parameters in Theorem 4.8. However, given the discussion above and the rather
small approximation factor of a =~ v/logn, it seems likely that such lattices exist.

5 Reductions and provable algorithms

In this section, we give a reduction from ZSVP to approzimate (unique-)SVP. In particular, our main
result yields a randomized polynomial-time reduction from ZSVP to y-uSVP for any constant v > 1. By
combining this reduction with a known approximation algorithm for uSVP, we show that for any constant
e > 0 there is a 27/2t°(")_time algorithm for ZSVP.? This improves exponentially over the fastest known
algorithm for SVP on general lattices [ADRS15], which runs in 2"+°(") time and was previously the fastest
known algorithm even for the special case of ZSVP. Added: In fact, our 2*/2t°(")_time algorithm works
more generally for semi-stable lattices whose minimum distance is not too large.

We note that our reduction is similar to the reduction from SVP to uSVP in [Stel6b] though it works
in a very different regime (we solve ezact ZSVP using a y-uSVP oracle for any constant -, while [Stel6b]
solves approzimate SVP using a y-uSVP oracle for v < 1+ O(logn/n)).

Interpreted differently, our reduction also shows conditional hardness of uSVP. Namely, if one were to
hypothesize that there is no (possibly randomized) polynomial-time algorithm for ZSVP, then it implies
that there is no randomized polynomial-time algorithm for solving v-uSVP for any constant v > 1. This
is notable because uSVP is not known to be NP-hard for any constant factor greater than 1. We also note
that our main reduction generalizes to arbitrary lattices with few short vectors and may be of independent
interest.

5.1 A simple projection-based reduction

Before giving our main reduction, we start with a simple reduction from ZSVP to v/2-SVP using a determin-
istic, “projection-based” approach. More specifically, we start by querying our v/2-SVP oracle on the input
lattice £, and if the vector v that it returns does not have unit length then we recurse on the orthogonal
projection m,1 (L) of £ onto v*. Although the results in Section 5.2 largely subsume it, we choose to present
it because of its simplicity and the fact that the projection technique seems likely to generalize. (Indeed,
we know similar reductions that work for v/3-SVP and even 2-SVP, but our analysis of those involves sub-
stantial case analysis. We hope that there might be some more general reduction of which these are simply
special cases, perhaps even a reduction that works for superconstant approximation factors.) It also has the
advantage of only making at most two oracle queries.

Theorem 5.1. There is a deterministic, dimension-preserving Cook reduction from ZSVP to v/2-SVP.

Proof. Let B € R™*™ be the input instance of ZSVP with £ := £(B), and assume without loss of generality
that n > 3.

The reduction works as follows. First, it calls its v/2-SVP oracle on the input basis B, receiving as
output a vector v. If ||v|| = 1, the reduction returns v. Otherwise, it computes a basis B’ of the orthogonal

9We note again in passing that under a purely geometric conjecture we would in fact obtain a running time of (4/3)"1°(%) ~
20-415m [54e20].

18

projection £ := 7,1 (L) of £ onto v*, and calls its v/2-SVP oracle on B’, receiving as output a vector w. If
|lw]| = 1, the reduction returns w. Otherwise, it outputs v/2 + w.

The reduction is clearly efficient. It remains to analyze its correctness. The algorithm is clearly correct
if [[v]| = 1, so assume not.

Fix an arbitrary orthogonal basis R = (r1,...,7,) of L for analysis. Because £ = Z", if v is not a unit
vector then it must be of the form £r; & r; for some ¢ # j. Indeed, any vector Rx € £ whose coefficient
vector & has a coordinate of magnitude at least 2 will have norm at least 2, and any vector Rx such that
has at least 3 non-zero coordinates will have norm at least v/3, so this is the only possibility. It follows that
L= ((1/y/2)-2Z) ® Z"2, and therefore that A\;(£') = 1/+/2. So, on input B’, a v/2-SVP oracle will output
a vector w of one of two types: (1) a unit-length vector w = £7y, for k ¢ {i,j}, or (2) w = (£r; £7;)/2
satisfying v | w. Indeed, these are the only two types of vectors of norm at most v/2 - A;(m,. (£)) = 1. In
the former case, we're done since w has unit length and w € £. In the latter case, because v = +r; =7,
w = (£r; £ 7;)/2, and v L w, we have that v/2 + w is equal to either +r; or £r;, all of which are again
unit-length vectors in £, as needed. O

5.2 The main reduction and algorithms

We next present our main reduction, from which we get our main algorithms.

5.2.1 Sampling using a v-uSVP oracle

Our reduction crucially uses the following theorem, which shows how to use a y-uSVP oracle to sample
short primitive vectors. It is very similar to results in [ACK™'21, Stel6a], but those results are in a slightly
different form from what we need. However, because of its similarity to those results, we defer its proof to
Appendix B.

Theorem 5.2. For any v = v(n) > 1 and r > 0, there is a polynomial-time randomized algorithm with
access to a y-uSVP oracle that takes as input (a basis of a) lattice L and an integer A" > A := Nppim (L, 1)
and outputs a vector y € L such that if & € L is a primitive vector with ||z| < r then

1
> .
= 2004’ log(100A")

Prly = x|

Furthermore, the algorithm makes a single query to its y-uSVP oracle on a full-rank sublattice of L.

We emphasize that Theorem 5.2 holds for any r > 0, but that r need not be provided as input.

5.2.2 The main reduction

We now present our main reduction. Intuitively, it says that exact SVP is not much harder than approximate
uSVP on lattices with few short vectors. Namely, it says that there is an algorithm for solving exact SVP
by making roughly A/G queries to a y-uSVP oracle (and which uses roughly A/G time overall), where
A = Npyim(L,7 - M (L)) and G := Npyim (L, A1(£)).°

Theorem 5.3. Let v = ~v(n) > 1 and let L be o lattice of dimension n. Let G := Nprim(L, A1 (L)) and let
A = Nprim(L,v - M1 (L)). Then there is a randomized Turing reduction from (exact) SVP on L to v-uSVP
that makes (A/G) - poly(n) queries to its v-uSVP oracle, runs in (A/G) - poly(n) time overall, and makes
all oracle queries on full-rank sublattices of L. In particular, the reduction is dimension-preserving.

Proof. Tt suffices to prove the claim for v < 27%/2. Indeed, suppose that the claim is true for v = 2"/2.
Then we can solve SVP on £ using Npyim (£, 27/2 . \{(L)) - poly(n) queries to a 2*/2-uSVP oracle and in

10We have used the standard mnemonic of G representing “good” vectors and A representing “annoying” vectors, although
here A representing “all” primitive vectors shorter than « - A1(£), including the good vectors, is more appropriate. We note in
passing that 2G is the so-called kissing number of L.

