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Abstract. Attribute-based encryption (ABE) is a promising type of
cryptosystem achieving fine-grained access control on encrypted data.
Revocable attribute-based encryption (RABE) is an extension of ABE
that provides revocation mechanisms when user’s attributes change, key
exposure, and so on. In this paper, we propose two directly revocable
ciphertext-policy attribute-based encryption (DR-ABE) schemes from
lattices, which support flexible threshold access policies on multi-valued
attributes, achieving user-level and attribute-level user revocation, re-
spectively. Specifically, the revocation list is defined and embedded in-
to the ciphertext by the message sender to revoke a user in the user-
level revocable scheme or revoke some attributes of a certain user in
the attribute-level revocable scheme. We also discuss how to outsource
decryption and reduce the workload for the end user. Our schemes are
proved to be secure in the standard model, assuming the hardness of the
learning with errors (LWE) problem.

Keywords: Access control · Attribute-based encryption · Direct revo-
cation · Decryption outsourcing · Lattice-based cryptosystem.

1 Introduction

Attribute-based encryption, first proposed by Sahai and Waters [29], is a cryp-
tographic primitive providing encryption mechanism with fine-grained access
control. In 2006, Goyal et al. [16] extended the idea of ABE and classified ABE
as key-policy ABE (KP-ABE) [7, 17] and ciphertext-policy ABE (CP-ABE) [8,
34]. In a KP-ABE scheme, the private key of a user is associated with an access
policy, while the ciphertext is associated with a set of attributes. On the con-
trary, in a CP-ABE scheme, the private key of a user is associated with a set of
attributes, and the ciphertext is associated with an access policy. Generally, CP-
ABE is more flexible than KP-ABE, since the former allows users to set their
access policies when encrypting messages. In order to resist against quantum
attacks, many attribute-based encryption schemes from lattices [37, 31, 5, 11, 10]
have emerged.

In practical applications, one of the challenges of ABE is to revoke users or
their attributes to change users’ access rights when user’s attributes change, key
exposure, and so on. The revocation mechanism in ABE can be roughly divided
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into two types: user-level user revocation [18, 35, 32] and attribute-level user
revocation [20]. In user-level user revocation, when a user leaves the system,
he/she should be revoked and can’t decrypt any ciphertext. In attribute-level
user revocation, when some attributes of a user are removed, he/she will lose
the authorities corresponding to these attributes.

The methods for revocation can be divided into two types: indirect revoca-
tion [26, 28, 13] and direct revocation [6, 24, 21]. In indirect revocation schemes,
the authority needs to master the revocation list, and issues key update for non-
revoked users regularly. In addition, all non-revoked users need to communicate
with the authority and update their decryption keys periodically as well. How-
ever, in direct revocation schemes, the revocation list is defined by the message
sender , who “embeds” it into the ciphertext during encryption. Therefore, the
authority does not need to generate and issue key update. In this paper, we only
focus on direct revocation.

1.1 Motivation

Wang et al. [33] and Yang et al. [36] proposed indirectly revocable CP-ABE
schemes from lattices. Both of their schemes have achieved attribute-level user
revocation. However, Wang et al. [33] does not resist to collusion attacks, that
is, two users who do not satisfy the access structure can successfully decrypt the
ciphertext through cooperation. In Yang et al. [36], they built N user binary
trees {BTi}i∈[1,N ], where N is the maximum number of users. Each binary tree
has M leaf nodes and the each attribute is assigned to a leaf node in the binary
tree, where M is the number of attributes in the system. To revoke r′ attributes
of a user, the authority actually needs to issue M − r′ (rather than r′ log M

r′

as they claimed) associated key update in the key updating phase, since each
attribute is assigned a different secret-shared key. In other words, they didn’t
actually take advantage of the binary-tree data structure to reduce the burden
of the authority during key updating phase as [26, 28, 13].

1.2 Our contributions

This paper proposes two directly revocable ciphertext-policy attribute-based en-
cryption (DR-ABE) schemes from lattices. One achieves user-level user revo-
cation, while the other achieves attribute-level user revocation. Both schemes
support flexible threshold access policies on multi-valued attributes. The size of
public key of our schemes can be reduced in the random oracle model. The main
advantages of our DR-ABE schemes are as follows:

direct revocation: the revocation list is embedded into the ciphertext by the
message sender ; the authority does not have to generate and issue key
update; all non-revoked users do not need to communicate with the authority
to update their decryption keys.

user-level and attribute-level revocation: We provide two DR-ABE schemes
with user-level and attribute-level revocation respectively. We use different
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techniques to construct these two schemes because the method of construct-
ing user-level scheme cannot be directly extended to attribute-level scheme.

fine-grained access control: our schemes support flexible threshold access
policies on multi-valued attributes.

collusion resistance: users in the system cannot combine their information
together to illegitimately gain unauthorized data through collaboration.

resistant against quantum attacks: the security of our schemes are reduced
to the learning with errors (LWE) problem.

decryption outsourced: most computational overhead of end user in our DR-
ABE schemes can be outsourced to a third party (Section 7).

In Table 1, we compare our schemes with other lattice-based ABE and revo-
cable ABE schemes.

Table 1. comparison with other schemes

multi-valued direct/indirect collusion resistance Security model Dec Outsourced

[37] yes — yes reasonable no
[33] yes indirect no unreasonable no
[36] no indirect yes unreasonable no

Ours1 yes direct yes reasonable yes
Ours2 yes direct yes reasonable yes

Note that Zhang et al. [37] did not consider revocation. Wang et al. [33] and
Yang et al. [36] achieve attribute-level user revocation. In the security model
of [33], after submitting the challenge access structure A∗ and challenge revo-
cation list RL∗ = {RL∗i }, the adversary can only issue key generation queries
(id, S = {atti}i∈I) under the restriction S 6|= A∗, while in [36], there is a stricter
restriction atti /∈ A∗. However, these restrictions are unreasonable. Because the
private key of the key generation query (id, S) should be given to the adversary
as long as the non-revoked attribute set Sid,RL∗ = {atti ∈ S | id /∈ RL∗i , i ∈ I}
does not satisfies A∗, which is the case in our security model for DR-ABE with
attribute-level revocation. In other words, Wang et al. [33] and Yang et al. [36]
didn’t take into account all the key queries that an adversary could issue. While
both of our schemes have considered all the situations of the key generation
queries from the adversary. In Section 7, we discuss how to outsource most com-
putational overhead of end user to an honest-but-curious third party.

2 Preliminaries

For notational convenience, we sometimes regard a matrix as simply a set of
its column vectors. For a matrix T, let ‖T‖ denote the L2 length of its longest
column, i.e., ‖T‖ := maxi ‖ti‖; let s1(T) denote the largest singular value of
T, i.e., s1(T) := sup‖u‖=1 ‖Tu‖. Further, if the columns of T={t1, · · · , tk} are
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linearly independent, let T̃ := {t̃1, · · · , t̃k} denote the Gram-Schmidt orthogo-
nalization of vectors t1, · · · , tk taken in that order. For two matrices X ∈ Rn×m1

and Y ∈ Rn×m2 , let (X‖Y) ∈ Rn×(m1+m2) denote the concatenation of the
columns of X followed by the columns of Y. For two matrices X ∈ Rn1×m and
Y ∈ Rn2×m, let (X; Y) ∈ R(n1+n2)×m denote the concatenation of the rows of
X followed by the rows of Y.

For non-negative integers i < j, Let [i, j] denote the set {i, i + 1, . . . , j}. If
S is an attribute set and A is an access structure, then S |= A means that S
satisfies A. If S is a finite set then x← S is the operation of choosing an element
uniformly at random from S. For a probability distribution D, x ← D denotes
the operation of choosing an element according to D. If γ is either an algorithm
nor a set then x← γ is a simple assignment statement.

The natural security parameter throughout this paper is n. A function f(n)
is negligible, denoted as negl(n), if for every c > 0, there exists an nc such that
f(n) < 1/nc for all n > nc. We say that a probability is overwhelming if it is
1− negl(n). An algorithm is probabilistic polynomial-time (PPT) computable if
it is modeled as a probabilistic Turing machine whose running time is bounded
by some polynomial function.