19

Norim (£,2% - X\1(L)) - poly(n) time overall. But, because the 2"/2-uSVP oracle can be instantiated with

a poly(n)-time algorithm (the LLL algorithm [LLL82]), this implies that there is an algorithm that solves

SVP on £ and runs in Nppm (£, 2"/ - A1(L£)) - poly(n) time (without using any oracles), and therefore an

algorithm that runs in Nppim (£, A1(£)) - poly(n) time and has access to a y-uSVP oracle for any v > 2"/2,
The reduction from SVP on £ to y-uSVP for v < 2*/2 works as follows:

1. Guess G’ satisfying G/2 < G’ < G, and guess A’ satisfying A < A’ < 2A.

2. Sample K := [200A4"1og(1004")/G"] - n vectors yq, ...,y using the algorithm in Theorem 5.2 with (a
basis of) £ and A’ as input.

3. Return a shortest vector among the vectors yq,...,yg-

We start by proving correctness. Let x1,...,xs be linearly independent shortest non-zero vectors in L,
ie, let 1,...,xg € L be such that ||z;|| = A\ (L) and x; # xax; for all ¢ # j. (By assumption, G such
vectors exist.) By Theorem 5.2 invoked with r := A1(£), the probability that y, = x; for any fixed k € [K]
and i € [G] is at least p := 1/(200A"log(100A")). Moreover, because the events y, = x; and y, = x; are
disjoint ¢ # j, the probability that there exists ¢ € [G] such that y, = «x; for fixed k € [K] is at least Gp.
So, the probability of some call to Theorem 5.2 returning a shortest non-zero vector x; € L is at least

1-(1-Gp)K>1-ePK>1 ¢
as needed.

We next turn to upper bounding the reduction’s runtime. The reduction’s overall runtime is dominated
by the number of guesses needed for G’ and A’ in Step 1 times the runtime of the calls to the sampling
algorithm in Theorem 5.2 made in Step 2.

Guessing G’ and A’ can be done by setting G/ := 2¢ and A’ := 2 for integers ¢, ¢ satisfying 0 < ¢ < ¢/ <
log,(2v + 1) - n. Indeed, this suffices because G’ < A’ < 24, and a straightforward packing argument shows
that A := Nprim(L£,7 - AM1(L£)) < (2y +1)". Overall, Step 2 makes K = O(Alog(A)n/G) < A/G - poly(n)
calls to the sampling algorithm in Theorem 5.2, each of which makes a single call to a y-uSVP oracle on a
lattice of dimension n and uses poly(n) additional time. The reduction therefore makes at most

(logy(2y +1)-n)- K - poly(n) < (A/G) - poly(n) ,

calls to its v-uSVP oracle and uses (A/G) - poly(n) time overall, as needed. O

5.2.3 Algorithms from Theorem 5.3

Let Tusvp (v, n) denote the fastest runtime of a (possibly randomized) algorithm for 4-uSVP on lattices of di-
mension n. By combining the reduction in Theorem 5.3, the point counting bound for Z™ in Proposition 2.12,
the reduction from approximate uSVP to approximate GapSVP from Theorem 2.9, and the algorithm for
(1.93 4 0(1))-uSVP from Theorem 2.10 we get the following algorithmic result for ZSVP.

Corollary 5.4. For 1 <~ < +/n, there is a randomized algorithm that solves ZSVP on lattices of dimension

n in (263n/fy2)72 -Tusvp (v, n)-poly(n) time. In particular, there is a randomized algorithm that solves ZSVP
on lattices L of dimension n in 2"/2T°() time.

Proof. By the rotational invariance of the 5 norm and Proposition 2.12,
2
A= Norim (£,7 - M (L)) = Nprim (27,7 - M(ZM)) < N(Z",7) < (2¢°n/7%)7 .

The main result then follows immediately from Theorem 5.3.

The 27/2+°(")_time algorithm for ZSVP follows by instantiating the main result with Tusvp(1.93 +
o(1),n) < 27/2+e(™ which follows by combining the fast algorithm for (1.93 + o(1))-GapSVP from Theo-
rem 2.10 with the efficient dimension-preserving reduction from uSVP to GapSVP in Theorem 2.9. O

20

We again emphasize that the 2%/2+°(™)_time algorithm in Corollary 5.4 substantially improves over the
2n+o(m)_time SVP algorithm for general lattices from [ADRS15], which was also the previous fastest known
algorithm for ZSVP.

In fact, Theorem 5.3 leads to a 2"/2+°(")_time algorithm for SVP on a much larger class lattices than
rotations of Z™, namely, on semi-stable lattices £ with A\ (£) not too large. (Recall that a semi-stable
lattice £ is one with det(£’) > 1 for all sublattices £ C £.) Namely, combining Theorem 5.3 with the
point-counting bound for semi-stable lattices in Proposition 2.13 gives such an algorithm.

Corollary 5.5. Lety =y(n) > 1 and let t := 10(logn+2). There is a randomized algorithm that solves SVP
on semi-stable lattices L of dimension n in (3¢™ (¥ 1(£)* /9). T qyp(y,n) - poly(n) time. In particular, there

is a randomized algorithm that solves SVP on semi-stable lattices of dimension n with A1 (L) < o(y/n/logn)
in 2720 time.

Proof. The main result follows by plugging r := 7 - A;(£) into Proposition 2.13 to upper bound A :=
Nprim(£,77 - A1 (£)) and then invoking Theorem 5.3. The 27/2+°(")_time algorithm for semi-stable lattices of
dimension n with A;(£) < o(y/n/logn) follows by noting that, if v = O(1) (in particular, if v = 1.93+0(1)),
then e”Q(V')‘l(ﬁ)f/? = 2°(") Indeed, the claim then follows by again using the fact that Tusvp(1.93 +
o(1),n) < 2n/2+o(n), O

We note that because rotations £ of Z" are semi-stable lattices with A;(£) = 1, Corollary 5.5 implies a
2n/2+0(n)_time algorithm for ZSVP and hence subsumes the “in particular” part of Corollary 5.4. However,
Corollary 5.4 says something somewhat stronger for ZSVP than Corollary 5.5. Namely, Corollary 5.4 shows
how to turn a 2°"*+°(")_time algorithm for y-uSVP with any v = o(y/n) into a 2¢"*T°(")_time algorithm for
ZSVP, whereas getting this result from Corollary 5.5 requires an algorithm for v-uSVP with v = o(y/n/logn).

We also note that Theorem 5.3 and Corollaries 5.4 and 5.5 answer a special case of an interesting
question of Ducas and van Woerden [DvW22], which asks whether there is a reduction from exact SVP on
“f-unusual” lattices—essentially lattices for which Minkowski’s Theorem (or, more-or-less equivalently, the
Gaussian heuristic) is loose by a factor of at least f—to (approximate) uSVP. Semi-stable lattices £ are
Q(yv/n/A1(L))-unusual in this sense (in particular, rotations of Z™ are ©(y/n)-unusual), and so we answer
a special case of this question. Our results do not hold for f-unusual lattices more generally, essentially
because a lattice that is loose with Minkowski’s Theorem may nevertheless have a dense sublattice (i.e., may
not be semi-stable).