2.1 Directly revocable attribute-based encryption

A directly revocable ciphertext-policy attribute-based encryption (DR-ABE)
scheme with user-level (resp. attribute-level) user revocation consists of the fol-
lowing four algorithms {Setup,Keygen,Enc,Dec}.

Setup(n,R, N): This algorithm takes as input a security parameter n, a system
attribute set R and a maximal number of users N in the system, returns a
public key PK and a master secret key MSK.

Keygen(PK,MSK, id, S): This algorithm takes as input a public key PK, a master
secret key MSK, an identity id, and an attribute set S = {atti} ⊆ R for the
user with identity id, returns a private key skS,id.

Enc(PK,A,RL,M): This algorithm takes as input a public key PK, an access
structure A = (W = {attj}j∈J , t), a revocation list RL (resp. a family of
attribute revocation lists RL = {RLj}j∈J , where RLj consisting of identities
whose j-th attribute is revoked), and a message M , returns a ciphertext C.

Dec(PK, skS,id, C): This algorithm takes as input a public key PK, a private
key skS,id of identity id with attribute set S = {atti} and a ciphertext C
encrypted under access structure A and RL, it first checks whether S |= A
and id /∈ RL (resp. whether the set of non-revoked attributes of the identity
id, Sid,RL = {atti ∈ S | id /∈ RLi} |= A). If not, the algorithm returns a special
symbol ⊥ indicating decryption failure. Otherwise, it returns a message M .

Note that for DR-ABE scheme with attribute-level revocation, it is reason-
able that the message sender only need to consider attribute revocation lists
associated with his/her access structure.
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2.2 Security model for DR-ABE

We now describe the selective security model for the DR-ABE scheme with user-
level (resp. attribute-level) user revocation. The security model is described by
the following game between a challenger C and an adversary A.

Init. The adversary A chooses an access structure A∗ = (W ∗, t∗) with W ∗ =
{att∗j}j∈J∗ and a revocation list RL∗ (resp. a family of attribute revocation
lists RL∗ = {RL∗j}j∈J∗), and submits them to the challenger C.

Setup. C runs the Setup algorithm, gives the public key PK to A and keeps the
master secret key MSK private.

Phase 1. A can adaptively make a number of key generation queries (id, S),
where S = {atti}i∈I . The restriction is that if S |= W ∗, then id ∈ RL∗ (resp.
the non-revoked attribute set Sid,RL∗ = {atti ∈ S | id /∈ RL∗i , i ∈ I} does not
satisfies A∗).

Challenge. A submits two equal length messages M0 6= M1. The challenger C
flips a random coin b ∈ {0, 1}, computes C∗ = Enc(PK,A∗,RL∗,Mb), and
gives C∗ to A.

Phase 2. It is the same as in Phase 1.
Guess. A output a guess b′ ∈ {0, 1} for b.

The advantage of adversary A in the above game is defined as

AdvA(λ) =| Pr[b = b′]− 1/2 | . (1)

Definition 1. A directly revocable ciphertext-policy attribute-based encryption
scheme is secure if the advantage AdvA(λ) is negligible in λ for all polynomial
time adversary A.

2.3 Full Rank Difference Encoding (FRD)

In our construction and proof of security, we need an encoding function H :
Znq → Zn×nq to map attributes in Znq to matrices in Zn×nq .

Definition 2. [1, 14] Let q be a prime and n a positive integer. We say that a
function H : Znq → Zn×nq is an encoding with full-rank difference (FRD) if:

1. for all distinct x,y ∈ Znq , the matrix H(x)−H(y) is full rank.
2. GFRD is computable in polynomial time.

2.4 The binary-tree data structure

Our construction makes use of the binary-tree data structure, as with [13, 9, 30,
23, 19]. This structure uses a node selection algorithm called KUNodes. In the
algorithm, we use the following notations: BT denotes a binary-tree. root denotes
the root node of BT. θ denotes a node in the binary tree and ν emphasizes that
the node θ is a leaf node. The set Path(BT, ν) stands for the collection of nodes
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on the path from the leaf ν to the root (including ν and the root). If θ is a non-leaf
node, then θ`, θr denote the left and right child of θ, respectively. The KUNodes
algorithm takes as input a binary tree BT, a revocation list RL, and outputs a
set of nodes Y, which is the smallest subset of nodes that contains an ancestor
of all the leaf nodes corresponding to non-revoked indexes. The description of
the KUNodes algorithm is as follows:

KUNodes(BT,RL):
X,Y ← ∅; ∀ν ∈ RL,add Path(BT, ν) to X;
∀θ ∈ X: if θ` /∈ X then add θ` to Y , if θr /∈ X then add θr to Y ;
If Y = ∅ then add root to Y ; Return Y .

3 Background on lattices

Let B = {b1 · · ·bm} ⊂ Rm consists of m linearly independent vectors. The m-
dimensional full-rank lattice Λ generated by the basis B is the set Λ = L(B) :=
{
∑m
i=1 xibi | xi ∈ Z}. For any positive integers n,m and q ≥ 2, a matrix

A ∈ Zn×mq and a vector u ∈ Znq , we define L⊥q (A) := {z ∈ Zm : A · z = 0n
mod q} and Lu

q (A) := {z ∈ Zm : A · z = u mod q}.

3.1 Discrete Gaussian

Let Λ be an m-dimensional lattice. For any vector c ∈ Rm and any parameter

σ ∈ R>0, define ρσ,c(x) = exp(−π ‖x−c‖
2

σ2 ) and ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x). The
discrete Gaussian distribution over Λ with center c and Gaussian parameter σ
is DΛ,σ,c =

ρσ,c(y)

ρσ,c(Λ) for ∀y ∈ Λ. If c = 0, we conveniently use ρσ and DΛ,σ.

In the following, we summarize some basic properties of the discrete Gaussian
distribution.

Lemma 1. [15] Let n,m, q be positive integers with m > n, A ∈ Zn×mq be a

matrix, u ∈ Znq be a vector, TA be a basis for Λ = Lu
q (A) and σ ≥ ‖T̃A‖ ·

ω(
√

logm). Then Pr[‖x‖ > σ
√
m : x← DΛ,σ] ≤ negl(n).

Lemma 2. [15] Let n,m, q > 0 be positive integers with m ≥ 2ndlog qe and q a
prime. Let σ be any positive real such that σ ≥ ω(

√
logm). Then for A← Zn×mq

and e ← DZm,σ, the distribution of u = Ae mod q is statistically close to
uniform over Znq . Furthermore, for a fixed u ∈ Znq , the conditional distribution
of e ← DZm,σ, given Ae = u mod q for a uniformly random A in Zn×mq is
DΛu

q (A),σ with all but negligible probability.

3.2 Trapdoors for lattices

We review two trapdoor generation algorithms in the following lemma. The first
algorithm generates a matrix A ∈ Zn×mq that is statistically close to uniform,

together with a short trapdoor basis for the associated lattice Λ⊥q (A). The second

algorithm generates a basis for the lattice Λ⊥q (G), where G is what they call the
primitive matrix.
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Lemma 3. [4, 22, 3] Let n,m, q > 0 be positive integers with m ≥ 2ndlog qe
and q a prime. Then, we have:

– [4, 22, 3] a PPT algorithm TrapGen that outputs a pair (A,TA) ∈ Zn×mq ×
Zm×m such that A is full rank and statistically close to uniform and TA is

a basis for Λ⊥q (A) satisfying ‖T̃A‖ ≤ O(
√
n log q).

– [22] a fixed full rank matrix G ∈ Zn×mq such that the lattice Λ⊥q (G) has a

publicly known basis TG ∈ Zm×m with ‖T̃G‖ ≤
√

5.

3.3 Sampling algorithms

The following SampleLeft [12, 1] and SampleRight [1] algorithms will be used to
sample short vectors in our construction and in the simulation, respectively.

Lemma 4. Let integers q > 2 and m > n. There is an efficient PPT algorithm
SampleLeft(A,B,u,TA, σ) takes as input a full rank matrix A ∈ Zn×mq , a matrix

B ∈ Zn×m̄q , a vector u ∈ Znq , a basis TA ∈ Zm×m of Λ⊥q (A), and a Gaussian

parameter σ > ‖T̃A‖ · ω(
√

log(m+ m̄)), outputs a vector e ∈ Zm+m̄ distributed
statistically close to DΛu

q ([A‖B]),σ.

Lemma 5. Let integers q > 2 and m > n. There is an efficient PPT algorithm
SampleRight(A,B,R,u,TB, σ) takes as input matrices A,B ∈ Zn×mq , where B
is full rank, a uniform random matrix R ∈ Zm×m, a vector u ∈ Znq , a basis TB

of Λ⊥q (B), a Gaussian parameter σ>‖T̃B‖·s1(R)·ω(
√

logm), outputs a vector
e ∈ Z2m distributed statistically close to DΛu

q ([A‖AR+B]),σ.

3.4 Useful facts.

To prove correctness and security of our construction, we need more lemmas
from [1] as follows.

Lemma 6. Let R be a m×m matrix chosen at random from {−1, 1}m×m, then
there exists a universal constant C such that Pr[s1(R) > C

√
m] < e−m.

Lemma 7. Suppose that q is a prime and that m > (n+ 1) log q+ω(log n). Let
A,B be matrices chosen uniformly in Zn×mq and let R be an m×m matrix chosen
uniformly in {−1, 1}m×m mod q. Then, for all vectors w in Zmq , the distribution

(A,AR,R>w) is statistically close to the distribution (A,B,R>w).

3.5 The LWE hardness assumption

Security of our construction reduces to the learning with errors (LWE) problem
defined by Regev [27].



8 Fei Meng

Definition 3. Consider a prime q, a positive integer n, and a distribution χ
over Zq, all public. An (Zq, n, χ)-LWE problem instance consists of access to an
unspecified challenge oracle O, being, either, a noisy pseudo-random sampler Os

carrying some constant random secret key s ∈ Znq , or, a truly random sampler
O$, whose behaviors are respectively as follows:

Os: outputs samples in Znq ×Zq of the form (ui, vi) = (ui,u
>
i s +xi), where, s ∈

Znq is a uniformly distributed persistent value invariant across invocations,
xi ∈ Zq is a fresh sample from χ, and ui is uniform in Znq .

O$: outputs truly uniform random samples from Znq × Zq.

The (Zq, n, χ)-LWE problem allows repeated queries to the challenge O. We say
that an algorithm A decides the (Zq, n, χ)-LWE problem if |Pr[AOs = 1] −
Pr[AO$ = 1]| is non-negligible for a random s ∈ Znq .

Regev [27] and Peikert [25] showed that for certain noise distribution χ,
denoted Ψ̄α, the LWE problem is hard.

Definition 4. Consider a real number α = α(n) ∈ (0, 1) and a prime q. Let
T := R/Z be the group of reals [0, 1) with addition modulo 1. Define by Ψα the
distribution over T of a normal variable with mean 0 and standard deviation
α/
√

2π, reduced modulo 1, i.e.,

∀r ∈ [0, 1), Ψα(r) :=

∞∑
k=−∞

1

α
· exp(−π(

r − k
α

)2).

We denote by Ψ̄α the discrete distribution over Zq of the random variable bq ·
XΨαe mod q, where the random variable XΨα ∈ T has distribution Ψα.

Lemma 8. Consider α = α(n) ∈ (0, 1) and a prime q = q(n) such that αq >
2
√
n. If there exists an efficient (possibly quantum) algorithm solves (Zq, n, Ψ̄α)-

LWE problem, then there exists an efficient quantum algorithm for approximating
SIVP in the `2 norm, in the worst case, to within Õ(n/α) factors.

The following lemma about the distribution Ψ̄α will be used to analyze the
correctness of our constructions in Section 4 and 5.

Lemma 9. [1] Let e be some vector in Zm and let x← Ψ̄mα . Then the quantity
|e>x| treated as an integer in [0, q − 1] satisfies

|e>x| ≤ ‖e‖qαω(
√

logm) + ‖e‖
√
m/2

with all but negligible probability in m. In particular, if x← Ψ̄α is treated as an
integer in [0, q−1] then |x| ≤ qαω(

√
logm)+1/2 with all but negligible probability

in m.
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4 DR-ABE with user-level revocation

In this section, we propose a DR-ABE scheme from lattices, which supports user-
level revocation and flexible threshold access policies on multi-valued attributes.
The main ideas behind our construction can be described as follows. We assign
identity id to a leaf node νid in the binary tree BT. Then we store the attribute
set S of id in every node θ ∈ path(BT, νid): For each θ, the random vector u
in the public key is secret-shared into vectors {ûθ,i}, where ûθ,i is associated
with attribute atti. If id /∈ RL and S |= A, then there exists a node θ∗ ∈
path(BT, νid) ∩ KUNodes(BT,RL), and u can be recovered using {ûθ∗,i}.

For convenience, it is assumed that there are ` attributes in our system,
and the i-th attribute is associated with a value space Ri ⊆ Znq \ {0}. Let
R = R1×· · ·×R` denote the attribute space. We also define d default attributes
{` + 1, · · · , ` + d}. Let I = {1, . . . , ` + d} and let I1 = {1, . . . , `}, I2 = {` +
1, . . . , `+ d}, D = ((`+ d)!)2.

Setup(n,R, N): On input a security parameter n, a system attribute set R =
R1×· · ·×R` and a maximal number of users N in the system, this algorithm
sets the primitive matrix G (with public trapdoor TG, see Lemma 3) and
the parameters q, m, α, σ as specified in Section 4.3. Then it performs as
follows:
1. Run (A,TA)← TrapGen(n,m, q).
2. Choose Bi ← Zn×mq for i ∈ I.
3. Choose u← Znq .
4. Choose a full-rank difference map H : Znq → Zn×nq .
5. Build a binary tree BT with N leaf nodes. For each node θ ∈ BT, choose

“identifier” Dθ ← Zn×mq .
6. Return PK = {A, {Bi}i∈I ,u, H,BT} and MSK = TA.

Keygen(PK,MSK, id, S): On input the public key PK, the master secret key MSK,
an identity id, and the attribute set S = {atti}i∈I of id, where I ⊆ I1 and
atti ∈ Ri, it goes as follows:
1. Pick an unassigned leaf node νid from BT and store id in that node.

For each θ ∈ path(BT, νid), randomly choose n degree d polynomials
pθ,1(x), . . . , pθ,n(x) ∈ Zq[x], such that u = (pθ,1(0), . . . , pθ,n(0))>. For
each i ∈ I ∪ I2, let ûθ,i = (pθ,1(i), . . . , pθ,n(i))>.

2. For each θ ∈ path(BT, νid), sample

eθ,i←SampleLeft(A,Dθ‖Bi+H(atti)G, ûθ,i,TA, σ)

for i ∈ I and sample eθ,i ← SampleLeft(A,Dθ‖Bi + G, ûθ,i,TA, σ) for
i ∈ I2.
Let Eθ,i = (A‖Dθ‖Bi+H(atti)G) for i ∈ I and Eθ,i = (A‖Dθ‖Bi+G)
for i ∈ I2, note that Eθ,i · eθ,i = ûθ,i.

3. Return skS,id =
(
{eθ,i}θ∈path(BT,νid),i∈I∪I2

)
as the private key.