5.2.4 Hardness from Theorem 5.3

Corollaries 5.4 and 5.5 combine the reduction in Theorem 5.3 with algorithms for v-uSVP to get algorithms
for SVP on rotations of Z™ and certain semi-sstable lattices. However, interpreting the reduction in the
other direction—assuming that SVP on rotations of Z™ and certain semi-stable lattices is hard—leads to new
hardness results for approximate uSVP. Namely, if one assumes that there is no randomized polynomial-time
algorithm for ZSVP then there is also no randomized polynomial-time algorithm for solving y-uSVP for any
constant v > 1. This is notable because 7-uSVP is not known to be NP-hard (or to the best of our knowledge,
known to be hard under any other generic complexity-theoretic assumption) for any constant v > 1. Indeed,
it is only known to be NP-hard (under randomized reductions) for v = 1 + 1/ poly(n); see [AD16, Stel6b].
Similarly, if one assumes that there is no randomized quasipolynomial-time algorithm for SVP on stable
lattices with sufficiently small minimum distance then there is also no randomized quasipolynomial-time
algorithm for solving y-uSVP for any quasipolynomial ~.

We also get similar hardness for the a-Bounded Distance Decoding Problem (a-BDD), the problem in
which, given a (basis of a) lattice £ and a target point ¢ satisfying dist(¢, £) < a - A1(£) as input, the goal
is to output a closest lattice point to t (i.e., € L satisfying ||t — x| = dist(¢, £)).

Corollary 5.6. The following hardness results hold for v-uSVP and a-BDD:

1. If there is no randomized poly(n)-time algorithm for ZSVP, then there is no randomized poly(n)-time
algorithm for v-uSVP for any constant v > 1 or for a-BDD for any constant o > 0.

21

2. If there is no randomized 2P°Y1°8 ™) _time algorithm for SVP on stable lattices £ with A1 (L) < poly(logn),
then there is no randomized 2P°Y (198 ™) _time algorithm for v-uSVP for any v < 2P°¥(0en) o for o-BDD
for any o with (1/a) < 2royogn),

Proof. The contrapositive of the claims for uSVP follow immediately from Corollaries 5.4 and 5.5. The
claims for BDD follow from this by additionally noting that [LM09] gives an efficient reduction from y-uSVP
to (1/7)-BDD for any v = vy(n) < poly(n). O

6 Experiments

The code and raw data for our experiments can be found at [BGPS21].

6.1 Experiments on different procedures for generating bases

In this section, we present experimental results examining the effectiveness of standard basis reduction
algorithms for solving ZSVP. Specifically, we generate bases of Z™ (which we then treat as instances of ZSVP)
using three procedures: discrete-Gaussian-based sampling, unimodular-matrix-product-based sampling, and
Bézout-coefficient-based sampling. Using each of these procedures, we generate bases in dimensions n = 128,
256, and 512 with a variety of settings for procedure-specific parameters.!’ These results extend those
in [BM21], which included experiments on bases generated using the second two procedures.

For each basis generating procedure (and corresponding set of parameters), we run the LLL algorithm
and BKZ reduction algorithm (as implemented in fplll [FPL]) with different block sizes. For BKZ, we use
block sizes 3, 4, 5, 10, and 20—though in dimension 512, we left out block size 20 for most of our experiments
due to computational constraints. We often treat LLL as “BKZ with block size 2” (though this is not strictly
true). We run these algorithms sequentially. That is, we run BKZ with block size 3 on the matrix returned
by the LLL algorithm, we run BKZ with block size 4 on the matrix returned by BKZ with block size 3, and
so forth.

For each parameter set of each basis generation procedure, we performed this experiment twenty times,
and we report below on the smallest block size that found a shortest non-zero vector in the lattice (where,
again, we think of LLL as BKZ with block size 2), if one was found. More data, such as the running times
of our experiments, the squared length of the shortest vector found in each trial, and the code used, can be
found in the associated repository [BGPS21].

At a high level, the data tell a relatively simple story. We were able to find a shortest vector in all cases
in dimension 128 (often with block size 10). In dimensions 256 and 512, we were generally unable to find
shortest vectors when the basis was generated with “reasonable parameters,” where the definition of which
parameters settings are reasonable of course depends on the procedure used to generate the basis.

We note that the “reasonable parameter” regime for the discrete Gaussian-based generating procedure
yields significantly shorter vectors than the other procedures, which might be considered an advantage, as
it means that the resulting bases can be stored more efficiently.

6.1.1 Discrete Gaussian-based sampling.

We start by presenting the results of experiments performed on bases generated essentially as described in
Section 3 (which is also what we use for our encryption scheme in Section 4). However, we make three minor
modifications. First, instead of sampling vectors one at a time until we find a generating set of Z™, we simply
sample n + 10 vectors. (There is nothing special about the number 10 here.) Empirically, we found that

1We note that these experiments were actually performed on bases of Z" itself—not rotations of Z™—because this allows
us to work with bases with integer entries. Of course, it is not actually hard to find a short vector in this case—simply ignore
the input and output e;. However, the experiments that we perform use algorithms that are rotation-invariant—that is, their
performance is unchanged if we apply a rotation to the input basis. The results of our experiments would therefore be essentially
identical if we had run them on rotations of Z™, though the experiments were performed on Z" itself.

22

Discrete Gaussian-based sampling

Input: A dimension n, a parameter s > 0.

Algorithm:

1. Forall 1 <¢<nand1<j<n+ 10 sample m; ; from a discrete Gaussian with parameter s
and set M < (m; ;).

2. Apply an algorithm A that converts a generating set into a basis B, as in Definition 3.1.

3. If det(B) # +£1, start over.

block size
n s 2 3 4 5 10 20 unbroken
128 1 20 0 0 O 0 0 0
128 10 0 0 1 1 18 0 0
128 1000 0 0 0 3 17 0 0
256 1 2 2 1 0 3 3 9
256 10 0 0 0 O 0 0 20
256 1000 0 0 0 O 0 0 20
512 1 0 0 0 0 0 0 20
512 10 0 0 0 O 0 0 20
512 1000 0 0 0 O 0 0 20

Table 1: Experimental results for basis reduction performed on bases generated using the discrete-Gaussian-
based construction described in Section 6.1.1. The entries under each block size represent the number of
times (out of a total of twenty experiments) that a shortest non-zero vector was found with a given block
size (but no smaller block size), and the entries in the “unbroken” column represent the number of times
that we failed to find a shortest non-zero vector. Non-zero entries are highlighted.

this yielded a generating set with high probability. Notice that this is much better than what is proven in
Lemma 2.5. See also [NP22].