Note that for any θ ∈ path(BT, νid) and any subset K ⊆ I ∪ I2 with |K| =
d + 1, we have u =

∑
i∈K Li · ûθ,i, where the Lagrange coefficient Li =∏

j∈K,j 6=i−j∏
j∈K,j 6=i(i−j)

.
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Enc(PK, (W, t),RL,M): On input a public key PK, an attribute setW ={attj}j∈J1 ,
an integer 1≤ t≤min(|W |, d), a revocation list RL consisting of revoked i-
dentities, and a message M ∈ {0, 1}, it works as follows:

1. Choose s← Znq , compute c0 = u>s +Dx0 +Mb q2c and c = A>s +Dx,

where x0 ← Ψ̄α, x← Ψ̄mα .

2. For each j ∈ J1, choose Rj ← {−1, 1}m×m, compute cj = (Bj +
H(attj)G)>s +DR>j x.

3. Let J2 = {` + 1, . . . , ` + d + 1 − t} and for each j ∈ J2, choose Rj ←
{−1, 1}m×m, compute cj = (Bj + G)>s +DR>j x.

4. For each θ ∈ KUNodes(BT,RL), choose Rθ ← {−1, 1}m×m, compute
cθ = D>θ · s +DR>θ · x.

5. Return C =
(
c0, c, {cj}j∈J1∪J2 , {cθ}θ∈KUNodes(BT,RL)

)
as the ciphertext.

Dec(PK, skS,id, C): On input the public key PK, the private key skS,id of identity
id with attribute set S = {atti}i∈I , and a ciphertext C encrypted under
access structure (W ={attj}j∈J1 , t) and revocation list RL.

1. If |S ∩W | < t or id ∈ RL, return ⊥;

2. Else, parse the private key skS,id =
(
{eθ,i}θ∈path(BT,νid),i∈I∪I2

)
and C =(

c0, c, {cj}j∈J1∪J2 , {cθ}θ∈KUNodes(BT,RL)

)
. Since id /∈ RL, there exists a

θ ∈ path(BT, νid) ∩ KUNodes(BT,RL). Let S ∩ W = {atti}i∈K . Since
|K| ≥ t, there exists a set K ′ ⊆ K ∪ J2 with size d + 1. For all j ∈
K ′, compute rθ,j = e>θ,j(c; cθ; cj) and rθ =

∑
j∈K′ Ljrθ,j , where Lj =∏

k∈K′,k 6=j −k∏
k∈K′,k 6=j(j−k) . Finally, compute r̂ = c0 − rθ. If |r̂ − b q2c| ≤ b

q
4c in Z,

return 1, otherwise return 0.

4.1 Correctness

For j ∈ K ′ ∩K and θ ∈ path(BT, νid) ∩ KUNodes(BT,RL), we have

(c; cθ; cj) =

 c
cθ
cj

 =

 A>s +Dx
D>θ · s +DR>θ · x

(Bj +H(attj)G)>s +DR>j x


= (A‖Dθ‖Bj +H(attj)G)>s +D

 x
R>θ x
R>j x

 .
For j ∈ K ′ ∩ J2 and θ ∈ path(BT, νid) ∩ KUNodes(BT,RL), we have

(c; cθ; cj) =

 c
cθ
cj

 =

 A>s +Dx
D>θ · s +DR>θ · x

(Bj + G)>s +DR>j x

 = (A‖Dθ‖Bj + G)>s +D

 x
R>θ x
R>j x

 .
Denote xθ,j=(x; R>θ x; R>j x), then (c; cθ; cj)=E>θ,js+Dxθ,j for both cases. Thus,

we have rθ,j=e>θ,j · (c; cθ; cj)=e>θ,j · (E>θ,js+Dxθ,j)= û>θ,js+Dyθ,j , where yθ,j=
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e>θ,j · xθ,j . Hence, rθ =
∑
j∈K′ Ljrθ,j = u>s + yθ, where yθ =

∑
j∈K′ DLjyθ,j .

Finally, we have

r̂ = c0 − rθ = Dx0 − yθ +M · bq
2
c.

Now, we begin to bound |Dx0 − yθ|. By Lemma 1 and 4, we have ‖eθ,j‖ ≤
σ
√

3m. Note that e>θ,j · xθ,j =e>θ,j,0 · x + e>θ,j,1 ·R>θ x+e>θ,j,2 ·R>j x, where e>θ,j =

(e>θ,j,0, e
>
θ,j,1, e

>
θ,j,2). Since ‖eθ,j,0 + Rθeθ,j,1 + Rjeθ,j,2‖ ≤ (s1(Rθ) + s1(Rj) +

1) · σ
√

3m, by Lemma 9, we have e>θ,j · xθ,j ≤ (s1(Rθ) + s1(Rj) + 1) · σ
√

3m ·
(qαω(

√
logm) +

√
m/2). Applying Lemma 9 in [2], we have DLj ≤ ((` + d)!)4.

By Lemma 6, we have s1(Rθ) = O(
√
m), s1(Rj) = O(

√
m). Thus, |yθ| ≤ (d +

1)((` + d)!)4σO(m) · (qαω(
√

logm) +
√
m/2). Therefore, we have |Dx0 − yθ| ≤

((`+d)!)2(qαω(
√

logm)+1/2)+ |yθ| ≤ σqαm(d+1)((`+d)!)4ω(
√

logm)+σ(d+
1)((`+ d)!)4O(m3/2) by Lemma 9.

4.2 Security

In this section, we prove the security of our construction of DR-ABE scheme
with user-level user revocation in the selective model in Definition 1.

Theorem 1. For appropriate parameters n,m, q, σ, α, the above DR-ABE scheme
with user-level user revocation is secure provided that the (Zq, n, Ψ̄α)-LWE prob-
lem is hard.

Proof. Suppose there exists a PPT adversary A breaks the security of our DR-
ABE scheme with user-level user revocation with non-negligible probability, we
can construct an algorithm B that solves the LWE problem with the same ad-
vantage.

Note that B has an oracle O(·) and he want to determine whether it is a
noisy pseudo-random sampler Os∗ for some s∗ ∈ Znq or a truly random sampler
O$. To this end, B proceeds as follows:

Init. A submits a challenge access structure A∗ = (W ∗ = {att∗j}j∈J∗1 , t
∗) and a

challenge revocation list RL∗ to B, where J∗1 ⊆ I1 and 1 ≤ t∗ ≤ min(|W ∗|, d).
Let J∗2 = {`+ 1, . . . , `+ d+ 1− t∗} and let J∗ = J∗1 ∪ J∗2 .

Setup. After receiving (W ∗ = {att∗j}j∈J∗1 , t
∗) and RL∗, B samples (u, vu) ∈

Znq × Zq and (A,v) ∈ Zn×mq × Zmq from O(·), chooses an FRD map H :
Znq → Zn×nq , builds a binary tree BT with N leaf nodes.
– For each j ∈ J∗1 , B chooses R∗j ← {−1, 1}m×m, and computes Bj =

AR∗j −H(att∗j )G.
– For each j ∈ I1\J∗1 , B chooses R∗j ← {−1, 1}m×m, and computes Bj =

AR∗j −H(0)G.
– For each j ∈ J∗2 , B chooses R∗j ← {−1, 1}m×m, computes Bj = AR∗j−G.
– For each j ∈ I2\J∗2 , B chooses R∗j ← {−1, 1}m×m, computes Bj = AR∗j .
– For each θ ∈ BT, B chooses R∗θ←{−1, 1}m×m and computes Dθ = AR∗θ

if θ ∈ KUNodes(BT,RL∗) and Dθ = AR∗θ + G otherwise.
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Finally, B sends the public key PK = {A, {Bi}i∈I ,u, H,BT} to A and keeps
({R∗j}j∈I , {R∗θ}θ∈BT, vu,v) secret.

Phase 1 and 2. When B receives a key generation query (id, S) from A, where
S = {atti}i∈I , he outputs ⊥ if S |= (W ∗, t∗) and id /∈ RL∗. Otherwise, the
adversary B picks an unassigned leaf node νid from BT and stores id in that
node.