Second, recall that the basis sampling procedure in Section 3 requires an algorithm A that converts such
a generating set into a basis (and is rotation invariant), as does our description of the sampling technique
below. Since LLL is such an algorithm, and since we intend to run LLL anyway, we simply skip this step and
run LLL directly on the generating set. Third, we do not bother to apply a rotation to the basis, because
the algorithms that we are running are invariant under rotation (as noted in Footnote 11).

In our experiments, we took s € {1,10,1000}. See Table 1. Setting s = 1 is not a “reasonable” parameter
choice, as the resulting vectors are unreasonably sparse. (Each coordinate of each vector in the generating
set is zero with probability roughly 0.92.) In particular, we would certainly not recommend using parameter
s = 1 for cryptography, and we include data with s = 1 only for completeness. Nevertheless, interestingly,
in all twenty runs, we were actually unable to find a shortest vector even for s = 1 in dimension n = 512.

For s = 10 and s = 1000, we found shortest vectors in dimension n = 128 (as we did in all experiments
in n = 128 dimensions) and failed to find shortest vectors in dimensions n = 256 and n = 512. The data
suggest that there was not too much difference between parameter s = 10 and parameter s = 1000. E.g., in
dimension n = 128, there is no obvious difference between the block size needed to break the s = 10 case
and the block size needed to break the s = 1000 case. (In contrast, LLL was able to break the s =1 case.)

23

6.1.2 Unimodular matrix product sampling.

The second basis sampling technique that we analyze was proposed in [BM21], where it is called Algorithm
3.12 To introduce it, we start by discussing a family of embedding maps ¢y, .., : R4*? — R"*" for size d
subsets of indices {k1,...,kq} C {1,...,n} that embed a smaller d X d matrix H into a larger n x n matrix

P(H):

H,; ifid =k and j' =k; for some i,j < d;

(Pky,... kg (H))ir jr = {

ly—j» otherwise,

where H = (H; ;) € R and ¢y, x,(H) = H' = (H], ;) € R"*". With this, we can define the next basis
sampling technique, which we call “unimodular matrix product” sampling.

s ~

Basis Generating Procedure 2: Unimodular matrix product

Input: A dimension n, a block size 2 < d < n, a size bound B > 1, a word length L > 1.

Algorithm:
1. Set a matrix A + I,.

2. Forall 1 <i<dand 1< j<dsample the integer m; ; uniformly at random from [—B, B].

w

. Set M < (mi,j).

=~

. If det(M) # +1:

e Then repeat steps two and three.

e Otherwise sample distinct integers ki, ..., kg uniformly at random from [1,n], then set
M’ ¢k,,... k(M) and reassign A < AM’

5. Repeat steps two through four a total of L times then output A.

In our experiments, we considered all combinations of parameters d € {2,3,4}, B = 1, and L €
{10n, 20n, 30n,40n,50n}, except that we did not perform experiments with some of the larger parame-
ter choices when n = 512 when our experiments failed to find short vectors with smaller parameters. See
Table 2. (These parameter settings are roughly in line with those studied in in [BM21].)

As in all of our experiments, we were able to find a shortest non-zero vector for all choices of parameters
in dimension 128. For all but the smallest parameter settings, the required block size to do so was broadly
comparable to what we saw for the Gaussian—typically block size 10 was required, but occasionally smaller
block sizes sufficed.

We include the case of d = 2 and L = 10n for completeness, but we note that this is a rather silly example,
as bases generated in this way often contain quite short vectors. Indeed, the expected number of vectors in
the resulting basis that have length exactly one is at least n(1 — 4/(5n))* ~ n/3000, and indeed the data
show that the generated basis often itself contains a shortest non-zero vector in this case. (Asymptotically,
one should clearly take L > An, where X is the security parameter.)

More generally, the data make clear that the success of our experiments depended heavily on the param-
eters. E.g., even in dimension 512, the LLL algorithm was able to break the d = 2 and L = 20n case, but
none of our experiments broke larger parameter settings.

12 Algorithm 1 in [BM21] is not a polynomial-time algorithm, and is not intended to be used. Algorithm 2 is essentially
(though not quite) the special case of Algorithm 3 with d = 2. This is why we do not consider Algorithms 1 and 2 from [BM21]
in this work.

24

block size block size
n B L d 2 3 4 5 10 20 unbroken n B L d 2 3 4 5 10 20 unbroken
128 1 1280 2 20 0 0 O 0 0 0 256 1 2560 2 20 0 0 O 0 0 0
128 1 2560 2 0 0 1 3 16 0 0 256 1 5120 2 0 0 0 0 0 0 20
128 1 3840 2 0 0 1 5 14 0 0 256 1 7680 2 0 0O 0 O 0 0 20
128 1 5120 2 0 0 1 3 16 0 0 256 1 10240 2 0 0O 0 O 0 0 20
128 1 6400 2 0 o 0 2 18 0 0 256 1 12800 2 0 0O 0 O 0 0 20
128 1 1280 3 0 0o 2 5 13 0 0 256 1 2560 3 0 0O 0 O 0 0 20
128 1 2560 3 0 0 0 4 16 0 0 256 1 5120 3 0 0O 0 O 0 0 20
128 1 3840 3 0 0 1 5 14 0 0 256 1 7680 3 0 0O 0 O 0 0 20
128 1 5120 3 0 0 1 4 15 0 0 256 1 10240 3 0 0O 0 O 0 0 20
128 1 6400 3 0 0 1 4 15 0 0 256 1 12800 3 0 0O 0 O 0 0 20
128 1 1280 4 0 0 1 5 14 0 0 256 1 2560 4 0 0O 0 O 0 0 20
128 1 2560 4 0 0O 3 5 12 0 0 256 1 5120 4 0 0O 0 O 0 0 20
128 1 3840 4 0 0o 2 4 14 0 0 256 1 7680 4 0 0O 0 O 0 0 20
128 1 5120 4 0 1 3 2 14 0 0 256 1 10240 4 0 0O 0 O 0 0 20
128 1 6400 4 0 0O 0 4 16 0 0 256 1 12800 4 0 0O 0 O 0 0 20
block size

n B L d 2 3 4 5 10 20 unbroken

512 1 5120 2 20 0 0 O 0 0

512 1 10240 2 20 0 0 0 0 0

512 1 15360 2 0 0O 0 O 0 20

512 1 20480 2 0 0O 0 O 0 20

512 1 25600 2 0 0 0 0 0 20

512 1 5120 3 0 0O 0 O 0 20

512 1 10240 3 0 0O 0 O 0 20

512 1 15360 3 0 0O 0 O 0 20

512 1 5120 4 0 0O 0 O 0 20

Table 2: Experimental results for basis reduction performed on bases generated using the product of sparse
unimodular matrices method described in Section 6.1.2. The entries under each block size represent the
number of times (out of a total of twenty trials) that a shortest non-zero vector was found with a given block
size (but no smaller block size), and the entries in the “unbroken” column represent the number of times
that we failed to find a shortest non-zero vector. Non-zero entries are highlighted. Cells that are grayed out
represent block sizes that were not tested.

A strange anomaly. We note that our data differ from the data in [BM21] in a surprising way. Specifically,
in dimension n = 500, with parameters d = 2, B = 1, and L = 30n = 15000, [BM21] successfully recovered
a shortest non-zero vector in their (single-trial) experiment. In dimension n = 512 with parameters d = 2,
B =1, and L = 30n = 15360, we failed to find a shortest non-zero vector in all twenty trials of our
experiment. Similarly, for d = 3, B = 1, and L = 10n, we failed to find a shortest non-zero vector in all
twenty trials of our experiment, while [BM21] did find a shortest non-zero vector. This is in spite of the fact
that we run BKZ with block size 10 (in addition to block sizes 2, 3, 4, and 5), while [BM21] only uses block
sizes 2, 3, and 4.

One might argue that this is due to the slightly different choice of dimension—we performed the relevant
experiments in dimension n = 512, while [BM21] performed them in dimension 500. However, we ran the
first experiment (i.e., d =2, B =1, and L = 30n) again with n = 500 and found the same result. So, this
does not offer an explanation.

We suspect that the most likely explanation is that the specific implementation of basis reduction used
in [BM21] happens to perform significantly better than the implementation we used. Specifically, [BM21]
used Magma’s basis reduction algorithms, while we used fplll.

We do not, however, feel that this anomaly changes the high-level message of these experiments.

6.1.3 Bézout-coefficient-based sampling.

We next describe our third basis-sampling algorithm, which was suggested by Joseph Silverman and studied
as Algorithm 4 in [BM21]. The algorithm is based on the following observation. Given the matrix M =
(my,...,m,_1) € Z"™=1 if (and only if) all the minors in M of size n — 1 have no non-trivial common

25

block size
n B 2 3 4 5 10 20 unbroken
128 1 o 0 0 3 17 0 0
128 10 [1 2 17 0 0
128 100 [1 6 13 0 0
256 1 0O 0 0 O 0 0 20
256 10 0O 0 0 O 0 0 20
256 100 0O 0 0 O 0 0 20
512 1 0O 0 0 O 0 20
512 10 0O 0 0 O 0 20
512 100 o 0 0 O 0 20

Table 3: Experimental results for basis reduction performed on bases generated using the Bézout-coefficient-
based construction described in Section 6.1.3. The entries under each block size represent the number of
times (out of a total of twenty experiments) that a shortest non-zero vector was found with a given block
size (but no smaller block size), and the entries in the “unbroken” column represent the number of times
that we failed to find a shortest non-zero vector. Non-zero entries are highlighted. Cells that are grayed out
represent block sizes that were not tested.

factor, then there exists a vector a for which the matrix M’ := (my,...,m,_1,a) is unimodular. Moreover,
if this is the case, then we can find such a vector a efficiently using the extended Euclidean algorithm.

Indeed, with these observations, this Bézout-coefficient-based sampling algorithm is straightforward to
describe. It takes as input a dimension n and an entry magnitude size bound B > 1. It repeatedly samples
a uniformly random matrix M = (my,...,m, 1) € {~B,—(B —1),..., B — 1, B}~ until the minors
of M of size n — 1 have no non-trivial common factors. It then uses the extended Euclidean algorithm to
compute a such that M’ := (my,...,m,_1,a) is unimodular, and outputs M'. (We also refer the reader
to the description of this algorithm in [BM21, Algorithm 4].) In our experiments, we took B € {1,10,100}.
See Table 3.

However, [BM21] noted that the resulting vector a will typically be quite large, and for this reason, they
performed a least-squares-based procedure to find an integer linear-combination y of my,...,m,_1 such
that @’ := a — y is not as large. They then output the basis with a’ instead of a. We do not bother with
this step, as we note that the LLL algorithm will behave identically on the basis with a and the basis with
a’. Indeed, because our experiments start by running the LLL algorithm on M’, this step is unnecessary
for our experiments.

Basis Generating Technique 3: Bézout-coefficient-based construction

Input: A dimension n, a size bound B > 1.

Algorithm:
1. For all1 <i<mnand1 <j<n-—1sample the integer m; ; uniformly at random from [-B, B].

2. Set M := (m; ;) = (ma,...,my,_1), and for 1 < k < n let My, refer to the submatrix of M
obtained by removing its k-th row.

3. If ged(det(My), ..., det(M,,)) # 1:

e Then repeat steps one and two.

e Otherwise run the Euclidean Algorithm to find the Bézout coefficients a1, .. ., a, such that
>or_ ak - det(My) = £1 (where the sign of the sum is chosen uniformly at random).

4. Output M’ := (my,...,m,_1,a) € GL,(Z), where a” = (a1, ...,a,).

26

250 - 60 -

200 | 50
40f
150 |

30

Trials (out of 1000)
Trials (out of 1000)

100 -
20

Sor . 10}
0 | olm 1 -

1 20 40 60 2 20 40 60

Minimal squared norm found by any algorithm with block sizes 2 to 5 Minimal squared norm (excluding 1) found by any algorithm with block sizes 2 to 5

Figure 1: On the left is a histogram of the squared norm of the shortest vector found by BKZ with block
size < 5 for discrete Guassian bases with n = 128 and s = 1000. On the right is the same histogram without
the trials where this norm was 1.

Our experiments showed that the effect of the parameter B was not discernible in our experiments.
Indeed, for dimensions 256 and 512, our algorithms failed to find a shortest vector for all choices of B,
including B = 1. And, in dimension 128, we found a shortest vector in all cases (as we always did), but the
block size needed shows no obvious dependence on B. These results are quite similar to those in [BM21].

6.2 A threshold phenomenon

In our data, we noticed a phenomenon. We found that the shortest vector in the bases returned by our basis
reduction algorithms almost always had either length one or had length larger than some threshold 7. After
a preliminary version of this work was published, we learned about a body of work studying such phenomena
and providing compelling heuristic explanations for it. And, Ducas, Postlethwaite, Pulles, and van Woerden
did additional experiments shedding much more light on this phenomenon [DPPvW23].

In an earlier version of this work, we speculated more about the causes of this phenomenon and guessed
that the threshold was roughly 7 & v/n/2, but [DPPvW23| give strong evidence that it actually happens
at 7 &~ ©(n). We now simply include the results of our experiments in Figures 1 and 2 and refer the
reader to [DPPvW23] for more information and additional references. See also [Duc23] for a variant of basis
reduction with block size roughly n/2 that provably solves ZSVP.