– For id∈RL∗, note that in this case path(BT, νid)∩KUNodes(BT,RL∗) = ∅.
For each node θ ∈ path(BT, νid), B first picks n degree d polynomi-
als pθ,1(x), . . . , pθ,n(x) ∈ Zq[x], such that u = (pθ,1(0), . . . , pθ,n(0))>.
Then for each i∈ I ∪ I2, B sets ûθ,i = (pθ,1(i), . . . , pθ,n(i))>. Note that
Eθ,i = (A‖AR∗θ + G‖Bi + H(atti)G) for i ∈ I and Eθ,i = (A‖AR∗θ +
G‖Bi + G) for i ∈ I2. Now, for each θ ∈ path(BT, νid) and each
i ∈ I ∪ I2, B first chooses e′′θ,i ← DZm,σ, computes û′′θ,i = (Bi +
H(atti)G) · e′′θ,i if i ∈ I and û′′θ,i = (Bi + G) · e′′θ,i if i ∈ I2, runs
e′θ,i←SampleRight(A,G,R∗θ, û

′
θ,i,TG, σ) where û′θ,i = ûθ,i − û′′θ,i, then

sets eθ,i = (e′θ,i‖e′′θ,i).
– For id /∈ RL∗ and S 6|= (W ∗, t∗), there exists a θ∗ ∈ path(BT, νid) ∩

KUNodes(BT,RL∗). For each θ ∈ path(BT, νid) \ {θ∗}, B picks n degree
d polynomials pθ,1(x), . . . , pθ,n(x) such that u = (pθ,1(0), . . . , pθ,n(0))>.
Then it sets ûθ,i = (pθ,1(i), . . . , pθ,n(i))> and generates eθ,i = (e′θ,i‖e′′θ,i)
for i ∈ I ∪ I2 by using the Gaussian sampling and the SampleRight al-
gorithms according to the above process.
For θ∗, let S ∩ W ∗ = {attj}j∈K , then |K| < t∗, thus |K ∪ J∗2 | ≤ d.
B chooses a set K ′ such that K ∪ J∗2 ⊆ K ′ ⊆ I ∪ I2 and |K ′| = d.
For each i ∈ K ′, B chooses eθ∗,i ← DZ3m,σ and if i ∈ I, let Eθ∗,i =
(A‖Dθ∗‖Bi + H(atti)G), else let Eθ∗,i = (A‖Dθ∗‖Bi + G), then com-
putes ûθ∗,i = Eθ∗,i · eθ∗,i. Thus, we have d + 1 n-dimensional vectors
{u, {ûθ∗,i}i∈K′}. By the Lagrange interpolation formula, we can recover
polynomials pθ∗,1(x), . . . , pθ∗,n(x) such that u = (pθ∗,1(0), . . . , pθ∗,n(0))>,
and for each i ∈ K ′, ûθ∗,i = (pθ∗,1(i), . . . , pθ∗,n(i))>. Now, for each
i ∈ I\(K ′∩I), if i ∈ J∗1 , we have atti 6= att∗i and Eθ∗,i = (A‖Dθ∗‖AR∗i +
(H(atti)−H(att∗i ))G), else we have atti 6= 0 and Eθ∗,i = (A‖Dθ∗‖AR∗i+
(H(atti) − H(0))G). For each i ∈ I2\(K ′ ∩ I2), note that we have
Eθ∗,i = (A‖Dθ∗‖AR∗i + G). Now, for i ∈ I ∪ I2, B first chooses e′′θ∗,i ←
DZm,σ, computes û′′θ∗,i = Dθ∗ · e′′θ∗,i and û′θ∗,i = ûθ∗,i − û′′θ∗,i, then run-
s (e′θ∗,i, e

′′′
θ∗,i) ← SampleRight(A,G,R∗i , û

′
θ∗,i,TG, σ), and sets eθ∗,i =

(e′θ∗,i‖e′′θ∗,i‖e′′′θ∗,i).
In the end, B returns skS,id =

(
{eθ,i}θ∈path(BT,νid),i∈I∪I2

)
to A.

Challenge. When A submits two different messages M0,M1 ∈ {0, 1}, the ad-
versary B picks b ∈ {0, 1}, computes c0 = Dvu + Mbbq/2c, c = Dv. Then,
B computes cj = D(R∗j )

>v for each j ∈ J∗1 ∪ J∗2 , and cθ = D(R∗θ)
>v for

each θ ∈ KUNodes(BT,RL∗). Finally, B sends to A the ciphertext C =(
c0, c, {cj}j∈J∗1∪J∗2 , {cθ}θ∈KUNodes(BT,RL∗)

)
.

Guess. A output a guess b′ ∈ {0, 1} for b. If b′ = b, B outputs 1, else outputs 0.
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Note that by Lemma 8, the pair (A,u) is computationally indistinguishable from
its distribution in the real attack. Applying Lemma 7, we know that {Bi}i∈I and
{Dθ}θ∈BT are statistically close to uniform even given more information about
(R∗i )

>x and (R∗θ)
>x, respectively. Hence, the distribution of the public key in the

simulation is indistinguishable from that in the real attack, andA gains negligible
information about {R∗i }i∈I and {R∗θ}θ∈BT from the public key. According to
Lemma 2, 4 and 5, the output distribution of the key generation simulation
using the SampleRight algorithm is statistical to that in the real attack.

If O(·) = Os∗ for some s∗, we claim that the challenge ciphertext C∗ is a valid
ciphertext for s = Ds∗, {R∗i }i∈J∗1∪J∗2 , and {R∗θ}θ∈KUNodes(BT,RL∗): Note that for

each j∈J∗1 , cj = D(R∗j )
> · (A>s∗+x) = (AR∗j )

> · (Ds∗)+D · (R∗j )>x = (Bj +

H(att∗j )G)>s+D(R∗j )
>x. For each j∈J∗2 , cj = D(R∗j )

> · (A>s∗+x) = (AR∗j )
>·

(Ds∗)+D · (R∗j )>x = (Bj + G)>s +D(R∗j )
>x. For each θ∈KUNodes(BT,RL∗),

cθ = D(R∗θ)
>(A>s∗+ x) = (AR∗θ)

>(Ds∗) +D(R∗θ)
>x = D>θ · s +D(R∗θ)

>x.
Therefore, the ciphertext is the same as the view of A in the real attack.

Hence, if A guesses the right b with noticeable probability more than 1/2,
then B can succeed in its game with the same probability. Else if O(·) = O$,
then the ciphertexts c0, c, {cj}j∈J∗1∪J∗2 , {cθ}θ∈KUNodes(BT,RL∗) are uniform, thus
the probability of A guesses the right b is exactly 1/2. In a word, if A breaks the
security of our DR-ABE with user-level revocation, then B solves the underlying
LWE problem. ut

4.3 Parameters

In this section, we will instantiate the parameters to satisfy the correctness and
security of DR-ABE with user-level revocation. In particular, we need to set
parameters so that the following conditions hold with overwhelming possibility.

– For the algorithm TrapGen, we need m ≥ 2ndlog qe (i.e., Lemma 3).

– For the algorithm SampleLeft, we need σ ≥ O(
√
n log q) · ω(

√
logm) (i.e.,

Lemma 3, 4).

– For correctness, we need |Dx0 − yθ| ≤ q/5.

– For security proof, we need σ ≥
√
m·ω(

√
logm) for the algorithm SampleRight

(i.e., Lemma 3, 5, 6) and m > (n+ 1) log q + ω(log n) (i.e., Lemma 7).

– For the hardness of LWE, we need αq > 2
√
n (i.e., Lemma 8).