6.3 Sieving Experiments

Finally, we ran experiments with heuristic sieving on Z". In some sense, Z" is a particularly interesting lattice
for heuristic sieving algorithms because Z™ violates the Gaussian heuristic, which says that the number of
non-zero lattice vectors of length at most r (in a determinant-one lattice) should be approximately equal
to the volume of a ball with radius r, which is roughly (27er?/n)™/? in large dimensions. Of course, Z"
completely violates this for small radii. E.g., Z™ has 2n non-zero lattice vectors with length at most 1, while
the ball of radius 1 has volume roughly (27e/ n)”/ 2 which is much less than one. More generally, for small
radii r < y/n, Z™ has roughly (Cn/rg)’"2 points in a ball of radius r (as in Proposition 2.12), which is of
course much larger than the volume of such a ball.

One might not expect this to cause actual problems for sieving algorithms, but it is worth testing. So, we
ran experiments using the Gauss sieve, due to Micciancio and Voulgaris [MV10], running trials in dimensions
20 < n < 50 with Gaussian parameters s € {10,100,1000}. We ran twenty trials with each pair of values
(n,s) (for a total of 20 - 31 - 3 = 1680 trials). We found that the behavior of this sieving procedure on Z™

27

50
40[

30[

Trials (out of 1000)

20}
10]-

O:I =
2

20 40 60 80

Minimal squared norm of shortest vector found before finding vector of length 1

Figure 2: A histogram of the minimal squared length of a basis vector found before finding a vector with
length one after 1000 trials on discrete Guassian bases with n = 128 and s = 1000. E.g., if in one experiment
BKZ with block size 6 finds a vector with length one, but the shortest vector found by BKZ with block sizes
2 through 5 had squared norm 40, then this experiment would count as 40.

was quite similar to its predicted behavior on lattices that do satisfy the Gaussian heuristic.

Of course, the most important metric of a sieving algorithm is whether it actually finds a shortest non-
zero vector. We adopted the common heuristic of running the algorithm until it finds the zero vector (i.e.,
until there is a collision), and we studied how often the algorithm found a shortest non-zero vector before
this happened. It would be natural to guess that this should happen in all but a 1/(2n + 1) fraction of the
trials—i.e., we assume that the first vector found with length either 0 or 1 is chosen uniformly at random
from the 2n+ 1 such vectors. This heuristic matches the data reasonably well, though failure is slightly more
common than this simple heuristic suggests, and the difference is on the verge of statistically significant. (If
we instead wait until we find, e.g., 10 collisions, the failure rate becomes extremely low.)

Next, the number of vectors N sampled by the algorithm (a measure of its space complexity) was well
approximated by NV = 6.4-1.15", as shown in Figure 3. This is completely in line with the predicted behavior
of roughly N = O*((4/3)"/?) ~ 1.15™ (even though this prediction is partially based on a heuristic that does
not directly apply to Z™), and in line with the numbers reported by Micciancio and Voulgaris and others for
sieving experiments on other lattices. So, if sieving algorithms perform differently on Z", the difference is
rather small. This result did not noticeably depend on the parameter s—i.e. on the lengths of the vectors
sampled—which is also what one would expect from a basic heuristic model.

The running time of the algorithm is also well within what we would expect. For example, for parameter
s = 10, our running times were well approximated by 1.40™ /43000 seconds (we did not attempt to optimize
our code for speed), compared to the expected running time of O*((4/3)™) ~ 1.33", and the running time
appears to be proportional to the logarithm of the parameter s, which is again what would be expected.
See Figure 4. Of course, this running time is subject to many minor implementation details. A less fickle
measure is the number of comparisons made by the algorithm (i.e., the number of times that the algorithm
tests whether subtracting one vector from another will make the latter vector shorter). For this data the
simple exponential fit is quite tight and relatively close to what we expect. E.g., for s = 10, the number
of comparisons is well approximated by 500 - 1.37™; for s = 100, the fit was 1000 - 1.37™; and for s = 1000,
the fit was 1500 - 1.37™. See Figure 5. The slightly larger base of the exponent can likely be explained by
lower-order effects, which would require data from a wider range of dimensions to fully explore.

All of the raw data is available at [BGPS21].

28

Samples

5000
e s=10
1000 | s=100
500 [s=1000
100 F

J e v v v v 1 dimension
25 30 35 40 45 50

Figure 3: Scatter plot of the number of vectors sampled by the sieving algorithm in different dimensions with
different parameters s, together with the fitted line 6.4 - 1.15™. (The fact that the three different parameter
values are not distinguishable in the plot reflects the fact that the number of sampled vectors was essentially
independent of the parameter size, which is to be expected.)

References

[ACK*+21]

[AD16]

[ADRS15]

[AEN]
[AGVW17]

[BGPS21]

[BL23]
[BLP*13]
[BM21]

[BSW16]

Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, Zeyong Li, and Noah Stephens-Davidowitz.
Dimension-preserving reductions between SVP and CVP in different p-norms. In SODA, 2021.
19

Divesh Aggarwal and Chandan K. Dubey. Improved hardness results for unique shortest vector
problem. Inf. Process. Lett., 116(10):631-637, 2016. 3, 21

Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the
shortest vector problem in 2" time using discrete Gaussian sampling. In STOC, 2015. 1, 2, 5,
6,9, 18, 21

Yoshinoro Aono, Thomas Espitau, and Phong Q. Nguyen. Random lattices: theory and prac-
tice. https://espitau.github.io/bin/random_lattice.pdf. i, 4, 5, 10

Martin R. Albrecht, Florian Gopfert, Fernando Virdia, and Thomas Wunderer. Revisiting the
expected cost of solving uSVP and applications to LWE. In ASIACRYPT, 2017. 4

Huck Bennett, Atul Ganju, Pura Peetathawatchai, and Noah Stephens-Davidowitz.
Experiments on solving SVP on rotations of Z". https://github.com/poonpura/
Experiments-on-Solving-SVP-on-Rotations-of-Z-n, 2021. 22, 28

Huck Bennett and Ryan Little. Revisiting the BGPS rotations-of-Z™ cryptosystem: An imple-
mentation, challenges, and attacks. Preprint, 2023. 5, 6, 13

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of Learning with Errors. In STOC, 2013. 8

Tamar Lichter Blanks and Stephen D. Miller. Generating cryptographically-strong random
lattice bases and recognizing rotations of Z™. In PQCrypto, 2021. i, 4, 5, 6, 22, 24, 25, 26, 27

Shi Bai, Damien Stehlé, and Weigiang Wen. Improved reduction from the Bounded Distance
Decoding problem to the unique Shortest Vector Problem in lattices. In ICALP, 2016. 3

29

https://espitau.github.io/bin/random_lattice.pdf
https://github.com/poonpura/Experiments-on-Solving-SVP-on-Rotations-of-Z-n
https://github.com/poonpura/Experiments-on-Solving-SVP-on-Rotations-of-Z-n

time (s)

1000
1
°
100 pet
..
.. ° S=1O
10F ad
bee s=100
L]
o® s=1000
1F ..
..
°
o
°
010} e
o
°
5o
P~ PR TR PR P 1 P PR TR | PR PR | TR PR 1 dimension
25 30 35 40 45 50

Figure 4: The running time of our implementation of the Gauss sieve algorithm on Z" with different Gaussian
parameters s. The trend lines are (roughly) 1.4"/43000 seconds, 1.41™/26000 seconds, and 1.41™ /18000
seconds respectively.