Assume that δ is a real such that n1+δ > d(n+ 1) log q+ω(log n)e, m,σ, q, α
are determined as follows:

– m = 2n1+δ,

– σ =
√
m · ω(

√
logm),

– q = σm3/2(d+ 1)((`+ d)!)4ω(
√

2 logm),

– α =
(
σm(d+ 1)((`+ d)!)4ω(

√
logm)

)−1
.
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5 DR-ABE with attribute-level revocation

The idea of constructing a DR-ABE with user-level user revocation in Section 4
cannot be extended to constructing a DR-ABE with attribute-level user revo-
cation directly for the following reason. Suppose we associate every attribute
atti with a binary tree BTi of depth L. For each id, we link id to a leaf n-
ode νid,i of BTi. Then, for each l ∈ [L], the random vector u in the pub-
lic key is secret-shared into vectors {ûl,i}, where ûl,i is associate with the n-
ode of depth l in path(BT, νid,i) of BTi. Now, if the non-revoked attribute set
Sid,RL={RLi} = {atti | id /∈ RLi} of id satisfies the access structure, then u should
be recovered if the extension works. Now, for each atti ∈ Sid,RL, there exist-
s a θi ∈ path(BT, νid,i) ∩ KUNodes(BTi,RLi) and thus ûθi,i can be recovered.
However, we cannot recover û since θi may not be at the same depth.

In this section, we propose a DR-ABE scheme from lattices, which supports
attribute-level user revocation and flexible threshold access policies on multi-
valued attributes. The main ideas behind our construction can be described as
follows. The random vector u in the public key is secret-shared into vectors
{ûi}, where ûi is associate with the i-th attribute atti of the identity id. To
revoke atti of id, we further split each ûi into two random vectors û′i and û′′i ,
corresponding to atti and id respectively. If the atti of id is revoked, û′′i , and
therefore ûi, cannot be recovered. In this way, u can be recovered only if the
set of non-revoked attributes of id satisfies the threshold access policy, thereby
achieving the revocation of part attributes of id.

For convenience, we use the notations from Section 4.

Setup(n,R, N): On input a security parameter n, a system attribute set R =
R1×· · ·×R` and a maximal number of users N in the system, this algorithm
sets the primitive matrix G (with public trapdoor TG, see Lemma 3) and
the parameters q, m, α, σ as specified in Section 4.3. Then it performs as
follows:
1. Run (A,TA)← TrapGen(n,m, q).
2. Choose Bi ← Zn×mq for i ∈ I.
3. Choose u← Znq .
4. Choose a full-rank difference map H : Znq → Zn×nq .
5. Build a family of binary trees BT = {BTi}i∈I1 , where each BTi has N

leaf nodes. For each i ∈ I1 and each node θ ∈ BTi, choose “identifier”
Di,θ ← Zn×mq .

6. Return PK = {A, {Bi}i∈I ,u, H,BT} and MSK = TA.
Keygen(PK,MSK, id, S): On input the public key PK, the master secret key MSK,

an identity id, and the attribute set S = {atti}i∈I of id, where I ⊆ I1 and
atti ∈ Ri, it goes as follows:
1. For i∈ [1, n], randomly choose degree d polynomial pi(x) ∈ Zq[x], such

that u = (p1(0), . . . , pn(0))>. For each i ∈ I∪I2, let ûi = (p1(i), . . . , pn(i))>.
2. For each i ∈ I, pick an unassigned leaf node νid,i from BTi and s-

tore id in that node. Choose û′i ← Znq and set û′′i = ûi − û′i. Sam-
ple vector e′i← SampleLeft(A,Bi+H(atti)G, û′i,TA, σ). Sample e′′i,θ←
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SampleLeft(A,Di,θ, û
′′
i ,TA, σ) for θ ∈ path(BTi, νid,i).

Let E′i = (A‖Bi+H(atti)G) and E′′i,θ = (A‖Di,θ), note that E′i ·e′i = û′i
and E′′i · e′′i,θ = û′′i .

3. For each i ∈ I2, sample ei ← SampleLeft(A,Bi + G, ûi,TA, σ). Let
Ei = (A‖Bi + G), note that Ei · ei = ûi.

4. Return skS,id =
(
{e′i}i∈I , {e′′i,θ}i∈I,θ∈path(BTi,νid,i), {ei}i∈I2

)
as the pri-

vate key.

Note that for any subset K ⊆ I ∪I2, |K| = d+ 1, we have u =
∑
i∈K Li · ûi,

where the Lagrange coefficient Li =
∏
j∈K,j 6=i−j∏
j∈K,j 6=i(i−j)

.

Enc(PK, (W, t),RL,M): On input a public key PK, an attribute setW ={attj}j∈J1 ,
an integer 1 ≤ t ≤min(|W |, d), a family of attribute revocation lists RL =
{RLj}j∈J1 where each RLj consisting of identities whose j-th attribute is
revoked and a message M ∈ {0, 1}, it works as follows:

1. Choose s← Znq , compute c0 = u>s +Dx0 +Mb q2c and c = A>s +Dx,

where x0 ← Ψ̄α, x← Ψ̄mα .

2. For each j ∈ J1, choose Rj ← {−1, 1}m×m, compute c′j = (Bj +

H(attj)G)>s +DR>j x.

3. For each j ∈ J1 and each θ ∈ KUNodes(BTj ,RLj), choose Rj,θ ←
{−1, 1}m×m, compute c′′j,θ = D>j,θ · s +DR>j,θ · x.

4. Let J2 = {` + 1, . . . , ` + d + 1 − t} and for each j ∈ J2, choose Rj ←
{−1, 1}m×m, compute cj = (Bj + G)>s +DR>j x.

5. Return C =
(
c0, c, {c′j}j∈J1 , {c′′j,θ}j∈J1,θ∈KUNodes(BTj ,RLj), {cj}j∈J2

)
as

the ciphertext.

Dec(PK, skS,id, C): On input the public key PK, the private key skS,id of identity
id with attribute set S = {atti}i∈I and a ciphertext C encrypted under access
structure (W ={attj}j∈J1 , t) and a family of revocation lists RL={RLj}j∈J1 .
Let Sid,RL = {atti ∈ S | id /∈ RLi, i ∈ I}.

1. If |Sid,RL ∩W | < t, then return ⊥;

2. Else, parse skS,id =
(
{e′i}i∈I , {e′′i,θ}i∈I,θ∈path(BTi,νid,i), {ei}i∈I2

)
and C=(

c0, c, {c′j}j∈J1 , {c′′j,θ}j∈J1,θ∈KUNodes(BTj ,RLj), {cj}j∈J2
)

. Let Sid,RL∩W =

{atti}i∈K . Since |K| ≥ t, there exists a setK ′ ⊆ K∪J2 with size d+1. For
all j ∈ K ′ ∩K, there exists a θj ∈ path(BTj , νid,j)∩KUNodes(BTj ,RLj),
compute rj = e′>j (c; c′j)+e′′>j,θj (c; c′′j,θj ). For all j ∈ K ′∩J2, compute rj =

e>j (c; cj). Then, compute r =
∑
j∈K′ Ljrj , where Lj =

∏
k∈K′,k 6=j −k∏
k∈K′,k 6=j(j−k) .

Finally, compute r̂ = c0 − r. If |r̂ − b q2c| ≤ b
q
4c in Z, return 1, otherwise

return 0.
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5.1 Correctness

For j∈K ′ ∩K and θj ∈path(BTj , νid,j) ∩ KUNodes(BTj ,RLj), we have

(c; c′j) =

[
c
c′j

]
=

[
A>s +Dx

(Bj +H(attj)G)>s +DR>j x

]
= (A‖Bj +H(attj)G)>s +D

[
x

R>j x

]
.

(c; c′′j,θj ) =

[
c

c′′j,θj

]
=

[
A>s +Dx

D>j,θj · s +DR>j,θj · x

]
= (A‖Dj,θj )

>s +D

[
x

R>j,θjx

]
.

Thus,

rj =e′>j (c; c′j) + e′′>j,θj (c; c′′j,θj )

=e′>j (A‖Bi +H(atti)G)>s+De′>j (x; R>j x) + e′′>j,θj (A‖Dj,θj )
>s +De′′>j,θj (x; R>j,θj )

=
(
û′>j + û′′>j

)
s +D

(
e′>j x′j + e′′>j,θjx

′′
j,θj

)
=û>j s +D

(
e′>j x′j + e′′>j,θjx

′′
j,θj

)
,

where x′j = (x; R>j x) and x′′j,θj = (x; R>j,θjx).