[CDLP13] Kai-Min Chung, Daniel Dadush, Feng-Hao Liu, and Chris Peikert. On the lattice smoothing
parameter problem. In CCC; 2013. 3

[CGG1T] Karthekeyan Chandrasekaran, Venkata Gandikota, and Elena Grigorescu. Deciding orthogo-
nality in Construction-A lattices. SIAM Journal on Discrete Mathematics, 31(2):1244-1262,
January 2017. 1, 4

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. J. Cryptol., 25(4):601-639, 2012. Preliminary version in EUROCRYPT 2010. i,
4,5, 10

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with side information:
Attacks and concrete security estimation. In CRYPTO, pages 329-358. Springer-Verlag, 2020.
4

[DPPvW23] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel van Woerden. Hawk: Module
LIP makes lattice signatures fast, compact and simple. In Asiacrypt, 2023. 4, 27

[DR16] Daniel Dadush and Oded Regev. Towards strong reverse Minkowski-type inequalities for lat-
tices. In FOCS, 2016. 3, 17

[Duc23] Léo Ducas. Provable lattice reduction of Z™ with blocksize n/2. Cryptology ePrint Archive,
Paper 2023/447, 2023. https://eprint.iacr.org/2023/447. 5, 27

[DvW22] Léo Ducas and Wessel van Woerden. On the lattice isomorphism problem, quadratic forms,
remarkable lattices, and cryptography. In FEUROCRYPT, 2022. i, 2, 4, 5, 10, 21

[ERS22] Yael Eisenberg, Oded Regev, and Noah Stephens-Davidowitz. A tight reverse Minkowski in-
equality for the Epstein zeta function. arXiv:2201.05201, January 2022. 3, 17

[FPL] FPLLL development team. fplll, a lattice reduction library, Version: 5.4.1. Available at https:
//github.com/fplll/£fplll. 22

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, 2008. 4, 8

30

https://eprint.iacr.org/2023/447
http://arxiv.org/abs/2201.05201
https://github.com/fplll/fplll
https://github.com/fplll/fplll

Comparisons

1010k
°
o°.
10°F ®
o°.
o® e s=10
108 | o®
e s=100
o
107 ." s=1000
P
]
o®
106* ...
..
0
AklxxxxlxxxxlxxxxlxAxxlxxxxlxxxxldimension
25 30 35 40 45 50

Figure 5: The number of comparisons made by Micciancio and Voulgaris’s Gauss sieve algorithm on Z™ with
different Gaussian parameters s. The trend lines are (roughly) 500 - 1.37™, 1000 - 1.37™, and 1500 - 1.37™

respectively.

[GS02]

[GS03]

[Hoe63]

[HR14]

[Hun19]

[KhoO5]

[LLL82]

[LMOY]

[LN14]

[LN19]
[LS14]

[LS17]

Craig Gentry and Michael Szydlo. Cryptanalysis of the revised NTRU signature scheme. In
EUROCRYPT, 2002. 1, 4

Katharina GeiBler and Nigel P. Smart. Computing the M = UT'U integer matrix decomposition.
In Cryptography and Coding, 2003. 1, 4

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13-30, 1963. 10

Ishay Haviv and Oded Regev. On the Lattice Isomorphism Problem. In SODA, 2014. i, 4, 5,
8, 10

Christoph Hunkenschréder. Deciding whether a lattice has an orthonormal basis is in co-NP,
2019. 1

Subhash Khot. Hardness of approximating the Shortest Vector Problem in lattices. Journal of
the ACM, 52(5):789-808, September 2005. 2

Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and Lészl6 Lovész. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515-534, December 1982. 20

Vadim Lyubashevsky and Daniele Micciancio. On Bounded Distance Decoding, Unique Shortest
Vectors, and the Minimum Distance Problem. In CRYPTO, 2009. 3, 9, 22

Jianwei Li and Phong Q. Nguyen. Approximating the densest sublattice from Rankin’s inequal-
ity. LMS J. of Computation and Mathematics, 17(A):92-111, 2014. 6, 12

Jianwei Li and Phong Q. Nguyen. Computing a lattice basis revisited. In ISAAC, 2019. 6, 12

H. W. Lenstra and A. Silverberg. Revisiting the Gentry-Szydlo algorithm. In CRYPTO, 2014.
1,4

H. W. Lenstra and A. Silverberg. Lattices with symmetry. Journal of Cryptology, 30(3):760-804,
2017. 1, 4

31

[MHT73] John Willard Milnor and Dale Husemoller. Symmetric Bilinear Forms. Springer-Verlag, 1973.
18

[MO90] J. E. Mazo and A. M. Odlyzko. Lattice points in high-dimensional spheres. Monatshefte fiir
Mathematik, 110:47-61, March 1990. 9

[MRO7] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. SIAM Journal of Computing, 37(1):267-302, 2007. 8

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the Short-
est Vector Problem. In SODA, 2010. 4, 27

[NP22] Phong Q. Nguyen and Loéic Pujet. The probability of primitive sets and generators in lattices,
2022. 6, 23

[Peil6] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical Com-
puter Science, 10(4):283-424, 2016. 1

[Reg04] Oded Regev. LLL algorithm. https://cims.nyu.edu/~regev/teaching/lattices_fall_
2004/1n/111.pdf, 2004. 12

[RS17] Oded Regev and Noah Stephens-Davidowitz. A reverse Minkowski theorem. In STOC, 2017.
3,9, 17

[RS23] Oded Regev and Noah Stephens-Davidowitz. A reverse Minkowski theorem for integral lattices.
2023. 3, 17

[Stel6al Noah Stephens-Davidowitz. Discrete Gaussian sampling reduces to CVP and SVP. In SODA,
2016. 19, 33, 34

[Stel6b] Noah Stephens-Davidowitz. Search-to-decision reductions for lattice problems with approxima-
tion factors (slightly) greater than one. In APPROX, 2016. 3, 5, 18, 21

[Ste20] Noah Stephens-Davidowitz. Lattice algorithms. https://www.youtube.com/watch?v=
04P1-0Q5-q0, 2020. Talk as part of the Simons Institute’s semester on lattices. 2, 18

[Szy03] Michael Szydlo. Hypercubic lattice reduction and analysis of GGH and NTRU signatures. In
EUROCRYPT, 2003. 1, 4

A Proof of Lemma 2.1

We first study the expectation of (X mod Z)? for X ~ D,. We then use the Chernoff-Hoeffding (Lemma 2.14)
bound to obtain the result. For ¢t € (—1/2,1/2], let p(t) := (1/s) - >y ps(t + 2) be the probability density
function of X mod Z € (—1/2,1/2]. By the Poisson summation formula, we have

p(t) = Z p1/s(w) cos(2mwt) = 1 + 2 cos(27t) exp(—ms?) + 2 Z cos(2mwt)py /s (w) .

wEZ w=2
We write f(t) :=2> o, cos(2mwt)py /s(w) It follows that
1/2 2 1/2
E [(X mod Z)?] = / 2p(t)dt = 1/12 — SPETS) +/ £2F(t)dt .