For j ∈ K ′ ∩ J2, we have

(c; cj) =

[
c
cj

]
=

[
A>s +Dx

(Bj + G)>s +DR>j x

]
= (A‖Bj + G)>s +D

[
x

R>j x

]
.

Thus, rj = e>j (c; cj) = e>j (A‖Bj + G)>s + De>j (x; R>j x) = û>j s + De>j x′j ,

where x′j = (x; R>j x).
Then, we have

r =
∑
j∈K′

Ljrj

=
∑

j∈K′∩K
Lj

(
û>j s +D

(
e′>j x′j + e′′>j,θjx

′′
j,θj

))
+

∑
j∈K′∩J2

Lj
(
û>j s +De>j x′j

)

=

∑
j∈K′

Ljû
>
j

 s + y = u>s + y,

where y = D

( ∑
j∈K′

Lje
′>
j x′j +

∑
j∈K′∩K

Lje
′′>
j,θj

x′′j,θj

)
.

Finally, we have

r̂ = c0 − r = Dx0 − y +M · bq
2
c.
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Now, we begin to bound |Dx0−y|. By Lemma 1 and 4, we have ‖e′j‖ ≤ σ
√

2m and

‖e′′j,θj‖ ≤ σ
√

2m. For j ∈ K ′, e′>j x′j = e′>j,0x + e′>j,1R
>
j x, where e′j = (e′j,0; e′j,1).

Since ‖e′j,0 + Rje
′
j,1‖ ≤ (s1(Rj) + 1) · σ

√
2m, by Lemma 9, we have |e′>j x′j | ≤

(s1(Rj) + 1)σ
√

2m(qαω(
√

logm) +
√
m/2). Similarly, for j ∈K ′ ∩ K, we have

|e′′>j x′′j,θj | ≤ (s1(Rj,θj ) + 1)σ
√

2m(qαω(
√

logm) +
√
m/2). Applying Lemma 9

in [2], we have DLj ≤ ((` + d)!)4. By Lemma 6, we have s1(Rj), s1(Rj,θj ) =
O(
√
m). Thus, |y| ≤ 2(d+1)((`+d)!)4σO(m)·(qαω(

√
logm)+

√
m/2). Therefore,

we have |Dx0 − y| ≤ ((` + d)!)2(qαω(
√

logm) + 1/2) + |y| ≤ σqαm(d + 1)((` +
d)!)4ω(

√
logm) + σ(d+ 1)((`+ d)!)4O(m3/2) by Lemma 9.

5.2 Security

In this section, we prove the security of our DR-ABE scheme with attribute-level
revocation in the selective model in Definition 1.

Theorem 2. For appropriate parameters n,m, q, σ, α, the above DR-ABE scheme
with attribute-level revocation is secure provided that the (Zq, n, Ψ̄α)-LWE prob-
lem is hard.

Proof. Suppose there exists a PPT adversary A breaks the security of our DR-
ABE scheme with non-negligible probability, we can construct an algorithm B
that solves the LWE problem with the same advantage.

Note that B has an oracle O(·) and he want to determine whether it is a
noisy pseudo-random sampler Os∗ for some s∗ ∈ Znq or a truly random sampler
O$. To this end, B proceeds as follows:

Init. A submits a challenge access structure A∗ = (W ∗ = {att∗j}j∈J∗1 , t
∗) and a

family of challenge attribute revocation lists RL∗ = {RL∗j}j∈J∗1 to B, where
J∗1 ⊆ I1 and 1 ≤ t∗ ≤ min(|W ∗|, d). Let J∗2 = {`+ 1, . . . , `+ d+ 1− t∗} and
let J∗ = J∗1 ∪ J∗2 .

Setup. After receiving (W ∗ = {att∗j}j∈J∗1 , t
∗) and RL∗, B samples (u, vu) ∈

Znq × Zq and (A,v) ∈ Zn×mq × Zmq from O(·), chooses an FRD map H :
Znq → Zn×nq , builds a family of binary trees BT = {BTi}i∈I1 , where each
BTi has N leaf nodes.
– For each j ∈ J∗1 and each θ ∈ BTj , B randomly chooses R∗j ,R

∗
j,θ ←

{−1, 1}m×m, and computes Bj = AR∗j −H(att∗j )G, Dj,θ = AR∗j,θ if θ ∈
KUNodes(BTj ,RL

∗
j ), Dj,θ = AR∗j,θ+G if θ ∈ BTj \KUNodes(BTj ,RL∗j ).

– For each j ∈ I1\J∗1 and each θ ∈ BTj , B randomly chooses R∗j ,R
∗
j,θ ←

{−1, 1}m×m, and computes Bj = AR∗j−H(0)G and Dj,θ = AR∗j,θ+G.

– For each j ∈ J∗2 , B chooses R∗j ← {−1, 1}m×m, computes Bj = AR∗j−G.
– For each j ∈ I2\J∗2 , B chooses R∗j ← {−1, 1}m×m, computes Bj = AR∗j .

Finally, B sends the public key PK = {A, {Bi}i∈I ,u, H,BT} to A and keeps
({R∗j}j∈I , {R∗j,θ}j∈I1,θ∈BTj , vu,v) secret.

Phase 1 and 2. When B receives a key generation query (id, S) from A, where
S = {atti}i∈I , he outputs ⊥ if Sid,RL∗ = {atti ∈ S | id /∈ RL∗i , i ∈ I} |=
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(W ∗, t∗). Otherwise, for each i ∈ I, B picks an unassigned leaf node νid,i
from BTi and stores id in that node. Let Sid,RL∗ ∩ W ∗ = {attj}j∈K , we
have |K| < t∗, thus |K ∪ J∗2 | ≤ d. Then B chooses a set K ′ such that
K ∪ J∗2 ⊆ K ′ ⊆ I ∪ I2 and |K ′| = d.
For each j ∈ K ′:
– If j ∈ I, choose e′j ← DZ2m,σ, let E′j = (A‖Bj + H(attj)G), then

compute û′j = E′j · e′j .
• If j ∈ J∗1 and id /∈ RL∗j , there exists a θ∗j ∈ path(BTj , νid,j) ∩
KUNodes(BTj ,RL

∗
j ). Choose e′′j,θ∗j

←DZ2m,σ, let E′′j,θ∗j
= (A‖Dj,θ∗j

),

and compute û′′j = E′′j,θ∗j
· e′′j,θ∗j . For each θ ∈ path(BTj , νid,j)\{θ∗j },

let E′′j,θ = (A‖Dj,θ) = (A‖AR∗j,θ + G), and then sample e′′j,θ ←
SampleRight(A,G,R∗j,θ, û

′′
j ,TG, σ) such that E′′j,θ · e′′j,θ = û′′j .

• Else, pick û′′j ←Znq . For θ ∈ path(BTj , νid,j), let E′′j,θ = (A‖Dj,θ) =
(A‖AR∗j,θ + G), sample e′′j,θ ← SampleRight(A,G,R∗j,θ, û

′′
j ,TG, σ)

such that E′′j,θ · e′′j,θ = û′′j .

Then B computes ûj = û′j + û′′j .

– If j ∈ I2, choose ej ← DZ2m,σ, let Ej = (A‖Bj + G), compute ûj =
Ej · ej .

Let n degree d polynomials p1(x), . . . , pn(x) such that u = (p1(0), . . . , pn(0)),
ûj = (p1(j), . . . , pn(j)) for each j ∈ K ′. Then we can recover polynomials
p1(x), . . . , pn(x) ∈ Zq[x] by the Lagrange interpolation formula. Compute
ûj = (p1(j), . . . , pn(j)) for each j ∈ (I ∪ I2) \K ′.
For each j∈I \ (K ′∩I):

– If j∈J∗1 and attj = att∗j , we have id ∈ RL∗j . Choose e′j←DZ2m,σ, let E′j=
(A‖Bj+H(att∗j )G)=(A‖AR∗j ), compute û′j = E′j ·e′j and û′′j = ûj−û′j .
For each θ ∈ path(BTj , νid,j), let E′′j,θ = (A‖Dj,θ) = (A‖AR∗j,θ + G), B
can sample e′′j,θ∼D

Λ
û′′
j
q (E′′j,θ),σ

by using the SampleRight algorithm.

– If j ∈J∗1 , attj 6= att∗j and id /∈ RL∗j , there exists a θ∗j ∈path(BTj , νid,j)∩
KUNodes(BTj ,RL

∗
j ). Choose e′′j,θ∗j

←DZ2m,σ, let E′′j,θ∗j
=(A‖Dj,θ∗j

), com-

pute û′′j =E′′j,θ∗j
·e′′j,θ∗j . For θ∈path(BTj , νid,j)\{θ∗j }, let E′′j,θ = (A‖Dj,θ) =

(A‖AR∗j,θ +G), sample e′′j,θ ← SampleRight(A,G,R∗j,θ, û
′′
j ,TG, σ) such

that E′′j,θ ·e′′j,θ = û′′j . Then compute û′j = ûj− û′′j , sample e′j∼D
Λ
û′
j
q (E′j),σ

by using SampleRight algorithm, where E′j = (A‖Bj + H(attj)G) =
(A‖AR∗j + (H(attj)−H(att∗j ))G).

– Otherwise, choose û′′j←Znq , compute û′j= ûj−û′′j . For θ∈path(BTj , νid,j),
sample e′′j,θ←SampleRight(A,G,R∗j,θ, û

′′
j ,TG, σ) for E′′j,θ = (A‖AR∗j,θ+

G). Then sample e′j ∼ D
Λ
û′
j
q (E′j),σ

by using the SampleRight algorithm,

where E′j = (A‖AR∗j + (H(attj) − H(att∗j ))G) if j ∈ J∗1 , and E′j =
(A‖AR∗j + (H(attj)−H(0))G) if j /∈ J∗1 .

For each j ∈I2 \ (K ′ ∩ I2), let Ej = (A‖Bj + G) = (A‖AR∗j + G), sample
ej ← SampleRight(A,G,R∗j , ûj ,TG, σ).

Finally, B sends skS,id =
(
{e′i}i∈I , {e′′i,θ}i∈I,θ∈path(BTi,νid,i), {ei}i∈I2

)
to A.
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Challenge. When A submits two different messages M0,M1 ∈ {0, 1}, B flips a
random coin b ∈ {0, 1}, computes c0 = Dvu+Mbbq/2c, c = Dv. For each j ∈
J∗1 and each θ ∈ KUNodes(BTj ,RL

∗
j ), B computes c′j=D(R∗j )

>v and c′′j,θ =

D(R∗j,θ)
>v. For each j ∈ J∗2 , B computes cj =D(R∗j )

>v. Finally, B sends

the ciphertext C∗ =
(
c0, c, {c′j}j∈J∗1 , {c

′′
j,θ}j∈J∗1 ,θ∈KUNodes(BTj ,RL∗j ), {cj}j∈J∗2

)
to A.

Guess. A output a guess b′ ∈ {0, 1} for b. If b′ = b, B outputs 1, else outputs 0.

Note that by Lemma 8, the pair (A,u) is computationally indistinguishable from
its distribution in the real attack. Applying Lemma 7, we know that {Bi}i∈I
and {Di,θ}i∈I1,θ∈BTi are statistically close to uniform even given more informa-
tion about (R∗i )

>x and (R∗i,θ)
>x, respectively. Hence, the distribution of the

public key in the simulation is indistinguishable from that in the real attack,
and A gains negligible information about {R∗i }i∈I and {R∗i,θ}i∈I1,θ∈BTi from
the public key. According to Lemma 2, 4 and 5, the output distribution of the
key generation simulation using the SampleRight algorithm is statistical to that
in the real attack.

If O(·) = Os∗ for some s∗, we claim that the challenge ciphertext C∗ is
a valid ciphertext for s = Ds∗, {R∗i }i∈J∗1∪J∗2 , and {R∗i,θ}i∈J∗1 ,θ∈KUNodes(BTi,RL∗i ):

Note that for each j∈J∗1 and each θ∈KUNodes(BTj ,RL∗j ), c′j = D(R∗j )
>(A>s∗+

x) = (AR∗j )
>(Ds∗)+D(R∗j )

>x = (Bj + H(att∗j )G)>s + D(R∗j )
>x and c′′j,θ =

D(R∗j,θ)
>(A>s∗+x) = (AR∗j,θ)

>(Ds∗)+D(R∗j,θ)
>x = D>j,θ · s+D(R∗j,θ)

>x. For

each j ∈ J∗2 , cj = D(R∗j )
>(A>s∗ + x) = (AR∗j )

>(Ds∗)+D(R∗j )
>x = (Bj +

G)>s +D(R∗j )
>x. Therefore, the ciphertext is the same as the view of A in the

real attack.
Hence, if A guesses the right b with noticeable probability more than 1/2, then
B can succeed in its game with the same probability. Else if O(·) = O$, then the
ciphertexts c0, c, {c′j}j∈J∗1 , {c′′j,θ}j∈J∗1 ,θ∈KUNodes(BTj ,RL∗j ), {cj}j∈J∗2 are uniform,

thus the probability of A guesses the right b is exactly 1/2. In a word, if A breaks
the security of our DR-ABE, then B solves the underlying LWE problem. ut

5.3 Parameters

The parameters are the same as those of Section 4.3.

6 Reducing the size of public key

Our DR-ABE scheme with user-level (resp. attribute-level) revocation has a
relatively large public key, and its dependence on the number of users N in the
system is due to the fact that each node θ in BT (resp. each BTi) is associated
with a uniform random matrix Dθ ∈ Zn×mq (resp. Di,θ ∈ Zn×mq ). In fact, the
size of the public key can be reduced in the random oracle model in a way
similar to [21]: Let H : {0, 1}∗ → Zn×mq be a random oracle. For each node θ
in BT (resp. each BTi), we obtain uniformly random matrix Dθ (resp. Di,θ) as
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Dθ := H(A, {Bj}j∈I ,u, θ) (resp. Di,θ := H(A, {Bj}j∈I ,u, i, θ)). In the security
proof, we first simulate the generation of Dθ (resp. Di,θ) as in the proof of
Theorem 1 (resp. Theorem 2) then programs the random oracle H such that
H(A, {Bj}j∈I ,u, θ) = Dθ (resp. H(A, {Bj}j∈I ,u, i, θ) = Di,θ).

7 Decryption outsourcing

To make our schemes more applicable for resource-limited end user, we modify
our DR-ABE schemes to outsource most computational overhead of the end user
to an honest-but-curious third party in the following manner: We add an extra
dummy attribute dummy in the system. The Setup algorithm chooses an extra
matrix B̄ ← Zn×mq . To generate the private key for a user, the KGC splits the
public vector u into ū, û such that u = ū + û, samples ē← SampleLeft(A,B +
H(dummy)G, ū,TA, σ), replaces u with û in the original Keygen algorithm to
get skS,id, finally returns skS,id along with ē as the private key of the user.
Moreover, we add an extra ciphertext corresponding with dummy, c̄ = (B +
H(dummy)G)>s+DR̄>x, into the output of the original Enc algorithm. In this
case, the end user can give skS,id to an untrusted third party to help decrypt
the ciphertext except for c̄. The third party will return ûs+e and c̄ to the user,
and the latter only need to deal with c̄ using ē to recover the message.

8 Conclusion

In this paper, we propose two directly revocable ciphertext-policy attribute-
based encryption schemes from lattices. One achieves user-level user revocation,
while the other achieves attribute-level user revocation. Both schemes inherit
the main advantages of the direct revocation mechanism: the revocation list is
defined by the message sender ; the authority does not need to generate and issue
key update anymore. In addition, both schemes support flexible threshold access
policies on multi-valued attributes. The size of public key of our schemes can be
reduced in the random oracle model. Most part of the decryption work can be
outsourced to a third party as well. Compared with other existing lattice-based
revocable CP-ABE schemes, our schemes have reasonable security guarantee.
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