2
X~Ds —1/2 ™ —1/2

Notice that

If(t)] < 2exp(—4ms®) + 2/2Do p1/s(w) dw < 2exp(—4ms®) + /200 wpy/s(w) dw = exp(—4ms®) (24 1/(27s?)) .

32

https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf
https://www.youtube.com/watch?v=o4Pl-0Q5-q0
https://www.youtube.com/watch?v=o4Pl-0Q5-q0

Therefore,
1 exp(—ms?)
._ 21 - _ 7
u._XlEDS[(XmodZ) |= 5 - +x,

for some x with
1/2

N < expltns?) - 2+ 1/(2ms?)) [g = SR

D (24 1/(27s%)) < ep
—1/2

By the Chernoff-Hoeffding bound (Lemma 2.14),

: ny2 _ > —
legg“dlst(X,Z)* — un| > én] = Pr [

Z(Xi mod Z)? — ;m’ > 5n} < 2exp(—6%n/10) .

It follows that

XPanHdiS‘u(X,Z”)2 —v|>en] < XPlISanist(X,Z")2 — un| > (e — eo)n] < 2exp(—(e — €0)*n/10) ,

as needed.

B Proof of Theorem 5.2

We next state a key result on lattice sparsification that we will use to prove Theorem 5.2. Roughly speaking, it
implies that if we sample a random sublattice £’ of prime index p of a lattice £, and 1 < Npyim (L, 7) < p/logp
then £’ contains a given primitive lattice vector xg € £ and no other primitive vectors in £ of norm at most
r with probability around 1/p.

Theorem B.1 ([Stel6a, Theorem 4.1]). For any lattice L C R™ with basis B, r > 0, primitive lattice vectors
Lo, T1,. .., &N € Lprim satisfying ||z;|| < r for all i and x; # *xo for all i > 0, and prime p > 101, if
Nprim(£,7) < p/(20logp) then

1

N
PR < Pr[{a, B~'xy) = 0 (mod p) and (a, B~ x;) # 0 (mod p) Vi > 0] <

)

SRR

where a € Zy, is chosen uniformly at random.
We now restate and prove Theorem 5.2.

Theorem 5.2. For any v = v(n) > 1 and r > 0, there is a polynomial-time randomized algorithm with
access to a y-uSVP oracle that takes as input (a basis of a) lattice L and an integer A" > A := Nppim (L, Y1)
and outputs a vector y € L such that if & € L is a primitive vector with ||z| < r then

Prly =] > !
Y= %= 50047 10g(10047)

Furthermore, the algorithm makes a single query to its y-uSVP oracle on a full-rank sublattice of L.

Proof. We assume without loss of generality that » > A1 (£). Otherwise, the claim is vacuous because there
are no primitive lattice vectors of norm less than A;(L), i.e., 0 is not primitive. Additionally, we assume
without loss of generality that the y-uSVP oracle always returns a lattice vector even when the lattice
generated by its input basis does not satisfy 7-uSVP promise. Let B be the input basis of £, and let n be
the rank of L.

The algorithm first computes a prime p satisfying 504’ log(1004’) < p < 100A’log(1004"). Tt then
samples a ~ Z; uniformly at random and computes a basis B’ of the sublattice

L ={veLl:B v a)=0 (modp)}.

33

Next, it calls the v-uSVP oracle on B’, and receives as output a vector y € £. Finally, it returns y.
Computing a valid prime p can be done efficiently by repeatedly sampling a uniformly random integer
in the range [50A4’log(100A’), 1004’ log(100A’)] and testing whether it is prime. Additionally, B’ can be
computed efficiently given B, p, and a (see, e.g., [Stel6a, Claim 2.15]). So, the algorithm runs in polynomial
time and makes a single call to its v-uSVP oracle, as claimed.
We next show correctness. Let xg := «, and let «1,...,x 41 be primitive vectors in L satisfying
x; # +x; for all 0 <7 < j < A — 1. Define the event

Ey:=[zoe L and x1,...,xa_1 ¢ L] .

Because Npyim(L£,77r) = A, if Ep holds then x is the unique (up to sign) primitive vector in £’ of norm at

most yr. So, if Ey holds, £’ meets the v-uSVP promise, and the v-uSVP oracle must return y = & = x.
We will use Theorem B.1 to lower bound Pr[Ep], but in order to apply it we need to show that A’ <

p/(20log p). Using the fact that 504’ log(100A4") < p < 1004’ log(100A’), for this to hold it suffices to have

504" log(100A4") -
201og (1004’ log(100A7)) =’

and this holds because 201og(100A’ log(100A4’) < 401og(100A’). So, by Theorem B.1 we have

Al 1 1 1 1
> - > >

A-1_1
p p> " p 50log(100A")p = 2p = 200A’log(100A4) ’

Pr[Eo] > po

>

==

as needed. O

34

	Introduction
	Our results
	Related work
	A brief note on using rotated bases as opposed to, e.g., Gram matrices

	Preliminaries
	Basic lattice definitions
	The continuous and discrete Gaussian distributions and the smoothing parameter
	Lattice problems
	Lattice problems on rotations of the integers.

	Primitive vectors and vector counting
	Probability
	On bit lengths, input formats, and representing real numbers

	How to sample a provably secure basis
	A rotation-invariant generating set to basis conversion algorithm

	We have an encryption scheme to sell you
	Basic security
	A worst-case to average-case reduction (of a sort)
	Putting everything together
	Is the integer lattice the best lattice for cryptography? (with a connection to reverse Minkowski theorems)
	Concerning the genus of the integer lattice

	Reductions and provable algorithms
	A simple projection-based reduction
	The main reduction and algorithms
	Sampling using an approximate uSVP oracle
	The main reduction
	Algorithms from SVP to approximate uSVP reduction
	Hardness from SVP to approximate uSVP reduction

	Experiments
	Experiments on different procedures for generating bases
	Discrete Gaussian-based sampling.
	Unimodular matrix product sampling.
	Bézout-coefficient-based sampling.

	A threshold phenomenon
	Sieving Experiments

	A Gaussian's distance to the integer lattice
	Proof of uSVP Sampling Theorem

